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“We should send machines and instruments out to sea, not people.”
- David Packard





Abstract

Maintaining a healthy ocean is of the utmost importance. Having only a limited set

of resources available to study this vast domain requires research and science to focus

on more efficient data collection. Determining when and where to sample is, in this

regard, a crucial question. The introduction of robotic elements into ocean observation

practices have augmented traditional ship-based sampling and provided efficient and

reliable sensing platforms for autonomous sampling of oceanographic data, enabling

measurements on scales logistically impossible using traditional techniques. However,

robotic sampling still relies on deterministic pre-programmed sensing schemes, consisting

of sequential waypoints scripted with mission planning tools. In this case, all relevant

information is implemented into the mission a priori. This is problematic, since prior

knowledge of oceanographic conditions is usually poor leading to substantial uncertainty;

consequently, plans for sampling the oceans are suboptimal at best.

Alternatively, the platform can be programmed to adjust the sampling plan online

during the mission, capitalizing on both prior and current (in-situ) information. In this

setting, sampling happens sequentially over time, according to a conditional plan which

changes online during the mission in response to observed data. This type of autonomous

sampling scheme is typically referred to as adaptive sampling or data-driven sampling.

Adaptive/data-driven strategies can operate on an a posterior knowledge base and react

to current conditions. The impact of this is twofold: i) enabling the sensor platform to

divert from the mission if favorable circumstances materialize (opportunistic behavior),

and ii) increasing the prospect of retrieving pursued information more effectively. The

latter aspect is often considered the most noteworthy, especially for resource intensive

environmental sensing applications, having the potential to reduce time and cost.

This thesis presents different methods and applications in adaptive sampling for

marine robotics, focusing on exploration of the upper ocean using single platform appli-

cations. The coastal ocean and the upper water column are characterized by substantial

heterogeneity and spatio-temporal variation. Sampling can therefore benefit from access

to synoptic marine data sources such as ocean models and remote sensing, but due

to computational limitations and accuracy, these information sources must be used in

combination with statistics. Gaussian Processes (GPs) offer a practical probabilistic

approach for modeling spatial dependent data and uncertainty. The foundation for the

approaches developed here is based on combining GPs with information-theoretic and

data-driven criteria to evaluate potential sampling locations. A general problem related to

optimization of choosing these sensing locations is the exponential combinatoric increase
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Abstract

in dimensionality. The problems are therefore often simplified using heuristics and greedy

algorithms.

The principal contributions of this work are related to i) the design and analysis

of information-theoretic approaches in upper water column sampling, coupled with

intelligent control and ii) testing and validating these methods in the field. This includes

a suite of greedy data-driven sampling strategies for the upper water column, developed

and tested in full-scale experiments, with applications spanning thermal gradients

and internal-waves, assessment of ocean model accuracy, 3-dimensional tracking of

sub-surface chlorophyll, and dispersion dynamics in the water column. A proposed

methodology for building compact proxy models from remote sensing SST images is

also presented using machine learning tools, as well as an application for autonomous

mapping of the seafloor. Field testing of these methods presents a considerable challenge

given the harsh and dynamic state of the ocean, where large uncertainties and risk are

usually the norm rather than the exception. The results show the benefits and potential of

using marine data sources and incorporating adaptive sampling routines for exploration

of the upper ocean. The emergence of autonomous systems and adaptive sampling does

not displace ships or fixed observation stations, however, the introduction of data-driven

sampling can greatly augment and increase the observational efficiency and resolution,

helping to ensure scientific success.

This thesis is edited as a collection of papers.
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Chapter 1

Introduction & Motivation

CONSIDER the problem where the objective is to effectively measure a phenomenon

or process taking place in the ocean. In this dynamic environment, observations are

highly dependent on location and time, and relative to size of the oceanic domain, only a

small number of sensors can be deployed, making it expensive and impractical – some-

times even impossible – to completely observe the entire domain in detail. A key question

in this regard is

“Where and when should we measure in order to effectively retrieve relevant
and useful information?”

In spatial statistics this optimization problem is called sampling or experimental
design (Krause et al., 2008), where the aim is to find the most informative locations

given an optimization criterion or metric. Resolving these types of sensing problems

depends on careful planning and understanding of the environmental characteristics. For

an oceanographer, planning how to sample is often challenging as prior information is

incomplete and uncertain. Trying to specify when and where to sample solely on the basis

of prior data can therefore lead to redundant and ineffective data collection. Alternatively,

one can make use of adaptive data collection systems and platforms capable of deciding

where to sample online during the mission, in response to observed data. In this setting,

sampling happens sequentially over time, according to a conditional plan that tries to

capitalize on both prior and current (in-situ) information, providing potential for better

allocation of sampling efforts and information recovery. This type of sampling is typically

referred to as adaptive sampling and is encapsulated in Fig. 1.1, showing the fundamental

premise that underlines this type of thinking, forming the basis for this thesis. This

approach to sampling introduces a set of new challenges and topics that will be discussed

in detail in the following subsections, in the context of sampling the upper ocean, using

marine robotic platforms.

In this chapter, the motivation and background for the thesis is introduced together with

the specific research questions and methodology. The goal is to explain adaptive sampling

and related applications as plainly as possible, and build on this in the following chapters.
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1. Introduction & Motivation

The structure and contributions of the thesis, as well as the relations between the papers,

included in Part II of the thesis, are presented at the end of the chapter.

Plan

Generate sensing
strategy

Observe
world

Update prediction of the 
environment

Sense
Act

Assimilate/Learn

Figure 1.1: The adaptive sampling perspective of ocean observation underlining the ap-

proaches studied in this thesis. The cycle follows the Sense→Plan→Act control method-

ology.

1.1 Upper Ocean Observation: From Ships to Robots

Despite our reliance on the ocean, over 80% of the realm is unmapped, unobserved, and

unexplored (National Oceanic and Atmospheric Administration, 2018). Starting with

simple instruments, humans have studied and navigated the ocean throughout history.

Although Charles Darwin set sail on the HMS Beagle and made many observations

about ocean life in 1831 (Darwin and Keynes, 2001), modern oceanography first began

as a field of science in the late 19th century with the HMS Challenger expedition in

1872-1876, which traveled more than 100,000 km and sampled all ocean basis except

the Arctic (Bailey, 1953). The Norwegian scientist, Fridtjof Nansen, was an early,

prominent figure for Arctic discovery and was responsible for valuable oceanographic,

magnetic, and meteorological groundwork. He was studying the Arctic’s current structure

(Nansen, 1905) and was the inventor of the first widely used water sampling bottle (the

“Nansen bottle”). Oceanographers and engineers have always looked for ways to improve

ocean sampling systems and technologies. Much of this was driven by the fact that

oceanographic exploration needed to both measure new parameters and reduce the cost of

experiments - efforts that continue to this day

At a fundamental level, observing physical interactions in the ocean requires

measuring across a moving mass of water and its constituents over time. Traditional

ocean sampling methods were (and still are) ship-based, and included laborious data

collection methods such as physical water sampling, net trawling, and vertical wire

casting using various instruments. Such observations successfully led exploration of

large-scale temperature, salinity, and density features associated with the dominant ocean

currents until 1952 (Munk and Wunsch, 1982). An inherent problem with this form of

observation was the lack of resolution in time and space, which masked observation of

4



1.1. Upper Ocean Observation: From Ships to Robots

a number of important processes and their variability. This lack of synoptic1 observation

prompted the renowned physical oceanographer, Walter Munk, to refer to this first

period as the “century of undersampling”. By the early 1970s the introduction of floating

and fixed buoys resulted in increased temporal resolution, which soon demonstrated

that the spatiotemporal variability of the water column was far more complex than

previously assumed (Munk, 2002). The foundation for optimal synoptic sampling and

exploration of this variability was later laid out in the pioneering work of Bretherton

et al. (1976),whereby a moored array was specifically designed to reconstruct mesoscale2

flow fields during the Mid-Ocean Dynamics Experiments (MODE-73 experiment).

Gradually, a more nuanced understanding of ocean dynamics and scale-dependent

variability became accepted. This led to an important realization among oceanographers

that the current methods could not be sufficiently scaled to resolve the aliasing3 problem

linked to the traditional observational approach. Gathering data that can differentiate

between spatial and temporal variations had always been a core challenge for oceanog-

raphy; having a limited set of resources available to resolve this limitation, the marine

scientific community felt compelled to focus on new and efficient data collection practices.

In the late 1970s, the first large-scale buoy network (Argo) and the first ocean satellite

(Seasat) were launched. Like the introduction of the echosounder, satellite oceanography

introduced a new and more synoptic perspective of the ocean. For the first time, some of

the processes could be adequately measured with sufficient resolution to be resolved4,

such as tides (Munk, 2002); but unlike sound, the oceans are opaque to electromagnetic

waves, thus only the very surface could be observed in this way. Synthetic ocean models

were also rapidly becoming a useful tool, which could be used in conjunction with

observations and satellite systems through assimilation (Munk and Wunsch, 1982). In

response to an increasing need for in-situ characterization, the advent of marine robotics

enabled data collection on scales logistically impossible using traditional techniques (Das

et al., 2011), such as the ability to track individual organisms or resolve spatially-evolving

gradients. The traditional form of ocean observation was by no means obsolete, but

could now be complemented by data from a range of different sources. Numerous

field programs involving coordinated robotic sampling, such as the Autonomous Ocean

Sampling Network (AOSN-I/-II) (Curtin et al., 1993; Ramp et al., 2009), were conducted

to study how ocean variability could be observed using a combined system of assets. In

the wake of this and similar efforts, the need for coordinated, opportunistic, and targeted

observations became more clear, leading the way for more sophisticated robotic sampling

approaches.

1A synoptic observation is capable of capturing information in such a way that the measurements can more

or less reconstruct the underlying process that created them.
2The term mesoscale describes the variability occurring at scales from ∼50-500 km, and ∼10-100 days;

often referred to as the “internal weather of the ocean”.
3Aliasing is an effect that arises from sampling information at a resolution/scale which is not sufficient for

reconstruction (i.e., information that is lost when making observations).
4When we describe a process as resolved, we mean that the process is measured without aliasing.
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1. Introduction & Motivation

Figure 1.2: Schematic diagram illustrating the various platforms used for the Hyperspec-

tral Coastal Ocean Dynamics Experiment (HyCODE) at the LEO-15 (von Alt and Grassle,

1992) study site off the coast of New Jersey, USA. Image courtesy: Scott Glenn, Rutgers

University.

1.2 Adaptive Sampling of the Water Column

Present day ocean observation still builds on experiences from experiments such as

AOSN-I/-II, where dominant practices have gradually shifted from ship-based ocean

sampling to remote and robotic sensing using satellites, drifting floats, numerical ocean

modeling, and autonomous underwater vehicles (AUVs). Oceanographic sensing prac-

tices have transformed from platform-based schemes towards networks of heterogeneous

sensor nodes (Curtin et al., 1993)(see Fig. 1.2), measuring and sharing information

across a range of different scales; this has prompted the need for effective allocation and

coordination of these resources. Access to synoptic marine data sources such as ocean

models and remote sensing can augment this process. However, the accuracy of ocean

models is not at a level capable of making accurate predictions of these processes at scales

sufficient for definite representation (Lermusiaux, 2006), and typical weather conditions

make the use of remote sensing limited. As we will see, these information sources must

therefore be used side-by-side with statistical tools and models, both to extract the best

6



1.2. Adaptive Sampling of the Water Column

possible information from the available data and provide the ability to generalize, model,

and learn on the basis of prior and current data. The coastal ocean and the upper water

column are domains where the need for more sophisticated robotic sampling approaches

is critical. Being highly relevant to marine life and bio diversity, the study of the processes

in the water column has broad ecological, scientific, and social-economical significance.

Coastal influences from bathymetry, river discharge, land run-off, and complex oceanic

circulation also cause additional heterogeneity and spatio-temporal variation that can

only be adequately studied using in-situ assets. Determining what resources to deploy

and when and where to sample, is therefore an essential question facing scientists in

this domain. The fundamental non-deterministic nature of the ocean makes inference

about sampling a task that cannot be fully determined prior to data collection – ex-situ.

Regular grid (“lawnmower”) or single-line surveys are still in use, but as ocean conditions

imply both incomplete information and high uncertainty, such strategies often result

in sub-optimal survey designs. These approaches are gradually being substituted by

more effective sampling designs that can exploit background information, and adapt to

changing conditions and observations (Frolov et al., 2014).

The potential for utilizing adaptive sampling approaches in the water column is

significant. To illustrate this more clearly, examine Fig. 1.3a, which depicts a survey

of a biomass layer distributed in the water column with an AUV. Let’s imagine that

we want to measure a property inherent to this biomass that implies placing the AUV

within this layer. Starting with a non-adaptive strategy, a natural approach would be to

base the survey depth on an average value calculated from prior data. Since this depth is

dependent on conditions that may or may not be true for the current survey, the possibility

of placing the AUV inside the biomass layer is low. Fig. 1.3a shows such a case, where a

non-adaptive sampling plan (in red) ends up not measuring the biomass at all, except for a

small region. Given the data from this survey, the conclusion might be that “there are little

or no significant biomass in this area”. In contrast, let’s now imagine we use an adaptive

strategy, capable of including information such as, “you are outside the patch→change

the depth”; or rather, “you are inside the patch→keep the current depth”. Incorporation

of this type of information can lead to sampling plans such as the blue line in Fig. 1.3a,

clearly superior in terms of placing the AUV at a more beneficial depth, on which a more

correct conclusion about the biomass distribution could be drawn. This illustrates what

can be achieved by exploiting information gathered in the field, as well as how different

conclusions relate to sampling bias.

Adaptive sampling schemes also enable opportunistic behavior. Fig. 1.3b shows this

aspect by presenting a case where two different distributions (i.e. yellow, green) are of

interest. The AUV can in this context, if one or the other were to appear, choose to map

either one of the distributions. Alt. A may be a good idea, as the AUV already has data

from the other distribution, or if the previous distribution has more relevance, Alt. B

may be the best option. Despite being a conceptual example, Fig. 1.3a and 1.3b clearly

highlight the advantages of adaptation.

But there are some challenges. For the upper water column the bio-physical processes

(interaction between biological parameters and physical forces in the ocean) being studied

are often not directly measurable (e.g. phytoplankton via Chlorophyll a, photosynthesis via
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Adaptive

biomass

Non-adaptive

(a) Adaptive vs. non-adaptive sampling.

Alt. A Opportunity

Alt. B

(b) Opportunistic behavior.

AUV speed > process speed 

(c) Temporal constraints must be addressed to avoid undersampling.

sampling resolution

high res.

low res.

(d) Sampling resolution should be high enough to resolve the process characteristics.

Figure 1.3: Adaptive (data-driven) sampling of the upper water column showing the poten-

tial of using adaptive sampling and the associated spatio-temporal considerations, i.e. the

influence of relative speed and spatial resolution on sampling efficiency and perception.

fluorometery, etc.), as sensors often only observe proxy variables, which means indirect in-

formation must be used to decide how to proceed with future sampling. Processes can also

be highly dynamic, interacting on multiple scales, and even be episodic; this makes obser-

vation and mapping a considerable challenge. The sensor-carrying platform can itself try

to quantify this and learn the distributional characteristics, but this can be both difficult and

time consuming. Accordingly, it is important to identify the correct spatial and temporal

scales at which to adequately sample the process of interest. Usually for water column sur-

veys the platform is following a yoyo (sawtooth) pattern, as the vertical direction is more

heterogeneous (i.e., contains more variability), compared to the horizontal. The main rea-

son for this is stratification from gravitational pull, leading to a “layered” structure in the

water column, with increased horizontal correlation. Although this undulating pattern is

more efficient at resolving details in the water column, the speed over ground is reduced
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thus affecting the spatial coverage along the horizontal plane. Temporal aspects are also

important as currents, mixing, and other types of flow interaction continuously displaces

the domain in which we are measuring. For example, given a non-stationary field, one

would aim to visit dynamic locations more frequently than static locations to reduce the

temporal errors. Or, in another instance, one would limit the survey area to a certain size

(i.e. an enclosure criterion) in order to bound the time variable effects from currents. Fig.

1.3c and 1.3d illustrate some of the temporal and spatial aspects for making measurements

in the water column, i.e. the influence of relative speed and spatial resolution on sampling

efficiency and perception. As is evident from these illustrative examples, the speed of the

platform has to be faster than the process speed (i.e. currents, vertical migration of zoo-

plankton, plume dispersal speed, etc.) and the sampling resolution should be sufficient, in

order to resolve the process structure. The sampling resolution should at least follow the

Nyquist rate (see Section 2.1) to avoid aliasing.

1.3 Research Questions and Methodology

To achieve oceanography’s overarching goal of better understanding of the world’s oceans,

it’s necessary to develop cost effective tools, techniques, and processes for doing ocean

based measurements using robotic platforms. From this broad perspective, the focal point

of this thesis has been the development of adaptive sampling for marine robotics, with a

principal focus on AUVs and coastal waters. The problem domain can be further divided

into one of four categories of environmental sensing, given in Fig. 1.4.

Example: Water-column
sampling w/ AUV.

Example: Seafloor camera
frames. 

Example: Seafloor mapping
w/ AUV.

Dynamic environment Dynamic environment

Static environment Static environment

Static sensor (DS) Moving sensor (DM)

Moving sensor (SM)Static sensor (SS)

Example: Moored sensors 
and buoys.

Figure 1.4: The types of environmental sensing problems in ocean science. This thesis

concerns moving sensors in dynamic environments (DM), focusing on water column sam-

pling with AUVs.
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In a static or quasi-static environment, such as the sea-floor, the environment is sta-

tionary or slowly changing. In this context, the observations would not change signif-

icantly as time passes. In contrast, a dynamic environment, such as the water column,

change happens regularly, often in an episodic and non-deterministic fashion. Determining

a sampling design under these conditions is significantly more challenging, and planning

ahead in time-dependent environments using only prior information would be prone to

time evolving and unobserved uncertainty. Thus, the capacity to adjust sampling based on

new observations is vital. Besides, it is also not possible to strive for complete coverage in

the oceanic domain, so prioritization of sampling efforts must always be considered one

way or another. Accordingly, the type of problems studied in this thesis concerns moving

sensors in dynamic environments (DM), focusing on water column sampling with AUVs.

Building on the current state of the science, the following research topics and methodolo-

gies have been raised to address the topic of adaptive sampling:

This thesis will describe the concepts involved in adaptive sampling and formu-
late methods that can demonstrate data-driven mission execution based on in-
situ measurements for sampling applications in the water column. Additionally,
verification and field testing of the proposed algorithms should be conducted,
using AUVs as the main platform.

A: Designing data-driven agents for ocean sampling: How can observed data be used to

plan and retain an advantageous strategy for information recovery in the ocean

using a data-driven agent?

B: Utilization of information-theoretic methods: How can we increase the prospect of

retrieving the pursued data and make data collection more effective by integrat-

ing information-theoretic methods from spatial statistics and machine learning?

C: Utilization of marine data sources: How can marine data sources such as remote

sensing and ocean models be used towards informing on board sampling strate-

gies and planning?

The proposed research methodology includes theoretical analysis, simulation, mod-

eling, and full-scale experiments. This process can vary greatly depending on the per-

spective of the end-users (e.g. oceanographers and biologists) and operational domain,

whether one is in coastal waters, fjords, or high latitude locations such as the Arctic. The

scientific foundation for autonomous ocean sensing also covers a range of different sub-

fields and disciplines, including: robotics, control, spatial statistics, artificial intelligence

(AI), machine learning, and the pure sciences (see Fig. 1.5). This work encompasses el-

ements of all of these disciplines, building systems that can reason, plan, and strategize

data collection in highly uncertain environments. Information-based metrics have largely

been adopted from spatial statistics and Bayesian experimental design, with intersections

between sensor networks and the sensor placement problem. The scientific context is also

often multi-disciplinary including teams from biology, physical oceanography, and other

environmental sciences. This is of particular relevance, as each field of study is exposed to

different spatio-temporal scales depending on the processes in focus, each potentially re-

quiring a different sampling approach. Finding a balance between practice and applicable

theory is vital for success.
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Figure 1.5: The disciplines and theory involved in autonomous sampling of the ocean:

robotics, oceanography (the practice), spatial statistics, and information theory. This work

encompasses elements of all of these disciplines, building systems that can reason, plan,

and strategize data collection in highly uncertain environments.

Design and implementation have been conducted using the autonomous agent archi-

tecture T-REX (McGann et al., 2008b,a; Py et al., 2010) and the on board AUV control

system DUNE (Pinto et al., 2012). The numerous sea trials (see Table A.1) have primar-

ily been conducted in Svalbard, the Trondheimsfjord, and nearby coastal areas using the

Light Autonomous Underwater Vehicle (Sousa et al., 2012) [LAUV Harald] – special-

ized for water column sampling. Real-world sensing applications and campaigns are not

merely concerned about extending current sampling abilities of AUVs, but also retrieving

the data itself. Failure to reconcile the two weakens the overall result, thus the aim must

be to change the way we retrieve data for the benefit of the scientific context.

1.4 Thesis Contributions and Outline

The principal contributions of this work are related to i) the design and analysis of

information-theoretic approaches in upper water column sampling, coupled with intel-
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ligent control and ii) testing and validating these methods in the field. This includes

development of greedy data-driven sampling strategies and formulation of compact proxy

models for use in autonomous exploration of the water column using a single robotic

platform. Details on the contributions per paper are listed in more detail in Ch. 6, Section

6.3, stated below the reference to each paper.

This thesis summarizes and complements a number of publications, and is organized

as follows. The first part of the thesis presents an overview of the research with background

information that helps to fit the individual papers into the broader context of adaptive sam-

pling. There are six chapters whose content is briefly described below. Part II contains the

papers, which support the discussion presented in Part I. Included here are four authored

and two co-authored papers, of which three are journal papers and three are conference

papers. The papers are listed in the same order as they appear below. The scientific contri-

bution of each paper is given in Ch. 6 together with a summary and future work.

Part I

Chapter 2 gives an overview of sampling in the oceans and the space-time variability of

the interacting processes before an overview over synoptic marine data sources is given,

focusing on remote sensing and numerical ocean models. Chapter 3 provides a brief

introduction to spatial statistics and Gaussian processes. Applications and examples are

given from the standpoint of modeling and inference in the ocean environment. Building

on the basis from the preceding chapters, Chapter 4 discusses information-theoretic and

behavior-based adaptive sampling in detail, including theory, related work, applications,

as well as some concrete examples of data-driven autonomous agents. The theory and

concepts are further discussed in an operational context in Chapter 5, which provides

a discussion about marine robotic platforms and practical aspects related to adaptive

sampling, focusing on operational issues and deployment with AUVs in the upper water

column. Finally, Chapter 6 summarizes the thesis and specifies the scientific contribu-

tions before a discussion on potential future research directions. Lastly, Appendix A
provides an overview of the field deployments undertaken during the PhD work.

Part II

The papers included in this section cover different aspects of autonomous robotic sam-

pling. Papers A-B present two adaptive sampling methods based on Gaussian processes

for doing data collection in the water column. Paper A proposes a greedy adaptive sam-

pling algorithm that uses an information-theoretic approach to select and plan sampling

efforts. The strategy relies on a Gaussian process model for modeling the environment,

formulated on the basis of regional data from an ocean model. Paper B employs a similar

Gaussian model, but this time for modeling and mapping heterogeneous concentrations

of water column parameters. This model is then used for adapting a volumetric AUV

survey, targeting regions of interest. Results from field trials are shown, together with

corresponding ship-based observations. Paper C presents a methodology for leveraging

remote sensing data, specifically images of sea-surface temperature, towards developing

compact on board models that can be used to inform sampling strategies for marine
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sensing platforms. A case study using data from Monterey Bay and an autonomous

surface vehicle is presented, together with statistical validation and analysis of the

compact model. Paper D proposes an autonomous agent architecture for inspection,

maintenance, and repair applications for ROVs, aided by control and computer vision

techniques. Results from field deployment using a full scale integration on board a work

class ROV is shown. In Paper E, the greedy and Gaussian framework from Paper A is

re-applied to an industrial application for tracking and monitoring dispersion dynamics in

the water column. Paper F presents an approach for autonomous mapping of the seafloor

using Hidden Markov Random Fields. Backscatter is used to segment and automatically

plan a more detailed camera survey; results from full-scale experiments are given.

List of Included Papers

A: Peer-reviewed Journal Article
Trygve Olav Fossum, Jo Eidsvik, Ingrid Ellingsen, Morten Omholt Alver, Glaucia

Moreira Fragoso, Geir Johnsen, Renato Mendes, Martin Ludvigsen, and Kanna

Rajan. Information-driven Robotic Sampling in the Coastal Ocean. Journal of
Field Robotics, Volume 35, Issue 7, pages 1101–1121, 2018.

B: Peer-reviewed Journal Article
Trygve Olav Fossum, Glaucia Moreira Fragoso, Emlyn J. Davies, Jenny Ullgren,

Renato Mendes, Geir Johnsen, Ingrid Ellingsen, Jo Eidsvik, Martin Ludvigsen, and

Kanna Rajan. Towards Adaptive Robotic Sampling of Phytoplankton in the
Coastal Ocean. Science Robotics, Volume 4, Issue 27, eaav3041, 2019.

C: Peer-reviewed Journal Article
Trygve Olav Fossum, John Ryan, Tapan Mukerji, Jo Eidsvik, Thom Maughan,

Martin Ludvigsen and Kanna Rajan. Compact models for Adaptive Sampling in
Marine Robotics. Submitted to International Journal of Research Robotics, 9th

November 2018.

D: Conference paper
Trygve Olav Fossum, Martin Ludvigsen, Stein M. Nornes, Ida Rist-Christensen and

Lars Brusletto. Autonomous Robotic Intervention using ROV: An Experimental
Approach. MTS/IEEE OCEANS 2016, Monterey, CA, USA, 19th-22th September

2016.

E: Conference paper
Gunhild Elisabeth Berget, Trygve Olav Fossum, Tor Arne Johansen, Jo Eidsvik

and Kanna Rajan. Adaptive Sampling of Ocean Processes Using an AUV with a
Gaussian Proxy Model. 11th IFAC Conference on Control Applications in Marine
Systems, Robotics, and Vehicles (CAMS) Opatija, Croatia, 10th-12th September

2018.
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F: Conference paper
Øystein Sture, Trygve Olav Fossum, Martin Ludvigsen and Martin Syre Wiig.

Autonomous Optical Survey Based on Unsupervised Segmentation of Acoustic
Backscatter. MTS/IEEE OCEANS, Kobe Techno-Oceans (OTO), Kobe, 2018.

The following works are not included in this thesis:

Conference paper
Martin Ludvigsen, Sigurd M. Albrektsen, Krzysztof Cisek, Tor Arne Johansen, Pet-

ter Norgren, Roger Skjetne, Artur Zolich, Paulo Sousa Dias, Sérgio Ferreira, João

Borges de Sousa, Trygve Olav Fossum, Øystein Sture, Thomas Røbekk Krogstad,

Øivind Midtgaard, Vegard Hovstein, and Erlend Vågsholm. Network of heteroge-
neous autonomous vehicles for marine research and management.
In Proc. MTS/IEEE OCEANS, Monterey, CA, USA, 2016.

Technical Report
Øystein Sture, Martin Syre Wiig, and Trygve Olav Fossum. NTNU-FFI Cruise
2017-HUGIN Autonomy Integration (DUNE, T-REX). NTNU Cruise Reports, The

Norwegian University of Science and Technology (NTNU).

Technical Report
Trygve Olav Fossum. Intelligent Autonomous Underwater Vehicles: A Review
of AUV Autonomy and Data-Driven Sample Strategies IMT-AURLab-1, Depart-

ment of Marine Technology, Centre for autonomous marine operations and systems

(AMOS), Norwegian University of Science and Technology (NTNU).
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Chapter 2

Ocean Observation

“Most of the previous century could be called a century of under-sampling.”
— Walter Munk, Secretary of the Navy Research Chair in Oceanography

(Munk, 2002)

THE ability to observe the ocean is rapidly improving. The use of high resolution ocean

models, remote sensing, and robotic elements has moved oceanographic sensing

practices towards a more holistic perspective, where increased presence and information

sharing, across a range of different scales, is becoming more feasible (see Fig. 2.1). This

chapter takes a closer look at ocean observation and the space-time variability of the inter-

acting processes, followed by an overview over synoptic marine data sources focusing on

remote sensing and numerical ocean models.

2.1 Observing Earth’s Ocean

The study of the ocean covers a multitude of scales and space-time (spatiotemporal) vari-

ability, including processes that are episodic (see Fig. 2.2). The primary platform for ob-

servation has been – and still is – ships. However, the U.S. federal oceanographic fleet

could be reduced to half its size by 2026 as a result of flat budgets and increased costs

(Cressey, 2013); a trend that is indicative for the rest of the world. At the same time,

trends in science and technology indicate that ship assets are still required (Board et al.,

2009, Ch.5) and cannot be completely replaced by new sampling tools. These changes

are also reflected in newly developing oceanographic sensing practices, where satellites,

robotic elements, ocean models, and ocean sensor networks are increasingly being used

as data-gathering tools (Kintisch, 2013). These networked sampling systems are not based

on a single platform or observation scale, but rather a complementary ensemble covering

a range of scales, building on the principle of sharing information to mutual advantage.

The introduction of remote sensing and large-scale sensor networks have provided

a more synoptic perspective of the ocean; however, sensors measurement are still too

far apart or cannot resolve the necessary details. The attenuation of radio waves also

restrict satellite observation to the very surface. Ocean model accuracy is also not at a

level where it can replace actual in-situ observation (Lermusiaux, 2006). Hence, we are

still left with a significantly unobserved water column, where it is necessary to combine

various individual marine data sources to close the gaps in coverage and resolution. Even
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Figure 2.1: Conceptual view of a multi-scale, multi-platform field experiment using: ships,

buoys, AUVs, glider, floaters, satellite, and aerial drones. Achieving the ambition of a

synoptic understanding of the ocean requires a joint effort between a range of marine data

sources.

with numerous deployed instruments, it will still not be conceivable to examine the entire

environment in detail, and thus only quasi-synoptic (i.e. a semi-holistic recording of an

event) coverage is usually possible (Curtin et al., 1993). Observation itself is also not

straightforward; sensors are usually only capable of providing proxy measurements of

the relevant processes, which means additional uncertainty is introduced. Observations

also come at different scales, accuracy, are subject to spatial sampling bias (due to the

inherent heterogeneity [patchiness] of the ocean), and cannot be readily transmitted with

high bandwidth between sources – making cross-validation and comparison difficult.

Additionally, currents, topography, tides, and turbulent flows constantly move information

around, making all observations time dependent. In practice, this means that we are still

inclined to undersample the environment in both time and space. The term “ground-truth”

is therefore never really fully attainable in ocean sensing, except for very large scale

processes (such as tides) or very local processes (such as determining run-off from rivers).

This is the sampling conundrum in oceanography and the lack of sufficient obser-

vations is the largest source of error in our understanding of the ocean (Stewart, 2009),

making when and where to sample the key problem when designing oceanographic exper-

iments. A guiding rule of thumb provided by the the Nyquist theorem is to sample at least

twice in time for the shortest significant record period, and twice in space for the short-

est significant length (Nyquist, 1928) to either resolve or eliminate (by filtering) scales of

oceanic variability shorter than those being studied. In practice, this means mapping at

an adequate spatial resolution faster than significant changes – in the phenomena – occur.
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Summarizing the above, we can identify the following challenges:

The challenges in ocean sampling (the sampling conundrum):
• Sparseness: It is usually not possible or practical to observe the entire environment

in detail both in terms of coverage (space) and resolution (space and time); usually

only a quasi-synoptic coverage is possible.

• Space-Time dependent environment: The fundamental turbulent, heterogeneous,

and episodic nature of the ocean makes observations time-dependent and sensitive

to both location and scale (sampling bias); this also affects the ability to maintain

up-to-date knowledge. Understanding and quantifying this influence is difficult.

• Proxy measurements: Sensor observations are rarely able to acquire direct mea-

surements of the process or quantity we are interested in, introducing additional

uncertainty. Certain instruments also affect the environment themselves (e.g. light

and noise) that may cause instrument bias.

• Sensing scales: A multitude of sensors are used to fill observation gaps and to avoid

undersampling, making cross-comparisons complex.

• Harsh Environment: Pressure, corrosion, and bio-fouling affect all equipment that

goes into the ocean. Logistically, these instruments are expensive and complex to in-

stall. Once in place, wave motion, current, and wind subject the observation systems

to varying loads and forces.

Addressing the sampling conundrum in the ocean requires understanding of the

fundamental environmental characteristics, as well as new technological solutions and

sensing practices that enable unification and augmentation of data from a range of sources

and scales. From a sampling perspective, the combination of synoptic data sources such

as ocean models and remote sensing with robotic platforms will be key, and will thus be

covered in more detail in the following sections.

2.1.1 Space and Time Variability in the Ocean

The ocean is fundamentally turbulent. A multitude of oceanic processes interact to create

variability in space and time, spanning many orders of magnitude from large scale oscilla-

tions exceeding 100 km, down to biogeochemical processes below 1 cm. This dynamical

landscape is usually divided into the following scales: i) Mesoscale: 50-500 km, 10-100
days and ii) Sub-mesoscale: 1-10 km, days-months. Fig. 2.2 depicts some of the prominent

oceanic events that occur in this vast dimension.

The energy of mesoscale processes, such as eddies, generally exceeds that of the mean

flow by an order of magnitude or more (National Research Council, 2010), having a strong

impact on the ecosystem. In operational oceanography, traditional techniques, like ship-

board and moored measurements, can be effective at large spatial (O(100 km)) and tempo-

ral (O(week to months)) scales, but quickly become too sparse for sub-mesoscale variabil-

ity (Graham et al., 2013). The introduction of satellite oceanography has also proved sig-

nificant at these scales, capable of providing global coverage for variables such as sea level
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Figure 2.2: Some of the prominent oceanic processes and events, shown with their spa-

tiotemporal extent. Image credit: (Schofield et al., 2013) and Tom Dunne.

height. Satellites also provide an overlap towards sub-mesoscale dynamics, whose impor-

tance is significant and directly influences events such as primary production (Lévy, 2003)

or patch formation of biomass (Franks, 1992). For many years this variability was so un-
dersampled that its impact was greatly misunderstood (Munk, 1997). One example is the

spatial distribution of phytoplankton. Its intensity, morphology, and scale dependence are

substantially driven by sub-mesoscale processes such as turbulent advection, upwelling,

and vertical mixing (Mackas et al., 1985; Van Gennip et al., 2016). Local processes (such

as upwelling zones) bring deep water nutrients to the surface/photic zone and nurture phy-

toplankton, creating regional hot spots (with high biomass concentration) at scales ranging

from 5–10 km (Martin et al., 2002) or even ≤ 1 km for complex coastal zones (Hedger

et al., 2003). In the open ocean, the same aggregation can range from 70–140 km (spatial

correlation) in the horizontal plane; vertically, persistent upper water column stratification

may lead to a layered structure with different subsurface maxima, where, for example,

phytoplankton is concentrated in the bottom of a pycnocline (a density gradient) (Silsbe

and Malkin, 2016). A vital point to note about stratification effects is the consequence that

vertical correlation is much weaker compared to the horizontal, where the increase can be

as high as factor of 111× for temperature and 800× for Chlorophyll a (Sahlin et al., 2014).

This is important to consider when dealing with spatial interpolation and data assimilation,

or when formulating proxy models for processes in the water column.
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Accounting for spatiotemporal effects in the ocean can be difficult. As the ocean is

non-stationary (correlation and mean structures can change in time, space, or both), com-

mon assumptions (e.g. non-changing statistical properties [stationarity]) that are used in

statistical models such as Gaussian processes are strictly no longer valid (Eidsvik et al.,

2015). Still, for moderate current, short survey times, or limited study regions (Das et al.,

2012b), certain assumptions can hold (see Section 3.3). In cases where this is not true, so-

lutions such as drifters (passive platforms floating at a fixed depth) can provide a relative

Lagrangian position that can be used to mitigate these effects (for an example, see Gra-

ham et al. (2013)). Frolov et al. (2014) accounts for space-time covariance by employing

a separable formulation, where space and time correlations are treated separately. Both

separate and non-separable correlations are also compared in Graham et al. (2013), where

real world tests showed that accounting for time is not necessarily straightforward. Ocean

models have also been used to mitigate time effects in applications such as planning fea-

ture tracking (Smith et al., 2009) or accounting for ocean currents (Smith et al., 2011).

Accounting for time can also be done by adding uncertainty of visited/measured regions

as time progresses (for an example, see Ma et al. (2016); Fossum et al. (2018)).

2.2 Synoptic Ocean Data Sources

Synoptic data sources can be used to simulate, analyze, coordinate, and plan sampling

strategies, in addition to predictive or post-hoc purposes. By leveraging this potential,

sampling resources can better target the phenomenon/process or area of interest with

sufficient detail and appropriate sensors. The increasing availability of high-end compu-

tational resources accessible to oceanographers has enabled high-resolution modeling

modeling of the upper water column, and technological advancement in remote sensing

applications and products is enabling new ways to study the ocean at a more synoptic

scale. As numerical models can operate at various levels of spatial and temporal scales,

this permits comparison, assimilation, and cross-validation between heterogeneous

sampling resources. This perspective has been explored in the previously mentioned

research project AOSN-I/-II, and the Controlled Agile and Novel Observation Network

(CANON) field program (Das et al., 2010, 2012a), among others. Accordingly, these

influences are changing the way we think about ocean sampling and field experiments,

as there lie significant gains to be exploited where unification of: ocean models, remote

sensing, and different robotic elements can provide a multi-resolution window into

the sophisticated dynamical landscape of the oceanic interior. Fig. 2.3 combines the

spatiotemporal coverage values from the major marine platforms with the main synoptic

data sources to contextualize the forthcoming discussion.

However, there are two fundamental limitations to consider. First, numerical ocean

models suffer from various sources of errors (for a more detailed discussion, see Lermu-

siaux (2006)), that degrade their ability to produce reliable predictions. Second, remote

sensing sensors, such as infrared radiometers (which measure temperature), only cover

the surface skin layer of the ocean (i.e. less than 1 mm thick). Information below this

layer can sometimes be obtained, depending on optical attenuation. Remote sensing ob-

servations are also highly susceptible to cloud cover for certain measurements (see Fig.

2.4). The need to augment and cross-validate predictions is thus great. In-situ robotic as-
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Figure 2.3: Common spatial and temporal characteristics for marine robotic platforms

(exceptions exists). The lower axis represents resolution, while the vertical axis represent

temporal coverage.

sets and adaptive sampling approaches are therefore essential in providing the necessary

autonomous capabilities. However, before autonomy can be considered, the spatial and

temporal coverage capacity of the platforms/data sources must be evaluated against the

phenomena/process of interest. Fig. 2.3 illustrates this by showing the spatiotemporal ca-

pabilities across AUVs, glider and remote sensing resources in a space-time dimensional

manner. Certain processes require a fast moving platforms (i.e. processes with a short time

response, such as a advecting phytoplankton patch), while other require platforms capable

of measuring for long time periods (i.e. processes with a slow time response, such as phy-

toplankton blooms), techniques and methods needs to be developed that can coordinate

and determine sampling directives based on science goals. One example of a shore-based

coordination system is the Oceanographic Decision Support System (ODSS)1 developed

at MBARI for online situational awareness, experiment planning, collaboration and data

analysis (Gomes et al., 2013).

1http://odss.mbari.org
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2.2. Synoptic Ocean Data Sources

2.2.1 Remote Sensing

Alongside ocean models, remote sensing is a widely used source of synoptic information

in ocean science. Remote sensing (the gathering of information at a distance) generally

refers to satellite or radar-based data, but can also be used for any measurement that is

made without physical contact with the relevant environment (hence this also includes

acoustic [sonar] and magnetic [magnetometer] measurements). From the perspective of

ocean-related satellite earth observation – which is the main focus here – we will use the

definition given in Campbell and Wynne (2011):

“Remote sensing is the practice of deriving information about the Earth’s land
and water surfaces using images acquired from an overhead perspective, using
electro-magnetic radiation in one or more regions of the electromagnetic
spectrum, reflected or emitted from the Earth’s surface.”

Satellite earth observation techniques provide a cost-effective way to monitor large

coastal and marine habitats, human environmental impact, and climate change. The fo-

cus given here will be on remote sensing for applications in oceanography, and the basic

ocean parameters: sea surface temperature (SST) (infrared radiometer) and ocean color

(spectrometers). Sea surface height (altimeters), surface roughness generated from waves

and wind (microwave), and other derived products will not be discussed in detail.

Remote sensing offers a way to synoptically study certain processes in the ocean

through repeated large-scale ocean surface observations. Supplementing in-situ observa-

tion from marine platforms, remote sensing can also add to numerical ocean models by

providing assimilation and cross-verification of model performance (Frolov, 2007). At

present, only few assimilation methods are used operationally, partly due to low data re-

liability, inaccuracy, and insufficient coverage. Even if only the surface can be resolved,

a number of ocean processes can still be derived from the observations, such as: current

patterns, fronts, eddies, water mass distribution, water quality parameters such as chloro-

phyll, surface slicks, and suspended sediments (turbidity) (Johannessen et al., 2000). Fig.

2.4 gives an overview of the type of features that can be studied with remote sensing

instruments. This has also been extended to include sea surface salinity (Le Vine et al.,

2007), and – increasingly – remote detection of individual micro-organisms (Kudela et al.,

2015). Being able to identify different types of organisms is important for understanding

ecological dynamics and structure, as well as detection of harmful algal blooms (HALs),

where algae produce toxins. Infrared and optical types of sensing are naturally sensitive to

cloud cover which attenuate these signals. This can restrict use, especially at high latitudes,

where cloud cover is more or less constant. Certain of the observations are, however, inde-

pendent of weather conditions, such as synthetic aperture radar (SAR), but suffer from low

resolution (1 km or more) (Johannessen et al., 2000). In addition to clouds, atmospheric

correction must also be applied to reconstruct information that has been affected by the

electromagnetic influence from the signal journey thorough the atmosphere.
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Figure 2.4: Ocean parameters and the remote sensing instrument/sensor that applies.

The sun icon signifies that the observation can only be obtained in clear weather,

while the cloud illustrate observations that may be derived given cloudy conditions.

IR=Infrared, MW=Micro Wave, SAR=Synthetic Aperture Radar, RA=Radar Altimeter,

Scatt.=Scattering. Modified from (Johannessen et al., 1993).

Ocean Color and Chlorophyll a

Chlorophyll a (Chla) is used as a ”common currency” for biomass estimation, where the

concentration of Chla is indicative of the phytoplankton biomass. Biomass is a broad and

practical term used to describe the amount of living material in the water column. This

bulk measurement is important, as processes controlling the growth and accumulation

of phytoplankton are central to nutrient, carbon, and energy cycling. Observations of

Chla are also an indicator for the process of primary productivity – the main source of

energy and basis for the marine food web – and is thus of significant interest for studying

ecosystem dynamics. Ocean-color based products, such as Chla, are calculated using an

empirical relationship derived from in situ measurements of chlorophyll concentration

and remote sensing reflectances in the blue-to-green region of the visible spectrum.

Obtaining good results can be difficult in coastal areas (compared to open ocean), where

sediments and color dissolved organic matter (cDOM) contribute to the measured signal

(Johannessen et al., 2000).
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2.2. Synoptic Ocean Data Sources

Fig. 2.5a shows an image of a plankton bloom off the Norwegian coast (10th of June

2006), taken by Envisat’s MERIS instrument (Rast et al., 1999), which is built to detect

ocean color. The particular water discoloration shown here is also detectable with the

human eye. The spatial resolution of standard chlorophyll products usually has the same

order of magnitude as SST, which is rarely below 1 × 1 km. However, it is also possible

to derive chlorophyll information from new satellite terrestrial-oriented missions, such

as Landsat-8 (operational land imager sensor) and Sentinel-2 (multi-spectral instrument

sensor) (see Fig. 2.5b), which provide data at more relevant spatial scales of 10 to 60 m

(Vanhellemont and Ruddick, 2016). Ocean color satellite data does not cover the water

column beyond the first optical attenuation length as defined by Beer’s Law, where 90%

of remotely-sensed radiance originates from (Werdell and Bailey, 2005); this can be too

coarse for critical bio-physical ocean processes (Moses et al., 2016). An algal bloom may

also have its peak activity below the surface, which may go undetected by satellite based

sensors.

(a) Plankton bloom taken from Envisat. (b) RGB image from Trondheimsfjord by Sentinel-

2B.

Figure 2.5: (2.5a) False color image of a plankton bloom off the Norwegian coast 10th

of June 2006. Image taken by Envisat’s Medium Resolution Imaging Spectrometerer

(MERIS). (2.5b) An RGB image from Sentinel-2B and the Copernicus programme cov-

ering the Trondheimsfjord the 28th of June 2018. Both images are courtesy of ESA, CC

BY-SA 3.0 IGO.

Sea Surface Temperature (SST)

SST can be used to provide information about a wide range of ocean processes such as

currents, fronts, eddies, mesoscale eddies, and upwelling (Johannessen et al., 2000). SST

satellite products are measured by infrared radiometers over the surface skin layer of the
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ocean (i.e. less than 1 mm thick). The temperature of this skin layer is often cooler than

the body of water below; this can potentially create a decoupled and decorrelated impres-

sion of the conditions below the surface. The gradients between these layers are highly

dependent on meteorological conditions (Minnett and Kaiser-Weiss, 2012). Spatial reso-

lution for SST is rarely below 1 × 1 km in ocean-oriented remote-sensing data, such as

from NASA’s MODIS-Aqua (Savtchenko et al., 2004), except for recent instruments such

as the Sentinel-3 constellation mission as part of ESA’s Copernicus programme (Donlon

et al., 2012), which can yield resolutions down to about 300 × 300 m. An example of a

SST data is shown in Fig. 2.6, covering the Monterey Bay.

Figure 2.6: A one-day average SST image from NOAA NWS Monterey Regional Forecast

Office showing Monterey Bay.

2.2.2 Ocean Models

Ocean models describe the state of the ocean at a given time based on a set of hydro-

dynamic and thermodynamic equations, commonly referred to as the primitive equations
(see e.g. Beniston (1998)) that are solved using numerical techniques. These equations can

be used to model currents, salinity, temperature, density, pressure, and their interaction. In

implementations, the equations are discretized in different ways, utilizing either structured

or unstructured model grids horizontally, and using horizontal terrain-following or hybrid

discretization vertically. This discretization also influences the ability to resolve certain

phenomena, which must be taken into account when planning the model grid. The spatial

resolution of an ocean model represents a trade-off between the geographical area to be

simulated and the availability of computer hardware and time. Running the model involves

computation of a large set of equations, typically implemented with parallelization to op-

timize and reduce computing time. Since high resolution modeling can only be done for

relatively small geographical areas, models are commonly nested. That is, one simulates
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2.2. Synoptic Ocean Data Sources

larger scale areas to produce boundary conditions for higher resolution models covering

smaller areas. This process can be iterated several times to achieve the desired detail.

There are a number of inherent challenges to ocean modeling arising from: practical

simplifications, inexact representations or parameterizations, numerical implementations

(Lermusiaux, 2006), and the inability to resolve sub-grid features, i.e. treatment of turbu-

lent dynamics (Troccoli, 2003). Models apply forcing by tides, sea level pressure, wind,

heat exchange, and freshwater run-off. Defining these prescribed states and currents at

the open boundaries pose a major challenge, as the quality and sensitivity of model input

heavily depend on these initial conditions. A particular challenge for local scale ocean

modeling is the accuracy of wind fields in coastal areas with strong topographic control

of near-surface wind. Another major influence is the quality of bathymetric data, type of

grid used, and choice of numerical techniques. Freshwater run-off can be assessed accu-

rately for certain rivers, but the full distribution of run-off along the coast may be associ-

ated with large uncertainties and is usually based on climatological data (see (Berntsen,

2002)). Ocean models must also take into account atmospheric forcing. This can be based

on meteorological model estimates, but these models will themselves contain model error.

As all these errors become nested, the quality and resolution of ocean models can vary

significantly. Model evaluation and correction using robotic assets is therefore valuable,

but is limited by the cost of large-scale deployments in the ocean. Accordingly, sampling

needs to be planned efficiently, taking into account model weaknesses and characteristics

of poorly resolved processes to target areas for data collection.

The SINMOD Ocean Model

SINMOD is a coupled 3D hydrodynamic and biological model system (Slagstad and

McClimans, 2005; Wassmann et al., 2006). Its hydrodynamic component is based on the

primitive equations that are solved using finite difference techniques using a z-coordinate

regular grid with square cells. The model has been used for ocean circulation and

ecosystem studies along the Norwegian coast and in the Barents Sea (Wassmann et al.,

2010; Ellingsen et al., 2009; Skardhamar et al., 2007), in ecosystem risk assessment

studies (Broch et al., 2013a), kelp cultivation potential (Broch et al., 2013b) and in climate

change effect studies (Ellingsen et al., 2008; Slagstad et al., 2015).
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Figure 2.7: Snapshots of ocean surface current speeds in the Frøya region from simulated

by the SINMOD ocean model. The snapshots are predictions from the 5th to the 6th of

May, 2017.
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In addition to forecasts, SINMOD is capable of providing hindcast, and short-term

predictions (nowcasts) up to 48 hours. The term hindcast is used to describe an after-the-

fact analysis or re-simulation, where initial conditions and other model input is taken from

actual observations. For the production of forecast and nowcast data, SINMOD is using

boundary conditions computed from the operational coastal model system Norkyst8002

run by the Norwegian Meteorological Institute (MET)3. Norkyst800 is a model configu-

ration using the Regional Ocean Model System (ROMS) ocean model (Shchepetkin and

McWilliams, 2005b), applied to the Norwegian coast with a horizontal resolution of 800

m (Albretsen, 2011). Additionally, SINMOD uses atmospheric input from the MEPS op-

erational weather forecast model (Müller et al., 2017), run by MET (2.5 km horizontal

resolution). Freshwater run-off is based on climatological data. A snapshot of evolving

current speed is shown in Fig. 2.7, as an example of model output.

2.3 Applications for Synoptic Ocean Data Sources

Achieving the ambition of a more detailed understanding of the ocean requires a joint

effort between a range of marine data sources. An integral part of this is data assimilation

between heterogeneous marine data sources. In the context of ocean models, data

assimilation is in itself a modeling technique that uses sparse observations from marine

data sources and platforms to constrain the dynamics of the model (Frolov, 2007). Full

assessment of model accuracy is, however, not possible, as it requires measurement of

temporal and spatial gradients in the ocean far exceeding current practical capabilities

(Curtin et al., 1993). Surface data is usually assimilated into operational models from

remote sensing sources, but is limited to the surface only. Evaluating model performance

using observations from a range of different platforms is therefore advisable. In addition

to hindcast model validation and correction, information from in-situ instrumentation can

also improve near-real-time forecasting/nowcasts by assimilation of recent observations

into the model. As shown by validation studies (e.g. Forristall (2011)) ocean models

generally perform well with regard to statistical properties and tidal dynamics, although

they show little skill in predicting currents from hour to hour in areas not dominated by

tidal forces. AUVs will likely play an essential role in the process of data assimilation

of water column properties in models that seek to describe detailed forecasts on critical

events, such as harmful algae blooms, see e.g. Das et al. (2010); Scholin et al. (2006).

AUV data could also be assimilated into predictive models to reduce uncertainties, which

in turn can be used to guide subsequent AUV missions, thus closing the loop from

measurements to modeling and back again (Howe et al., 2010). There is therefore a need

to develop enabling technology that perform efficient and targeted sampling of the ocean.

Capabilities such as adaptive sampling will thus be critical for finding and assimilating

observations in regions prone to low model accuracy and skill, to correct and assess model

shortcoming, and to reduce environmental uncertainty and characterization.

This synergy goes both ways, as model output can both be used in terms of prior

specification and expectation of the environmental conditions, as well as proxy model

characterization and analysis. An interesting application is shown in Das et al. (2010),

2https://goo.gl/H4Rbw2
3https://www.met.no
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where ocean model forecasts are combined with remote sensing radar to predict hotspots

and advection of harmful algae blooms, on which a subsequent sampling plan for an

AUV is formulated. There are also applications for simulation and analysis of different

ocean observing systems (OOS). Ocean model data is in this context treated as “truth”

and virtual observations from the OOS is used to measure the performance of a given

sampling strategy by comparing original model output and the posterior field resulting

from the virtual observations, see e.g. Sakov and Oke (2008).

Formulation of proxy models and background statistics is a widely used application for

ocean model data, see e.g. Frolov et al. (2014). Assuming that the ocean model is capable

of capturing the long-time statistical properties of a region, formulation of priors and cor-

relation structures can be extracted as long as sufficient data are available. The statistical

characteristics of the synthetic data can also be augmented and checked with remote sens-

ing data to ensure that weak modeling assumptions are not misrepresenting processes or

containing strong bias effects. This is discussed in more detail in the next chapter (Section

3.2.1) covering Spatial Statistics, where a brief example using ocean model data is shown.

This is later picked up in Paper A, which presents a real-world application of the methods

from this chapter, where ocean model output is used to define the survey area, formulate a

Gaussian process model, and analyze performance of the adaptive sampling agent.
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Chapter 3

Spatial Statistics

STATISTICS naturally enters into sampling through requirements for generalization,

modeling, and the ability to learn on the basis of prior and current data. Because

ocean parameters are spatially correlated, this dependence also needs to managed by ap-

plying spatial process models. The field of statistics that describes such processes is called

spatial statistics, see e.g. Cressie and Wikle (2011). A traditional model framework used

in spatial statistics is the Gaussian (i.e. normal distributed) process (GPs) model, which

is extensively used in environmental sensing applications and sampling design (Eidsvik

et al., 2015). This chapter focuses on how spatial statistics can be used to analyze and

model the ocean environment from the standpoint of GPs. We discuss the role of the con-

trolling hyperparameters and the influence on model fitting, as well as regression using

brief examples based on ocean model data.

3.1 Introduction to Gaussian Processes

A prerequisite for doing effective mission adaptation is to have accurate information about

the spatial conditions, especially in highly dynamic environments. To identify the most rel-

evant sampling locations in ocean processes, a model of the spatial phenomenon itself is

necessary. This also includes formal measures of uncertainty, which is necessary for pro-

viding informative metrics used in sampling optimization, as we will see in Section 4.4.1.

Running a high fidelity numerical ocean model on board a robotic platform is currently

infeasible, as the required numerical resolution translates into computational demands that

are too high for the platform to manage. To overcome this problem, different types of sur-

rogate models (or proxy models) have been used instead, such as neural networks (van der

Merwe et al., 2007) and linear combinations of static basis functions (Schwager et al.,

2017). However, the more common modeling approach is stochastic modeling using GPs

(Cressie and Wikle, 2011).

GPs are a widely used family of stochastic processes for modeling dependent data

observed over time, space, or both (Richard A. Davis, 2001). GPs provide a practical

probabilistic approach to modeling, making the approach popular across a wide range of

environmental fields such as geology, hydrology, and atmospheric science. GPs have also

been widely adopted in oceanographic sampling applications, see e.g. Binney et al. (2013),
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Ma et al. (2017), Hitz et al. (2017), and Kemna (2018, Ch. 3.4) for instructive examples.

The popularity of GPs stems primarily from four essential properties:

Useful properties of GPs:
• Modeling and computational properties: GPs unite a sophisticated modeling

framework with computational tractability, allowing models to run on board the

platforms themselves.

• Model fitting: as shown in Eq. (3.1), they can be fully expressed using only a mean
and a covariance function (also known as a kernel). This alleviates model fitting

to the first- and second-order moments of the relevant process (Richard A. Davis,

2001). Furthermore, as long as it is possible to estimate the covariance function, a

GP can be used on the basis of sparse prior data.

• Conditioning: conditioning on data (updating the model based on measurements) is

inherent to the fundamental equations of the model, making assimilation uncompli-

cated once the GP is formulated. The predicted posterior distribution can be used as

input into the subsequent sensing strategy, enabling adaptation to observed changes

during mission deployment.

• Measure of uncertainty: GPs can provide formal measures of predictive uncer-

tainty (e.g. variance or entropy [mutual information] criterion), which can be used

to quantify information gain as an uncertainty reduction.

A GP can be formally defined as a collection of random variables that have a multivari-
ate normal probability density function. This provides analytical simplicity, since all finite

subsets of this domain will follow this distribution. In environmental applications, a GP

typically characterizes random variation at points in space, time, or both, discretized down

to a grid map with a certain spatio-temporal resolution. For simplicity, we shall restrict

attention to the case of 2D spatial models where we regard a location s = (East,North)
in space. Consider therefore a real-valued stochastic process {x(s), s ∈ V}1, where V
is an index set where V ⊂ �

2. This stochastic process is a GP if, for any finite choice

of n distinct locations s1 . . . , sn ∈ V , the random vector x =
[
x(s1), . . . , x(sn)

]
has a

multivariate normal probability density function

p(x) = N(μ,Σ) =
1

(2π)
n
2 |Σ| 12 e

− 1
2 (x−μ)TΣ−1(x−μ), (3.1)

defined by the mean vector μ = E(x), and the symmetric positive definite covariance

matrix Σ = cov(x,x). The mean vector μ = [μ1, ..., μn] is typically specified from

existing data, for instance satellite images or outputs from ocean models. In the simplest

case with replicates in time, the mean value at each location i = 1, . . . , n is set as

μi =
1

m

m∑
t=1

xt(si), (3.2)

1Regarding the notation: some authors distinguish between the random variable using a capital letter X(s)
and the outcome or realization with a lowercase letter x.
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where xt(si) is the value at location si, over a timespan t = 1, . . . ,m. As the GP in our

case is specified in two dimensions, the mean values constitute a surface of the expected

value, which could be assigned to describe temperature, salinity, etc. The covariance ma-

trix Σ is given as

Σ =

⎡
⎢⎢⎢⎣

Σ11 Σ12 . . . Σ1n

Σ21 Σ22 . . . Σ2n

...
...

. . .
...

Σn1 Σn2 . . . Σnn

⎤
⎥⎥⎥⎦ , (3.3)

where, Σij = σiσjK(i, j). Normally the variance terms σ2
i and σ2

j are taken to be the

same for all locations and collected as σ2, making the covariance independent of location

(i.e. stationary). Without too much modification this can be augmented further to include

a spatially varying local variance by leveraging available prior data, as

σ2
i =

1

m

m∑
t=1

(xt(si) − μi)
2. (3.4)

The kernel K(i, j) function is defined as

K(i, j) = (1 + φhij)e
−φhij , (3.5)

where hij =||si−sj || describes the Euclidean distance, and φ is indicative of the correla-

tion range (Matérn, 2013). Capturing the correct spatial correlation distance is particularly

important. Fig. 3.1 shows this influence graphically. By varying the correlation distance

parameter φ in Eq. (3.5), for a simulated GP, different smooth fields are obtained (mean

is set to zero). Due to the negative exponential, increasing φ reduces the correlation, and

hence the process will be similar to noise (Fig. 3.1a).
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Figure 3.1: The effect of different correlation distances (φ) on a GP.

GPs are, in many respects, closely related to the study of covariance functions. When

variables are allocated to spatial locations, the covariance matrix models the spatial de-

pendence between locations. Or, in the case of time, the covariance models the temporal

dependence between observations. Both space and time relations can be built into the co-

variance matrix, and under certain assumptions, they can also be separated into different

parts, see e.g. Frolov et al. (2014, App. A1).
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3.2 Conditioning a Gaussian Processes

Once the mean and covariance function are defined, GPs follow basic probability theory,

applied to multivariate Gaussian distributions. In this way, GPs can be used in a Bayesian

setting where Bayes’ rule, can be used to update the prior probability as more evidence or

data becomes available. The model for Bayesian updating from data relies on finding the

conditional probability p(x|y), where x is a distinction of interest (e.g. temperature), and

y is data (e.g. measurements from an AUV). From the rules of conditional probability, the

posterior is obtained according to Bayes’ rule

p(x|y) =
p(x,y)

p(y)
=

p(x)p(y|x)

p(y)
(3.6)

where p(x) is the prior model for x, and p(y|x) is the likelihood function. The denomi-

nator p(y) is the marginal likelihood, which is a normalizing constant that can be found

from marginalizing over x as p(y) =
∫
p(x)p(y|x)dx, or using sums in discrete situ-

ations. The assessment of the posterior probability density function (pdf) p(x|y) in Eq.

(3.6), depends on the choice of prior and likelihood model. For GPs this has a practical

implication, as the posterior will be Gaussian if both the prior and likelihood are Gaussian.

In this setting, a tractable expression for the posterior can be found, which is presented in

Eq. (3.10) and (3.11).

3.2.1 Example: Using Gaussian Processes

To illustrate how GPs can be practically applied to sampling, a short example of model

fitting and prediction is demonstrated in this section using ocean model data. The model

data that we will use is simulated surface temperature from a coastal area in Norway

(Froan, Trøndelag). An imaged data collection survey with AUV will be the basis for

illustrating conditioning (assimilation of data) within the GP framework.

We start by modeling the prior mean function using model output of surface temper-

ature (at time 12:00 PM), presented in Fig. 3.2b. The mean function μ(si) is found using

2D linear regression on the temperature data (see Fig. 3.2a), yielding the resulting regres-

sion vector β=[5.42, ,0.0026, 0.0057]. This gives us a prior estimate of the temperature

provided east-north location, as predicted values for μ, shown in Fig. 3.3a. The covariance

function cov(x(si), x(sj)) is set to the squared exponential kernel. Consider then the GP

given by

μ(si) = 5.40 + 0.0026 ei + 0.0058ni, (3.7)

cov(si, sj) = σ2e(−δ ||si−sj ||), (3.8)

where si = (ei, ni) indicates location i = 1, . . . , n. In the covariance function σ2

and δ denote design parameters (hyperparameters) for variance and correlation dis-

tance, while ||si − sj || may be recognized as the Euclidean distance between two

sites si and sj . To obtain the correct correlation range δ, a variogram analysis is

conducted using multiple realizations of the surface temperature data from the ocean

model. A variogram is a plot which is constructed to help relate the spatial distance
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3.2. Conditioning a Gaussian Processes

(a) 2D regression of ocean model data (temperature).

Showing a fitted plane over the synthetic ground-truth

data from (b).
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(b) Synthetic temperature data generated from ocean

model (12:00 PM), used as a simulated ground-truth,

and AUV survey path (dashed line).

Figure 3.2: (3.2a) 2D regression of the simulated surface temperature, note the fitted 2D

plane. (3.2b) The ocean model data showing the surface temperature used as ground-truth,

and the simulated AUV survey (dashed line).

between points with the points variance. The formal definition follows the relation

γ(h) = 1
2V ar([x(si) − x(sj)]) = V ar(x(s)) − Cov(x(si), x(sj)), where h is the lag

vector (distance). Typically as the lag distance h increases, the variance increases until a

limit is reached and the variogram flattens out. At this limit, the points no longer yield

any relation based on the data value and the variance can no longer grow indicating the

correlation range δ. The variogram for the ocean model data (many realizations covering

one month) is displayed in Fig.3.3b.
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(a) Prior GP realization for μ found using regression.
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(b) Surface temperature variogram made using ocean

model data.

Figure 3.3: (3.3a) The prior predicted temperature values in μ, before any observations are

made. (3.3b) The one month variogram for the ocean surface temperature data.
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3. Spatial Statistics

The variogram curve in Fig.3.3b indicates a correlation distance of approx. 5-7 km

(50-60 h). The correlation variance σ2 can be set using Eq. (3.4), or to an average value.

Here we use an average value of ∼0.035°C2 based on the variogram. The prediction in Fig.

3.3a, found in Eq. (3.7), now constitute a prior estimate of the environment (which we will

refer to as the world model in Section 4.3). We now proceed to simulate an AUV survey,

using observations from the ocean model output (at time 12:00 PM), shown in Fig. 3.2b;

observations are made as a location value pair. By assimilating these observations into the

GP prior we can produce an updated GP posterior that can render updated values at all

locations (including un-observed). The interpolated values are obtained using predictions

delivered from the covariance functions, predicting the functional value at a given point by

a weighted average of the values in the neighborhood of the point. Let prior be the prior

function values at si based on out prior temperature function μ(si) = 5.40 + 0.0026 ei +
0.0058ni, and data be measurements from the AUV that we want to assimilate. Using a

matrix representation, there are four important matrices to consider in this regard, namely

prior: μ = μ(si), for all locations i = 1, . . . , n.

observation matrix: F = m × n matrix with fixed entries (0s and 1s) indicative of the

survey design. m is the number of observations/measurements.

data: y = Fx + ε, where x is a process (ocean model), with Gaussian measurement

noise ε ∼ N (0,T ); and T = τ 2I , where τ is can be set manually.

covariance: Σ = cov(si, sj), for all locations pairs i = 1, . . . , n and j = 1, . . . , n.

Using these matrices we can setup a joint Gaussian model as

p(prior, data) = N
([

prior
data

]
;

[
μ
Fμ

]
,

[
Σ ΣF T

FΣ FΣF T + T

])
. (3.9)

The Gaussian posterior solution (ref. Eq. (3.6)) is defined by the conditional mean and

covariance (posterior) as

μposterior = μ + ΣF T (FΣF T + T )−1(y − Fμ), (3.10)

Σposterior = Σ−ΣF T (FΣF T + T )−1FΣ, (3.11)

where Fμ is the prior temperature prediction at the sampled locations μ(sk). Note that the

posterior covariance Σposterior is reduced in comparison to the prior covariance, since the

updated equation subtracts an always positive term representing the additional information

gained from adding the new observations. Another factor which is important to notice

is that the GP update requires inversion of the covariance matrix (FΣF T + T ), which

can be computationally expensive. This is can be a drawback for GP models; for large

dimensional problems (i.e. many observations or points), sparse approximations need to

be used, see e.g. Vanhatalo et al. (2010).

Using Eq. (3.10) and (3.11) the updated results (conditional mean and variance) can be

seen in Fig. 3.4. The sampled locations are shown as dashed lines in Fig. 3.2b, illustrating

the AUV path. The GP is conditioned on the data along this line to obtain the Fig. 3.4a.

Comparing Fig. 3.4a to Fig. 3.2b, the GP has updated the prior mean field in Fig. 3.3a, into
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(a) Posterior prediction of Gaussian Process.
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(b) Standard deviation estimation error.

Figure 3.4: The posterior mean and standard deviation after conditioning on the data gath-

ered along the dashed line.

a more accurate representation of surface water temperature. The predicted temperature

distribution can now be used as an input into the subsequent sensing strategy, enabling

adaptation to observed changes during mission deployment. The standard deviation in Fig.

3.4b is small along the AUV observation sites (only sensor noise), and gradually increases

to the level of the process noise as one gets further from the actual measurement site.

The standard deviation (and variance) is independent of the actual measured data; only

the spatial dependencies between the data provide influence, which can be checked by

inspection of Eq. (3.11).

3.3 Considerations for Using GPs in the Ocean

Using GPs implies some assumptions regarding the environment, which we will briefly

discuss from the basis of adaptive sampling.

Depending on the stationary properties of the random field, the covariance has differ-

ent properties. In this context, the notion of isotropy is important to note. A covariance

function which is isotropic is invariant to translations in the input space and is only a func-

tion of the distance between the respective sites (i.e. ||si − sj ||). Isotropy is required for

the random field to be stationary or weakly stationary. In stochastic process theory, a pro-

cess which has constant mean and whose covariance function is invariant to translations

is called weakly stationary. A process is strictly stationary if all of its finite dimensional

distributions are invariant to translations. A spatial process is anisotropic if the correlation

depends on direction. The ocean is fundamentally turbulent, and has episodic events such

as tides or complicated processes like Langmuir circulation (Thorpe, 2004) which intro-

duces heterogeneity, essentially making the ocean an anisotropic non-stationary process.

However, to model and work with spatial models that are not too complicated, stationar-

ity is often assumed. In practice, stationarity cannot be assumed to be true at all scales

(Eidsvik et al., 2015). Trying to account for time varying uncertainty is complicated as
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3. Spatial Statistics

this weakens the underlying stationary properties. Integrating temporal dependence of the

latent process is therefore often resolved by assuming approximate stationarity for a finite

horizon using corrective measures to estimate the time dependent dynamics, such as sep-

arable integration into the covariance matrix (see e.g. Frolov et al. (2014, App. A1)), or

even ignoring time variation completely.

Practical application of GPs depends, as always, on the type of data, model, and prob-

lem description. A reoccurring problem with GP models is the increased dimensionality

that arises from large data sets, leading a lot of research into Sparse GPs for speeding up

inference (Vanhatalo et al., 2010; Hoang et al., 2016). There is also a large body of work

focusing on estimating and learning the hyperparameters for the GP, i.e. learning the co-

variance function parameters, see e.g. (Rasmussen and Williams, 2006). The notion here is

that there is an underlying functional description of the studied process available through

observation. In this setting, a problem arises. To deduce these parameters from observa-

tions, the system needs to be observed in such a way that the correlation structure can

be extracted correctly, implying that a certain level of synoptic knowledge is attainable.

Currents and other time varying processes make such observations difficult to measure on

a synoptic timescale. However, at certain scales and time-frames, the ocean can exhibit er-
godic dynamics, meaning that the time-averaged statistic does not drastically change over

time. For most environmental sensing applications, the ergodic hypothesis is assumed to

be valid. In such situations, it is possible to extract useful information, as demonstrated by

Mathew and Mezić (2011) or Alvarez and Mourre (2012).
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Chapter 4

Adaptive Sampling

ADJUSTING sampling decisions in response to observed data is a well known topic

in geostatistics, atmospheric sciences, and other fields concerned with optimizing

information gathering. Common to all these domains is the underlying limitation arising

from finite sampling resources. Because of finite sampling resources, intensive sampling

of the relevant domains is not possible. To obtain the most scientifically relevant mea-

surements in an effective manner, adaptive approaches need to be used. In contrast to

static/pre-planned schemes, adaptive/data-driven strategies can operate on a posterior
knowledge base and react to current conditions, having access to both prior and current

information; selecting sampling locations thus depends on past observations taken during

exploration. Such schemes are preferable, since all the information available can be

used to reason about the environment and compensate for partial or incorrect prior

knowledge, as well as handling off-nominal conditions. The impact of this additional

information is twofold; i) enabling the sensor platform to divert from the mission if

favorable circumstances materialize (opportunistic behavior), and ii) increase the prospect

of retrieving information more effectively. The latter aspect is often considered the most

noteworthy, especially for resource intensive environmental sensing applications, having

the potential to save time and cost.

This chapter provides an introduction to adaptive sampling and discusses related work

in the context of ocean observation. Additional insight into this subject is given through a

discussion of different adaptive methodologies, common autonomous architectures, and

the underlying theoretical foundations with associated examples.

4.1 Introduction to Adaptive Sampling

The term adaptive sampling is used to refer to the act of making an intelligent and delib-

erate choice of when and where to gather data on the basis of informative and scientific

metrics (measurements adjusted to purpose); this implies that choices need to be taken

on line and in-situ. In this brief introduction we will look at the fundamental entities in

this process, the theoretical principles involved, and the limitations that arises from the

problem formulation.
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4. Adaptive Sampling

4.1.1 Problem Solving Agents and Architectures

Given the high level of uncertainty in the ocean, the ability to learn and adapt is critical.

In general terms, the aim of adaptive (data-driven) sampling is to effectively fuse observa-

tions with prior knowledge such that subsequent decisions can be made to refine the data

collection strategy. The acting entity in this framework is the agent, as described in Russell

and Norvig (1995):

“An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.”

A agent thus describes an autonomous system (robot) in which sensory data is used for

synthesizing control and action selection. The agent can also, therefore, be thought of as

a decision maker, where the internal structure and properties of the agent will be referred

to as the architecture. The distillation of sensor information down to control actions or

waypoints (sampling plan generation) differ based on the type of architecture and subse-

quent choice of method (see, for example, Chapter 5 and Fig. 5.1). A range of different

architectures exists, as demonstrated by Russell and Norvig (1995); LaValle (2006). On

the basis of the related work in Section 4.1.5 and the articles in Part II, we will restrict

the discussion to model-based information-theoretic and state-based subsumption-based
agents and corresponding architectures.

In information-theoretic systems, plan generation is conducted through utilization of

information-based metrics and usually follow the Sense→Plan→Act control method-

ology. An example of an agent following this principle is the T-REX (Teleo-Reactive

EXecutive) (McGann et al., 2008b) agent shown in Fig. 4.1. The essential part to note

here is the Plan stage, in which distillation of one or several actions is formulated on

the basis on available knowledge and problem constraints. The term “action” can have

multiple meanings such as coordination (e.g. “turn the camera on”, “keep distance to

another AUV”) or sampling optimization (e.g. should I sample at location A or B). The

focus here is on the latter, where prioritization across different locations is conducted

on the basis of information quantification. This quantification is typically established by

borrowing metrics from Bayesian experiment design using uncertainty-based measures

to evaluate, find, and differentiate between sampling locations, where the reduction

of uncertainty constitutes a gain in information. For subsumption-based systems, the

sampling decision does not originate from a plan, but is instead a series of discrete actions

decomposed into different sets of behaviors (the term behavior-based architecture is

therefore used interchangeably) that represent certain action-response pairs. These pairs

are triggered by incoming data (e.g. “if temperature sensor reads below 5°C, turn 180°on

current heading”), thus the control methodology becomes simply Sense→Act, sometimes

referred to as “the reactive paradigm”.
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4.1. Introduction to Adaptive Sampling

Figure 4.1: Internals of an instance of the autonomous T-REX sampling agent, using the

Sense→Plan→Act control methodology (Rajan and Py, 2012). Multiple internal control

loops (reactors) interact to create a sampling plan/behavior using relevant information that

is shared across the internal network. The agent also features a chain of command, with

low and high level control. Image courtesy of Rajan et al. (2012).

4.1.2 Static and Sequential Sensing Situations

When discussing different types of problem solving agents, it is also important to dis-

tinguish between static and sequential decision situations and the related sampling op-

timization. For sequential sensing situations, the decision maker (the agent) makes sev-

eral decisions, one after another, about where to sample based on previous measurements

(adaptive sampling). In contrast, a static decision is a pre-planned/one-time-only decision

(sensor placement problem) using prior available data, which also applies to determinis-

tic human-designed surveys (scripted plan with waypoints). Static decision problems take

place “off-line,” whereas sequential decisions are made “on-line” during execution. Con-

sequently, the focus given here will be on sequential decision situations and data acquisi-

tion, where the agent would have the capability to adapt the plan based on observations.

An example of such a situation is given in Fig. 4.2.

In practice, finding the optimal solution (described in Section 4.1.3) in these types of

problems is not tractable because of the exponential growth in the number of combinations

that has to be considered. This search has been shown to be NP-hard1 for uncertainty-based

1NP (non-deterministic polynomial acceptable problems): problems are at least comparable to a non-

deterministic polynomial-time (NP-problem), or more complex.
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Figure 4.2: Illustration of sequential decisions for a spatial sampling problem. The grey

box indicates a choice that needs to be taken by the agent. The dot and arrow indicate data

y being observed after each choice of path. The subsequent decision about where to mea-

sure is a result of the gathered data and available locations; a problem that quickly grows

due to the number path of combinations. If the path considered only has one element, then

each path would equal a single location s.

optimization schemes (e.g. entropy (Ko et al., 1995)), hence efficient exact solutions are

likely not possible. Therefore, much of the focus is instead directed towards finding feasi-

ble solutions to these sequential problems, as opposed to more optimal non-myopic (non-

greedy) solutions (see, for example, Singh et al. (2007); Zhang and Sukhatme (2007)). To

find feasible solutions, different heuristics and myopic (greedy) approaches are typically

used, more details are given in Section 4.1.5 and Krause (2008). It is also possible to re-

gard Fig. 4.2 in the Bayesian context discussed in Section 3.2, where an update of the

prior probability is done as more data becomes available. In this regard, the aim for the

(data-driven) agent is now to traverse this graph in a manner that retains an advantageous

strategy for information recovery.

4.1.3 Sampling Optimization: Coverage- vs. Feature-Based

What constitutes as optimal depends can be subjective, however, in this thesis we separate

between coverage- and/or feature-based criteria. From the aspect of a coverage or sensor
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4.1. Introduction to Adaptive Sampling

placement standpoint, optimization can be classified as a problem deciding which loca-

tions to observe in order to effectively decrease the uncertainty about a phenomena. In this

setting, the optimal solution does not depend on the data (only coverage), thus criteria mea-

suring uncertainty such as predictive variance and mutual information (see Section 4.4.1)

can be used in the objective function. Optimal locations can therefore be deterministically

selected prior to making observations (i.e. non-adaptive), where the optimal/highly infor-

mal locations are those that reduce the uncertainty most. The sampling utility can then be

quantified by measuring the total decrease in uncertainty across the different alternatives.

This can work well if the goal is simply restricted to sensor coverage (e.g. photogram-

metry of a full coral reef), or in cases where the addition of actual measurements has little

influence. However, in most environmental sampling applications, measurements provide

an important source of information. Using observations enables more directed sampling

metrics, which can be used to further reduce uncertainty and improve targeted sampling

of features (e.g. fronts, temperature gradients, etc.) relevant for studying ocean processes

(see, for example, the discussion in Low (2009, Ch. 2.1) about coverage- vs. feature-based

sampling). Furthermore, optimizing sampling in environments characterized by the type

of uncertainty that is hard to model and determine prior to sampling (such as the water

column) is not well-suited for sensor placement approaches, which become sub-optimal in

this context. The advantage of using adaptive and feature-based optimization is sometimes

referred to as the the adaptivity gap (Krause, 2008). Criteria measuring uncertainty are

vital for achieving solutions to sensing problems, however, it is important that data-driven

terms are added to the optimization process in order to utilize all available information.

This combination allows more complex interactions between exploration and exploitation
influences. A more formal introduction to different optimization criteria is given further

down in Section 4.4.1.

4.1.4 Exploration vs. Exploitation

The balance between exploration and exploitation is fundamental to decisions concerned

with gathering information. This balance is split between i) decisions that allow us to

explore and learn about our environment (exploration), and ii) decisions that focus on

the most valuable options given current beliefs about the world (exploitation). Deciding

what information to gather next also depends on the balance between prior and current

knowledge. If all details about the environment are fully known, an approach that exploits

such background information enables a more effective data gathering system. In contrast,

if no prior information is available, an exploration-based strategy is more advantageous.

However, as time passes by, and the domain gets “explored”, this balance may shift

back towards exploitation. The need to obtain new knowledge, and the need to use

that knowledge to improve performance, is a trade-off that all adaptive systems need

to address, either through a balance between coverage- and feature-based optimization,

or coordination of competing behaviors. Optimal performance usually requires some

balance between these two, at times contrasting, influences (Low, 2009). The trade-off is

also heavily discussed in the machine learning literature within the multi-armed bandit
problem (Audibert et al., 2009). Complex interactions between these influences can be
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constructed, such as modeling curiosity, where one tries to quantify what is interesting in

the environment, see e.g. (Girdhar and Dudek, 2015).

As identified in this brief introduction, the most important elements in adaptive sampling

are summarized in the box below.

Important elements in adaptive sampling:
• (Problem Solving) Agent: The combined autonomous system and actor (decision

maker).

– Architecture: The internal structure and properties of the agent responsible

for synthetization/optimization of the control actions and decisions (plan/pol-

icy), i.e information-theoretic- or subsumption-based architectures.

• (Problem Domain) Sequential and Data-Dependent Sensing: The type of prob-

lem structure that characterizes adaptive sampling is one in which the decision situ-

ation and information-gathering takes place sequentially over time.

• (Method) Non-adaptive vs. Adaptive: In cases where uniform sampling of the

field at regular intervals is possible and the environmental field is smoothly varying,

non-adaptive strategies can work well (Singh et al., 2006). However, faced with

limited sampling resources, un-modeled uncertainty, or specific features of interest,

adaptive sampling can exploit observational data to map the environmental more

effectively.

• (Optimization) Coverage- vs. Feature-Based: Two types of criteria are usually

considered in environmental sampling: i) coverage-based (uncertainty) criteria, as-

sociated with the sensor placement problem, and ii) feature-based (data-driven) cri-

teria. A combination of both can also be considered.

– (Trade-Off) Exploration vs. Exploitation: Combining coverage-based (un-

certainty) and feature-based (data-driven) criteria involves finding a balance

between exploration (reducing uncertainty) and exploitation (exploiting cur-

rent knowledge).

– (Trade-Off) Optimality vs. Computability: For this type of sampling prob-

lem, the number of choices (i.e. locations, paths, and candidate designs) makes

the problem combinatorially large, creating a trade-off between optimization

(finding the optimal design) and computability (arriving at a solution in rea-

sonable time), which has to be considered in practice.

4.1.5 Related Work and Aspects of Adaptive Sampling

Partly fueled by the communication and information revolution of the last decades of the

twentieth century, marine robotics are today a key element in environmental sensing and

ocean observation applications (National Research Council, 1996). Along with increasing

computational capabilities, a growing interest in developing systems to operate with a

higher concept of autonomy have been introduced in light of the unique challenges posed

by the oceanic domain. A vast range of approaches have been developed spanning several

theoretic sub-fields, including: guidance and control theory, path planning, AI, machine
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learning, and spatial statistics. Much of this can be traced back to the underlying problem

of experiment design and sampling theory, demanding systems that can reason, plan,

and strategize data collection in a highly uncertain environment. The scientific context

is also often multi-disciplinary, including teams from biology, physical oceanography,

and other environmental scientists. This is of particular relevance, as each field of study

is exposed to different spatio-temporal scales depending on the processes under focus,

each potentially requiring a different sampling approach. A more detailed discussion on

the topic of space-time dependence in the ocean can be found in Lermusiaux (2006) and

Graham et al. (2013).

Much of the classical underpinnings for information-theoretic sampling can be found

in Guestrin et al. (2005) and Krause et al. (2006), building on traditional fields such as

spatial statistics and work by Cressie and Wikle (2011). A central part of this influence is

the use of GPs to model the environment, spatial dependence, and assimilation/condition-

ing of data. GPs also provide a formal measure of uncertainty, which connects to optimal

sampling through information-theoretic criteria such as entropy (Thompson et al., 2011)

and mutual information (Guestrin et al., 2005), reduction in variance (Binney et al., 2013),

and root mean square error (RMSE) (Frolov et al., 2014). The use of variance and entropy

as optimality criteria is further explained in Section 4.4.1. As discussed, finding optimal

sampling locations can be either a static (selecting a finite set of appropriate stationary

locations, e.g. deploying ocean buoys) or sequential problem (continuous selection and

evaluation of sampling locations, e.g. AUV and glider based data collection). In a static

or quasi-static environment, such as a copper mine or the sea-floor, the environment

is stationary or slowly changing. In this context, the observations would not change

significantly as time passes. In contrast, a dynamic environment, such as the water column

or the atmosphere, change happens regularly, often in an episodic and non-deterministic

fashion. Determining a sampling design under these conditions is significantly more

challenging, and planning ahead in time-dependent environments using only prior infor-

mation would be prone to time-evolving and unobserved uncertainty. Thus, the capacity

to adjust sampling based on new observations is vital. Besides, it is also not possible to

strive for complete coverage in the oceanic domain, so prioritization of sampling efforts

must always be considered one way or another.

Even at a basic level the problem of information gathering is difficult. Solving a static

sensor placement problem, a well-known problem in the sensor-network community, has

been shown to be NP-hard (Ko et al., 1995). Another factor is the influence of spatial de-

pendence, which makes the information gain of each sensor depend on the proximity of all

other sensors. This interconnectedness makes for a vast increase in problem complexity

as one has to account for the fact that the information is not modular2, but shared instead.

Correlation implies that measurements that are close yield less information than measure-

ments taken far apart, as samples taken close to each other are likely to share information.

In the context of a fixed size area, initial (and non-proximal) samples give a lot of in-

formation, while as the number of samples increase (i.e. samples has to be taken closer

together), the information value of each new measurement decreases. This is characteris-

2Can be explained as an “additive” property. Euclidean distance satisfies this as the sum of two segments is

equal to the sum of the combined segments.
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tic of a diminishing returns property, often expressed in relation to the objective function,

as submodularity3. Since information is shared, observations carry redundant information

and it is necessary to gather additional information to achieve the same knowledge as if

they where uncorrelated. For a static network of sensors, identifying submodularity in a

problem is actually useful, as submodular functions have very similar properties to convex

and concave functions. Just as convexity makes continuous functions more amenable to

optimization, so does submodularity in the case of combinatorial problems (Krause, 2008,

Ch.5). Furthermore, a fundamental result from Nemhauser et al. (1978) proves that a sim-

ple greedy algorithm (iteratively selecting the location which most increases the utility)

can achieve a near-optimal solution obtaining a constant fraction of 63% of the optimal

value of this NP-hard optimization problem (Krause, 2008, p.33), if the submodularity

property is present.

Myopic (Greedy) vs. Non-myopic/Synoptic Sampling

Given the added complexity of studying spatial sampling in a dynamic (non-stationary)

system and the combinatorial growth of the parameter space in sequential settings (see

Fig. 4.2), assumptions and simplifications often need to be made in order to attain a

feasible solution, leaving room for various approaches. One intuitive approach is to

discretize the problem by assigning potential measurement locations to a graph and then

evaluating the problem along the graph edges (see example in Section 4.5.1). Evaluation

can be myopic (greedy), using a fixed and usually short planning/evaluation horizon, or be

more synoptic, planning over several sequential steps (non-myopic). One important aspect

to consider in this regard is that greedy strategies are subject to the local minima problem

of optimization. Non-myopic schemes can avoid this by looking further ahead (several

sampling steps) and more elaborate searching criteria. There is however a fundamental

difficulty specifically related to environmental sampling in the ocean, and especially

the water column, namely the fact that it is difficult to attain and maintain synoptic

up-to-date knowledge. Planning ahead only makes sense if you can trust the quality of the

information.

When discussing myopic vs. non-myopic approaches the previously mentioned result

from Nemhauser et al. (1978) is of interest, providing a measure of the expected perfor-

mance for greedy algorithms. Chekuri and Pal (2005) explored this in the setting of a

graph using a recursive greedy algorithm, providing near-optimal solutions depending on

the planning horizon and graph resolution. Transferring from the (static) aforementioned

work by Guestrin, Krause, and Singh et al. (2007), Low et al. (2008) showed a sequential

approach for multiple robots that incorporated assimilation of newly gathered data using

dynamic programming, GPs, and log-GPs4, using the sum of posterior variances and

entropy as the information metric. The same metric and mutual information was later used

in Binney et al. (2010) and Binney et al. (2013), adapted to a recursive greedy approach,

with a finite horizon, a generalization of Chekuri and Pal (2005). Trying to move away

3Submodularity is usually explained as an diminishing returns property where adding a sensor to an existing

deployment helps more if we have placed few sensors so far, and less if we have already placed many sensors

(Krause, 2008, p.4).
4Log-Gaussian Processes assume data follow a log-normal distribution, which correspond better to data that

is clustered in hotspots (Crow and Shimizu, 1988).
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from greedy and myopic strategies introduces issues with scalability, running time, and

computational load typically arising from increasing dimensionality in the problem space,

such as increasing the graph size or resolution. Different types of heuristics (see Low

et al. (2009)), Markov properties, and Monte Carlo approaches are typically used to

alleviate the computational burden and find feasible solutions. Branch and bound methods

have also been used to limit dimensionality growth, for example, to allow handling of

larger graphs (Binney and Sukhatme, 2012). Greedy approaches avoid this problem

entirely by using a limited look-ahead (see Hitz et al. (2014)), sacrificing optimality

and/or completeness. In this context, the term anytime algorithm is often used to describe

algorithms that can deliver solutions (partial answers) in real time, even with interruption.

Another solution for dealing with computational complexity is to assume modularity in

the objective function. This simplification enabled Zhang and Sukhatme (2007) to obtain

good results, given a certain graph resolution. Similarly, Yilmaz et al. (2008) uses this

in a classical example using cost functions and constraints (communication, available

energy, etc.) to maximize the sum of probabilities along paths with mixed integer linear

programming.

For a number of applications, the aim is not only to gain information (explore), but

also to exploit information, a trade-off fundamental to robotic exploration, reinforcement

learning, and active learning. Exploitation comes in as a factor when there is a specific

interest, e.g. either sampling above a certain concentration or hotspots (areas of high value

measurements) or, more generally, a set of particular conditions connected to a feature. In

a sense, this captures the motivation for data-driven approaches, as one can act opportunis-

tically if favorable conditions arises. A concrete example of this is the work by Das et al.

(2015), where both GPs and ex-situ supervised learning is used, aiming to learn optimal

sampling points, for an AUV with water sampling capabilities. Building a semantic pre-

diction of the environment under spatio-temporal variation is also explored in Girdhar and

Dudek (2015), focusing on modeling curiosity to elevate the utility for long term missions

with mobile robots.

Environmental Modeling in Ocean Sampling

As previously mentioned, spatio-temporal dynamics are complicating the data-collection

strategy. To address this, various types of environmental models have been applied trying

to estimate different aspects of this variability. With the increasing availability of high-

end computational resources accessible to oceanographers, multi-resolution modeling of

the upper water column, for predictive or post-hoc purposes is a new and viable tool to

understand complex interactions between physical and biological features. However, cur-

rent synthetic ocean models (see e.g. Shchepetkin and McWilliams (2005a); Dag Slagstad

(2005)) still lack the detail necessary for adequate predictions of change necessary for de-

tailed planning of sampling efforts (Griffies et al., 2000; Lermusiaux, 2006). Nevertheless,

forecasts from ocean models have been used to efficiently guide underwater gliders (see

Chang et al. (2015)) using the predicted current field to minimize energy and improve nav-

igation. Coupling adaptation and modeling was also studied in Smith et al. (2010), Smith

et al. (2011) and Smith et al. (2016), where prior information from models was used to

plan sampling of frontal systems and phytoplankton blooms. This concept was further

studied in Fossum et al. (2018), where utilization of ocean model data was combined with
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GPs and information theoretic metrics (reduction of variance) towards developing a data-

driven greedy adaptive sampling algorithm (GASA) for use in coastal waters. Statistical

prediction of surface currents using satellite data have also been suggested as an effective

aid for underwater vehicles (Frolov et al., 2012).

Moving Away from Graphs

As discussed, the discretization of the workspace, i.e. a graph, has a large impact on the

result, computability, and attainable solutions. Consequently, by omitting graphs these

methods try to work in continuous space. To overcome the aforementioned problem with

dimensionality, some approaches use genetic algorithms (GAs) that can iteratively evolve

the path according to a defined measure of reward/score by relying on bio-inspired opera-

tors such as mutation, crossover and selection (Mitchell, 1998). Frolov et al. (2014) serves

as a excellent example of this approach, where the mean square error (MSE) is used as an

information metric to evaluate the GAs path evolution, comparing performance with both

lawnmower and A* solutions. More recently, Hitz et al. (2017) investigate methods for

data-driven sampling in 3D using GAs, taking into account constraints such as path bud-

get. Even if GAs tend to have less computational cost compared to a similar dense graph,

the cost of the GAs increases exponentially with the path length (Frolov et al., 2014), due

to the number of calls to the cost function. GAs also have problems relating inconsistency

(may provide different solutions each time) and incompleteness (do not always produce

a feasible path when one exists) when searching for the optimal path (Zeng et al., 2015).

Sampling-based methods for path planning, such as rapidly exploring random trees (RRT)

variations, have also been used (see Hollinger and Sukhatme (2014)). Sampling-based

methods can find solutions more quickly, but require submodularity properties for pruning

away alternatives in the correct manner.

Autonomous Sampling Networks

In addition to a multitude of platform-specific approaches, numerous field programs in-

volving robotic sampling have been conducted, including work on multi-vehicle coordi-

nation. Much of the foundation for optimal synoptic sampling was laid in the seminal

work by Bretherton et al. (1976) and the associated MODE-73 experiment, where the ob-

jective was to study the mesoscale motion on spatial scales from 50 to 500 km, and time

scales of 1 week to a few months. More recently, campaigns like the Autonomous Ocean

Sampling Network (AOSN-I/-II) (Curtin et al., 1993; Ramp et al., 2009), the Adaptive

Sampling and Prediction (ASAP) field experiment (Leonard et al., 2010), the Keck In-

stitute for Space Studies (KISS) field program (Chao et al., 2017), the Controlled Agile

and Novel Observation Network (CANON) field program (Das et al., 2010, 2012a), and

associated activity at Monterey Bay Research Institute (MBARI) (Chavez et al., 2017),

have tested several of the aforementioned methods in practice on a large scale with multi-

ple platforms and ships in the water simultaneously. The persistent focus of these efforts

and the increasing complexity of doing fleet coordination in such campaigns has prompted

the development of a few widely used autonomous agent architectures used for scientific

AUV applications, namely the previously presented T-REX agent (McGann et al., 2008b)

developed at MBARI, shown in Fig. 4.1, and the MOOS-IvP (Mission Oriented Operat-

ing Suite) (Benjamin et al., 2010) from Massachusetts Institute of Technology (MIT). In
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regular operation, the T-REX framework explores adaptive data-collection using multiple

control loops together with a “divide-and-conquer” problem-solving strategy. A thorough

overview of T-REX is given in Py et al. (2010), Rajan and Py (2012), and Rajan et al.

(2012), with the latter including examples from field trials.

Multi-Vehicle Coordination

In addition to single craft controlling agents, multi-vehicle coordination of platforms has

also been extensively investigated. Following work related to the AOSN-II (Ramp et al.,

2009), Leonard et al. (2007b), Alvarez et al. (2007), and Leonard et al. (2010) addresses

collective synoptic sampling and provides a solution by optimizing spacing between multi-

ple platforms along elliptical pathways (chosen to simplify the trajectory planning). While

impressive, the approach assumes homogeneous spatial correlation and uniform prior un-

certainty, which later is addressed in Frolov et al. (2014). Coordination is not only re-

stricted to a single domain, but across mediums such as land, ocean, and air, see e.g. Py

et al. (2016), Ludvigsen et al. (2016), Ferreira et al. (2018), and Costa et al. (2018). For

human-in-the-loop applications, the previously mentioned Oceanographic Decision Sup-

port System (ODSS) (Gomes et al., 2013) developed at MBARI is an example of an online

tool for multi-platform coordination and control that supports situational awareness, exper-

iment planning, collaboration, and data analysis between platforms and decision makers.

Multi-platform observation and coordination can also help address issues related to overly

simplistic assumptions about the field statics. In Das et al. (2012b), coordinated sampling

using Lagrangian drifters and AUVs is explored to address the problem of tagging and

tracking an advection patch of water. The same platforms are also used in Graham et al.

(2013), where the aim is to assess the use of different spatio-temporal correlation models.

An overview of information-theoretic approaches and related multi-platform efforts can

be found in Kemna (2018).

4.2 Subsumption-Based Architectures

Subsumption architectures (Brooks, 1986) constitute the most rudimentary form of

problem solving agents, where sensory information couples directly to action selection

(Sense→Act). Subsumption-based agents usually feature a simplistic model of the envi-

ronment, using only a finite number of states. Since there is no planning or deliberation

involved – only actions corresponding to sensor values – there is no need for a complex

internalized model that includes values at unobserved locations. Rather than featuring a

planning stage, the sampling behavior is decomposed into different sets of behaviors that

represent certain action-response pairs that are triggered by incoming data, see Fig. 4.3.

In this sense subsumption-based architectures share similarities with expert systems

(see Jackson (1998)). A clear limitation of this setup is that all sampling behavior needs

to be determined in advance (hand-tailored to each problem), and reconciliation of differ-

ent behaviors may lead to both sub-optimal solutions and complexity. In comparison to

information-theoretic approaches, on which the model plays a central role, subsumption

architectures cannot (in their traditional form) rely on re-planning to handle off-nominal

situations. Another limitation is that subsumption architectures, in their classical form (hy-

brid architectures exists), only react to their immediate environment (e.g. passing through

a temperature gradient), disregarding impacts to future actions or states (Rajan and Py,
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Figure 4.3: Behavior-based autonomous agent structure with the Sense→Act autonomy

structure.

2012). Still, these behavior-based approaches provide a direct way of partitioning data

collection into specific routines that reflect a desired sampling reaction. Feature track-

ing (Petillo et al., 2010), obstacle avoidance (Fossum et al., 2016), and rendezvous/di-

rected homing control (Bellingham and Leonard, 1994) are all examples of this type of

subsumption-based architecture. More complex behaviors can, however, be built into the

system to include more complicated and predictive behavior (see Petillo (2015)), in which

case the system can operate as a hybrid.

4.3 Information-Theoretic Architectures

The structure of information-theoretic architectures may appear, at first sight, similar

to that of subsumption systems (see Fig. 4.4). However, the architectures differ con-

siderably in their abilities and methodology for formulating sampling behavior and

control. Information-theoretic architectures typically feature a more involved model of the

environment, as well as extended learning, planning, and decision making capabilities;

this makes the system more deliberative5. Also, as there is no predefined and direct

mapping between sensor values and actions, such that finding a suitable sampling action

(location) needs to be computed – rather than specified – using formalized rules, metrics,

and algorithms. This process sets the architecture apart and results in a Sense→Plan→Act
control methodology, where the inclusion of a “Plan” stage signify this. The in-situ per-

formance of this additional deliberation, has been criticized as being too slow for certain

dynamic and fast changing environments. However, algorithmic and implementational

advances have made this less of an issue (Rajan et al., 2012), but is still something that

should be noted, especially for moving AUVs doing continuous observations. The upside

is that the system can be programmed to handle a wider range of unforeseen events and

5Deliberative systems (agents) articulate more informed control and conscious behavior by searching

through a space of alternative actions, maintains a detailed internal state, and tries to predict the effects of actions

on future states.
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opportunities that may arise during execution by re-planning accordingly.

To plan and evaluate optimal actions, there need to exist an updated description

of the environment; the more accurate description is the better. The models associated

with information-theoretic architectures are usually referred to as world models, and

are more elaborate than the single state representation used in typical subsumption

systems. This model is usually a type of map representation that incorporates both prior

and posterior information about the environment (including unobserved locations). The

common form is typically a gridded map of value-location pairs (e.g. a discretized 2D

GP model). However, depending on the application and implementation choice, different

declarative representations can be used to serve varying functional requirements (science

optimization, path planning, behavior coordination, collision avoidance, cooperative

planning, etc.). Typical representations are in this regard: potential fields, statistical and

parametric models; roadmaps, and different classes of value-based grids. The world

model can also be extended to include co-variates and other relevant mechanisms relevant

for the specific domain (e.g. risk and fault diagnosis). The model representation acts

as a workspace across the different components of an autonomous agent (e.g. different

sub-routines can access the map structure for waypoint inference). Using a predictive

model of the environment can be useful when trying to understand and prioritize sampling

resources, making the agent more attuned to the environment. As the model typically also

includes information at unobserved locations, the impact of sampling can be evaluated

against metrics that include this information, such as the global reduction of uncertainty.

The formulation or refinement of a sampling plan (the interaction between planner,

algorithms, and objective functions shown in Fig. 4.4) will be described in more detail in

the following section.

Environm
ent

Sensors

Objective/Utility
function

Actuators

World
Model

Planner/
Algorithms

Information-theoretic autonomous agent

Figure 4.4: Information-theoretic autonomous agent architecture, following the

Sense→Plan→Act autonomy structure.
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4.4 Information-Theoretic Adaptive Sampling

For information-theoretic approaches, formulation or refinement of a sampling plan can be

an complex task due to the number of parameters and alternatives involved. Additionally, a

compromise must usually also be found between a set of objectives and constraints related

to the overarching research question, while simultaneously reaching agreement with the

entities already integrated into the plan. Complications such as resource limitations (e.g.

balance between sensor coverage and battery life), competing objectives, off-nominal con-

ditions, fault tolerance, and synchronization have to be settled according to a quantitative

understanding built into the agent’s planning system. Even so, the cyclic process of for-

mulating an adaptive sampling plan, shown in Fig. 4.5, is fairly general and builds on the

initial Fig. 1.1, where continuous assimilation of data allows information to be retained

across time and decisions. In this regard, we will now address the major influences in

information-theoretic adaptive sampling, using the steps shown in Fig. 4.5 as reference.

Prior prediction / information

State estimation 

Data assimilation

First cycle/Start

World model /
information

Observe world /
Data Collection

Sense
p(y|x)

p(x|y)

Generate sensing strategy

Plan

Prior data p(x):

Act

Model(s) 
assimilation

Algorithms, 
coordinators, 
and objective functions

e.g. Synthetic Ocean Models
and/or Remote Sensing 

Figure 4.5: The data-driven/adaptive sampling cycle, where continuous assimilation and

refinement of a sampling strategy follows the Sense→Plan→Act control methodology.

We start a cycle with a predefined data collection plan based on the prior prediction,

p(x) where x is a distinction of interest (e.g. temperature, salinity, chlorophyll, etc.).

Starting without any predefined plan is of course possible, but is not often practical,

leaving all planning to the agent. Typically a set of waypoints is selected and used as “lead
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in” for the agent, chosen as a “best guess” optimal launch route. Despite being based

on scientific expertise, the degree of discrepancy will likely be large for early points of

comparison with the prior prediction. The risk of confusion and long-term sub-optimal

performance is therefore high in early phases of deployment. This is typical when the

effective number of observations are small, since the bias is much larger than the variance

in the beginning, dominating the mean square error.

Retaining an advantageous strategy for information recovery requires favorable recon-

ciliation of recovered data with the world model, continuously adding and refining current

knowledge. Consequently, assimilation (conditioning) must run in parallel, fusing infor-

mation in such a way that an updated representation of the environment is maintained. This

can be performed in numerous ways, but usually consists of a statistical update procedure,

often based on Bayesian approaches (the conditional p(x, |y) given in Eq. (3.6). The gen-

erated posterior belief is then used as the current world model, yielding an updated and,

hopefully, improved conception of the environmental state/world evolution. In the strictest

sense of the word, knowledge can only be about the past, yet the environment can in certain

situations change faster than the agent can plan (the plan becoming obsolete or degraded

too fast). However, given that the process dynamics are resolvable from the standpoint of

the platform limitations (depth rating, speed, etc.), information is accumulated faster than

it is lost. Once a new world state is available, the strategy for information recovery can

be re-evaluated and potentially refined, enabling adaptation to observed changes during

mission deployment – the last step in Fig. 4.5, “Generate sensing strategy”. In this step de-

cisions are made on where and when to sample. Different criteria can be used to evaluate

the best action forward, and we will in the next sections see how this can be done from an

information-theoretic perspective.

4.4.1 Objective Functions and Different Optimization Criteria

Information-theoretic sampling utilizes models and informative metrics to find and differ-

entiate between different sampling locations. Generating a sampling plan usually relies on

optimization of a utility function, which is an objective function that computes a score,

either maximizing or minimizing a form of metric. This metric is often a value function

based on the uncertainty reduction (e.g. variance or mutual information), feature-based

context (gradients, concentrations, etc.), or a combination of both. The problem of choos-

ing the path that maximizes this utility within an underlying field of interest, is often

described as informative path planning (IPP). IPP stands in contrast to path planning,

which seeks to optimize criteria such as distance. For path planning, typical algorithms

such as Dijkstra’s algorithm can be applied due to the modularity property of the objective

function that usually builds on Euclidean distance. IPP problems and many environmental

sensing problems on the other hand are usually submodular. Submodularity arises from

the fact that spatial data are correlated, which connects back to spatial statistics and cor-

related data. Observations made close to each other in space (or time) are likely to share

mutual information. It is therefore necessary to gather additional information to achieve

the same knowledge as if they were uncorrelated, a diminishing return effect that needs to

be included in the objective function. As previously mentioned, this submodularity prop-

erty can be systematically exploited in order to efficiently obtain provably near-optimal
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solutions to sensing problems (see Nemhauser et al. (1978) and Krause (2008)). IPP can

formally be defined as:

P ∗ = argmaxP∈Ωe
{O(S(P ))}, (4.1)

where P is a path from the set of possible paths Ωe within the environment, the

function S(·) provides the finite set of sampling locations given P , and O(·) is an

objective function. There will also be an associated cost function C(P ) ≤ B, which

allows constraints such as energy, time, or other resources to be included into the problem.

For information-theoretic agents the objective function, O(·) in Eq. (4.1) is of funda-

mental importance for determining which observations should be prioritized, operating as

a sensing quality function. Following the introduction given in Section 4.1.3, optimization

criteria can be purely location based (e.g. sensor placement), aiming to reduce uncertainty,

or be combined with feature-based (data-driven) criteria. A few aspects concerning the

objective functions will be discussed here, from the standpoint of GPs. We re-use the

notation from GPs and Section 3.1, to formally quantify uncertainty in this context.

Consider therefore a real-valued stochastic process {x(s), s ∈ V}, where V is an index

set where V ⊂ �2, describing the subset of locations s where we can sample. Assume fur-

ther that for this finite choice of locations that the random vector x =
[
x(s1), . . . , x(sn)

]
has a multivariate normal probability density function defining the GP. For a subset A ⊆ V ,

let xA denote a set of random variables associated with some candidate locations given by

A. These candidate locations can be seen in relation to the alternative paths P ∗, discussed

in Eq. (4.1). To evaluate the informative value of the candidate locations, it is necessary to

estimate a conditional distribution p(x(s)|xA) over the unobserved locations s ∈ V/A,

which is given in Eq. (3.10) and (3.11).

Uncertainty-driven Criteria

For many sensing applications, the goal is to reduce the uncertainty in unobserved vari-

ables. Using the notation above, it is now possible to evaluate this in terms of different

criteria such as predictive variance and mutual information using the GP formulation. In

this case, both criteria rely on Σ, and selection depends on how one wishes to express

uncertainty. Here, A should be considered the subset of potential sampling locations com-

patible with logistic constraints such as the number of platforms, available time, depth

rating, etc.

First used by Caselton and Zidek (1984) for spatial prediction, mutual information
is a measure of the shared information between two variables, quantifying the informa-

tion gain about one random variable through observing the other. This criterion, using

the determinant, is also known under the name of Bayesian D-optimality (Chaloner and

Verdinelli, 1995). A criterion using mutual information can be expressed in closed form

solution for a GP as

OMI(A) = I(xA;xV/A),

= H(xV/A) −H(xV/A|xA), (4.2)
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where I(·) is the mutual information expressed by the entropy H(·). This can be thought

of as trying to reduce the uncertainty at the unobserved locations/variables. The optimal

subset of sampling locations, A∗, with maximal mutual information is then

A∗MI = argmax
A⊆V

1

2
log((2πe)n (det ΣV/A − det ΣV/A|A)), (4.3)

where ΣV/A|A can be inferred from Eq. (3.11). Similarly, variance can be used to quantify

the reduction of uncertainty by measuring the reduction of prior vs. posterior variance. If

Σ0 denotes the prior covariance matrix for a set of locations s ∈ V is defined in Eq. (3.3),

while the posterior is given as Σs|A defined in Eq. (3.11). From this we can express a

variance criterion as

OV (A) = Var(x(s)) − Var(x(s|A)). (4.4)

The optimal subset of sampling locations A∗, that maximizes reduction of uncertainty

can be expressed as

A∗V = argmax
A⊆V

1

N
(tr(Σ0) − tr(Σs|A)), (4.5)

where tr(·) is the trace of a matrix, and N is the total number of possible measurement

locations (a constant number). This criterion, using the trace, is also known under the

name of Bayesian A-optimality (Chaloner and Verdinelli, 1995).

Given Eq. (4.3) and (4.5), an optimal design can in this context, with respect to poten-

tial sampling locations A, be generically defined by

A∗ = argmax
A⊆V

{φA(Σ)}, (4.6)

where φA is a scalar function. Note that the difference in φ between entropy using

the determinant (D-optimality) of Σ, and variance using the trace (A-optimality), is that

the trace only considers elements along the diagonal. Hence, the trace covers only the

overall level of uncertainty and does not take into account the correlation between vari-

ables. Taking the determinant measures a different type of variability, sometimes referred

to as generalized variance (Sen Gupta, 2004). In general, a design based on a measure

of variance results in more globally uniform sampling strategies, while designs based on

mutual information lump observations in areas of high uncertainties (Alvarez and Mourre,

2012). These tendencies, of course, depend on the particular spatio-temporal correlation

and variability structure of the region under consideration. In addition to A- and D-optimal

designs, there are several other optimality criteria (see Chaloner and Verdinelli (1995)) that

can lead to different sampling strategies. For example, using the eigenvectors of Σ, the un-

certainty can be studied through the eigenvalues corresponding to coherent spatial patterns

of variability, known as E-optimality. Thus, an E-optimal design will seek to minimize the

variance of the worst estimated spatial pattern (dominant error modes) of this variability.

There is no clear criterion that performs better for sensing applications in the marine envi-

ronment (Alvarez and Mourre, 2012), but both A- and D-optimality are commonly used.

More about spatial models and different optimality criteria can be found in Müller (2007).
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Data-Driven Criteria

Both Eq. (4.3) and (4.5) do not depend on the actual value of the observations, only their

location through Σ. The optimal strategy is therefore deterministic and can be calculated

a priori. As previously discussed, this is useful in applications where one wishes to focus

on optimizing sensor placement, e.g. placing a network of temperature sensors in an office

building. However, in uncertain and dynamic domains such as the ocean where prior in-

formation is limited, it makes more sense to develop criteria that also utilize information

from observed values. An example of this is given below, showing a data-driven criterion
(V+G) where the objective function is formulated as a balance between gradient intensity

(data-driven) and reduction of variance (uncertainty)

OV+G(A) = (Var(x(s)) − Var(x(s|A))) + ∇(x(A)). (4.7)

The formulation defines a set of sampling locations A that both reduces the posterior

variance and prioritizes paths indicative of having large gradients over the potential sam-

pling locations. Sampling strong gradients can be useful as they arise from the number

of ocean processes. Thermal gradients are one example where large changes in tempera-

ture can be associated with frontal zones, upwelling, currents, etc. The optimal subset of

sampling locations A∗, for this objective function can be formulated as

A∗V+G = argmax
A⊆V

{θ1 1

N
(tr(Σ) − tr(Σs|A)) + θ2

1

N
∇(μ(A))}, (4.8)

where θ is a weighting parameter balancing the influence of each term, ∇ denotes the

gradient, and μ(A) is the expected mean evaluated at locations A. In a sequential setting,

a conditional plan (a selection policy) could be developed that selects one location after

another, utilizing the metric in Eq. (4.8). As uncertainty and gradient utilities may prefer

different locations, a balance between exploration vs. exploitation must be found (ref.

the weighting parameter θ); this balance may be constant or change during the course

of the sampling activity. As initial assumptions about gradients may be highly uncertain

in the beginning of the survey, it may be more advantageous to favor the reduction of

variance. However, as the consumption and assimilation of observations proceed, there

is a gradual reduction of uncertainty. Reducing all uncertainty might not be a beneficial

strategy in the long run, and advantageous behavior can instead be inferred on the basis

of an approximately known environment (driven by data). These strategies may be

myopic or non-myopic, looking several steps ahead and thus considering paths rather than

points. Yet, planning far ahead is not always better, as large uncertainties degrade the qual-

ity of long term plans; this a problem which often is encountered in the ocean environment.

As previously discussed, it is also useful to consider limitations such as time or energy.

This can be encoded as a cost function C(A) ≤ B, such that the optimal subset reads

A∗ = argmax
A⊆V

{φA(Σ,μ)} s.t. C(A) ≤ B. (4.9)

To better understand the practical use of these criteria, the next section presents exam-

ples using both uncertainty- and data-driven criteria.
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4.5 Examples of Autonomous Agents

The difference between the Sense→Plan→Act and Sense→Act control methodology,

makes a clear distinction between information-theoretic and behavior-based agents. Still,

both architectures are capable of performing adaptive sampling. This section presents two

examples of this through: i) a simulated survey using an information-theoretic agent, and

ii) a concrete, real-world case study using a behavior-based autonomous agent.

4.5.1 Information-Theoretic agent

A brief example of an information-theoretic agent is given here using both uncertainty-

(variance) and data-driven criteria (variance and gradient) from Section 4.4.1. In a

simulated setup, the goal is to map an area with a patchy temperature distribution using

a GP model. The approach is based on discretization of a GP to a waypoint graph, and

assigning potential measurement locations along the graph edges for route evaluation. The

goal is to sequentially select the node that maximizes the score of the objective function

given your position in the graph, using the different criteria and horizons.

Formulating a GP Model
The model framework from Section 3.1 is used to formulate a GP model of a temperature

distribution over locations si. The temperature is modeled to increase squared radially

(this to attain a more box like distribution, as seen in Fig. 4.6a), originating from a source

ssource. The covariance is isotropic and depends only on distance, given as

μ(si) = βt,0 + βt,1||si − ssource||2, (4.10)

cov(si, sj) = σ2e(−γ ||si−sj ||), (4.11)

where βt,0, βt,1 = [3.0, 0.007], specifies a temperature covariate parameter, and the

remaining parameters are defined in Section 3.2.1, Eq. (3.7). The GP is now fully deter-

mined by collecting the mean μ = [μ(s1), ..., μ(sn)] and covariance Σij = cov(si, sj)
following Eq. (3.3). Discretization into a 50 × 50 grid yields the prior model that can be

seen in Fig. 4.6a. The true underlying temperature distribution is a realization of the GP

model, seeded by Gaussian noise, and shown in Fig. 4.6b.
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(a) Prior temperature estimate.
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(b) True temperature field.

Figure 4.6: (4.6a) The prior GP mean. (4.6b) The true underlying temperature.
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4. Adaptive Sampling

Waypoint Graph and Objective Functions
The available locations are given in Fig. 4.7, showing a waypoint graph G = (V,E,D).
Each cell consists of a four corner node/vertex (red dot) that can be visited, with arrows

illustrating the possible sampling routes (edges E) that can be selected.

A large number of routes can be extracted from this graph, as each node (except for

the corner nodes) connects to eight neighboring nodes; this makes up the first column of

choices in Fig. 4.2. Using a brute force (evaluating all routes) 1-step horizon, the routes

to evaluate at each graph node equal the number of nodes (eight); for a 2-step horizon

this increases to 64, and so on. Some routes can, however, be pruned out, e.g. going back

and fourth. Evaluating which route to take is done using the objective functions OV or

OV+G given below. Eq. (4.12) is not dependent on data, as it only considers reduction in

the (posterior) error covariance.

OV =
1

N
(tr(Σ) − tr(Σs|A)), (4.12)

In Eq. (4.13), a gradient term is added to the objective function. This enables the agent

to evaluate in which direction the temperature changes the most and use this in planning.

OV+G =
1

N
(θ1 (tr(Σ) − tr(Σs|A)) − θ2 ∇(μs|A)). (4.13)

0 1 2 3 4 5 6 7

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71

8

measure
point (D)

Graph (G)

Ed
ge

 (E
)

Node/Vertex (V)

Figure 4.7: The different paths for an AUV are encapsulated in a waypoint graph G =
(V,E,D) with four corner nodes/vertexes v ∈ V , v = {0, 1, 2, 3}, edges between the

nodes given as e ∈ E, and measurement points x(si) ∈ D.

Simulation Setup and Performance Metrics
To simulate a survey, the agent is given 20 nodes to visit in the graph G using either

Eq. (4.12) or (4.13), with different planning horizons. In a oceanographical context the

simulated temperature in Fig. 4.6b, could represent a patch of temperature which we
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4.5. Examples of Autonomous Agents

wish to sample. To evaluate performance between the utilities, one can use either RMSE

or R2, which is a statistic that computes the percentage of the prior variance captured

by observations as: R2 = 100 ∗ (1 − (Σposterior/Σinitial)). Performance could also

be set according to the behavior itself, which in this case could be a desire from the

scientist to follow the edges of the patch. The edges are of interest, as this is where the

patch interaction with the surroundings occur, which is where biological activity in a real

scenario would be high (e.g. fronts).

Results and Discussion
Fig. 4.8 show the results from the simulated survey, using both variance (V), as well as

variance and gradient (V+G). Both functions are evaluated using a 1-step horizon (greedy).

The prior uncertainty is initially evenly distributed (all yellow background), but as the

agent progresses through the graph, the uncertainty is lowered around the agent route

(in red color). The V-approach (Fig. 4.8a) only depends on Σ and seeks to minimize the

(posterior) error covariance. The resulting route ends up following a spiraling path that first

trends toward the middle. The trend toward the middle leads to sub-optimal performance,

as one later has to cross over previously covered regions where posterior covariance is

already low; this can be thought of as a “myopic-trap”. Using a V+G-approach (Fig. 4.8b)

the agent becomes dependent on data and quickly changes behavior. As gradients are high

along the edges of the patch, the agent tracks along these and avoids getting drawn into

the middle, as well as crossing over previously mapped areas.
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(a) Variance based utility (greedy).
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(b) Data-driven (V+G) based utility (greedy).

Figure 4.8: The agent routes using variance- and variance+gradient objective functions.

The posterior error covariance is shown in the background, with the agent route superim-

posed in red. Note that the variance based utility initially seeks into the middle, leading to

a path cross-over later in the route.

Finding a more optimal strategy that initially avoids the “myopic-trap” temptation
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4. Adaptive Sampling

of visiting the middle point, one can try to increase the planning horizon. Increasing the

planning horizon to 2-steps, the V-approach performs slightly better (Fig. 4.9a), but still

seeks into the middle. Increasing the planning horizon to 3-steps, evaluating a maximum

512 routes at each planning instance, does not improve the result (Fig. 4.9b). Why do we

not get an increase in performance? Increasing the horizon of the brute force planner6

does not always improve performance. This is an important and counterintuitive result.

Even if a route appears better, looking further ahead, the route can turn out to be worse

over an even longer horizon. For the case shown here, the 2- and 3-step horizon is not long

enough to detect that visiting the middle, leads to a sub-optimal strategy. For this to be

detected, the horizon would need to be something around 11-steps, where middle-seeking

paths could be compared to paths that encircle the middle instead. Furthermore, the

only way to find the globally optimal route, using a brute force planner such as the one

considered here, is to use a full horizon (Binney et al., 2013); which in this case would be

a 71-node horizon, requiring an impractical amount of computation time.
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(a) Variance based utility (2-step horizon).
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Figure 4.9: The effect of increasing planning horizon (2- and 3-step) for the V-approach.

A longer planning horizon does not always improve the result.

The results are summarized in Table 4.1, where deliberation (computation) time,

RMSE, R2, and behavior is presented. As shown in Fig. 4.8 and 4.9, different solutions

are obtained by including data-driven criterion or extending planning horizon. For ex-

ample, low RMSE is achieved using a 2-step V-approach, while the strategy that yields

the route with lowest explained variance (R2) is 1-step V+G approach. This latter results

is attributed to the gradient influence, pulling the agent away from the “myopic-trap” ex-

plained earlier, yet the RMSE is not better than the V-approach. The counterintuitive effect

6A brute force planner considers all options, one by one.
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4.5. Examples of Autonomous Agents

of increasing the planning horizon is also evident in the results for strategy 3 and 5, where

performance is diminished. One could also use behavior for evaluating the performance of

the different strategies, as scientists may want edge tracking rather than optimal coverage.

In this example, strategy 4 is a good choice, featuring both edge tracking and low R2.

Table 4.1: Simulation results using different informative sampling strategies.

Strategy Delib. time RMSE R2 Behavior

1) Variance (greedy) 40 sec 0.36 62% Inward spiral

2) Variance (2-step) 3 min 0.32 67% Inward spiral

3) Variance (3-step) 10 min 0.38 65% Inward spiral

4) Variance + Gradient (greedy) 40 sec 0.36 72% Tracks gradient

5) Variance + Gradient (2-step) 3 min 0.35 70% Tracks gradient

4.5.2 Subsumption Agent

This last example cover tracking of fronts in an Arctic environment using a behavior-

based agent architecture. The results are from a real deployment conducted in Arctic

Ocean September 2018 (see overview of field deployments in Table A.1). Contrary to

an information-theoretic approach, the agent illustrated here uses only a few states to

perform adaptive sampling of an evolving front feature (similar to Pinto et al. (2018)).

Oceanographic features, such as fronts, are both episodic and highly dynamic, posing a

challenge for traditional pre-planned sampling surveys. As their location is constantly

moving, prior estimates are usually too poorly resolved and uncertain for deterministic

planning. An adaptive sampling strategy is therefore used to autonomously follow this

feature as it moves. A simplified state space graph is shown to illustrate the interaction

between the different behaviors built into the architecture.

Autonomous Tracking of an Arctic Front With an AUV
Oceanic fronts are dynamic regions forming a boundary where different water masses

meet and interact. Large changes in water properties (such as temperature, salinity, oxy-

gen concentration, etc.) result in elevated horizontal gradients that can be used to detect

their presence. These regions are of interest to scientists as high biological activity is cou-

pled with strong physical interaction. Hence, mapping the frontal processes are of vital

importance for understanding the ecosystem dynamics.

A simplified illustration of the behavior-based architecture is shown in Fig. 4.10.

The agent switches between the states, “Search” and “Track,” where the agent is either

exploring to find the front (Search), constantly checking whether it has crossed a thermal

shift (the green box [front detected?]), or if the front is detected the agent plans a zig-zag

maneuver to cross the front, and enters tracking mode (Track). The thermal shift (the

trigger for proceeding to the next state) is a predefined temperature hysteresis (thresh-

old with a defined “dead-zone”), set based on the expected gradient conditions at the front.
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Search Front 
detected?

Generate front 
crossing 

maneuver
Track

Yes

No

Figure 4.10: Example of a rudimentary behavior-based state machine used to track frontal

processes. Two behaviors, “Search” and “Track” are shown, with sensor input (front de-

tected) and coordination and control (generate front crossing maneuver).

The goal of the adaptive agent was to track back and forth across the front edge to in-

crease the sampling resolution of the frontal process and document the different physical

and ecosystem dynamics across the feature. In experiments conducted at 82°North (Nor-

gren et al., 2018), north to Svalbard in the Arctic Ocean, an extended version of the agent

was used to autonomously detect and track a thermal front, close to the ice edge. The front

was characterized by cooled Arctic and warmer Atlantic water creating a temperature dif-

ference of almost 5°C. The detection trigger for detection was centered around 1.5°C, with

a hysteresis of 0.5°C. The resulting behavior is shown in Fig. 4.11 and displays the AUV

survey path crossing and tracking the thermal front a number of times, as intended.
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TemperatureAUV pathFront Tf=1.5ºC
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Figure 4.11: An interpolated 3D volume using the CTD measurements from the AUV. Note

the AUV path crosses the front a number of times, recording the physical and ecosystem

changes across the feature.

60



Chapter 5

Operational Aspects in Adaptive
Sampling

IN a chaotic and complex environment such as the ocean, the challenge of robotic

sampling is as much practical as theoretic. The method and design depend upon a

range of different design and risk considerations, which vary depending on the environ-

ment type (e.g. coastal waters, fjords, or high latitude locations such as the Arctic). The

researcher has to account for this in the development methodology, finding a balance

between practice, practical knowledge, and applicable theory. This chapter provides

a discussion about marine robotic platforms and practical aspects related to adaptive

sampling, focusing on operational issues and deployment with AUVs in the upper water

column. The field deployments undertaken during this thesis, with associated papers and

comments, can be found in Appendix A.

5.1 A Methodological Approach to Sampling

Planning and optimizing sampling activity is a process consisting of several steps. An ex-

ample model of the different levels of abstraction, common to robotic sampling, is shown

in Fig. 5.1. Note that proceeding from one step to another may require several iterations up

and down in abstraction level (e.g. make a simple test program and see if simulations sug-

gest a change of method). In the proposed model we separate between the planning phase,

and the development and execution phase. The planning phase sets the basic parameters

for the decisions that follow, which start with the scientific motivation and capacities avail-

able to the scientist. The subsequent aspects relating to domain, platforms, and choice of

method all depend on these initial constraints. Once this initial construct is in place, one

proceeds into the development and execution phase. This is where the actual work is done,

finding and solving specific practical details of the problem; this also includes develop-

ment of programming code, simulation, and field-testing. Interaction with the real world

is vital and several iterations are usually necessary for arriving at a robust and functional

system. Much time can be spent in this last phase, constantly discovering and resolving

conflicts relating to off-nominal conditions and events. The final stage is the execution step

(step 6), where the conclusive experiment takes place. In practice, this step can further be
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5. Operational Aspects in Adaptive Sampling

sub-divided into its own planning and execution step, which considers more near-term de-

cisions relating to operational risks such as weather, deployment and recovery, logistics,

etc. The setup in Fig. 5.1 is a generic example, providing an overview of the common

steps involved for developing a sensing strategy and deploying it in the ocean. In the fol-

lowing sections, more details will be provided on operational aspects relating to adaptive

sampling approaches.

1) Science goal & resources

Planning phase

Development and execution phase

2) Domain characteristics 

3) Platforms and constraints

4) Methods and operational practice

• Environment: water-column/seafloor, deep/shallow water.
• Large/small area.
• Dynamic/static environment.
• Expected off-nominal conditions and events.
• Spatial and temporal dynamics and scales.

• Fundamental knowledge and understanding.
• Mission objectives and available resources such as:
   ship time, platforms, ocean model output, remote sensing, etc.

• Information-theoretic vs. behavior-based adaptive sampling.
• Oceanographic sensing practices.

5) Implementation
Simulation
 & testingLo

w
H
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h

• Programming considerations.
• Control and actuation.

6) Execution

• Operational risks. 
• Logistics.

• Platform limitation (fixed/moving, coverage capability, etc.).
• Available sensors and computational resources.
• Communication and navigational limitations. A
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Figure 5.1: An example model of the different levels of abstraction for determining a

robotic sampling strategy/approach, from high level science considerations to lower-level

method selection, implementation, and testing.

5.2 Marine Robotic Platforms

There are three major types of aquatic robots used for sampling the ocean: propelled

and glider based autonomous underwater vehicles (AUVs), autonomous surface vehicles

(ASVs), and remotely operated vehicles (ROVs) (see Fig. 5.2). ROVs need ship support

for navigation, power, and control. In contrast, AUVs and ASVs are capable of operating

independently having internal power, data storage, and navigation solutions. AUVs and
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5.2. Marine Robotic Platforms

ASVs can both have active or passive propulsion. Passive types of transportation include

buoyancy (glider AUVs), wavefoil (wave energy ASVs), and currents (drifter ASVs). Pas-

sive transportation is naturally less mobile and slower compared to active locomotion, but

can sustain longer operations as energy is harvested from the environment.

(a) ROV - Minerva, NTNU. (b) ASV - Otter, Maritime Robotics.

(c) AUV - Remus 100, Kongsberg Maritime. (d) AUV (Glider) - Seaglider, Kongsberg Maritime.

Figure 5.2: The major types of marine robotic platforms: remotely operated vehicles

(ROVs), autonomous surface vehicles (ASVs), autonomous underwater vehicles (AUVs),

and gliders.

Each platform has a particular coverage capacity and resolution, which has to be con-

sidered when planning and coordinating oceanographic sampling. As shown in Fig. 2.2,

this is driven by the resolution demands arising from the dynamics of the ocean process

being studied. This can span several orders of magnitude from sub-centimeter identifica-

tion of phytoplankton, to mesoscale studies of bloom dynamics. Capturing the process at

an adequate resolution is thus often only possible using a range of different sources. The

unification of ocean models, remote sensing resources, different robotic elements, and

ship-based sampling is therefore essential in order to address this. Before we can address

the operational aspect related to adaptive sampling of the water column, a brief introduc-

tion to AUVs is given.

5.2.1 Autonomous Underwater Vehicles

Applications of robotics to marine science and industry started in the post-World-War II

era. The first AUV arrived on the scene in 1957, pioneered by the University of Wash-

ington, USA. This was the Self Propelled Underwater Research Vehicle (SPURV), carry-

ing a conductivity-temperature-depth (CTD) for observing internal wave structures, which

was of interest to the US Navy. According to Busby’s 1987 Undersea Vehicle Directory

(Busby Associates, 1987), there were 6 AUVs in operation and 15 under development by
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the end of the 1980s. By the end of the 1990s the number had increased dramatically and

vehicles such as the MIT Odyssey, WHOI Autonomous Benthic Explorer (ABE) (Yoerger

et al., 1991) and Remote Environmental Monitoring Unit(s) (REMUS) (Allen et al., 1997),

South Hampton Oceanography Center’s Autosub (Griffiths et al., 1999), and Kongsbergs

Simrads HUGIN (Kristensen and Vestgard, 1998) were launched in the wake of increasing

industrial and scientific activity (Von Alt, 2003). Increased modularity, battery capacity,

long range communication, and depth rating have enabled AUVs to explore new reaches

of the ocean, and the development of software tools have allowed scientists to program and

use the AUVs themselves, making AUVs an essential tool for conducting ocean science.

For the AUVs that are discussed in this work, one can define AUVs as self-contained

crafts designed for covering large areas effectively with high maneuverability and built for

collecting sensor data in the water column or at the seafloor. Propulsion can be electric-

or buoyancy-driven, in which case the AUVs is referred to as a Glider; hybrid types of

AUVs have also been developed (see Hobson et al. (2012)). AUVs are trimmed to be

slightly buoyant so they will float to the surface if a critical error is encountered; others also

employ a drop weight, or are capable of hovering. This also means that AUV needs to be

in constant motion to stay at a fixed depth. Typical AUV operations are based on running

pre-programmed missions consisting of sequential behaviors and waypoints. Waypoints

are locations specified in latitude, longitude, and depth that the AUVs are programmed to

visit. Most commercial AUVs are therefore paired with a mission planning software that

help operators to program the survey using a map. Example of an AUV mission planning

software is shown in Fig. 5.3.

(a) Waypoints in an AUV plan. (b) Review data and logs from AUV.

Figure 5.3: Examples of the Neptus AUV planning software, part of the LSTS-toolchain

(Pinto et al., 2013) by the Underwater Systems and Technology Laboratory (LSTS), Univ.

of Porto.

Navigation is limited while submerged due to the attenuation of radio waves and,

therefore, GNSS signals. Underwater navigation is therefore based on inertial navigation

systems, acoustic baseline navigation, or a combination of both. Acoustic positioning
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systems such as Long baseline (LBL) or Ultra-short baseline (USBL) (Kinsey et al.,

2006) are examples of such systems, where position is determined from acoustically

measured metrics, such as range and bearing from either one or several known distinct

sources (transponders). LBL usually uses two or more transponders to achieve different

accuracies, while USBL operates with only one transducer-transponder pair. LBL and

USBL only provide a relative navigation reference dependent on the accuracy of the

placement of the transponders. More details are given in Milne (1983).

Figure 5.4: Example of an AUV platform (light autonomous underwater vehicle [LAUV]),

shown with sensors, payload, and instrument locations. Image courtesy of the Underwater

Systems and Technology Laboratory, Univ. of Porto.

Inertial navigation can traditionally be based on either an Attitude Heading Reference

System (AHRS), or an Inertial Navigation System (INS); in both cases an Inertial

Measurement Unit (IMU) is used. While a AHRS can be based on a low cost IMU, an

INS requires a high end IMU (characterized by low gyro bias). Navigation grade IMUs

are based on one of two principles: Fiber Optic Gyro (FOG) or Ring Laser Gyro (RLG),

both of which are expensive, take a large footprint and have a high power consumption.

Micro Electro Mechanical Systems (MEMS) IMUs are much smaller, cheaper, and have

lower power consumption at the cost of accuracy. Even with inertial navigation, a build

up of position error will be unavoidable without supporting systems. Both systems are

therefore usually aided by a Doppler Velocity Logger (DVL) that provides a measurement

of the vehicle speed relative to the seafloor or surrounding water mass. This allows the

craft to restrict error build-up arising from velocity estimates. The DVL can often also be

configured to run as an acoustic Doppler current profiler (i.e. using acoustic backscatter

to detect currents). Still, traditional AUV surveys usually contain surfacing events that

restores an absolute position from GNSS.

In addition to payload and navigation sensors, AUVs usually carry one or more

communication systems on board including: Wi-Fi (2,4 GHz radio), Acoustic modem

65



5. Operational Aspects in Adaptive Sampling

(acoustic transducer), satellite communication (e.g. Iridium Short Burst Data (SBD)

Transceiver), and mobile (GSM). Due to radio attenuation AUVs communicate using

radio at the surface and acoustics while underwater. Wi-Fi and mobile can provide

high-throughput communication, while the acoustic modem and satellite usually operate

with low data rates. The acoustic modem is also a central part of acoustic navigation in

cases where accurate position is necessary (e.g. seafloor mapping or under ice operations).

To summarize this brief introduction to AUVs, some common, fundamental limitations of

using AUVs are given in Table 5.1, modified from Nornes (2018).

Pros:
+ Small environmental footprint, low level

of intrusion.

+ Capable of reaching difficult, harsh, and

remote areas (e.g. under-ice operations).

+ Unique 3D mobility capabilities.

+ High survey area coverage per time.

+ Can provide high resolution spatial data

for seafloor mapping.

+ Ship independence.

+ Configurable payload capacity (less ca-

pacity compared to ROV).

+ Autonomous and adaptive capabilities.

Cons:
− Operation risks, including loss of data

or vehicle.

− Limited weather window for launch

and recovery of AUV due to sensitiv-

ity to waves and current.

− Limited power supply and energy ca-

pacity on-board (does not apply to

Gliders).

− Limited navigation quality unless

supported by a ship or seafloor infras-

tructure.

− Need for competence on personnel

for launch and recovery, planning of

operation, troubleshooting during dif-

ferent operational scenarios.

Table 5.1: Pros and cons of using AUVs. Modified from Nornes (2018).

In addition to Table 5.1, the reliance on underwater communications, computational

capacity, and underwater navigation, are vital limitations which need to be accounted for

when developing autonomous sampling capabilities. Keeping track of the asset and its

course through acoustic link is not a given in the ocean, as strong thermocline and pyc-

nocline gradients may corrupt the acoustic propagation through water, and currents may

force the AUV off route.

5.3 Operational Aspects for Using Adaptive Sampling

Deploying non-deterministic sampling agents is, in practice, rarely a straightforward

task. The added operational complexity is expressed in terms of increased risks related

to autonomy, deployment, recovery, and supervision. For pre-determined operations

following a scripted sequence of tasks/waypoints, the operator can easily maintain

predictability (e.g. know where the AUV is expected to surface, maximum depth), which
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is important for effective risk control. As mission decisions and control are instead

managed by complex and deliberative systems on board the robotic platform itself, some

of this predictability is lost in favor of autonomy. Experience from simulation and testing

is therefore vital for keeping these risks under control.

In the beginning of the operation, a set of waypoints is usually selected and used as

“lead in” for the agent, chosen as a “best guess” optimal launch route. Despite being

based on scientific expertise, the degree of discrepancy will likely be large for early

points of comparison with the predicted world state (see Fig. 4.5). The high level of initial

uncertainty can result in sub-optimal performance and undesirable behavior in early

phases of deployment. This is typical when the effective number of observations is small,

since the bias is much larger than the variance in the beginning, dominating the mean

square error, thereby motivating the use of bias correcting methods, as presented in Paper
A.

Another pitfall for adaptive approaches is the potential for the agent to get stuck in a

loop or local minima. This is a typical drawback when using greedy or reactive behaviors

(Binney et al., 2013). There are a number of ways to deal with this problem, such as using

more non-myopic approaches (Zhang and Sukhatme, 2007; Low et al., 2009; Hoang et al.,

2014), complete or entire paths (Binney et al., 2013), or different types of higher order

logic added on top of the architecture that can detect and avert such situations (see Fig.

4.1).

The computational nature associated with optimizing sampling (as discussed in

Section 4.1) also adds challenges related to available computational resources. In general,

this only applies to information-theoretic adaptive sampling, where more deliberative

approaches (Sense→Plan→Act) are used. This problem includes path planning where

planning and re-planning often produce large scale optimization problems, whose

solutions may take considerable time to compute, affecting the reaction time of the

autonomous agent. Traditional subsumption approaches (Sense→Act) do not spend time

planning, as there is direct mapping between action and observation, thus alleviating both

problems.

Introduction of adaptive and non-deterministic surveys can, due to their adaptive pro-

gramming (e.g. surveying around a drifter), potentially result in highly irregular and erratic

survey patterns which can be hard to interpret and post-process. A general question to ask

in this regard is: can adaptive strategies “outperform” regular lawnmower or single tran-

sect surveys? The practical answer to this question is far from straightforward, and closing

the gap between simulation/theory and real world experiments is always challenging (see

Graham et al. (2013) and Frolov et al. (2014)). (Out)performance can in this context typi-

cally be measured with RMSE, detection rate, or simply coverage duration. As previously

mentioned, in cases where uniform sampling of the field is possible (complete coverage)

and the environmental field is smoothly varying, non-adaptive strategies can work well

(Singh et al., 2006). Additionally, some applications or conditions are irreconcilable with

non-deterministic behavior (e.g. fixed historical survey transect and highly trafficked port

monitoring scenarios). However, in most cases, faced with limited sampling resources, un-

modeled uncertainty, or specific features of interest, adaptive sampling can exploit obser-
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vational data towards mapping the environmental field with improved performance (Low,

2009). Additionally, adaptive sampling offers opportunistic behavior, which, in terms of

feature-tracking, is absolutely necessary. Thus for most practitioners and ocean observa-

tion scenarios, adaptive sampling is still a better and more preferable approach if resources

and expertise are available.
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Chapter 6

Summary of Thesis

THE key question through the course of this work has been when and where to sam-
ple? Addressing this question, from the perspective of robotic sampling, involves

formulating and optimizing data collection using data-driven agents. This dissertation has

discussed several methods for adaptive sampling for marine robots, including information-

theoretic and behavior-based agents. The approaches presented in this thesis have mainly

focused on science applications in the coastal ocean with AUVs. Practical implementation,

and field testing, where reconciliation of convoluted science objectives, changing weather,

platform deployment and recovery, communications, loss of asset, and the lack of synop-

tic and absolute measurements has also been discussed. A general comment in this regard

is the inevitable gap between synthetic and real world results which, due to off-nominal

conditions, reaffirms the need for approaches that builds on field experiments. This point

further emphasizes the benefits of synergistic approaches to ocean science using marine

data sources such as remote sensing and ocean models in simulation, analysis, planning,

and design of potential sampling methods. Real-world sensing applications and campaigns

are not concerned about merely extending current sampling abilities of AUVs, but also re-

trieving the data itself. The aim has therefore been to change the way we retrieve data for

the benefit of the scientific context. On this note, a recapitulation of the research topics

and methodologies guiding this work is given:

This thesis has described the concepts involved in adaptive sampling and for-
mulated methods that can demonstrate data-driven mission execution based on
in-situ measurements for sampling applications in the water column. Verification
and field testing of the proposed algorithms have been conducted, using AUVs
as the main platform.

This work aimed to explore the following research questions:

A: Designing data-driven agents for ocean sampling: How can observed data be used to

plan and retain an advantageous strategy for information recovery in the ocean

using a data-driven agent?
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B: Utilization of information-theoretic methods: How can we increase the prospect of

retrieving the pursued data and make data collection more effective by integrat-

ing information-theoretic methods from spatial statistics and machine learning?

C: Utilization of marine data sources: How can marine data sources such as remote

sensing and ocean models be used towards informing on board sampling strate-

gies and planning?

6.1 Conclusions

The emergence of autonomous systems and adaptive sampling does not displace ships or

fixed observation stations, however, the introduction of data-driven sampling can greatly

augment and increase the observational efficiency and resolution, helping to ensure

scientific success.

This thesis has presented different methods and applications for adaptive sampling

in the ocean using marine robots, with a special focus on coastal waters and AUV

applications. The principal contributions of this work are related to i) the design and

analysis of information-theoretic approaches in upper water column sampling, coupled

with intelligent control (topic A,B) and ii) testing and validating these methods in the field

(topic A). This also includes methods for combining adaptive sampling with synoptic data

sources such as ocean models and remote sensing (topic C).

In addressing topic A, a general problem related to optimization of sensing locations

is the exponential combinatoric increase in dimensionality that needs to be considered

when the set of possible sampling locations grows, and thus an efficient exact solution

is generally not available (Krause, 2008). Solving such problems usually involves

computationally intensive techniques that do not scale well to larger problems. The

problems are therefore often simplified using heuristics (e.g. myopic algorithms, such as

the greedy approach in Paper A and E). Non-myopic approaches attempt to solve more

general forms of the problem, and are specifically designed to deal with the problem of

high dimensionality. Even if non-myopic approaches try to solve a more complete form

of the original problem, for many practical applications, it is hard to find an algorithm that

performs significantly better than a greedy approach (Krause and Guestrin, 2009), which

can partly be traced back to the submodularity property, which is characteristic for spatial

depend data. Additionally, planning over an extended horizon will, in the ocean, also be

challenging as current, turbulence, etc. change the environment and introduce uncertainty.

This makes it difficult to both attain and maintain synoptic up-to-date knowledge upon

which the assumptions underpinning the sampling plan is based. Planning ahead only

makes sense if you can trust the quality of the information. This discussion is raised in

Paper A and describes the choices made for using a greedy approach.

Paper A and C also describe the synergies to be exploited between data-driven

sampling and marine data, which was the focus of topic C. Paper A introduced a greedy

data-driven sampling strategy for the upper water column combining information from

ocean models and in-situ measurements, focusing sampling to regions indicative of
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high uncertainty and thermal gradients. This involved formulation and modification of

a GP model using ocean model data from the SINMOD ocean model (Slagstad and

McClimans, 2005) to develop a non-stationary correlation kernel and a bias correcting

mean. Experimental validation was performed at a highly prolific and complex coastal

zone (Frøya) and shown together with other marine data. The field tests showed that

the algorithm differentiated between alternative survey strategies, having reasonable

agreement with model forecasts. The recorded data indicated correspondence between

ocean model and AUV in determining a thermocline shift from influx of Atlantic Water.

The sampling strategy was further contextualized with supporting data from remote

sensing, buoy, and ship-based measurements, effectuating the aim of topic C; both to

understand the sampling behavior and how the combined data sources could be used

improve ocean models.

Accounting for time variability is a recurring problem related to both modeling and

planning, as currents and mixing degrade information over time. Handling this type of

uncertainty is therefore an important aspect of addressing both topic A and topic B, where

also finding a balance between exploration and exploitation is vital. In this regard, Paper
B presents a practical, real-world implementation of a sampling approach for the upper

water column. The method is capable of volumetrically estimating distributions of water

column parameters using GPs, on which a sampling plan is generated in 3D. The method,

demonstrated in a field experiment scenario together with a ship, aimed to map sub-

surface phytoplankton distributions. The proposed method presents a solution to bound

the associated time-variability effects by splitting the survey into two dedicated phases,

as well as an enclosure criterion similar to Das et al. (2012b). Given moderate current

conditions, the method provides a sampling strategy capable of attaining quasi-synoptic

information about water column features. The results from this work showed that the

method could be used on platforms like AUVs to focus sampling to fine-scale features

inside a volume, where a clear spatial coherence was apparent in the volumetric estimate

throughout the mission.

Addressing topic C directly, Paper C shifted focus from sampling algorithms to

modeling the environment, and proposed a methodology for building compact models

from remote sensing SST images in order to increase the predictive capabilities of robotic

sampling platforms on large spatio-temporal scales (kilometers, hours). Dictionary

learning and Hierarchical clustering was used to derive conditional means from SST

images, on which basis the compact model was built. The model results were later

compared and verified using historical wind measurements. As both data sources were

actual synoptic recordings taken over three years, the statistical characteristics were easier

to use compared to using ocean model data (which may contain different biases). Results

from a case study using WaveGlider data was used to illustrate how such compact models

could be used to aid sampling, by supporting reconstruction of synoptic information based

on local in-situ measurements. Bayesian modeling was subsequently used together with

Monte Carlo approximation to evaluate model prediction error, as well as a discussion on

practical planning of sampling campaigns. The paper thus covered a process from data to

model, and from model to sampling, touching upon all three the research topics (topic A,
B, and C).
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Paper D was the only article focused on ROVs and proposed a subsumption-based

autonomous agent architecture for inspection, maintenance, and repair applications. The

autonomous agent was aided by sensor readings and computer vision techniques to help

switch between the different mission states. Results from field deployment using a full

scale integration on board a work class ROV demonstrated that certain aspects of these

operations can be automated (addressing topic A), and that computer vision techniques

can be used for obstacle avoidance.

In addressing topic A, Paper E used the greedy and Gaussian framework from Paper
A, re-applied towards tracking and monitoring dispersion dynamics in the water column.

The objective function was rewritten to prioritize sampling locations that are proximal,

with high variance and high concentration to better resolve plume type phenomena

originating from one source.

Finally, Paper F presented an approach for autonomous mapping of the seafloor. Us-

ing a Hidden Markov Random Field model, observations of backscatter was used to clas-

sify different types of seafloor, on which a subsequent camera survey was automatically

planned (addressing topic A and B). Results from full-scale experiments using a HUGIN

AUV showed that the method successfully identified and planned sampling online.

6.2 Future Research Directions

The transition from traditional human-developed plans to more autonomous oceanic sam-

pling is something that is still underway in oceanography. We want to briefly touch on

topics of further investigation which we deliberately side-stepped, and/or that are a natural

extension of the current research.

Optimization: and problems related to the use of suboptimal planning algorithms.

Non-myopic approaches: Extending from a greedy planning perspective, non-

myopic approaches could be evaluated by using model, science-based heuris-

tics, and more synoptic path planning algorithms with a limited computational

footprint (see Hoang et al. (2014)). Challenges with long term planning, such

as non-modeled time-variability, could be addressed using support from ocean

models and remote sensing assets.

Optimization constraints: In this work, we have deliberately ignored the aspect of

operational constraints, such as available energy and time in the objective func-

tion. This has been possible as the planning horizon has been greedy, which

allowed us to manage traditional operational constraints by restricting survey

time or the number of locations to visit (the agent would simply stop given

a predetermined condition). In the process of evaluating more elaborate non-

myopic approaches, restricting survey time would not be a practical solution,

as plans are optimized over a longer time horizon. See e.g. Leonard et al.

(2007a) for an example deriving optimal paths for a network of mobile sen-

sors.
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Modeling: and problems related to overly simplistic assumptions about the field statics.

Spatio-temporal variability and uncertainty: Only information from specific

depth regions are currently utilized in the proposed GP models. Extending

the integration to multiple depths can be done without significantly increasing

the complexity of the system. This is also the case for extending the current

GP model to include more complex spatio-temporal dynamics such as time-

dependent correlations (Frolov et al., 2013, 2014). Large sources of sampling

uncertainty comes from the effects of currents (speed and direction), making

the observations time dependent. The correlation scales used in this work are

based on the variogram from either ocean model data, or work such as Hedger

et al. (2003). Accounting for time or anisotropic factors in the GP model could

improve the model accuracy, and subsequently the approach. This correction

is, however, not advantageous unless a good model and/or measurement (e.g.

Lagrangian drifters) for the time variability can be provided.

GP hyperparameters: Initializing the GPs hyperparameters has been done on the

basis of ocean model data, and online re-evaluation has not been explored

because the statistical properties are likely to be captured by the ocean model.

However, in cases where this data is not available, the hyperparameters must

be learned online (active learning). Consequently, exploring new methods for

determining the background statistical representations can extend the usability

of the GP model.

Inclusion of co-variates: In Paper A, a bias-correcting mean function was pro-

posed. The prior mean would be corrected if the mean temperature discrep-

ancy was more than 1°C. More elaborate adjustments on the basis of different

co-variates are possible and should be investigated in future applications.

Multi-platform collaboration and planning: At the cost of increased operational com-

plexity, additional assets such as another AUV could be used to increase coverage

capacity and sampling density, as well as providing shared knowledge. This also

includes heterogeneous platforms such as remote-sensing satellites, research ves-

sels, moorings, ASVs, and airplanes that could be used together in a coordinated

sampling system, e.g. ODSS (Gomes et al., 2013).

6.3 List of Publications and Scientific Contributions

This final section summarizes the publications included in Part II and their scientific con-

tribution. Included in these publications are four authored and two co-authored papers, of

which three are journal papers and three conference paper. The papers are listed in the

same order as they appear in Part II, journal papers first, followed by the conference pa-

pers. The context and scientific contribution of each paper is stated below the reference to

the paper. A last section, presents the public presentations of the work.

A: Peer-reviewed Journal Article
Trygve Olav Fossum, Jo Eidsvik, Ingrid Ellingsen, Morten Omholt Alver, Glaucia

Moreira Fragoso, Geir Johnsen, Renato Mendes, Martin Ludvigsen, and Kanna

Rajan. Information-driven Robotic Sampling in the Coastal Ocean. Journal of
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Field Robotics, Volume 35, Issue 7, pages 1101–1121, 2018.

Context: The paper combines ocean models, Gaussian process modeling, and

information-theoretic sampling to address the challenges related to sampling

dynamic coastal processes and ocean model assimilation. The work presents an

end-to-end, real-world implementation of an information-theoretic adaptive sam-

pling agent, specifically for observation of upwelling and internal waves processes

in the upper water column. The system is shown to be capable of directing sampling

efforts to regions in accordance with these processes using a utility metric balancing

uncertainty reduction and thermal gradients.

Scientific contributions: i) Development of an greedy, data-driven sampling algo-

rithm (GASA), that balances variance and gradient based influences; implementation

of the computer code and supporting algorithms on board an AUV. ii) Integration

and utilization of ocean model data into a Gaussian process model, developing

a locally-varying correlation kernel and a bias-correcting mean. iii) Design of a

survey campaign, based on spatial analysis of ocean model data. iv) Results from

field experiments with AUV, specifically tracking sub-surface coastal processes. v)

Analysis and verification of AUV results using data from remote sensing, buoys, and

ship-based sampling.

B: Peer-reviewed Journal Article
Trygve Olav Fossum, Glaucia Moreira Fragoso, Emlyn J. Davies, Jenny Ullgren,

Renato Mendes, Geir Johnsen, Ingrid Ellingsen, Jo Eidsvik, Martin Ludvigsen, and

Kanna Rajan. Towards Adaptive Robotic Sampling of Phytoplankton in the
Coastal Ocean. Science Robotics, Volume 4, Issue 27, eaav3041, 2019.

Context: Currents, wind, bathymetry, and freshwater run-off are some of the factors

that makes coastal waters heterogeneous and patchy, and an environment of scientific

interest where it is challenging to resolve the spatio-temporal variation within the

water column. Motivated by this, a practical real-world implementation of a sampling

approach for the upper water column, capable of adapting to distributions in 3D,

is presented. Trying to resolve this in a dynamic environment requires a trade-off

between exploration and exploitation. The proposed method presents a solution

to this by splitting the survey into two dedicated phases given a limited volume,

bounding time-variability effects. Under these conditions the AUV first estimates

and then maps (based on the learned information) the most interesting region of

the water column in a fast and focused way: towards attaining a quasi-synoptic

snapshot of the feature. Results from field experiments, conducted together with a

ship showcase the potential of collaborative mapping of phytoplankton distributions

in a dynamic coastal environment; the sensitivity of time-varying processes (such as

currents) are also discussed.

Scientific contributions: i) Development of a volumetric (3D) data-driven sampling

algorithm for water column surveys; implementation of the computer code and sup-

porting algorithms on board an AUV. ii) Development of a Gaussian process model
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for estimating distributions of high concentrations in 3D. iii) Results from field

experiments with AUV, specifically tracking sub-surface chlorophyll distributions.

iv) Results from analysis and verification of AUV behavior using data from a particle

camera and fluorometery.

C: Peer-reviewed Journal Article
Trygve O. Fossum, John Ryan, Tapan Mukerji, Jo Eidsvik, Thom Maughan, Martin

Ludvigsen and Kanna Rajan. Compact models for Adaptive Sampling in Marine
Robotics. Submitted to International Journal of Research Robotics, 9th November

2018.

Context: Information-theoretic sampling driven by machine learning techniques

can have a substantial impact to the undersampled oceans. The paper presents a

methodology for building compact ocean models using data from remote sensing

to increase the predictive capabilities of robotic sampling platforms; combining

machine learning, statistics, and robotics with physical and biological oceanography.

The integrity of the compact model is documented by cross-verification with

historical wind data. Results from a case study using WaveGlider data is shown,

to illustrate how models can be used to reconstruct synoptic information based on

local in-situ measurements. Finally, a statistical analysis of the model sensitivity is

presented together with practical implications for survey- and resource-planning.

Scientific contributions: i) Development of an unsupervised methodology for

building compact on board models from remote sensing data; creation of model

and implementation of the computer code, including supporting algorithms. ii)

Verification of the method using historical wind measurements. iii) Results and

model prediction using data collected during from field experiments by an unmanned

surface vehicle. iv) A statistical analysis of model prediction error.

D: Conference paper
Trygve O. Fossum, Martin Ludvigsen, Stein M. Nornes, Ida Rist-Christensen and

Lars Brusletto. Autonomous Robotic Intervention using ROV: An Experimental
Approach. MTS/IEEE OCEANS 2016, Monterey, CA, USA, 19-22 September 2016.

Context: A semi-autonomous agent architecture for robotic intervention with an

ROV is proposed. The system is tested both in simulations and in field experiments.

The ROV agent is able to execute an inspection-type mission, navigating to an object

of interest (subsea structure) from the surface while avoiding obstacles aided by

computer vision. This demonstrates the architecture’s feasibility in an environment

similar to an operational situation.
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Scientific contributions: i) Contributed to development and field testing of a

subsumption-based autonomous agent architecture for ROV inspection, mainte-

nance, and repair operations. ii) Contributed to integration of a computer vision

detection and avoidance scheme. iii) Participation in field experiments and data

collection.

E: Conference paper
Gunhild Elisabeth Berget, Trygve O. Fossum, Tor Arne Johansen, Jo Eidsvik and

Kanna Rajan. Adaptive Sampling of Ocean Processes Using an AUV with a
Gaussian Proxy Model. 11th IFAC Conference on Control Applications in Marine
Systems, Robotics, and Vehicles (CAMS) Opatija, Croatia, 10th-12th September

2018.

Context: The goal is to monitor dispersion dynamics related to industrial applications

such as oil and mine tailings. A spatial proxy model using Gaussian processes is

developed for robotic sampling with an AUV. Results and verification are done using

simulated data. An objective function to maximize the value of the collected informa-

tion is designed that uses a greedy adaptive sampling strategy. The objective function

prioritizes proximal locations with high variance and high concentration, focus-

ing the AUV sampling effort along tracking and exploring a simulated particle plume.

Scientific contributions: i) Contributed to development of the Gaussian process

model, data assimilation, and sampling algorithm – based on the approach and

method in Paper A. ii) Ideas and formulation of overarching research goals and aims.

iii) Contributed to writing and proofreading the published work.

F: Conference paper
Øystein Sture, Trygve O. Fossum, Martin Ludvigsen and Martin Syre Wiig.

Autonomous Optical Survey Based on Unsupervised Segmentation of Acoustic
Backscatter. MTS/IEEE OCEANS 2016, Kobe, Japan, May-June 2018.

Context: Design and integration of a Hidden Markov Random Field (HMRF) model

to perform unsupervised segmentation of the backscatter response for the purpose

of determining different seabed types. This is valuable information to possess as it

can be used to optimize seabed coverage. The model output is directly used to plan

and conduct an autonomous near-seabed camera survey to verify the classification

results, whilst also augmenting the acoustical data set with increased detail. Results

from a full-scale experiment on board a Kongsberg HUGIN 1000 AUV are presented.

Scientific contributions: i) Contributed to the development of the HMRF model for

seabed classification and mapping. ii) Ideas and formulation of overarching research

goals and aims. iii) Participation and results from field experiments in a fjord using

an AUV. iv) Contributed to writing and proofreading the published work.

The following presentations have been held based on the work in this thesis:
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Conference paper
Martin Ludvigsen, Sigurd M. Albrektsen, Krzysztof Cisek, Tor Arne Johansen, Pet-

ter Norgren, Roger Skjetne, Artur Zolich, Paulo Sousa Dias, Sérgio Ferreira, João

Borges de Sousa, Trygve O. Fossum, Øystein Sture, Thomas Røbekk Krogstad,

Øivind Midtgaard, Vegard Hovstein, and Erlend Vågsholm. Network of heteroge-
neous autonomous vehicles for marine research and management.
In Proc. MTS/IEEE OCEANS, Monterey, CA, USA, 2016.

Technical Report
Øystein Sture, Martin Syre Wiig, and Trygve O. Fossum. NTNU-FFI Cruise 2017-
HUGIN Autonomy Integration (DUNE, T-REX). NTNU Cruise Reports, The Nor-

wegian University of Science and Technology (NTNU).

Technical Report
Trygve O. Fossum. Intelligent Autonomous Underwater Vehicles: A Review
of AUV Autonomy and Data-Driven Sample Strategies IMT-AURLab-1, Depart-

ment of Marine Technology, Centre for autonomous marine operations and systems

(AMOS), Norwegian University of Science and Technology (NTNU).

6.3.1 Presentations

During the course of this work, the following presentations have been held based on the

work in this thesis:

A Dive Into Artificial Intelligence and Underwater Robotics, Nor-Fishing Confe-
rence, Trondheim, Norway, 18th of August 2016.

Coupling Robotic Sampling with Ocean Models, SINMOD 30 year anniversary,

SINTEF Ocean AS, Trondheim, Norway, 17th of January 2017.

Adaptive Data Collection: What Robots can do for Ocean Science, AMOS-days,

Trondheim, Norway, 9th of November 2017.

The Faces of Monterey Bay - Compact Remote Sensing Ocean Models, Monterey
Bay Aquarium Research Institute (MBARI) weekly seminars, Moss Landing, Califor-

nia, 28th of June 2018.

Searching for Information at Sea: Adaptive Sampling with AUVs, AMOS-days,

Trondheim, Norway, 23rd of October 2018.

Compact Remote Sensing Ocean Models for Adaptive Sampling in the Coastal
Ocean, Ocean Data Analytics Symposium, Trondheim, Norway, 28-30th of Novem-

ber 2018.
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F. Py, J. G. Bellingham, G. S. Sukhatme, and K. Rajan. Towards mixed-initiative, multi-

robot field experiments: Design, deployment, and lessons learned. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3132–3139, Sept

2011. doi: 10.1109/IROS.2011.6095068.

81



References

J. Das, F. Py, T. Maughan, M. Messie, T. O’Reilly, J. Ryan, G. S. Sukhatme, and K. Rajan.

Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters.

The International Journal of Robotics Research, 31:626-646, 2012a. April.

J. Das, F. Py, T. Maughan, T. O’Reilly, M. Messié, J. Ryan, G. S. Sukhatme, and K. Rajan.
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Appendix A

Field Deployments

Field testing and implementation has been an important factor in this Thesis, where a

number of experiments have been conducted across a wide range of locations and envi-

ronments. The important efforts are listed below in Table A.1, listed chronologically, with

a brief comment on the type of activity and associated paper.

Table A.1: Field deployments, associated papers, and activities. Abbreviations and con-

ventions used in the table can be found on page ix.

Paper Location Year Duration Activity

- Svalbard, Longyearbyen 2016 12 days Deployment with REMUS 100 type AUV.

Oceanographic and benthic survey activity in

Adventsfjorden.

- Norway, Trondheim, Rissa 2016 3 days Deployment with REMUS 100 type AUV and

SeaBotix ROV. Benthic survey of landslide.

D Norway, Trondheim Fjord 2016 1 week Deployment with Sperre 30k work class ROV.

Field trials for autonomous intervention ac-

tivity with ROVs.

- Norway, Agdenes 2016 3 days Deployment of multi-vehicle operation with

AUV, USV, UAV for heterogeneous long

range radio networks (Ludvigsen et al.,

2016).

A Norway, Froya 2016 3 days Deployment with REMUS 100 type AUV.

Preliminary study and planning for the EN-

TiCE oceanographic project.

- Norway, Slettvik 2016 3 days Deployment of new type of water column and

benthic AUV (LAUV). Work shop on LAUVs

(responsible for training NTNU crew on new

crafts).

- Svalbard, Ny-Ålesund 2017 5 weeks Deployment of LAUV (oceanographic and

benthic AUVs) during the polar night. Test-

ing of adaptive surveys and data collection in

harsh environments.

- Portugal, Porto 2017 1 week Deployment of LAUV (oceanographic

AUV). Adaptive data collection strategies

for tracking river plumes (Pinto et al., 2018).

LSTS organized project.
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A. Field Deployments

A Norway, Froya 2017 2 weeks Deployment of LAUV (oceanographic AUV). Adap-

tive data collection strategies for reducing error in

synthetic ocean models. ENTiCE project.

B Norway, Runde 2017 1 week Deployment of LAUV (oceanographic AUV). Adap-

tive data collection strategies for mapping chloro-

phyll distributions in 3D.

- Svalbard, Longyearbyen 2017 8 days Deployment with LAUV (oceanographic and ben-

thic AUVs). Oceanographic and benthic survey ac-

tivity in Adventsfjorden and Tempelfjorden.

- Norway, Trondheim Fjord 2017 3 days Deployment of multi-vehicle operation with LAUV

and USV (Jetyak).

F Norway, Trondheim Fjord 2017 4 days Testing of backseat driver for FFI HUGIN AUV, au-

tonomous tracking of fronts in Korsfjorden.

C US, Monterey 2018 2 weeks MBARI’s CANON project, June 2018. Multiple de-

ployments in Monterey Bay, with WaveGlider and

other assets.

- Svalbard, Arctic Ocean 2018 2 weeks Deployment with LAUV (oceanographic) au-

tonomous tracking of polar fronts. The Nansen

Legacy Project.
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Abstract
Efficient sampling of coastal ocean processes, especially mechanisms such as upwelling and inter-

nal waves and their influence on primary production, is critical for understanding our changing

oceans. Coupling robotic sampling with ocean models provides an effective approach to adap-

tively sample such features. We present methods that capitalize on information from oceanmod-

els and in situ measurements, using Gaussian process modeling and objective functions, allow-

ing sampling efforts to be concentrated to regions with high scientific interest. We demonstrate

how to combine and correlate marine data from autonomous underwater vehicles, model fore-

casts, remote sensing satellite, buoy, and ship-based measurements, as a means to cross-validate

and improve oceanmodel accuracy, in addition to resolving upperwater-column interactions. Our

work is focused on the west coast of Mid-Norway where significant influx of Atlantic Water pro-

duces a rich and complex physical–biological coupling, which is hard to measure and characterize

due to the harsh environmental conditions. Results from both simulation and full-scale sea trials

are presented.

K EYWORD S

Gaussian processes, marine robotics, oceanmodeling, ocean sampling, robotic sampling

1 INTRODUCTION

The coastalwaters (CWs) ofMiddleNorway, and theFroan archipelago

is influenced by Atlantic Water (AW),∗ local water masses from the

Trondheim Fjord (FW), and CW transported by Norwegian coastal

current (NCC; Sætre, 2007). The elevated levels of mixing that occur

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

c© 2018 The Authors. Journal of Field Robotics published byWiley Periodicals, Inc.

∗ AW is defined by a salinity ≥35.0 and temperature >3 ◦C, CW has a salinity ≥34.7 and a wider temperature range (Sakshaug, Johnsen, & Kovacs, 2009), while FW is related to salinities below

34.7.

increase the nutrient transport necessary for primary production—the

main source of energy and basis for the marine food web. In addi-

tion to the influx of AW, complex coastal topography makes the region

exceptionally productive and important in terms ofmarine life and bio-

diversity, with a broader ecological, scientific, and social-economical

significance (Sætre, 2007). Despite this, little is known about the basic

J Field Robotics. 2018;1–21. wileyonlinelibrary.com/journal/rob 1
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F IGURE 1 (a) The Middle-Norway coastal region and the Froan archipelago. The location of the survey area and its relation to the Norwegian
coastline (inset). (b) The physical driving forces in the Froan area, the coastal region of investigation. The convergence of different currents at the
Froan archipelago, where influx of Atlantic Water (AW) is predicted to provide nutrient rich deep water, which accentuates primary productivity.
In order to understand the region's significance it is essential to sample this influx, which is an “information hotspot”

driving mechanisms and their effect on the marine ecosystem (Asplin,

Salvanes, & Kristoffersen, 1999). The spatial and temporal scales of

ocean processes make it unrealistic to deploy vast resources to record

these dynamics in detail. Consequently, the use of ocean models to

represent the dynamics is critical for realizing sampling strategies

that return information with high scientific quality. Together with the

complex bio-geophysical interactions involved, this forms the motiva-

tion for the development of information-driven sampling strategies,

which is the focus of this paper.

With the increasing availability of high-end computational

resources accessible to oceanographers, multiresolution model-

ing of the upper water-column, for predictive or post hoc purposes,

has been a new and viable tool to understand complex interactions

between physical and biological features. However, modeling skill is

still at a level where physical, biological, and chemical features related

to ocean structure and circulation cannot be used to make accurate

predictions at scales sufficient for definite representation (Lermusi-

aux, 2006). To understand these upper water-column biogeochemical

processes, scientists have to resort to direct observations (Stewart,

2009), which are typically sparsely distributed in both time and space

leading to undersampling. Making intelligent and targeted observations

is therefore becoming exceedingly important for oceanography, which

is an expensive and demanding enterprise, restricted to static sensors

placed on buoys, or measurements taken by personnel on ships.

Recently, mobile robotic platforms, such as autonomous underwa-

ter vehicles (AUVs), have become more affordable, robust and viable

for scientific exploration, with greater functionality, increased scien-

tific payload, and in-water duration, providing an efficient platform for

autonomous collection of in situ oceanographic data.

Increasingly, ocean models and AUVs are being combined to

address this common problem of undersampling and uncertainty. We

describe one methodology involved in combining these resources

towarddeveloping samplingmethods that can capitalize on theexpres-

siveness of the model and in situ information. Having access to both

prior (model) and current (sensor) information, AUVs can operate on

an a posterior knowledge, allowing execution to be adjusted according

to the geographical context and the upper ocean feature(s) of interest.

This leads to a sampling strategy that canboth improvemodel accuracy

and exceed traditional approaches in locating and mapping oceano-

graphic phenomena. To support and verify such an approach, data

inputs from multiple sources, including remote sensing satellite data,

ship-based measurements, near real-time data from buoys, drifters,

and other robotic platforms are necessary. This in turn enables cross-

verification, assimilation, and adjustment of model parameters, as well

as analysis of AUV performance.

The unification of models, remote sensing resources, and differ-

ent robotic elements is essential in order to increase the predictive

power of models for effective autonomous ocean sampling. Our work

is motivated from campaigns such as the Autonomous Ocean Sam-

pling Network (AOSN-I/-II; Curtin, Bellingham, Catipovic, & Webb,

1993; Ramp et al., 2009), and the Controlled Agile andNovel Observa-

tion Network (CANON) field program (Das et al., 2010, 2012), both from

Monterey Bay, California. It brings together biological and physical

oceanography with autonomous robotic control while providing focus

on the Froan archipelago, located outside the CWs of Middle Norway,

see Figure 1. In addition to AUVs, data were collected from satellites,

buoys, surface autonomous platforms (WaveGlider†), and ship-based

surveys, primarily as ameans to ground truth in situ robotic data. Data

collection in the Froan area is particularly challenging due to inclement

weather, narrow straights, complex bathymetry, and its remote loca-

tion. An overview of the system setup for the campaign is shown in

Figure 2.

The paper is organized as follows. Section 2 provides the context

of this work in relation to other efforts. Section 3 provides defini-

tions and reviews background information on ocean sampling, model-

ing, methods, and data assimilation. Section 4 is the core of our paper

† The WaveGlider and payload storage was damaged upon recovery, and is therefore not

included in this work.
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F IGURE 2 System block diagram of the platforms used in the sampling campaign: Oceanmodel SINMOD, moored buoy (temperature, salinity, and
biological measurements), research vessel (biological and physical measurements), remote sensing (temperature and chlorophyll a), autonomous
surface vehicle (temperature, salinity, andweather data), and an AUV (biological and physical measurements)

and articulates the approach and the specific algorithmwe have devel-

oped. Section 5 provides an in-depth perspective on the field experi-

ments and the subsequent analysis from various data sources. Finally,

Sections 6 and 7 concludewith a summary discussion, conclusions, and

future work.

2 RELATED WORK

Our work is related to informative sampling strategies and

autonomous data collection in the ocean. There is a large body of

literature on maximizing information gain from in situ measurements

to characterize phenomena, or providing estimation of a scalar field.

Zhang and Sukhatme (2007) showed adaptive sampling schemes for

reconstructing a temperature field using a sensor network of both

static andmobile sensors, while Graham et al. (2012) discussed the use

of Gaussian processes (GPs) and the problems relating to environment

reconstruction in the ocean with different correlation kernels. Yilmaz,

Evangelinos, Lermusiaux, and Patrikalakis (2008) used a mixed integer

programming utility combining reduction of uncertainty and physical

constraints. Chekuri and Pal (2005) optimized informative paths using

a recursive greedy approach with mutual information in directed

graphs. Although adaptation is not the focus, the authors explore the

utility of sampling a dynamic field in space and time. This concept

is further studied for an application with multiple robots in Singh,

Krause, Guestrin, and Kaiser (2009). Minimizing estimation error of a

sampled field using optimal distribution of mobile sensors in the ocean

is presented in Leonard et al. (2007). Low et al. (2011) discussed effi-

cient information-theoretic path planning for sampling of GP-based

fields using a Markov policy based on entropy, with empirical results

on real-world temperature and plankton density field data. This is

expanded to include anisotropic fields in Cao, Low, and Dolan (2013).

Nonparametric optimization is explored in Zamuda, Hernandez Sosa,

and Adler (2016), where a self-adaptation path planning scheme for a

glider is developed for exploration of submesoscale eddies.

Ocean models are used to estimate the underlying current field

toward improving energy efficiency and navigation for AUVs and glid-

ers in Chang, Zhang, and Edwards (2015) and Rao andWilliams (2009).

Statistical estimation of surface currents using satellite data have also

been suggested as an effective aid for handling dynamics in Frolov,

Paduan, Cook, and Bellingham (2012). Online algorithms and deci-

sion strategies can also be trained and tuned using ocean models and

Markov decision processes, and have been applied to AUVs influenced

by spatial and temporal uncertainty in Ma, Liu and Sukhatme (2016).

In situ identification of features using GP regression and supervised

learning is presented inDas et al. (2015), with the aim to select optimal

sampling points, for an AUV with water sampling capabilities. Similar

approaches are also used in Bayesian optimization, where for instance

Marchant et al. (2014) formulate a Monte Carlo tree search for robot

path planning. Ling, Low, and Jaillet (2016) have developed an approx-

imate dynamic programming approach in a similar vein, where the

reward function includes the posterior mean and not only variance

terms (which do not depend on the data).

The work presented here is also associated with sensor place-

ment problems that have been explored for GPs in Guestrin, Krause,

and Singh (2005), Krause, Guestrin, Gupta, and Kleinberg (2006), and

Krause, Singh, and Guestrin (2008) who use a greedy algorithm for

maximizing mutual information. Coupling adaptation and modeling is

studied in Smith et al. (2010, 2011), Smith, Py, Cooksey, Sukhatme,

and Rajan (2016) employing prior information from ocean models and

adaptive approaches for the characterization of a frontal system and

sampling phytoplankton blooms. Binney, Krause, and Sukhatme (2010)

use the measure of mutual information and Gaussian approximation

techniques to relate the sampled and unsampled locations, optimizing

information gain along a 2D path for a glider. This is further elaborated

considering time variationwith a surface vehicle in Binney, Krause, and

Sukhatme (2013).

Ourwork presents an end-to-end, real-world implementation, of an

information-theoretic sampling system for environmental sensing of

the upper water-column that combines information from ocean mod-

els and in situ measurements, using a balance between variance and

gradient based measures. We show how integration and utilization

of ocean model data can be leveraged in GP modeling and used for
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directing sampling efforts to regions of high scientific interest. Specif-

ically, this involves modifying the probabilistic model using data to

develop a nonstationary correlation kernel and a bias correctingmean.

Finally, we present experimental validation and correlation with other

marine data.

3 BACKGROUND

3.1 The SINMOD oceanmodel

Ocean models describe the state of the ocean at a given time based

on a set of hydrodynamic and thermodynamic equations, commonly

called the primitive equations, that are solved using numerical tech-

niques. These equations provide information about currents, salinity,

temperature, density, and pressure. In implementations, the equations

are discretized in differentways, utilizing either structured or unstruc-

tured model grids horizontally, and using horizontal terrain-following

or hybrid discretization vertically. The spatial resolution of an ocean

model represents a trade-off between the geographical area to be sim-

ulated and the availability of computer hardware and time. Running

the model involves computation of a large number of equations, typ-

ically implemented with parallelization in order to utilize more CPUs

to reduce computing time. Because high-resolution modeling can only

be done for relatively small geographical areas, models are commonly

nested, that is, one simulates larger scale areas to produce boundary

conditions for higher resolution models covering smaller areas. This

process can be iterated several times, to achieve the desired detail.

Models apply forcing by tides, sea-level pressure, wind, heat exchange,

and freshwater runoff. Regional models additionally need prescribed

states and currents at the open boundaries. Errors in the forcing data

also impact the quality of the model output. This can typically be the

accuracy of wind fields in coastal areas with strong topographic steer-

ing of near-surface wind. The quality of bathymetric data, type of grid

used, and choice of numerical techniques are other factors that influ-

ence oceanmodel output.

Model performance can be evaluated using observations from dif-

ferent platforms such as AUVs, buoys, or ship-based sampling. Due

to the chaotic nature of the processes in the upper water-column,

the scale and accessibility of the ocean makes it difficult to obtain

sufficient measurements, both for validation purposes and for model

correction. In addition to hindcast model validation and correction,

information from in situ instrumentation can also improve the near-

real-time forecast using persistent data assimilation into the oceanic

model. Surface data are usually assimilated in operational models,

mostly from satellite imagery. With advancing technology, AUVs will

likely play an essential role in the process of data assimilation ofwater-

column properties in such models. AUV data could also be assimilated

into predictive models to reduce uncertainties, and in turn be used to

guide subsequent AUV missions, thus closing the loop from measure-

ments to modeling and back again (Howe et al., 2010). As shown by

validation studies, for example, Forristall (2011), ocean models gener-

ally performwell with regard to statistical properties and tidal dynam-

ics, while they show little skill in predicting currents from hour to hour

in areas not dominated by tidal forces. There is therefore a need to

develop enabling technology that performs efficient and targeted sam-

pling of the ocean. Robotic methods in sampling are therefore criti-

cal for assessingmodel accuracy and shortcomings, as well as reducing

environmental uncertainty and characterization.

SINMOD is a coupled 3D hydrodynamic and biological model sys-

tem (Slagstad & McClimans, 2005; Wassmann, Slagstad, Riser, &

Reigstad, 2006). Its hydrodynamic component is based on the primi-

tive equations that are solved using finite difference techniques using

a z-coordinate regular grid with square cells. The model has been

used for ocean circulation and ecosystem studies along the Norwe-

gian coast and in the Barents Sea (Wassmann, Slagstad, & Ellingsen,

2010; Ellingsen, Slagstad, & Sundfjord, 2009; Skarðhamar, Slagstad, &

Edvardsen, 2007), in ecosystem risk assessment studies (Broch et al.,

2013), kelp cultivation potential (Broch, Slagstad, & Smit, 2013) and in

climate change effect studies (Ellingsen, Dalpadado, Slagstad, & Loeng,

2008; Slagstad,Wassmann, & Ellingsen, 2015).

In addition to forecasts, SINMOD is capable of providing hindcast

and short-term predictions (nowcasts) up to 48 hr. The term hind-

cast is used to describe an after-the-fact analysis or resimulation,

where initial conditions, and other model inputs are taken from actual

observations. For the production of forecast and nowcast data for the

Frøya and Froan region, SINMOD has been set up in a 160-m resolu-

tion mode using boundary conditions computed from the operational

coastalmodel systemNorkyst800‡ run by theNorwegianMeteorolog-

ical Institute (MET).§ This is a configuration with the Regional Ocean

Model System ocean model (Shchepetkin &McWilliams, 2005) for the

Norwegian coast with a horizontal resolution of 800 m (Albretsen,

2011). Additionally, SINMOD uses atmospheric input from MEPS 2.5

(Müller et al., 2017) operational weather forecast, byMET (2.5 kmhor-

izontal resolution), as well as climatological data for freshwater runoff.

For our sampling area in the Froan archipelago, the boundary condi-

tionsmediate the tidal circulation and the regional features such as the

NCC. They determine the fluxes into and out of the model area, and

thereby have a strong influence on model values computed within the

area. A snapshot of evolving current speed is shown in Figure 3 as an

example of model output.

3.2 Ocean sampling

Sampling in the ocean is subjected to a broad range of spatial and tem-

poral (including episodic) variability.Often, it is not possible to examine

the entire environment in detail, and only a quasi-synoptic (i.e., a non-

holistic recording of an event) coverage is possible. This is the sampling

problem in oceanography and the lack of sufficient observations is the

largest source of error in our understanding (Stewart, 2009), making

when andwhere to sample the keyproblem for designing oceanographic

experiments.

Addressing thesequestions requires adetailedandholistic perspec-

tive of the ocean and the interacting processes within. Field exper-

iments, when augmented by ocean models, such as SINMOD, can be

‡ https://goo.gl/H4Rbw2.

§ https://www.met.no.
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F IGURE 3 Snapshots of typical ocean surface current speeds in the Frøya–Froan region from SINMOD forecasts (nowcasts) from the 5th to 6th of
May 2017

F IGURE 4 L2 products fromMODIS-Aqua (https://oceancolor.gsfc.nasa.gov/, 1 × 1 km2 resolution) for our operational area in the Frøya–Froan
region. (a) Sea surface temperature (SST) from Mid-Norway on May 5 at 02:55 a.m. SINMOD SST forecast at 03:00 a.m. The operational area in
satellite images is often affected by cloud cover, masking the true underlying ocean temperature

used to simulate, analyze, and plan sampling strategies prior to full-

scale deployment. By doing so, sampling resources can target the phe-

nomenon, or the area, of interest in sufficient detail with appropriate

sensors. However, numerical oceanmodels suffer from several sources

of errors: practical simplifications, inexact representations or param-

eterizations, numerical implementations (Lermusiaux, 2006), and the

inability to resolve subgrid features, that is, treatment of turbulent

dynamics (Troccoli, 2003). This prompts the need for in situ measure-

ments and direct characterization to augment and cross-validate pre-

dictions.

Sampling the ocean environment and the latent ecosystem is there-

fore ideally a joint effort between a range of sources, much as we do in

this work, as coincident information about physical (i.e., temperature,

salinity, and currents) and biological variables (i.e., light regime, fluo-

rescence, and plankton species) can spanmultiple temporal and spatial

scales. Remotely sensed satellite data canprovide repeated large-scale

surface observations, such as sea surface temperature (SST), as illus-

trated in Figure 4, and products of chlorophyll a concentration—which

represents a phytoplankton biomass indicator. SST satellite products

are measured by infrared radiometers over the surface skin layer of

the ocean (i.e., <1 mm thick). The temperature of this skin layer is

often cooler than the body of water below commonly measured by

in situ instruments due to heat flux, with the direction of flux typi-

cally from the ocean to the atmosphere. The gradients between these

layers are highly dependent on meterological conditions (Minnett &

Kaiser-Weiss, 2012). The spatial resolution is rarely below 1 × 1 km

in ocean-oriented remote sensing data such as from NASA's MODIS-

Aqua (Savtchenko et al., 2004) and about 300 × 300m in the Sentinel-

3 constellation mission as part of ESA's Copernicus program (Donlon

et al., 2012). Ocean color based products, such as chlorophyll a, are cal-

culated using an empirical relationship derived from in situ measure-

ments of chlorophyll concentration and remote sensing reflectances

in the blue-to-green region of the visible spectrum. The spatial res-

olution of the standard chlorophyll products has the same order of

magnitude as SST. However, it is possible to derive chlorophyll infor-

mation from new satellite terrestrial oriented missions as Landsat-8

(OLI sensor) and Sentinel-2 (MSI sensor), which provide data at more

relevant spatial scales of 10–60 m (Vanhellemont & Ruddick, 2016).

Ocean color satellite data do not cover the water column beyond the

first optical attenuation length as defined by Beer's Law, where 90%

of remotely sensed radiance originates from (Werdell & Bailey, 2005);

this can be too coarse for critical biophysical ocean processes (Moses,

Ackleson,Hair, Hostetler, &Miller, 2016). Further, optical remote sens-

ing observations are highly susceptible to cloud cover for certain

measurements.

Traditional techniques, like shipboard and moored measurements,

can be effective at large spatial (O(100 km)) and temporal (O(week to

months)) scales, but have proved difficult for submesoscale (smaller
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than an internal Rossby radius of (O(10 km))) variability (Graham et al.,

2012). The importance of these dynamics for physical ocean processes

is significant (Barth, Hebert, Dale, & Ullman, 2004) and directly influ-

ences primary production (Lévy, 2003) and patch formation (Franks,

1992) of biological signatures.

The use of autonomous and adaptive capabilities allows for respon-

siveness to interactions as they occur, the opportunity to alter the sam-

pling strategy based on the data available, as well as the sampling res-

olution in regions of high interest. These factors coupled with the gaps

in observations, left by other marine data sources, have made marine

robotic platforms an integral part of ocean observation.

3.3 Spatial models and gaussian processes

A prerequisite for doing adaptation and to determine suitable future

actions is to have information about the spatial conditions in the area

of interest, especially in dynamic environments. Having a high-fidelity

numerical ocean model operating onboard a robotic platform is cur-

rently infeasible, as the required numerical resolution in both time

and space translates into high computational demands. To overcome

this problem, a stochastic surrogate model (also known as a proxy or

a reduced order model) based on GPs can be used. Apart from hav-

ing a smaller computational footprint, GPs are conventional tools for

dealing with statistical modeling of spatial data and have been widely

adopted in oceanographic applications (Binney et al., 2013).

AGP is in essence a collection of randomvariables that have amulti-

variate normal probability density function. When variables are allocated

to spatial locations, a GP is a model that allows spatial dependence

to be modeled using covariance functions. Due to its representational

flexibility, it is often a popular way to represent environmental pro-

cesses (see, e.g., Banerjee, Carlin, and Gelfand, 2014; Cressie &Wikle,

2011). Formally

Consider a real-valued stochastic process {X(s), s ∈ Ω},
where Ω is an index set where Ω ⊂ IR2. This stochastic pro-

cess is a GP if, for any finite choice of n distinct locations

s1 … , sn ∈ Ω, the random vector x = [x(s1),… , x(sn)] has a
multivariate normal probability density function:

p(x) = N(𝝁,𝚺) = 1

(2𝜋)
n
2 |𝚺| 12 e

− 1
2
(x−𝝁)T𝚺−1(x−𝝁), (1)

defined by themean vector𝝁 = E(x), and the symmetric pos-
itive definite covariance matrix𝚺 = cov(x, x).

The popularity of GPs is often attributed to two essential proper-

ties. First, as shown in Equation 1, they can be fully expressed using

only amean and a covariance function (also known as a kernel). This alle-

viates model fitting, as only the first- and second-order moments need

to be specified (Davis, 2014). Second, the procedure for prediction and

assimilation is inherent to the fundamental equations of the model,

making this step uncomplicated once the GP is formulated. Further-

more, as long as it is possible to estimate the covariance function, a GP

can be used on the basis of sparse prior data. In environmental applica-

tions, a GP typically characterizes random variation at points in space,

time, or both, discretized down to a grid mapwith a certain spatiotem-

poral resolution.

The focus of the statistical model applied in this work is to approxi-

mate the underlying distribution of ocean temperature, specified from

hindcast data from SINMOD. Using a GP tomodel temperature as a spa-

tial phenomenon has been studied before (e.g., Cressie &Wikle, 2011;

Graham et al., 2012). Based on the characteristics of our ocean model

data, theGP is a reasonablemodel to use for temperatures, as noheavy

tails or skewnesswas significant in the temperature data used formod-

eling. Furthermore, the GP we use here has a random bias parameter

that allows the entire temperature field to be corrected up or down to

account for errors in the priors, more details are given in Section 4.1.

Such hierarchical GPs (Banerjee et al., 2014) can be useful for adding

flexibility inmodeling, and therefore viable as a primary building block.

Themotivation for using temperature is related to a number of factors,

which are explained in detail next.

3.4 Temperature as an information utility

In addition to salinity (S), water temperature (T) plays an outsize role in

a variety of oceanographic processes. Together, they provide a strong

couplingbetweenphysical andbiological factors,whichareat theheart

of the marine life-cycle. In addition, T can be cross-validated using

remote sensing data. Physical phenomena such as upwelling, verti-

cal mixing, eddies, fronts, and currents can coincide with tempera-

ture variation and gradients (Sverdrup, Duxbury, & Duxbury, 2006), as

well as the distribution and accumulation of biological activity (Gor-

doa, Masó, & Voges, 2000). For example, high variability in T would be

visible in frontal zones, where having a T front gliding by a Lagrangian

point, would result in a greater gradient in T compared to a regionwith

more stable dynamic conditions. Consequently, T and S play a central

role in oceanmodels, and their broad influence as physical parameters

on these nonlinear processes makes them a useful tool for exploring

the model error (Holt, Allen, Proctor, & Gilbert, 2005). Using T and S

to guide robotic data collection is not new (see, e.g., Zhang, Sukhatme,

and Requicha, 2004; Smith, Py, Cooksey, Sukhatme, and Rajan, 2016).

Off the Froan archipelago, results from SINMOD show a combi-

nation of stratified and mixed waters, with periodic mixing and lift-

ing of warm and dense AW (Figure 5), creating underwater fronts

with higher T gradients, most prominent at 70–90 m depth. The sam-

pling strategy was therefore to concentrate on data collection from

this zone with the assumption that the temperature at these depths

would be fairly homogeneous, except in areas influenced by AW. Lift-

ing and mixing of AW is important not only for primary produc-

tivity, as the AW brings nutrient rich waters to the euphotic zone

(0–75m), but also for the structure and function of the ecosystem. The

local bathymetry in the area results in narrowing and strengthening of

the NCC outside the Froan archipelago (Sætre, 2007). In combination

with high internal wave activity modeled by SINMOD, this results in a

dynamic environment andwith high variability in S and T,making these

information hot spots for ocean scientists.

These complex dynamics make the area challenging to model and

thus highly relevant for assessing model accuracy. Further, strong

dynamics are usually hard to model, especially at smaller scales, and
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F IGURE 5 AtlanticWater 6.8 ◦C thermal contour (isotherm)motion
from SINMOD simulations, showing the interface shift at the Froan
archipelago, for a 24-hr period for May 5th. Note the isotherm shift
from 70 to 90m consistent with our assumptions for data assimilation
(see Section 4.2)

resolving sharp temperature gradients is challenging in ocean models

(Trenberth, 1992). Sampling the water structure and associated tem-

perature dynamics would, therefore, augment the model and in addi-

tion provide vital phenomenological context.

4 METHODS

Coupling sampling with model-derived information is necessary to

improve the capability to study and understand ocean processes that

involve physical and biological interactions. Our comprehension of

biogeochemical interactions in the upper ocean is, to a large extent,

dependent on how ocean models render related processes. Explor-

ing sampling from an ocean model perspective requires us to focus on

model shortcomings and inaccuracies, in addition to in situ measure-

ments. The method below is motivated by the characteristics for the

Froan archipelago, with temperature as the primary variable of focus

for the sampling strategy. However, the approach is general in nature,

with a pipeline that can be used to approach sampling, while leverag-

ing data from an ocean model. The following section articulates the

approach startingwith (a) thediscretizationand spatialmodelingof the

phenomena usingmodel data, (b) formulation of the objective function

toward a scientific context, and (c) algorithmic implementation. The

approach presented here is a greedy/best-first search, using a one-node

horizon, that is, the method is myopic. This is assumed to be sufficient

as the model data have substantial uncertainty that is inherited by the

sensing strategy. Moreover, due to control, actuation, and navigational

errors in part due to ocean currents, the position of the AUVwill devi-

ate fromany “optimal” route—amore detailed discussion aboutmyopic

versus nonmyopic approaches are given in Section 6.

4.1 Gaussian process specification

Referring to the definition given in Equation 1, the prior mean

𝝁 = [𝜇1,… ,𝜇n] is established by simply extracting the statistical mean

temperature for each location i = 1,… , n. In our case, the data used are

a 160-m resolution SINMOD hindcast data set fromMay 2016, taken at

the planned deployment time (∼10 a.m.) as

𝜇i(𝛽0) =
1
m

m∑
j=1

xij + 𝛽0 = x̄i + 𝛽0, (2)

where xij is the temperature at location i for the current day j,m is the

number of days evaluated from the model, and 𝛽0 is a bias correction

term, enabling the AUV to, in situ, correct the prior mean toward the

true underlying temperature field, based on the first measurements.

As the GP is specified in two dimensions, the mean values constitute

a 2D temperature surface. Correction of this surface, using a bias term,

allows the AUV to shift all temperatures in unison toward the true

mean ocean temperature. The covariancematrix𝚺 is given as

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

Σ11 Σ12 … Σ1n

Σ21 Σ22 … Σ2n

⋮ ⋮ ⋱ ⋮

Σn1 Σn2 … Σnn

⎤⎥⎥⎥⎥⎥⎦
,

whereΣij = 𝜎i𝜎j(i, j). Normally, the variance terms𝜎2
i
and𝜎2

j
are taken

to be the same for all locations and collected as 𝜎2, making the covari-

ance independent of location (i.e., stationary). Following Stein (2005),

these variances are augmented further to include a spatially varying

local variance to better suit the local variability—doing so makes mea-

surements at high variance locations have less influence on neighbor-

ing locations.We then define the spatially varying variance as

𝜎2i = 1
m

m∑
k=1

(xik − x̄i)2, (3)

where xik , is the temperature at location i for the current day k and x̄i is

the average temperature for location i. We used the same 160-m reso-

lution SINMOD hindcast temperature data fromMay 2016, to calculate

the local temperature variance for the survey area. The kernel function

is defined as

(i, j) = (1 + 𝜙hij)e−𝜙hij ,

where hij = |si − sj|, and 𝜙 is indicative of the correlation range

(Matérn, 2013). Capturing the correct spatial correlation distance is

particularly important. Formulating an accurate surrogate GP model

depends on getting this parameter as correct as possible. One could

also add anisotropy in this kernel, with correlations depending on

north–east directions between locations, and the methodology pre-

sented nextwould still work. However, based on the oceanmodel data,

there was no significant anisotropy in the current case.

A standard tool for estimating correlation range is the variogram.

Given spatially dependent data, the variogram can estimate the degree

of spatial correlation as a function of distance (Cressie &Wikle, 2011).

The same hindcast temperature data from SINMOD was used to find

𝜙 using this procedure, as shown in Figure 6. The derived variogram

is fitted from the residuals after the trend in the input data has been

subtracted, under the assumption of smooth, slow-changing, spatial

variance terms—this is necessary to obtain a correct evaluation of the
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F IGURE 6 The final variogram from analyzing SINMOD temperature
data

underlying variability. As the distances increase along the x-axis, the

spatial dependence decreases, increasing the variogram, until a limit is

reached (horizontal black line on y-axis in Figure 6). At this limit, the

points no longer yield any correlation based on data values, and it is

therefore possible to provide the lag distance/range for the correla-

tion at around 5–7 km. The parameter estimates could be improved

using maximum likelihood estimation based on the density function in

Equation 1 for the ocean model data, see e.g., Stein, Chi, and Welty

(2004).

The GP we use, therefore, has a nonstationary kernel function and

a bias correcting mean function, based on temperature data from

SINMOD. Exploratorydata analysis shows residual plots that are approx-

imatelyGaussian, justifying using aGP for temperature data in the cur-

rent setting. The process x is assumed to be relatively constant over

the data gathering period. To account forminor time variations, we add

process noise Qt , that is accumulated over the survey period, to cap-

ture minor variability from sea currents (current velocity is typically

0.2m/s on average (Figure 3), while vehicle speed over ground is about

1.5m/s), see Equation 5.

4.2 Data assimilation

Measurements are acquired sequentially for time steps 1,… , Tf , where

Tf is typically mission duration. Only measurements from a specific

depth layer (70–90 m) are used for assimilation, to focus on the

dynamics related to the characteristics of the Froan archipelago (see

Section 3.4 and Figure 5 for further details).

A sampling design is defined by d1,… , dTf , where dt is a survey loca-

tion at time t. The successive survey design until time t is denoted by

dt = (d1,… , dt). Themeasurementmodel for design dt at time t is given

by

yt,dt = Gt,dtx + vt, (4)

where yt,dt is amt,dt × 1 vector of observations along a survey line, and

the matrix Gt,dt of size mt,dt × n contains “1” entries only at the desig-

nated dt indices, and0otherwise. The error term vt ∼ N(0,Rt,dt ) ismea-

surement noise. The covariance matrix Rt,dt is typically set to a con-

stantmatrix with only diagonal elements (Wunsch&Heimbach, 2007),

and there is no dependence of measurement error terms over time.

F IGURE 7 The waypoint graph G used in experiments in the Froan
region, with the depth range 0–90 m. Because the AUV is undulating,
the graph takes 4 hr to survey, visiting five nodes

UnderGaussian linearmodeling assumptions, the sequential updat-

ing of data leads to the Gaussian distribution p(x|y1,d1 ,… , yt,dt ). The
common Gaussian equations for conditioning give the updated mean

mt,dt = E(x|y1,d1 ,… , yt,dt ) and variance Pt,dt = Var(x|y1,d1 ,… , yt,dt ) at

every stage. These equations are recursive over the data gathering

steps:

P̄t,dt = Pt−1,dt−1 + QtI(t = twp),

St,dt = Gt,dt P̄t,dtG
t
t,dt

+ Rt,dt ,

Kt,dt = P̄t,dtG
t
t,dt

S−1t,dt , (5)

mt,dt = mt−1,dt−1 + Kt,dt (yt,dt − Gt,dtmt−1,dt−1 ),

Pt,dt = P̄t,dt − Kt,dtGt,dt P̄t,dt .

The first equation above, contains the step where the accumulated

process noise Qt is added, when reaching the waypoint goal (finishing

a survey line) and activated by the indicator function I(t = twp), where

twp indicates the arrival time at a waypoint goal.

4.3 Waypoint graph

The different paths for an AUV are encapsulated in a way-

point graph G = (V, E, D) with four corner nodes v ∈ V,

v = {0,1,2,3} and edges between the nodes given as e ∈ E,

e = {(0,1), (0,2), (0,3), (1,0), (1,2),… , (3,2)}, represented as arrows,

as shown in Figure 7. Each edge ej, j = 1,… , ne, where ne is the number

of edges in e, is referred to as a survey line or graph edge. These lines

also contain a set of sample points (the dots on the lines in Figure 7)

collected for each survey line ej in the vector dj ∈ D, dj = {D | ej},
where D is the set containing all the sample points in the graph. As
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noted, variability in the water column tends to be greater along the

vertical dimension—to appropriately measure this variation, the AUV

undulates (with a fixed angle) up and down, in what is known as a

“yo-yo” pattern throughout the mission. The sample points (used

to evaluate the objective function) are spaced out according to the

depth, angle of the yoyo, and the distance of the survey line, having

twice the number of sampling points as the number of crossings of

the given depth layer. For the configuration used here, this results in a

sample point spacing of 416 m. Measuring the entire water column is

important (rather than only undulate between the 70 and 90 m depth

band), as both surface phenomena (i.e., SST, surface warming effects,

chlorophyll, etc.) and deeper processes (influx of AW) are of interest.

The AUV then traverses the graph going from one node to another: for

example, going from node 1 → node 2, along the survey line e5 = (1,2),
contains the sample points d5.

4.4 The objective function

The aim of an objective function is to evaluate and prioritize the dif-

ferent survey alternatives (graph edges), accounting for prior (model)

and in situ information. Focusing solely on reducing uncertainty in

the ocean model, one solution would be to bias locations yielding the

largest reduction in variance, or to use mutual information (Krause

et al., 2006), to determine the graph edge having the largest informa-

tion gain (highest entropy reduction). However, neither of these cri-

teria are capable of readily using incoming measurement data yt,dt ,

consequently making the strategy deterministic (Eidsvik, Mukerji, &

Bhattacharjya, 2015). Given the large uncertainty in oceanographic

sampling, the informative value of in situ measurements cannot be

overlooked. Still, the conundrum of exploration versus exploitation

continues to persist, and finding a functional balance is necessary.

The GP representation is well suited for this purpose because it

holds prior information about the temperature variance (uncertainty),

in addition to assimilating the incoming measurements into the mean

parameter.

For achieving effective adaptability, the upper ocean temperature

variability and trends derived from the GP are used to guide the data

collection process through variance and gradient measures. Tempera-

ture is a prominent factor in the Froan region, because measurements

associatedwithCWandFWare different fromAW(Sætre, 2007), with

a well-defined front between the cold and low-salinity NCC and the

warm and dense AW (Ikeda, Johannessen, Lygre, & Sandven, 1989).

These temperature-laden fronts are found all year; horizontal gradi-

ents of 0.5◦C/km can be observed, depending on the season (Sætre,

1999) and increased variability and levels of primary productivity is

expected in areas where these water masses meet. Faced with high

model uncertainty, variance is preferred over entropy as the metric

for uncertainty in our approach, because of its simpler form and wider

acceptance as a measure of spread in a numerical model (Baafi &

Schofield, 1997).

The objective function is formulated as a balance between gradi-

ent intensity and reduction of variance—the rationale being that in

cases with uniform temperature conditions, the strategy would prior-

itize navigating according to the variance. Or in the opposite case, if a

thermal gradient is discovered, using the gradient as a means to steer

toward locations indicativeof these changes, directing theAUVtoward

nonuniform conditions. The objective function is evaluated using the

surrogate GP model formulated in the preceding sections. The objec-

tive function is evaluated on the sample points kj related to each alter-

native survey line dj given as

f(dj) = argmindj

{𝜔p

n
trace(Pt,dj ) −

𝜔g

nk

nk∑
kj=1

∇gt,kj
}
. (6)

The first term expresses variability at all locations, with n being the

total number of locations. The second term provides theweighted gra-

dient summed over the sample points kj, where the number of points

along the line is nk . Both terms are normalized prior to subtraction, in

order to allow reconciliation between the variance and gradient term.

The influence between the variance and gradient can be adjusted using

the weights 𝜔p and 𝜔g . For simplicity, we have set the weights to 1;

depending on the application, these may be adjusted. The gradient is

calculated for the mean value at the survey points, weighted by their

uncertainty as

gt,kj =
mt,dj (kj)

Pt,dj (kj, kj)
,

where mt,dj and Pt,dj are terms from Equation 5. Before calculating

the scaled gradient, the term Pt,dj is normalized using the global min-

imum as follows (minkj [Pt,dt (kj, kj)]∕Pt,dj(kj ,kj)) and has a lower limit

to avoid over emphasis on already visited locations. The best node to

visit will be the node with the connecting survey line yielding the low-

est objective value. Explorative survey lineswould reducediagonal ele-

ments of Pt,dj more than the lines previously surveyed. And finally,∇ in

Equation 6 is the operator using second order central differences to

compute the actual gradient value.

Note that several other criteria are possible. Entropy measures

or average variance reduction are commonly used, but for GP these

will not depend on the data (Eidsvik et al., 2015). The criterion in

Equation 6, which includes the temperature gradients, allows adaptive

sampling where the survey paths can depend on the realized data. In

simulations we also ran tests with a criterion aiming to classify sig-

nificantly large temperature gradients in the main current direction,

that is, E[∇𝜃xt|⋅] −√
Var[∇𝜃xt|⋅], where the conditioning represents

currently available data, and 𝜃 is a predefined direction. One could

also go further to account for the uncertainty in future data along the

next sample line that entails an integral over the data (Bhattacharjya,

Eidsvik, & Mukerji, 2013; Eidsvik, Martinelli, & Bhattacharjya, 2018),

or even use the expectation over future lines, with additional compu-

tational complexity for nonmyopic approaches. But the simple weight-

ing in Equation 6 is a practical solution which gave reasonable results

for our field tests, and we leave more complex objective functions for

future work.

Because the path of the AUV only considers one node into the

future, the approach is a greedy/best-first search. Using such a myopic

approach, with a one node horizon, is assumed to be sufficient as the

ocean model skill is typically low, resulting in substantial uncertainty

when executing the sensing strategy. Additionally, due to control,



10 FOSSUM ET AL.

actuation, and navigational errors in part due to ocean currents, the

position of the AUV will deviate from the optimal route—more details

are given in Section 6. Note that the information utility used here is a

single objective function with only one solution. Extension into mul-

tiobjective functions would be possible to account for other environ-

mental or operational parameters such as energy, safety zones, and

operation of other vehicles; or more decision analytic criteria related

to algal bloom treatment, fishing policies, and dynamic placement of

fish farms.

4.5 The GASA algorithm

The GP model, objective function, and the waypoint graph G are then

collected in an algorithm, which is to run onboard during execution.

Using the different survey alternatives the algorithm iterates through

possible survey lines and calculates their objective value, utilizing the

variance and mean estimates from the GP model. The details of these

steps are given in the greedy adaptive sampling algorithm (GASA) in

Algorithm 1.

ALGORITHM1 The GASA algorithm.

In an operational scenario, once the AUV is deployed, it will need to

travel to the starting point of the survey graph, before initiation of the

algorithm, having time to update the bias for the prior mean on its way.

To avoid overfitting, the bias correction will only occur if the observed

model discrepancy is above ±1 ◦C. Once the starting point is reached,

the algorithm activates and begins evaluating the alternative survey

lines available at its current location. Once the objective values have

been calculated, the best survey line and the corresponding node is set

as a waypoint goal for the AUV to visit.

4.6 Implementation

Prior to the deployment, the GASA algorithm was tested in a simu-

lated environment, identical to the embedded system in the AUV. The

setup consists of three essential components; a virtual ocean simula-

tor, an AUV vehicle simulator and an autonomous agent architecture

(Figure 8).

F IGURE 8 A block diagram layout comparing the embedded and
simulated systems used

An interface that directly couples the SINMOD model provides 3D

ocean data that are used to simulate sensor readings, reproducing

actual ocean conditions at a given time, depth, and location. The Uni-

fied Navigation Environment in DUNE (Pinto et al., 2012), handles the

AUV simulation, and is used for navigation, control, vehicle supervi-

sion, communication, and interaction with actuators—DUNE is running

onboard the AUV as well. On top of the hierarchy sits the autonomous

agent architecture T-REX (Teleo-Reactive EXecutive), which synthe-

sizes plans and uses an artificial intelligence based automated plan-

ning/execution temporal framework to execute tasks continuously, as

sensing and control data are fed to it. Details of T-REX are beyond

the scope of this work; readers are encouraged to refer to Py, Rajan,

and McGann (2010), Rajan and Py (2012), and Rajan, Py, and Berreiro

(2012). The communication between DUNE and T-REX is handled by

the LSTS toolchain (Pinto et al., 2013)¶, which provides the back-seat

driver API to DUNE allowing external controllers, such as T-REX, to pro-

vide desired poses for the platform while receiving progress updates

on their attainability.

¶ http://lsts.pt/toolchain.
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TABLE 1 Results from running 1,000mission simulations

Run
Mean criteria
scorea RMSEb

Random route +0.15 0.61

GASA: both variance and
gradient

−0.21 0.36

Only variance (gradient kept
constant−0.33)

−0.06 0.37

Only gradient (variance kept
constant+0.33)

−0.15 0.49

Note. RMSE= root mean square error.
aThemean score from the objective function for each chosen alternative.
bThe root mean square estimation error between the underlying tempera-
ture field and the estimated Gaussian process (GP) temperature field.

GASA and dependencies were implemented as reactors that are

internal control loops in the T-REX framework capable of producing

goals that the planner integrates in a series of actions (e.g., Goto,

Arrive_at …), which are finally collected to form a plan. This plan is

then distributed through the framework and checked for errors such

as operational limitations, before dispatch to DUNE, which handles

low level control and execution. The mission is hence continuously

monitored by T-REX, as it follows the Sense → Plan → Act control

methodology.

4.7 Simulation

We conducted an empirical study comparing the GASA algorithm and

preplanned randomly generated routes to assess performance, along

with simulations using SINMOD nowcast data to provide further insight

into the resulting behavior, using the same GP parameters, graph, and

objective function as in the at-sea experiments. The following proce-

dure was used for the empirical simulations:

1. Generate a randomGP temperature field.

2. Simulate 1,000 different missions visiting five nodes using GASA

with randomly chosen routes.

3. Collect the criteria score and the final root mean square error

(RMSE).

The drawn temperature fields had a variation 1.5◦C. If larger tem-

perature differences are expected, one should evaluate to reduce the

influence of the gradient term.

As shown in Table 1, the random route has a high criteria score and

a high RMSE; this was to be expected. Using only variance results in

a lower RMSE as it will seek to explore rather than exploit. In con-

trast, using only the gradientwill put emphasis on exploitation, yielding

higher RMSE results. When using both terms, the resulting behavior is

a balance.

In addition, various simulations were conducted using both hind-

cast, and forecast (nowcast) data from the Froan area. However, for

the sake of clarity, analysis of simulations using nowcast data fromMay

4, 2017 is presented, where the example illustrates the interplay and

influence of the variance and gradient components. To demonstrate

this, three simulations were carried out with the objective function

TABLE 2 Simulated routes using different terms in the objective
function

Run Route (nodes) Remarks Visual path

Simulation 1:
variance

2, 3, 0, 2, 1 Variance only

Simulation 2:
gradient

3, 2, 0, 1, 2 Gradient only

Simulation 3:
both

2, 3, 0, 2, 3 Variance and
gradient

considering: only variance, only gradient, and finally both (shown as

Simulations 1–3 in Table 2). The simulation considers a route of five

consecutive nodes to be visited in a prioritized fashion depending on

their objective value.

The underlying nowcast covers the sea state for May 4, 2017.

Because the algorithm only updates using measurements from the 70

to- 90 m depth interval, the temperature is expected to be relatively

homogeneous, except in areas with the influx of AW. Two clear trends

are visible in the prior variance (Figure 9a) and mean (Figure 9c). Both

variance and temperature gradients are higher toward the north, sug-

gesting that the AUV should start bymapping here first. The prior vari-

ance and mean, both derived fromMay 2016 hindcast data, were kept

constant, both during simulation and during field deployments.

Using only the variance (Simulation 1) for navigation, results in a

maximum reduction of the prior uncertainty and the nodes: 2, 3, 0,

2, 1, thus prioritizing the high-variance hot spots close to nodes 2

and 3. Using only the gradient (Simulation 2) leads to a route favor-

ing the survey lines with the greatest temperature change. The gra-

dient follows the outer edges of the graph, visiting the north region

first following the nodes: 3, 2, 0, 1, 2. Because the gradient depends

on the collected temperature measurements from the nowcast, the

gradient is using in situ information to change its path, in contrast

to the variance, having a predetermined track based only on prior

knowledge.

Combining both influence from variance and gradient in Simula-

tion 3 shows the interplay between the two information measures.

The executed path, visible as Simulation 3 in Table 2 and Figure 9b,

shows priority of exploring the north-south axis. As the gradients are

weighted by the prediction accuracy, the initial path choices are dom-

inated by variance because the gradients will have high uncertainty.

Then, asmeasurements reduce theuncertaintyof themeanestimation,

the gradient effect becomesmore influential. Still, because the temper-

ature distribution is relatively homogeneous for this example, the gra-

dients are approximately the same for each alternative, resulting in a

dominance of variance right until the end where the gradient changes

the choice to node 3. As the model only updates if measurements are

within 70 to- 90 m depth, the estimated fields in Figure 9b and d are

uneven, leaving only parts of the grid updated, because theAUV is trav-

eling in a yo-yo pattern. In addition, the covariance range is limited

and locally changing as a result of the covariancemodification in Equa-

tion 3, allowing the information to be “spread” nonuniformly, hence the

uneven spots in Figure 9b. Differences in paths for various mean, vari-

ance, and correlation models were also studied prior to deployment.
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F IGURE 9 Simulation prior to deployment using both terms in the objective functionwith nowcast data fromMay4th, 2017 at∼10 a.m. Temper-
ature variance for operational area at start. Note the location of the highest variance. (b) The final estimated variance and the traveled path at end.
Note the spots of low variance. (c) The estimated temperature at the survey area prior to deployment. (d) The final GP regression of the temperature
field at end

For a discussion on GP sensitivity to variance and correlation param-

eters for sequential sampling schemes, see Eidsvik et al. (2018). Note

that the dynamic nature of the processes studied here would be highly

nonlinear and non-Gaussian over a longer spatial and temporal range,

and in the future one can imagine havingmore complex spatiotemporal

proxymodels on-board the AUV itself.

5 FIELD EXPERIMENTS

The experiments at sea aimed to verify our algorithm's ability to adapt

mission execution based on in situ measurements, and demonstrate

its capability to spatially prioritize data collection, using ocean model

driven predictions encapsulated in a stochastic model. They were car-

ried out between the May 4 and 12, 2017, using the operational

area and waypoint graph shown in Figures 7 and 10 of the Froan

archipelago.

Inclement weather on the Norwegian west coast led to numerous

postponed deployments, but two full missions, referred to as Surveys 1

and 2, were conducted during this period. Both surveys used the same

prior data (variance and mean from Figure 9). Doing so was important

for demonstrating adaptability toward the environmental conditions

while keeping the initial conditions the same for both surveys.

F IGURE 10 The distribution of temperature variance across the
Froan coastal region with the operational area indicated; note the
80-m isobath

5.1 Experimental setup

Our scientific focus was the upper water-column and the effect of

physical forcings on phytoplankton dynamics of the Froan coastal

region,whichwe targetedusing temperature variability. Consequently,
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F IGURE 11 NTNU's light AUV platform (Harald) for upper water-
column exploration used in our work—the CTD is visible in the nose.
The AUV has an excess of 24 hr in-water operational capacity with a
range of sensors in addition to the CTD

before bringing the system to the field, an approach similar to Sakov

and Oke (2008) was used to identify an operational area where shifts

in temperature would be prominent and hence interesting from both

a model and oceanographic perspective. The input data to this anal-

ysis were hindcast realizations from SINMOD (May 2016), reflecting

the changing temperature distribution at 80-m depth using a planned

deployment time between 8:00 a.m. and 2:00 p.m., where the empir-

ical variance was estimated by applying Equation 3 and shown in

Figure 10.

The survey area was confined to the eastern region close to the

point of highest empirical variance, but also sufficiently near the shal-

lower waters in the event an emergency recovery of the AUV and/or

dealing with unfavorable weather conditions. To operate safely the

waypoint graph G (Figure 7) was limited within the operational area

3 × 3 km2 to 2.5 × 2.5 km2 (allowing a 500-m drift margin), permit-

ting a reduced search area and enabling the AUV to be monitored

using acoustics from a vessel stationed at the center of the survey pat-

tern. Although the experiments were constrained by this one graph for

thesepilot deployments, the framework is general and canbeextended

to a series of connected graphs of any shape. In addition, having a

greedy (one-step look ahead) planner as well as a simple waypoint

graph allowed us to work with a constant and reliable computational

load on the AUVs CPU, while maintaining communication to the vehi-

cle in the harsh conditions offshore.

Our robotic platform consisted of a light AUV (Sousa et al., 2012)

equipped with a 16 Hz Seabird “Fastcat 49” active conductivity, tem-

perature, and depth (CTD) sensor providing temperature and salin-

ity measurements, see Figure 11. The CTD is active as it continuously

pumpswater, ensuring that a fresh sample is observed. The accuracy of

the CTD instrument is±0.0003 S/m (conductivity),±0.002◦C (temper-

ature). TheAUVwas also equippedwith aWetlabs EcoPuck for chloro-

phyll a concentration, color dissolved organicmatter (cDOM) and total

suspended matter (TSM). The embedded system in Figure 8 hosting

the GASA frameworkwas operating on amulticoreGPUNVIDIA Jetson

TX1singleboard computer, specifically developed for autonomous sys-

tems.With a lithiumpolymer battery bank, theAUVhad anoperational

capacity in the water column exceeding 24 hr of continuous operation.

TABLE 3 Executed routes and deployment times, May 2017

Run Route (nodes) Deployment time

Survey 1—May 9 2, 3, 0, 1, 3 10:02 a.m.

Survey 2—May 12 2, 1, 3, 0, 2 10:15 a.m.

Each survey took 4 hr to complete, with five nodes to visit during this

period. Restricting the adaptation to only five choices, and within the

waypoint graph, was necessary to manage deployment and recovery

within limited weather windows. Because full coverage of the region

could be attainedwith theAUV,weemphasize that the results from the

fieldoperations shouldbe seenas applicable to cases inwhich intensive

sampling is not feasible.

The GP model used a grid resolution of 30 × 30 on a 2.5 × 2.5 km2

region (83 × 83 m2). The GP model was configured with a prior mean

and variance (seen in Figure 9) associated with the temperature distri-

bution at 70 to 90 m depth. Updating these priors was limited to mea-

surements collected from this depth. Limiting the information used

by the objective function to these depths was to specifically target

the temperature dynamics induced from warmer AW, as discussed in

Section 3.4.

5.2 Results and evaluation

This section first presents the AUV data and the details related to the

GASA algorithm, followed by a comparison to SINMOD model forecasts

(nowcasts) and data from remote sensing, buoy, and ship-based mea-

surements.

Figure 12 shows recorded temperature versus depth taken along

the transect for the two surveys, along with the maps of the executed

survey path superimposed on the SINMOD model predictions for both

deployment days. The survey paths from the maps are collected and

shown in Table 3, along with the deployment time and date. The objec-

tive values used to differentiate the route choices is presented in Fig-

ure 13.

We observe that two different strategies have been executed,

underpinned by the GP priors and the assimilated temperature mea-

surements. As the GP priors are the same, the observed difference

between the paths are provided by separate temperature conditions.

This is apparent inFigure12aandc,with Survey2clearly having amore

shallow prominence of warmer AW, depicting the thermocline (dashed

lines) shifting from 65 to 40 m, the same shift predicted by SINMOD in

Figure 5. The deep salinity measurements come close to 35.0, suggest-

ing the water is of Atlantic origin, which is distinctly more saline than

FW (⩽32) and CW (32≶ 35). This is also confirmed from the CTDmea-

surements taken from the R/V Gunnerus shown in Figure 17. There is

also a visible difference in surface warming, which is traceable in both

buoy and remote sensing data.

Evaluating the adaptive behavior, as in simulation, node 2 is always

taken as the first node to visit. This is expected as the prior data are

identical at this point, and nomeasurements are assimilated; objective

values for the first node choice in Figure 13a and b confirm this. After

reaching node 2, the recorded data come into consideration because

exposure to the warm water influx is different, each survey will have a
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F IGURE 12 Results from the AUV survey on the May 9th (Survey 1) and May 12th, 2017 (Survey 2). Yo-yo pattern (black line) and the temper-
ature distribution for Survey 1. (b) Map of the executed path for Survey 1, SINMOD realization for May 9th in background. (c) Yo-yo pattern and
temperature for Survey 2. (d) Executed path for Survey 2, SINMOD realization forMay 12th in background. In (a) and (c), temperature distribution in
the survey area and thermocline (white lines) influenced by AW (temperatures are interpolated to cover the plot surface) is shown. In (b) and (d),
the path generated by the GASA algorithm for the two surveys is shown. The gaps in the position on the plots are surfacing events to correct for drift
and navigational errors in the water column

distinctive posterior mean temperature field and hence gradient influ-

ence. Consequently, the intensity and direction of the gradientwill also

be different. After reaching node 2, the first decision with posterior

information is made. This choice is the most intuitive to consider and

interpret, as only the data along the first survey line are assimilated

into the onboard GP model. Evaluated from node 2, a transect toward

node 3 would be most beneficial for reducing the variance (compar-

ing with simulations in Table 2), if no strong temperature trends are

to be observed. This is the case for Survey 1, which tracks to node 3,

after node 2. More interestingly, Survey 2 tracks back toward node 1.

Clearly, this is not optimal for reducing the variance as several mea-

surement locations will be close to the first survey line. One can there-

fore argue that this choice is dominated by the influence from the

recorded temperature data, which is visible as a difference in score at

the second evaluation step in Figure 13b.

Additionally, because the uncertainty is low around the first tran-

sect, this gradient isweighted higher compared to other gradientswith

larger uncertainty. After reaching node 1, the AUV in Survey 2, tracks

toward following the paths associated with Survey 1, visiting nodes 3

and 0, which suggests that the influence of variance is dominant. As

observed in Figure 12b and d, Survey 2 has a hourglass pattern, while

Survey1has amoremixed survey pattern. These characteristicswill be

compared to themodel and external data in the following sections.

5.3 Model correspondencewith AUV data

Deviation between recorded data and the simulated predictions is to

be expected. Considering assimilation back to the model, the question

is as follows: Can the observed discrepancies contain contextual infor-

mation that can augment the model and enhance ocean prediction?
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F IGURE 13 Values for the objective/utility function used to evaluate the different survey alternatives (negative score is preferred). (a) Survey 1
and (b) Survey 2. The choices correspond to the executed paths in Table 3

F IGURE 14 Vertical comparison of AUV measurements with SINMOD nowcast data. (a) Temperatures for Survey 1. (b) Salinity for Survey 1. (c)
Temperatures for Survey 2. (d) Salinity for Survey 2

Although a full diagnosis of the model accuracy is not within the scope

of this work, a general overview and direct comparisons are shown on

which to base further analysis. Because undue reliance on one data

source increases the risk of erroneous comparisons, consequently in

this section we compare SINMOD data and AUV observations, followed

by Section 5.4, where we provide supporting data from ship, buoy, and

remote sensing from the same spatiotemporal domain.

During the field experiment period SINMOD provided nowcasts

(48-hr forecasts) used to cross-validate the in situ measurements and

study the experienced behavior. Comparing the executed paths to the

80-m SINMOD nowcasts (shown in the background in Figure 12b and d)

suggests that Survey 2 accounts for a temperature trend that is warm-

ing toward west, crossing the gradients in a manner one would expect.

More uniform conditions are predicted for Survey 1, which results in a

more variance dominated survey.

Figure 14 presents temperature and salinity measurements from

the AUV with the SINMOD nowcasts superimposed (dashed lines). The

immediate impression is that the model shows a tendency to under-

estimate the surface warming present in the AUV data; a bias in salin-

ity is also present. The correspondence is good in the 70 to 90 m

depth in which the GP data assimilation and GASA algorithm were

active.

The temperature difference is easier to study using Figure 15, pre-

senting the temperature deviation spatially within the survey area

(birds-eye view). Figure 15a and b makes it possible to study, where

in the survey area, the temperature deviation between the nowcasts

and reality was the highest. The northeastern corner of the model

was the weakest in terms of predicting ocean temperature, for both

surveys, being warmer than expected. This may explain why GASA in

both cases chose to cross over from node 3 to node 0. The devia-

tion between the measurements and the nowcast is not influencing

the AUV behavior directly because the objective function only evalu-

ates the balance between variance and gradient. However, if the num-

ber of nodes to visit is higher (e.g., more than 5), we would expect this

region to be revisited as the objective value would favor the tempera-

ture gradient. Indirectly, this would result in a higher sampling density

where model discrepancy would potentially be high, as a result of this

gradient. The region corresponds to the maximum-variance hot spot

(Figure 10), which suggests a connection between temperature varia-

tion and model uncertainty, important for validating our approach in

developing the objective function.

Figures 14 and 15 can be used to give the first impression of

the discrepancies, but cannot be used as the proof of model error,

as a range of sources may contribute to the mismatch, including
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F IGURE 15 Subparts (a) and (b) show the spatial comparison of predicted SINMOD nowcast and the estimated GP temperature field (survey area
seen from above at 80m depth). (a) Temperature discrepancy Survey 1. (b) Temperature discrepancy Survey 2

F IGURE 16 Results from a moored buoy, from May 4 to 11, 2017. Temperature and salinity measurements from the buoy at 1 m depth during
the operational period, overlayed on SINMOD predictions at 3m depth; Surveys 1 and 2 are indicated in grey

errors in initial conditions. The results nevertheless demonstrate how

adaptive and data-driven approaches can improve ocean modeling,

by revising a priori uncertainty assumptions and providing infor-

mation that can greatly focus analysis of model shortcomings and

inaccuracies.

5.4 Buoy, ship-based, and remote sensing data

To get a full picture of the environment and ground truth the SINMOD

and AUV data, supporting data sets from the other marine platforms

are presented in this section. The measurements from a moored

buoy in Figure 16 show the long-term fluctuation in the area. The

buoy is located further inshore, 3 km from the AUV survey area; see

Figure 19b.

The buoy data show a trend of sun-driven surface warming during

the AUV deployments, with Survey 2 having a higher peak tempera-

ture during the deployment corresponding to sea SST products from

remote sensing. The SINMOD nowcast prediction at the buoy location,

shown with the dashed line, follows the trends well albeit with some

bias, although certain events such as the salinity drop before May 9,

2017, is not picked up by themodel.

The results from Surveys 1 and 2 indicate a significant difference in

the influence fromAW, visible in the thermocline line in Figure 12a and

d. Comparing these results with CTD measurements made from the

R/V Gunnerus in Figure 17 and the SINMOD prediction in Figure 5, the

same thermocline dynamics can be found. Most notably for the outer-

most stations (2 and 6), both taken at high tide, there is a large shift in

both temperature and salinity betweenMay 9 and 10, 2017.

A significant difference in chlorophyll a concentration (Figure 18)

for the two deployments is captured in the remote sensing data. Due

to cloud cover, the retrieved data area is patchy; despite this, there is

clearlymore chlorophyll a concentrated in the surface during Survey 1,

in agreement with the in situ chlorophyll measurements from the AUV

and the R/V Gunnerus.

It is important to stress that the peak chlorophyll concentra-

tion at 15 to 20 m depth cannot be detected from space and that

sparse coverage from ship-based sampling can be augmented with

AUV data to render a more precise in-depth picture of chlorophyll
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F IGURE 17 Results from the R/V Gunnerus operations from May 9 to 11, 2017 (a) Temperature profiles. (b) Salinity profiles. (c) CTD cast loca-
tions. Vertical profiles from CTDmeasurements made by Gunneruswith temperature variability showing the influx of AWmoving up and down in
the water column

F IGURE 18 Chlorophyll a concentration for May 9 and 12, 2017, processed from Copernicus Sentinel Data (Sentinel-2A) OC2 (Vanhellemont
& Ruddick, 2016) compared with in situ measurements from AUV and the research vessel (a) Sentinel-2A , CHL OC2, May 9, 2017, 10:56 a.m. (b)
Sentinel-2A , CHLOC2,May 12, 2017, 11:13 a.m. (c) AUV and vessel R/VGunnerus, May 9, 2017

structure. This demonstrates why we need to combine information

from several sources to arrive at a deeper understanding of ongoing

processes.

Comparing across the different measurement platforms, Figure 19

shows the nowcasted temperature for the entire upper 3-m model

area, side by side with remote sensing, AUV, and buoy measure-

ments. The remote sensing data are filtered for quality and only com-

pared to locations within the model domain (Figure 19b, orange area).

Some days had full overcast (May 9, 2017) and therefore no remote

sensing data are available. Some of the variations is related to dif-

ference in space, as the buoy is further inshore compared to the

AUV, and time, because the AUV and remote sensing data were col-

lected somewhat apart. However, there is a clear tendency of SINMOD

to underestimate the surface temperature during the campaign; this

is supported by both AUV data (Figure 14) and buoy time series

(Figure 16).

6 DISCUSSION

Our work shows the synergies to be exploited between data-driven

sampling and synthetic ocean models, making oceanographic obser-

vations and data collection more efficient, by providing comparison

of in-field data to augment and cross-validate model predictability,

while also enabling greater capability to study and understand oceano-

graphic processes and events. Using stochastic surrogatemodels, such

as the GP model derived in this paper, allows the unification of both

in situmeasurements, data assimilation, anduncertaintyquantification

of the full hydrodynamic model, presenting scientists with a powerful

framework for efficient experiment design.

As Zhang and Sukhatme (2007) pointed out, interpolation/kriging

is required to estimate the value where no direct measurements are

available; hence a bias is inevitable. Consequently, the algorithmwill be

exposed tohigh gradients as a result of failing to initialize the priorwith
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F IGURE 19 The 3-mwater temperature nowcast from SINMOD compared to remote sensing SST products (MODIS), buoy measurements at 1 m
depth, andAUVdata from the surface layer 0–3m, at noon. (a) Recorded temperatures at noon. S, R, B, andA denote SINMOD, remote sensing, buoy,
and the AUVmeasurements, respectively. (b) Coverage and locationmap for the campaign at Froan (midway)

realistic values because prior and measured temperatures in unex-

plored locations typically deviate causing each update to generate a

gradient peak that may not actually be realistic. Therefore, the objec-

tive function presented in this work counterbalances the gradient esti-

matewith the corresponding uncertainty in Pt,dj , while also performing

aone-time-only bias correctionof thepriormeanestimate to avoid this

effect.

Independent of the cost function, the algorithm used in this paper

uses a one-step planning horizon, greedily choosing the path with the

best objective value, for which an adverse effect can be attraction to

local optima—there are a number of reasons for making this choice.

First, there are factors related to computational load, which grow

exponentially for recursive approaches, originating from the combina-

toric complexity as the graph network size increases. In the proposed

approach, the graph is small and compute time is not an issue; however,

as the method is devised for larger graphs, this is important to keep

in mind, as some greedy-recursive approaches contemplate solutions

shown to have better performance, see e.g., Ma, Liu, and Sukhatme

(2016). So for larger graphs or limited computation, greedy approaches

may provide “good enough” solutions (Binney et al., 2013) and accept-

able performance, as shown in Krause et al. (2008). Second, as the

methods used depend on ocean models, which are approximate, the

inherentmodel uncertainty and integratederror effectswill reduce the

advantage gained in using a longer planning horizon. In some cases, this

may cause the performance to becomeworse (Binney et al., 2013). The

regional spatial and temporal scales onwhich to operate also come into

consideration as upper water-column and coastal variability can nei-

ther be sampled normodeled on a sustained and substantial basis (Ler-

musiaux, 2006). Some of these constraints can be managed; examples

of nonmyopic approaches, such as Krause (2007) andHoang, Low, Jail-

let, and Kankanhalli (2014), can be used for active sampling, with com-

plexity bounds on the exploration phase.

In terms of applicability, the end-to-end method presented in this

work is general in the sense that the pipeline starting with (a) the dis-

cretization and spatial modeling of the phenomena using ocean model

data, (b) formulation of the objective function toward a scientific con-

text, and (c) algorithmic implementation can easily be tailored to other

environmental attributes or a combination of several, depending on

the phenomena and scientific goals, where the perspective is the com-

bination of ocean model data and in situ measurements. In our field

experiment, both surveys showed a large variation with thermocline

shift from 65 to 40 m, a spread in salinity from 33.0 to 34.9, and

chlorophyll concentrations from 1 to 4 mg/m3. This observed variabil-

ity across a rangeof environmental signatures demonstrates that using

another type of environmental variable is possible and that to resolve

different ocean phenomena measurements from several assets needs

to be considered.

7 CONCLUSIONS AND FUTURE WORK

In this work, we have presented methods for coupling ocean models

with in situ data to achieve efficient sampling of coastal processes,with

specific focus on the physical–biological coupling active in the Froan

region, using ocean temperature as an information utility. Based on

high-resolution hindcast data from the SINMOD oceanmodel, a stochas-

tic proxymodel usingGPswas formulated, anda location-based covari-

ance function was implemented to improve the assimilation of in situ

measurements. To consolidate the GP model with the phenomena of

interest for adaptive sampling, a variance and gradient-based objec-

tive function that accounts for uncertainty in the estimated gradi-

ents was established. The sampling algorithm, being both data- and

model-driven, was tested in simulation and in sea trials, onboard an

AUV. The experiments show that the algorithmdifferentiated between

alternative survey strategies, having good agreement withmodel fore-

casts. The recorded data indicate correspondence between ocean

model and AUV in determining a thermocline shift from influx of AW.

Finally, we present supporting data from remote sensing, buoy, and

ship-basedmeasurements, anddiscuss how the combineddata sources

can be used improve oceanmodels.

Because only information froma specific depth region is utilized,we

plan to extend the integration to several depths, which can be done
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without significantly increasing the complexity of the system. This is

also the case for extending the current GP model to include more

complex spatiotemporal dynamics. A more advanced bias correction

scheme will also be considered as several covariates and information

sources can be included to contribute to augment the prior forecast

coming from the model. Additionally, recursive approaches flanked by

model or phenomena-based heuristics, which have a limited computa-

tional footprint, are also improvements that will be explored.
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Toward adaptive robotic sampling of phytoplankton in
the coastal ocean
Trygve O. Fossum1,2*, Glaucia M. Fragoso3, Emlyn J. Davies4, Jenny E. Ullgren5, Renato Mendes6,7,8,
Geir Johnsen2,3,9, Ingrid Ellingsen4, Jo Eidsvik10, Martin Ludvigsen1,2,9, Kanna Rajan2,6,11

Currents, wind, bathymetry, and freshwater runoff are some of the factors thatmake coastal waters heterogeneous,
patchy, and scientifically interesting—where it is challenging to resolve the spatiotemporal variation within the wa-
ter column.Wepresentmethods and results from field experiments using an autonomous underwater vehicle (AUV)
with embedded algorithms that focus sampling on features in three dimensions. This was achieved by combining
Gaussian process (GP)modelingwith onboard robotic autonomy, allowing volumetricmeasurements to bemade at
fine scales. Special focuswas given to the patchiness of phytoplanktonbiomass,measured as chlorophyll a (Chla), an
important factor for understanding biogeochemical processes, such as primary productivity, in the coastal ocean.
Duringmultiple field tests in Runde, Norway, the method was successfully used to identify, map, and track the sub-
surface chlorophyll a maxima (SCM). Results show that the algorithm was able to estimate the SCM volumetrically,
enabling the AUV to track the maximum concentration depth within the volume. These data were subsequently
verified and supplemented with remote sensing, time series from a buoy and ship-basedmeasurements from a fast
repetition rate fluorometer (FRRf), particle imaging systems, as well as discrete water samples, covering both the
large and small scales of the microbial community shaped by coastal dynamics. By bringing together diverse
methods from statistics, autonomous control, imaging, and oceanography, the work offers an interdisciplinary per-
spective in robotic observation of our changing oceans.

INTRODUCTION
Processes controlling the growth and accumulation of phytoplankton
are central to nutrient, carbon, and energy cycling; these provide the
foundations formarine and human foodwebs (1, 2). Despite their ubiq-
uitous presence across the upperwater column in the global ocean, phy-
toplankton presents a remarkable heterogeneity in spatial distribution
(we will refer to this heterogeneity as patchiness) that is observable in
microscale [subcentimeter, (3)], kilometer scale (4), and up to more
than 600 km (5). Sampling at such a wide range of spatial scales is both
challenging and interesting, because patchiness has been shown to
strongly influence ecosystem stability (6), diversity (7), and productivity
(8). Furthermore, measuring phytoplankton is complicated because ob-
servations have their basis in the proxymeasurement of peak absorption
of light at 675 nm, originating fromphotosynthetic chlorophyll a (Chla)
inside planktonic cells.

With the growing capabilities of robotic vehicles, adaptive coverage
of the water column is increasingly viable, although they continue to be
challenging to operate in the harsh confines of thewater columnand the
dynamic coastal ocean.Motivated by this, this work describes the use of
propelled robotic platforms, known as autonomous underwater vehi-
cles (AUVs), for optimizingmapping of water-column features in three
dimensions. Such volumetric surveys of the water column are of sub-
stantial scientific interest because they provide better insight for
understanding and measuring factors such as primary productivity, a
vital indicator for ocean health.

To do so, we concentrated on volumetric sampling of subsurface
chlorophyll amaxima (SCM) using adaptive samplingmethods. In par-
ticular, the goal was to develop adaptive behavior for AUVs that can
enable increased sampling resolution of water-column processes in
three dimensions by focusing sampling efforts in regions of interest.
We limited the survey to a bounding boxwith a certain size, introducing
both spatial and temporal constraints, similar to the enclosure criterion
used in (9). Shortening the survey time means that the temporal effects
will be minimal, and the error contributions from currents, navigation
drift, and other time-dependent effects will be bounded, allowing
complex time variability to be mitigated. This then transforms into a
purely spatial problem of finding the relevant sampling locations within
the surveyed volume, given a scientific context (for our case, the max-
imumChla concentration depths). Assuming that only limited previous
information is available, obtaining an a priori estimate of the SCM fea-
ture has substantial benefits, contrary to conducting an adaptive survey
directly using interior [inside the three-dimensional (3D) volume]mea-
surements. This direct approach is ineffective due to two main reasons.
First, the AUV will have no forward-looking data to guide adaptation,
resulting in coverage that is subject to a “hit-or-miss” trade-off. Given
the limited volume of the survey, the adaptation distance available for
such an approach is not present. Second, a key driver is the need to sur-
vey the most interesting aspects of the feature as fast and accurately as
possible to reduce time-dependent effects. Building up an accurate
estimate of the interior will be central to achieving this goal, because
both the probability of losing track of the feature and the survey time
can be reduced.

The method suggested in this work is designed to adhere to these
ideas by separating the survey into a dedicated exploration and exploi-
tation phase as follows: The AUV first starts by covering the sides of the
bounding box volume in an initial phase dubbedMODE 1, followed by
an adaptive survey of the interior volume, dubbedMODE2, capitalizing
on the learned information captured in a Gaussian process (GP)model,
duringMODE1 (full details are given inMaterials andMethods). Thus,
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the exploitation phase is a single-calculated maneuver based on the
available information, allowing the AUV to survey a region of interest
in the water column in a fast and focused manner, toward attaining a
quasi-synoptic snapshot of the feature.

Our experiments were conducted in Runde, Norway, in June 2017
(see Fig. 1) with the algorithm embedded on an AUV to detect and to
map the SCM, providing a 3Dmap of the Chla concentration, denoted
as [Chla]. Note that we specifically define concentration with [Chla].
This is different from “Chla,” which is an abbreviation for chlorophyll a.
The measurements were complemented with photophysiological data
derived from a fast repetition rate fluorometer (FRRf) and two particle
imaging systems (SINTEF) (10) with different magnifications. These
were profiled from a winch, together with a CTD (conductivity, tem-
perature, and depth) sensor and water samples taken from the research
vessel R/V Gunnerus at stations around Runde. An overview of the
involved systems, scales, and platforms is given in fig. S2.

In situ measurements of the size, concentration, and type of partic-
ulatematerial in the water column are critical to resolve spatial distribu-
tions of the particles in question while minimizing disruption to them
(11). A wide range of techniques could be used for such measurements:
optical backscatter, fluorescence, laser diffraction (12), digital hologra-
phy (13), and telecentric transmittance imaging (10, 14), each providing
specific information about suspended particulate material. However, it
is not possible for a single instrument to obtain measurements of the
entire size range of suspended material present in natural seawater,
making it necessary to combine multiple techniques to monitor the full
range of size and types. By combiningmeasurements, a detailed picture
of the water column can be rendered with both biometric and volumet-
ric information, providing fine detail for resolving the in situ features
while reducing errors related to aliasing and patchiness.

Related work
Methods for tracking and sampling biomass distributions using auton-
omous platforms are still in their infancy. However, methodological
studies are regularly reported, and several experiments have been conducted
in the recent past. Moline et al. (15) introduced AUV-based sampling
for ecophysiological work. Focusing on harmful algal blooms (HABs),

Robbins et al. (16) combined AUV sur-
veyswith remote sensing towardattaining
3D information about bloom conditions.
Similarly, Zhang et al. (17) used a long-
endurance AUV to sample the peak Chla
layer along horizontal cross sections for
HAB monitoring using onboard gene
processing equipment. Ryan et al. (18)
used hidden Markov models to enable
online estimation of water-columnprop-
erties, enabling water samples to be trig-
gered under certain upwelling conditions
in Monterey Bay. The same region was
explored in (9), where a GPS-tracked
Lagrangian drifter was used in combi-
nation with AUVs for coordinated
sampling of dynamic oceanic features,
trying to follow the sides of a volume of
water as it moved with subsurface cur-
rents. More decision-based efforts in
sampling were presented in (19), where
GPswere used in an online optimal choice

approach to adaptively decide where to trigger water samples in the
water column based on biomass concentration. In (20), cooperative
tracking of phytoplankton blooms using buoyancy-driven gliders
driven by ocean model predictions was articulated. This was devel-
oped further in (21), where the sampling resolution was modified by
adjusting the undulation angle of a glider while accounting for ocean
currents, with the aim to characterize and sample blooms. Graham et al.
(22) discussed problems related to estimating spatiotemporal correla-
tion in time-varying fields and compared Euclidean and Lagrangian
approaches using AUV and drifter information to perform spatial in-
terpolation. Feature tracking of patches and plumes was also discussed
in (23), where a plan-based policy was learned, tested, and evaluated
using simulated patches of Chla and then sampled in 2D in the open
ocean. In (24), the combined use of satellite measurement, AUV, and
research vessel data was used to describe advection of phytoplankton
cells from open waters transported under the sea ice in the Arctic
linking Chla presence, photosynthesis, and biodiversity. Spatial and
temporal decorrelation scales in phytoplankton bloommagnitude were
reviewed in (25), focusing on theU.S.West Coast. Sahlin et al. (26) gave
an overview of different 3D interpolation strategies for oceanic data,
with the conclusion that kriging is the preferred method for studying
the marine pelagic environment.

Our work presents a practical real-world implementation of a
sampling approach for the upper water column, capable of adapting
to distributions in three dimensions. Such uncertain environments re-
quire a trade-off between exploration and exploitation; the proposed
method presents a solution by splitting the survey into two dedicated
phases within a limited volume, bounding time-variability effects. Un-
der these conditions, the AUV can map the region of interest in the
water column in an efficient quasi-synoptic manner. We demonstrated
the method in a field experiment together with additional sampling on
board a ship, showing the potential of collaborative mapping of plank-
tonic distributions in a dynamic coastal environment.

Sampling Chla in the water column
Planktonic patchiness can be a result of complex interplay of physical
(stirring andmixing), chemical (nutrient availability, CO2,O2, and trace

A B

Fig. 1. Survey area and Chla distribution. (A) Map of the operational area with the three AUV surveys indicated
[surveys 1 and 3 (southeast of Runde) and survey 2 (north of Runde)], whereas the ship-based sampling stations are
denoted by numbers (stations 1 to 7). In the lower corner, a small map of Norway is shown with Runde marked in
red. (B) Chla (OC4ME) product from Ocean and Land Color Instrument, a multispectral medium-resolution instrument
on board ESA’s Sentinel-3. The image from 2 May shows the Chla patchiness in the coastal zone, some months
before the surveys. Runde is shown encircled in black.
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metals), and biological (growth, movement, and mortality) processes,
which can rapidly change in marine ecosystems and vary across
multiple spatiotemporal scales (27). These interacting processes create
a broad spectrum of patchiness, which can occur in small vertical layers
[SCM layers (SCMLs)] (28) or in bigger plumes (29, 30) that can only be
partially visible in remote-sensing imagery (Fig. 1). Phenomena such as
eddies can interrupt these layers by upwelling or downwelling and po-
tentially create deepChlamaxima layers (DCMs) (31). Details about the
difference between SCMLs and DCMs can be found in (32).

Knowing where andwhen to sample is vital to accurately resolve pro-
cesses. Furthermore, data collectionwill, in somecases (especially Lagran-
gian buoys and floats), itself be influenced by the same forces, such as
currents andwinds, in addition to the physical limitations of the platform
(speed, battery, depth rating, etc.) affecting the spatiotemporal coverage.
Capturing synoptic information is therefore a major challenge. Remote-
sensing data can only obtain coverage at the very surface, omitting valu-
able information in the depthdimension and, consequently, features such
as the SCM. Furthermore, remote-sensing products rarely reach the sub-
kilometer resolution, which is vital for evaluation of oceanographic
phenomena that control coastal primary productivity at fine scales (33).

Chla patchiness, distributions, and interpretation
The advent of fluorometry as a proxy for measuring Chla fluorescence,
in addition to the progress of remote-sensing approaches, has provided
a significant advance in the study of plankton distributions (34, 35)
providing continuous measurements, where Chla is used as a common
“currency” for biomass estimation. Biomass is a broad and practical
termused to describe the amount of livingmaterial in thewater column.
We use the concentration of Chla as an indicator of the phytoplankton
biomass (organic carbon, expressed as milligrams per cubic meter);
hence, the terms [Chla] and phytoplankton biomass, or just biomass,
are used interchangeably in this text. Although Chla is used as an
indicator of phytoplankton biomass worldwide, variability of cellular
Chla content is expected to occur as a function of light intensity, species
composition, and nutrient availability (36, 37).

The use of Chla fluorescence measured in vivo, i.e., in live cells
measured in situ, as a proxy of phytoplankton biomass and patchiness,
needs to be interpreted carefully.When phytoplankton cells are exposed
to high light levels (for instance, those usually found at the surface
ocean, particularly near mid-day during summer), some of the excess
of energy absorbed is dissipated as heat (38). Part of this is related to a
photoprotective process, called nonphotochemical quenching (NPQ),
that occurs as a rapid response to high light and results in the reduction
of fluorescence emission at the surface (39). Thus, a subsurface Chla
fluorescence maximum observed in a vertical profile may not necessar-
ily reflect biomass accumulation; rather, it can be a spurious representa-
tion of patchiness. To circumvent this challenge, we compared in vivo
fluorescence Chla collected in situ from the AUVs and FRRf measure-
ments with in vitro Chla, which is derived from filtered water samples
andmethanol extraction to checkwhether a subsurface Chlamaximum
is present at the sampled locations.

At first glance, the complex spatial structure of the phytoplankton
distribution occurs as a result of biological and physical processes and
interactions in the water column. The spatial distribution of phyto-
plankton biomass, its intensity, morphology, and scale dependence
[such as the open ocean (10 to 100 km, mesoscale) or coastal zones
(10m to 1 km, submesoscale)] is substantially driven by processes, such
as turbulent advection, upwelling, convergence, and vertical mixing
(27, 40). For example, local processes such as upwelling zones can bring

deep water nutrients to the surface layer and nurture phytoplankton,
creating regional hot spots (with high biomass concentration), at scales
ranging from 5 to 10 km (41) or even≤1 km for complex coastal zones
(42). In the open ocean, the same aggregation can range from 70 to
140 km (spatial correlation) in the horizontal plane; vertically,
persistent upper water-column stratification may lead to a subsurface
maxima,where phytoplankton is concentrated in the bottomof the pyc-
nocline (density gradient) to better use light and nutrients (43). Vertical
correlation is much weaker due to stratification effects (26). Figure 1B
shows the surface distribution of [Chla] for 2 May 2017 along the
Norwegian coast, depicting the spatial patterns at the mesoscale.

Regardless of the physical processes taking place, spatial heterogeneity
must be “seeded” from external factors that trigger phytoplankton
growth, such as nutrient availability and light levels (4), in addition to in-
trinsic evolutionary and physiological traits of the species (e.g., buoyancy,
vertical migration, and daily cycles of photosynthesis) (3), reinforcing the
role of physiology on shaping phytoplankton patchiness. Many fluorom-
eters [such as pulse amplitudemodulated (PAM) and FRRf] offer the op-
portunity to study the health of phytoplankton communities, which allow
examination of the physiological state of a community and, when com-
bined with reconstructions from AUV surveys, are powerful assets to
investigate the spatial structure of phytoplankton distributions (24).

Zooplankton grazing is another biological process that accounts for
patchiness as it relates to phytoplankton mortality. Although ex-
tremely important, it is difficult to study the effect of such grazing on
patchiness due to the nonlinear nature of biological interactions and
the scarcity of observations that constrain models (4). Like phyto-
plankton, zooplankton themselves are patchily distributed, either
occurring in swarms or vertically migrating in the water column, which
complicates the interpretation of abundance due to undersampling—
that is, being below the Nyquist sampling rate, so that the dynamics
of a phenomena is not captured at a level necessary for reconstructing
the original distribution (aliasing). The development of acoustic sensors,
such as Acoustic Doppler Velocity Profiler and Acoustic Zooplankton
FishProfiler, andparticle counters capable of collecting continuous zoo-
plankton counts provides an opportunity to assess abundance and the
phytoplankton influence.

Experimental setting
Our study site is in the coastal zone of the southern Norwegian Sea. In
this region, the Norwegian Atlantic Current approaches the coast
bringing saline Atlantic water onto the narrow continental shelf
(44). The Norwegian Coastal Current, carrying fresh water from the
outflow of the Baltic and receiving additional fresh water from land
runoff as it flows northward along the coast, also enters the shelf in
theMøre region (44, 45). Both the volume transport of the Norwegian
Coastal Current and the lateral location of the interface between At-
lantic and coastal water vary seasonally and are strongly affected by
wind (46, 47); there is also considerable mesoscale variability in the
coastal current system (47, 48). Mesoscale eddies play an essential role
in ocean dynamics and significantly affect ocean biology and biogeo-
chemistry (49). Althoughmesoscale eddies, froma few to a fewhundred
kilometers, are known to have a strong effect on plankton distributions,
community structure, and diversity (49), smaller instabilities can locally
enhance vertical mixing (50). Such submesoscale processes, on spatial
scales of 0.1 to 10 km, can enhance both phytoplankton productivity
and its variance on time scales of a few days (50).

Repeated sampled temperature and salinity profiles from Skinnbrok-
leia (7 km southeast of our AUV surveys) were used to place the AUV
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observations in a local and seasonal setting.Meteorological and ocean-
ographic (metocean) time series from a stationary buoy at Breisundet
(14 km northeast of the AUV surveys) were also used. The buoy,
placed in 345-mwater depth in an inlet between two islands,measures
surface waves, wind, current velocity, salinity, and temperature at
selected depths.

In the weeks preceding the field campaign, the hydrographic
conditions in the study area were typical of early summer (51, 52).
Upper layer salinity was low, and a shallow seasonal thermocline had
formed in the upper 10 m (seen in data from amonitoring station on
8 June, 16 km southeast from the survey site). The beginning of the
cruise, however, coincided with the onset of stronger winds, around
10 m/s with gusts up to 16 m/s, that prevailed throughout the first half
of that week (Fig. 2B). The fresh breeze was accompanied by increasing
wave height, up to 2m (as measured at the stationary metocean buoy in
Breisundet). Wind stirring during this event caused a deepening of the
mixed layer. Time series of temperature and salinity from the metocean
buoy revealed that the mixing started immediately with the onset of
stronger winds on 17 June and progressed during the following days un-
til eventually temperature and salinity were homogenized down to the
40-m depth level (Fig. 2A).

The AUV and ship-based CTD profiles taken on the same day
showed a 30-m-deepwell-mixed layer (Fig. 3). Thewater-column struc-
ture was similar in the AUV survey area and at the ship-based CTD
stations some 400 m away. In the thermocline between depths of 30
and 40m,we found some features that were different, such as local tem-
perature inversions, and that were seen at one site (CTD stations) but
not at the other (AUV surveys). The different measurement methods
lead to small variations between the profiles: The AUV captured the
surface layer from the top centimeter down, whereas the CTD profile
excluded the uppermost meter. On the other hand, the CTD profiles
reached deeper than the AUV’s maximum dive depth of 50 m. The
many profiles from the AUV survey form an envelope that indicates
the small-scale spatial variability of temperature and salinity. The
difference in water mass properties between the CTD sites and the
AUV survey is comparable with the variability within the AUV survey
area, which, in turn, is comparable in size with the distance between
CTD stations and the AUV survey (Fig. 1A).

GP model of the distribution of Chla
We used a spatial statistical model in the form of a GP to model the
SCM. The GP formulation is widely used for dealing with spatial appli-
cations in the ocean (22, 53). Its popularity is largely due to the simple
yet flexible modeling formulation, which allows consistent and efficient
data conditioning. In contrast to a full numerical oceanmodel, a GP can
operate with limited computational resources on board an AUV and
assimilate measurements on the fly.

Measurements were coherently assimilated to render a more
detailed representation of the SCM as the survey progressed. The
SCM is predicted by a GP in 3D space (latitude, longitude, and depth),
by assimilating the identified SCM depth into a 2D grid, of which the
detailed steps are explained in Materials and Methods. For envi-
ronmental applications, a GP is typically discretized to a grid map with
a certain resolution describing variation in space. This map is, in es-
sence, a collection of random variables (on the grid) with a multivariate
normal probability density function, where the spatial dependence is
captured by a covariance model.

The stochastic process {x(s), s ∈W}, withW being an indexed grid set
W⊂ℝ3, is aGP if, for any finite choice ofndistinct locations s1,…, sn∈W,

the random vector x = [x(s1),…, x(sn)] has a multivariate normal prob-
ability density function

pðxÞ ¼ N ðm; ∑Þ ¼ 1

ð2pÞn2j∑j12
e�

1
2ðx�mÞT∑�1ðx�mÞ ð1Þ

defined by the mean vector m = E(x) and the symmetric positive definite
covariance matrix ∑ = cov (x, x). The prior mean m = [m1,…, mn] consti-
tutes a 3D surface (latitude, longitude, and depth) of the estimated peak
Chla layers. The covariance matrix S is given as

∑ ¼
S11 S12 … S1n

S21 S22 … S2n

⋮ ⋮ ⋱ ⋮
Sn1 Sn2 … Snn

2
664

3
775

whereSij ¼ s2Kði; jÞ. The stationary covariancehas entries dependingon
the pairwise distance between grid locations. The kernel is defined as

Kði; jÞ ¼ ð1 þ fhijÞe�fhij

with distance hij = |si − sj| and f a model parameter indicative of the
correlation range (54). Capturing the correct spatial correlation is

A

B

C

Fig. 2. Environmental conditions from buoy data. Time series of (A) water tem-
perature at four different depths, (B) wind speed and wind gust, and (C) significant
wave height, measured at a buoy located some 14 km inshore of the AUV survey area.
The entire month of June 2017 is shown, with gray backgroundmarking the period of
AUV and ship measurements.
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important, because this will affect how the measurements are inter-
polated. In our experiments, the effective correlation range was set
to f ~ 1000 m based on the east-west variogram results from (42), in-
vestigating the Chla scale dependency for coastal zones using high-
resolution remote sensing [notably, this implies having correlation

across the smallest survey area (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7002 þ 7002

p ¼ 990 m)]. Here,

both larger (26) and smaller (55) correlation ranges can be defined,
depending on the scale of heterogeneity, type of marine system being
studied, and previous insight of the water body and ambient conditions.

As measurements are assimilated, the 3D mean surface is adjusted
toward the derived Chla maximum depth, and prediction variances are
reduced (details are provided in Materials and Methods). The SCM
peak depth is found for each vertical crossing as the AUV undulates
via a “yo-yo” maneuver in the water column, where dt is the AUV lo-
cation at time t with the corresponding SCM peak. The measurement
model for time t is given by

yt;dt ¼ Gt;dtx þ vt ð2Þ

where yt;dt is a lengthmt;dt vector of the survey line observation and
themt;dt � nmatrix Gt;dt contains “1” entries only at the designated
dt indices and 0 otherwise. The error term vteNð0;Rt;dt Þ represents
measurement noise. The covariance matrix Rt;dt is set to a constant
diagonal matrix (56), and there is no dependence of measurement
error terms over assimilation time.

Under Gaussian linearmodeling assumptions, the sequential updat-
ing of survey data leads to the Gaussian conditional distribution
pðxjy1;d1 ;…; yt;dt Þ, defined by conditional mean mt;dt and covariance
Pt;dt . These equations are recursive over the data-gathering steps:

St;dt ¼ Gt;dtPt�1;dt�1G
t
t;dt þ Rt;dt

Kt;dt ¼ Pt�1;dt�1G
t
t;dtS

�1
t;dt

mt;dt ¼ mt�1;dt�1 þ Kt;dt ðyt;dt � Gt;dtmt�1;dt�1Þ
Pt;dt ¼ Pt�1;dt�1 � Kt;dtGt;dtPt�1;dt�1

ð3Þ

where the mean and covariance matrix are initialized bym0;d0 ¼ m and
P0;d0 ¼ ∑.

RESULTS
Experimental setup
The AUV platform used in our experiments was an OceanScan Light
AUV (LAUV) (57), capable of upward 24-hour in-water operation (fig.
S1). A WET Labs ECO Puck was the main sensor payload measuring
Chla concentration (470-nm excitation and 695-nm emission peak of
Chla) with supplementary sensors including cDOM(color dissolved or-
ganic matter), TSM (total suspended matter), a 16-Hz Sea-Bird Fast-
CAT 49 pumping CTD, and Aanderaa 4831 oxygen optode. The Chla
tracking algorithm was hosted on a multicore graphics processing unit
(GPU) NVIDIA Jetson TX1 single-board computer.

Alongside AUVmeasurements, both FRRf and two SilCam camera
systems were used to resolve details of the water column, as well as
allowing cross-reference and verification of AUV measurements and
behavior in addition to the algorithm embedded onboard. These
systems were deployed from a winch, together with a CTD. The FRRf
measures irradiance and [Chla], in addition to photophysiological pa-
rameters of the phytoplankton community. The SilCam systems imaged
a particle size range spanning 28 mm to 4 cm in equivalent diameter,
enabling characterization of particle size over a range covering three
orders of magnitude in diameter. For accurate fluorescence-based Chla
determination and calibration of the FRRf, water samples were collected
every 10m in the upper 60mon the upwardCTDcasts using 5-literNiskin
bottles mounted on a rosette frame. Water samples were immediately
filteredonto25-mmglass fiber filters (fromGF/FWhatmanInc.) and stored
ina−20°C freezeruntil analyzed in the laboratory1month later. [Chla]was
extracted in 100% methanol for about 4 hours at 10°C and fluoromet-
rically determined using a Turner Designs fluorometer. This sampling
activity was conducted from the research vesselR/VGunnerus. The sur-
vey map and sampling stations are shown in Fig. 1A.

AUV surveys
The adaptive AUV surveys took ~1.5 hours to complete (survey 2
covered a larger volume), with a mean vehicle speed of 1.6 m/s over
ground; details are provided in Table 1. To follow the GP model
estimate of the SCM 3D surface, we explored two strategies: (i) using
fixed depth (MODE1.fixed) and (ii) using an undulating/yo-yomotion,
±2.5 m across the 3D surface (MODE 2.undulating). Although finer
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Fig. 3. Data fromsurvey1 (MODE1.fixed)using fixed trackingof the3DChla surface.
Asterisks mark a point where the AUV behavior transitions, as the depth adjustment is
followed by increased [Chla]. This is also shown in Fig. 4. (A) Chla concentration versus
traveled distance accumulated over ground. (B) Temperature and salinity curves from
AUV and the R/V Gunnerus from the same area. (C) AUV depth versus traveled distance. Note
the adjustment of survey depth as the AUV follows the 3D surface (in 200-m increments).
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discretization is possible, given the uncertainty due to current speed and
direction, as well as natural stratification, the SCMdepth estimates from
the GP surface (~23-m resolution) were discretized into 200-m
segments for the AUV to follow.

A detailed analysis of the approach is presented focusing on survey 1,
using fixed depth control, and comparing that with survey 3, tracking
the 3D surface using an undulating/yo-yo pattern. Results from survey 2
are shown in fig. S3.

In Fig. 3B, the first ~4 km is used to cover the sides of the volume
(MODE 1), gathering an estimate of the SCM, before MODE 2 tracks
this estimate by either fixed or undulating/yo-yo behavior. MODE 2, in
turn, trails an hourglass pattern in the interior of the volume for the next
~4 km (seeMaterials andMethods formore details). The second half of
Fig. 3B shows the AUV adjusting its depth according to the SCM
estimate, with periodic surfacing events when reaching the corner
points of the survey box. Both survey 1 (Figs. 3A and 4) and survey 3
(Fig. 5A) confirm that the [Chla] concentrations were higher during the
tracking phase of MODE 2, with the AUV sampling between the 20-
and 30-m depth range. These depths correspond to the SCM found
from analysis of the water samples taken from the research vessel and
shown together in Fig. 6 with FRRf data. The temperature and salinity
data in Fig. 3C suggest that the water columnwas well mixed down to
30 m, where an abrupt gradient is present. This interface influences
the distribution of biomass in the water column (58).

Because the first phase (MODE 1) took ~40 min to complete, some
of the estimates were likely affected by current velocity and direction. It
is therefore important to verify that the depth adjustments result in an
increase of [Chla]. Elevated levels of [Chla] can be seen throughout the
second phase of themissions, but to verify this further, in Figs. 3 (A and
B) and 4 (B and C), an asterisk shows the first part of the SCM tracking

and the successful depth adjustment that results in elevated levels of
[Chla]. The first part is chosen, because the earliest observations have
the highest probability of being affected, due to their high lag between
the initial measurements and revisitation, affected by current.

Furthermore, by comparing the volumetric estimate before (Fig. 4A)
and after (Fig. 4, B andC) the interior survey, we can see the distribution
change in light of the newmeasurements. The isosurfaces (markedwith
black lines in Fig. 4) changed, resolving the interior information with
finer detail. The change is greatest within the volume, which is expected,
because these locations are unsurveyed, previously estimated on the
basis of the data from the sides. The main features and distribution
are largely similar before and after the initial survey. This coherence
supports the credibility of the design premise, limiting the survey size
to effectively handle time dynamics, as well as the shared information
between the interior and boundary used to focus sampling.

Comparing the results with survey 3 using the undulating/yo-yo
depth tracking shows that survey 3 also has elevated concentrations
while tracking the SCM. Because the undulating/yo-yo approach is
less sensitive to errors in the depth estimate while providing higher
sampling density at the SCM, it is more practical for mapping the
structure of the SCM but only subject to a certain current regime;
with strong currents, a fixed depth approach would likely be pref-
erable because of shorter survey times.

FRRf measurements
Figure 6 shows a vertical profile of the in vitro (extracted) and the in vivo
(measured in situ) [Chla] derived from the FRRf deployed at stations 4
and 5 and fromAUV survey 1 indicated on themap in Fig. 1A; all FRRf
surveys are shown in Table 2. Details on intercalibration can be found
in (24). In the in situ assessments (FRRf and AUV), [Chla] is higher

Table 1. AUV survey information and details.

Survey Date and time Duration Mean velocity (m/s) Area (m2) Mode

1 20.06.17, 10:02 a.m. 1 hour 33 min 1.5 700 Fixed depth

2 20.06.17, 12:10 a.m. 1 hour 58 min 1.5 900 Fixed depth

3 22.06.17, 11:06 a.m. 1 hour 27 min 1.6 700 Undulating ±2.5 m

Fig. 4. Volumetric estimate and AUV path. (A) Volumetric representation (3D kriging) of the [Chla] isosurfaces after the initial survey phase (MODE 1) covering the
sides of the volume. The AUV path is overlaid (black line), and N, E, and Z are labels for north, east, and depth, respectively. (B) Volume after the adaptive survey of the
internal volume (MODE 2), rendering more of the internal [Chla] structure. The depth adjustment (marked with asterisk) in the interior made the AUV stay in the region
of high concentration. (C) Side view of the same volume as in (B) to highlight the adaptive depth adjustments performed by the AUV. The color scale of the interior
isosurfaces is affected by the transparency. Plots constructed in Mayavi (65).
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(>0.6mgm−3) at the upper 30m, decreasing gradually below this depth
(<0.8 mg m−3). The vertical structure of [Chla] is in agreement with
salinity profiles, confirming that the depth of themixed layer approaches
30m.At stations 4 and 5, the in situ observations (from the FRRf) agreed
with the results from the in vitro [Chla]. Bothmeasurements reveal a sim-
ilar vertical pattern, such as a subsurface maximum (from 10 to 25 m),
suggesting a higher concentration of phytoplankton cells at this depth,
although this trend is much less pronounced than for the AUV data.
When compared with AUV survey 1, [Chla] varies slightly in the upper
30m (a difference of 0.2 mgm−3 of [Chla]), which could imply that the
hydrography was different between stations 4 and 5 and survey 1, de-
spite the proximity of sites. This result reemphasizes the need for robotic
sampling to monitor the variability and patchiness of phytoplankton
distributions.

A quenching (reduction) of the fluorescence signal in live cells (in
situ) is commonly found in surface waters during summer, when phy-
toplankton are exposed to high light levels. This occurs to protect the
cells’ photosystems [a process called NPQ (38)], by converting part of
the excess energy to heat. Results from this study show that the in vitro
[Chla] presented approximately the same vertical pattern as the in situ
measurements, with a subsurface maximum at depths of 20 to 30 m.
This suggests that NPQ processes were not evident in this study, pos-
sibly because of cloudy conditions. Clouds reduce the amount of
light that reaches the surface water; consequently, such conditions
do not interfere as much with the in situ fluorescence measurements
derived from the sensors.

SilCam observations
In situ [Chla] derived from the FRRf and the AUV provided relevant
information regarding phytoplankton patchiness, but there may exist
some linkages to biological activity (e.g., grazing) at higher trophic levels
and thus larger particle sizes. Results from the two SilCam particle im-
aging systems provided in situ images of suspended material, allowing
insight into the presence and distribution of larger phytoplankton and
zooplankton, in addition to othermaterial in the water column, such
as marine snow and suspended sediments.

Figure 7 shows particle number distribution and sample images
recorded within the diameter range of 30 to 10,000 mm at stations 4

and 5 using the two SilCams with different magnifications. With an
average exponent (m) of 3 (shown by the dashed lines in Fig. 7), the
size distribution follows approximately that of a Junge distribution (59):

nðDÞ ¼ kD�m ð4Þ

where n(D) is the number of particles of diameter D, k is a constant
that scales according to the particle concentration, andm is the slope of
the distribution. In the simplest form, the Junge distribution is an ap-
proximation of the particle size distribution, made up of a series of
multiple log-normal distributions with varying median sizes that arise
from subpopulations of particulate material such as specific types of
phytoplankton, zooplankton, or marine snow (60). In Fig. 7, the ob-
served distributions show many points of variation from this average
Junge slope, with one peak at just over 100 mm that corresponds to a
high abundance of the dinoflagellate genus Ceratium (indicated by
the red shaded region), which can be seen in the middle column of

A

B

Fig. 5. Survey 3 using undulating tracking control during the survey. (A) [Chla]
versus traveled distance accumulated over ground. (B) AUV depth versus traveled
distance.

Fig. 6. Comparisons of in situ [Chla] derived from the AUV (ECO Puck), FRRf
profiling measurements, and in vitro [Chla] extracted from water samples.
The differences in [Chla] at the surface between the two sensors are due to the
hydrography of the two stations despite proximity.

Table 2. FRRf survey data gathered from stations 1 to 7, shown in Fig. 1A.

Name Area Tide

Station 1—19.06.17, 10:15 a.m. Survey 2 Ebb

Station 2—19.06.17, 13:55 a.m. Survey 2 Low

Station 3—19.06.17, 16:15 a.m. Between S2 and S1 Rise

Station 4—20.06.17, 10:30 a.m. Survey 1 Ebb

Station 5—20.06.17, 13:05 a.m. Survey 1 Low

Station 6—21.06.17, 10:10 a.m. West of S1 High

Station 7—21.06.17, 14:45 a.m. West and between S2 and S1 Low
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the figure. The copepod genus Calanus is also highly abundant (indi-
cated by the blue shaded region) and can be seen in the rightmost col-
umn of the figure. In the montages of particle images (right two
columns of Fig. 7), individual particle images are packaged into the plot
by randomly sampling fromthe recorded sizedistribution soas tomaintain
the ratio of large to small particles, albeit without being representative of
the true concentration of particles, which was more sparse in situ.

Most particulate material is present within the top 10 m, and it is
where relative abundance of Ceratium appears greatest because the
100-mm peak in the particle number distribution is most prominent.
Ceratium is still present in approximately the same concentration be-
tween 10 and 30mbut is surrounded by a higher concentration of other
material also present within this depth range. This is evidenced by the
reduceddominance of the 100-mmpeak. Below the thermocline at 30m,
the Ceratium peak in the number distribution is not discernible, and
there is less total material in suspension. With such a high dominance

of biological material in the water, the re-
duced concentrations below 30 m, ob-
served by the SilCam, agree well with
the reduced [Chla]. The highest load of
particulates observed by particle imaging
was within the 10- to 30-m depth range,
which also corresponds to the SCM. How-
ever, the small difference in the concentra-
tions of material at 100 mm between the
0.5- to 10-m and 10- to 30-m depth ranges
suggests that other smaller phytoplankton
species (possibly not captured by the im-
aging system), in addition to Ceratium, are
contributing to the SCM.

DISCUSSION
We have presented methods for autono-
mously mapping spatial heterogeneity of
phytoplankton biomass in 3D using AUVs
by combining GPmodels and robotic sam-
pling. The method is shown to successfully
estimate and track layers of high Chla con-
centration, focusing sampling efforts and
increasing resolution along important
features such as the SCM. We used spatial
modeling and interpolation to reconstruct
the distribution in 3D. This volumetric esti-
matewas thenaugmentedwith in situ images
of suspended particles, fluorometry, and dis-
crete water samples taken co-temporally
from a research vessel. Comparison of in-
field data shows correspondence between
AUV data and behavior, providing a broad
and extensive perspective of the pelagic ac-
tivity.Theresultsdemonstrate thecomplexity
of conducting interdisciplinary coastal
ecology and support unification ofmarine
data sources to achieve a detailed environ-
mental picture of the water column.

Limitations and future steps
The largest source of sampling uncertain-

ty comes from the effects of currents (speed and direction), making the
observations time-dependent. The AUV used in this study is fast
enough to find and make use of spatial structure, but not so fast as that
it can capture the full spatial field at any time, because an AUV is not a
synoptic measurement platform. Ideally, the AUV should therefore try
to “stay” with the same water mass, working in a Lagrangian frame of
reference to reduce these effects. Lagrangian correction is, however,
nontrivial, and, unless a good proxy measurement of advection can
be provided (such as from a surface drifter), there is limited value in
adding to experimental complexity [see (22) for a more detailed discus-
sion]. A simple and effective measure to account for this is to limit the
method/survey area to subkilometer size, setting a bound on these un-
certainties similar to the enclosure criterion used in (9). Use of this
strategy allows us to use directed Euclidean sampling of the interior vol-
ume while increasing sampling resolution and determining SCM vari-
ability. This can be seen by looking at the recorded data and comparing

Fig. 7. Sample imaging information from the SilCam obtained at stations 4 and 5. Data presented are aver-
aged from both stations and discretized into three depth ranges from 0.5 to 10 m (top), 10 to 30 m (middle),
and 30 to 50 m (bottom). The left column shows the particle number distribution from the two magnifications
of SilCam that were deployed, with the montages of particles from the red shaded region presented in the
images in the middle column of the figure and the blue shaded region in the images in the right column of the
figure. The dashed line in the particle number distributions represents the average fitted Junge distribution (59)
(between 100 and 300 mm) from all depths.
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the estimated Chla distribution before and after the initial survey, as in
Fig. 4, where only a minor current influence was discernible (except at
unobserved locations).

Furthermore, theapproach isdesignedwith twomodes:MODE1 that
is purely exploratory andMODE2 that is exploitative. Consequently, the
most interesting part of the volume is surveyed last. This is important
because previous data from MODE 1 allow sampling (the interior) to
proceedwith higher survey speed and reduced probability of losing track
of the feature. The number of yo-yo envelopes is platform dependent,
and the spacing, depth, and number of envelopes could be used to fur-
ther optimize the time spent finding an adequate estimate. In addition,
forsaking some surfacing events could help reduce survey time, if more
accurate navigation is possible. At the cost of a greatly increased opera-
tional complexity, additional assets such as another AUV could be used
to increase coverage capacity and sampling density, should sharing of
information between assets be available [e.g., (55)].

The AUV does not update the survey depths based on measure-
ments inside the volume due to the previously mentioned factors such
as hit-or-miss consequences and time-variability effects. Using themea-
surements from the interior (within the defined volume) survey can be
considered in future work, although the value of this information is
limited because of the small survey area and correlation scales present
in the coastal ocean. Thus, making use of these data can be challenging.
One possible use would, for instance, be to improve the undulating
depth from a fixed oscillation to a data-adjusted offset. It is also the case
that variability in the ocean is higher along the vertical axis, motivating
the use of such capabilities. However, this variability depends on a host
of factors and can be hard to estimate correctly without the aforemen-
tioned drawbacks. Furthermore, the results from this work show that
platforms such as AUVs can make measurements adequate to resolve
fine-scale features using an enclosure criterion. This is also apparent in
the results presented, which shows spatial coherence throughout the
mission (see Fig. 4).

The volumetric results from kriging (such as Fig. 4) are depen-
dent on the accuracy of the correlation parameters used. The values
used in this paper are based on the variogram from (42) and can only
give a suggestive estimate for conducting similar experiments. As-
pects of spatial correlation and use of marine sensor fusion toward
description of the water column on the submesoscale require effort
that is not within the scope of this work. This includes looking at the

time dependence of the data, as well as using previous historical data
sources (25, 61).

Future integration of particle imaging instruments on board the
AUVwould greatly change how volumetric surveys can be conducted,
enabling adaptation based on taxonomically descriptive data (target-
ing HABs or other materials such as suspended plastics) as well as re-
ducing the current sensitivity to patchiness arising from ship-based
winch deployment.

MATERIALS AND METHODS
The aim of the study is to obtain a fine-resolution synoptic view of a
water-column feature, using a single AUV, by concentrating sampling
efforts in the water column. In our case, the feature of interest is the
SCM. To achieve this, we split sampling into two modes or phases: an
initial phase dubbed MODE 1 that is explorative, followed by a second
phase (MODE 2) that exploits the information from the first phase to
sampling a feature of interest, using the data to plan the survey. By this
design, the most interesting part of the volume is surveyed last, allowing
the time spent mapping it at high resolution to be minimized. This is a
subtle but important point because this reduces both spatial and tempor-
al uncertainty of the most critical measurements. To avoid redundant
data collection, we also split sampling of the volume between themodes.
MODE 1 surveys the sides of the volume, whereas MODE 2 surveys
the interior. MODE 1 uses a spatial model (GP) to estimate the SCM
distribution inside the volume so that MODE 2 can follow these es-
timates subsequently. The following and Fig. 8 show these steps in
detail:
Step 1) MODE 1
Aim: Estimate the SCM inside the volume using the GP model.
Behavior: Survey the sides (red square shown in Fig. 8) of the vol-
ume while doing yo-yo envelopes from 0 to 50 m in depth.
Tasks:

MODE 1.peak—Identify the depth of the Chla peak.
MODE 1.assimilate—Assimilate SCM depths into a GP surface.

Step 2) MODE 2
Aim: Use the learned information from MODE 1 to perform a
detailed survey.
Behavior: Track the GP SCM depth 3D surface inside the AUV sur-
vey volume following an hourglass pattern (shown as blue lines in

Fig. 8. A 3D conceptual view of our approach. (Left) After each yo-yo envelope, two SCM peak depths are found and the final SCM is determined. (Middle) The
final SCM depth is then assimilated into the GP model’s 3D SCM surface. (Right) AUV transects (black dashed line), peak detection (black/white crosses), MODE 1 [red
lines (box)], MODE 2 [blue lines (hourglass)], and true distribution (green blobs), with the 3D surface of the SCM depth shown as the tan surface.
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Fig. 8) chosen to specifically cover as much of the interior in as
short a time.
Tasks:

MODE 2.fixed—Follow the estimate using fixed depth control.
MODE 2.undulating—Follow the estimate using undulating
depth control.

MODE 1 comprises the initial phase, where the location and
depths of the SCM are to be identified and assimilated (MODE 1.
assimilate) into the GP SCM depth 3D surface. During each full
yo-yo envelope (one descent and one ascent), the final SCM depth
is to be found and stored as [latitude, longitude, depth, Chla concen-
tration]. It is the task of the subroutine MODE 1.peak to do this
analysis. The function will decide the final SCM depth based on
the following logic:

1) Segment the concentration measurements into depth bins
with average measurements. Collecting five data points in one
bin, with an average depth.
2) Find the two depths corresponding to the largest (depth1)
and second largest (depth2) concentration spikes.
3) Calculate the depth difference between these spikes.
4) If the depth difference is less than 10 m, the SCM depth is set
to the depth of the largest concentration: SCMdepth = depth1. If not,
the SCM depth is set to a weighted mean, as SCMdepth = depth1 *
0.70 + depth2 * 0.30. This is based on the fact that about 70% of
normally distributed values are within 1 SD of the mean.
The subsequent subroutine MODE 1.assimilate will integrate

the final SCMdepth into the GP model (Eq. 3) using the observation
location (lat, lon → grid cell) and “lifting” or “lowering” the depth
estimate at the surrounding locations/grid cells within the correla-
tion range. These two concepts are encapsulated in Fig. 8.

Once theGP SCMdepth 3D surface has been established, the AUV
switches to MODE 2 and depth tracking mode, where the goal is to
provide a high-resolution volumetric representation of the Chla struc-
ture by tracking this 3D surface in either MODE 2.fixed or MODE 2.
undulating following a 3D path. This enables an effective and im-
proved way of mapping detail within the SCM. The biomass patchi-
ness can thus be evaluated and augmented with supporting ship-based
samples, allowing organism community structure to be described
more accurately.

Kriging in 3D
Using kriging (54), we can construct a 3D representation of the volume,
conditioned on the data. The kriging surface is the interpolated predic-
tion given as the conditional mean of the GP while providing the
conditional prediction covariance in an explicit form.

Spatial correlation is an essential component of kriging, and this
is incorporated by a kernel function that relies on the distance be-
tween pairs of locations, hij = |si − sj|; in this work, this is measured
in 3D [x, y, z] coordinates. Compared with the more common 1D or
2D applications of kriging, this means a considerable increase in the
size of the covariance matrices required for data conditioning—
assimilating all the samples from the survey is therefore not prac-
tical when doing the interpolation. In our approach, a pruned ver-
sion of the assimilated 1700 samples from this volume was used, with
a square size of 2700 covariance matrix (reflecting the [30 × 30 × 30]
volume grid).

The interpolation time on a Dell Latitude E7540 i7 took about
1.5 min with these parameters, resulting in figures such as Fig. 4. To
capture the difference between horizontal and vertical correlation dis-

tance, we artificially exaggerated the z dimension by a factor of about
20 based on (26). The horizontal correlation was, as previously dis-
cussed, based on the east-west variogram from (42). Although there
are methods for handling memory and computational time challenges
for 3D GPs, our focus was on an applied study using MODE 1 to
define a region of interest.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/27/eaav3041/DC1
Fig. S1. LAUV platform.
Fig. S2. Experiment overview.
Fig. S3. Survey 2 data.
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Abstract
Finding high-value locations for in-situ data collection is of substantial importance in ocean science, where diverse
bio-physical processes interact to create dynamically evolving phenomenon. These cover a variable spatial extent, are
sparse, and difficult to predict. Autonomous robotic platforms can sustain themselves in harsh conditions with persistent
presence, but require deployment at the right place and time. To that end, we consider the use of remote sensing data for
building compact models that can improve skill in predicting sub-mesoscale features and inform onboard sampling. The
model enables prediction of regional patterns based on sparse in-situ data, a capability that is essential in regions where
use of satellite remote sensing in real time is often limited by cloud cover. Our model is based on classification of sea-
surface temperature (SST) images, but the technique is general across any remotely sensed parameter. Images having
similar magnitude and spatial patterns are grouped into a compact set of conditional means representing the dominant
states. The classification is unsupervised and uses a combination of dictionary learning and hierarchical clustering.
The method is demonstrated using SST images from Monterey Bay, California. The consistency of the classification
result is verified and compared with oceanographic forcing using historical wind measurements. The established model
is then shown working in a real application using measurements from an autonomous surface vehicle (ASV), together
with forecast and sampling strategies. Finally an analysis of the model prediction error is presented and compared
across different paths and survey duration.

Keywords
Machine Learning, Sampling, Ocean Modeling, Marine Robotics

1 Introduction

Effective and informative sampling of the ocean requires

data gathering strategies that can resolve the spatial and

temporal variations of phenomena. This is a formidable

challenge due to the dynamic and unstructured nature of the

ocean, with spatio-temporal scales spanning many orders of

magnitude, making it unrealistic to observe the dynamics in

detail. Additionally, coastal waters are often heterogeneous

in composition due to bathymetry, river discharge, land run-

off, and oceanic circulation. Methodologically this drives a

requirement for using compact spatial models to inform more

effective sampling strategies, capable of running on robotic

platforms, utilizing prior and current in-situ observations.

There are numerous ways to build spatial models. The

essential goal is to exploit the underlying spatial correlation

structures and try to reconstruct the environment, so that

future sensing locations can be determined accordingly.

Earth observing satellites offer the possibility to observe

large spatial extent and various ocean parameters, such as

sea-surface temperature (SST), sea-surface height (SSH),

salinity, and ocean color, from which a number of ocean

processes can be discerned and characterized; including algal

blooms, fronts, eddies, internal waves, and numerous water

quality parameters (Johannessen et al. 2000). Consequently,

there is enormous potential for using such data to perform

large scale automated analysis of the spatial patterns in the

ocean. However, a major challenge using modern machine

learning techniques is the reliance on labeled data sets

(Gonalves et al. 2008). In remote sensing applications, this

challenge is further exacerbated in having to work with a

limited number of training samples (Mountrakis et al. 2011),

especially when concentrating on a specific area of scientific

interest. It is therefore valuable to use unsupervised methods

that provide the ability to learn the inherent structure of the

data without using explicitly provided labels.

1Department of Marine Technology, Norwegian University of Science
and Technology (NTNU), Trondheim, Norway.
2Monterey Bay Aquarium Research Institute, California, US.
3Stanford University, Department of Energy Resources Engineering and
Department of Geophysics by courtesy, California, US.
4Department of Mathematical Sciences, NTNU, Trondheim, Norway.
5University Centre in Svalbard (UNIS), Longyearbyen, Norway.
6Department of Engineering Cybernetics, NTNU, Trondheim, Norway.
7Centre for Autonomous Marine Operations and Systems (AMOS),
Trondheim, Norway.
8Underwater Systems and Technology Laboratory, Faculty of Engineer-
ing, University of Porto, Portugal.

Corresponding author:
Trygve Olav Fossum, Department of Marine Technology, Norwegian
University of Science and Technology, Trondheim, Norway.
Email: trygve.o.fossum@ntnu.no

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

2. Compare class with measurements
 and update the probability  

for each class j. 

Compact Remote
Sensing Model, class j=(1, ..., m)

First cycle
/Start

Distill model

Dict. Learning

1. Data Collection 3. Estimate the environment. 4. Update sensing strategy

Sense

P(class = 1 | y)
P(class = 2 | y)
P(class = 3 | y)

j=1j=2 j=3

...

...

...
Evaluate
 model Plan

Act

Repeat cycle (1 - 4)

Figure 1. The main concept and flow diagram for using compact remote sensing models in robotic sampling. The details are
explained in Section 6.

Given the challenge with undersampling in oceanography

(Munk 2002) and the limited availability of accurate real

time information, it is essential to call for capabilities that

can estimate spatial and temporal variations in the ocean

environment on the fly. Building compact spatial models

using prior data sources such as remote sensing and ocean

model output therefore one such opportunity. Towards this

end, we present a method for building such a model using

remotely sensed SST data, as well as examples of how this

model can be used in a robotic sampling framework. Images

based on sea-surface temperature are chosen specifically

due to their synoptic properties providing repeated large-

scale surface observations with reasonably high resolution.

The model aims at predicting the current state of the

environment using a superposition of states, referred to as

classes or scenarios, where each state is established from

a similar set of SST images that represent recurring states

of oceanographic conditions. The environment is assumed to

be equal to a superposition of states, found by evaluating the

likelihood of these states against observations. A conceptual

view of this approach is presented in Fig. 1 below, showing

how the model can inform sampling in a sense-plan-act
structure.

It is important that this type of data reduction

(unsupervised clustering) cover the common dominant

spatial patterns seen in the images, i.e. in the form of several

distinct classes of conditional means, that is comparable

to the variation in the underlying environment. Using a

combination of dictionary learning (Aharon et al. 2006),

sparse coding (Mairal et al. 2009), and (agglomerative)

hierarchical clustering (Everitt et al. 2011) we propose an

unsupervised classifier that can group images with similar

oceanographic characteristics, using spatial patterns and the

magnitude of temperature from SST images. The idea is not

only to automate this process, but also to provide new insight

into the underlying processes themselves. Subsequently, the

classified SST images are used to distill a compact model

of the dominant features by computing conditional means

within these classes. One potential drawback to this approach

is the lack of uniformity in data acquisition due to cloud

cover and lack of satellite coverage. These factors limit

the ability to do repeated and systematic observations of a

region of interest, which in the worst case can impede the

construction of such spatial models. As a mitigation, data

from a three year spring period is used (see Fig. 2), such that

we obtain a relatively continuous data coverage for a season.

The applicability of such compact models is an effective

characterization of key ocean states, especially when SST

data from satellites is not available. In this work we show

an example of this, determining large scale conditions for

a given day, using data gathered from a WaveGlider ASV.

We also examine the model prediction error, by computing

the expected mis-classification rates for different sampling

design strategies.

The structure of this paper is as follows: in Section 2 we

introduce related work, along with some of the challenges

that underpin the motivation for this paper. Section 3 presents

some background on both the data sources and methods used.

Section 4 presents the proposed classification methodology,

with the results shown in Section 5. Section 6 presents

model implementation and usage towards adaptive sampling.

We conclude in Section 7 with a summary, followed by a

discussion of future work.

2 Related Work

Much of the work on automated analysis of remote

sensing data is focused on thematic mapping for terrestrial

applications, with numerous applications such as agriculture

(Mulla 2013), mapping of urban environments (Saritha

and Kumar 2017) and vegetation (Xie et al. 2008), and

geared towards change detection (Walter 2004). Typically,

the general objective is to categorize regions of an image into

one of various land cover classes or themes. Dictionary based

classification has been explored for terrestrial hyper-spectral

thematic mapping in Chen et al. (2011). Similar approaches

such as sparse reconstruction-based classification (SRC)

have been applied to high resolution images of the sea

floor, taken with synthetic aperture Sonar (SAS) in McKay

et al. (2016). Despite an abundance of approaches Wilkinson

(2005) demonstrates through evaluation of fifteen-years of

remote sensing research, related to classification, that no

technique displays any significant advantage over another,

showing no trend in improvement of the classification

results, including results from artificial neural networks.

Limited contexts, increasing complexity of data sets, lack of

embodiment into best practice, the difference between low-

level features and high-level user requirement, and imperfect

human processes (such as labeling and ground truthing) are

some explanations proposed for this lack of progress.

Compared to terrestrial or seafloor applications, some

additional challenges exist in the upper ocean domain,

namely: i) the non-static boundaries and surface features
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Figure 2. The dates of usable SST images from Monterey Bay for 2015, 2016, and 2017, in the period March until July. Each
image is indicated with a vertical line, colored according to the initial classification results (class 1, 2, 3, and 4), see Section 5.1.

present in the environment (Blondeau-Patissier et al. 2014),

ii) the lower signal-to-noise ratio for signals arising from

water masses, and iii) the presence of surface effects such

as sun, and sky glint (Emberton et al. 2016). Studying

ocean surface features for analysis of surface slicks, currents,

fronts, waves, and wind interactions are discussed in Ryan

et al. (2010) and Chen (2012), with an emphasis on synthetic

aperture radar images. High frequency (HF) radar is also

combined with remote sensing in Das et al. (2010), where

the sampling and hotspot prediction of harmful algal blooms

(HABs) is examined. This is also studied in Bernstein

et al. (2013), where a shore-based recognition pipeline

is suggested, building on remote sensing data for event

detection, feature localization, and trajectory prediction.

Frolov et al. (2013) analyzes the spatial and temporal

decorrelation scales seen in marine algal blooms using

fluorescence line height imagery, to strategize monitoring

of such episodic events. Frolov et al. (2012) investigates

short-term prediction of surface currents using HF-radar

observations to develop a linear autoregression model,

where the climatology of conditional mean flow-fields for

upwelling, downwelling, and relaxation in Monterey Bay

is presented. Optical water types were found using fuzzy

clustering analysis on spectral information in Eleveld et al.

(2017), aimed towards identifying different types of lakes,

e.g. clear versus turbid waters. At large spatial scales, Oliver

and Irwin (2008) uses remote sensing data to automatically

resolve different oceanic regions with certain spatiotemporal

characteristics, to monitor the effect of El Niño events.

A number of approaches have been explored combining

onboard models and remote sensing to guide sampling in

the ocean. Smith et al. (2010) utilizes forecasts from a high

resolution ocean model combined with remote sensing to

pre-plan missions with multiple AUVs. Areas with high

concentration of Chlorophyll a (a proxy for phytoplankton

abundance) is identified from the satellite imagery and

simulated forward in time using an ocean model. Presenting

only simulated results, the paper shows the potential and

also the challenges of leveraging prior data. Issues related

to small scale discrepancy between model simulation (used

for planning) and the actual conditions, aligns with the

assumptions in our work, and on the fact that we are focusing

on predicting and planning based on large scale features.

Chao et al. (2017), provides a discussion and preliminary

results towards a closed loop between numerical ocean

models, robotic platform sampling, and data assimilation.

Multiple information streams are proposed to update and

improve sampling strategies without human intervention.

However, the robotic assets depend on human involvement

and robust communications using shore-based assimilation

and planning schemes. Consequently, this drives the need

towards elevated levels of autonomy and onboard sampling

strategies for situational awareness, such as presented in our

work.

This paper describes a novel way of building compact

ocean models using remote sensing products for use in

robotic sampling. As our work uses pre-processed data

(1 day average SST), some of the raw information (e.g.

quality flags) is forsaken for practical purposes of obtaining

and working with the data. The proposed method is

original and provides the ability to work directly with

both temperature and spatial patterns, as this information

is carried along throughout the analysis. Contrary to

other work, the classification results are confirmed and

verified by an independent marine data source (preceding

wind history), allowing oceanographic processes to be tied

to the subsequent analysis and use of the data. Wind

drives horizontal and vertical circulations, which in turn

determines magnitudes, gradients, and spatial patterns in

SST (Rosenfeld et al. 1994). The method is unsupervised and

can be used with a small number of images (≤ 100).

3 Preliminaries

3.1 Satellite Data Sources
The SST remote sensing images used as a basis for this

model are provided from a high resolution radiometer

onboard the Polar-orbiting Operational Environmental

Spacecrafts (POEs) NOAA-17 and NOAA-18. The data

is processed and mapped to an equal angle grid (0.0125

degrees latitude by 0.0125 degrees longitude) using a simple

arithmetic mean, producing both individual and composite

images from 1 to 14 days duration. This may provide some

averaging artifacts, see Fig. 15a. The nominal accuracy is

about 0.7 degrees Celsius (C), covering the west coast of

North America.*

We used one-day average SST images, as in Fig. 3a,

from 2015, 2016, and 2017 in this work covering Monterey

Bay, California (marked in Fig. 3b), for a 100 day period

from March until the start of August, yielding 300 images

∗The data is publicly available through the National Oceanic and

Atmospheric Administration (NOAA) NWS Monterey Regional Forecast

Office and the CoastWatch program, from their ERDDAP server https:
//bit.ly/2ngyP6c.
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(a) Example of a SST image that was used to make the compact model.
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(b) Map of California and Monterey Bay with the SST region marked.

Figure 3. (a) A SST image from NOAA NWS Monterey
Regional Forecast Office showing Monterey Bay (between
36.65 and 37◦N). (b) Map of California and Monterey Bay with
the SST region marked.

in total. This period of the year was chosen because wind-

driven coastal upwelling and associated thermal signatures

are strongest. Due to cloud cover, only about 25% of the

images had a quality that was useful for our application,

giving us a total of 74 images to work with. Local cloud

and fog cover can limit the data availability; henceforth

longer time periods should be considered for inclusion in

the data sources, if highly exposed to these factors. Equally,

too much exposure can create data gaps that introduce bias

into the final model, as images and their spatial patterns are

left out of the analysis. Cloud and fog cover, are further

a motivating factor for actually deploying autonomous

vehicles that can aid in estimating ocean conditions.

Although the SST images in this analysis are limited to

spring and summer, coastal upwelling circulation in this

region continues into the fall season and is closely linked

to coastal land features (Rosenfeld et al. 1994). Therefore,

the interpretation of structure information by these methods

should be similarly applicable during fall. However, SST

magnitude shifts during fall due to seasonal warming

throughout the region. This aspect of the environment

motivates a seasonally dependent method, using images that

are consistent seasonally.

The time stamp of images in Fig. 2, shows availability

over sequential days, and therefore the likelihood of having

a similar mean temperature. However, SST patterns can be

vastly different in sequential days because energetic currents

change water mass distributions rapidly, motivating the case

for looking at spatial similarities.

3.2 Unsupervised learning and classification
of SST images

In order to quantify different spatial patterns in SST images,

we use an unsupervised classification method based on

sparse representations of the images. The compressed rep-

resentations are obtained from employing dictionary learn-

ing techniques. Before hierarchical clustering (Everitt et al.

2011) is performed in several steps. The approach aims at

classifying images with the same SST pattern into domi-

nant/archetypical classes, having distinct oceanographic sig-

nificance. Clustering the raw image data (pixels) is not

effective, due to their high dimensionality. Using bulk char-

acteristics, such as the mean, min, and max temperature, is

also possible. This approach can get good results, but leads

to unnecessary smoothing/blur (in the conditional mean) as

classes are combined without spatial information. To demon-

strate this, a comparison of the classification variability is

presented in Section 4.2. Consequently, clustering a com-

pressed/sparse representation is more viable, as both tem-

perature magnitude and spatial information can be combined

together. Moreover, the dimension can be kept low, making it

easier to cluster and hence identify and differentiate between

the characteristics of each image.

3.3 Dictionary Learning
Sparse dictionary learning (Aharon et al. 2006; Mairal

et al. 2009) is a method that can be used to build sparse

representations of the input data. The resulting format is a

set of coefficients, collected as a sparse code. Dictionary

learning is similar to Principal Component Analysis (PCA)

(Jolliffe 2011) (also known as Empirical Orthogonal
Functions) in that the coefficients form a linear combination

of certain basic elements, referred to here as atoms. The

atoms can be considered as instances of “characteristic

patterns” that can be combined to reconstruct the input. The

combined matrix of atoms is called a dictionary, usually

denoted as D, while the sparse codes are usually noted as

α, having the relationship

xk = Dαk, (1)

where xk is the raw image k, with D as the dictionary,

and αk as the unique coding for that specific image. We

use MiniBatchDictionaryLearning or MBDL from

(Pedregosa et al. 2011) to find the dictionary using the least

angle regression method (LARS) Mairal et al. (2009), while

the sparse codes are found using an orthogonal matching
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pursuit (OMP) algorithm that greedily selects the dictionary

atoms sequentially, through computation of the inner

products between the image and dictionary columns. This

is accomplished by repeatedly iterating over mini-batches of

input images, fed in as block patches, with a specific size,

taken from the original image. The size of these patches

will influence the result and needs to be selected based on

the small- and large-scale similarities in the input images.

Sensitivity analysis should therefore be used to identify

this size parameter (see Section 4.1). Finding the dictionary

D using the MiniBatchDictionaryLearning library

involves an iterative process that uses a random state to

initiate the model, hence reproducible results require using

the same pre-defined random seed. More details can be found

in the reference documentation †.

4 Methods

4.1 Proposed Classification Methodology

In separating and collecting dominant spatial patterns from

SST images an important aspect that we emphasize in this

work is that images sharing a common oceanographical

evolution should be identifiable. This implies finding images

that share a mutual historic progression of, for example, wind

and currents, that contributed to shaping a particular ocean

condition. Involvement of local oceanographic expertise and

knowledge is therefore essential in finding a separation

scheme that is justifiable. This is especially true since the

images are snapshots of a continuous process and separation

into classes will imply some form of discretization.

The classification method builds off the idea of classifying

images based on sparse codes, instead of high dimensional

pixel space. The methodology, illustrated in Fig. 4, can be

seen as a branching graph with a new dictionary and sparse

coding generated after each separation step. Making a new

conditional dictionary after the initial classification allows us

to reach a new level of similarity, as this refinement step will

be based on a dictionary with more similar content. Here,

both magnitude and large scale similarities matter less as

these have been addressed in the initial classification. The

subsequent classification can therefore separate the images

further based on the latent spatial patterns. The detailed steps

involved can be described as follows, for image k and each

class j = 1, . . . ,m:

1. Normalize all images with the global mean and

standard deviation.

2. Extract a fixed number of patches from the SST image

(e.g. 260 patches of size 40 × 40 pixels), and stack

these in a 1D vector.

3. The 1D vectors are collected in the data matrix and

fed into the MBDL subroutine to retrieve the initial

dictionary Dj .

4. Each SST image is then compressed using the

dictionary Dj to form a unique sparse coding for the

image αk
j .

5. These first αk
j coefficients are then classified using

hierarchical clustering.

6. Step 2-3 is then repeated for the images within the

derived classes to retrieve a new sub-class specific

dictionary D̃j .

7. Step 4 is repeated using the sub-class specific

dictionary D̃j to obtain the final sparse codes α̃k
j .

8. The final sparse coding α̃k
j is now further classified

into sub-groups with a higher level of similarity using

another step of hierarchical clustering. This is the

secondary classification as seen in Fig. 4. This final

classification is subject to a criteria where the mean

number of images across the final classes should be

at least 3.0 (explained below), if not the images are

flagged as being too distinct.

Initial 
classification

Secondary 
classification

Dj, k
j

D1, k
1

D2, k
2

D3, k
3

Dm, k
m

Figure 4. Based on the dictionaryD a sparse code α is found.
These codes are used to classify images into distinct classes.
After an initial classification this step is repeated, with a new
dictionary and codes generated from the images within a class;
branching into smaller sub-classes with higher levels of
similarity.

As noted in Step 8, it is important to ensure that the

final classification result is not too distinct, e.g. having

only one image in a class, resulting in loss of effectiveness

towards building a compact model. It is therefore important

to consider the separation distance (SD) used in hierarchical

clustering – the similarity of the classified images is

controlled by this distance metric. A practical aspect of

using hierarchical clustering is that compared to clustering

algorithms such as k-means (MacQueen 1967), where the

number of clusters to detect must be specified in advance,

hierarchical clustering can use the dendrogram to consider

the clustering structure. Consider therefore the dendrogram

in Fig. 5 used for finding SD in the initial step. Lowering the

SD yields more classes with fewer images and vice-versa.

The distance metric used for clustering is the Ward sum-

of-squares minimization metric (Ward Jr 1963). The Ward

metric was chosen as it is more permissive in terms of cluster

shape/size assumptions (Anderberg 1973), which performed

better on the sparse codes. In using this distance measure

it is important that the data vectors we are operating on

are normalized by the mean and standard deviation (Wilks

2011), hence Step 1 above. The SD for the initial clustering

is found based on the dendrogram and evaluation of the

separation results. As noted in Wilks (2011), setting the

†https://bit.ly/2KS0OY2

Prepared using sagej.cls



6 Journal Title XX(X)

Parameter Value Comment

Input data set 74 images, size: 52 × 59 pixels Type: 1 km, 1 day average SST

Patch size [xpa] 40 × 40 The patch pixel size

Sample count 260 The number of sample patches from each image

Dict. size [xds] (initial) 4 Number of atoms in the dictionary

Dict. size [xds] (secondary) 8 Number of atoms in the dictionary

Distance metric Ward The distance metric used by the hierarchical clustering

Table 1. Classification parameters.

SD usually requires a subjective choice that depends on

the goal of the classification. There exist various statistical

machine learning tools that consider the bias versus variance

trade-offs (e.g. James et al. (2013)), but there is no single

”best” approach. Since this initial grouping is followed

by a secondary classification, this initial grouping is not

as decisive a factor, as the secondary clustering, as only

the major features are to be identified. Nevertheless, local

oceanographic expertise and knowledge should be involved

to find a justifiable separation scheme. For the first step of

the classification, a general rule of thumb would be to avoid

a SD that yields too sparse a set of classes.
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Figure 5. The dendrogram for the initial clustering step. Four
classes are being separated using a distance measure set to
700. The numbers on the x-axis are either image index or
cluster size (in parentheses).

For the secondary clustering step, finding a SD that does

not result in an unbalanced variance (too big/small classes)

becomes important. The goal here is to find similar images

that can be used in a conditional mean, while also excluding

images that are too distinct – similarity is, as noted,

controlled by the SD. To achieve an adequate final result we

iteratively change the SD until we reach a classification result

where the mean number of images across the sub-classes

is above or equal to a certain threshold, which we have set

to 3.0. This threshold is chosen to establish a criterion that

ensures we are generating classes that span several images,

while not creating classes with a too dissimilar image basis.

For example, if a secondary classification with 12 images

starts with a SD= 500 and yields the sub-classes [1, 2, 3, 4, 5]
with associated image counts of [5, 4, 1, 1, 1], the mean

number of images in each class equals 2.4, and three classes

have only one image. This does not satisfy our criterion, and

the SD can therefore be increased, relaxing the measure of

how similar the images need to be. The SD is relaxed until

one of the classes containing only one image is combined

into one of the other five, as this reaches our criterion.

Parameters that are associated with the above procedure,

are shown in Table 1. The patch and dictionary size can be

adjusted to yield different results. The relationship between

the patch size xpa, dictionary size xds, and code length xcl is

given, using the fixed dimensions 52 × 59 for the images, as

xcl = ((52 − xpa + 1) × (59 − xpa + 1)) × xds. From this,

we can see that the code length depends on the patch size

squared, while increasing linearly with the dictionary size.

This code length is important as clustering becomes more

complex and may lead to degraded classification accuracy

for higher dimensional vectors, as can be seen in Fig. 6a.

Parameter selection was done by comparing the intra-class

variability (ICV) for each class j = 1, . . . ,m measuring how

different the images within a class are by comparing the

temperature variability at each location across the images,

given as:

ICVj =
∑
i

σ2
ij ,

σ2
ij =

1

nj

∑
k∈⊗j

(xik − μij)
2 (2)

μij =
1

nj

∑
k∈⊗j

xik,

where xik is the temperature at location i in image k, ⊗j is

the set of images belonging to class j, and nj is the number

of images in this set. Moreover, μij and σ2
ij are the sample

mean and variance in temperature at location i for class

j. Using ICV as a metric, the patch and dictionary size is

chosen based on the settings that give the lowest ICV after

several iterations for each setting with a non-constant random

seed. The patch size sensitivity visible in Fig. 6a, suggests

that running the method with larger patch sizes performs

better –hence a patch size of 40 × 40 pixels is used. For

choosing the dictionary size, Fig. 6b shows that a dictionary

size of 4.0 is enough to achieve both low ICV spread and

value. Having a larger patch size and smaller dictionary

size is also positive for reducing computational load. For

the secondary classification the dictionary size is increased

because the number of images being classified are fewer and

their similarity is higher (filtered by the initial classification),

hence a more descriptive code can be applied.
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(a) ICV sensitivity to patch size.
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Figure 6. Intra-Class Variability (ICV) sensitivity using different
patch size xpa and dictionary size xds. Fig. 6a shows a box plot
of the ICV spread for different patch sizes; larger xpa tend to
yield lower ICV values. Fig. 6b shows the ICV variation for
different dictionary sizes. A dictionary size of 4 would be a good
choice, indicating low ICV spread and value.

4.2 Enhancement of Classification by
Structural Information

The performance of the methodology is compared by

using only temperature minimum, maximum, min-max range,
and mean as a classification vector. The magnitude-only

classification is done using hierarchical clustering directly

(i.e. no sparse codes), while the sparse dictionary classes

are a result of the proposed method in Section 4.1.

As the temperature values of SST can contain several

strong separating factors, some initial categorization can be

achieved, but defining conditional means from these classes

leads to unnecessary variability as spatial information is

neglected. By comparing the ICV given in Eq. (2) between

the sparse dictionary- and magnitude-only derived classes,

this effect is shown in Fig. 7 which shows the ICV for

m = 13 classes using the two approaches, where each unit

block in the histogram is a class with a corresponding ICV.
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5 Dict. Learning
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C
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nt
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Figure 7. Histogram of the ICV for the sparse dictionary- and
temperature derived classes.

As seen in Fig. 7, classifying only using temperature

characteristics leads to higher variance, as images within

the classes are less similar. Since the proposed classification

method not only considers images with the same temperature

magnitude, but also how this temperature is distributed

spatially, the variance is lower when using the dictionary

learning approach.

5 Classification Results
The final classification groups are used to make different

conditional means that together constitute a compact model.

An important aspect of the approach is to verify that

images which are classified together share a common

formation history; having been influenced by the same

sequence of physical processes. Having a shared evolution

of oceanographic conditions also implies that there exists

a common and distinct spatial pattern that can be clustered

together to make what we choose to call a condition. Wind

observations can be used for this purpose for two important

reasons: i) wind influences a range of oceanographic

processes and is the dominant driver of SST variability in

this region of study; ii) ambient conditions like the wind are

common oceanographic measurement provided by a range of

maritime platforms. The use of other sources of data, rather

than wind, is also possible and will vary depending on the

study region. The comparison and verification is shown in

Fig. 8 together with the initial clustering result.

5.1 Initial Classification
The initial classification is dominated by the temperature

magnitude, as this is a stronger separating factor than spatial

patterns. The SD used in hierarchical clustering was found

using the dendrogram in Fig. 5, producing four classes. Fig.

8 shows these together with the aggregated 4 day preceding

wind history. The images appear in arrangement going

from cold to warm, or in the oceanographic context, from

upwelled to relaxation dominated waters. The associated

winds confirm this by showing a correspondence between

the upwelled (class 1 – cold) SST images with strong north-

westerly winds, and weaker more spread wind pattern for the

relaxation (class 4 – warm) SST images.

Fig. 9 shows the average u- and v-components of the

wind ‡ history for each class. Similar to Fig. 8, the average

trend shows class 1 has the strongest average winds, and

class 4 the weakest. A strongly negative v component

of the wind is equivalent to north-westerly, i.e. blowing

from the northwest and upwelling favorable. There is

also a strong diurnal signal in the winds, evident in all

classes in the u component (Fig. 9). This predominantly

east-west ”sea-breeze” is driven by differential heating of

land and ocean through day/night. The intermediate classes

comprise images covering the transition between these

oceanographic conditions. This initial classification shows

that some structure follows from the temperature, but as

seen in Section 4.2, using temperature alone will not achieve

the best clustering result. Magnitude information helps us

avoid a pitfall where images that have a similar pattern

but different temperature magnitude are clustered together,

disrupting the conditional means by averaging images that

represent different oceanographic states.

‡ The u signifies the zonal velocity component of the wind, while v the

meridional component.
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(a) Class 1 - 10 images (b) Class 2 - 27 images (c) Class 3 - 15 images (d) Class 4 - 22 images
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Figure 8. The four classes derived from the initial classification shown with the associated wind history during the 4 days
preceding each image within a class. The wind rose plots represent a summary of wind speeds and the directions from which it was
blowing. Wind speeds are defined by color (legend) and percentage of speeds in a given range are shown by occupancy of each
color. Cold upwelled class 1 has stronger north-westerly winds, while warm relaxation class 4 has weaker magnitude and greater
spread in direction. The temperature images are all using the same temperature scale from 10◦C to 16◦C.
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Figure 9. The average 4 day wind history for each class given
in terms of u- and v-components also show a significant
difference between the classes. Note the strong 2 day
amplitude for class 1.

To understand this classification further Fig. 10 shows the

projection of the sparse codes using principal component

analysis (PCA) projected into a 2D plane, visualizing the

information contained in the vectors. As previously noted,

as the SST images are covering a continuous process some

images are “overlapping” and could potentially be associated

with more than one class. It is also possible to identify certain

images that can be deemed as outliers. The colors in Fig.

10a show where the hierarchical clustering distance, SD, is

making the distinction.

5.2 Secondary Classification Refinement
The images in each class are to be further distinguished in

the secondary classification. The images in this step are now

SST Classes 1-4

Warm

Cold

2

1

4
3

(a) PCA projection.

*

*

*
*

(b) PCA projection - image
scatter

Figure 10. The initial classification shown as projected into 2D
using PCA, shown with the classified label color and class
membership. It is evident that the images represent a
continuous process which can be expressed as progress from
cold to warm conditions. Note also potential outlier images
(marked *).

already sorted according to matching temperature, which we

have shown, by comparing the wind history, can be traced

to distinct evolution of oceanographic conditions. Within

each class, a new dictionary D̃j can now be found, that

can specialize in finding a final sparse code α̃k
j that factors

in more spatial information, which is shown in Fig. 7. The

parameters for the secondary classification, found in Table

1, are similar to the initial classification apart from a larger

dictionary size. As noted, the dictionary size has increased

because the number of images being classified are fewer and

their similarity is higher in this step, hence a more descriptive

code can be applied.
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(a) Sub-Classes 1 (b) Sub-Classes 2 (c) Sub-Classes 3 (d) Sub-Classes 4

Figure 11. The results from the secondary classification with 19 sub-classes. Four initial classes have been further sub-divided
into sub-classes based on their class j dependent D̃j and α̃k

j dictionary and code. Note the number of groups is only the valid
sub-classes, as some of the images are left out from the compact model, deemed to be too distinct.

Classification Classes Image Count Mean Class Size ICV

1st [1 2 3 4] [22 10 27 15] 18.5 0.30

2nd - Class 1 [1 2 3] [3 2 5] 3.33 0.12

2nd - Class 2 [1 2 3 4 5 6 7*] [2 3 5 2 2 7 1*] 3.14 0.09

2nd - Class 3 [1 2 3 4] [2 2 2 9] 3.75 0.13

2nd - Class 4 [1 2* 3* 4 5 6 7 8] [2 1* 1* 4 4 2 8 5] 3.37 0.13

Table 2. Classification Results. The ICV , given in Eq. (2), measures the mean sub-class variability. (*) marks groups with only 1
image considered too distinct that are removed.

Fig. 11 shows the resulting secondary classification, with

a total of 19 sub-classes (see Table 2). The classes containing

only one image are deemed too distinct for further inclusion

into the compact model. As expected the mean class size is

above 3.0 as specified from the criteria in Step 8, with ICV
values from 0.09 − 0.13. It is also apparent that images are

now sorted both by temperature as well as spatial features

(see e.g. the upper left corner of Fig. 11c). However, cloud

cover can pose challenges. In some cases, this “false” pattern

match can be such a dominating feature that images with a

similar “false” features are classified together, (e.g. the lower

group in Fig. 11a) as shown in Fig. 12.

Figure 12. The misclassification of images due to cloud cover.
The last image should be in the first group in Fig. 11a, rather
than the lower group.

Taking the average across each sub-class in Fig. 11, yields

the different conditional means and the final compact model,

shown in Fig. 13b. Rather than relying on the means from the

initial classification in Fig. 13a, these representations hold

more spatial information that is advantageous when trying

to predict the current state of the environment. From these

conditional means one can observe not only the transition

from cold to warm conditions, but also the varying spatial

structure that develops within and outside Monterey Bay.

11  1  222

  3  4

(a) Initial
conditional
means

        1    2     3            4       5

        6    7     8           9       10

        11    12     13           14      15

        16    17     18           19                

(b) Secondary conditional means

Figure 13. The conditional means derived from the initial and
secondary classification.

6 Forecast and Sampling Policies

We now use these conditional means as a compact model

from which a prediction of the environment, specifically the

SST field, can be made. Having the capability to compare

in-situ data with the model provides a way to determine

which types of historical conditions that best fits this data.

On this basis an estimate of the current state can be

formed, usually taken as a weighted combination of the

“best” class candidates. A common method for verifying

the reliability of the prediction is to compare the root-mean-

square error (RMSE) of the class mean to the average class

spread, as suggested in Fortin et al. (2014); the idea is

that the standard deviation of the class spread should be

approximately equal to the RMSE. We further study how the
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Figure 14. The in-situ temperature profile superimposed on the temperature profile for class 0, 7, 10, and 13.

prediction probabilities of different states depend on the data,

and how this can be used in designing sampling strategies.

6.1 Predicting the Environment
From Fig. 1, an intuitive way to predicting the environment

is by combining one or several classes using a weighted

average. During robotic vehicle operations such as that

provided by a WaveGlider ASV, the prediction is done

conditional on data y = (y1, . . . , ynp), where p is the

number of measurements made during the survey. Based on

satellite data, the probability P (class = j) is estimated as

the fraction of images in each class over the total number

of images, P (class = j) = nj/n. Conditional on data y the

probability of class j becomes:

P (class = j|y) =
p(y|j)P (class = j)

p(y)
(3)

p(y) =
∑
j

p(y|j)P (class = j).

The class likelihood, in Eq. (3) above, is approximated as

a multivariate normal distribution:

p(y|j) =
1√

(2π)np |Σj |
e(−

1
2 (y−μj)

TΣ−1
j (y−μj)), (4)

where μj = (μ1j , . . . , μnpj) is the class-j vector of

mean values along the survey trajectory, and Σj is

the associated covariance matrix at these p sampling

locations. This covariance is defined by elements Σj(i, i
′) =

diag(σij) R diag(σi′j), where R is a distance based

correlation matrix (Matérn 2013), i.e. R(i, i′) = (1 +
φhii′)e

−φhii′ , where hii′ is the Euclidean distance between

sampling locations i and i′, and φ is indicative of the

correlation range. In this paper we use ∼15 km, based on

Frolov et al. (2014, Fig. 4b) showing decorrelation scales for

Monterey Bay.

Prediction is done using class probabilities as a function

of the data gathering window. This means that we integrate

one more observation at every step, and re-calculate the

probability over the classes, given this growing subset of

data. Because of the spatial correlation in the model, induced

via R, the assimilation of one more observation will not have

the same effect as it would for independent data. The final

prediction at location i, based on available data data y, is a

weighted average according to the conditional distribution in

Eq. (3),

ˆSST i =
m∑
j=1

P (class = j|y)μij . (5)

where μij is the conditional mean in class j. A brief

example using this approach is presented using data from a

WaveGlider. This vehicle records the temperature at 0.4 m

depth using a Seabird CTD (conductivity, temperature, and

depth) sensor, which we will use to predict the SST.

We use data from the 17th of May, 2018 in Monterey

Bay, during the CANON§ field experiment. The prediction,

using Eq. (5), is compared to the actual 1 day average SST

for that day. Fig. 14 shows the recorded temperature profile

across the survey locations (the survey path is shown in Fig.

15a) together with the corresponding profile from class 0,

7, 10, and 13. Clearly, some classes match the data better

than others. Class 7 and 10 follow closely throughout, while

class 0 and 13 has a poor correspondence. We use this data to

predict the environment using P (class = j|y) as the weights.

Thus, the likelihood is therefore expected to be high around

class 7 and 10, and low for the others. The prediction is

shown in Fig. 15b, together with the actual SST image in

Fig. 15a. The accuracy of the prediction is, as expected,

better on the large scale, with some smaller spatial features

that are not captured by the model. Fig. 15d shows this

temperature difference spatially. Note that the the nominal

accuracy of the SST images is about 0.7 degrees Celsius.

As the original daily composite SST image is not without

error, e.g. noise from daily averaging, some regions will

show exaggerated difference. It is also reasonable to assume

that there is a discrepancy between the WaveGlider data and

the daily average SST, which also contribute to estimation

error. This can be seen with closer inspection of Fig. 15a,

as the track and overlaid temperature are colder than the

average SST. Fig. 15c shows the RMSE and together with

the likelihood P (class = j|y). The RMSE is calculated as:

RMSE(j,y) =

√∑np

i=1(yi − μij)2

p
. (6)

There is a correspondence between the likelihood

P (class = j|y) and the RMSE. As expected the maximum

§https://bit.ly/2KHpfCH
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(a) True SST 2018-05-17. (b) Estimated SST.
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Figure 15. The results from evaluating the classes by using the likelihood and the RMSE. The true SST (15a), estimated SST
(15b), the likelihood and RMSE for each class (15c), and the spatial temperature difference (15d) are shown. The track of the
WaveGlider is shown in panel (15a) with the observed temperatures overlaid. There is some averaging artifacts in the true SST that
shows up in the estimation error (15d).

likelihood and the lowest RMSE occur around class 10.

As the likelihood adjusts for spatial correlation and prior

probability P (class = j), there is some difference between

the two measures of similarity (e.g. class 9). Comparing the

mean RMSE of the estimated SST against the class spread

(0.45 vs. 0.77), indicate that we are in accordance with the

reliability measure discussed in the beginning of this section.

6.2 Evaluation of Model Prediction Error
For discrete models, such as the one developed here or

Lilleborge et al. (2016), the intent of data collection is to

pull the predictive probabilities closer to 0 or 1 (Eidsvik

et al. 2015). The a priori prediction error (before any data

is recorded) is given via the most likely ocean state class as

j∗ = argmaxj{P (class = j)} as:

PE = 1 − P (class = j∗). (7)

Conditional on data y the prediction error is PE(y) =
1 − P (class = j∗(y)|y), where now the most likely ocean

state is given as j∗(y) = argmaxj{P (class = j|y)}, with

probabilities defined in Eqn. (3).

Before sampling, which data y to collect is not known.

The sampling strategy is hence evaluated up-front, based

on the model, and the average posterior prediction error is

obtained by integrating over all possible data. This gives

PE(y) = E{1 − P (class = j|y)} (8)

=

∫
(1 − P (class = j∗(y)|y)p(y))dy,

where j∗(y) is the class with largest probabilities

conditional on y. The improvement made by data collection

can now be compared over various experimental designs

(survey paths) using the Monte Carlo approach outlined

in Eidsvik et al. (2015, Ch. 5.6). To analyze the effect of

data gathering we start by generating synthetic data from

the model. This entails drawing a random class jb from

probabilities P (class = j), j = 1, . . . ,m, and next drawing

data yb conditional on this class. This is based on the

likelihood model in Eq. (4). We set:

yb = μjb + Ljbz. (9)

This approach uses the Cholesky factorization (Nash

1990) of the covariance matrix Σj = LjL
T
j along with

a length np vector z of independent N(0, 1) variables.

Examples of generated data can be seen in Fig. 16. The final

error prediction can now be computed using the generated

data in a Monte Carlo approximation.

PE(y) ∼ 1

B

B∑
b=1

(1 − p(j∗(yb)|yb)), (10)

where B is the number of iterations (we used B = 500).

0 3.2 6.4 9.6 12.8 16

11

12

13

14

Mission duration [hrs]

Class 12
Class 3

Figure 16. An example of 50 synthetic survey lines data for
class j = 12 and j = 3, with missions lasting 16 hours.

It is now possible for a practical comparison of the

reduction of prediction error for different survey times (the

effect of gathering more data) and survey locations (survey

trajectories). The results are shown in Fig. 17, as a function

over the survey duration, and for three different survey

paths, using the WaveGlider and assuming a platform speed

of approximately 2.2 kts. Using this, different lengths of

surveys can be correlated to mission time.

Fig. 17a shows the prediction error for a given

mission duration. Naturally, longer missions result in more

observations and less error, reflecting the amount of data that

is available. The effect of different survey paths is shown by

using three different routes, shown together in Fig. 17b, with

their evolution and final PE(y), as shown in Fig. 17a. Path

1, that is both crossing the inner and outer bay, produces the

lowest prediction error (PE(y) ∼ 0.15).
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Figure 17. (17a) The effect of gathering more data (expressed
as mission duration) on the prediction error, calculated for each
of the three paths. The error drops (from close to the prior
probability PE ∼ 0.64) as more information is obtained. (17b)
By comparing different survey paths, one can observe that
some locations are more informative than others, showing
difference in PE-curves.

A possible reason for this is that path 1 crosses both

gradients inside the bay, as well as gradients that are

prominent further offshore, covering the usual band where

up-welling fronts occur. The curve starts at the prior

probability PE ∼ 0.64, which arises from Eq. (7), estimated

as the fraction of images in each scenario over the total

number of images. This type of investigation useful, since

it provides an estimate of both the value of mission

duration and location, which is often an unknown when

planning survey campaigns. Such an analysis can also be

conducted across platforms; each platform can be evaluated

by simulating a different coverage (survey speed), spatial

correlation (φ), measurement noise, etc. Optimization of

coverage versus cost is also possible, finding effective

solutions that maximize the cost per observation. This type

of reasoning (“What is the value of the data and how much

data is enough?”) is often referred to as value of information-

analysis (Eidsvik et al. 2015).

7 Discussion
In the absence of remote sensing, description of regional

high resolution data may be unavailable. A compact model,

as the one developed in this work, and the supporting

statistical tools, can help provide contextual low resolution
information, by using in-situ observations. Reducing the

global uncertainty is necessary for enabling efficient

planning of vehicle surveys, that rely on evaluating the

current state at unexplored locations, as well as variability

and associated correlation structures. With this in mind, some

aspects of the presented approach are discussed, in order to

shed light on the potential benefits and pitfalls.

Assimilation using an onboard numerical ocean model

that accounts for time is currently not possible or practical

due to time and computational limitations, hence compact

or reduced order models are needed. The current compact

model is static, i.e. the classes themselves are not modified

during the mission. In practice, this means that small scale

features will not be well resolved. One could use Gaussian
Process regression (Rasmussen and Williams 2006) to

assimilate the observations and correct this locally. However,

the primary capability and goal is to predict large-scale

features, hence updating each class locally has limited value,

as it is the prediction at unobserved locations that is most

interesting towards future planning of sampling. Prediction

works by taking a weighted average, using a likelihood

function. There exist several strategies for finding an

alternative weighting scheme. The current approach can be

improved by including co-variates (e.g. wind measurements)

to further determine some of the global conditions and

find the weights conditioned on this. The weighting can

also be found using optimization such as Sequential Least

SQuares Programming (SLSQP) (Nocedal and Wright 2000)

to minimize the error between the observations and a

weighted combination of the classes.

Another interesting application, once a model is estab-

lished, is to calculate a vehicle trajectory that results in the

greatest level of class separation, that is, a path that best

reduces the uncertainty in the model by fast convergence

to a ranking (a probable scenario); similar to the analysis

in Fig. 17a. Finding such a route can improve prediction

of the oceanographic state by gathering temperature data in

areas that will enhance discrimination, and can locate areas

where multidisciplinary sensing from in situ platforms will

be most informative. Criterion such as expected reduction of

variance, mutual information, or entropy can be used to find

these locations.

Regional factors such as wind, bathymetry, and currents

contribute to shaping the spatial patterns used for

classification, which contribute to shaping SD and other

parameters. Local oceanographic expertise is therefore

necessary for validation. The method also involves some

work related to tuning of hyperparameters, that will need

supervision by oceanographers to ensure that a physically

sound separation is used for building the model. Once

configured, the method can operate on its own, and be
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automatically set to digest new SST images. We use different

settings for the dictionary size in the initial and secondary

classification. This increases the length of the sparse codes,

but allows for more spatial/pattern based information to be

used in classification; initially this might not be necessary as

the temperature dominates.

8 Conclusion

We have developed a new methodology for classifying

remote sensing products such as SST towards building

compact models that can be utilized by autonomous vehicles

to provide environmental estimates. The method allows

continuous processes to be segmented and compressed

into a basis of classes/scenarios that can be used as a

framework for informing trajectory planning and sampling

design. This approach can enhance the effectiveness of

ocean observing campaigns and in the end help scientists

understand the regional oceanographic influences. We show

examples using real data from Monterey Bay, where the

compact model is combined with in-situ data to predict

regional oceanographic states and bulk features. The results

show that local observations can be used to yield information

on a synoptic scale, but is limited to only resolving low

frequency details. We have also evaluated the prediction error

of the model and demonstrated the sensitivity to data, from

the perspective of an ASV like the WaveGlider.
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1. INTRODUCTION

Creating models describing the ocean is challenging be-
cause of its large scale nonlinear processes and high spatio-
temporal variability. Existing models continuously refine
numerical methods towards improving accuracy, (Griffies
et al., 2000). Still, model verification and data assimilation
continues to be a challenge that prompts the need for data
sampled from the ocean. Such data is commonly obtained
using either remote sensing, ships or buoys. This data
is usually expensive to acquire and process. Hence, the
ocean tends to be undersampled and strategic planning of
missions are essential to retrieve as much information as
possible. Planning of missions are usually based on histor-
ical data or simulation data from numerical models, but
often the real world differs much from these data. Hence,
being able to adapt the mission in real-time, adjusting the
plan based on current observations, will likely improve the
modeling efficiency.

In this paper we focus on a method using an AUV for
sampling in-situ oceanographic data with a goal of track-
ing suspended material plumes, and being able to adjust
the mission in real-time. To obtain real-time adaption, a
faster-than-real-time particle model onboard the AUV is

� This work was supported by the Research Council of Norway
through Centers of Excellence funding scheme, Project number
223254 - Centre for Autonomous Marine Operations and Systems
(NTNU-AMOS), and the INDORSE project 267793.

required. The numerical models have a high computational
load, making them unfit for running on embedded robotic
systems with both data processing and storage constraints.
Hence, a simpler, more compact model approximating
the processes is built based on Gaussian processes (GP).
This simplified proxy model represents the current state
of the ocean at the time, and can be updated when new
information are added.

In addition to the GP proxy model, this paper presents an
objective function for path planning aiming to maximize
the value of information from the samples. The objective
function explores the area by choosing locations assumed
to be information rich, and also considers the limitations
of the AUV.

As a case study, an area in Frænfjorden, Norway contain-
ing a seafill for submarine mine tailings is investigated.
The goal is to track the particle dispersal near this seafill,
aiming to improve real-time monitoring of dispersal dy-
namics. Two existing numerical ocean models, SINMOD
and DREAM, are used to train the GP proxy model
creating a prior proxy model of the particle concentration.
Having the prior model ready, the AUV can be deployed,
and sensor readings can be used to update the proxy model
onboard the AUV in real-time. In this paper a simulation
study is done using data from the numerical models as
sensor readings for the AUV. Figure 1 gives an overview
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Fig. 1. Block diagram showing the simulation routine. A
prior GP proxy model is built using training data
from SINMOD and DREAM. Then sensor readings
are used to update the proxy model real-time onboard
the AUV, and the updated model is used to find the
next sampling locations. In the simulation study, the
sensor readings are provided by a test data set from
SINMOD and DREAM.

of the method proposed in this paper, showing a block
diagram of the simulation routine.

1.1 Related work and contribution

GPs (Cressie and Wikle, 2011; Eidsvik et al., 2015) are
powerful for creating non-parametric, simple and time-
effective models, and are widely used when creating a
simplified spatial model. Using GPs for environmental
sensing is among others explored in Krause et al. (2008);
Zhang et al. (2012); Binney et al. (2010); Das et al. (2015).

In Krause et al. (2008), a method for static sensor place-
ments is suggested using GPs and maximization of mu-
tual information. Others use moving sensors attached to
robotic vehicles, as in Zhang et al. (2012) where an AUV
is used to track an upwelling front, or in Das et al. (2015)
which use an AUV to collect samples for ex-situ analysis,
selecting the sampling locations based on previous mis-
sions and maximizing a utility function.

When introducing robotic vehicles for sampling, path
planning is required to obtain the optimal sampling path.
This is among others discussed in Binney et al. (2010)
which use the measure of mutual information to optimize
information gain along a 2D path for a marine glider. This
is further elaborated and tested with a surface vehicle
in Binney et al. (2013), where a comparison of greedy
vs. recursive greedy approaches is explored for a similar
problem.

Zhang and Sukhatme (2007) create an adaptive sampling
algorithm based on local linear regression and minimizing
estimation error for a sensor network including static
sensors and an AUV. Yilmaz et al. (2008); Jadaliha and

Choi (2013) discuss environmental sensing and adaptive
sampling using more than one robotic vehicle.

A common approach when building a GP model is to
assume stationary variance, but when modeling particle
transportation there is reason to believe that some sites
vary more than others. In this paper an approach using
non-stationary variance is suggested, using empirical vari-
ance from numerical models as training data for the model
variance.

Section 2 presents preliminaries explaining the spatial
model and data assimilation procedures. The method
used is presented in section 3, before section 4 presents
simulation results.

2. MODELLING

Having a complex numerical model describing the ocean
onboard the AUV is not practical due to computational
limitations. Keeping an onboard representation of the
environment is resolved using a simpler proxy model, based
on Gaussian processes (GP). This section gives a short
introduction to the spatiotemporal modelling, and the
data assimilation methods used in this paper.

2.1 Numerical oceanographic models

Numerical oceanographic models are in this paper used
both to train the proxy model and for simulation purposes.
SINMOD and DREAM are two existing models that de-
scribe ocean dynamics, and the release and transport of
drill cuttings, respectively. SINMOD is a fully coupled hy-
drodynamic, sea ice and ecological ocean model (Slagstad
and McClimans, 2005; Lindstrøm et al., 2009). It is based
on the fundamental NavierStokes equations and uses a
nesting technique where high resolution models obtain
their boundary conditions from larger model domains with
lower resolution. This can be repeated in several steps
to achieve high resolution for selected areas. SINMOD is
established in configurations with horizontal resolutions
ranging from 20 km to 32 m. DREAM is a Lagrangian
particle transport model which can be used to simulate
behaviour and fate of marine pollutants, including partic-
ulate discharges from drilling operations (Rye et al., 1998,
2008). It provides time series of both concentrations of
released materials in the water column, as well as depo-
sition of these materials onto the sea floor. Input to the
DREAM model includes hydrodynamic data, which will
be delivered by SINMOD, as well as information about the
release (amount, rate, densities, grain size distribution).

For generating the forecast data as input for the AUVs
onboard model, SINMOD has been set up with 32 m reso-
lution. Bathymetry data is based on DBM Sør-Norge, sup-
plemented by OLEX data recorded by SINTEF Materials
and Chemistry inside Frænfjorden. The atmospheric input
data is produced using the Weather Research and Fore-
casting (WRF) (http://www.wrf-model.org/index.php)
model simulated with boundary values from the ERA-
Interim reanalysis, and climatologic data for freshwater
run-off is used. This data is then forwarded and used as
input for the DREAM model. The model area is Frænfjor-
den (Norway) and the data is from two consecutive days
April 1st and April 2nd 2013. Data from 1st April is used
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as training data for the proxy model, and data from 2nd
April is used as test data in the simulation study.

2.2 Spatial Model

A GP is chosen to model the underlying spatial depen-
dencies of the particle concentration. The 2-dimensional
domain is divided into a regular grid with N grid points
[s1, . . . , sN ], and the particle concentration in location si
are assumed to be Gaussian with mean μi and variance
σ2
i . The random variable defining the concentration at

location si is denoted x(si). Hence, the joint distribution
of the state at all the locations x = [x(s1), . . . , x(sn)] is
multivariate Gaussian

x ∼ N(μ,Σ) (1)

with mean vector μ = [μ1, . . . , μN ]T and a positive definite
covariance matrix Σ. The diagonal of the covariance
matrix contains the variances σ2

i , and the off-diagonal
elements describe the covariance between the locations.
The fundamental concept of modelling spatial correlation
needs to fulfill two main properties: i) that correlation
decays with distance and ii) that the covariance matrix
is positive definite. To achieve this, it is common to
use known correlation functions or kernels. By comparing
covariance functions with the empirical covariance of the
training data, Matern (3/2) kernel (Matérn, 2013) is
chosen. The function is given by

Rij = (1 + φhij) exp(−φhij), (2)

where hij = |si−sj | is the Euclidian distance between two
locations and φ is a constant meta-parameter regulating
the correlation decay with the distance. The best value for
φ is estimated using training data by choosing the best fit
of the covariance function to the empirical covariance in
the data.

2.3 Prior distribution

The model is assumed to be updated sequentially for time
steps t = 1, . . . , T adding information from observations
in every time step. The initial prior belief at t = 0 (μ0 and
Σ0) is found using the training data from the numerical
models (SINMOD/DREAM). The empirical mean of the
training data in each location is used as the prior mean
μ0. Assuming M data [y∗i,1, . . . , y

∗
i,M ] in location si, this is

given by

μ∗i =
1

M

∑
m

y∗i,m, (3)

and the prior mean of the proxy model is obtained as the
vector μ0 = [μ∗1, . . . , μ

∗
N ]T .

A common approach for GPs is to simplify and assume the
same variance in each location. However, when modeling
ocean processes factors such as topology, currents, wind
patterns, and freshwater run-off in coastal areas imply
that some locations will have elevated variability. Thus,
the prior variance of the state in each location is chosen
to be the empirical variance from the training data (Stein,
2005)

σ∗2i =
1

M − 1

∑
m

(y∗i,m − μ∗i )
2. (4)

The entries of the prior covariance matrix Σ0 are given by

Σ0(i, j) = σ∗i σ
∗
jRij (5)

where Rij defines the correlation between points si and sj
as defined by (2).

2.4 Data assimilation

To model the temporal changes, a simple Markovian
process is suggested

xt = xt−1 + qt, (6)

where qt ∼ NN (0, VΣ0) is a N-dimensional normally
distributed vector with zero mean and covariance matrix
VΣ0 where V > 0 is a constant parameter. This temporal
model assumes that the current step in time is similar to
the previous with an increase in variance proportional to
the prior covariance matrix Σ0. In this way, parts of the
spatial correlation between the locations is maintained,
and the increase in variance due to the dynamics of the
particle transportation is modeled. The constant value
V determines the size of the increase in variance, and
this value can be tuned to fit the modelled domain. This
temporal process alone does not model the dynamics of
the process, and hence, we rely on the observations from
the AUV to catch the changes.

The observation model is given by

yt = Gtxt + εt. (7)

Here, Gt is the sampling design, a matrix that contains
1 entries only at the sampled indices, otherwise it is 0.
εt ∼ NN (0,Ω) is a normally distributed error term with
zero-mean and covariance Ω, assumed to be Gaussian,
describing the measurement noise.

Since a GP is fully represented by its mean and covari-
ance matrix, these are the only thing that needs to be
updated in each time step. Exploiting the properties of the
Gaussian distribution, the conditional updated mean and
covariance matrix at time step t: μt = E(xt|y1, . . . ,yt)
and Σt = Cov(xt|y1, . . . ,yt) can be found by (Rasmussen
and Williams, 2005)

Kt = Σt−1G
T
t (GtΣt−1G

T
t + Ω)−1

μt = μt−1 + Kt(yt −Gtμt−1)

Σt = Σt−1 −KtGtΣt−1 + VΣ0.

(8)

3. METHOD

Having set the foundation by suggesting a proxy spatial
model in section 2, we now proceed to explain the adaptive
sampling method, including the path planning method
using an objective function and the overall sampling al-
gorithm.

3.1 Objective function

To obtain an information rich path for the AUV, an
objective function is suggested. The function is created
based on three criteria.

(1) Locations with high variance are preferred
(2) Locations close to the previous sampling location are

preferred
(3) Locations with high predicted concentration are pre-

ferred
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Fig. 2. Plot of the bathymetry of Frænfjorden. The red
rectangle shows the selected area, and the red dot
indicates the location of the seafill.

The first criterion is chosen because observing in areas
with high variance leads to a reduction in total variance,
hence creating a more accurate model. This criterion also
ensures that the AUV travels to areas that are unexplored.
The second criteron comes from the energy and speed
limitation of the AUV. When choosing the next sample
location, it is essential that the AUV does not travel too
far. The last criterion makes the method adaptive. When
studying the simulation results of the particle transport
from the complex model, it is clear that the variability is
highest where there is a high concentration of particles.
Hence, this last criterion is inspired by this observation,
and assumes that locations with high predicted concen-
tration will be rich with information.

The suggested objective function is then created by having
a term for each of these criteria. At time step t for location
si given the previous sampling location St−1, the objective
function is given by

ft(si) = θ1σ
2
i,t − θ2|St−1 − si| + θ3μi,t (9)

where the constant parameters θ = [θ1, θ2, θ3] defines the
weighting for each of the three criteria. These parameters
together with the parameter V in the updating equations
(8) are tuned by trial and error to obtain the desired
behavior of the AUV.

3.2 The algorithm

The sampling location St at time step t is chosen as the
location that maximizes the objective function ft(si) for
si ∈ [s1, . . . , sN ],

St = argmaxsi(ft(si)). (10)

The details of the sampling method are given in Algorithm
1.

The method is a greedy method that sequentially chooses
the best sampling location. First, the spatial GP model
is created using training data from simulations. Then the
sampling starts by evaluating the objective function and
choosing the location which maximizes it. After reaching
the desired location and doing observations, the GP model
is updated and the variance is increased in the unobserved
locations.

Algorithm 1 Sampling method

1: procedure sampling
2: Initialize GP
3: for t = 1, . . . , T do
4: for s = s1, . . . , sN do
5: Evaluate ft(s)

6: Choose St = argmaxs(ft(s))
7: Go to location St

8: Retrieve observations from St

9: Assimilate data according to (8)

4. SIMULATION RESULTS

Data for April 1st 2013 describing the particle concen-
tration in the fjord obtained from DREAM was used
to train the GP, and to create the prior mean μ0 and
covariance Σ0. For simplicity, only a small area around
the seafill was considered (2560 m × 1280 m) and the area
was divided into a regular grid with grid cells of size 32
m × 32 m (the same grid as for the simulation data).
Also, in this initial simulation only one depth layer was
considered at ≈ 15 m depth, but this could be expanded
to 3 dimension considering multiple snapshots in different
depth layers. Figure 2 shows the bathymetry of the fjord
and the selected area as a red rectangle. From the training
data it was observed that the distribution of particles in
the location of the seafill was rapidly changing and had
very little correlation with the neighboring sites. Thus,
this location was disregarded in our model. When plotting
the results, this was handled by setting the variance to 0
in the location, and using the true value from the test data
as the mean.

The spatial model and the sampling method was im-
plemented using the language R (R Core Team, 2017),
and test data from DREAM (April 2nd) was used as
sensor readings for the AUV. Hence, for this simulation
we consider the test data from DREAM to be the true
distribution at all time. The time step was discretized
into intervals of 5 minutes. A total of 54 updates were
simulated, which corresponds to monitoring the outlets for
4.5 hours (270 minutes). The values used for the tuning
parameters was θ = [1, 125, 100] and V = 0.05.

The results of the simulation study are shown in Figure 3,
showing results at four different time steps. The particle
concentration is measured in μg/L, and the color bar
shows the intensity at each location. The x-and y-axis
shows the distance in metres from the seafill. The first
column of plots shows the true values from DREAM. The
predicted particle concentration is shown in the second
column, and the third column shows the prediction vari-
ance together with the path of the AUV showing the 10
most recent sampling locations as small white dots and
the current position of the AUV as a large white dot.

Comparing the predicted particle concentration with the
truth from the test data it can be seen that the sampling
method generally gives a smooth prediction that coincides
quite well with our ”true” distribution. Still, many of the
finer details are overlooked, and more samples are needed
to model these details.
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(a) Truth t = 0 (b) Prediction t = 0 (c) Variance t = 0

(d) Truth t = 18 (e) Prediction t = 18 (f) Variance t = 18

(g) Truth t = 36 (h) Prediction t = 36 (i) Variance t = 36

(j) Truth t = 54 (k) Prediction t = 54 (l) Variance t = 54

Fig. 3. Results of the simulation study at four different time steps t = 0, 18, 36, 54 corresponding to [0,90,180, 270]
minutes. The particle concentration is measured in μg/L, and the color bar shows the intensity at each location.
The x-and y-axis shows the distance in metres from the seafill. The first column of plots corresponds to the true
values (a),(d),(g) and (j). The predicted mean particle concentration is shown in the second column (b), (e), (h)
and (k), and the third column corresponds to the prediction variance (c), (f), (i) and(l). The path of the AUV is
plotted as a red line, the small white dots shows the 10 most recent sampling locations and the large dot indicates
the current position of the AUV.

Considering the path of the AUV together with the predic-
tion variance, it can be seen that the variance is decreased
near the recently sampled locations. The increase in vari-
ance proportional to the prior variance can also be clearly
seen in the prediction variance plots.

The objective function controls the AUV path in an
intuitive way, leading it to unexplored areas on the one
hand, and in most cases assuring a reasonable travel
speed for the AUV between sampling locations. The travel
distance of the AUV lies between 100-400 metres for most
time steps, which is a suitable distance given the time step
length and the AUV speed.

An issue with the model, is that it does not seem to keep
up with the rapid changing of the ocean process. Since the
model relies on the observations from the AUV to catch the
change in the particle concentration, the prediction results
far from recently sampled locations will be inaccurate.
When the dynamics of the particle transportation are fast,
we will get a delay in the updating of the model. As an
example, the prediction results in the upper left area can
be considered. At t=18, the prediction in this area shows a
smaller concentration than the true value. Then at t=36,
the predicted concentration has increased in this area, but
in the true model the particles have moved resulting in a
low density. Finally, at t=54 the predicted and the true
value is quite similar. This example shows the delay in the
predicted values.
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5. CONCLUSION AND FUTURE WORK

A method for adaptive sampling of ocean processes using
an AUV is suggested, and tested using simulation data
from numerical models of particle transportation near a
seafill. The spatial model reconstructs the true field quite
well, showing the same tendencies as the true field. Still,
the temporal variability of the particle transporting is
faster than the AUV can keep up with, indicating that
more samples from multiple vehicles or buoys and/or a
better temporal model is useful.

Future work includes expanding the model such that it
considers the temporal variability of particle transporta-
tion, such that the the non-stationarity of the model is not
driven by the collected data alone. Path planning can be
improved both by considering optimizing for a sequence
of points instead of only choosing one sampling location
at a time. Fieldwork is also planned, enabling testing of
the method in real ocean conditions. This will give insight
in how the method works in the real world, and how this
differs from simulation.
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MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 
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MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
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Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 



15 

IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 
Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 
Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 
IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 
and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 
fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-
based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 
Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 
Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 
layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 
Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 
maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 
propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 
and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 
behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 
plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 
stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 
Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 
collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 
Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 
Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 
current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 
Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-
Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 
Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 
operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 
Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 
in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 
Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 
Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 
axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 
monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 
presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 
 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 
Marine Structures 
 

IMT-23-
2018 

Jan-Tore Horn 
 

Statistical and Modelling Uncertainties in the 
Design of Offshore Wind Turbines 
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IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 
 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 
 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-
Roll Tank 
 

IMT-3-
2019 

Håkon Strandenes 
 

Turbulent Flow Simulations at Higher Reynolds 
Numbers 
 

IMT-4-
2019 

Siri Mariane Holen 
 

Safety in Norwegian Fish Farming – Concepts and 
Methods for Improvement 
 

IMT-5-
2019 

Ping Fu 
 

Reliability Analysis of Wake-Induced Riser 
Collision 
 

IMT-6-
2019 

Vladimir Krivopolianskii 
 

Experimental Investigation of Injection and 
Combustion Processes in Marine Gas Engines using 
Constant Volume Rig 
 

IMT-7-
2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 
to Ventilation and out of Water Condition. 

IMT-8-
2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 
Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 
Sea Ice 

IMT-9-
2019| 
 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 
Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 
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