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Problem Description
Many interesting problems in the oil and gas industry face the challenge of
responding to disturbances from afar. Typically, the disturbance occurs at
the inlet of a pipeline or at the bottom of an oil well, while sensing and actu-
ation equipment is installed at the outlet, only. A new method for removing
the effect of the disturbance at the inlet boundary by co-located output feed-
back control at the outlet boundary was recently derived in [1]. The topic of
this project is to develop the method further in a number of directions. The
following points should be addressed by the student:

Tasks:

1. Review relevant literature on the methods exploited in [1].
2. Extend the method in [1] to remove the effect of the disturbance at an

arbitrary point in the domain.
3. Script an efficient code for computation of feedback and observer gains.
4. Apply the results to a model of the heave disturbance in managed

pressure drilling.
5. Consider the resulting controller in the frequency domain, and consider

model reduction schemes for obtaining rational approximations to it.
Simulate to demonstrate performance.

6. Write a report.

Assignment given: 14. January 2013
Supervisor: Professor Ole Morten Aamo, ITK

[1] Aamo, O. M.: Disturbance rejection in 2 x 2 linear hyperbolic systems.
IEEE Transactions on Automatic Control, Vol. 58, Issue 5, pages 1095-1106,
2013.
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Abstract

Many physical systems can be modelled using linear 2 × 2 hyperbolic par-
tial differential equations. The act of stabilizing systems of this type has
therefore been subject to extensive research, and a number of techniques and
feedback laws have been proposed in the literature. In this thesis, a full state
feedback law for disturbance attenuation in such systems is derived, with
actuation limited to the right boundary. The disturbance is modelled using
an autonomous, finite dimensional linear system affecting the partial differ-
ential equation’s left boundary. The effect of the disturbance is attenuated
at an arbitrary given point in the domain. Two controller formulations of the
feedback law is given, along with a considerable simplified controller derived
subject to a few assumptions. The three controllers may be combined with an
observer generating full state and disturbance estimates from sensing limited
to the same boundary as actuation. Using the Laplace transform, the trans-
fer functions of the three controllers combined with the observer are derived.
A model reduction technique based on the Laguerre series representation is
also given, so that rational, simple transfer function approximations can be
found. The results are applied to the heave problem in Managed Pressure
Drilling and tested through simulations. Both versions of the full state feed-
back law and the simplified one showed significant attenuation properties,
both when using the system states directly, and when using the observer
generated states. The attenuation properties of the reduced order trans-
fer function approximations were also satisfactory in most cases. However,
achieving a good transfer function match for the two full state feedback con-
trollers deemed challenging, probably due to the apparent resonance terms
observed in the original transfer functions. Rational transfer functions that
approximated the original transfer functions well for the frequencies of in-
terest were eventually found after some tuning. However, finding a good
transfer function match when using the simplified controller was generally
much easier, and a good match was quickly found for both the cases tested,
without much tuning.
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Sammendrag

Mange fysiske systemer kan modelleres ved hjelp av lineære 2 × 2 hyper-
bolske partielle differensiallikninger. Som følge av dette har det blitt skrevet
mye om stabilisering av slike systemer, og flere metoder og reguleringslover
har blitt foreslått. I denne mastertesen uteledes det en reguleringslov for
støyundertrykkelse i slike systemer når regulatoren kun påvirker differen-
siallikningens høyre side. Forstyrrelsen modelleres som et autonomt, en-
deligdimensionelt lineært system som påvirker differensiallikninges venstre
side. Støyen undertrykkes på et vilkårlig gitt punkt i domenet. To formu-
leringer av reguleringsloven blir gitt, i tillegg til en forenklet versjon som er
gyldig under visse forutsetninger. De tre regulatorene kan så kombineres med
en estimator som genererer system- og forstyrrelsesestimater fra målinger be-
grenset til samme side av den partielle differensiallikningen som aktuering.
Ved hjelp av Laplacetransformasjon utledes transferfunksjonene til de tre
kontrollerne sammen med estimatoren. En modellreduksjonsteknikk basert
på Laguerre-rekker blir også presentert, slik at enkle, rasjonelle transfer-
funksjoner kan bli funnet. Resultatene anvendes så på hiv-problemet i Man-
aged Pressure Drilling, og testes via simuleringer. Begge versjonene av reg-
uleringsloven, samt den forenklede regulatoren, klarte å undertrykke støyen
kraftig, både når systemtilstandene ble brukt direkte, og når tilstandene
fra estimatoren ble brukt. De forenklede, rasjonelle tilpasningene ytet også
tilfredsstillende, mens transferfunksjonstilpasningen for de to fulle reguler-
ingslovene var vanskelig grunnet noe som så ut som resonans i systemet.
Gode tilpasninger ble til slutt funnet etter en del parameterjusteringer. Å
anvende modellreduksjonsalgoritmen på den forenklede regulatoren var der-
imot en del enklere, og gode tilpasninger ble funnet uten særlige parameter-
justeringer.
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Chapter 1

Introduction

1.1 Motivation

The specific class of systems described by linear 2 × 2 partial differential
equations (PDEs) of hyperbolic type has attracted considerable attention
due to the many examples of physical systems that can be modelled that
way. Among such systems are open channels (Gugat and Leugering (2003)
de Halleux, Prieur, Coron, d’Andrea Novel, and Bastin (2003)), road traffic
(Goatin (2006)), gas flow pipelines (Gugat and Dick (2011)) and transmission
lines (Curró, Fusco, and Manganaro (2011)). Although the theory concerned
in this thesis has many potential areas of applications, the main motivations
are those faced during drilling operations in the oil and gas industry. Dur-
ing these operations, the act of responding to disturbances is frequently a
highly challenging task, due to the often very long distances between the
entering point of the disturbance and the actuation and sensing equipment.
An example is the heave problem in Managed Pressure Drilling, which can
be modelled using linear 2 × 2 hyperbolic PDEs.

When drilling, a drilling fluid called ”mud” is pumped down through the
drill string, through the drill bit at the bottom of the well and up the an-
nulus around the drill string. The mud does not only carry cuttings out of
the system, but it also cools down the drill bit and works keeps pressure in
the annulus at a desired level. This latter function is crucial, as the pressure
needs to be kept within certain bounds to avoid a fracturing of the formation
and a possible collapse of the well. Managed Pressure Drilling (MPD) is an
umbrella term for technologies developed with the aim of improving the pres-
sure control throughout the well. One of the most common MPD technology
is Applied Back Pressure (ABP) drilling (Hannegan (2006)), which is char-
acterized through that it closes the annulus section of the well and controls
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the pressure within by restricting the return flow, using a choke. The back
pressure can easily be changed by adjusting the choke opening, and a back
pressure pump allows the pressure to be controlled even when the main mud
pump is stopped.

The heave problem in MPD emerges when drilling offshore from a floating
rig. The rig will naturally move up and down with the waves, and during
drilling, an active mechanism is used to decouple the drill string from the
rig, to prevent the string from moving with the waves. However, every 27-29
metres, it is necessary to extend the drill string by a drill string connec-
tion. During this procedure, the drilling is stopped, the heave compensation
mechanism is deactivated and the string is rigidly attached to the rig. The
drill string is therefore forced to move with the rig, acting as a piston on
the mud in the well. Left uncompensated, this piston effect results in se-
vere pressure fluctuations throughout the well, often exceeding the standard
limits for pressure regulation accuracy in MPD, which are about ±2.5 bar
according to Godhavn (2010). It should, however, be possible to compen-
sate the pressure fluctuation in the annulus by adjusting the pressure using
ABP technology. The main problem is that sensing and actuation equipment
is situated topside, while the disturbance and the control point of interest
is situated down the well, potentially several kilometres from the actuation
and sensing point. This complicates the control problem greatly, since the
pressure and flow dynamics in the well will have to be modelled and taken
account for in the control law.

Traditional MPD has focused on maintaining a constant bottom hole
pressure (BHP), and active compensation for attenuation of the BHP fluc-
tuations caused by heaving has already been achieved in Aamo (2013). This
was achieved through modelling the oil well as a transmission line, and ap-
plying an infinite-dimensional backstepping transformation originally derived
for the general class of systems described by linear 2 × 2 hyperbolic PDEs.
There may, however, be situations where the pressure regulation at other
points in the well is of interest, e.g. at the bottom of a casing string (also
known as a casing-shoe).

Although the main motivation for this thesis is the heave problem in
MPD, the disturbance attenuation problem - mathematically posed in Sec-
tion 3.1 - is addressed for the general class of systems described by linear
2 × 2 hyperbolic partial differential equations.
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1.2 Previous work
Linear 2 × 2 hyperbolic PDEs have, due to the wide range of practical appli-
cations, been subject to extensive research, and a number of techniques for
controlling them have been proposed in the literature. Methods include us-
ing control Lyapunov functions (Coron, d’Andrea Novel, and Bastin (2007)),
Riemann invariants (Greenberg and Tsien (1984)) and frequency domain ap-
proaches (Litrico and Fromion (2006)).

A more recently developed method for control of PDEs is the Backstep-
ping method. The backstepping method in finite dimensions is a well known
method from nonlinear control theory (Khalil (2002, Sec. 14.3), Kokotović
(1992)) and is based on the design of diffeomorphisms to transform the prob-
lem into a new equivalent system with a nested structure that is far easier
to stabilize. The backstepping method proceeds by designing a controller
which stabilized the inner subsystems, and gradually ”backs out”, designing
new controllers that in turn stabilize the outer subsystems before the overall
system is stabilized. The backstepping method applied to partial differential
equations, on the other hand, was first developed for PDEs of the parabolic
type (Krstić and Smyshlyaev (2008)). A backstepping-like transformation
was developed and used to stabilize an unstable heat equation in Bosković,
Krstić, and Liu (2001). It was based on the same principles as in the finite-
dimensional case, with the nested subsystems emerging from discretization of
the PDE into a finite number of control volumes. A controller was designed
for the innermost control volume, before gradually ”backing out” and simul-
taneously extending the controller for stabilization of the remaining control
volumes. The method derived in Bosković et al. (2001) was, however, re-
stricted to systems with a number of open-loop unstable eigenvalues no more
than one. This was stressed further in Balogh and Krstić (2002), where an
arbitrary level of instability was allowed by using the backstepping method
on a semi-discretized version of the system making the close loop system
stable. The method involved recursively solving a series of equations for
the unknown controller gains - frequently referred to as kernels - used in the
backstepping, but numerical computations showed that the kernels contained
discontinuities as an artifact of the discretization method used. The number
of discontinuities would tend towards infinity as the discretization grid cell
size approached zero.

In Liu (2003), the first version of the backstepping method in its infinite-
dimensional form was presented. The method from Balogh and Krstić (2002)
was here improved by expressing the integration kernels as solutions to PDEs.
(On the other hand, the boundary conditions for the kernel PDEs were, inby
Liu’s own words, strange.) The method has since then been applied to, among
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others, fluid flows (Aamo, Smyshlyaev, Krstić, and Foss (2004)) and nonlin-
ear parabolic equations (Vazquez and Krstić (2008a) and Vazquez and Krstić
(2008b)), and has even been extended to adaptive versions (Smyshlyaev and
Krstić (2010)).

The method has later been derived for application on hyperbolic sys-
tems: in Krstić and Smyshlyaev (2008) on first order hyperbolic systems;
in Smyshlyaev, Cerpa, and Krstić (2010) on second order systems; and in
Vazquez, Krstić, and Coron (2011b) on two coupled first order equations.
Most relevant to this thesis are the results in Krstić and Smyshlyaev (2008)
and Vazquez et al. (2011b), which were used in Aamo (2013) to derive a
full state feedback law for disturbance attenuation on the left boundary by
control actuation from the right boundary, for the same type of systems con-
sidered in this thesis. The full state feedback law was combined with a state
observer to create an output feedback law, with sensing also limited to the
right boundary. The extension of the method from Aamo (2013) for distur-
bance attenuation in the interior domain has, to the best of our knowledge,
not previously been addressed.

The heave problem in MPD in itself has been addressed in Landet, Pavlov,
and Aamo (2013), using a lumped model and simplifying assumptions with
regards to available measurements. It was also investigated in Mahdianfar,
Aamo, and Pavlov (2012), where a linearization technique that neglected the
friction terms, omitting the need to perform a backstepping transformation,
was used.

1.3 Scope and emphasis
Firstly, we will seek to derive a control law for disturbance attenuation at
an arbitrary point in the interior domain of 2 × 2 linear hyperbolic PDEs
with spatially varying coefficients. The control law will also be combined
with an observer that generates estimates of the states in the system from
sensing on one end only, for practical implementation where sensing is often
limited to the same boundary as actuation. Secondly, when considered as
one single unit, the controller and observer together constitutes to one system
with a single input; the measurement, and a single output; the control signal.
By considering the lumped controller and observer in the frequency domain,
a transfer function linking the input and output is derived. A Laguerre-
Gram based model order reduction technique is then presented for generating
rational approximations from irrational transfer functions, with the purpose
of finding rational approximations of the combined controller and observer
transfer functions.
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The results are applied to and tested through simulations on the heave
problem from Managed Pressure Drilling.

1.4 Outline and notation
Clarification of notations used throughout the thesis is in order. Firstly, by
default, all vectors are column vectors. The exceptions are some controller
gains which share notion with previous literature. Definitions are stated
using a colon and an equality sign; a := b means that a, by definition, equals
b. The term kernel is a function acting as a gain, and is often evaluated
through an integral. A function’s Laplace transform is usually denoted using
the same notation as the original time-dependent function, i.e. denoting f(t)
and f(s) for the time domain and frequency domain representations of the
function f , respectively. When this is the case, it should be obvious from
the independent variable whether it is the time domain or frequency domain
function. Derivatives are interchangeably denoted using subscripts or the
standard Leibniz notation (i.e. xt and dx/dt, respectively). For monovariable
functions, the derivative is usually denoted using primes (i.e. f ′(t) and f ′′(t)
for the first and second order derivative, respectively), or a dot when the
derivative is taken with respect to time (i.e. ẋ). For some general set �, the
notation �n means the set of vectors of dimension n with components from
�. Similarly, the notation �m×n means the set of matrices with m rows and
n columns, with elements from �.

The thesis is separated into four parts. The first part consists of Chapters
1–2 and acts as an introduction. In Chapter 2, a short introduction to
partial differential equations is given. Some common solution methods are
also briefly presented. For readers familiar with partial differential equations,
this chapter may be omitted. Part II consists of Chapters 3–6 and contains
the theoretical contributions. Controllers with the desired properties are
derived in Chapter 3, while a state observer is presented in Chapter 4. In
Chapter 5, the transfer functions of the controllers, observer and combined
system are derived, with a model order reduction algorithm presented in
Chapter 6. The theory derived in part II is applied to the heave problem
in Managed Pressure Drilling in Part III, which consists of Chapter 7–8. In
Chapter 7, the theory is ported to a model for the heave problem in MPD,
before simulations are performed in Chapter 8. The results are discussed and
commented as they are presented. Part IV offers some concluding remarks
and some suggested areas for further work in its Chapter 9. The appendices
offer some additional lemmas, material, transfer function approximations
and plots from simulations. A description of the folders and files on the
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accompanying disc is also given, as well as a journal paper based on material
derived in Chapter 3.
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Chapter 2

An introduction to PDEs

2.1 Introduction
This chapter presents some relevant background material concerning partial
differential equations, with emphasis on the type of PDEs encountered in
this thesis. A brief overview of common solution methods is also given.

2.2 What are PDEs?
A partial differential equation (PDE) is an equation involving one or more
partial derivatives of a function u, that depends on two or more indepen-
dent variables (Kreyszig (2010, Sec. 12.1)) An ordinary differential equation
(ODE), on the other hand, depends on a single variable only. Partial differ-
ential equations can generally be stated

F (x1, x2, . . . xn, u, ux1 , ux2 , . . . uxn , ux1x1 , ux1x2 , . . . ux1xn , . . . ) = 0. (2.1)

for some function u in the independent variables x1, . . . , xn. A simple ex-
ample of a PDE can be

ut + uxx = 0 (2.2)

for some function u(x, t) in two variables x and t.
The order of a differential equation is that of the highest order derivative

that appears in the equation. The example PDE in (2.2) is of order 2. By
a domain, we mean the set of independent variables on which the unknown
function is defined. By a boundary, we mean the set of values at the domain’s
border. The boundary is often denoted ∂D for a domain D. By the interior
domain, we mean the whole domain except the boundary. By a solution of a
PDE over some region H contained in D, we mean a function u that has all
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the partial derivatives appearing in the PDE in the domain H, and satisfies
the PDE everywhere in H. A solution to (2.2) could for instance be

u(x, t) = 2t − x2. (2.3)

We call a PDE problem well-posed if (Renardy and Rogers (2004, Sec.
1.1.5)):

1. There exists a solution.
2. The solution is unique.
3. The solution depends continuously on the data.

where the phrase ”depends continuously on the data” means that the solu-
tion’s behaviour do not make a discontinuous change following a slight change
in the initial conditions. If the problem fails to be well-posed, it is said to be
ill-posed.

2.3 Boundary and initial conditions
PDEs generally have lots of solutions. The solutions of interest are usually
singled out by imposing initial conditions, that is, conditions the solution
must to satisfy at some given point (or set of points) in the domain. The
PDE problem is then usually termed an initial value problem (IVP), a term
also commonly used for ODEs. An example of an initial condition for (2.2)
could be

u(x, 0) = f(x) (2.4)
for some monovariable function f(x).

A boundary condition (BC) is an additional restraint the solution must
satisfy at the domain’s boundary. This forms boundary value problems (BVPs).
Consider a function u(x, t) defined over some domain D. The three most
common types of BCs, are (Kreyszig (2010, p. 564)):

1. A Dirichlet BC specifies the values a solution needs to take on the
boundary of the domain, for instance

u(0, t) = 0, t ≥ 0. (2.5)

2. A Neumann BC specifies the values the derivative of a solution needs
to take on the boundary of the domain, e.g.

ux(0, t) = 0, t ≥ 0. (2.6)
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3. Robin (or mixed) BCs are combinations of the Direchlet and Neumann
type BCs, for instance

u(0, t) + ux(0, t) = 0, t ≥ 0. (2.7)

The Dirichlet type BC is the one most relevant for this thesis.

2.4 Linearity, quasilinearity and nonlinearity
As with common algebraic equations, differential equations are often cate-
gorized into linear and nonlinear. A PDE (2.1) is termed linear if F is a
function linear in u(x1 . . . xn) and it’s derivatives. As an example; a linear
PDE of order one for a function u(x, t) may be written on the form:

a(x, t)ux + b(x, t)ut + c(x, t)u + d(x, t) = 0 (2.8)

An example is the PDE

u + ex(1 + sin(t))ux + ut = 0. (2.9)

Note here that the coefficients preceding u or its derivatives can be functions
nonlinear in the independent variables. The PDE

(ux)2 + ut = 0 (2.10)

however, is not linear. If a PDE of order k is linear in its kth derivatives, with
coefficients allowed to be functions of u and the less-than-kth derivatives of
u, then the PDE is said to be quasilinear. An example is the inviscid Burgers’
equation (Olver, 2013, Eq. (9.64))

ut + uux = 0 (2.11)

A PDE which is neither linear nor quasi-linear is said to be nonlinear.

2.5 Systems of PDEs
By a system of PDEs, we mean a collection of one or more partial differential
equations where all the functions depend on the same set of variables. The
order of the system is the highest order derivative occurring in any of its
equations (Olver (2013, p. 3)). Systems of first order PDEs are common, and
when referring to systems of first order PDEs being of a certain dimension,
we mean the number of first order PDEs in the overall system. A system of
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n first order linear PDEs with independent variables x and t can be stated
in matrix form

A(x, t)ut(x, t) + B(x, t)ux(x, t) = C(x, t)u(x, t) + F (x, t) (2.12)

for the vector of system states

u(x, t) =
[
u1(x, t) u2(x, t) . . . un(x, t)

]T
(2.13)

and a function f(x, t) independent of the states in u(x, t). When referring to
a system of PDEs being n × n linear, the n × n refers to size of the matrix
A(x, t) (or B(x, t)) in (2.12).

2.6 Classes of second order PDEs
Second-order PDEs are often categorized into different classes telling some-
thing about its general behaviour. Consider the general form for a second
order linear PDE for a function u(x, y) in two variables x and y as follows

a(x, t)uxx + 2b(x, t)uxt + c(x, t)utt = f(x, t, ux, ut). (2.14)

Define the quantity discriminant as (Kreyszig (2010, p. 555))

Δ(x, t) := b2(x, t) − a(x, t)c(x, t). (2.15)

At the point (x, t), the PDE is called

1. Hyperbolic if Δ(x, t) > 0. An example is the one-dimensional wave
equation

utt = c2uxx. (2.16)

2. Parabolic if Δ(x, t) = 0 and a(x, t), b(x, t), a(x, t) are not all zero. An
example of a PDE of the parabolic type is the one-dimensional heat
equation

ut = k · uxx. (2.17)

3. Elliptic if Δ(x, t) < 0. An example is the two-dimensional Poisson
equation

uxx + uyy = −f (2.18)
where f = f(x, y) is a function. For the special case of f ≡ 0, this
equation reduces to two-dimensional Laplace’s equation.

4. Singular if a(x, t) = b(x, t) = c(x, t) = 0.
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I these examples, taken from Kreyszig (2010, Eq. (1)-(4), Sec. 12.6), the
term dimension refer to the number of coordinates (time t not included). As
the discriminant generally can vary with the independent variables, the class
may change throughout the domain. The PDE is then said to be of mixed
type.

Equation (2.14) can be written as a 2×2 linear system of first order PDEs
by defining

v :=
[
ut

ux

]
(2.19)

with
A(x, t) :=

[
a(x, t) b(x, t)

0 −1

]
(2.20)

and
B(x, t) :=

[
b(x, t) c(x, t)

1 0

]
. (2.21)

This yields
A(x, t)vt(x, t) + B(x, t)vx(x, t) = f(x, t, v). (2.22)

The class is then determined from the expression of the solutions λ to (Byrne
(2012, Eq. (2.20)))

det(λA − B) = 0, (2.23)

where the discriminant (2.15) appears under the square root.

2.7 Solution methods
Finding an analytical solution to a given PDE is not a trivial task, it is often
even impossible. There are, however, a few special cases where the exact
solution may be found. We will here present the most common methods, as
well as some numerical methods.

2.7.1 Separation of variables
This method (Kreyszig (2010, Sec. 12.3)) is also known as the product
method, and is based on the assumption that the solution can be separated
to be the product of monovariable functions from which simple ODEs can be
formed. As an example, consider the heat equation (2.17)

ut = k · uxx. (2.24)

13



2. AN INTRODUCTION TO PDES

By the separation of variables method, we assume u(x, t) can be written as
a product

u(x, t) = F (x)G(t). (2.25)
Inserting (2.25) into (2.24) and rearranging, we obtain

F ′′(x)
F (x) = 1

k

G′(t)
G(t) (2.26)

As both the left and right hand sides are functions of independent variables,
both expressions must equal the same constant, say −λ, yielding

F ′′(x)
F (x) = −λ,

1
k

G′(t)
G(t) = −λ. (2.27)

Thus, we’ve reduced the single PDE (2.24) into two ODEs. The solution
(2.24) is thus found from the solutions to (2.27) as

u(x, t) = e−kλt(A sin(
√

λx) + B cos(
√

λx)) (2.28)

for some constants A and B.

2.7.2 Method of Characteristics
The method of characteristics discovers curves, often named the characteris-
tic curves or just characteristics, along which the PDE becomes an ordinary
differential equation (ODE). The resulting ODEs can be integrated to find
the solution, or to form integral-equations. As an example, consider the
following linear PDE with constant coefficients in the derivatives

aut + bux = f(x)u(x, t) (2.29)

with initial condition u(x, 0) = u0(x) where f(x, t) and u0(x) are given,
known functions. Consider the characteristic curves, or actually lines in this
case, xu(x, t, s) and tu(x, t, s) of x and t is s, respectively, chosen so that

∂xu

∂s
= a,

∂tu

∂s
= b, (2.30)

the derivative of u(x, t) with respect to s then can be written

d

ds
u(xu(x, t, s), xu(x, t, s)) = ut

∂tu

∂s
+ ux

∂xu

∂s
= aut + bux. (2.31)

Hence
d

ds
u(xu(x, t, s), xu(x, t, s)) = f(xu(x, t, s))u(xu(x, t, s), xu(x, t, s)) (2.32)
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Thus, the PDE has be reduced to an ODE. Integration from s = s1 to s = s2
yields

u(xu(x, t, s2), tu(x, t, s2)) = u(xu(x, t, s1), tu(x, t, s1))

+
∫ s2

s1
f(xu(x, t, s))u(xu(x, t, s), tu(x, t, s))ds (2.33)

By additionally choosing the characteristic lines so that xu(x, t, s2) = x and
tu(x, t, s2) = t for some s2, and tu(x, t, s1) = 0 for some s1, we obtain

u(x, t) = u0(xu(x, t, s1))

+
∫ s2

s1
f(xu(x, t, s))u(xu(x, t, s), tu(x, t, s))ds (2.34)

which, generally is an inhomogeneous Volterra (or possibly Fredholm) equa-
tion of the second kind (see Appendix (B.1)). Several numerical methods for
solving equations like these exist in the literature, including forming Taylor
series (Yalçinbaş (2002)), homotopy perturbations (Ghasemi, Kajani, and
Babolian (2007)), block pulse functions (Jiang and Schaufelberger (1992))
or, more recently, triangular functions (Babolian, Masouri, and Hatamzadeh-
Varmazyar (2009)).

Another method is based on forming a sequence of successive approxima-
tions, which, for instance, was used by Vazquez, Coron, Krstić, and Bastin
(2011a) in conjunction with Banach’s fixed point Theorem (Banach (1922),
Ciesielski (2007)) to prove existence of solutions for a family of PDEs. The
method goes as follows; assume one has an integral equation on the form

u(x, t) = f(x, t) + F [u](x, t) (2.35)

where f(x, t) is a known function, and F is an operator on u involving inte-
grals. One proceed by forming a sequence

u0(x, t) = f(x, t) (2.36)
un+1(x, t) = f(x, t) + F [un](x, t) n ≥ 0. (2.37)

Provided (2.35) has a unique solution, the sequence formed by (2.37) will
converge to it as n → ∞. (See e.g. Kreyszig (2010, p. 42) or Tricomi (1957,
p. 53).)

2.7.3 Laplace transform
The well-known Laplace transform may be used to solve PDEs. When ap-
plying the Laplace transform to one of the two variables (usually time t)
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of a dual-variable PDE, the system of PDEs is transformed to a system of
ODEs. The ODEs may for instance be solved using the variation of con-
stants method as stated in Lemma A.4 in Appendix A.4. Taking the inverse
Laplace transform of this solution yields the solution to the original problem.
As an example, consider the very simple PDE

zt(x, t) = −zx(x, t), x ∈ [0, L], t ≥ 0 (2.38)

with boundary condition
z(0, t) = f(t) (2.39)

for some known function f(t) which Laplace transform f(s) := L{f(t)} is
assumed to exist. Laplace transforming (2.38) with respect to t yields

sz(x, s) = −zx(x, s). (2.40)

This equation is an ODE in the variable x, which may be integrated to yield

ln |z(x, s)| = −sx(x, s) + C (2.41)

for some constant C. Solving this with respect to z(x, s) and inserting the
boundary condition (2.39) gives

z(x, s) = f(s)e−xs. (2.42)

Taking the inverse Laplace transform of this yields

z(x, t) = f(t − x) (2.43)

hence, the PDE (2.38) holds time-delayed versions of the signal f(t).

2.7.4 Numerical methods
A brief overview of common numerical methods is given here. Consult the
accompanying references for more information.

2.7.4.1 Finite Element methods

The Finite Element method (Babuška, Banerjee, and Osborn (2004)) is an
umbrella term for all methods dividing the domain into several smaller sub-
domains, termed finite elements, with many simple element equations to
approximate the solution over a larger domain.
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2.7.4.2 Finite Difference method

The Finite Difference method (Strikwerda (2004)) splits the domain into a
finite dimensional grid, and approximate the derivatives by finite differences
of the grid values. The results are a series of algebraic equations which may
be solved using standard methods.

2.7.4.3 The Method of Lines

When using The Method of Lines (Schiesser (1991), Hamdi, Schiesser, and
Griffiths (2007)), all but one (usually time) spatial variables are discretized
using a finite difference method. The resulting system of ODEs and Differ-
ential Algebraic equations (DAEs) can be solved using standard numerical
methods on a computer. The method requires the PDE to be well-posed as
an initial value problem, as ODE and DAE solvers are IVP solvers.

17



2. AN INTRODUCTION TO PDES

18



Part II

Disturbance attenuation
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Chapter 3

Controller design

3.1 Introduction
In this thesis, we consider systems described by linear 2×2 first order hyper-
bolic PDEs with spatially varying coefficients of the same type as considered
in Aamo (2013). They can be states as

ut(x, t) = −ε1(x)ux(x, t) + c1(x)v(x, t) (3.1a)
vt(x, t) = ε2(x)vx(x, t) + c2(x)u(x, t) (3.1b)
u(0, t) = qv(0, t) + CX(t) (3.1c)
v(1, t) = U(t) (3.1d)
Ẋ(t) = AX(t) (3.1e)

where x ∈ [0, 1], t ≥ 0, 0 < ε1(x), ε2(x) ∈ C1([0, 1]), c1(x), c2(x) ∈ C([0, 1])
and q �= 0. X(t) ∈ �n can be considered a disturbance described by A ∈
�

n×n, C ∈ �
1×n, with the pair (A, C) observable. U(t) is the actuation

and u(1, t) is assumed measured. With x = 0 denoted the left boundary and
x = 1 the right boundary, the variable u(x, t) represents information that
travels from left to right, and v(x, t) information that travels from right to
left. The system is well posed since u(x, t) has a boundary condition on the
left and v(x, t) has a boundary condition on the right (Russell (1978)). The
control objective is to design U(t) so that

u(x̄, t) = rv(x̄, t) (3.2)

is achieved for some given, fixed x̄ ∈ (0, 1).
We will start in Section 3.2 by decoupling (3.1a)–(3.1b) into two new

subsystems only connected through a boundary condition (and not in the
PDEs). In Sections 3.3 and 3.4 we establish properties of the solutions, before
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the main controller for disturbance attenuation at an arbitrary point in the
domain, assuming full state information is available, is derived in Section 3.5.
In Section 3.6, an alternative formulation of the controller that facilitates
for frequency analysis later in this thesis is derived, before a considerably
simplified controller is derived subject to a few assumptions in Section 3.7.

3.2 Decoupling

We seek a coordinate transformation decoupling (3.1a)–(3.1b) into two new,
decoupled subsystems. This was achieved in Aamo (2013) using the following
infinite-dimensional backstepping transformation

α(x, t) = u(x, t) −
∫ x

0
Kuu(x, ξ)u(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)v(ξ, t)dξ (3.3a)

β(x, t) = v(x, t) −
∫ x

0
Kvu(x, ξ)u(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)v(ξ, t)dξ (3.3b)

in conjunction with the controller

U(t) =
∫ 1

0
Kvu(1, ξ)u(ξ, t)dξ +

∫ 1

0
Kvv(1, ξ)v(ξ, t)dξ + V (t), (3.4)

yielding the following decoupled system

αt(x, t) = −ε1(x)αx(x, t) − ε1(0)Kuu(x, 0)CX(t) (3.5a)
βt(x, t) = ε2(x)βx(x, t) − ε1(0)Kvu(x, 0)CX(t) (3.5b)
α(0, t) = qβ(0, t) + CX(t) (3.5c)
β(1, t) = V (t) (3.5d)

Ẋ(t) = AX(t). (3.5e)

The kernels in (3.3), (3.5a), (3.5b) were given as the solution to the following
system of PDEs

ε1(x)Kuu
x (x, ξ) + ε1(ξ)Kuu

ξ (x, ξ) = −ε′
1(ξ)Kuu(x, ξ) − c2(ξ)Kuv(x, ξ) (3.6a)

ε1(x)Kuv
x (x, ξ) − ε2(ξ)Kuv

ξ (x, ξ) = ε′
2(ξ)Kuv(x, ξ) − c1(ξ)Kuu(x, ξ) (3.6b)

ε2(x)Kvu
x (x, ξ) − ε1(ξ)Kvu

ξ (x, ξ) = ε′
1(ξ)Kvu(x, ξ) + c2(ξ)Kvv(x, ξ) (3.6c)

ε2(x)Kvv
x (x, ξ) + ε2(ξ)Kvv

ξ (x, ξ) = −ε′
2(ξ)Kvv(x, ξ) + c1(ξ)Kvu(x, ξ) (3.6d)
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with boundary conditions

Kuu(x, 0) = ε2(0)
qε1(0)Kuv(x, 0) (3.7a)

Kuv(x, x) = c1(x)
ε1(x) + ε2(x) (3.7b)

Kvu(x, x) = − c2(x)
ε1(x) + ε2(x) (3.7c)

Kvv(x, 0) = qε1(0)
ε2(0) Kvu(x, 0) (3.7d)

defined over the triangular domain

T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. (3.8)

The transformation (3.3) was originally derived in Vazquez et al. (2011b)
and used for state feedback stabilization of (3.1) in the case without dis-
turbance (X(t) ≡ 0). The inverse of (3.3) was also given in Vazquez et al.
(2011b) as

u(x, t) = α(x, t) +
∫ x

0
Lαα(x, ξ)α(ξ, t)dξ +

∫ x

0
Lαβ(x, ξ)β(ξ, t)dξ (3.9a)

v(x, t) = β(x, t) +
∫ x

0
Lβα(x, ξ)α(ξ, t)dξ +

∫ x

0
Lββ(x, ξ)β(ξ, t)dξ (3.9b)

where the kernels were given as the solution to the system of PDEs

ε1(x)Lαα
x (x, ξ) + ε1(ξ)Lαα

ξ (x, ξ) = −ε′
1(ξ)Lαα(x, ξ) + c1(x)Lβα

ξ (x, ξ) (3.10a)
ε1(x)Lαβ

x (x, ξ) − ε2(ξ)Lαβ
ξ (x, ξ) = ε′

2(ξ)Lαβ(x, ξ) + c1(x)Lββ
ξ (x, ξ) (3.10b)

ε2(x)Lβα
x (x, ξ) − ε1(ξ)Lβα

ξ (x, ξ) = ε′
1(ξ)Lβα(x, ξ) − c2(x)Lαα

ξ (x, ξ) (3.10c)
ε2(x)Lαβ

x (x, ξ) + ε2(ξ)Lββ
ξ (x, ξ) = −ε′

2(ξ)Lββ(x, ξ) − c2(x)Lαβ
ξ (x, ξ) (3.10d)

with boundary conditions

Lαα(x, 0) = ε2(0)
qε1(0)Lαβ(x, 0) (3.11a)

Lαβ(x, x) = c1(x)
ε1(x) + ε1(x) (3.11b)

Lβα(x, x) = − c2(x)
ε1(x) + ε1(x) (3.11c)

Lββ(x, 0) = qε1(0)
ε2(0) Lβα(x, 0) (3.11d)
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3. CONTROLLER DESIGN

defined over the triangular domain (3.8). Proofs of existence and uniqueness
of solutions of (3.6)–(3.7) and (3.10)–(3.11) were given in Vazquez et al.
(2011b), and it was also proved that the solutions are continuous over T. As
the transform (3.3) is invertible, the stability properties of (3.1) and (3.5) are
equivalent. This was utilized in Aamo (2013) to derive a controller achieving
(3.2) for x̄ = 0, and will in this thesis be utilized in a similar manner to
derive a controller that achieves (3.2) for some arbitrary x̄ ∈ (0, 1).

3.3 Relationships in domain and time
The aim of this section is to derive algebraic expressions relating the solu-
tions α and β of (3.5a)-(3.5b) at two arbitrary points in the domain. We
start by stating relationships between two arbitrary points in the domain
for the solution of a simple PDE on the form we will encounter throughout
subsequent sections.

Lemma 3.1. For a PDE on the form

ut(x, t) + ε(x)ux(x, t) = f(x)g(t), x ∈ (−∞, ∞), t ∈ [0, ∞) (3.12)

with ε(x) > 0 ∀x, the following relationship apply to two arbitrary points
y, z ∈ (−∞, ∞)

u(y, t − φ(y)) − u(z, t − φ(z)) =
∫ φ(z)

φ(y)
f(φ−1(τ))g(t − τ)dτ (3.13)

for t ≥ max{φ(y), φ(z)}, where

φ(z) =
∫ 1

z

dγ

ε(γ) . (3.14)

Proof. Using Lemma A.1 in the appendix, we derive the following relation-
ships between two arbitrary points y and z

u(y, t) = u0(φ−1(t + φ(y))) +
∫ t

0
f(φ−1(t − γ + φ(y)))g(γ)dγ (3.15a)

u(z, t) = u0(φ−1(t + φ(z))) +
∫ t

0
f(φ−1(t − γ + φ(z)))g(γ)dγ. (3.15b)

Assuming t ≥ max{φ(y), φ(z)}, we shift time in both equations to obtain

u(y, t − φ(y)) = u0(φ−1(t)) +
∫ t−φ(y)

0
f(φ−1(t − γ))g(γ)dγ (3.16a)

u(z, t − φ(z)) = u0(φ−1(t)) +
∫ t−φ(z)

0
f(φ−1(t − γ))g(γ)dγ. (3.16b)
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3.3 Relationships in domain and time

Thus, the initial condition can be eliminated by subtracting (3.16b) from
(3.16a), yielding

u(y, t − φ(y)) − u(z, t − φ(z)) =
∫ t−φ(y)

t−φ(z)
f(φ−1(t − γ))g(γ)dγ. (3.17)

An appropriate substitution τ = t−γ in the integral yields the desired result
(3.13).

Next, we state a valuable lemma, which will show great significance in
the rest of the controller design.

Lemma 3.2. For two arbitrary points y, z ∈ [0, 1], the following relation-
ships apply to the solutions α and β of (3.5)

α(y, t − φα(y)) − α(z, t − φα(z)) = Φα(y, z)X(t) (3.18a)

for t ≥ max{φα(y), φα(z)}, and

β(y, t − φβ(y)) − β(z, t − φβ(z)) = Φβ(y, z)X(t) (3.18b)

for t ≥ max{φβ(y), φβ(z)}, where

Φα(y, z) = −ε1(0)
∫ φα(z)

φα(y)
Kuu(φ−1

α (τ), 0)Ce−Aτ dτ (3.19a)

Φβ(y, z) = −ε1(0)
∫ φβ(z)

φβ(y)
Kvu(φ−1

β (τ), 0)Ce−Aτ dτ (3.19b)

with

φα(z) =
∫ 1

z

dγ

ε1(γ) (3.20a)

φβ(z) =
∫ z

0

dγ

ε2(γ) . (3.20b)

Proof. The proof of Lemma 3.2 follows from application of Lemma 3.1. The
proof for (3.18a) is independent from (3.18b), and for clarity of presentation,
these two equations will be proven in sequence.

The α-subsystem

The subsystem (3.5a) has the form required by Lemma 3.1 with u(x, t) =
α(x, t), ε(x) = ε1(x), f(x) = −ε1(0)Kuu(x, 0) and g(t) = CX(t). The result
(3.18a) with (3.19a) and (3.20a) therefore follows by Lemma 3.1 and the
semigroup property of (3.5e), i.e. X(t − τ) = e−Aτ X(t), as stated in Lemma
A.5.
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The β-subsystem

Application of Lemma 3.1 is not straight forward to use on the subsystem
(3.5b) since the sign preceding ε2(x) is not as required by the lemma. We
will resolve this by a change of variables. Define β̄(x, t) and ε̄2(x) as

β̄(x, t) := β(1 − x, t) ⇔ β(x, t) = β̄(1 − x, t) (3.21)

and

ε̄2(x) := ε2(1 − x) ⇔ ε2(x, t) = ε̄2(1 − x, t) (3.22)

respectively. From the following properties

β̄t(x, t) = βt(1 − x, t) (3.23)

and
β̄x(x, t) = −βx(1 − x, t), (3.24)

and a substitution x → 1 − x, the subsystem (3.5b) can be written in the
new variables as

β̄t(x, t) + ε̄2(x)β̄x(x, t) = −ε1(0)Kvu(1 − x, 0)CX(t) (3.25)

which is on the form required by Lemma 3.1. With u(x, t) = β̄(x, t), ε(x) =
ε̄2(x), f(x) = −ε1(0)Kvu(1 − x, 0) and g(t) = CX(t), Lemma 3.1 yields

β̄(y, t − hβ(y)) − β̄(z, t − hβ(z))

= −ε1(0)
∫ hβ(z)

hβ(y)
Kvu(1 − h−1

β (τ))CX(t − τ)dτ (3.26)

for t ≥ max{hβ(y), hβ(z)}, where hβ(z) is defined as

hβ(z) :=
∫ 1

z

dτ

ε(τ) . (3.27)

Inserting back in for β in (3.21) followed by the substitutions y → 1 − y and
z → 1 − z yields

β(y, t − hβ(1 − y)) − β(z, t − hβ(1 − z))

= −ε1(0)
∫ hβ(1−z)

hβ(1−y)
Kvu(1 − h−1

β (τ))CX(t − τ)dτ (3.28)

for t ≥ max{hβ(1 − y), hβ(1 − z)}.
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The strictly increasing and hence invertible function in (3.20b) has the
following property

φβ(z) =
∫ z

0

dγ

ε2(γ) =
∫ 1

1−z

dτ

ε2(1 − τ) =
∫ 1

1−z

dτ

ε̄2(τ) = hβ(1 − z). (3.29)

Additionally, we have
φ−1

β (z) = 1 − h−1
β (z). (3.30)

This can be seen as follows; let τ denote the following
τ = φβ(z) = hβ(1 − z) (3.31)

then
z = φ−1

β (τ) (3.32)
and

1 − z = h−1
β (τ) (3.33)

substituting (3.32) into (3.33), we obtain (3.30). Substituting (3.29) and
(3.30) into (3.28), using the semigroup property of (3.5e) and using (3.19b)
finally proves the lemma’s second half.

3.4 Relationships to the control input
By utilizing the results in Lemma 3.2, we will characterize the solutions α
and β of (3.5) in terms of the actuation V (t) = β(1, t) for any arbitrary point
y in the domain.
Lemma 3.3. For an arbitrary point y in the domain, the solutions α and β
of (3.5), satisfy

α(y, t) = qV (t − ηα(y)) + Ψα(y)X(t) (3.34a)

for t ≥ ηα(y) and

β(y, t) = V (t − ηβ(y)) + Ψβ(y)X(t) (3.34b)
for t ≥ ηβ(y), where

Ψα(y) = Φα(y, 0)eAφα(y) + (qΦβ(0, 1) + C)eA(φα(y)−φα(0)) (3.35a)
Ψβ(y) = Φβ(y, 1)eAφβ(y) (3.35b)

and
ηα(y) = φβ(1) + φα(0) − φα(y) (3.36a)
ηβ(y) = φβ(1) − φβ(y). (3.36b)

Proof. Again, we will split the proof in two, dealing with the α and β sub-
systems separately.
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The α-subsystem

From (3.18a) in Lemma 3.2, with z = 0 and time shifting φα(y) units, we
find

α(y, t) = α(0, t − φα(0) + φα(y)) + Φα(y, 0)X(t + φα(y)) (3.37)

for t ≥ φα(0) − φα(y). Substituting for the boundary condition (3.5c) yields

α(y, t) = qβ(0, t − φα(0) + φα(y)) + CX(t − φα(0) + φα(y))
+ Φα(y, 0)X(t + φα(y)) (3.38)

From (3.18b) in Lemma 3.2, with y = 0, z = 1 and noticing that φβ(0) = 0,
we obtain

β(0, t) = β(1, t − φβ(1)) + Φβ(0, 1)X(t) (3.39)

for t ≥ φβ(1). Shifting time φα(y)−φα(0) units, assuming t ≥ φβ(1)+φα(0)−
φα(y) = ηα(y), we find

β(0, t − φα(0) + φα(y)) = β(1, t − ηα(y))
+ Φβ(0, 1)X(t − φα(0) + φα(y)). (3.40)

where (3.36a) has been used. Inserting (3.40) into (3.38) results in

α(y, t) = qβ(1, t − ηα(y))
+ qΦβ(0, 1)X(t − φα(0) + φα(y))
+ CX(t − φα(0) + φα(y))
+ Φα(y, 0)X(t + φα(y)) (3.41)

for t ≥ ηα(y). Using the semigroup property of (3.5e) we get rid of the time
delayed disturbance terms and find

α(y, t) = qβ(1, t − ηα(y))
+ qΦβ(0, 1)eA(φα(y)−φα(0))X(t)
+ CeA(φα(y)−φα(0))X(t)
+ Φα(y, 0)eAφα(y)X(t) (3.42)

for t ≥ ηα(y). By inserting for the boundary condition (3.5d) and using
(3.35a) and (3.36a), the first part of the lemma is verified.

28



3.5 Pure state feedback controller

The β-subsystem

From (3.18b) in Lemma 3.2, with z = 1 we find

β(y, t − φβ(y)) = β(1, t − φβ(1)) + Φβ(y, 1)X(t) (3.43)

for t ≥ max{φβ(y), φβ(1)}. When time shifting φβ(y) units, assuming t ≥
φβ(1) − φβ(y) = ηβ(y), to arrive at

β(y, t) = β(1, t − ηβ(y)) + Φβ(y, 1)X(t + φβ(y)). (3.44)

where (3.36b) has been used. Again using the semigroup property of (3.5e),
inserting for the boundary condition (3.5d) and using (3.35b), the lemma’s
second half is proved.

3.5 Pure state feedback controller
The results of Lemma 3.2 and Lemma 3.3 finally facilitates for the main con-
troller design. We start by substituting (3.3) into (3.2) to state the controller
objective in the backstepping variables α and β

α(x̄, t) +
∫ x̄

0
Lαα(x̄, ξ)α(ξ, t)dξ +

∫ x̄

0
Lαβ(x̄, ξ)β(ξ, t)dξ

= r
(

β(x̄, t) +
∫ x̄

0
Lβα(x̄, ξ)α(ξ, t)dξ +

∫ x̄

0
Lββ(x̄, ξ)β(ξ, t)dξ

)
(3.45)

for r �= 0. We seek a controller V (t) so that (3.45) is achieved for some given,
fixed x̄ ∈ (0, 1).

Theorem 3.1 (Pure state feedback controller). Assume r �= 0, and let

V (t) = 1
r

Kpsf (x̄)X(t) + 1
r

δ(x̄, x̄, t)

+ 1
r

∫ x̄

0
Lα(x̄, ξ)δ(ξ, x̄, t)dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)β(φ−1

β (κβ(ξ, x̄)), t)dξ (3.46)

where

Kpsf (x̄) = Ωα(x̄, x̄) − rΨβ(x̄)eAηα(x̄)

+
∫ x̄

0
Lα(x̄, ξ)Ωα(ξ, x̄)dξ +

∫ x̄

0
Lβ(x̄, ξ)Ωβ(ξ, x̄)dξ (3.47)
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δ(ξ, x̄, t) =
⎧⎨
⎩ α(φ−1

α (κα(ξ, x̄)), t) if κα(ξ, x̄) ≤ φα(0)
qβ(φ−1

β (κα(ξ, x̄) − φα(0)), t) otherwise
(3.48)

and

Ωαα(ξ, x̄) = Φα(ξ, φ−1
α (κα(ξ, x̄)))eAκα(ξ,x̄) (3.49a)

Ωαβ(ξ, x̄) = (qΦβ(0, φ−1
β (κα(ξ, x̄) − φα(0))) + C)eAκβ(ξ,x̄)

+ Φα(ξ, 0)eAκα(ξ,x̄) (3.49b)
(3.49c)

Ωα(ξ, x̄) =
⎧⎨
⎩Ωαα(ξ, x̄) if κα(ξ, x̄) ≤ φα(0)

Ωαβ(ξ, x̄) otherwise
(3.50a)

Ωβ(ξ, x̄) = Φβ(ξ, φ−1
β (κβ(ξ, x̄)))eAκβ(ξ,x̄) (3.50b)

κα(ξ, x̄) = φα(ξ) + ηβ(x̄) (3.51a)
κβ(ξ, x̄) = φβ(ξ) + ηβ(x̄) (3.51b)

with

Lα(x̄, ξ) = Lαα(x̄, ξ) − rLβα(x̄, ξ) (3.52a)
Lβ(x̄, ξ) = Lαβ(x̄, ξ) − rLββ(x̄, ξ) (3.52b)

where Lαα(x̄, ξ), Lαβ(x̄, ξ), Lβα(x̄, ξ), Lββ(x̄, ξ) is the solution to (3.9)–(3.10),
then the control law (3.4) will guarantee (3.45) for all t ≥ ηβ(x̄).

Note that α(x, t) and β(x, t) in (3.46) and (3.48) must be evaluated from
u(x, t) and v(x, t) using the backstepping transformation (3.3).

Proof. With (3.52a) and (3.52b), the controller objective (3.45) can be stated
as

rβ(x̄, t) = α(x̄, t) +
∫ x̄

0
Lα(x̄, ξ)α(ξ, t)dξ +

∫ x̄

0
Lβ(x̄, ξ)β(ξ, t)dξ. (3.53)

Using (3.34b) in Lemma 3.3, we can derive

rV (t − ηβ(x̄)) + rΨβ(x̄)X(t) = α(x̄, t)

+
∫ x̄

0
Lα(x̄, ξ)α(ξ, t)dξ

+
∫ x̄

0
Lβ(x̄, ξ)β(ξ, t)dξ (3.54)
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for t ≥ ηβ(x̄). Time shifting ηβ(x̄) units and rearranging, we obtain

rV (t) = −rΨβ(x̄)X(t + ηβ(x̄)) + α(x̄, t + ηβ(x̄))

+
∫ x̄

0
Lα(x̄, ξ)α(ξ, t + ηβ(x̄))dξ

+
∫ x̄

0
Lβ(x̄, ξ)β(ξ, t + ηβ(x̄))dξ (3.55)

for t ≥ 0.
We will have to find expressions for α(ξ, t + ηα(x̄)) and β(ξ, t + ηβ(x̄))

that does not include time shifts.

The α-subsystem

The α-part is a bit tricky, as the signal conditionally will have to be propa-
gated through the boundary condition (3.5c), for certain values of ξ and x̄.
From (3.18a), solutions to (3.5a) satisfy

α(ξ, t − φα(ξ)) − α(z, t − φα(z)) = Ψα(ξ, z)X(t) (3.56)

Shifting time by φα(ξ) + ηα(x̄) units, we find

α(ξ, t + ηβ(x̄)) = α(z, t − φα(z) + κα(ξ, x̄))
+ Φα(ξ, z)X(t + κα(ξ, x̄)) (3.57)

where (3.51a) has been used. We would now like to select z ∈ [0, 1] so that
φα(z) = κα(ξ, x̄). As the inverse of φα(z) is defined on [φα(1) = 0, φα(0)] and
κα(ξ, x̄) is nonnegative, this is possible if

κα(ξ, x̄) ≤ φα(0). (3.58)

In this case, we choose z = φ−1
α (κα(ξ, x̄)) and (3.57) becomes

α(ξ, t + ηβ(x̄)) = α(φ−1
α (κα(ξ, x̄)), t)

+ Φα(ξ, φ−1
α (κα(ξ, x̄)))X(t + φα(zαα(ξ, x̄))). (3.59)

Using the semigroup property of (3.5e) and using (3.49a), (3.59) can be
written

α(ξ, t + ηβ(x̄)) = α(φ−1
α (κα(ξ, x̄))), t) + Ωαα(ξ, x̄, t)X(t). (3.60)

If however, the requirement (3.58) does not hold, the signal has to be
propagated through the boundary condition (3.5c). We then let z = 0 in
(3.57) and find

α(ξ, t + ηβ(x̄)) = α(0, t − φα(0) + κα(ξ, x̄))
+ Φα(ξ, 0)X(t + κα(ξ, x̄)). (3.61)
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Inserting for the boundary condition (3.5c), we end up with

α(ξ, t + ηβ(x̄)) = qβ(0, t − φα(0) + κα(ξ, x̄))
+ CX(t − φα(0) + κα(ξ, x̄))
+ Φα(ξ, 0)X(t + κα(ξ, x̄)). (3.62)

By inserting y = 0 into (3.18b) in Lemma 3.2, we have

β(0, t) = β(z, t − φβ(z)) + Ψβ(0, z)X(t). (3.63)

Shifting time κα(ξ, x̄) − φα(0) units, we obtain

β(0, t + κα(ξ, x̄) − φα(0)) = β(z, t − φβ(z) − φα(0) + κα(ξ, x̄))
+ Ψβ(0, z)X(t − φα(0) + κα(ξ, x̄)). (3.64)

Substituting (3.64) into (3.62) gives

α(ξ, t + ηβ(x̄)) = qβ(z, t − φβ(z) − φα(0) + κα(ξ, x̄))
+ qΦβ(0, z)X(t − φα(0) + κα(ξ, x̄))
+ CX(t − φα(0) + κα(ξ, x̄))
+ Φα(ξ, 0)X(t + κα(ξ, x̄)). (3.65)

We now choose z = φ−1
β (κα(ξ, x̄) − φα(0)) which is well defined since 0 <

κα(ξ, x̄) − φα(0) = φα(ξ) − φα(0) + φβ(1) − φβ(x̄) ≤ φβ(1), and find

α(ξ, t + ηβ(x̄)) = qβ(φ−1
β (κα(ξ, x̄) − φα(0)), t)

+ qΦβ(0, φ−1
β (κα(ξ, x̄) − φα(0)))X(t + κα(ξ, x̄) − φα(0))

+ CX(t + κα(ξ, x̄) − φα(0))
+ Φα(ξ, 0)X(t + κα(ξ, x̄)). (3.66)

Again using the semigroup property of (3.5e) and using (3.49b), (3.66) can
be stated as

α(ξ, t + ηβ(x̄)) = qβ(φ−1
β (κα(ξ, x̄) − φα(0)), t) + Ωαβ(ξ, x̄)X(t). (3.67)

The above results (3.60) and (3.67) can be combined into a single ex-
pression by using δ(ξ, x̄, t) and Ωα(ξ, x̄) as given from (3.48) and (3.50a)
respectively, yielding

α(ξ, t + ηα(x̄)) = δ(ξ, x̄, t) + Ωα(ξ, x̄)X(t). (3.68)
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3.6 Recursive controller

The β-subsystem

From (3.18b) in Lemma 3.1, we find that solutions to (3.5b) satisfy

β(ξ, t = φβ(ξ)) − β(z, t − φβ(z)) + Φβ(ξ, z)X(t). (3.69)

Shifting time φβ(ξ) + ηβ(x̄) units, we obtain

β(ξ, t + ηβ(x̄)) = β(z, t − φβ(z) + κβ(ξ, x̄)) = Φβ(ξ, z)X(t + κβ(ξ, x̄)) (3.70)

where (3.51b) has been used. As 0 < κβ(ξ, x̄) = φβ(ξ) + φβ(1) − φβ(x̄) ≤
φβ(1), the selection z = φ−1

β (κβ(ξ, x̄)) is well defined and we obtain

β(ξ, t + ηβ(x̄)) = β(φ−1
β (κβ(ξ, x̄)), t)

+ Φβ(ξ, φ−1
β (κβ(ξ, x̄))X(t + κβ(ξ, x̄)). (3.71)

Lastly using the semigroup property of (3.5e) and using (3.50b), we find

β(ξ, t + ηβ(x̄)) = β(φ−1
β (κβ(ξ, x̄)), t) + Ωβ(ξ, x̄)X(t). (3.72)

Substituting (3.68) and (3.72) into (3.55), we obtain

rV (t) = −rΨβ(x̄)X(t + ηβ(x̄)) + δ(x̄, x̄, t) + Ωα(ξ, x̄)X(t)

+
∫ x̄

0
Lα(x̄, ξ)δ(ξ, x̄, t) + Ωα(ξ, x̄)X(t)dξ

+
∫ x̄

0
Lβ(x̄, ξ)β(φ−1

β (κβ(ξ, x̄)), t) + Ωβ(ξ, x̄)X(t)dξ. (3.73)

Equation (3.46) now follows from the semigroup property of (3.5e), using the
definitions (3.47)–(3.51) and dividing by r.

The disturbance will be cancelled in finite time, and the time required is
the propagation time from x = 1 to x = x̄. By inserting ξ = x̄ into (3.72),
we find this time to be ηβ(x̄).

3.6 Recursive controller
The controller derived in the previous section is complex and involves eval-
uation of integrals of functions defined differently throughout the domain,
as well as requiring the evaluation of α and β online by means of the trans-
formation (3.3). Using Lemma 3.3, which relates the system states to the
controller input, it is possible to replace system states by past inputs to form
a control law for V (t) that does not include the system states. This should
also better facilitate for the derivation of the controller transfer function later
in this thesis.
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Theorem 3.2 (Recursive controller). Assume r �= 0 and let

V (t) = q

r
V (t − dr(x̄)) + q

r

∫ x̄

0
Lα(x̄, ξ)V (t − dα(ξ, x̄))dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)V (t − dβ(ξ, x̄))dξ

+ 1
r

Krec(x̄)X(t) (3.74)

where

dα(ξ, x̄) = ηα(ξ) − ηβ(x̄) (3.75)
dβ(ξ, x̄) = ηβ(ξ) − ηβ(x̄) (3.76)
drec(x̄) = dα(x̄, x̄) (3.77)

and

Krec(x̄) =
(

Ψα(x̄) − rΨβ(x̄) +
∫ x̄

0
(Lα(x̄, ξ)Ψα(ξ) + Lβ(x̄, ξ)Ψβ(ξ))dξ

)

× eAηβ(x̄) (3.78)

then the control law (3.4) will guarantee (3.45) for all t ≥ ηα(x̄).

Proof. We begin the proof with a rearranged version of (3.53) as follows

rβ(x̄, t) = α(x̄, t) +
∫ x̄

0
Lα(x̄, ξ)α(ξ, t)dξ +

∫ x̄

0
Lβ(x̄, ξ)β(ξ, t)dξ. (3.79)

Using both (3.34a) and (3.34b) in Lemma 3.3 successively with y = x̄ and
y = ξ, we find

qV (t − ηα(x̄)) + Ψα(x̄)X(t) − rV (t − ηβ(x̄)) − rΨβ(x̄)X(t)

= −
∫ x̄

0
Lα(x̄, ξ) [qV (t − ηα(ξ)) + Ψα(ξ)X(t)] dξ

−
∫ x̄

0
Lβ(x̄, ξ) [V (t − ηβ(ξ)) + Ψβ(ξ)X(t)] dξ (3.80)

which is valid for t ≥ ηα(x̄). Rearranging this and time shifting ηβ(x̄) units,
we obtain

rV (t) = qV (t − ηα(x̄) + ηβ(x̄)) + (Ψα(x̄) − rΨβ(x̄))X(t + ηβ(x̄))

+
∫ x̄

0
Lα(x̄, ξ) [qV (t − ηα(ξ) + ηβ(x̄)) + Ψα(ξ)X(t + ηβ(x̄))] dξ

+
∫ x̄

0
Lβ(x̄, ξ) [V (t − ηβ(ξ) + ηβ(x̄)) + Ψβ(ξ)X(t + ηβ(x̄))] dξ (3.81)
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3.7 Simplified controller

for t ≥ max{ηα(x̄)−ηβ(x̄), ηβ(0)−ηβ(x̄)} = max{φα(0)−φα(x̄)+φβ(x̄), φβ(x̄)} =
φα(0) − φα(x̄) + φβ(x̄) = ηα(x̄) − ηβ(x̄). A slight rearranging of the terms in
the integrals yields

rV (t) = qV (t − ηα(x̄) + ηβ(x̄)) + (Ψα(x̄) − rΨβ(x̄))X(t + ηβ(x̄))

+
∫ x̄

0

[
Lα(x̄, ξ)Ψα(ξ) + Lβ(x̄, ξ)Ψβ(ξ)

]
dξX(t + ηβ(x̄))

+
∫ x̄

0
Lα(x̄, ξ)qV (t − ηα(ξ) + ηβ(x̄))dξ

+
∫ x̄

0
Lβ(x̄, ξ)V (t − ηβ(ξ) + ηβ(x̄))dξ. (3.82)

Lastly, using the semigroup property of (3.5e), using (3.75)–(3.78) and
dividing by r, we end up with the control law (3.74).

The time constraint is derived as follows: drec(x̄) is the time needed for
any initial conditions in the time-delayed controller inputs to be driven out of
the system. An additional ηβ(x̄) of time, as derived in the proof of Theorem
3.1, is required for the signal to propagate to x = x̄. Hence, after a maximum
time of drec(x̄)+ηβ(x̄) = ηα(x̄)−ηβ(x̄)+ηβ(x̄) = ηα(x̄), the control objective
is achieved.

The controller of Theorem 3.2 was considerably easier to derive then the
controller of Theorem 3.1, but has the disadvantage that it requires storage
of past control inputs in the time interval [t, t − drec(x̄)]; an infinite amount
of data on a continuous time system. As the controller relies on stored inputs
rather than the actual system states, this is also a potential robustness issue.
The controller of Theorem 3.1 avoids these drawbacks, but is generally more
complex.

3.7 Simplified controller
Subject to a few assumptions, it turns out that the controller of Theorem 3.2
can be significantly simplified.

Theorem 3.3. Under the assumption that the quantities added by terms in
the integrals of the controller in Theorem 3.2 are small, that |q/r| < 1, and
that I − q

r
e−Adr(x̄) is nonsingular, then if we let

V (t) = 1
r

K∞(x̄)X(t) (3.83)

where
K∞(x̄) = Krec(x̄)

[
I − q

r
e−A·drec(x̄)

]−1
, (3.84)
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the control law (3.4) will approximately achieve (3.45) for t ≥ ηα(x̄).

How well the controller objective (3.45) is approximated will depend on
how much information is lost by neglecting the integral terms in the controller
of Theorem 3.2.

Proof. By neglecting the integral terms in the controller of Theorem 3.2, we
are left with

V (t) = q

r
V (t − drec(x̄)) + 1

r
Krec(x̄)X(t). (3.85)

Time shifting this expression −drec(x̄) units, we find

V (t − drec(x̄)) = q

r
V (t − 2drec(x̄)) + 1

r
Krec(x̄)X(t − drec(x̄)). (3.86)

Inserting this into (3.85) yields

V (t) = q2

r2 V (t − 2drec(x̄)) + q

r2 Krec(x̄)X(t − drec(x̄)) + 1
r

Krec(x̄)X(t). (3.87)

From repeated substitution, and using |(q/r)k| → 0 as k → ∞ due to the
assumption |q/r| < 1, we find

V (t) = 1
r

Krec(x̄)
∞∑

k=0
e−Akdrec(x̄)X(t) (3.88)

where the semigroup property of (3.5e), as stated in Lemma A.5, has been
used. By the assumption of having I − q

r
e−Adrec(x̄) nonsingular, we find an

exact expression for the infinite sum by using the results in Lemma A.2, thus

V (t) = 1
r

Krec(x̄)
[
I − q

r
e−Adrec(x̄)

]−1
X(t). (3.89)

Lastly using (3.84), we find (3.83).
As the controller assumes the current control law has been applied ”an

infinite amount of time” and no information regarding past inputs or current
system states is used in the control law, the applied control law will not
be the correct one before both the solutions α and β in (3.5a)–(3.5b) have
achieved their steady-state values. Hence, the time needed is the propagation
time from x = 1 to x = x̄ via x = 0. By inserting y = x̄ into (3.34a), we find
this time to be ηα(x̄).

The key strength of the controller formulation in Theorem 3.3 is that
V (t) is a function purely in the disturbance term X(t). However, knowledge
of u(x, t) and v(x, t) are still needed in (3.4). Justification of the assumption
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of having integral terms approximately zero can for instance be when the
kernel terms are small, that is |Lα(x, ξ)| � 1 and |Lβ(x, ξ)| � 1 for all pairs
of (x, ξ) ∈ T, where T is as given in (3.8). From the kernel equations (3.10)–
(3.11), it is observed that c1(x) ≡ 0 and c2(x) ≡ 0 yields the trivial solution
Lαα(x, ξ) = Lαβ(x, ξ) = Lβα(x, ξ) = Lββ(x, ξ) = 0 ∀(x, ξ) ∈ T. Hence, it
is reasonable to assume that if the magnitude of the cross terms coefficients
c1(x) and c2(x) in (3.1a)–(3.1b) are considerably smaller in magnitude than
ε1(x) and ε2(x), the kernel terms are small and the simplification of Theorem
(3.3) is justified.
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Chapter 4

Observer design

4.1 Introduction

The control laws derived in Chapter 3 require full knowledge of the system
states u(x, t), v(x, t) as well as the disturbance X(t). With practical prob-
lems often limited to sensing at x = 1, this is obviously an assumption that
will limit the control laws from being implemented in practice. If, however,
we assume estimates of u(x, t), v(x, t) and X(t) are available and rely on
the certainty equivalence principle (that is; neglect uncertainty and treat es-
timates as if they are true values (Åström (1996))), the controllers can be
implemented using the estimates instead of the real states. The estimates
will have to be generated from the only signals available; the sensing at x = 1
and the generated controller input U(t).

4.2 Observer equations

An observer estimating the states of the system using only sensing at x = 1
was derived in Vazquez et al. (2011b). The authors proved that the esti-
mation errors converged exponentially to zero. A slight modification of the
observer from Vazquez et al. (2011b) was done in Aamo (2013) to accommo-
date the disturbance term entering at the right boundary. The observer takes
the applied input U(t) and one measurement from the system as inputs, and
estimates the states of the system as well as the disturbance. The observer
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4. OBSERVER DESIGN

is formulated using PDEs, and is given as

ût(x, t) = −ε1(x)ûx(x, t) + c1(x)v̂(x, t) + p1(x)(Y (t) − û(1, t)) (4.1a)
v̂t(x, t) = ε2(x)v̂x(x, t) + c2(x)û(x, t) + p2(x)(Y (t) − û(1, t)) (4.1b)
û(0, t) = qv̂(0, t) + CX̂(t) (4.1c)
v̂(1, t) = U(t) (4.1d)

˙̂
X(t) = AX̂(t) + eAφα(0)L(Y (t) − û(1, t)) (4.1e)

where
Y (t) = u(1, t) (4.2)

is the measurement. The matrix L is a gain matrix chosen so that (A − LC)
is Hurwitz (i.e all eigenvalues have negative real part). The functions p1(x)
and p2(x) are injection gains, given as

p1(x) = CeAφα(x)L − ε1(1)P uu(x, 1) −
∫ 1

x
P uu(x, 1)CeAφα(ξ)Ldξ (4.3a)

p2(x) = −ε1(1)P vu(x, 1) −
∫ 1

x
P vu(x, 1)CeAφα(ξ)Ldξ (4.3b)

where the kernels are the solution to1

ε1(x)P uu
x (x, ξ) + ε1(ξ)P uu

ξ (x, ξ) = −ε′
1(ξ)P uu(x, ξ) + c1(x)P vu(x, ξ) (4.4a)

ε1(x)P uv
x (x, ξ) − ε2(ξ)P uv

ξ (x, ξ) = ε′
2(ξ)P uv(x, ξ) + c1(x)P vv(x, ξ) (4.4b)

ε2(x)P vu
x (x, ξ) − ε1(ξ)P vu

ξ (x, ξ) = ε′
1(ξ)P vu(x, ξ) − c2(x)P uu(x, ξ) (4.4c)

ε2(x)P vv
x (x, ξ) + ε2(ξ)P uv

ξ (x, ξ) = −ε′
2(ξ)P vv(x, ξ) − c2(x)P uv(x, ξ) (4.4d)

with boundary conditions

P uu(0, ξ) = qP vu(0, ξ) (4.5a)

P uv(x, x) = c1(x)
ε1(x) + ε2(x) (4.5b)

P vu(x, x) = − c2(x)
ε1(x) + ε2(x) (4.5c)

P vv(0, ξ) = 1
q

P uv(0, ξ) (4.5d)

defined over the triangular domain

T0 = {(x, ξ) : 0 ≤ x ≤ ξ ≤ 1}. (4.6)
1Apparently, the kernel equations stated in Vazquez et al. (2011b) contained some

typos. The kernel equations stated here are the ones found in Aamo (2013).
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4.2 Observer equations

It was in Vazquez et al. (2011b) proved that there exist a unique solution to
(4.4)-(4.5), and that the solution is continuous over T0.

For proofs of exponential convergence of the estimates, the interested
reader is referred to the proofs in Aamo (2013).
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Chapter 5

Transfer function derivations

5.1 Introduction
The current structure of the system, observer and controller is as stated in
Figure 5.1a. By considering the controller and observer as a single unit in the
frequency domain, it should be possible to derive a single transfer function
relating the measurement to the controller output as illustrated in Figure
5.1b. Being an infinite dimensional controller and observer, the resulting
transfer function is likely to be irrational and complicated, but by using
model reduction techniques, simple approximations may be found. This is
the subject of Chapter 6.

We will start the derivations in this chapter by deriving the transfer
functions for the observer in Section 5.2, then for the controllers of Theorems
3.1–3.3 in Sections 5.3–5.5.

5.2 Observer
We derive the transfer functions that links the observer states û(x, s) and
v̂(x, s) as well as the estimated disturbance X̂(s) to the Laplace transforms
of the measurement Y (s) = L(Y (t)) and applied controller input U(s) =
L(U(t)). Thus, we seek transfer functions hûY (x, s), hûU(x, s), hv̂Y (x, s),
hv̂U(x, s), hX̂Y (s) and hX̂U(s) so that

û(x, s) = hûY (x, s)Y (s) + hûU(x, s)U(s) (5.1a)
v̂(x, s) = hv̂Y (x, s)Y (s) + hv̂U(x, s)U(s) (5.1b)

X̂(s) = hX̂Y (s)Y (s) + hX̂U(s)U(s). (5.1c)
We will do this by initially solving the Laplace transformed (4.1), using the
result to derive the transfer functions in (5.1c) and use these results to derive
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û(x, t)

v̂(x, t)

X̂(t)

Y (t) = u(1, t)

U(t)

Observer

û(x, t)

v̂(x, t)

X̂(t)

System

u(x, t)

v(x, t)

X(t)

Controller

(a) System with controller and observer.

Y (s) = u(1, s)

U(s)

Controller

Observer
+

System

u(x, s)

v(x, s)

X(s)

hUY (x̄, s)

(b) System an controller combined with observer in the Laplace domain.

Figure 5.1: System structure.
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the transfer functions in (5.1a) and (5.1b).

5.2.1 Solving the observer equations
Ignoring initial conditions, we apply the Laplace transform to the observer
(4.1). After a slight rearranging of the terms, we obtain

ûx(x, s) = 1
ε1(x)(−sû(x, s) + c1(x)v̂(x, s) + p1(x)(Y (s) − û(1, s)) (5.2a)

v̂x(x, s) = 1
ε2(x)(sv̂(x, s) − c2(x)û(x, s) − p2(x)(Y (s) − û(1, s)) (5.2b)

û(0, s) = qv̂(0, s) + CX̂(s) (5.2c)
v̂(1, s) = U(s) (5.2d)
X̂(s) = D(s)(Y (s) − û(1, s)) (5.2e)

where
D(s) := (sI − A)−1eAφα(0)L (5.3)

has been defined. The subsystem consisting of (5.2a)–(5.2b) can be written
more compactly by introducing the vector of observer states

w(x, s) :=
[
û(x, s)
v̂(x, s)

]
, (5.4)

the matrix

Θ(x, s) :=
⎡
⎣− s

ε1(x)
c1(x)
ε1(x)

− c2(x)
ε2(x)

s
ε2(x)

⎤
⎦ (5.5)

and the vector

Υ(x) :=
⎡
⎣ p1(x)

ε1(x)
−p2(x)

ε2(x)

⎤
⎦ . (5.6)

We may then write (5.2a)–(5.2b) as

wx(x, s) = Θ(x, s)w(x, s) + Υ(x)(Y (s) − û(1, s)). (5.7)

We proceed by applying the variation of constants formula as stated in
Lemma A.4. We assume that there exists a fundamental matrix Ξ(x, x0, s)
with the desired properties, and find the solution of (5.7) as

w(x, s) = Ξ(x, x0, s)w(x0, s) +
∫ x

x0
Ξ(x, ξ, s)Υ(ξ)dξ(Y (s) − û(1, s)). (5.8)
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By additionally defining

P (x, s) =
[
P1(x, s) P2(x, s)

]
:= Ξ(x, 1, s) (5.9)

and
Q(x, s) :=

∫ 1

x
Ξ(x, ξ, s)Υ(ξ)dξ, (5.10)

we find the following relationship between any arbitrary point x in the do-
main, and the actuation and sensing boundary at x = 1

w(x, s) = P (x, s)w(1, s) − Q(x, s)(Y (s) − û(1, s)). (5.11)

5.2.2 Estimated disturbance
By utilizing the above results, we will now derive the transfer functions
hX̂Y (s) and hX̂U(s) in (5.1c). Let x = 0 in (5.11) and define

M(s) =
[
M1(s) M2(s)

]
=

[
m11(s) m12(s)
m21(s) m22(s)

]
:= P (0, s) (5.12)

and
N(s) =

[
n1(s)
n2(s)

]
:= Q(0, s) (5.13)

then we obtain

w(0, s) = M(s)w(1, s) − N(s)(Y (s) − û(1, s)) (5.14)

or, when written out in full

û(0, s) = (m11(s) + n1(s))û(1, s) + m12(s)v̂(1, s) − n1(s)Y (s) (5.15a)
v̂(0, s) = (m21(s) + n2(s))û(1, s) + m22(s)v̂(1, s) − n2(s)Y (s). (5.15b)

Inserting for the boundary conditions (5.2c) and (5.2d), and multiplying
(5.15b) by q, we find

qv̂(0, s) + CX̂(s) = (m11(s) + n1(s))û(1, s)
+ m12(s)U(s) − n1(s)Y (s) (5.16)

qv̂(0, s) = q(m21(s) + n2(s))û(1, s)
+ qm22(s)U(s) − qn2(s)Y (s). (5.17)

Subtracting (5.17) from (5.16), inserting (5.2e) and defining

μ :=
[
1 −q

]T
(5.18)
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5.2 Observer

we find the following relationship between the measurement Y (s), actuation
U(s) and û(1, s)

CD(s)(Y (s) − û(1, s)) = μT (M1(s) + N(s))û(1, s)
+ μT M2(s)U(s) − μT N(s)Y (s). (5.19)

Now solving (5.19) for û(1, s), we find

û(1, s) = (CD(s) + μT N(s))Y (s) − μT M2(s)U(s)
CD(s) + μT (M1(s) + N(s))

= Y (s) − μT M1(s)Y (s) + μT M2(s)U(s)
CD(s) + μT (M1(s) + N(s)) . (5.20)

By defining

ϕ(s) := μT M(s)
CD(s) + μT (M1(s) + N(s)) , (5.21)

equation (5.20) can compactly be written

û(1, s) = Y (s) − ϕ(s)
[
Y (s)
U(s)

]
. (5.22)

Substituting (5.22) into (5.2e), we finally find the transfer functions hX̂Y (s)
and hX̂U(s) in (5.1c) as the elements of the following row vector

HX̂Y U(s) =
[
hX̂Y (s) hX̂U(s)

]
:= D(s)ϕ(s) (5.23)

with ϕ(s) given from (5.21).

5.2.3 Estimated states
We will now use the result of the previous two subsections to derive the
transfer functions relating the observer states û(x, s) and v̂(x, s) to Y (s) and
U(s). From (5.11), when writing P (x, s) out in its columns, we have

w(x, s) = P1(x, s)û(1, s) + P2(x, s)v̂(1, s) − Q(x, s)(Y (s) − û(1, s)). (5.24)

Inserting (5.22) and the boundary condition (5.2d), we obtain

w(x, s) = P1(x, s)
(

Y (s) − ϕ(s)
[
Y (s)
U(s)

])

+ P2(x, s)U(s) − Q(x, s)ϕ(s)
[
Y (s)
U(s)

]
. (5.25)
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A slight rearrangement of the terms yields

w(x, s) = (P (x, s) − (Q(x, s) + P1(x, s))ϕ(s))
[
Y (s)
U(s)

]
. (5.26)

Hence, the transfer functions from the measurement Y (s) and actuation U(s)
to the estimated states û(x, s) and v̂(x, s) in (5.1a) and (5.1b) can be read
out as the elements of the following matrix

HwY U(x, s) =
[
hûY (x, s) hûU(x, s)
hv̂Y (x, s) hv̂U(x, s)

]

:= P (x, s) − (Q(x, s) + P1(x, s))ϕ(s) (5.27)

with ϕ(s) defined in (5.21).

5.3 Pure state feedback controller
We will now use the results from the previous section to derive the transfer
function from the measurement to the actuation when using the controller
of Theorem 3.1 in conjunction with the observer (4.1).

Theorem 5.1. The relationship between the measurement Y (s) = L{Y (t)}
and the actuation U(s) = L{U(t)} when using the controller of Theorem 3.1
in conjunction with the observer (4.1) is

U(s) = hY Upsf
(x̄, s)Y (s) (5.28)

where

hY Upsf
(x̄, s)

=
∫ 1

0 (Kvu(x̄, ξ)hûY (ξ, s) + Kvv(x̄, ξ)hv̂Y (ξ, s))dξ + hV Ypsf
(x̄, s)

1 − ∫ 1
0 (Kvu(x̄, ξ)hûU(ξ, s) + Kvv(x̄, ξ)hv̂U(ξ, s))dξ − hV Upsf

(x̄, s)
(5.29)

and

hV Ypsf
(x̄, s) := 1

r
Kpsf (x̄)hX̂Y (s) + 1

r
hδ̂Y (x̄, x̄, s) + 1

r

∫ x̄

0
Lα(x̄, ξ)hδ̂Y (ξ, x̄, s)dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)hβ̂Y (φ−1

β (κβ(ξ, x̄)), s)dξ (5.30a)

hV Upsf
(x̄, s) := 1

r
Kpsf (x̄)hX̂U(s) + 1

r
hδ̂U(x̄, x̄, s) + 1

r

∫ x̄

0
Lα(x̄, ξ)hδ̂U(ξ, x̄, s)dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)hβ̂U(φ−1

β (κβ(ξ, x̄)), s)dξ (5.30b)
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hδ̂Y (ξ, x̄, s) :=
{

hα̂Y (φ−1
α (κα(ξ, x̄)), s) if κα(ξ, x̄) ≤ φα(0)

qhβ̂Y (φ−1
β (κα(ξ, x̄) − φα(0)), s) otherwise

(5.31a)

hδ̂U (ξ, x̄, s) :=
{

hα̂U (φ−1
α (κα(ξ, x̄)), s) if κα(ξ, x̄) ≤ φα(0)

qhβ̂U (φ−1
β (κα(ξ, x̄) − φα(0)), s) otherwise

(5.31b)

with

hα̂Y (x, s) := hûY (x, s) −
∫ x

0
Kuu(x, ξ)hûY (ξ, s)dξ

−
∫ x

0
Kuv(x, ξ)hv̂Y (ξ, s)dξ (5.32a)

hα̂U (x, s) := hûU (x, s) −
∫ x

0
Kuu(x, ξ)hûU (ξ, s)dξ

−
∫ x

0
Kuv(x, ξ)hv̂U (ξ, s)dξ (5.32b)

hβ̂Y (x, s) := hv̂Y (x, s) −
∫ x

0
Kvu(x, ξ)hûY (ξ, s)dξ

−
∫ x

0
Kvv(x, ξ)hv̂Y (ξ, s)dξ (5.32c)

hβ̂U (x, s) := hv̂U (x, s) −
∫ x

0
Kvu(x, ξ)hûU (ξ, s)dξ

−
∫ x

0
Kvv(x, ξ)hv̂U (ξ, s)dξ (5.32d)

where Kuu(x, ξ), Kuv(x, ξ), Kvu(x, ξ), Kvv(x, ξ) is the solution to (3.6)–(3.7).

Proof. We start the proof by using (3.3) to derive the transfer functions re-
lating the estimated backstepping variables α̂ and β̂ emerging from replacing
u and v with their estimates û and v̂ in (3.3), to the measurement Y (s) and
actuation U(s). Inserting (5.1a) and (5.1b) for u and v, respectively into a
Laplace transformed (3.3) with estimates replacing the real states, we obtain

α̂(x, s) = (hûY (x, s)Y (s) + hûU(x, s)U(s))

−
∫ x

0
Kuu(x, ξ)(hûY (ξ, s)Y (s) + hûU(ξ, s)U(s))dξ

−
∫ x

0
Kuv(x, ξ)(hv̂Y (ξ, s)Y (s) + hv̂U(ξ, s)U(s))dξ (5.33a)

β̂(x, s) = (hv̂Y (x, s)Y (s) + hv̂U(x, s)U(s))

−
∫ x

0
Kvu(x, ξ)(hûY (ξ, s)Y (s) + hûU(ξ, s)U(s))dξ

−
∫ x

0
Kvv(x, ξ)(hv̂Y (ξ, s)Y (s) + hv̂U(ξ, s)U(s))dξ. (5.33b)
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By rearranging terms, we find

α̂(x, s) = [hûY (x, s) −
∫ x

0
Kuu(x, ξ)hûY (ξ, s)dξ

−
∫ x

0
Kuv(x, ξ)hv̂Y (ξ, s)dξ]Y (s)

+ [hûU(x, s) −
∫ x

0
Kuu(x, ξ)hûU(ξ, s)dξ

−
∫ x

0
Kuv(x, ξ)hv̂U(ξ, s)dξ]U(s) (5.34a)

β̂(x, s) = [hv̂Y (x, s) −
∫ x

0
Kvu(x, ξ)hûY (ξ, s)dξ

−
∫ x

0
Kvv(x, ξ)hv̂Y (ξ, s)dξ]Y (s)

+ [hv̂U(x, s) −
∫ x

0
Kvu(x, ξ)hûU(ξ, s)dξ

−
∫ x

0
Kvv(x, ξ)hv̂U(ξ, s)dξ]U(s). (5.34b)

Thus, by using (5.32) we may write (5.34) as

α̂(x, s) = hα̂Y (x, s)Y (s) + hα̂U(x, s)U(s) (5.35a)
β̂(x, s) = hβ̂Y (x, s)Y (s) + hβ̂U(x, s)U(s). (5.35b)

Next, we apply the Laplace transform to (3.46) of Theorem 3.1 and obtain

V (s) = 1
r

Kpsf (x̄)X(s) + 1
r

δ(x̄, x̄, s)

+ 1
r

∫ x̄

0
Lα(x̄, ξ)δ(ξ, x̄, s)dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)β(φ−1

β (κβ(ξ, x̄)), s)dξ (5.36)

where δ(ξ, x̄, s) is obtained by Laplace transforming (3.48), yielding

δ(ξ, x̄, s) =
⎧⎨
⎩ α(φ−1

α (κα(ξ, x̄)), s) if κα(ξ, x̄) ≤ φα(0)
qβ(φ−1

β (κα(ξ, x̄) − φα(0)), s) otherwise.
(5.37)

By substituting (5.35) into (5.37), and using (5.31), we immediately obtain
an expression for δ̂(ξ, x̄, s) by means of Y (s) and U(s)

δ̂(ξ, x̄, s) = hδ̂Y (ξ, x̄, s)Y (s) + hδ̂U(ξ, x̄, s)U(s). (5.38)
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Substituting (5.1c), (5.35b) and (5.38) into (5.36) we find

V (s) = 1
r

Kpsf (x̄)(hX̂Y (s)Y (s) + hX̂U(s)U(s)) (5.39)

+ 1
r

(hδ̂Y (x̄, x̄, s)Y (s) + hδ̂U(x̄, x̄, s)U(s))

+ 1
r

∫ x̄

0
Lα(x̄, ξ)[hδ̂Y (ξ, x̄, s)Y (s) + hδ̂U(ξ, x̄, s)U(s)]dξ

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)[hβ̂Y (φ−1

β (κβ(ξ, x̄)), s)Y (s)

+ hβ̂U(φ−1
β (κβ(ξ, x̄)), s)U(s)]dξ (5.40)

By grouping terms in Y (s) and U(s) and using (5.30) we obtain

V (s) = hV Ypsf
(x̄, s)Y (s) + hV Upsf

(x̄, s)U(s). (5.41)

From Laplace transforming (3.4) and substituting u nad v with their esti-
mates û and v̂, we find

U(s) =
∫ 1

0
Kvu(1, ξ)û(ξ, s)dξ +

∫ 1

0
Kvv(1, ξ)v̂(ξ, s)dξ + V (s). (5.42)

The result (5.28) follows from (5.42) by inserting (5.1a), (5.1b) and (5.41),
solving for U(s) and finally using (5.29).

5.4 Recursive controller
The transfer function of the controller of Theorem 3.2 in conjunction with
the observer (4.1) will here be derived.

Theorem 5.2. The relationship between the measurement Y (s) = L{Y (t)}
and the actuation U(s) = L{U(t)} when using the controller of Theorem 3.2
in conjunction with the observer (4.1) is

U(s) = hY Urec(x̄, s)Y (s) (5.43)

where

hY Urec(x̄, s)

=
∫ 1

0 (Kvu(x̄, ξ)hûY (ξ, s) + Kvv(x̄, ξ)hv̂Y (ξ, s))dξ + hV Yrec(x̄, s)
1 − ∫ 1

0 (Kvu(x̄, ξ)hûU(ξ, s) + Kvv(x̄, ξ)hv̂U(ξ, s))dξ − hV Urec(x̄, s)
(5.44)
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and

hV Yrec(x̄, s) = grec(x̄, s)Krec(x̄)hX̂Y (s) (5.45a)
hV Urec(x̄, s) = grec(x̄, s)Krec(x̄)hX̂U(s) (5.45b)

with

grec(x̄, s) =
1

r − qe−sdrec(x̄) − q
∫ x̄

0 Lα(x̄, ξ)e−sdα(ξ,x̄)dξ − ∫ x̄
0 Lβ(x̄, ξ)e−sdβ(ξ,x̄)dξ

. (5.46)

Proof. By Laplace transforming (3.74) from Theorem 3.2, we obtain

V (s) = q

r
V (s)e−sdrec(x̄) + q

r

∫ x̄

0
Lα(x̄, ξ)e−sdα(ξ,x̄)dξV (s)

+ 1
r

∫ x̄

0
Lβ(x̄, ξ)e−sdβ(ξ,x̄)dξV (s)

+ 1
r

Krec(x̄)X(s) (5.47)

which is straightforwardly solved for V (s), resulting in

V (s) = grec(x̄, s)Krec(x̄)X(s) (5.48)

where (5.46) has been used. Substituting for the estimate X̂(s) instead of
the actual X(s) and using (5.1c) we obtain

V (s) = grec(x̄, s)Krec(x̄)(hX̂Y (s)Y (s) + hX̂U(s)U(s)) (5.49)

The result (5.43) follows from substituting (5.49) into (5.42), solving for U(s)
and using (5.45).

As predicted, the transfer function in Theorem 5.2 is much easier to derive
than the transfer function in Theorem 5.1.

5.5 Simplified controller
Lastly, the transfer function of the controller of Theorem 3.3 in conjunction
with the observer (4.1) is derived.

Theorem 5.3. The relationship between the measurement Y (s) = L{Y (t)}
and the actuation U(s) = L{U(t)} when using the controller of Theorem 3.3
in conjunction with the observer (4.1) is

U(s) = hY U∞(x̄, s)Y (s) (5.50)
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where

hY U∞(x̄, s)

=
∫ 1

0 (Kvu(x̄, ξ)hûY (ξ, s) + Kvv(x̄, ξ)hv̂Y (ξ, s))dξ + hV Y∞(x̄, s)
1 − ∫ 1

0 (Kvu(x̄, ξ)hûU(ξ, s) + Kvv(x̄, ξ)hv̂U(ξ, s))dξ − hV U∞(x̄, s)
. (5.51)

and

hV Y∞(x̄, s) = 1
r

K∞(x̄)hX̂Y (s) (5.52a)

hV U∞(x̄, s) = 1
r

K∞(x̄)hX̂U(s). (5.52b)

Proof. By taking the Laplace transform of (3.83) from Theorem 3.3, and
inserting for the disturbance estimate, using (5.1c) we obtain

V (s) = 1
r

K∞(x̄)(hX̂Y (s)Y (s) + hX̂U(s)U(s)). (5.53)

By inserting (5.53) into (5.42), solving for U(s) and using (5.51)–(5.52), we
find (5.50).
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Chapter 6

Model reduction: Obtaining
rational transfer function
approximations

6.1 Introduction
In order to implement the transfer functions of Theorems 5.1–5.3 on a com-
puter, we will have to find their time domain equivalents, that is; their inverse
Laplace transforms. The inverse Laplace transform for some function F (s)
which inverse is f(t) is generally given by the line integral (Abramowitz and
Stegun (1975, Eq. (29.2.2)))

f(t) = 1
2πj

∫ σ0+j∞

σ0−j∞
F (s)estds (6.1)

where σ0 must be larger than the real part of all singularities of F (s). The
integral (6.1) is also known as the Bromwich integral, with the line �(s) = σ0
along which the integration is taken known as the Bromwich contour. The
inversion formula (6.1) is an example of the so-called ”ill-posed problem”.
Numerically, one is faced with the question of numerical instabilities: small
perturbations of the data produce large fluctuations in the output data, and
there is no universal algorithm to evaluate the integral, according to Cunha
and Viloche (1992).

In this section, we present a model reduction scheme based on a series
expansion using a type of functions known as Laguerre functions. The use
of Laguerre functions for inverting Laplace transforms is an old established
method, dating back to 1935 (Tricomi (1935), Widder (1935)). In Amghayrir,
Tanguy, Bréhonnet, Vilbé, and Calvez (2005), the Laguerre series representa-
tion was used to derive a model reduction technique using a transfer-function
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formalism. The method allowed reduction of irrational transfer functions into
rational approximations, and found the approximation that minimized the
error in the least squares sense. A rational approximation is highly desirable
for implementation on a computer as it allows for state space implementation
and realization using standard, linear ODEs. The method from Amghayrir
et al. (2005) was also applied to an irrational transfer function in Mahdianfar
et al. (2012), proving very good results.

6.2 Laguerre representation
We will in this section show how a wide class of functions can be represented
using an infinite sum of so-called Laguerre functions. The representation is
based on inner product and Hilbert space theory, but as this is a vast and
complex field in mathematics, the theory will be superficially touched and
only the relevant properties of such spaces will be presented. However, the
reader is expected to be somewhat familiar with basic vector space theory,
inner products and norms. For more information, consult e.g. Kreyszig
(2010, Sec. 7.9) or Axler (1997).

6.2.1 The extended space of square integrable func-
tions

We start by defining an inner product space L2
�(�+) of functions that are

square integrable after an exponential weighting. Given two time varying
functions f(t) and g(t) defined for t ≥ 0. Define the weighted inner product

〈f, g〉� :=
∫ ∞

0
(t)f(t)g(t)dt (6.2)

with associated norm
||f ||� =

√
〈f, f〉� (6.3)

where the weighting
(t) := e−(γ−2α)t (6.4)

is determined using two parameters γ and α. Next, let L2
�(�+) denote the

space of measurable real valued functions f(t) which has a well-defined norm
in the sense of (6.2), viz.

f ∈ L2
�(�+) ⇔ ||f ||� < ∞. (6.5)

The space L2
�(�+) is a Hilbert space according to Amghayrir et al. (2005). As

the well known space of square integrable functions L2(�+) can be obtained
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from L2
�(�+) by choosing γ = 2α, L2

�(�+) can be considered an extension
of L2

�(�+). The space L2
�(�+) allows for exponential weighting of functions,

in that f(t) belongs to L2
�(�+) if the exponentially weighted function g(t) =

e−σtf(t), where
σ := γ

2 − α (6.6)

belongs to L2(�+).

6.2.2 Laguerre polynomials and functions
The Laguerre polynomials Ln(x), x ≥ 0, n ∈ �

+ are the solutions to the
Laguerre equation

xL′′
n(x) + (1 − x)L′

n(x) + nLn(x) = 0 (6.7)

for n ∈ �
+. An alternative formulation is given by the Rodrigues formula

(Weideman (1999, p. 114))

Ln(x) = ex

n!
dn

dxn

(
e−xxn

)
, x ≥ 0 (6.8)

or as the binomial series (Abate, Choudhury, and Whitt (1996))

Ln(x) =
n∑

k=0

(
n

k

)
(−x)k

k! , x ≥ 0. (6.9)

The Laguerre functions are mixed polynomial and exponential functions gen-
erated from the Laguerre polynomials. There exist several variations in the
literature on how these functions are generated from the Laguerre polynomi-
als (see e.g. Steiglitz (1965), Weideman (1999), Malti, Maquin, and Ragot
(1999) and Kano, Brio, and Moloney (2005) for a few). We will focus on the
one presented in Amghayrir et al. (2005) which are parametrized using two
parameters γ > 0 and α > 0 and is given as

ln(t; α, γ) := √
γe−αtLn(γt). (6.10)

An important property of the Laguerre functions (6.10) is that they form a
so-called orthonormal basis (Hochstrasser (1975, Sec. 22.1.1)) for L2

�(�+)
for any set of parameters 0 < γ, α ∈ �. This means, among many other
properties, that the inner product (6.2) applied to a pair of Laguerre functions
is

〈ln, lm〉� = δnm, where δnm =
⎧⎨
⎩1 if n = m

0 otherwise.
(6.11)
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6.2.3 Laguerre expansions
As the Laguerre functions (6.10) form an orthonormal basis for the Hilbert
space L2

�(�+), it follows that any function f(t) ∈ L�(�+) can be written as
an infinite sum of weighted Laguerre functions (Axler (1997, Theorem 6.17))
as follows

f(t) =
∞∑

n=0
qn(α, γ)ln(t; α, γ) (6.12)

for some set of (real) coefficients {qn(α, γ)}0≤n∈�+ . From Parseval’s Formula
(Debnath and Mikusinski (1990, Thrm. 3.8.5)), we also have that

||f || =
∞∑

n=0
q2

n(α, γ) < ∞ (6.13)

from which it follows that

lim
n→∞ qn(α, γ) = 0. (6.14)

The set of Laguerre coefficients {qn(α, γ)}n∈�+ is often referred to as the func-
tion’s Laguerre Spectrum. One can find the Laguerre spectrum {qn(α, γ)}n∈�+

by evaluation of the inner product

qn(α, γ) = 〈f, ln〉� =
∫ ∞

0
(t)f(t)ln(t) dt. (6.15)

This can be seen from applying the inner product (6.2) to (6.12) and the
Laguerre functions (6.10), and using (6.11).

6.3 Laguerre-Gram based model order reduc-
tion

A model order reduction scheme based on the Laguerre expansion of the func-
tion is here presented. The algorithm was originally presented in Amghayrir
et al. (2005), and takes the function’s Laguerre spectrum as input, solves a
linear set of equations from a pair of matrices generated from the Laguerre
spectrum, and uses the result to construct the numerator and denominator
of the rational approximation. In practice, an N-order truncated Laguerre
spectrum is used, and it is assumed that the truncation error is sufficiently
small the model reduction will give a good approximation of the original
transfer function.

The algorithm takes the following inputs:
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1. A desired order r for the rational approximation,

2. The truncated Laguerre spectrum {qn(α, γ)}n∈�, 0≤n≤N+r for some N �
r, for the function f to be approximated,

3. The design variables α, γ used to find the Laguerre spectrum,

and produces a rational approximation f̂ in the following steps:

1. Form the following matrix (known as a Gram matrix)

Ψ :=

⎡
⎢⎢⎢⎢⎣

ψ0,0 ψ0,1 . . . ψ0,r−1
ψ1,0 ψ1,1 . . . ψ1,r−1

... ... . . . ...
ψr−1,0 ψr−1,1 . . . ψr−1,r−1

⎤
⎥⎥⎥⎥⎦ (6.16)

and the vector
b :=

[
ψ0,r ψ1,r . . . ψr−1,r

]T
. (6.17)

where the coefficients ψi,j are computed from the truncated Laguerre
spectrum as

ψi,j =
N∑

n=0
qn+iqn+j. (6.18)

2. Solve the system of equations

Ψa = −b (6.19)

for the vector of coefficients

a :=
[
a0 a1 . . . ar−1

]T
. (6.20)

3. Form the reduced order model using

f̂(s) =
√

γ
∑r

i=1 ai
∑i−1

j=0 qj(s + α)i−j−1(s − γ + α)r−i+j∑r
i=0 ai(s + α)i(s − γ + α)r−i

(6.21)

where ar = 1 has been defined.

For derivation of the algorithm, analysis and proofs, the interested reader
is referred to Amghayrir et al. (2005). Note that the computational speed
needed for computing the quantities ψi,j in (6.18) can be drastically reduced
using recursion and symmetry properties, as ψi,j = ψi−1,j−1 − qi−1qj−1 for
i = 1, 2, ..., r − 1 and j = i, i + 1, ..., r, and that ψi,j = ψj,i.
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6.4 Determination of the Laguerre spectrum
An immediate problem with the algorithm in the previous section, is the
determination of the (truncated) Laguerre spectrum {qn(α, γ)}n∈�+ . The
expression (6.15) requires the knowledge of f(t), but finding an approxi-
mation to this unknown function is precisely the intention of introducing
the Laguerre coefficients in the first place. This issue was not addressed in
Amghayrir et al. (2005).

An expression stating the Laguerre spectrum of a function f(t) with La-
guerre functions given from (6.10) with the knowledge of it’s Laplace trans-
form F (s) will here be derived. This has previously been addressed by several
authors (Steiglitz (1965), Garbow, Giunta, and Murli (1988), Abate et al.
(1996), Weideman (1999)). However, to the best of our knowledge, is has
not been derived for the Laguerre functions of the kind given from (6.10).
We will base our derivation on the one found in Kano et al. (2005), which is
a variation of Weeks’ method (Weeks (1966)).

The Laguerre functions ln(t; α, γ) as given in (6.10) have Laplace trans-
forms (Amghayrir et al. (2005))

ln(s) = L(ln(t; α, γ)) =
√

γ

s + α

(
s − γ + α

s + α

)n

. (6.22)

Taking the Laplace transform of (6.12), we find

F (s) =
∞∑

n=0
qn(α, γ)ln(s) =

√
γ

s + α

∞∑
n=0

qn(α, γ)
(

s − γ + α

s + α

)n

. (6.23)

where F (s) = L{f(t)}. Consider the transformation1

w := s − γ + α

s + α
(6.24)

which inverse is
s = γ

1 − w
− α. (6.25)

The transformation (6.24) maps the domain �(s) > σ = γ
2 −α in the complex

plane to the interior of the unit circle. This can be seen by substituting

s = γ

2 − α + h + jω (6.26)

1This is a so-called Möbious Transformation. Consult e.g. Kreyszig (2010, Sec. 17.2)
for more information.
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for some h ∈ � into (6.24), yielding

w =
γ
2 − α + h + jω − γ + α

γ
2 − α + h + jω + α

=
h − γ

2 + jω

h + γ
2 + jω

. (6.27)

The norm of w is

|w| =

√√√√(h − γ
2 )2 + ω2

(h + γ
2 )2 + ω2 (6.28)

If h > 0 (and γ > 0), clearly (h − γ
2 )2 < (h + γ

2 )2, and the denominator is
larger then the numerator. Hence |w| < 1 for �(s) > γ

2 − α.
Inserting (6.24) into (6.23), we find

∞∑
n=0

qn(α, γ)wn =
√

γ

1 − w
F

(
γ

1 − w
− α

)
(6.29)

which is a complex MacLaurin series. The radius of convergence is greater
than one following the way the transformation (6.24) was chosen. Multiplying
both sides of (6.29) with w−m−1 for m ∈ �, we obtain

∞∑
n=0

qn(α, γ)wn−m−1 = √
γ

w−m−1

1 − w
F

(
γ

1 − w
− α

)
(6.30)

By integrating along the contour |w| = 1 it follows from Lemma A.3 in the
appendix that every term in the left hand side sum to 2πj for m = n, and
zero otherwise, hence

qn(α, γ) =
√

γ

2πj

∮
|w|=1

w−n−1

1 − w
F

(
γ

1 − w
− α

)
dw (6.31)

which is an equation explicitly expressing the Laguerre coefficients. Lastly,
inserting for w = ejθ we obtain

qn(α, γ) =
√

γ

2π

∫ π

−π

e−jnθ

1 − ejθ
F

(
γ

1 − ejθ
− α

)
dθ. (6.32)

This expression can be evaluated using a numerical integration scheme. Care
must be taken, as 1 − ejθ is zero when θ = 0, which would require the
evaluation of the integrand in (6.32) at infinity. One could circumvent this
by substituting w = Rejθ for 0 < R < 1 instead, as was done in Lyness and
Giunta (1986), or for instance, using the midpoint rule (see Appendix B.2)
which misses out the point θ = 0. This was for instance done in Weideman
(1999).
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Another interesting observation, is that if one defines the function

G(θ) :=
√

γ

1 − ejθ
F

(
γ

1 − ejθ
− α

)
(6.33)

the expression (6.32) becomes

qn(α, γ) = 1
2π

∫ π

−π
G(θ)e−jnθdθ (6.34)

which can be recognized as Fourier series coefficients for the function G(θ).
Now using the midpoint rule (see Appendix B.2) with 2N intervals, one can
compute an estimate of qn as

q̂n(α, γ) = e−jn π
2N

2N

N−1∑
k=−N

G
(

π

N
(k + 1/2)

)
e−jπnk/N , n = 0, . . . , N − 1

(6.35)
which, from inspection, can be recognized as a shifted and scaled version
of the Discrete Fourier Transform (DFT) of G(θ). The efficient Fast Fourier
Transform (FFT) (Kreyszig (2010, p. 531)) may therefore be applied for com-
puting the Laguerre spectrum {qn(α, γ)}0≤n∈� from a set of cleverly sampled
points of the Laplace Transform F (s).

6.5 Optimum choice of parameters
A natural question related to the method presented above arises; how does
one choose the parameters α and γ? This was addressed in Tanguy, Vilbé,
and Calvez (1995), where a method for determination of the free parameters
in orthogonal bases so that the error is minimized in a least squares sense
was proposed. The method was also said to be used for choosing α and γ
in the examples in Amghayrir et al. (2005), but the details were left out.
The main clues, ported to the orthogonal Laguerre functions (6.10), are here
presented. The method is presented under the assumption of having a single
free variable. We will denote this as α, and assume a relationship to γ is
given, that is γ = γ(α), so that qn(α, γ) = qn(α) and ln(t; α, γ) = ln(t; α).

Consider the approximation, created by truncating the infinite series
(6.12) after N terms

f̂(t) =
N−1∑
n=0

qn(α)ln(t; α) (6.36)

and denote the relative weighted, quadratic error emerging by truncating the
series as

εN(α) = ||f̂ − f ||2
||f ||2 = ||∑∞

n=N qn(α)ln(t; α)||2
||f ||2 . (6.37)
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It is observed that 0 ≤ εN(α) ≤ 1. According to Tanguy et al. (1995) does,
due to the orthogonality property of the functions ln(t; α), the following hold

εN(α) = 1
||f ||2

∞∑
n=N

q2
n(α) (6.38)

where the norm ||f || can be expressed from (6.13). This expression for the
quadratic error can usually be reduced by a proper choice of α.

Many set of continuous orthogonal functions satisfy the noteworthy equa-
tion

Hαln(t; α) = λ(n)ln(t; α) (6.39)
where Hα is a linear operator on the form

Hαf(t) = A(t; α)f ′′(t) + B(t; α)f ′(t) + C(t; α)f(t). (6.40)

The term λ(n) is a strictly increasing function independent of t, satisfying

λ(0) = 0 < λ(1) < λ(2) < λ(3) < . . . (6.41)

and yn(t; α), n ∈ �
+ are the orthogonal functions. If we apply this operator

H to the Laguerre expansion (6.12), we find

Hαf(t) =
∞∑

n=0
qn(α)Hαln(t; α) =

∞∑
n=0

qn(α)λ(n)ln(t; α) (6.42)

By applying the inner product to f(t) and Hαf(t) and using the linearity
property of inner products (i.e. 〈af + bg, ln〉 = a〈f, ln〉+ b〈g, ln〉 for functions
f, g and constants a, b) we find

〈f,Hαf〉 =
∞∑

n=0
λ(n)q2

n(α) ≥ λ(N)
∞∑

n=N

q2
n(α). (6.43)

Thus, by comparing (6.43) with the error term (6.38), we find an upper
bound for the error εN(α) as

εN(α) ≤ 1
λ(N)

〈f,Hαf〉
||f ||2 = 1

λ(N)Gε(α) (6.44)

where
Gε(α) := 〈f,Hαf〉

||f ||2 (6.45)

has been defined. Thus, the best choice of the parameter α is the α = α0
which minimizes Gε(α) in (6.45). Also note that Gε(α) in (6.45) is indepen-
dent of N . Thus, α0 can be computed first and N can be chosen afterwards,
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but note that in order to get a useful bound, N must be large enough so that
N > Gε(α), or else the error term εN(α) that is upper bounded by 1, may
exceed unity. When the signal f(t) is known via experimental data, Gε(α)
can be readily determined by computer.

For the Laguerre functions defined in (6.10), the operator Hα can be
taken as1

Hαf(t) = − 1
γ(α)tf ′′(t) + 1

γ(α)((γ(α) − 2α)t − 1)f ′(t)

− 1
γ(α)(α + α(α − γ(α))t)f(t) (6.46)

with
λ(n) = n, (6.47)

and the error function becomes

Gε(α) = 〈f,Hαf〉
||f ||2 =

∑∞
n=0 nq2

n(α)∑∞
n=0 q2

n(α) (6.48)

The act of finding the α minimizing Gε(α) in (6.48) can for instance be
performed using extremum seeking numerically on a computer.

1This can be verified by direct computations.
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Chapter 7

Application to the heave
problem in MPD

7.1 Introduction
We will demonstrate the theory derived in Part II on the heave problem in
Managed Pressure Drilling. The following model was used in used in Aamo
(2013) to model the heave problem in MPD

pt(z, t) = − β

A1
qz(z, t) (7.1a)

qt(z, t) = −A1

ρ
pz(z, t) − F1

ρ
q(z, t) − A1g (7.1b)

q(0, t) = −A2C̄Z(t) (7.1c)
p(l, t) = pl(t) (7.1d)

Ż = ĀZ, Z(0) = Z0 (7.1e)

where l is the well depth, z ∈ [0, l], t ≥ 0, p(z, t) is the pressure, q(z, t)
is the volumetric flow, β is the mud’s bulk modulus, ρ is the mud density,
A1 is the cross sectional area of annulus, A2 is the cross sectional area of
the drill bit, F1 is the friction factor and g is the gravity constant. pl(t)
is the actuation, and its actuation device is assumed to have significantly
faster dynamics than the rest of the system so that actuation dynamics can
be ignored. Also, q(1, t) = ql(t) is assumed measured. A desired constant
pressure at z = z̄ ∈ (0, l) is stated as

p(z̄, t) = psp. (7.2)

The disturbance Z(t) is assumed to be an autonomously driven harmonic
oscillator, parametrized by a finite set {ω1, ω2, . . . , ωn} of n known frequencies
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and has the following form

Ā = diag
([

0 ω1
−ω1 0

]
, . . .

[
0 ωn

−ωn 0

])
(7.3)

C̄ =
[
0 1 0 1 . . . 0 1

]
. (7.4)

Note that the pair (Ā, C̄) is observable. The model (7.1) was originally
presented in Landet et al. (2013), with the disturbance model (7.3)–(7.4)
added in Aamo (2013).

Firstly, we will in Section 7.2 pose a coordinate transformation to bring
the model (7.1)–(7.4) to the form (3.1). In Section 7.3, the results from
Chapter 3 as well as the transformation in 7.2 are used to derive controllers
for attenuation of heave induced pressure fluctuations in Managed Pressure
Drilling assuming full state measurements are available. An expression for the
signal Y (t) required for implementation of the observer from Chapter 4 is also
presented, for practical implementation where sensing usually is limited to
the topside. A fundamental matrix needed to evaluate the transfer functions
in Chapter 5 is derived in Section 7.4. In Section 7.5, numerics for solving
the kernel equations (3.6)–(3.7), (3.10)–(3.11), and (4.4)–(4.5) is derived.

7.2 Feasibility of design
A transformation relating to drilling system (7.1)–(7.4) to (3.1) is here pre-
sented.

Lemma 7.1 (Modified from Lemma 10 in Aamo (2013)). For a given z̄ and
psp, the transformation

u(x, t) = 1
2

[
q(xl, t) + A1√

βρ
(p(xl, t) − psp + ρgl(x − x̄))

]
e

lF1
2
√

βρ
(x−x̄) (7.5a)

v(x, t) = 1
2

[
q(xl, t) − A1√

βρ
(p(xl, t) − psp + ρgl(x − x̄))

]
e

− lF1
2
√

βρ
(x−x̄) (7.5b)

where
x̄ = z̄

l
. (7.6)

maps the system (7.1) to the form (3.1) with

X(t) = Z(t) (7.7)

U(t) = 1
2

(
q(l, t) − A1√

βρ
(pl(t) − psp + ρgl(1 − x̄))

)
e− γ

2 (1−x̄) (7.8)
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ε1(x) = ε2(x) = ε, c1(x) = a0e
γx, c2(x) = b0e

−γx (7.9)

q = −e−γx̄ (7.10)

A = Ā, C = −e
γ
2 x̄A2C̄ (7.11)

where

ε = 1
l

√
β

ρ
, a0 = c0e

−γx̄, b0 = c0e
γx̄, c0 = −1

2
F1

ρ
, γ = lF1√

βρ
. (7.12)

Moreover, the control objective (7.2) is transformed to (3.2) with r = 1 and
x̄ as in (7.6).

Proof. We remove the constant term and shift the origin by defining

p̄(z, t) = p(z, t) − psp + ρg(z − z̄) (7.13)

from which we find

p̄z(z, t) = pz(z, t) + ρg (7.14)

and

p̄t(z, t) = pt(z, t). (7.15)

This yields the modified system

p̄t(z, t) = − β

A1
qz(z, t) (7.16a)

qt(z, t) = −A1

ρ
p̄z(z, t) − F1

ρ
q(z, t) (7.16b)

p̄(l, t) = pl(t) − psp + ρg(l − z̄). (7.16c)

Consider now the diagonalizing change of variables

ū(z, t) = 1
2

(
q(z, t) + A1√

βρ
p̄(z, t)

)
(7.17a)

v̄(z, t) = 1
2

(
q(z, t) − A1√

βρ
p̄(z, t)

)
(7.17b)
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from which we find the partial derivatives with respect to z as

ūz(z, t) = 1
2

(
qz(z, t) + A1√

βρ
p̄z(z, t)

)
(7.18a)

v̄z(z, t) = 1
2

(
qz(z, t) − A1√

βρ
p̄z(z, t)

)
(7.18b)

and with respect to t as (omitting the details regarding v̄t(z, t))

ūt(z, t) = 1
2

(
−A1

ρ
p̄z(z, t) − F1

ρ
q(z, t) − A1√

βρ

β

A1
qz(z, t)

)

= −1
2

(
A1

ρ
p̄z(z, t) +

√
β

ρ
qz(z, t)

)
− 1

2
F1

ρ
q(z, t)

= −1
2

√
β

ρ

(
A1√
ρβ

p̄z(z, t) + qz(z, t)
)

− 1
2

F1

ρ
q(z, t)

= −
√

β

ρ
ūz(z, t) − 1

2
F1

ρ
(ū(z, t) + v̄(z, t)) (7.19a)

v̄t(z, t) =
√

β

ρ
v̄z(z, t) − 1

2
F1

ρ
(ū(z, t) + v̄(z, t)) (7.19b)

where (7.18a) has been inserted into (7.19a). We get rid of the term in ū in
(7.19a) and in v̄ in (7.19b), and scale the domain into [0, 1] by defining

u(x, t) = ū(xl, t)e
lF1

2
√

βρ
(x−x̄) (7.20a)

v(x, t) = v̄(xl, t)e− lF1
2
√

βρ
(x−x̄) (7.20b)

from which we find

ut(x, t) = ūt(xl, t)e
lF1

2
√

βρ
(x−x̄) (7.21a)

vt(x, t) = v̄t(xl, t)e− lF1
2
√

βρ
(x−x̄) (7.21b)

and

ux(x, t) =
(

lūz(xl, t) + lF1

2
√

βρ
ū(xl, t)

)
e

lF1
2
√

βρ
(x−x̄) (7.22a)

vx(x, t) =
(

lv̄z(xl, t) − lF1

2
√

βρ
v̄(xl, t)

)
e

− lF1
2
√

βρ
(x−x̄)

. (7.22b)
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Substituting (7.19) into (7.21), we obtain

ut(x, t) = 1
l

√
β

ρ

(
−lūz(xl, t) − l

2
F1√
ρβ

ū(xl, t) − l

2
F1√
ρβ

v̄(xl, t)
)

× e
lF1

2
√

βρ
(x−x̄) (7.23a)

vt(x, t) = 1
l

√
β

ρ

(
lv̄z(xl, t) − l

2
F1√
ρβ

ū(xl, t) − l

2
F1√
ρβ

v̄(xl, t)
)

× e
− lF1

2
√

βρ
(x−x̄)

. (7.23b)
When slightly rearranged, this turns into

ut(x, t) = −1
l

√
β

ρ

(
lūz(xl, t) + l

2
F1√
ρβ

ū(xl, t)
)

e
lF1

2
√

βρ
(x−x̄)

− 1
2

F1

ρ
v̄(xl, t))e

lF1
2
√

βρ
(x−x̄) (7.24a)

vt(x, t) = 1
l

√
β

ρ

(
lv̄z(xl, t) − l

2
F1√
ρβ

ū(xl, t)
)

e
− lF1

2
√

βρ
(x−x̄)

− 1
2

F1

ρ
v̄(xl, t))e− lF1

2
√

βρ
(x−x̄)

. (7.24b)

Inserting (7.22) into (7.24), we finally obtain

ut(x, t) = −1
l

√
β

ρ
ux(x, t) − 1

2
F1

ρ
v(z, t)e

lF1√
βρ

(x−x̄) (7.25)

vt(x, t) = 1
l

√
β

ρ
vx(x, t) − 1

2
F1

ρ
u(z, t)e− lF1√

βρ
(x−x̄) (7.26)

which is on the form (3.1) with coefficients (7.9) and parameters (7.12).
Composing the transformations (7.20), (7.17) and (7.13), and using (7.6),

we find (7.5). The connection between pl(t) and U(t) given in (7.8) is verified
by inserting x = 1 into (7.5b) and using (3.1d). The parameters in the
boundary condition (3.1c) can be expressed by forming

u(0, t) + v(0, t)e− lF1√
βρ

x̄ = q(0, t)e− lF1
2
√

βρ
x̄ (7.27)

and defining q and C as in (7.10) and (7.11), respectively. Lastly, by inserting
x = x̄ = z̄/l into (7.5), we obtain

u(x̄, t) = 1
2

[
q(x̄l, t) + A1√

βρ
(p(x̄l, t) − psp)

]
(7.28a)

v(x̄, t) = 1
2

[
q(x̄l, t) − A1√

βρ
(p(x̄l, t) − psp)

]
. (7.28b)
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Thus, by requiring u(x̄, t) = v(x̄, t), we enforce p(x̄l, t) = psp. Hence, r = 1
makes the controller objective (3.2) equivalent to (7.2).

7.3 Attenuation of heave induced pressure fluc-
tuations

Having established that the MPD model (7.12) admits the form (3.1), we
can apply the results from Chapter 3.
Theorem 7.1. Consider the MPD system (7.1). Given a desired setpoint
psp and a chosen coordinate z̄ ∈ (0, l) for pressure attenuation, and let

pl(t) =
√

βρ

A1

(
ql(t) − 2U(t)e

γ
2 (1−x̄)

)
+ psp − ρgl(1 − x̄) (7.29)

where x̄ = z̄/l, γ = lF1√
βρ

and U(t) is given by the control law of Theorem 3.1
with u(x, t) and v(x, t) needed by the control law acquired from q(z, t) and
p(z, t) by means of the transformation (7.5). Then (7.2) is achieved for

t ≥
√

ρ

β
(l − z̄). (7.30)

Moreover, if U(t) in (7.29) is given by the control law of Theorem 3.2, then
(7.2) is achieved for

t ≥
√

ρ

β
(l + z̄). (7.31)

Lastly, if U(t) is given by the control law in Theorem 3.3, and the assumptions
therein holds, then (7.2) is approximately achieved within the time given by
(7.31).
Proof. As the system (7.12) admits the form (3.1) following the results of
Lemma 7.1, it will suffice to show that the actuation pl(t) in (7.12) relates
to the actuation U(t) in (3.1) according to (7.29), and that the given time
constraints corresponds to the respective time constraints of Theorems 3.1,
3.2 and 3.3. The expression (7.29) follows trivially from (7.8) by solving (7.8)
for pl(t). The time constraint of Theorem 3.1 is t ≥ ηβ(x̄), where ηβ(x̄) is
given in 3.36b and (3.20b). For ε1(x) and ε2(x) constant and equal as in
(7.12), we find

ηβ(x̄) = φβ(1) − φβ(x̄) =
∫ 1

0

dγ

ε
−

∫ x̄

0

dγ

ε

= 1
ε

− x̄

ε
= 1

ε
(1 − x̄). (7.32)
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Inserting for the ε in (7.12) and using (7.6), we find the right hand side
of (7.30). Similarly for Theorem 3.2 and Theorem 3.3 which share time
constraints, we find

ηα(x̄) = φβ(1) + φα(0) − φα(x̄) =
∫ 1

0

dγ

ε
+

∫ 1

0

dγ

ε
−

∫ 1

x̄

dγ

ε

= 1
ε
(1 + x̄) (7.33)

Inserting for ε in (7.12) and using (7.6), we find the right hand side of (7.31).

Note that the time constraints (7.30)–(7.31) actually are the distance
travelled by the applied signal (l ± z̄) divided by the mud’s speed of sound
(c =

√
β
ρ

(White (2012, p. 39))).
Additionally, one can implement (7.29) and Theorems 3.1–3.3 with the

observer from Chapter 4 by relating the measurement Y (t) in (4.1) to the
system (7.1). By inserting x = 1 into (7.5a), we find Y (t) to be

Y (t) = 1
2

[
ql(t) + A1√

βρ
(pl(t) − psp + ρgl(1 − x̄))

]
e

γ
2 (1−x̄) (7.34)

where (7.6) and γ in (7.12) have been used.

7.4 Finding a fundamental matrix
A fundamental matrix Ξ(x, x0, s) with all the properties required by Lemma
A.4 is needed to evaluate the transfer functions derived in Chapter 5. If such a
matrix is found, we can implement (7.29) with U(t) generated from a rational
approximation found from applying the method described in Chapter 6 on
one of the transfer functions in Theorems 5.1–5.3. For the drilling system
(7.1) ported to (3.1) by means of (7.5), the matrix Θ(x, s) in (5.5) has the
simple form

Θ(x, s) = 1
ε

[ −s a0e
γx

−b0e
−γx s

]
. (7.35)

Lemma 7.1. A possible fundamental matrix needed in (5.8) for the drilling
system (7.1) is

Ξ(x, x0, s) = H−1(x)e(Θ0(s)+ γ
2 V )(x−x0)H(x0). (7.36)

where
Θ0(s) := 1

ε

[−s a0
−b0 s

]
, (7.37)
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H(x) =
[
e− γ

2 x 0
0 e

γ
2 x

]
(7.38)

and
V =

[−1 0
0 1

]
. (7.39)

Proof. We cannot use (A.31), as Θ(x, s) depends on x. We resolve this by a
coordinate transformation. First off, we note that

d

dx
H(x) = γ

2V H(x) = γ

2H(x)V (7.40)

and

d

dx
H−1(x) = −γ

2V H−1(x) = −γ

2H−1(x)V. (7.41)

Additionally, we note that H(x), H−1(x) and V commute as they are all
diagonal, and that V V = V 2 = I. Using (7.37) and (7.38), we may write
(7.35) as

Θ(x, s) = H−1(x)Θ0(s)H(x). (7.42)
Note that Θ0(s) is independent of x. Next, define the new vector of expo-
nentially scaled observer states

w̄(x, s) = H(x)w(x, s) ⇔ w(x, s) = H−1(x)w̄(x, s). (7.43)

Inserting (7.43) into (5.7) and using (7.41), we obtain

−γ

2H−1(x)V w̄(x, s) + H−1(x)w̄x(x, s)

= H−1(x)Θ0(s)H(x)H−1(x)w̄(x, s)
+ Υ(x)(Y (s) − û(1, s)). (7.44)

Premultiplication with H(x) and rearranging, we find

w̄x(x, s) =
(

Θ0(s) + γ

2V
)

w̄(x, s) + H(x)Υ(x)(Y (s) − û(1, s)). (7.45)

Now (A.31) of Lemma A.4 may be applied, yielding

w̄(x, s) = Ξ̄(x, x0, s)w̄(x0, s) +
∫ x

x0
Ξ̄(x, ξ, s)H(ξ)Υ(ξ)dξ (7.46)

where
Ξ̄(x, x0, s) := e(Θ0(s)+ γ

2 V )(x−x0). (7.47)
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Substituting (7.43) back into (7.46), we obtain

w(x, s) = H−1(x)Ξ̄(x, x0, s)H(x0)w(x0, s)

+
∫ x

x0
H−1(x)Ξ̄(x, ξ, s)H(ξ)Υ(ξ)dξ. (7.48)

Comparing (7.48) with (5.8), one observe that the fundamental matrix in
(5.2) can be taken as H−1(x)Ξ̄(x, ξ, s)H(ξ), which yields (7.36).

Equation (7.36) satisfies all the requirements of Lemma A.4, easily verified
by direct computation.

7.5 Solving the kernel equations
To implement the controller and system on a computer, the solutions to
the kernel equations (3.6)–(3.7) and (3.10)–(3.11) are needed. Additionally,
the solution to (4.4)–(4.5) is needed if the observer from Chapter 4 is to be
implemented.

Recently, an explicit solution to the subsystem consisting of (3.6c)–(3.6d)
and (3.7c)–(3.7d) was found in Vazquez and Krstić (2013), under the assump-
tion of having constant coefficients. The solution is complex, and involves
Bessel functions and generalized Marcum Q-functions of the first order. Al-
though the solution derived in Vazquez and Krstić (2013) covers the ker-
nel equations emerging when inserting (7.9), and performing a transforma-
tion, we still need the solution to (3.6a)–(3.6b) with (3.7a)–(3.7b), as well as
(3.10)–(3.11) and (4.4)–(4.5).

Solving these equations using numerical methods is challenging, according
to Vazquez (2013), which suggests two methods for solving the equations. By
discretizing the PDEs, one faces the same numerical issues as was observed
in Balogh and Krstić (2002), previously mentioned in Section 1.2, as the dis-
cretization method inserts discontinuities to the system, and the number of
discontinuities tends towards infinity when the grid cell size approaches zero.
One of the suggested methods is to modify the method derived in Smyshlyaev
and Krstić (2004) which was based on the Ablowitz–Kruskal–Ladik scheme
(Ablowitz, Kruskal, and Ladik (1979)). The key feature of the scheme was
the use of a discretization method averaging certain terms, instead of us-
ing their exact values. The scheme, however, had to be modified to suit
the geometry and boundary conditions of the kernel PDEs in Smyshlyaev
and Krstić (2004); an apparently non-trivial task for the unusual boundary
conditions of our kernel equations.

We will instead solve the equations using the other suggested method;
the Method of Characteristics as presented in Section 2.7.2. This method

75



7. APPLICATION TO THE HEAVE PROBLEM IN MPD

was in Vazquez et al. (2011b) used to prove existence and uniqueness for all
the kernel equations appearing in this thesis. A part of the proof showed
that the method is guaranteed to converge to the true, unique solution.

7.5.1 Statement and simplification

As ε1(x) and ε2(x) are constants, and equal, the overall complexity of the
kernel equations is somewhat reduced. Inserting for (7.9) into (3.6)-(3.7),
(3.10)-(3.11), (4.4)-(4.5) and defining

a := a0

ε
, b := b0

ε
(7.49)

we find the forward transform kernel equations

Kuu
x (x, ξ) + Kuu

ξ (x, ξ) = −be−γξKuv(x, ξ) (7.50a)
Kuv

x (x, ξ) − Kuv
ξ (x, ξ) = −aeγξKuu(x, ξ) (7.50b)

Kvu
x (x, ξ) − Kvu

ξ (x, ξ) = be−γξKvv(x, ξ) (7.50c)
Kvv

x (x, ξ) + Kvv
ξ (x, ξ) = aeγξKvu(x, ξ) (7.50d)

with boundary conditions

Kuu(x, 0) = 1
q

Kuv(x, 0) (7.51a)

Kuv(x, x) = 1
2aeγx (7.51b)

Kvu(x, x) = −1
2be−γx (7.51c)

Kvv(x, 0) = qKvu(x, 0), (7.51d)

the inverse transform kernel equations

Lαα
x (x, ξ) + Lαα

ξ (x, ξ) = aeγxLβα(x, ξ) (7.52a)
Lαβ

x (x, ξ) − Lαβ
ξ (x, ξ) = aeγxLββ(x, ξ) (7.52b)

Lβα
x (x, ξ) − Lβα

ξ (x, ξ) = −be−γxLαα(x, ξ) (7.52c)
Lαβ

x (x, ξ) + Lββ
ξ (x, ξ) = −be−γxLαβ(x, ξ) (7.52d)
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with boundary conditions

Lαα(x, 0) = 1
q

Lαβ(x, 0) (7.53a)

Lαβ(x, x) = 1
2aeγx (7.53b)

Lβα(x, x) = −1
2be−γx (7.53c)

Lββ(x, 0) = qLβα(x, 0) (7.53d)

and the observer kernel equations

P uu
x (x, ξ) + P uu

ξ (x, ξ) = aeγxP vu(x, ξ) (7.54a)
P uv

x (x, ξ) − P uv
ξ (x, ξ) = aeγxP vv(x, ξ) (7.54b)

P vu
x (x, ξ) − P vu

ξ (x, ξ) = −be−γxP uu(x, ξ) (7.54c)
P vv

x (x, ξ) + P uv
ξ (x, ξ) = −be−γxP uv(x, ξ) (7.54d)

with boundary conditions

P uu(0, ξ) = qP vu(0, ξ) (7.55a)

P uv(x, x) = 1
2aeγx (7.55b)

P vu(x, x) = −1
2be−γx (7.55c)

P vv(0, ξ) = 1
q

P uv(0, ξ). (7.55d)

We will by defining a series of matrices and exponential weightings, fur-
ther simplify the kernels. Define the following matrices of kernels

K(x, ξ) :=
[
Kuu(x, ξ) Kuv(x, ξ)
Kvu(x, ξ) Kvv(x, ξ)

]
(7.56)

L(x, ξ) :=
[
Lαα(x, ξ) Lαβ(x, ξ)
Lβα(x, ξ) Lββ(x, ξ)

]
(7.57)

P (x, ξ) :=
[
P uu(x, ξ) P uv(x, ξ)
P vu(x, ξ) P vv(x, ξ)

]
(7.58)

and matrices
Q0 :=

[
0 q
0 1

]
, C(x) :=

[
0 aeγx

be−γx 0

]
(7.59)
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then the kernel equations can compactly be stated
V Kx(x, ξ) + Kξ(x, ξ)V = K(x, ξ)C(ξ) (7.60)
V Lx(x, ξ) + Lξ(x, ξ)V = −C(x)L(x, ξ) (7.61)
V Px(x, ξ) + Pξ(x, ξ)V = −C(x)P (x, ξ) (7.62)

with boundary conditions
K(x, 0)V Q0 = 0, K(x, x)V − V K(x, x) = C(x) (7.63)

L(x, 0)V Q0 = 0, L(x, x)V − V L(x, x) = C(x) (7.64)
QT

0 V P (0, ξ) = 0, P (x, x)V − V P (x, x) = C(x) (7.65)
where the matrix V was given in (7.39). Additionally using the matrix H(x)
from (7.38), the exponential weighting matrix C(x) can be split into terms
in H(x) and a constant term C0 as follows

C(x) = H−1(x)C0H(x) (7.66)
for the constant matrix

C0 =
[
0 a
b 0

]
. (7.67)

Remember that V commute with H(x) and H−1(x), and that V V = V 2 = I.
Now consider the following exponential scaling

K(x, ξ) := H−1(x)BK(x, ξ)H(ξ) (7.68)
L(x, ξ) := H−1(x)BL(x, ξ)H(ξ) (7.69)
P (x, ξ) := H−1(x)BP (x, ξ)H(ξ) (7.70)

for some new matrices BK(x, ξ), BL(x, ξ) and BP (x, ξ). Inserting (7.68)–
(7.70) into the kernel equations (7.60)–(7.62) we end up with simpler versions
of the original equations. Showing the calculations here only for BK(x, ξ),
we find

V

[
d

dx
(H−1(x)BK(x, ξ)H(ξ))

]
+

[
d

dξ
(H−1(x)BK(x, ξ)H(ξ))

]
V

= H−1(x)BK(x, ξ)C0H(ξ). (7.71)
Application of the product rule yields

V

[
d

dx
H−1(x)

]
BK(x, ξ)H(ξ) + V H−1(x)BK

x (x, ξ)H(ξ)

+ H−1(x)BK
ξ (x, ξ)H(ξ)M

+ H−1(x)BK(x, ξ)
[

d

dξ
H(ξ)

]
V

= H−1(x)BK(x, ξ)C0H(ξ). (7.72)
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7.5 Solving the kernel equations

Using (7.40), we obtain

V
[
−γ

2MH−1(x)
]

BK(x, ξ)H(ξ) + V H−1(x)BK
x (x, ξ)H(ξ)

+ H−1(x)BK
ξ (x, ξ)H(ξ)V

+ H−1(x)BK(x, ξ)
[
γ

2H(ξ)V
]

V

= H−1(x)BK(x, ξ)C0H(ξ). (7.73)
Using V V = I and the commuting property of H(x) and H−1(x) with V , we
find

−γ

2H−1(x)BK(x, ξ)H(ξ) + H−1(x)V BK
x (x, ξ)H(ξ)

+ H−1(x)BK
ξ (x, ξ)V H(ξ)

+ γ

2H−1(x)BK(x, ξ)H(ξ)

= H−1(x)BK(x, ξ)C0H(ξ). (7.74)
Cancelling the two equal terms on the left hand side, premultiplication with
H(x) and postmultiplication with H−1(ξ), we are left with the simplified
kernel equations

V BK
x (x, ξ) + BK

ξ (x, ξ)V = BK(x, ξ)C0. (7.75)
From the boundary condition (7.63), we find

H−1(x)BK(x, 0)H(0)V Q0 = 0 (7.76)
H−1(x)BK(x, x)H(x)V − V H−1(x)BK(x, x)H(x) = H−1(x)C0H(x) (7.77)

Again using the commuting property of M , that H(0) = I and appropriate
pre- and postmultiplication with H(x) and H−1(x), respectively, we find the
simplified BCs

BK(x, 0)V Q0 = 0, BK(x, x)V − V BK(x, x) = C0. (7.78)
Through similar derivations for L(x, ξ) and P (x, ξ), we obtain

V BL
x (x, ξ) + BL

ξ (x, ξ)V = −C0B
L(x, ξ) (7.79)

V BP
x (x, ξ) + BP

ξ (x, ξ)V = −C0B
P (x, ξ) (7.80)

with boundary conditions
BL(x, 0)MQ0 = 0, BL(x, x)V − V BL(x, x) = C0 (7.81)
QT

0 MBP (0, ξ) = 0, BP (x, x)V − V BP (x, x) = C0. (7.82)
Note that the kernel equations have been reduced to PDEs with constant
coefficients.
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7.5.2 Transforming to integral equations

The next step of the Method of Characteristics is to define characteristic
curves along which the PDEs turn to ODEs. The ODEs are then integrated
to form integral equations. Let us initially focus on (7.75) with the corre-
sponding BCs (7.78). Let the elements of BK(x, ξ) be stated as

BK(x, ξ) :=
[

uK(x, ξ) vK(x, ξ)
wK(x, ξ) zK(x, ξ)

]
(7.83)

then (7.75) when written out becomes

uK
x (x, ξ) + uK

ξ (x, ξ) = −bvK(x, ξ) (7.84a)
vK

x (x, ξ) − vK
ξ (x, ξ) = −auK(x, ξ) (7.84b)

wK
x (x, ξ) − wK

ξ (x, ξ) = bzK(x, ξ) (7.84c)
zK

x (x, ξ) + zK
ξ (x, ξ) = awK(x, ξ) (7.84d)

with (7.78) becoming

uK(x, 0) = 1
q

vK(x, 0) (7.85a)

vK(x, x) = 1
2a (7.85b)

wK(x, x) = −1
2b (7.85c)

zK(x, 0) = qwK(x, 0). (7.85d)

Define the following characteristic lines for uK and zK

xuz(s) = xuz(x, ξ, s) := x − ξ + s (7.86a)
ξuz(s) = ξuz(x, ξ, s) := s (7.86b)

and for vK and wK

xvw(s) = xvw(x, ξ, s) := 1
2(x + ξ) + s (7.87a)

ξvw(s) = ξvw(x, ξ, s) := 1
2(x + ξ) − s. (7.87b)
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7.5 Solving the kernel equations

Differentiating (7.84) with respect to s along their corresponding character-
istic lines yields

d

ds
uK(xuz(s), ξuz(s)) = uK

x (xuz(s), ξuz(s)) + uK
ξ (xuz(s), ξuz(s)) (7.88a)

d

ds
vK(xvw(s), ξvw(s)) = vK

x (xvw(s), ξvw(s)) − vK
ξ (xvw(s), ξvw(s)) (7.88b)

d

ds
wK(xvw(s), ξvw(s)) = wK

x (xvw(s), ξvw(s)) − wK
ξ (xvw(s), ξvw(s)) (7.88c)

d

ds
zK(xuz(s), ξuz(s)) = zK

x (xuz(s), ξuz(s)) + zK
ξ (xuz(s), ξuz(s)). (7.88d)

We recognize the right hand sides and substitute for (7.84), yielding

d

ds
uK(xuz(s), ξuz(s)) = −bvK(xuz(s), ξuz(s)) (7.89a)

d

ds
vK(xvw(s), ξvw(s)) = −auK(xvw(s), ξvw(s)) (7.89b)

d

ds
wK(xvw(s), ξvw(s)) = bzK(xvw(s), ξvw(s)) (7.89c)

d

ds
zK(xuz(s), ξuz(s)) = awK(xuz(s), ξuz(s)). (7.89d)

Integrating (7.89a) and (7.89d) from s = 0 to s = ξ, and (7.89b) and (7.89c)
from s = 0 to s = 1

2(x − ξ), we obtain

uK(xuz(ξ), ξuz(ξ)) = uK(xuz(0), ξuz(0))

− b
∫ ξ

0
vK(xuz(s), ξuz(s))ds (7.90a)

vK(xvw(1
2(x − ξ)), ξvw(1

2(x − ξ))) = vK(xvw(0), ξvw(0))

− a
∫ 1

2 (x−ξ)

0
uK(xvw(s), ξvw(s))ds (7.90b)

wK(xvw(1
2(x − ξ)), ξvw(1

2(x − ξ))) = wK(xvw(0), ξvw(0))

+ b
∫ 1

2 (x−ξ)

0
zK(xvw(s), ξvw(s))ds (7.90c)

zK(xuz(ξ), ξuz(ξ)) = zK(xuz(0), ξuz(0))

+ a
∫ ξ

0
wK(xuz(s), ξuz(s))ds (7.90d)
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which, when inserting for the characteristic lines (7.86) and (7.87) simplifies
to

uK(x, ξ) = uK(x − ξ, 0) − b
∫ ξ

0
vK(x − ξ + s, s)ds (7.91a)

vK(x, ξ) = vK(1
2(x + ξ), 1

2(x + ξ))

− a
∫ 1

2 (x−ξ)

0
uK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.91b)

wK(x, ξ) = wK(1
2(x + ξ), 1

2(x + ξ))

+ b
∫ 1

2 (x−ξ)

0
zK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.91c)

zK(x, ξ) = zK(x − ξ, 0) + a
∫ ξ

0
wK(x − ξ + s, s)ds. (7.91d)

Now inserting for the boundary conditions (7.85), we substitute the leftmost
terms on the right side of equations (7.91b)–(7.91c) with constants, to obtain

uK(x, ξ) = 1
q

vK(x − ξ, 0) − b
∫ ξ

0
vK(x − ξ + s, s)ds (7.92a)

vK(x, ξ) = v0 − a
∫ 1

2 (x−ξ)

0
uK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.92b)

wK(x, ξ) = w0 + b
∫ 1

2 (x−ξ)

0
zK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.92c)

zK(x, ξ) = qwK(x − ξ, 0) + a
∫ ξ

0
wK(x − ξ + s, s)ds. (7.92d)

Lastly, using (7.92b) and (7.92c) respectively, to insert for vK(x − ξ, 0) and
wK(x − ξ, 0) in (7.92a) and (7.92d), we land on

uK(x, ξ) = 1
q

v0 − a

q

∫ 1
2 (x−ξ)

0
uK(1

2(x − ξ) + s,
1
2(x − ξ) − s)ds

− b
∫ ξ

0
vK(x − ξ + s, s)ds (7.93a)

vK(x, ξ) = v0 − a
∫ 1

2 (x−ξ)

0
uK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.93b)

wK(x, ξ) = w0 + b
∫ 1

2 (x−ξ)

0
zK(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.93c)

zK(x, ξ) = qw0 + qb
∫ 1

2 (x−ξ)

0
zK(1

2(x − ξ) + s,
1
2(x − ξ) − s)ds

+ a
∫ ξ

0
wK(x − ξ + s, s)ds (7.93d)
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which is a set of four inhomogeneous Volterra equations of the second kind
(see Appendix B.1). Several methods for solving these are described in the
literature, as previously mentioned in Section 2.7.2.

A similar derivation for (7.79) and (7.81), using the same characteristic
lines (7.86)–(7.87), and (7.80) and (7.82) using the characteristic lines

xuz = s (7.94)
ξuz = ξ − x + s (7.95)

xvw = 1
2(x + ξ) + s (7.96)

ξvw = 1
2(x + ξ) − s. (7.97)

with

BL(x, ξ) :=
[

uL(x, ξ) vL(x, ξ)
wL(x, ξ) zL(x, ξ)

]
(7.98)

and

BP (x, ξ) :=
[

uP (x, ξ) vP (x, ξ)
wP (x, ξ) zP (x, ξ)

]
(7.99)

yield the Volterra equations

uL(x, ξ) = 1
q

v0 + a

q

∫ 1
2 (x−ξ)

0
zL(1

2(x − ξ) + s,
1
2(x − ξ) − s)ds

+ a
∫ ξ

0
wL(x − ξ + s, s)ds (7.100a)

vL(x, ξ) = v0 + a
∫ 1

2 (x−ξ)

0
zL(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.100b)

wL(x, ξ) = w0 − b
∫ 1

2 (x−ξ)

0
uL(1

2(x + ξ) + s,
1
2(x + ξ) − s)ds (7.100c)

zL(x, ξ) = qw0 − qb
∫ 1

2 (x−ξ)

0
uL(1

2(x − ξ) + s,
1
2(x − ξ) − s)ds

− b
∫ ξ

0
vL(x − ξ + s, s)ds (7.100d)
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for the inverse transform kernels, and

uP (x, ξ) = qw0 + qb
∫ 1

2 (ξ−x)

0
uP (1

2(ξ − x) − s,
1
2(ξ − x) + s) ds

+ a
∫ x

0
wP (s, ξ − x + s) ds (7.101a)

vP (x, ξ) = v0 − a
∫ 1

2 (ξ−x)

0
zP (1

2(x + ξ) − s,
1
2(x + ξ) + s) ds (7.101b)

wP (x, ξ) = w0 + b
∫ 1

2 (ξ−x)

0
uP (1

2(x + ξ) − s,
1
2(x + ξ) + s) ds (7.101c)

zP (x, ξ) = 1
q

v0 − 1
q

a
∫ 1

2 (ξ−x)

0
zP (1

2(ξ − x) − s,
1
2(ξ − x) + s) ds

− b
∫ x

0
vP (s, ξ − x + s) ds (7.101d)

for the observer kernels.

7.5.3 Numerical computations
We will solve the equations (7.93), (7.100) and (7.101) numerically on a
computer using the method of successive approximations, as described in
Section 2.7.2. In order to do that, we will have to discretize the domain T as
given in (3.8) into a triangular equivalent. To ease the implementation on a
computer, we construct a square equivalent of size N × N , and use only the
lower triangular part, constituting of 1

2N × (N + 1) discrete sample points
with

Δ = 1
N − 1 (7.102)

as the cell size. To simplify the notation in subsequent derivations, we intro-
duce the notation

xi := Δi (7.103a)
ξj := Δj (7.103b)

and

uK
i,j := uK(xi, ξj) (7.104a)

vK
i,j := vK(xi, ξj) (7.104b)

wK
i,j := wK(xi, ξj) (7.104c)

zK
i,j := zK(xi, ξj). (7.104d)
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7.5 Solving the kernel equations

Using (7.103) and (7.104) on (7.93), we obtain

uK
i,j = 1

q
v0 − a

q

∫ 1
2 Δ(i−j)

0
uK(1

2Δ(i − j) + s,
1
2Δ(i − j) − s)ds

− b
∫ Δj

0
vK(Δ(i − j) + s, s)ds (7.105a)

vK
i,j = v0 − a

∫ 1
2 Δ(i−j)

0
uK(1

2Δ(i + j) + s,
1
2Δ(i + j) − s)ds (7.105b)

wK
i,j = w0 + b

∫ 1
2 Δ(i−j)

0
zK(1

2Δ(i + j) + s,
1
2Δ(i + j) − s)ds (7.105c)

zK
i,j = qw0 + qb

∫ 1
2 Δ(i−j)

0
zK(1

2Δ(i − j) + s,
1
2Δ(i − j) − s)ds

+ a
∫ Δj

0
wK(Δ(i − j) + s, s)ds (7.105d)

Now substitute s → 1
2s in the leftmost integrals in (7.105a) and (7.105d), as

well as the integrals in (7.105b) and (7.105c), followed by trapezoidal rule
(see Appendix B.2) with

sk = Δk, (7.106)
we find

uK
i,j = 1

q
v0 − 1

q

a

2Δ
i−j∑
k=0

σ1(i, j, k)uK(1
2Δ(i − j + k), 1

2Δ(i − j − k))

− bΔ
j∑

k=0
σ2(j, k)vK(Δ(i − j + k), Δk) (7.107a)

vK
i,j = v0 − a

2Δ
i−j∑
k=0

σ1(i, j, k)uK(1
2Δ(i + j + k), 1

2Δ(i + j − k)) (7.107b)

wK
i,j = w0 + b

2Δ
i−j∑
k=0

σ1(i, j, k)zK(1
2Δ(i + j + k), 1

2Δ(i + j − k)) (7.107c)

zK
i,j = qw0 + q

b

2Δ
i−j∑
k=0

σ1(i, j, k)zK(1
2Δ(i − j + k), 1

2Δ(i − j − k))

+ aΔ
j∑

k=0
σ2(j, k)wK(Δ(i − j + k), Δk) (7.107d)

where

σ1(i, j, k) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if i = j
1
2 if i �= j and (k = 0 or k = i − j)
1 otherwise

(7.108)
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and

σ2(j, k) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if j = 0
1
2 if j �= 0 and (k = 0 or k = j)
1 otherwise

(7.109)

have been defined. Equations (7.107) are straight forward to implement on
a computer, with values at fractional indices computed using interpolation
on the grid cells. Similar derivations for (7.100) and (7.101) yield

uL
i,j = 1

q
w0 + a

q
Δ

i−j∑
k=0

σ1(i, j, k)z(Δ
2 (i − j + k), Δ

2 (i − j − k))

+ aΔ
j∑

k=0
σ2(j, k)v(Δ(k + i − j), Δk) (7.110a)

vL
i,j = v0 + aΔ

i−j∑
k=0

σ1(i, j, k)z(Δ
2 (i + j + k), Δ

2 (i + j − k)) (7.110b)

wL
i,j = w0 + bΔ

i−j∑
k=0

σ1(i, j, k)u(Δ
2 (i + j + k), Δ

2 (i + j − k)) (7.110c)

zL
i,j = qv0 + qbΔ

i−j∑
k=0

σ2(j, k)u(Δ
2 (i − j + k), Δ

2 (i − j − k))

+ bΔ
j∑

k=0
σ1(i, j, k)w(Δ(k + i − j), Δk) (7.110d)

and

uP
i,j = qw0 + qbΔ

j−i∑
k=0

σ1(j, i, k)z(Δ
2 (j − i − k), Δ

2 (j − i + k))

+ aΔ
i∑

k=0
σ2(i, k)v(Δ(k + j − i), Δk) (7.111a)

vP
i,j = v0 − aΔ

j−i∑
k=0

σ1(j, i, k)z(Δ
2 (i + j − k), Δ

2 (i + j + k)) (7.111b)

wP
i,j = w0 + bΔ

i−j∑
k=0

σ1(j, i, k)u(Δ
2 (i + j − k), Δ

2 (i + j + k)) (7.111c)

zP
i,j = 1

q
v0 − 1

q
aΔ

j−i∑
k=0

σ1(j, i, k)u(Δ
2 (j − i − k), Δ

2 (j − i + k))

+ bΔ
i∑

k=0
σ2(i, k)w(Δ(k + j − i), Δk), (7.111d)

respectively.
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7.5 Solving the kernel equations

7.5.4 Code optimization
With each of the elements in (7.107), (7.110) and (7.111) consisting of 1

2N ×
(N + 1) elements, each involving a sum with a number of elements growing
linearly with N , the number of calculations are O(N3) for each iteration1.
The run time can be drastically reduced by a few steps, as will be showed
next.

As the leftmost sum in (7.107a), the rightmost sum in (7.107a) and the
sum in (7.107b) are equivalent in structure with the leftmost sum in (7.107d),
the rightmost sum in (7.107d) and the sum in (7.107c), respectively, we will
show the derivations for the sums in (7.107a)–(7.107b) only. The main ideas
easily port to the other sums, as well as the sums in (7.110) and (7.111). Let

Iu1(i, j) :=
i−j∑
k=0

σ1(i, j, k)uK(1
2Δ(i − j + k), 1

2Δ(i − j − k)) (7.112)

Iu2(i, j) :=
j∑

k=0
σ2(j, k)vK(Δ(i − j + k), Δk) (7.113)

and

Iv1(i, j) := a

2Δ
i−j∑
k=0

σ1(i, j, k)uK(1
2Δ(i + j + k), 1

2Δ(i + j − k)) (7.114)

denote the different sums. It is noted that for constant difference i − j =
m ≥ 0, we have for

Iu1(i, i − m) =
m∑

k=0
σ1(i, i − m, k)uK(1

2Δ(m + k), 1
2Δ(m − k)) (7.115)

hence, along the ”lines” where i − j = m, the terms in the sum overlap, and
thus

Iu1(i + 1, i + 1 − m) =
m∑

k=0
σ1(i + 1, i + 1 − m, k)uK(1

2Δ(m + k), 1
2Δ(m − k))

=
m∑

k=0
σ1(i, i − m, k)uK(1

2Δ(m + k), 1
2Δ(m − k))

= Iu1(i, i − m) (7.116)

where the second equality sign follows from the definition of σ1(i, j, k) in
(7.108). If we form a matrix with elements Iu1(i, j), this matrix is the upper

1For details concerning the big O notation, consult e.g. Knuth (1976)
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7. APPLICATION TO THE HEAVE PROBLEM IN MPD

triangular part of a so-called Toeplitz matrix (Bini (1995)) and the total
matrix consists of only N distinct entries. The full matrix can therefore be
computed in only O(N2) time.

Similarly, along the lines i − j = m, we find for (7.113)

Iu2(m − j, j) =
j∑

k=0
σ2(j, k)vK(Δ(m + k), Δk) (7.117)

and

Iu2(m − j + 1, j + 1) =
j+1∑
k=0

σ2(j + 1, k)vK(Δ(m + k), Δk) (7.118)

as σ2(j, k) equals 1 for all cases where j �= 0, k �= 0 and k �= j, we find

Iu2(m − j + 1, j + 1) = Iv1(m − j, j) + 1
2vK(Δ(m + j), Δj)

+ 1
2vK(Δ(m + j + 1), Δ(j + 1)) (7.119)

Utilizing this overlapping structure, the computation time is reduced to O(1)
for each of the elements Iv1(i, j). A similar derivation for (7.114) along the
lines i + j = m yields

Iv1(i + 1, i + 1 − m) = Iv1(i, i − m) + 1
2uK(1

2Δ(m + k), 1
2Δ(m − k))

+ 1
2uK(1

2Δ(m + k + 1), 1
2Δ(m − k + 1)), (7.120)

and the computational time is reduced to only O(1) for each of the elements
Iv1(i, j) as well.

Using the proposed numerical optimization techniques, the run time can
be reduced from O(N3) at every iteration to only O(N2) for all kernel equa-
tions.
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Chapter 8

Simulations

8.1 Introduction
The MPD system (7.1) was implemented in MATLAB. The numerical values
used for the physical parameters are given in Table 8.1.

Parameter Description Value Unit
β Bulk modulus 7317 · 105 Pa

A1 Annulus cross sectional area 0.024 m2

ρ Mud density 1250 kg/m3

F1 Friction factor 10 kg/m3

g Gravity constant 9.81 m/s2

A2 Drill bit cross sectional area 0.02 m2

l Well length 2500 m
ω Angular velocity 2π

16
Z0 The disturbance’s initial value

[
10 0

]T
m

Table 8.1: Well and drill system parameters

The length of the well is 2500 meters, with the disturbance term mod-
elled as a simple harmonic with period 16 seconds (≈ 0.39 rad / sec). This
is a typical dominating swell wave period in the first peak of the Torsethau-
gen wave spectrum (Fossen (2011, Figure 8.11)), which is an empirically
based wave spectrum developed from curve fitting experimental data from
the North Sea. The amplitude of oscillation is chosen quite large to better see
the attenuation properties of the controller. Additional parameter values are
the same as was used for the simulations in Aamo (2013). The kernel equa-
tions were solved numerically using successive approximations with (7.105),
(7.110) and (7.111), with the optimization techniques presented in Section
7.5.4. The resulting elements of Lα(x̄, ξ) and Lβ(x̄, ξ) in (3.52a)–(3.52b) are
all upper bounded in magnitude by 1.1 · 10−4, and it is therefore reasonable
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8. SIMULATIONS

to assume that the terms added by the integrals in (3.74) are small. As addi-
tionally |q/r| < 1, and A has only imaginary eigenvalues, the assumptions of
Theorem 3.3 hold, and the simplified controller can be implemented as well.

The control law in Theorem 7.1 was tested, with U(t) generated from the
original controllers of Theorem 3.1–3.3 both when using the system states
directly, and when using the observer generated states. Rational transfer
function approximations found from applying the algorithm in Section 6.3
on the transfer functions of Theorems 5.1–5.3 were also tested out. All con-
trollers were tested on the system through two different cases. The cases
only differ in the depth of attenuation and the pressure set point. Case one
will try to attenuate at a depth of 2000 meters, and case two at 1000 meters,
with the pressure set point psp set to 450 bar and 300 bar, respectively. In
both cases, the system is initially started in equilibrium and will be driven in
open-loop by the disturbance term. The controller and observer, the latter
only if included, will be turned on after t = 40 seconds. The observer (4.1)
is then initiated with all zeroes, and will have to rely on the injection terms
to converge to its true values.

By using the optimization technique presented in Section 6.5, the number
of free parameter in the model reduction algorithm of Section 6.3 is reduced
from two to one. It still leaves one free parameter that can be tuned. This
free parameters was decided by choosing a value for the σ defined in (6.6),
and determine α and γ using the optimization technique from Section 6.5.
A value of σ = 0.000 was first tested out, with σ increased to 0.025 and
0.050 if the first value of σ did not yield satisfactory results. The fourth,
sixth and tenth order approximations for the different values of σ can be
found in Appendix C, with the one chosen for later simulations shown here.
This choice is based on both the level of conformity with the original transfer
function and the order of the transfer function, with emphasis on having a
low order approximation.

To ease the implementation was, system (3.1) was the one actually imple-
mented, with p(z, t) and q(z, t) calculated from (3.1a)–(3.1b) by inverting the
transform (7.5). In all simulation cases, the system of PDEs was simulated
using the Method of Lines, as described in Section 2.7.4.3, with the spatial
derivatives in x approximated using a single step finite difference scheme as
presented in section 2.7.4.2, and t left untouched. The explicit Runge-Kutta
solver ode23 was used on the resulting IVP. A total of N = 400 discretization
points were used for each system state u(x, t) and v(x, t), and their estimates.
The time delayed V (t) needed for the recursive controller is achieved using a
transmission line as in Krstić and Smyshlyaev (2008) (and as illustrated in
the example of Section 2.7.3), and implemented using the Method of Lines.
A total of Ntr = 400 grid points were used. The transmission line is ini-
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tialized and fed with some random signal (actually a sine wave with period
2π and amplitude 0.1) when not in use. The purpose of this is to ensure
that the transmission line contains some erroneous signal when the recursive
controller is turned on, and to illustrate that the initial conditions have to
be driven out of the system before the recursive controller applies to correct
signal. The simulation horizon was t = 200 for all simulation cases, while
the observer poles were placed at −0.15 ± 0.02j using the MATLAB command
place(). These are the same poles as were used in Aamo (2013).

We start each case by finding a transfer function approximation for each
one of the controllers. The system is then simulated with all the controllers,
and the results are displayed for comparison. The following figures are used
to display the simulation results:

1. The first figure shows the pressure at the depth of attenuation, and
a close up zoom of it from when the controller is turned of with the
purpose of comparing the state feedback implementation with the full
output feedback implementation. At the bottom is an additional plot
comparing the model order reduced controller with the full output feed-
back implementation.

2. The second figure shows the applied controller signal U(t) for all con-
trollers used.

3. The third figure shows the pressure in the well as a function of time for
selected depths. The depths are chosen distributed in the well with a
uniform spacing of 500 meters. Two plots are shown, one for the state
feedback case, and one for the output feedback case.

4. The fourth figure shows at the top a same type of plot as found in
the third figure, but this time for the reduced order controller. At the
bottom are two plots shown, each containing four plots of the pressure
profile in the well for the state feedback case, sampled with a spacing
of 1 second. This creates an stop-motion representation of the pressure
distribution, with each subplot animating four seconds of simulation
with the oldest sample in the lightest colour and newer samples plotted
in a gradually darker colours. The purpose of these latter two plots is
to capture the transients that occur when the controller is turned on
after t = 40 seconds.

5. The fifth figure is only shown for the pure state feedback implemen-
tations. It shows a 3D representation of the pressure in the well,
as well as the observer state errors ũ(x, t) = u(x, t) − û(x, t) and
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8. SIMULATIONS

ṽ(x, t) = v(x, t) − v̂(x, t). At the bottom is the disturbance term with
the observer’s estimate shown. The purpose is to show the convergence
properties of the observer and the overall behaviour of the well when
the controller is turned on.

8.2 Case 1: Attenuation at a depth of 2000
metres

The depth of attenuation was for all the simulations shown in this section
set to 2000 m. This corresponds to x̄ = 1

5 .

8.2.1 Transfer function approximations
8.2.1.1 Pure state feedback controller

The transfer function of Theorem 5.1 is plotted in Figure 8.1 alongside the
sixth order rational transfer function approximation found using the method
described in Sections 6.3 and 6.4 with σ = 0.025. The corresponding α
and γ were found with the method described in Section 6.5. Additional
approximations using σ = 0.000, σ = 0.0250 and σ = 0.050 of order 4, 6
and 10 can be found in Appendix C.1.1. Very little performance gain was
achieved from choosing a higher order approximation.

From Figure 8.1, it is seen that the approximation fails to capture most
of the characteristics for frequencies above 0.8 rad / sec, but that the ap-
proximation is reasonably good for frequencies below 0.8 rad / sec.

The original transfer function has unusually strange resonance peaks near
2 rad / sec and 7 rad / sec, and additionally it has an unexpected phase plot
with a phase increasing with frequency. One could expect a falling phase,
as the system contain a transmission line which would act as time delay.
The phase plot was generated using the MATLAB function phase() on the
sampled frequency response, and the odd phase plot may be caused by this
function. Another source of the strange phase plot could be the MATLAB
function expm(), used to evaluate the matrix exponential needed in (7.36),
which is known to be numerically unstable when the matrix contains elements
which have large spans in magnitude (Moler (2012)).

8.2.1.2 Recursive controller

The transfer function of Theorem 5.2 and its sixth order approximation with
σ = 0.025 are plotted in Figure 8.2. The approximation was found using the
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Figure 8.1: Transfer function approximation for Case 1: Pure state feedback
controller.
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same method as in the previous section. Additional approximations using
σ = 0.00, σ = 0.025 and σ = 0.05 of order 4, 6 and 10 can be found in
Appendix C.1.2. The similarity between the transfer functions of Theorem
5.1 and Theorem 5.2, as shown in figures 8.1 and 8.2, respectively, is remark-
able. Except for a slightly larger peak near ω = 2 rad / sec, the transfer
functions are nearly indistinguishable, which should not be surprising as the
controllers of Theorems 3.1 and 3.2 are in fact two different representations
of the same control law. Naturally, the approximation in Figure 8.2 also fails
to capture most of the characteristics for frequencies above 0.8 rad / sec, but
the approximation is reasonably good for frequencies below 0.8 rad / sec.

From further inspection, it is evident that the source of strange resonance
peaks and unusual phase plots is the term grec(x̄, s) in (5.46). By neglecting
the terms added by the integrals (which are anyway small in magnitude), we
find an approximation of grec(x̄, s) in (5.46) as

grec(x̄, s) ≈ 1
r − qe−sdrec(x̄) . (8.1)

As q is negative and close to −r = −1, we will experience a considerable
resonance peak when e−sdrec(x̄) = −1. These happen at frequencies

ω = π(1 + 2k)
drec(x̄) (8.2)

for k ∈ �
+. Inserting for the numerical values of Table 8.1, the resonance

peaks are found at
ω = (2.40 + 4.81k) rad / sec. (8.3)

The peaks for k = 0 and k = 1 are clearly seen in Figure 8.2. These
peaks, and the infinitely many more peaks at frequencies given by (8.3)
for 2 ≤ k ∈ �

+, probably makes the transfer function matching difficult (or
even impossible) and the method therefore fails to achieve a good approxima-
tion. However, these peaks are situated above the expected bandwidth of the
controller (which should be around frequency of the disturbance), and one
could probably achieve far better approximations by weighting the different
frequencies prior to applying the model reduction algorithm, for instance by
taking the actuator dynamics into account, or simply add a low pass filter.

8.2.1.3 Simplified controller

Figure 8.3 shows the sampled frequency response for transfer function in The-
orem 5.3, alongside the sixth order transfer function approximation achieved
from using σ = 0.000.

94



8.2 Case 1: Attenuation at a depth of 2000 metres

10
−2

10
−1

10
0

10
1

−40

−30

−20

−10

0

10
Bode plot

Frequency [rad / sec]

M
ag

ni
tu

de
 [d

B
]

 

 

10
−2

10
−1

10
0

10
1

0

100

200

300

400

500

600

Frequency [rad / sec]

P
ha

se
 [d

eg
]

 

 

−8 −6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

Real Part

Im
ag

in
ar

y 
P

ar
t

Original Approximation

Original Approximation

Figure 8.2: Transfer function approximation for Case 1: Recursive controller.
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Figure 8.3: Transfer function approximation for Case 1: Simplified con-
troller.
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As observed in Figure 8.3, the sixth order approximation does fit the
original transfer function extremely well for frequencies below 1 rad / sec.
An additional fourth and a tenth order approximation is shown in Figure C.7
on page 164. The forth order approximation is underparametrized, while the
tenth order approximation matches well for frequencies up to 2 rad / sec.
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8.2.2 Simulations

8.2.2.1 Pure state feedback controller

The results from simulating the system with the control law of Theorem 3.1
are here given. Also given are the results from applying the same control
law, but with the controller using the states estimated using (4.1), and when
using the rational approximation found in Section 8.2.1.1. The simulation
results can be found in figures 8.4–8.8 on pages 100–104.

From the 3D visualization in Figure 8.8a it can clearly be observed that
the whole well is affected when the controller is turned on after t = 40 sec-
onds. From figures 8.4a and 8.4b, it is seen that the amplitude of oscillations
is reduced from approximately 75 bar to less than 0.15 bar, when using both
the state feedback and the output feedback implementations. This consti-
tutes to an attenuation factor of over 500. The output feedback implementa-
tion is somewhat slower, and an exponential decay is clearly observed from
Figure 8.4a as expected from the properties of the observer (4.1), also illus-
trated in Figure 8.8. The estimated observer states converge to their real
values after a few seconds. A similar result was observed from simulations
with the same observer in Aamo (2013).

Several small, fast oscillating components can be observed from figures
8.6a and 8.6b when the controller triggers after t = 40 seconds. They can also
be noted from the applied controller signals in Figure 8.5. The oscillations
are somewhat damped for the output feedback case shown in Figure 8.6b.
This can be expected, as all the signals are passed through the observer,
somewhat damping them on their way. The oscillations gradually decay,
and are practically zero in amplitude after about 120 seconds of active pres-
sure attenuation for the state feedback case, and 60 seconds for the output
feedback case. These oscillations are probably due to the initial conditions
present in the system when the controller is turned on at t = 40, and may
also be amplified due to the discretization method used.

From the left plot of Figure 8.7b, one can see the different pressure gra-
dients travels down the well. The pressure at z = z̄ reaches its setpoint as
soon as the first pressure gradient reaches the depth, something that takes
about 2.5 seconds from controller activation. By inserting numerical values
of Table 8.1 into the expression (7.30), we find the predicted time constraint
to be 2.61 seconds, which is in accordance with the observed regulation time.

The reduced order controller performs well, as seen from Figure 8.4c,
comparing the pressure at a depth of 2000 metres from using the reduced
order controller with the full, output feedback controller. The amplitude of
oscillations is about 2 bar, which is within the standard MPD limits of 2.5
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bar. When considering that the number of ODEs are reduced from 800 in
the full output feedback case, to only 6, this is a satisfactory performance.
The pressure oscillations in the well that were observed for all the previous
simulation cases are almost not present when using the reduced order con-
troller. A few oscillations with very small amplitudes can be observed for
the first 20 seconds of controller action in Figure 8.7a, but the oscillations
are considerably damped out compared with those observed in figures 8.6a
and 8.6b.
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(c) Full vs reduced order output feedback.

Figure 8.4: Case 1: P.s.f. controller: Pressure at depth 2000 metres.

100



8.2 Case 1: Attenuation at a depth of 2000 metres

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.1

0

0.1

0.2

t [sec]

U
(t

) 
[m

3 /s
]

(a) State feedback.

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.1

0

0.1

0.2

t [sec]

U
(t

) 
[m

3 /s
]

(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.5: Case 1: P.s.f. controller: Applied controller signals.
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(a) State feedback.
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(b) Full order output feedback.

Figure 8.6: Case 1: P.s.f. controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.7: Case 1: P.s.f. controller: Pressure at selected depths and pressure
profiles.
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(a) Pressure distribution when using state feedback.

(b) System state estimation error.
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(c) Disturbance with estimated disturbance.

Figure 8.8: Case 1: P.s.f. controller: Disturbance and observer states, pres-
sure distribution.

104



8.2 Case 1: Attenuation at a depth of 2000 metres

8.2.2.2 Recursive controller

The control law Theorem 3.2 was here implemented along with the observer
(4.1) and the rational approximation found in Section 8.2.1.2. The simulation
results can be found in figures 8.9–8.12 on pages 106–109.

The state feedback implementation of the recursive controller exhibits
somewhat the same level of attenuation at depth 2000 as the pure state feed-
back controller. This can be seen from comparing figures 8.9a and 8.9b with
their equivalents in figures 8.4a and 8.4b. The amplitude of oscillations is
reduced to approximately 0.12 bar, actually slightly better than the pure
state feedback controller in the previous section. However, the oscillations
for the first 60 seconds after the controller has been turned on are much
more excessive. The oscillations are probably amplified from the use of a
transmission line and the initial conditions therein. The pure state feedback
implementation in the previous section avoided this robustness issue by us-
ing the actual system states. The output feedback implementation shows
the same tendency, with larger fluctuations around the set point for the first
seconds of controller action. This is also observed from the increased ampli-
tude of the pressure oscillations in the rest of the well, as can be seen from
both Figure 8.11a and Figure 8.11b when comparing with the equivalents in
Figure 8.6.

Figure 8.12b shows that the pressure at depth 2000 does not meet its set
point as the first applied pressure gradient reaches the depth. The gradient
has to be propagated back up again via the well’s bottom before the set point
is reached. This is precisely as predicted from theory, as the initial conditions
in the transmission line have to be driven out of the system before the correct
output is given. The total time seems to be around 4 seconds, which is in
accordance with the value of 3.92 seconds found by inserting numerical values
of Table 8.1 into (7.31).

As seen from Figure 8.9, does the reduced order controller perform, not
surprisingly, much like the reduced order controller from the previous section.
A slightly better attenuation level is achieved, with an amplitude of oscil-
lation at 1 bar, quite acceptable as the number of ODEs are reduced from
1200 to 6. The slightly better performance than in the previous sections is
probably a mere coincidence.
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(c) Full vs reduced order output feedback.

Figure 8.9: Case 1: Recursive controller: Pressure at depth 2000 metres.
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(a) State feedback.

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.1

0

0.1

0.2

t [sec]

U
(t

) 
[m

3 /s
]

(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.10: Case 1: Recursive controller: Applied controller signals.
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(a) State feedback.
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(b) Full order output feedback.

Figure 8.11: Case 1: Recursive controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.12: Case 1: Recursive controller: Pressure at selected depths and
pressure profiles.
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8.2.2.3 Simplified controller

The simplified controller of Theorem 3.3 was here implemented both when us-
ing the system states directly, and when using the observer generated states.
Also implemented, was the rational approximation found in Section 8.3.1.3.
The results are found in figures 8.13–8.16 on pages 111–114.

When comparing the pressure at depth 2000 metres shown in Figure 8.13b
with those of figures 8.4b and 8.9b, it is observed that the attenuation factor
is just as good as for the two previous simulations. This is not precisely
as predicted from theory, since one should expect a deterioration, following
the assumption of neglecting the integral terms in (3.74). However, as these
terms turned out to be very small, the uncertainties due to e.g. discretization
are probably a much larger source of error. The deterioration following the
simplifications made during the derivation should become more apparent if
the terms (3.52a)–(3.52b) had considerably larger values. This could for
instance be if the friction factor in the system (7.1) was larger. (This is
verified using a constructed simulation case in Appendix D.1).

Not easily observed from Figure 8.16b, but as predicted from theory, the
first applied pressure gradient needs to be propagated via the well’s bottom
before the control objective is achieved. The control time seems to be the
same as for the recursive controller in the previous section, as predicted.
The controller in overall is much more predictive and less aggressive than
the those in the two previous sections. This is particularly observed from the
smooth control signals of figures 8.14a and 8.14b as opposed to the signals of
figures 8.5a–8.5b and 8.10a–8.10b, as well as the lack of oscillations in figures
8.15a and 8.15b.

As expected from the extremely good match for the reduced order trans-
fer function shown in Figure 8.3, the attenuation properties of the reduced
order controller are extremely good, easily observed from Figure 8.13c. The
amplitude of pressure fluctuations is only about 0.25 bar. The overall be-
haviour looks very much like the full output feedback controller, as one also
can observe from the indistinguishable results of figures 8.15b and 8.16a.
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(b) State feedback vs full output feedback.
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(c) Full vs reduced order output feedback.

Figure 8.13: Case 1: Simplified controller: Pressure at depth 2000 metres.
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(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.14: Case 1: Simplified controller: Applied controller signals.
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(a) State feedback.
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(b) Full order output feedback.

Figure 8.15: Case 1: Simplified controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.16: Case 1: Simplified controller: Pressure at selected depths and
pressure profiles.
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8.3 Case 2: Attenuation at a depth of 1000 metres

8.3 Case 2: Attenuation at a depth of 1000
metres

The depth of attenuation was this time set to 1000 m, which corresponds to
x̄ = 3

5 .

8.3.1 Transfer function approximations
8.3.1.1 Pure state feedback controller

The transfer function of Theorem 5.1 for attenuation at depth 1000 metres is
plotted in Figure 8.1 alongside the sixth order rational transfer function ap-
proximation, found using σ = 0.025. By using σ = 0.000, the approximation
is not at all nearby the original transfer function, as can be seen from the
fourth, sixth and tenth order approximations in Figure C.4 on page 161. The
original transfer function shown in Figure 8.17 additionally has the strange
resonance spikes as was previously observed in Section 8.2.1.2. The peaks
are placed differently this time, as the value of x̄ has changed. The phase
plot once again has an increasing phase, and it seems as the plot has several
discontinuities throughout.

The sixth and tenth order approximations shown in figures C.10b and
C.10c match the original transfer function extremely well for frequencies be-
low 0.7 rad / sec. However, the approximations have at least one pair of
complex conjugated unstable poles. This is also present for the approxi-
mations achieved for σ = 0.050. Hence, the controller approximations are
unstable and cannot be implemented as is. The unstable poles lie just within
the right half plane, and by simply forcing them to the imaginary axis, we
can artificially construct a (marginally) stable controller without too much
distortion of the frequency response. It is this transfer function that is shown
in Figure 8.18. It is observed that the differences compared to the original,
unstable version are very small except for a slightly ”sharper” phase change
near ω = 0.3 rad / sec.

Apart from the possible numerical issues mentioned in Section 8.2.1.1
that may cause these problems, the emergence of a complex conjugated pair
of poles strongly indicates that the overall closed loop system is unstable
for a certain set of parameters. In fact, no proofs of boundedness for the
closed loop system has been given. In Aamo (2013) proof of boundedness
for the closed loop system with observer was given for the attenuation point
x̄ = 0, but nothing was stated about the behaviour of the rest of the system.
Theoretically, the system may lead to oscillations with increasing amplitudes
in the rest of the system even when the controller objective (7.2) is satisfied
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Figure 8.17: Transfer function approximation for Case 2: Pure state feedback
controller.

116



8.3 Case 2: Attenuation at a depth of 1000 metres

at x̄ = 0.

8.3.1.2 Recursive controller

Figure 8.18 shows the sampled frequency response for transfer function of
the recursive controller of Theorem 5.2 and the sixth order transfer func-
tion approximation achieved from using σ = 0.025. Once again the transfer
functions of Theorems 5.1 and Theorem 5.2 are extremely similar, as can be
easily observed from figures 8.18 and 8.17. Also this time, a complex con-
jugated pair of unstable poles emerged. They were forced to the imaginary
axis, as in the previous section. This has been done in the approximation
shown in Figure 8.18. The original transfer functions can be found in figures
C.11–C.13. They closely resemble the approximations using the pure state
feedback controller, found in Appendix C.2.1.

8.3.1.3 Simplified controller

Figure 8.19 shows the sampled frequency response for the transfer function
in Theorem 5.3 along with the sixth order transfer function approximation
achieved from using σ = 0.000. As observed from Figure 8.3, the approx-
imation of the simplified controller matches the original transfer function
extremely well for frequencies below a certain threshold; ω = 0.8 rad / sec
in this case. A tenth order approximation matches well up to 1 rad / sec,
as can be seen from Figure C.14c in Appendix C.2.3, while the fourth order
approximation match up to 0.4 rad / sec.
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Figure 8.18: Transfer function approximation for Case 2: Recursive con-
troller.
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Figure 8.19: Transfer function approximation for Case 2: Simplified con-
troller.
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8.3.2 Simulations
8.3.2.1 Pure state feedback controller

The pure state feedback controller of Theorem 3.1 was once again imple-
mented both when using the actual states and when using the observer gen-
erated states as input to the controller. Also implemented was the reduced
order controller found in Section 8.3.1.1. Figures 8.20–8.24 on pages 121–125
display the simulation results. A clear attenuation of the pressure fluctua-
tions for both the state feedback and the output feedback case is observed
from Figure 8.20a, but the attenuation factor is not as good as for the previ-
ous case. The pressure at z = z̄ now fluctuates with an amplitude of about
0.3 bar. This is still an considerable attenuation factor of about 250. Again,
the set point is reached as soon as the first pressure gradient reaches the
depth, as one can see from Figure 8.23b. The time needed is shorter (around
1.31 seconds according to (7.30)) as the distance from the actuation point to
the depth of attenuation is shorter.

An interesting observation is made from Figure 8.22a, in that the fluctua-
tions in BHP are drastically increased when the controller is turned on. This
can also be observed from the 3D visualization in Figure 8.24a. However, the
amplitude of fluctuations are decaying. Also in this case, the observer esti-
mates converge to their correct values, as easily observed from Figure 8.24.
The pressure at depth 1000 also has an exponential convergence rate to the
set point when using full output feedback, as observed from figures 8.20a and
8.22b. Also new to this simulation is that the applied controller signals U(t)
in Figure 8.21a and 8.21b seem to fluctuate around a slowly moving bias that
gradually converges towards zero.

The reduced order controller manages to keep the pressure at 1000 metres
within the standard limits of ±2.5 bar. This may be somewhat surprising,
as the original, best fit transfer function was manually modified to force it
stable, resulting in a slightly distorted frequency response. The control signal
produced is considerably smoother, however, as seen when comparing Figure
8.21c with figures 8.21a and 8.21b, and so is the general response in the well,
observed from Figure 8.23a.
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(a) Overview.
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(b) State feedback vs full output feedback.
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(c) Full vs reduced order output feedback.

Figure 8.20: Case 2: P.s.f. controller: Pressure at depth 1000 metres.
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(a) State feedback.
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(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.21: Case 2: P.s.f. controller: Applied controller signals.
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(a) State feedback.
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(b) Full order output feedback.

Figure 8.22: Case 2: P.s.f. controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.23: Case 2: P.s.f. controller: Pressure distribution in well.
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(a) Pressure distribution when using state feedback.

(b) System state estimation error.
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(c) Disturbance with estimated disturbance.

Figure 8.24: Case 2: P.s.f. controller: Disturbance and observer states.
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8.3.2.2 Recursive controller

The recursive controller of Theorem 3.2 was implemented, as well as the
rational approximation found in Section 8.3.1.2. The simulation results can
be found in figures 8.25–8.28 on pages 127-130. The controller of Theorem
3.2 was fed with both the observer generated states and the actual states.

This controller suffers very much from transients and initial conditions
present in the system when the controller is turned on. This is clearly ob-
served from figures 8.25a and 8.25b. However, the amplitude of pressure
fluctuations is reduced to only 0.2, slightly better than the pure state feed-
back controller, and additionally, is seems to still be improving when the
simulation ends. The pressure distribution in the well is also suffering from
the initial conditions, with the BHP exceeding 750 bar when the first applied
pressure gradient reaches the bottom of the well. This is 150 bar more than
the maximum pressure during open loop, as seen from Figure 8.27a. The
output feedback implementation is slightly damped, however, as seen from
Figure 8.27b. Additionally, the pressure at z = z̄ does not meet its set point
psp before the pressure gradient has reached the point on its way back up
again, as observed from Figure 8.28b; a propagation time of 5.23 seconds
according to (7.31). The control signals in figures 8.26a and 8.26b are more
varying than for the pure state feedback case, but exhibit the same slowly
varying bias as was observed from figures 8.21a and 8.21b.

This time, the pressure at the attenuation point exceeds the ±2.5 bar
limits, when using the reduced order controller, seen in Figure 8.25c. The
amplitude of oscillations is about 3 bar. The manual modification of the
poles had a larger impact on the frequency response than for the pure state
feedback controller shown in the previous section. Also this time, however,
the control signal is considerably smoother, as seen when comparing Figure
8.26c with figures 8.26a and 8.26b.
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Figure 8.25: Case 2: Recursive controller: Pressure at depth 1000 metres.
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(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.26: Case 2: Recursive controller: Applied controller signals.
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(b) Full order output feedback.

Figure 8.27: Case 2: Recursive controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.28: Case 2: Recursive controller: Pressure distribution in well.
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8.3 Case 2: Attenuation at a depth of 1000 metres

8.3.2.3 Simplified controller

The simplified controller of Theorem 3.3 was implemented. Both the ob-
server generated states and the actual states were fed to the controller. The
rational approximation found in Section 8.3.1.2 was also implemented. The
simulation results can be found in figures 8.29–8.32 on pages 132-135.

Clearly seen from the pressure fluctuation of only ±0.12 bar observed from
Figure 8.29b for both the state feedback and the output feedback case, the
simplified controller actually performs better than the pure state feedback
and recursive controllers in this simulation case. The pure state feedback
and recursive controllers in the previous sections probably suffers more from
the discretization method used. The pure state feedback controller suffers
from discretization of the system states u(x, t) and v(x, t), while the recursive
version additionally suffers from the discretization of the transmission line.
A deterioration in the simplified controller’s performance could certainly be
expected if the magnitude of the kernels used in the integral terms (3.74)
had been considerably larger. (Again; this is demonstrated in an additional
simulation in appendix D.1.) From Figure 8.32b, it is once again observed
that the applied pressure gradient needs to be propagated to z = z̄ via
z = 0 before the desired effect is achieved; a propagation time of more than
5 seconds.

The overall pressure distribution in the well and the applied control sig-
nals, are much more smooth and predictive, easily observed from figures
8.31, 8.30a and 8.30b, and particularly when comparing Figure 8.29b with
Figure 8.20b and 8.25b. The reduced order controller achieved from sam-
pling the simplified controller of Theorem 3.3 is once again superior to the
other reduced order controllers, as observed when comparing Figure 8.29c
with figures 8.20c and 8.25c. The amplitude of pressure fluctuations is only
±0.4 when using this one.
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(b) State feedback vs full output feedback.
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Figure 8.29: Case 2: Simplified controller: Pressure at depth 2000 metres.
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(b) Full order output feedback.
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(c) Reduced order output feedback.

Figure 8.30: Case 2: Simplified controller: Applied controller signals.
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(a) State feedback.
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(b) Full order output feedback.

Figure 8.31: Case 2: Simplified controller: Pressure at selected depths.
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(a) Pressure at selected depths for reduced order controller.
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(b) Selected pressure profiles in the well, state feedback.

Figure 8.32: Case 2: Simplified controller: Pressure distribution in well.
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Chapter 9

Conclusions and further work

In this thesis, the results from Aamo (2013) have been generalized to achieve
disturbance attenuation at an arbitrary point in the domain for a class of
systems described by linear 2 × 2 partial differential equations of the hyper-
bolic type. The disturbance is modelled as an autonomous, finite dimensional
linear system affecting the PDEs left boundary, and actuation is limited to
the right boundary. Two controllers were derived; one is a function purely
in the system states at the current time, while the other one is recursive and
requires the controller to store the applied controller signal a finite length
backwards in time. The latter controller is simpler and easier to derive, but
the stored time-series of controller signals constitutes to an infinite amount
of data on a continuous system. Additionally, the recursive controller relies
on stored system states rather than the actual states, which is a potential ro-
bustness issue. However, its simplified structure facilitated for the derivation
of a third controller, which was derived by neglecting some terms assumed
to be small in magnitude. This controller had a significantly simpler struc-
ture than the other two, but its performance depends on the validity of the
assumptions made. All the derived controllers can be combined with an ob-
server generating full state and disturbance estimates from sensing co-located
with the actuation.

Furthermore, the transfer functions of the observer combined with the
controllers were derived. The resulting transfer functions were irrational, but
a Laguerre-Gram based model order reduction technique was also presented
for creating rational approximations from the irrational ones.

The derived theory was applied and tested through simulations on the
heave problem from Managed Pressure Drilling. The full state controllers
performed extremely well, both when using the system states directly and
when using the observer generated states. An exponential convergence rate
is observed in the latter case. As the terms neglected when deriving the
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simplified controller were very small, the simplified controller performed sur-
prisingly good as well and sometimes even better than the full controllers.

The attenuation properties of the reduced order transfer function approx-
imations were also satisfactory in most cases. However, achieving a good
transfer function match for the pure state feedback and recursive controllers
deemed challenging, probably due to some resonance terms emerging for high
frequencies. A good transfer function match was only achieved after some
tuning, and often the resulting rational transfer function found by the La-
guerre Gram based model order reduction algorithm contained at least one
pair of unstable poles. This strongly indicates that overall system consisting
of a the hyperbolic system, the recursive controller and an observer is, in fact,
unstable for a certain set of system parameters. This is an open question, as
no proofs of boundedness for the system states are given when using the ob-
server generated states as input to the controllers. However, finding a good
transfer function match when using the simplified controller was generally
a lot easier, and a good match was quickly found without much tuning for
both the test cases.

Suggested areas for further work are:

1. Further analyse the cause of the resonance terms in the derived transfer
functions.

2. Consider weighting the frequencies of interest prior to performing the
model reduction algorithm to the controller transfer functions, so that
only the well-behaving frequency domain is approximated.

3. Extend the algorithm for determining the optimum set of parameters
to optimize both of the free parameters used in the Laguerre Gram
based model order reduction algorithm.

4. Prove boundedness of the system states when using the controller in
conjunction with the observer, alternatively derive under which condi-
tions the system states are bounded.

5. Analyse the robustness properties of the derived controllers. The con-
trollers are heavily relying on having an exact mathematical model,
and adaptations on some of the parameters may be necessary when the
exact parameters are not known.

6. Test the controllers through lab experiments.
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Appendix A

Additional lemmas

A.1 Lemma 2 from Aamo (2013)

This lemma, with accompanying proof, was first stated in Aamo (2013) as
his Lemma 2.

Lemma A.1. Consider the system

ut(x, t) + ε(x)ux(x, t) = f(x)g(t) (A.1)

for x ∈ (−∞, ∞), t ≥ 0, where ε(x) > 0, ∀x, and u(x, 0) = u0(x). Its
solution is

u(x, t) = u0(φ−1(t + φ(x))) +
∫ t

0
(φ−1(t − γ + φ(x)))g(γ)dγ (A.2)

where
φ(z) =

∫ 1

z

dγ

ε(γ) . (A.3)

Proof. Consider a change of variables (x, t) ↔ (ξ, τ) and define

v(ξ, τ) := u(x, t). (A.4)

Let τ = t and x be chosen so that
∂x

∂τ
(ξ, τ) = ε(x), x(ξ, 0) = ξ. (A.5)

Then by the chain rule, we have
∂v

∂τ
= ut

∂t

∂τ
+ ux

∂x

∂τ
= ut(x, t) + ε(x)ux(x, t) = f(x(ξ, τ))g(τ) (A.6)
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with
v(ξ, 0) = u(x(ξ, 0), 0). (A.7)

Integration with respect to τ from 0 to τ yields

v(ξ, τ) = v(ξ, 0) +
∫ τ

0
f(x(ξ, γ))g(γ)dγ (A.8)

From (A.5), we have
∂x

ε(x) = ∂τ. (A.9)

Integration with respect to τ from 0 to τ , remembering that x(ξ, 0) = ξ yields
∫ x(ξ,τ)

ξ

dγ

ε(γ) = τ = t (A.10)

By using the strictly increasing and hence invertible function (A.3), (A.10)
can be written

φ(ξ) − φ(x) = t (A.11)

solving this for x, and inserting into (A.8), we find

v(ξ, τ) = v(ξ, 0) +
∫ τ

0
f(φ−1(φ(ξ) − γ))g(γ)dγ. (A.12)

Now substituting for ξ = φ−1(φ(x) + t) obtain from (A.11) yields

v(ξ, τ) = v(ξ, 0) +
∫ τ

0
f(φ−1(φ(x) + t − γ))g(γ)dγ. (A.13)

Finally, from (A.13), (A.4) and (A.7) we find

u(x, t) = u(x, 0) +
∫ t

0
f(φ−1(t − γ + φ(x)))g(γ)dγ. (A.14)

A.2 Exact solution of a convergent matrix ex-
ponential series

Lemma A.2. Consider a convergent infinite matrix series

M =
∞∑

k=0
Bk (A.15)
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for some square matrix B. Under the assumption of having I−B nonsingular,
M can explicitly be stated as

M = (I − B)−1 (A.16)

Proof. Consider the truncated partial sum

MN =
N∑

k=0
Bk (A.17)

for which clearly
M = lim

N→∞
MN . (A.18)

The difference between MN and the product BMN is

MN − BMN =
N∑

k=0
Bk − B

N∑
k=0

Bk =
N∑

k=0
Bk −

N+1∑
k=1

Bk = I − BN+1. (A.19)

Or, by extracting the common term to the left

(I − B)MN = I − BN+1. (A.20)

Under the assumption of having I − B nonsingular, the inverse of I − B

exists, and we find
MN = (I − B)−1(I − BN+1). (A.21)

If we now let N → ∞, and utilize that BN+1 → 0 as N → ∞ since (A.15) is
convergent, we land on the desired result

M = (I − B)−1. (A.22)

A.3 Contour integral in the complex plane

This lemma is based on Example 6 from Section 14.1 in Kreyszig (2010).

Lemma A.3. Consider a curve C in the complex plane constituting of a
circle of radius R, centred at the origin. Then for some integer n ∈ � we
have ∮

C

1
zn

dz =

⎧⎪⎨
⎪⎩

2πj for n = 1
0 otherwise

. (A.23)
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Proof. We parametrize the curve C as

z = z(θ) = Rejθ. (A.24)

with θ spanning [−π, π] (or [0, 2π]). Then

1
zn

= z−n = R−ne−jnθ, dz = Rjejθdθ. (A.25)

Inserting this, we find
∮

C

1
zn

dz =
∫ π

−π
R−ne−jnθRjejθdθ = jR1−n

∫ π

−π
ejθ(1−n)dθ (A.26)

if n = 1, then
∮

C

1
zn

dz = jR1−1
∫ π

−π
ejθ(1−1)dθ = j

∫ π

−π
dθ = j(π + π) = 2πj (A.27)

if n �= 1, we perform the integration to obtain
∮

C

1
zn

dz = Rn−1

1 − n
[ejθ(1−n)]π−π = Rn−1

1 − n
[ejπ(1−n) − e−jπ(1−n)]. (A.28)

As n − 1 are integers, the exponents are multiples of jπ, and hence the
exponential expressions are always 1 and cancel out. The lemma is verified.

A.4 Variation of constants

The following lemma gives the explicit solution to a linear, possibly time
variant system of ODEs.

Lemma A.4. Consider a system on the form

ẋ(t) = A(t)x(t) + B(t)u(t) (A.29)

for a vector x ∈ � of signals, matrices A(t) ∈ �n×n, B(t) ∈ �n×m, some
vector of known signals u(t) ∈ �

m. Assume there exists a matrix Ξ(t, t0),
known as a fundamental matrix, with the following properties:

1. d

dt
Ξ(t, t0) = A(t)Ξ(t, t0)
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2. Ξ(t, t) = I

3. Ξ−1(t, t0) = Ξ(t0, t)

4. Ξ(t, t0) = Ξ(t, t1)Ξ(t1, t0)

for any t, t0 and t1 in the domain. Then the solution to (A.29) is

x(t) = Ξ(t, t0)x(t0) +
∫ t

t0
Ξ(t, τ)B(τ)u(τ)dτ. (A.30)

Moreover, if A(t) = A is a constant matrix, the fundamental matrix can
simply be taken as

Ξ(t, t0) = eA(t−t0) =
∞∑

k=0

1
k!A

k(t − t0)k. (A.31)

Proof. See e.g. Chen (2009, p. 108).

A.5 Semigroup property

Lemma A.5. Consider a linear, autonomous system of ODEs

ẋ(t) = Ax(t). (A.32)

for a vector x(t) ∈ �n and a matrix A ∈ �n×n. Then for some constant d

and a solution x(t) of (A.32), we have

x(t − d) = e−Adx(t). (A.33)

Proof. From Lemma A.4, we find the solution of (A.32) to be

x(t) = eA(t−t0)x(t0) (A.34)

from which is follows that

x(t − d) = eA(t−d−t0)x(t0) = eA(−d+t−t0)x(t0) = e−AdeA(t−t0)x(t0)
= e−Adx(t) (A.35)
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Appendix B

Additional material

B.1 Integral equation types

Integral equations are equations in which an unknown function appears inside
an integration. An example is

y(x) = f(x) +
∫ x

x0
K(x, ξ)y(ξ)dξ (B.1)

for the unknown function y(x), known functions f(x) and K(x, ξ) and some
known constant x0. Equations on the form (B.1) are generally termed Volterra
equations (Kreyszig (2010, p. 236)). If the limits of integration are both
fixed, the integral equation is termed a Fredholm equation. Additionally, the
equation is said to be

1. Of the first kind if the unknown function does not appear outside the
integral

2. Of the second kind if the unknown function does appear outside the
integral

The equation is said to be

1. Homogenous if f(x) ≡ 0 in (B.1)

2. Inhomogenous otherwise
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This means that the example equation (B.1), when assuming f(x) and K(x, ξ)
are not identically zero, is an inhomogenous Volterra equation of the second
kind.

B.2 Trapezoidal and midpoint rules

The trapezoidal rule (Kreyszig (2010, p. 828)) and midpoint rule are nu-
merical integration schemes that splits the domain into a finite amount of
intervals. The integral is the approximated by respectively trapezoids and
rectangles. If we split the domain into N −1 equally spaced subintervals and
denote Δ = (b − a)/(N − 1) as the length of each subinterval, the integral of
some function f(x) from a to b is approximated as

∫ b

a
f(x)dx ≈ Δ

[1
2f(x0) + f(x1) + · · · + f(xN−2) + 1

2f(xN−1)
]

(B.2)

where xn = a + Δn when using the trapezoidal rule, and as
∫ b

a
f(x)dx ≈ Δ [f(x0) + f(x1) + · · · + f(xN−3) + f(xN−2)] (B.3)

where xn = a + Δ(n + 1
2) when using the midpoint rule.
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Appendix C

Additional transfer function
approximations

C.1 Case 1

C.1.1 Pure state feedback controller

The additional transfer function approximations for simulation case 1, us-
ing the transfer function of the pure state feedback controller as stated in
Theorem 5.1 can be found in figures C.1–C.3 on pages 158–160.

C.1.2 Recursive controller

The additional transfer function approximations for simulation case 1, using
the transfer function in Theorem 5.2 can be found in figures C.4–C.6 on pages
161–163.

C.1.3 Simplified controller

The additional transfer function approximations for simulation case 1, using
the transfer function in Theorem 5.3 can be found in Figure C.7 on page 164.

157



C. ADDITIONAL TRANSFER FUNCTION
APPROXIMATIONS

10
−2

10
−1

10
0

10
1

−40

−20

0

20
Bode plot

Frequency [rad / sec]

M
ag

ni
tu

de
 [d

B
]

 

 
Original Approximation

10
−2

10
−1

10
0

10
1

0

200

400

600

Frequency [rad / sec]

P
ha

se
 [d

eg
]

 

 

Original Approximation

−4 −3 −2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Real Part

Im
ag

in
ar

y 
P

ar
t

(a) Fourth order

10
−2

10
−1

10
0

10
1

−40

−20

0

20
Bode plot

Frequency [rad / sec]

M
ag

ni
tu

de
 [d

B
]

 

 

10
−2

10
−1

10
0

10
1

0

200

400

600

Frequency [rad / sec]

P
ha

se
 [d

eg
]

 

 

−6 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Real Part

Im
ag

in
ar

y 
P

ar
t

Original Approximation

Original Approximation

(b) Sixth order

10
−2

10
−1

10
0

10
1

−40

−20

0

20
Bode plot

Frequency [rad / sec]

M
ag

ni
tu

de
 [d

B
]

 

 

10
−2

10
−1

10
0

10
1

0

200

400

600

Frequency [rad / sec]

P
ha

se
 [d

eg
]

 

 

−8 −7 −6 −5 −4 −3 −2 −1 0 1

−3

−2

−1

0

1

2

3

Real Part

Im
ag

in
ar

y 
P

ar
t

Original Approximation

Original Approximation

(c) Tenth order

Figure C.1: Case 1: P.s.f. controller: Approximations with σ = 0.000.
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Figure C.2: Case 1: P.s.f. controller: Approximations with σ = 0.025.
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Figure C.3: Case 1: P.s.f. controller: Approximations with σ = 0.050.
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Figure C.4: Case 1: Recursive controller: Approximations with σ = 0.000.
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Figure C.5: Case 1: Recursive controller: Approximations with σ = 0.025.
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Figure C.6: Case 1: Recursive controller: Approximations with σ = 0.050.
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Figure C.7: Case 1: Simplified controller: Approximations with σ = 0.000.
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C.2 Case 2

C.2 Case 2

C.2.1 Pure state feedback controller

The additional transfer function approximations for simulation case 2, us-
ing the transfer function of the pure state feedback controller as stated in
Theorem 5.1 can be found in figures C.8–C.10 on pages 166–168.

C.2.2 Recursive controller

The additional transfer function approximations for simulation case 2, using
the transfer function in Theorem 5.2 can be found in figures C.11–C.13 on
pages 169–171.

C.2.3 Simplified controller

The additional transfer function approximations for simulation case 2, using
the transfer function in Theorem 5.3 can be found in Figure C.14 on page
172.
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Figure C.8: Case 2: P.s.f. controller: Approximations with σ = 0.000.
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Figure C.9: Case 2: P.s.f. controller: Approximations with σ = 0.025.
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Figure C.10: Case 2: P.s.f. controller: Approximations with σ = 0.050.
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Figure C.11: Case 2: Recursive controller: Approximations with σ = 0.000.
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Figure C.12: Case 2: Recursive controller: Approximations with σ = 0.025.
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Figure C.13: Case 2: Recursive controller: Approximations with σ = 0.050.
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Figure C.14: Case 2: Simplified controller: Approximations with σ = 0.000.
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Appendix D

Additional simulations

D.1 Increased friction

We will in this additional simulation better demonstrate the strength of the
pure state feedback controller compared to the other two controllers. The
difference in performance for the three controllers is expected to be more
evident now. The friction is multiplied by a factor of 100, resulting in F1 =
1000 kg/m3. This is, of course, a highly non-physical MPD case, but it
is constructed for illustrative purposes. The resulting terms Lα(x̄, ξ) and
Lβ(x̄, ξ) in (3.52a)–(3.52b) now contain components with magnitude up to
2.48 and 0.61, respectively; and the terms added by the integrals in (3.74) are
believed to be considerably larger. The simulation results are shown in figures
D.1–D.2. Clearly seen from both figures, the performance is deteriorating
for both the recursive and the simplified controllers. Notice the scales on
the y-axes of Figure D.2. The pure state feedback controller still manages
to achieve an attenuation resulting in pressure fluctuations with only 0.2
bar in magnitude, the recursive controller achieves 3 bar while the pressure
fluctuations when using the simplified controller almost reaches 9 bar. This
illustrates the cost of the assumption made when deriving the simplified
controller, and also the robustness issues regarding the recursive controller.
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(b) Recursive controller.
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Figure D.1: Increased friction: Pressure at depth 1000 metres.
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D.1 Increased friction
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Figure D.2: Increased friction: Pressure at depth 1000 metres.
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D. ADDITIONAL SIMULATIONS

D.2 The best fit, rational approximation of
the recursive controller from Case 2

The sixth order reduced order controller with the original, unstable pair of
poles as shown in Figure C.12b was here carefully simulated. The simula-
tion results can be found in figures D.3–D.4 on pages 177–178. In Figure
D.3, the pressure at depth 1000 meters when using the full output feedback
implementation is plotted for comparison.

This time, the level of suppression is far better than the case where the
poles were forced to the closed left half plane. The amplitude of fluctuations
is about 0.5 bar, compared with the amplitude of 3 bars in Figure 8.25c on
page 127.

However, the controller is internally unstable, and by simulating for a
sufficiently long time, the internal controller will diverge.
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D.2 The best fit, rational approximation of the recursive
controller from Case 2
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Figure D.3: The best fit rational approximation of the recursive controller
from Case 2: Pressure at depth 1000 metres.
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D. ADDITIONAL SIMULATIONS
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Figure D.4: The best fit rational approximation of the recursive controller
from Case 2: Controller signal and pressure distribution.
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Appendix E

Folder structure

This section contains descriptions of the folders and files on the accompanying
disc. All scripts needed to run the simulations shown in the report are
included. Prior to running any of the other scripts, the script config_paths
has to be executed. This will add necessary folders containing shared scripts
to the MATLAB path. In the following overview, folders are written in boldface
with a preceding backslash, while files are written italic. A short descriptive
comment written in plain style usually exceeds a folder or file.

\root

• config_paths.m
This file adds the necessary folders an files to the MATLAB path required
to run the other scripts in on the disc.

• \Additional simulations
This subfolder contains the scripts simulating the additional simula-
tions shown in Appendix D.

• run_K_inf_depth_1000_inc_fric.m
This script runs implementation with the simplified controller in
Appendix D.1 and displays the results.

• run_psf_depth_1000_inc_fric.m
This script runs implementation with the pure state feedback con-
troller in Appendix D.1 and displays the results.
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E. FOLDER STRUCTURE

• run_rec_depth_1000_inc_fric.m
This script runs implementation with the recursive controller in
Appendix D.1 and displays the results.

• run_rec_depth_1000_tf_original.m
This script runs the implementation in Appendix D.2 and displays
the results.

• \Case_1
This implementations from Section 8.2 are found in this folder.

• \Pure_state_feedback
Contains scripts running and displaying the results for the imple-
mentations from Section 8.2.2.1.

• find_params_depth_2000_psf.m Uses the method presented
in Section 6.5 to find the optimal set of α and γ used in Section
8.2.1.1. Stores the result in the file params_tf_psf_d2000.mat.

• gen_tf_from_file_depth_2000_psf.m Creates rational approx-
imations using the parameters in the file
params_tf_psf_d2000.mat, and stores the resulting transfer
function coefficients in the file tfs_psf_d2000.mat.

• plot_approxes_depth_2000_psf.m Plots the approximations
in tfs_psf_d2000.mat, along with the original transfer func-
tion.

• run_psf_depth_2000.m Runs the state feedback implemen-
tation.

• run_psf_depth_2000_obsv.m Runs the output feedback im-
plementation.

• run_psf_depth_2000_tf.m Runs the implementation using
the reduced order output feedback controller.

• \Recursive
This folder has the same structure at as the folder
\Pure_state_feedback, containing scripts implementing the
simulations and generating the transfer function approximations
in Sections 8.2.1.2 and 8.2.2.2. All names have rec in place psf.
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• \Simplified
This folder has the same structure at as the folder
\Pure_state_feedback, containing scripts implementing the
simulations and generating the transfer function approximations
in Sections 8.2.1.3 and 8.2.2.3. All names have inf in place psf.

• \Case_2
This folder has exactly the same structure at as the folder Case_1,
containing scripts implementing the simulations and generating the
transfer function approximations in Section 8.3.

• \drilling_system
This folder contains all the scripts used to implement the drilling system
(7.1). To ease the implementation, was the hyperbolic system (3.1)
implemented with the displayed pressures calculated by solving (7.5)
for p(xl, t), instead of implementing (7.1) directly.

• \controllers
Contains scripts implementing the different controllers.

• controller_K_inf.m Implements the simplified controller from
Theorem 3.3.

• controller_psf.m Implements the pure state feedback con-
troller from Theorem 3.1.

• controller_rec.m Implements the recursive controller from The-
orem 3.2.

• \coordinate_transforms
Contains different functions for coordinate transforms.

• alpha_from_u_and_v.m Performs the backstepping trans-
formation (3.3a).

• beta_from_u_and_v.m Performs the backstepping transfor-
mation (3.3b).

• delta.m Calculates the function δ(ξ, x̄, t) in (3.48).
• \gains

Contains different functions for computations of gains.
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• controller_gains.m Used to compute the controller gains used
by the controllers derived in Chapter 3.

• K_inf.m Computes the gain K∞(x̄), using (3.84).
• K_psf.m Computes the gain Kpsf (x̄), using (3.47).
• K_rec.m Computes the gain Krec(x̄), using (3.78).
• observer_gains.m Computes the observer gains needed by

(4.1).
• \kernel_solvers

• K_kernel_solver.m Solves (3.6)–(3.7) using the equations and
methods derived in Section (7.5).

• L_kernel_solver.m Solves (3.10)–(3.11).
• P_kernel_solver.m Solves (4.4)–(4.5).

• \model_reduction
Contains tools used to create the transfer function approximations
found in Sections 8.2.1 and 8.3.1.

• error_fun.m Evaluates the expression (6.48).
• find_params.m Find the optimal set of parameters α and γ

in (6.48) given a σ in (6.6) using the method described in
Section 6.5.

• gen_tf.m Generate a rational approximation from a given
transfer function.

• gen_tf_from_file.m Used gen_tf.m to generate transfer func-
tion approximations of different orders using from a set of α

and γ read from a file.
• h_YU_inf_sampling.m Samples the transfer function of The-

orem 5.3. Does this by calling h_YU_sampling.m.
• h_YU_psf_sampling.m Samples the transfer function of The-

orem 5.1.
• h_YU_rec_sampling.m Samples the transfer function of The-

orem 5.2. Does this by calling h_YU_sampling.m.
• h_YU_sampling.m Samples the transfer functions of Theo-

rem 5.2 and 5.3.
• Laguerre_Gram.m Generates a rational approximation from

a given Laguerre spectrum using the method described in Sec-
tion 6.3.
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• Laguerre_sampling_points.m Returns the points in the com-
plex plane where the transfer function samples needed by
the Laguerre Gram algorithm are situated.That is; the points
where F is evaluated in (6.33).

• Laguerre_spectrum.m Calculates the Laguerre spectrum from
a series of transfer function samples using (6.35). The FFT
algorithm is used. The samples are shifted using fftshift()
before and after the FFT algorithm is applied, as the trans-
form otherwise contains oscillatoric real components at the
boundary. Thanks to Kan Wu for suggesting this (Wu (2009)).
Note that the samples must be taken at the points given by
Laguerre_sampling_points.m for the function to work prop-
erly.

• setup_hypSys.m A function created to ease the model reduc-
tion implementations. Configures a standard version of the
hyperbolic system.

• \setup

• hypSys_from_well.m Creates an hyperbolic system from a set
of well parameters and calculates all the required parameters
needed for simulations.

• well_02.m Configurations of the well used in all simulations
in this thesis, except the simulation in D.1 (which uses a mod-
ified friction factor F1).

• \shift_functions Note that time-shift functions dα(x̄, ξ), dβ(x̄, ξ),
drec(x̄), κα(x, ξ), κβ(x, ξ), ηα(y), ηβ(y), as well as φα(x), φβ(x) and
their inverses are all hard coded.

• Omega_alpha.m Implements (3.50a).
• Omega_beta.m Implements (3.50b).
• Phi_a.m Implements (3.19a).
• Phi_b.m Implements (3.19b).
• Psi_a.m Implements (3.35a).
• Psi_b.m Implements (3.35b).
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• hyp_sys_dx.m Returns the time derivatives of all the ODEs re-
sulting from applying the Method of Lines to the hyperbolic sys-
tem (3.1).

• hyp_sys_dx.m Returns the time derivatives of all the ODEs re-
sulting from applying the Method of Lines to the observer (4.1).

• hypSys_no_obsv_odefun.m The function passed to the solver in
MATLAB implementing the state feedback simulations.

• hypSys_w_obsv_odefun.m The function passed to the solver in
Matlab implementing the full output feedback simulations.

• hypSys_w_modReg_odefun.m The function passed to the solver
in Matlab implementing the reduced order controller simulations.

• \plotfiles

• plot_approxes.m Used to plot the transfer function approxima-
tions in Sections 8.2.1 and 8.3.1.

• plotfile_no_observer.m Plots the simulation results when no ob-
server is used.

• plotfile_tf.m Plots the simulation results when the reduced order
controller is used.

• plotfile_tf_bode_and_zplane.m A help function called by
plot_approxes.m.

• plotfile_w_observer.m Plots the simulation results when the full
observer is used.
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Disturbance Attenuation in the Interior Domain
of Linear 2× 2 Hyperbolic Systems

Henrik Anfinsen, Ole Morten Aamo, Member, IEEE

Abstract

In this paper, we develop a full state feedback law for disturbance attenuation in systems described by linear

2× 2 partial differential equations of the hyperbolic type, with the disturbance modelled as an autonomous, finite

dimensional linear system affecting the PDE’s left boundary, and actuation limited to the right boundary. The effect

of the disturbance is attenuated at an arbitrary point in the domain. The full state feedback law may be combined

with an observer generating full state and disturbance estimates from sensing limited to the right boundary. The

results are applied to the so-called heave problem from the oil and gas industry, and performance is demonstrated

through simulations.

I. INTRODUCTION

IN THIS paper, we investigate the problem of disturbance rejection at an arbitrary point in the domain
for systems described by linear 2×2 hyperbolic PDEs with spatially varying coefficients. We consider

actuation and sensing on the right boundary with a disturbance entering on the left boundary.
This specific class of PDEs covers a wide range of physical systems, among them are open channels

[1], gas flow pipelines [2], transmission lines [3], oil wells [4] and even road traffic [5]. Considering
the wide range of practical applications, the act of stabilizing systems of this type has been subject to
extensive research, and a number of techniques have been proposed in the literature.

A recently developed technique for control of PDEs is the backstepping method known from nonlinear
control theory [6]. The backstepping method applied to partial differential equations was first developed
for parabolic PDEs [7]. It was then used for stabilization of an unstable heat equation in [8], but this
method was restricted to systems with a number of open-loop unstable eigenvalues no more than one. This
was stressed further in [9] which allowed an arbitrary level of instability by using a backstepping method
on a semi-discretized version of the system that made the closed-loop system stable. The method involved
recursively solving a series of equations for the unknown kernels used in the backstepping transforma-
tion, but numerical computations showed that the kernel contained discontinuities as an artifact of the
discretization method used. The number of discontinuities would tend to infinity when the discretization
grid cell size approached zero.

This was improved in [10] by expressing the integration kernels as solutions to PDEs, giving the first
solution of the problem in infinite-dimensional form. The method from [10] has since been applied to,
among others, fluid flows [11], nonlinear parabolic equations [12]–[13] and has even been extended to
adaptive versions [14].

The method has later been derived for application on hyperbolic systems: in [15] to first order hyperbolic
systems; in [16] to second order systems, and; in [17] to two coupled first order equations. Most relevant
to the present paper, are the results in [17] and [15], which were used in [18] to derive a full state feedback
law for disturbance attenuation on the left boundary by control actuation from the right boundary, for the
same type of systems considered in this paper. The full state feedback law was combined with a state
observer to create an output feedback law, with sensing also limited to the right boundary. In this paper,
we generalize these results to derive a full state feedback law for disturbance attenuation at an arbitrary
point in the domain. While the state feedback law is the main contribution of this paper and the main

H. Anfinsen and O. M. Aamo are with the Department of Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim N-7491, Norway (e-mail: henrik.anfinsen@gmail.com; aamo@ntnu.no)
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object of interest in the simulations section, we also combine it with the state observer from [18] to
create an output feedback law for comparison. The output feedback law is, of course, the more relevant
controller from a practical point of view.

The disturbance attenuation problem - while posed in a general setting in the next section - is motivated
by problems faced in the oil and gas industry. Typically, a disturbance enters at the inlet of a subsea
pipeline, or at the bottom of an oil well, whereas sensing and actuation equipment is restricted to topside
platforms or drilling rigs, potentially several kilometres away. Undesired influx into an oil well being
drilled and undesired outflux of drilling mud and cuttings into the reservoir (known as kick and loss,
respectively), are examples of problems that can be modelled using the type of systems investigated in
this paper. Another application is the attenuation of pressure fluctuations due to undesired drill string
motions caused by heaving when drilling offshore from a floating rig. This problem was addressed in [4]
using a lumped model and simplifying assumptions with regards to available measurements, and in [19]
where a linearization technique was used that neglected the friction terms, making the system decoupling
a far simpler task. This problem is also our choice for a numerical demonstration of our theoretical results.

The paper is organized as follows. In Section II, we pose the disturbance attenuation problem. In Section
III, we establish properties of system solutions and design a controller for disturbance attenuation at an
arbitrary point in the domain assuming full state information is available. Two versions of the controller are
derived. A state observer generating full state estimates and estimate of the disturbance, with co-located
sensing and actuation restricted to the right boundary is given in Section IV. Both formulations of the
controller are tested on the aforementioned problem from the oil and gas industry in Section V, before
some concluding remarks are given in Section VI.

II. PROBLEM STATEMENT

The type of systems to be considered in this paper are on the form

ut(x, t) = −ε1(x)ux(x, t) + c1(x)v(x, t) (1a)

vt(x, t) = ε2(x)vx(x, t) + c2(x)u(x, t) (1b)

u(0, t) = qv(0, t) + CX(t) (1c)

v(1, t) = U(t) (1d)

Ẋ(t) = AX(t) (1e)

propagating over the domain defined by x ∈ [0, 1] and t ≥ 0. It is assumed that ε1(x), ε2(x) > 0
are C1([0, 1]), and c1(x), c2(x) are C([0, 1]). The disturbance term X(t) ∈ �

n×n is parameterized by
A ∈ �n×n and C ∈ �1×n with the pair (A,C) assumed observable. The parameter q �= 0 is a constant,
U(t) is the controller input and u(1, t) is assumed measured.

The objective is to design U(t) such that

u(x̄, t) = rv(x̄, t) (2)

is achieved for some given, fixed x̄ ∈ (0, 1). This is a non-trivial generalization of the results from [18],
where the control law achieving (2) for x̄ = 0 was derived.
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III. DISTURBANCE ATTENUATION

A. Previous results
In [18], the following backstepping transformation

α(x, t) = u(x, t)−
∫ x

0

Kuu(x, ξ)u(ξ, t)dξ

−
∫ x

0

Kuv(x, ξ)v(ξ, t)dξ (3a)

β(x, t) = v(x, t)−
∫ x

0

Kvu(x, ξ)u(ξ, t)dξ

−
∫ x

0

Kvv(x, ξ)v(ξ, t)dξ (3b)

and the controller

U(t) =

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ

+

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ + V (t) (4)

were used to map the system (1) into the following decoupled form

αt(x, t) = −ε1(x)αx(x, t)− ε1(0)K
uu(x, 0)CX(t) (5a)

βt(x, t) = ε2(x)βx(x, t)− ε1(0)K
vu(x, 0)CX(t) (5b)

α(0, t) = qβ(0, t) + CX(t) (5c)

β(1, t) = V (t) (5d)

Ẋ(t) = AX(t). (5e)

The kernels in (3), (5a), (5b) were given as the solution to the following system of PDEs

ε1(x)K
uu
x (x, ξ) + ε1(ξ)K

uu
ξ (x, ξ)

= −ε′1(ξ)K
uu(x, ξ)− c2(ξ)K

uv(x, ξ) (6a)

ε1(x)K
uv
x (x, ξ)− ε2(ξ)K

uv
ξ (x, ξ)

= ε′2(ξ)K
uv(x, ξ)− c1(ξ)K

uu(x, ξ) (6b)

ε2(x)K
vu
x (x, ξ)− ε1(ξ)K

vu
ξ (x, ξ)

= ε′1(ξ)K
vu(x, ξ) + c2(ξ)K

vv(x, ξ) (6c)

ε2(x)K
vv
x (x, ξ) + ε2(ξ)K

vv
ξ (x, ξ)

= −ε′2(ξ)K
vv(x, ξ) + c1(ξ)K

vu(x, ξ) (6d)

with boundary conditions

Kuu(x, 0) =
ε2(0)

qε1(0)
Kuv(x, 0) (7a)

Kuv(x, x) =
c1(x)

ε1(x) + ε2(x)
(7b)

Kvu(x, x) = − c2(x)

ε1(x) + ε2(x)
(7c)

Kvv(x, 0) =
qε1(0)

ε2(0)
Kvu(x, 0) (7d)
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defined over the triangular domain

T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. (8)

The transformation (3) was originally derived in [17] and used for state feedback stabilization for (1) in
the case without disturbance (X(t) ≡ 0). The inverse of (3) was also given in [17] as

u(x, t) = α(x, t) +

∫ x

0

Lαα(x, ξ)α(ξ, t)dξ

+

∫ x

0

Lαβ(x, ξ)β(ξ, t)dξ (9a)

v(x, t) = β(x, t) +

∫ x

0

Lβα(x, ξ)α(ξ, t)dξ

+

∫ x

0

Lββ(x, ξ)β(ξ, t)dξ (9b)

where the kernels are given as the solution to the system of PDEs

ε1(x)L
αα
x (x, ξ) + ε1(ξ)L

αα
ξ (x, ξ)

= −ε′1(ξ)L
αα(x, ξ) + c1(x)L

βα
ξ (x, ξ) (10a)

ε1(x)L
αβ
x (x, ξ)− ε2(ξ)L

αβ
ξ (x, ξ)

= ε′2(ξ)L
αβ(x, ξ) + c1(x)L

ββ
ξ (x, ξ) (10b)

ε2(x)L
βα
x (x, ξ)− ε1(ξ)L

βα
ξ (x, ξ)

= ε′1(ξ)L
βα(x, ξ)− c2(x)L

αα
ξ (x, ξ) (10c)

ε2(x)L
αβ
x (x, ξ) + ε2(ξ)L

ββ
ξ (x, ξ)

= −ε′2(ξ)L
ββ(x, ξ)− c2(x)L

αβ
ξ (x, ξ) (10d)

with boundary conditions

Lαα(x, 0) =
ε2(0)

qε1(0)
Lαβ(x, 0) (11a)

Lαβ(x, x) =
c1(x)

ε1(x) + ε1(x)
(11b)

Lβα(x, x) = − c2(x)

ε1(x) + ε1(x)
(11c)

Lββ(x, 0) =
qε1(0)

ε2(0)
Lβα(x, 0) (11d)

defined over the triangular domain (8). Proofs of existence and uniqueness for solutions of (6)-(7) and
(10)-(11) were given in [17], and it was also proved that the solutions are continuous over T . As the
transform (3) is invertible, the stability properties of (1) and (5) are equivalent. This was utilized in [18]
when deriving the controller achieving (2) for x̄ = 0, and will in this paper be utilized in a similar manner
do derive a controller that achieves (2) some arbitrary x̄ ∈ (0, 1).

B. Relationships in space and time
Lemma 1: For a PDE on the form

ut + ε(x)ux = f(x)g(t), x ∈ (−∞,∞), t ∈ [0,∞) (12)
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with ε(x) > 0 ∀x and initial condition u(x, 0) = u0(x), the following relationship apply to two arbitrary
points y, z ∈ (−∞,∞)

u(y, t− φ(y))− u(z, t− φ(z))

=

∫ φ(z)

φ(y)

f(φ−1(τ))g(t− τ)dτ (13)

for t ≥ max{φ(y), φ(z)}, where

φ(z) =

∫ 1

z

dγ

ε(γ)
. (14)

Proof: Using Lemma 2 From [18], we derive the following relationships between two arbitrary points
y and z

u(y, t) = u0(φ
−1(t+ φ(y)))

+

∫ t

0

f(φ−1(t− γ + φ(y)))g(γ)dγ (15)

u(z, t) = u0(φ
−1(t+ φ(z)))

+

∫ t

0

f(φ−1(t− γ + φ(z)))g(γ)dγ (16)

Assuming t ≥ max{φ(y), φ(z)}, we shift time in both equations to obtain

u(y, t− φ(y)) = u0(φ
−1(t))

+

∫ t−φ(y)

0

f(φ−1(t− γ))g(γ)dγ (17)

u(z, t− φ(z)) = u0(φ
−1(t))

+

∫ t−φ(z)

0

f(φ−1(t− γ))g(γ)dγ. (18)

Thus, the initial condition can be eliminated by subtracting (18) from (17), yielding

u(y, t− φ(y))− u(z, t− φ(z))

=

∫ t−φ(y)

t−φ(z)

f(φ−1(t− γ))g(γ)dγ. (19)

An appropriate substitution τ = t− γ in the integral yields the desired result.

By using Lemma 1, we can characterize solutions α and β of (5) at two arbitrary points in the domain
by time shifts as follows.

Lemma 2: For two arbitrary points y, z ∈ [0, 1], solutions α and β of (5) satisfy

α(y, t− φα(y))− α(z, t− φα(z)) = Φα(y, z)X(t) (20a)

for t ≥ max{φα(y), φα(z)} and

β(y, t− φβ(y))− β(z, t− φβ(z)) = Φβ(y, z)X(t), (20b)
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for t ≥ max{φβ(y), φβ(z)}, where

Φα(y, z) = −ε1(0)

∫ φα(z)

φα(y)

Kuu(φ−1
α (τ), 0)Ce−Aτdτ (21)

Φβ(y, z) = −ε1(0)

∫ φβ(z)

φβ(y)

Kvu(φ−1
β (τ), 0)Ce−Aτdτ (22)

with

φα(z) =

∫ 1

z

dγ

ε1(γ)
(23)

φβ(z) =

∫ z

0

dγ

ε2(γ)
. (24)

Proof: The proof for (20a) is independent from (20b), and for clarity of presentation, they will be
proven separately.

The α-subsystem: The alpha-subsystem (5a) has the form required by Lemma 1 with u(x, t) = α(x, t),
ε(x) = ε1(x), f(x) = −ε1(0)K

uu(x, 0) and g(t) = CX(t). The result (20a) with (21) and (23) therefore
follows by Lemma 1 and the semigroup property of (5e), i.e. X(t− τ) = e−AτX(t).

The β-subsystem: Application of Lemma 1 is not straight forward to use on (5b) since the sign of
ε2(x) is not as required by Lemma 1. This is resolved by the change of variables

β̄(x, t) := β(1− x, t) ⇔ β(x, t) = β̄(1− x, t) (25)

and
ε̄2(x) := ε2(1− x) (26)

so that (5b) becomes

β̄t(x, t) + ε̄2(x)β̄x(x, t) = −ε1(0)K
vu(1− x, 0)CX(t). (27)

Lemma 1 may now be applied with u(x, t) = β̄(x, t), ε(x) = ε̄2(x), and f(x) = −ε1(0)K
vu(1− x, 0) to

achieve

β̄(y, t− hβ(y))− β̄(z, t− hβ(z))

= −ε1(0)

∫ hβ(z)

hβ(y)

Kvu(1− h−1
β (τ))CX(t− τ)dτ (28)

for t ≥ max{hβ(y), hβ(z)} where

hβ(z) =

∫ 1

z

dτ

ε̄2(τ)
. (29)

Inserting for β and substituting y → 1− y and z → 1− z yields

β(y, t− hβ(1− y))− β(z, t− hβ(1− z))

= −ε1(0)

∫ hβ(1−z)

hβ(1−y)

Kvu(1− h−1
β (τ))

× CX(t− τ)dτ (30)

which is valid for t ≥ max{hβ(1− y), hβ(1− z)}. Comparing (24) and (29), we have φβ(z) = hβ(1− z)
and φ−1

β (τ) = 1− h−1
β (τ), and (20b) with (22) and (24) follows.
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C. Relationships to actuation
By utilizing the results in Lemma 2, we characterize the solutions α and β of (5) in terms of the

actuation V (t) = β(1, t) and disturbance X(t).

Lemma 3: For every y ∈ [0, 1], the solutions α and β of (5) satisfy

α(y, t) = qV (t− ηα(y)) + Ψα(y)X(t) (31a)

for t ≥ ηα(y) and

β(y, t) = V (t− ηβ(y)) + Ψβ(y)X(t) (31b)

for t ≥ ηβ(y), where

Ψα(y) = Φα(y, 0)e
Aφα(y)

+ (qΦβ(0, 1) + C)eA(φα(y)−φα(0)) (32)

Ψβ(y) = Φβ(y, 1)e
Aφβ(y) (33)

and

ηα(y) = φβ(1) + φα(0)− φα(y) (34)

ηβ(y) = φβ(1)− φβ(y). (35)

Proof: Again, we’ll split the proof into two parts, dealing with the α and β subsystems separately.
The α subsystem: From (20a), with z = 0 and time shifting φα(y) units assuming t ≥ φα(0)− φα(y),

we find

α(y, t) = α(0, t− φα(0) + φα(y))

+ Φα(y, 0)X(t+ φα(y)). (36)

Inserting for the boundary condition (5c), we find

α(y, t) = qβ(0, t− φα(0) + φα(y))

+ CX(t− φα(0) + φα(y))

+ Φα(y, 0)X(t+ φα(y)). (37)

From (20b), with y = 0, z = 1 and noticing that φβ(0) = 0, we find for t ≥ φβ(1)

β(0, t) = β(1, t− φβ(1)) + Φβ(0, 1)X(t). (38)

Shifting time φα(y)− φα(0) units assuming t ≥ φβ(1) + φα(0)− φα(y), we find

β(0, t− φα(0) + φα(y))

= β(1, t− φβ(1)− φα(0) + φα(y))

+ Φβ(0, 1)X(t− φα(0) + φα(y)). (39)

Substituting (39) into (37), gives

α(y, t) = qβ(1, t− φβ(1)− φα(0) + φα(y))

+ qΦβ(0, 1)X(t− φα(0) + φα(y)),

+ CX(t− φα(0) + φα(y))

+ Φα(y, 0)X(t+ φα(y)) (40)
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for t ≥ φβ(1) + φα(0)− φα(y). Using the semigroup property of (5e), results in

α(y, t) = qβ(1, t− φβ(1)− φα(0) + φα(y))

+ qΦβ(0, 1)e
A(φα(y)−φα(0))X(t)

+ CeA(φα(y)−φα(0))X(t)

+ Φα(y, 0)e
Aφα(y)X(t). (41)

By substituting for the boundary condition (5d), and Ψα(y) and ηα(y) as defined in (32) and (34),
respectively, the first part of the lemma is verified.

The β subsystem: From (20b), with z = 1 and shifting time φβ(y) units assuming t ≥ φβ(1)− φβ(y),
we find

β(y, t) = β(1, t− φβ(1) + φβ(y))

+ Φβ(y, 1)X(t+ φβ(y)). (42)

Substituting for the boundary condition (5d) and Ψβ(y) and ηβ(y) as defined in (33) and (35), respectively,
and using the semigroup property of (5e), the lemma’s second half is proven.

D. Control design
The lemmas derived above will be used to derive the control law achieving (2). Inserting (9) into (2),

the controller objective is stated in terms of the α, β variables

α(x̄, t) +

∫ x̄

0

Lαα(x̄, ξ)α(ξ, t)dξ

+

∫ x̄

0

Lαβ(x̄, ξ)β(ξ, t)dξ

= rβ(x̄, t) + r

∫ x̄

0

Lβα(x̄, ξ)α(ξ, t)dξ

+ r

∫ x̄

0

Lββ(x̄, ξ)β(ξ, t)dξ. (43)

We seek a control signal V (t) such that (43) is achieved. For completeness, we first state the result for
the case x̄ = 0, which was given in [18].

Theorem 4: Suppose q �= 0, r �= q and V (t) = K0X(t), where

K0 =

(
1

r − q
C − Φβ(0, 1)

)
eAφβ(1). (44)

Then the control law (4) achieves (2) for all t ≥ φβ(1).
Proof: The result follows from letting x̄ = 0 in (55).

Next, we generalize the result by allowing x̄ ∈ (0, 1) and state two versions of the controller. The first
version, referred to as the recursive controller, is simpler to derive but requires storage of past inputs.
The second version is a pure state feedback controller that exploits the fact that past inputs are implicitly
stored in the system states.



9

Theorem 5 (Recursive): Suppose q �= 0, r �= 0, x̄ ∈ (0, 1) and let

V (t) =
q

r
V (t− dr(x̄)) +

q

r

∫ x̄

0

Lα(x̄, ξ)V (t− dα(ξ, x̄))dξ

+
1

r

∫ x̄

0

Lβ(x̄, ξ)V (t− dβ(ξ, x̄))dξ

+
1

r
Kr(x̄)X(t) (45)

where

dα(ξ, x̄) = ηα(ξ)− ηβ(x̄) (46)

dβ(ξ, x̄) = ηβ(ξ)− ηβ(x̄) (47)

dr(x̄) = dα(x̄, x̄) (48)

and

Kr(x̄) = (

∫ x̄

0

(Lα(x̄, ξ)Ψα(ξ) + Lβ(x̄, ξ)Ψβ(ξ))dξ

+Ψα(x̄)− rΨβ(x̄))e
Aηβ(x̄) (49)

with

Lα(x̄, ξ) = Lαα(x̄, ξ)− rLβα(x̄, ξ) (50)

Lβ(x̄, ξ) = Lαβ(x̄, ξ)− rLββ(x̄, ξ) (51)

and Lαα(x̄, ξ), Lαβ(x̄, ξ), Lβα(x̄, ξ), Lββ(x̄, ξ) is the solution to (10) and (11). Then the control law (4)
achieves (2) for all t ≥ ηα(x̄).

Proof: With the definitions (50) and (51), the controller objective (43), which is equivalent to (2),
can be stated as

α(x̄, t)− rβ(x̄, t) =−
∫ x̄

0

Lα(x̄, ξ)α(ξ, t)dξ

−
∫ x̄

0

Lβ(x̄, ξ)β(ξ, t)dξ. (52)

Using Lemma 3 successively with y = x̄ and y = ξ, and inserting into (52) yields

qV (t− ηα(x̄)) + Ψα(x̄)X(t)− rV (t− ηβ(x̄))

− rΨβ(x̄)X(t)

= −
∫ x̄

0

Lα(x̄, ξ)(qV (t− ηα(ξ))

+ Ψα(ξ)X(t))dξ

−
∫ x̄

0

Lβ(x̄, ξ)(V (t− ηβ(ξ))

+ Ψβ(ξ)X(t))dξ (53)



10

which is valid for t ≥ ηα(x̄). Rearranging (53) and time shifting ηβ(x̄) units, we find

rV (t) = qV (t− ηα(x̄) + ηβ(x̄))

+ (Ψα(x̄)− rΨβ(x̄))X(t+ ηβ(x̄))

+

∫ x̄

0

Lα(x̄, ξ)(qV (t− ηα(ξ) + ηβ(x̄))

+ Ψα(ξ)X(t+ ηβ(x̄)))dξ

+

∫ x̄

0

Lβ(x̄, ξ)(V (t− ηβ(ξ) + ηβ(x̄))

+ Ψβ(ξ)X(t+ ηβ(x̄)))dξ. (54)

A slight rearrangement of the terms in the integrals yields

rV (t) = qV (t− ηα(x̄) + ηβ(x̄))

+ (Ψα(x̄)− rΨβ(x̄))X(t+ ηβ(x̄))

+

∫ x̄

0

(Lα(x̄, ξ)Ψα(ξ) + Lβ(x̄, ξ)Ψβ(ξ))dξ

×X(t+ ηβ(x̄))

+

∫ x̄

0

Lα(x̄, ξ)qV (t− ηα(ξ) + ηβ(x̄))dξ

+

∫ x̄

0

Lβ(x̄, ξ)V (t− ηβ(ξ) + ηβ(x̄))dξ. (55)

The result now follows by using the semigroup property of (5e), replacing terms in (55) by the definitions
(46)–(49), and dividing by r.

The control cancels the disturbance exactly in finite time, governed by the time of travel from x = 1
via x = 0 and back to x = x̄, which equals ηα(x̄).

The controller of Theorem 5 has the disadvantage that it requires storage of past control inputs in the
time interval [t− dr(x̄), t]. In addition, it has a pure feed forward structure relying on stored inputs rather
than system states which presents a potential robustness issue. Using Lemma 3, which relates the system
input to its states, it is possible to replace past inputs by states to form a state feedback controller that
avoids these drawbacks.

Theorem 6 (Pure state feedback): Suppose q �= 0, r �= 0, x̄ ∈ (0, 1) and let

V (t) =
1

r
Kpsf (x̄)X(t) +

1

r
δ(x̄, x̄, t)

+
1

r

∫ x̄

0

Lα(x̄, ξ)δ(ξ, x̄, t)dξ

+
1

r

∫ x̄

0

Lβ(x̄, ξ)β(φ−1
β (κβ(ξ, x̄)), t)dξ (56)

where

Kpsf (x̄) = Ωα(x̄, x̄)− rΨβ(x̄)e
Aηβ(x̄)

+

∫ x̄

0

Lα(x̄, ξ)Ωα(ξ, x̄)dξ

+

∫ x̄

0

Lβ(x̄, ξ)Ωβ(ξ, x̄)dξ (57)
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and

δ(ξ, x̄, t) =

{
δα(ξ, x̄, t) if κα(ξ, x̄) ≤ φα(0)

δβ(ξ, x̄, t) otherwise
(58)

δα(ξ, x̄, t) = α(φ−1
α (κα(ξ, x̄)), t) (59)

δβ(ξ, x̄, t) = qβ(φ−1
β (κα(ξ, x̄)− φα(0)), t) (60)

with

Ωαα(ξ, x̄) = Φα(ξ, φ
−1
α (κα(ξ, x̄)))e

Aκα(ξ,x̄) (61)

Ωαβ(ξ, x̄) = (qΦβ(0, φ
−1
β (κα(ξ, x̄)− φα(0))) + C)eAκβ(ξ,x̄)

+ Φα(ξ, 0)e
Aκα(ξ,x̄) (62)

Ωα(ξ, x̄) =

{
Ωαα(ξ, x̄) if κα(ξ, x̄) ≤ φα(0)

Ωαβ(ξ, x̄) otherwise
(63)

Ωβ(ξ, x̄) = Φβ(ξ, φ
−1
β (κβ(ξ, x̄)))e

Aκβ(ξ,x̄) (64)

and

κα(ξ, x̄) = φα(ξ) + ηβ(x̄) (65)

κβ(ξ, x̄) = φβ(ξ) + ηβ(x̄). (66)

Then the control law (4) achieves (2) for all t ≥ ηβ(x̄).
Remark 7: α(x, t) and β(x, t) in (56) and (58) are obtained from the states u(x, t) and v(x, t) of system

(1) by means of the transformation (3).

Proof: We start with a slightly rearranged version of (52)

rβ(x̄, t) = α(x̄, t) +

∫ x̄

0

Lα(x̄, ξ)α(ξ, t)dξ

+

∫ x̄

0

Lβ(x̄, ξ)β(ξ, t)dξ. (67)

Using (31b) in Lemma 3, and inserting into (67), we arrive at

rV (t− ηβ(x̄)) + rΨβ(x̄)X(t) = α(x̄, t)

+

∫ x̄

0

Lα(x̄, ξ)α(ξ, t)dξ

+

∫ x̄

0

Lβ(x̄, ξ)β(ξ, t)dξ (68)

for t ≥ ηβ(x̄). Time shifting ηβ(x̄) units and rearranging results in

rV (t) = −rΨβ(x̄)X(t+ ηβ(x̄)) + α(x̄, t+ ηβ(x̄))

+

∫ x̄

0

Lα(x̄, ξ)α(ξ, t+ ηβ(x̄))dξ

+

∫ x̄

0

Lβ(x̄, ξ)β(ξ, t+ ηβ(x̄))dξ (69)

which is valid for t ≥ 0. We will have to find expressions for α(ξ, t + ηβ(x̄)) and β(ξ, t + ηβ(x̄)) that
don’t include time shifts.
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The α-part: The α-part is a bit tricky, since the signal conditionally will have to be propagated through
the boundary condition (5c), depending on the values of ξ and x̄. From (20a), solutions to (5a) satisfy

α(ξ, t− φα(ξ))− α(z, t− φα(z)) = Φα(ξ, z)X(t). (70)

Shifting time by φα(ξ) + ηβ(x̄), we find

α(ξ, t+ ηβ(x̄)) = α(z, t− φα(z) + κα(ξ, x̄))

+ Φα(ξ, z)X(t+ κα(ξ, x̄)), (71)

where (65) has been used. We would now like to select z ∈ [0, 1] such that

φα(z) = κα(ξ, x̄). (72)

Since the inverse of φα is defined on [0, φα(0)], this is possible if

κα(ξ, x̄) ≤ φα(0) (73)

in which case we select z = φ−1
α (κα(ξ, x̄)) and obtain

α(ξ, t+ ηβ(x̄)) = α(φ−1
α (κα(ξ, x̄)), t)

+ Φα(ξ, φ
−1
α (κα(ξ, x̄)))

×X(t+ κα(ξ, x̄)). (74)

Using the semigroup property of (5e) along with the definition (63), we obtain

α(ξ, t+ ηβ(x̄)) = α(φ−1
α (κα(ξ, x̄)), t) + Ωαα(ξ, x̄)X(t). (75)

If (73) does not hold, the signal has to be propagated through the boundary condition (5c). In this case
we select z = 0 and (71) becomes

α(ξ, t+ ηβ(x̄)) = α(0, t− φα(0) + κα(ξ, x̄))

+ Φα(ξ, 0)X(t+ κα(ξ, x̄)). (76)

Substituting the boundary condition (5c) into (76) gives

α(ξ, t+ ηβ(x̄)) = qβ(0, t− φα(0) + κα(ξ, x̄))

+ CX(t− φα(0) + κα(ξ, x̄))

+ Φα(ξ, 0)X(t+ κα(ξ, x̄)). (77)

From (20b), solutions to (5b) satisfy

β(0, t)− β(z, t− φβ(z)) = Φβ(0, z)X(t). (78)

Shifting time by κα(ξ, x̄)− φα(0), we find

β(0, t− φα(0) + κα(ξ, x̄))

= β(z, t− φβ(z)− φα(0) + κα(ξ, x̄))

+ Φβ(0, z)X(t− φα(0) + κα(ξ, x̄)). (79)

Substituting (79) into (77) gives

α(ξ, t+ ηβ(x̄)) = qβ(z, t− φβ(z)− φα(0) + κα(ξ, x̄))

+ qΦβ(0, z)X(t− φα(0) + κα(ξ, x̄))

+ CX(t− φα(0) + κα(ξ, x̄))

+ Φα(ξ, 0)X(t+ κα(ξ, x̄)). (80)
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We now select z = φ−1
β (κα(ξ, x̄) − φα(0)), which is well defined since 0 < κα(ξ, x̄) − φα(0) ≤ φβ(1).

We find

α(ξ, t+ ηβ(x̄)) = qβ(φ−1
β (κα(ξ, x̄)− φα(0)), t)

+ (qΦβ(0, φ
−1
β (κα(ξ, x̄)− φα(0))) + C)

×X(t− φα(0) + κα(ξ, x̄))

+ Φα(ξ, 0)X(t+ κα(ξ, x̄)). (81)

Using the semigroup property of (5e) along with the definition (64), we obtain

α(ξ, t+ ηβ(x̄)) = qβ(φ−1
β (κα(ξ, x̄)− φα(0)), t)

+ Ωαβ(ξ, x̄)X(t). (82)

The above results (75) and (82) can be written more compactly by defining δ(ξ, x̄, t) and Ωα(ξ, x̄) as in
(58)–(60) and (63), respectively, yielding

α(ξ, t+ ηβ(x̄)) = δ(ξ, x̄, t) + Ωα(ξ, x̄)X(t). (83)

The β-part: From (20b) in Lemma 2, solutions to (5b) satisfy

β(ξ, t− φβ(ξ))− β(z, t− φβ(z)) = Φβ(ξ, z)X(t). (84)

Shifting time by φβ(ξ) + ηβ(x̄), we find

β(ξ, t+ ηβ(x̄)) = β(z, t− φβ(z) + κβ(ξ, x̄))

+ Φβ(ξ, z)X(t+ κβ(ξ, x̄)). (85)

where (66) has been used. We now select z = φ−1
β (κβ(ξ, x̄)), which is well defined since 0 < κβ(ξ, x̄) ≤

φβ(1), and obtain

β(ξ, t+ ηβ(x̄)) = β(φ−1
β (κβ(ξ, x̄)), t)

+ Φβ(ξ, φ
−1
β (κβ(ξ, x̄)))X(t+ κβ(ξ, x̄)). (86)

Defining Ωβ(ξ, x̄) as in (64) we can write

β(ξ, t+ ηβ(x̄)) = β(φ−1
β (κβ(ξ, x̄)), t) + Ωβ(ξ, x̄)X(t). (87)

The expression (56) now follows by substitution of (83) and (87) into (69) and using the definitions
(57)–(66). The control law will cancel the disturbance exactly in finite time, governed by the time of
travel from x = 1 to x = x̄, which equals ηβ(x̄).

IV. STATE OBSERVER

The two versions of the control law derived in the previous section require full knowledge of the system
states u(x, t), v(x, t) as well as the disturbance X(t). While they constitute the main theoretical results of
the present paper, and are verified in numerical simulations in the next Section, it is of interest to compare
with the more realistic problem of output feedback control. In practical problems, measured signals are
often limited to sensing at x = 1, a fact that requires the control laws to be modified. If we assume that
estimates of u(x, t), v(x, t) and X(t) are available and rely on the certainty equivalence principle, the
controllers can be implemented by replacing states in the controller by their corresponding estimates. The
estimates will have to be generated from the only signals available; the sensing at x = 1 and the generated
controller input U(t). Such an observer estimating the states of the system, was derived in [17], and a
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proof of exponential convergence was also given. In fact, the estimates were proven to reach their real
values in finite time.

A modification of the observer from [17] was done in [18] to accommodate the disturbance term entering
at the boundary. The observer takes the applied input U(t) and one measurement from the system as inputs,
and estimates the system states as well as the disturbance. For completeness, we repeat here the governing
equations for the observer developed in [18]. It is given as

ût(x, t) = −ε1(x)ûx(x, t) + c1(x)v̂(x, t)

+ p1(x)(y(t)− û(1, t)) (88a)

v̂t(x, t) = ε2(x)v̂x(x, t) + c2(x)û(x, t)

+ p2(x)(y(t)− û(1, t)) (88b)

û(0, t) = qv̂(0, t) + CX̂(t) (88c)

v̂(1, t) = U(t) (88d)

˙̂
X = AX̂ + eAφα(0)L(y(t)− û(1, t)) (88e)

where
y(t) = u(1, t) (89)

is the measurement. The matrix L is a gain matrix chosen such that (A−LC) is Hurwitz. The functions
p1(x) and p2(x) are injection gains, given as

p1(x) = CeAφα(x)L− ε1(1)P
uu(x, 1)

−
∫ 1

x

P uu(x, 1)CeAφα(ξ)Ldξ (90a)

p2(x) = −ε1(1)P
vu(x, 1)

−
∫ 1

x

P vu(x, 1)CeAφα(ξ)Ldξ (90b)

where the kernels are the solution to1

ε1(x)P
uu
x (x, ξ) + ε1(ξ)P

uu
ξ (x, ξ)

= −ε′1(ξ)P
uu(x, ξ) + c1(x)P

vu(x, ξ) (91a)

ε1(x)P
uv
x (x, ξ)− ε2(ξ)P

uv
ξ (x, ξ)

= ε′2(ξ)P
uv(x, ξ) + c1(x)P

vv(x, ξ) (91b)

ε2(x)P
vu
x (x, ξ)− ε1(ξ)P

vu
ξ (x, ξ)

= ε′1(ξ)P
vu(x, ξ)− c2(x)P

uu(x, ξ) (91c)

ε2(x)P
vv
x (x, ξ) + ε2(ξ)P

uv
ξ (x, ξ)

= −ε′2(ξ)P
vv(x, ξ)− c2(x)P

uv(x, ξ) (91d)

1Apparently, the original kernels equations stated in [17] contained some typos. The kernel equations stated here are the ones found in
[18].
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with boundary conditions

P uu(0, ξ) = qP vu(0, ξ) (92a)

P uv(x, x) =
c1(x)

ε1(x) + ε2(x)
(92b)

P vu(x, x) = − c2(x)

ε1(x) + ε2(x)
(92c)

P vv(0, ξ) =
1

q
P uv(0, ξ) (92d)

defined over the triangular domain

T0 = {(x, ξ) : 0 ≤ x ≤ ξ ≤ 1}. (93)

It was proven in [17] that there exists a unique solution to (91)-(92), and that the solution is continuous
over T0. For a proof of exponential convergence of the estimates, the interested reader is referred to [18].

V. APPLICATIONS TO THE HEAVE PROBLEM

A. Managed Pressure Drilling and the heave problem
During drilling operations, a drilling fluid called mud is pumped down through the drill string, through

the drill bit at the bottom of the well, and up the annulus around the drill string. The mud serves several
functions, like cooling down the drill bit and carrying cuttings out of the system. The mud also works
to keep the pressure in the annulus at a desired level. This latter purpose is a crucial part of drilling, as
the pressure needs to be kept within certain bounds to avoid fracturing of the formation or collapse of
the well. Technologies developed with the aim of improving the pressure control throughout the well are
often referred to as Managed Pressure Drilling (MPD).

The heave problem in MPD is a problem emerging when drilling offshore from a rig floating at the
sea. The floating rig naturally moves up and down with the waves. During drilling, an active mechanism
is used to keep the string from moving with the rig. However, every 27 − 29 metres, it is necessary to
stop the drilling to extend the drill string. During this procedure, the heave compensation mechanism
is deactivated and the string is rigidly attached to the rig. The drill string then moves with the rig and
acts as a piston on the mud in the well. Left uncompensated, this piston effect results in severe pressure
fluctuations throughout the well, often exceeding the standard limits for pressure regulation accuracy in
MPD, which are about ±2.5 bar.

Traditional MPD has focused on maintaining a constant bottom hole pressure, but there may be situations
where pressure regulation at other points in the well is preferable, e.g. at the bottom of a casing string
(also known as a casing-shoe). Hence, the stage is set for application of the results of this paper.

B. Modelling
The following model was used in [18] to model the heave problem in MPD

pt(z, t) = − β

A1

qz(z, t) (94a)

qt(z, t) = −A1

ρ
pz(z, t)−

F1

ρ
q(z, t)− A1g (94b)

q(0, t) = −A2C̄Z(t) (94c)

p(l, t) = pl(t) (94d)

Ż = ĀZ, Z(0) = Z0 (94e)
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where l is the well depth, z ∈ [0, l], t ≥ 0, p(z, t) is the pressure, q(z, t) is the volumetric flow, β is
the mud’s bulk modulus, ρ is the mud density, A1 is the cross sectional area of annulus, A2 is the cross
sectional area of the drill bit, F1 is the friction factor and g is the gravity constant. pl(t) is the actuation,
and its actuation device is assumed to have significantly faster dynamics than the rest of the system, so
that actuator dynamics may be ignored. Also, q(1, t) is assumed measured. A desired constant pressure
at z = z̄ ∈ (0, l) is stated as

p(z̄, t) = psp. (95)

The disturbance Z(t) is assumed to be an autonomously driven harmonic oscillator, parametrized by a
finite set {ω1, ω2, . . . , ωn} of known frequencies and

Ā = diag

([
0 ω1

−ω1 0

]
, . . . ,

[
0 ωn

−ωn 0

])
(96)

C̄ =
[
0 1 0 1 . . . 0 1

]
(97)

with the pair (Ā, C̄) assumed observable. The model (94) was originally presented in [4], with the
disturbance model (96)-(97) taken from [18].

C. Feasibility of design
System (94) will have to be mapped to the form (1) in order to use the results of the previous sections.

Lemma 8 (Modified from Lemma 10 in [18]): Assume z̄ ∈ (0, l) and psp are given. Let

x̄ =
z̄

l
, (98)

then the transformation

u(x, t) =
1

2

[
q(xl, t) +

A1√
βρ

(p(xl, t)− psp + ρgl(x− x̄))

]

× e
lF1

2
√
βρ

(x−x̄)
(99a)

v(x, t) =
1

2

[
q(xl, t)− A1√

βρ
(p(xl, t)− psp + ρgl(x− x̄))

]

× e
− lF1

2
√

βρ
(x−x̄)

(99b)

maps the system (94) to the form (1) with

X(t) = Z(t) (100)

U(t) =
1

2
(q(l, t)− A1√

βρ
(pl(t)− psp + ρgl(1− x̄)))

× e
− lF1

2
√
βρ

(1−x̄)
(101)

ε1(x) = ε2(x) = ε, c1(x) = a0e
γx, c2(x) = b0e

−γx (102)

q = −e−γx̄ (103)

A = Ā, C = −e
γ
2
x̄A2C̄ (104)

where

ε =
1

l

√
β

ρ
, γ =

lF1√
βρ

(105)
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a0 = c0e
−γx̄, b0 = c0e

γx̄, c0 = −1

2

F1

ρ
. (106)

Moreover, the control objective (95) is transformed to (2) with r = 1.

Proof: We remove the constant term and shift the origin by defining

p̄(z, t) = p(z, t)− psp + ρg(z − z̄) (107)

from which we find
p̄z(z, t) = pz(z, t) + ρg (108)

p̄t(z, t) = pt(z, t). (109)

This yields the following modified system

p̄t(z, t) = − β

A1

qz(z, t) (110a)

qt(z, t) = −A1

ρ
p̄z(z, t)−

F1

ρ
q(z, t) (110b)

p̄(l, t) = pl(t)− psp + ρg(l − z̄). (110c)

Consider now the diagonalizing change of variables

ū(z, t) =
1

2

(
q(z, t) +

A1√
βρ

p̄(z, t)

)
(111a)

v̄(z, t) =
1

2

(
q(z, t)− A1√

βρ
p̄(z, t)

)
(111b)

from which we find

ūt(z, t) = −
√

β

ρ
ūz(z, t)−

1

2

F1

ρ
(ū(z, t) + v̄(z, t)) (112a)

v̄t(z, t) =

√
β

ρ
v̄z(z, t)−

1

2

F1

ρ
(ū(z, t) + v̄(z, t)). (112b)

We scale the domain into [0, 1] by using x = z/l and get rid of the terms ū in (112a) and v̄ in (112b) by
defining

u(x, t) = ū(xl, t)e
lF1

2
√
βρ

(x−x̄)
(113a)

v(x, t) = v̄(xl, t)e
− lF1

2
√
βρ

(x−x̄)
, (113b)

where (98) has been used. From (113) and (112), we obtain

ut(x, t) = −1

l

√
β

ρ
ux(x, t)−

1

2

F1

ρ
v(z, t))e

lF1√
βρ

(x−x̄)
(114)

vt(x, t) =
1

l

√
β

ρ
vx(x, t)−

1

2

F1

ρ
u(z, t))e

− lF1√
βρ

(x−x̄)
(115)

which is on the form (1) with the coefficients given by (102) and (105)–(106). Composing the transfor-
mations (113), (111) and (107), we find (99).

The connection between pl(t) and U(t) in (101) is verified by inserting x = 1 in (99b) and using (1d).
The parameters in the boundary condition (1c) can be expressed by forming

u(0, t) + v(0, t)e
− lF1√

βρ
x̄
= q(0, t)e

− lF1
2
√
βρ

x̄
(116)
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and defining q, C as in (104) and (103), respectively. Lastly, by inserting x = x̄ = z̄/l into (99a) and
(99b), we obtain

u(x̄, t) =
1

2

[
q(x̄l, t) +

A1√
βρ

(p(x̄l, t)− psp)

]
(117a)

v(x̄, t) =
1

2

[
q(x̄l, t)− A1√

βρ
(p(x̄l, t)− psp)

]
. (117b)

Hence, the controller objective (95) is achieved if

u(x̄, t) = v(x̄, t), (118)

thus, r = 1 in (2).

D. Simulations
We will test the controllers of Theorem 5 and 6 on the system (94). The system parameters used in

the subsequent simulations are

β = 7317 · 105Pa, A1 = 0.024 m2, ρ = 1250 kg/m3

F1 = 10 kg/m3s, g = 9.81 m/s2, A2 = 0.02 m2

l = 3000 m, psp = 350 · 105 Pa

ω1 =
2π

12
. (119)

Thus, the disturbance is a single harmonic of period 12 seconds. The chosen depth for pressure attenuation
is 2000 m which corresponds to x̄ = 1

3
. The time-delayed control signal needed for the controller in

Theorem 5 is generated using a transmission line. The observer poles were placed at −0.15± 0.02j. To
better see the effect of the controller, the system is initially left in open loop with the controller and
observer switched on at t = 40.

Figure 1 shows the pressure distribution in the well for the recursive version of the controller in Theorem
5, with Figure 2 showing the pressure at the depth 2000 meters with a closer look from t = 60 seconds
in Figure 2b. The applied controller inputs are shown in Figure 3. The equivalent plots for the pure state
feedback version of the controller are given in Figures 4-6.

From Figure 2b and Figure 5b, it is seen that the effect of Z(t) is strongly attenuated for both versions
of the controller, with the amplitude of oscillations reduced from about 40 bar to about 0.7 bar for the
recursive controller, and to approximately 0.1 bar for the pure state feedback controller. This constitutes
to attenuation factors of approximately 60 and 400, respectively. The considerably improved level of
attenuation for the pure state feedback version of the controller is justified by the robustness issues from
using the recursive version of the controller, with the pure state feedback version relying on the actual
system states rather than the stored inputs. The attenuation is extremely fast when using state feedback, and
an exponential decay can be observed when using the observer generated states. This is in agreement with
the theory that states attenuation in finite time for state feedback, while the observer provides exponentially
converging state and disturbance estimates.

VI. CONCLUSIONS

We have generalized the results from [18], and derived a full state feedback law for disturbance
attenuation at an arbitrary point in the domain for a class of systems described by linear 2 × 2 partial
differential equations of the hyperbolic type, with the disturbance modelled as an autonomous, finite
dimensional linear system affecting the PDE’s left boundary, and actuation limited to the right boundary.
The full state feedback law can be combined with an observer generating full state and disturbance
estimates from sensing at the right boundary. The full state feedback law is formulated in two different
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Fig. 1: Pressure distribution throughout the well for the recursive implementation using state feedback.
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Fig. 2: Pressure at depth 2000 metres for the recursive implementation.
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Fig. 3: Control input for the recursive implementation.
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Fig. 4: Pressure distribution throughout the well for pure state feedback implementation using state
feedback.
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Fig. 5: Pressure at depth 2000 metres for the pure state feedback implementation.
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ways. One is recursive and requires storing a finite time-series of control inputs backwards in time, while
the other one is a function purely in the system states at the current time.

Both formulations of the feedback law have been applied to the heave problem from the oil and gas
industry, and showed significant attenuation properties.
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[11] O. M. Aamo, A. Smyshlyaev, M. Krstić, and B. A. Foss, “Stabilization of a Ginzburg-Landau model of vortex shedding by output

feedback boundary control,” in CDC. 43rd IEEE Conference on Decision and Control, vol. 3, 2004, pp. 2409–2416.
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