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ABSTRACT
We present a perturbation theory that combines the use of a third-order Barker–Henderson expansion of the Helmholtz energy with Mie-
potentials that include first- (Mie-FH1) and second-order (Mie-FH2) Feynman–Hibbs quantum corrections. The resulting equation of state,
the statistical associating fluid theory for Mie potentials of variable range corrected for quantum effects (SAFT-VRQ-Mie), is compared to
molecular simulations and is seen to reproduce the thermodynamic properties of generic Mie-FH1 and Mie-FH2 fluids accurately. SAFT-
VRQ Mie is exploited to obtain optimal parameters for the intermolecular potentials of neon, helium, deuterium, ortho-, para-, and normal-
hydrogen for the Mie-FH1 and Mie-FH2 formulations. For helium, hydrogen, and deuterium, the use of either the first- or second-order
corrections yields significantly higher accuracy in the representation of supercritical densities, heat capacities, and speed of sounds when
compared to classical Mie fluids, although the Mie-FH2 is slightly more accurate than Mie-FH1 for supercritical properties. The Mie-FH1
potential is recommended for most of the fluids since it yields a more accurate representation of the pure-component phase equilibria and
extrapolates better to low temperatures. Notwithstanding, for helium, where the quantum effects are largest, we find that none of the potentials
give an accurate representation of the entire phase envelope, and its thermodynamic properties are represented accurately only at temperatures
above 20 K. Overall, supercritical heat capacities are well represented, with some deviations from experiments seen in the liquid phase region
for helium and hydrogen.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111364., s

I. INTRODUCTION

For most substances of practical interest, the thermodynamic
properties of the fluid phase can be deduced from a classical statisti-
cal mechanical point of view, either through the development of ana-
lytical expressions (e.g., perturbation approaches) or through direct
molecular simulations of a representative intermolecular potential.
Under certain conditions, however, the classical approximations
invoked break down and quantum effects start to become impor-
tant. A typical gauge of the importance of quantum effects is the
relative ratio of the de Broglie wavelength, λB = h/

√
2πmkBT, to

the typical length scale across which particles interact. Here, h and
kB are Planck’s and Boltzmann’s constants, m is the particle mass,
and T is the temperature. Consequently, nonclassical effects should
be strongest when particles have low mass, when temperatures are
low, and when densities are high.

While, in principle, one could obtain the relevant average
macroscopic properties through the solution of the Schrödinger
equation, this is currently computationally infeasible for systems
consisting of a large number of particles. Approximate treatments
are therefore needed. Much effort was dedicated to this in the
1950s and 1960s, and significant progress was made then. The
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Wigner–Kirkwood theory1,2 was the first to describe quantum cor-
rections to classical interaction potentials, and this theory was ele-
gantly rederived and expanded upon by Feynman and Hibbs3 using
the path-integral formulation of quantum mechanics. Its key idea is
that classical statistical mechanics can still be used to describe par-
ticles experiencing quantum effects, in as much as they are taken
to interact through effective, temperature-dependent potentials. In
1969, Kim et al.4 presented the first theoretical predictions of the
quantum-corrected Lennard-Jones (LJ) potential using perturbation
theory. However, after a flurry of research, the discussions on quan-
tum corrections to the classical descriptions of fluids were left to
the confines of key textbooks.5–7 The start of the century brought
renewed interest in the topic through the recognition that molecular
simulations employing these semiclassical potentials could be used
to study fluids such as helium, hydrogen, and neon at low temper-
atures by the use of classical molecular dynamics (MD) or Monte
Carlo (MC) simulations. This simulation approach has since been
used to study phenomena such as adsorption of hydrogen in porous
materials,8,9 quantum clusters,10,11 helium at low temperatures,12

and quantum fluids under confinement.13

Accurate thermodynamic property predictions of fluids with
quantum effects are needed in a range of applications, for exam-
ple to develop better hydrogen liquefaction processes.14 At present,
the most accurate representation of the thermodynamic proper-
ties of pure helium, neon, hydrogen, and deuterium is given by
multiparameter Equations of State (EoSs).15 For some fluids, mul-
tiparameter EoSs are capable of representing the available experi-
mental data within their accuracy. However, these EoSs have chal-
lenges16 that restrict their widespread application. A shortcoming
of the multiparameter EoS framework is the lack of binary mixing
models for helium, neon, hydrogen, and deuterium. Perturbation
theory and SAFT (statistical associating fluid theory)-type of EoS,
on the other hand, are readily extended to mixtures.17,18 Another
advantage of EoSs based on interaction potentials is that molecular
simulations of the underlying force field can be leveraged to esti-
mate transport properties such as viscosity, thermal conductivity,
or interfacial properties such as the surface tension or the Kapitza
resistance.19 Furthermore, simulations can be used to obtain ther-
modynamic properties in regions outside of the domain of validity of
the EoS.

A formally exact way to model the full quantum behavior is
to use the Path Integral Monte Carlo approach,20–23 but in practice
the simpler semiclassical approach based on pair potentials is often
preferred. Recently, Trejos and Gil-Villegas24 presented a semiclas-
sical Equation of State (EoS) valid for quantum fluids based on the
statistical associating fluid theory for potentials of variable range
(SAFT-VR), which they applied to the square well potential with
a first-order quantum correction developed specifically for discon-
tinuous potentials.25,26 Contreras et al.27 mapped the description
of the quantum-corrected Lennard-Jones potential onto effective
Mie potentials by building on the accurate third order perturba-
tion theory that has been developed for Mie fluids.18,28,29 While these
approaches are all based on perturbation theory using hard spheres
as references, there are also investigations on perturbations from
quantum hard spheres.30 It is in this context we place our contri-
bution, presenting an accurate perturbation approach that provides
both an equation of state and a set of semiclassical force fields for
fluids where quantum effects are relevant.

This paper is structured as follows: In Sec. II, we present a
SAFT-VR-type equation of state for Mie potentials with first and sec-
ond order Feynman–Hibbs quantum corrections (SAFT-VRQ Mie).
By comparing the results from Monte Carlo simulations (Sec. III),
we demonstrate in Sec. IV that the new EoS has a similar accuracy
as present state-of-the-art for classical Mie fluids. Available experi-
mental data are used in a fitting procedure described in Sec. III C to
determine the optimal parameters for helium, neon, hydrogen, and
deuterium to evaluate the accuracy of the description.

II. THEORY
In the following, we build on the work by Lafitte et al.18 and

extend the statistical associating fluid theory for variable range Mie
potentials (SAFT-VR Mie) equation of state (EoS) to Mie potentials
with Feynman–Hibbs-corrections. The Feynman–Hibbs corrections
will be introduced in Sec. II A, before the complete description of
the quantum corrected EoS (SAFT-VRQ Mie) for single-component
fluids is presented in Sec. II B. Throughout this work, the lowercase
letter u denotes a pair potential.

A. The influence of quantum effects
on the interaction potential–semiclassical potentials

At low temperatures, fluids such as hydrogen and helium are
not accurately represented by the classical-mechanical description.
Feynman and Hibbs, in their seminal book3 on the path integral for-
mulation of quantum mechanics, derived the quantum-mechanical
partition function for a system of particles interacting with a given
classical interaction potential, uC (subscript C refers to classical).
The classical potential determines the fluid behavior at tempera-
tures where quantum effects are negligible, while at lower tempera-
tures, the classical concept of interaction potential loses its meaning
since particles are delocalized due to the wave-particle duality. How-
ever, the approximation known as the effective potential method3

incorporates quantum effects but retains the concept of interaction
potential. In this approximation, particles interact through an effec-
tive potential obtained by adding temperature- and mass-dependent
corrections to the classical potential. Feynman and Hibbs3 showed
that an effective potential that approximately accounts for quantum
effects is

uGFH(r) = (
6μ
πβh̵2 )

3/2

∫
R3
uC(r + s) exp(

−6μ
βh̵2 ∣s∣

2
)ds, (1)

where r is the separation vector between two particles, μ = (m−1
1

+ m−1
2 )
−1 is their reduced mass, β = 1/kBT is the reduced inverse

temperature, and h̵ = h/2π is the reduced Planck’s constant. Known
as the Gaussian Feynman–Hibbs potential, this effective potential
accounts for delocalization by taking a Gaussian average of the clas-
sical potential, where the width of the Gaussian equals the thermal
de Broglie wavelength.

The more commonly used Feynman–Hibbs (FH) corrections
can be obtained by a Taylor expansion of the potential in Eq. (1),
yielding

uFHM(r) =
M

∑
n=0

Dn

n!
∇

2nuC(r), D =
βh̵2

24μ
. (2)
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Here, M is the order of the Feynman–Hibbs correction. For most
classical potentials, uC, the series in Eq. (2) diverges pointwise every-
where in the limit M → ∞ and must be interpreted as an asymp-
totic series.31 Alternative derivations for the first- and second-order
corrections, corresponding to M = 1, 2 in Eq. (2), exist.3

To represent classical potentials, we will use the Mie family of
potentials,

uC(r) = uMie(r) = C𝜖[(
σ
r
)
λr
− (

σ
r
)
λa
], (3)

where 𝜖 is the well-depth, σ is the characteristic length scale corre-
sponding to the distance at which the interparticle potential is zero,
λa and λr are the attractive and repulsive exponents, and

C = ( λr
λr − λa

)(
λr
λa
)

λa
λr − λa . (4)

We will only consider effective potentials corresponding to the
zeroth, first, and second order Feynman–Hibbs corrections to the
classical Mie potential; these effective potentials will be referred to as
Mie-FH0, Mie-FH1, and Mie-FH2, respectively. Theory and simula-
tion studies based on these effective potentials have established them
as successful in accounting for quantum corrections.8,10,11,13,32,33 The
complete expression for the quantum-corrected Mie-FH2 potential
between particles of type i and j is

u(r)/(C(λr , λa)𝜖) =
σλr

rλr
−
σλa

rλa

+D(Q1(λr)
σλr

rλr+2 −Q1(λa)
σλa

rλa+2 )

+D2
(Q2(λr)

σλr

rλr+4 −Q2(λa)
σλa

rλa+4 ), (5)

where

Q1(λ) = λ(λ − 1), (6)

Q2(λ) =
1
2
(λ + 2)(λ + 1)λ(λ − 1), (7)

D =
βh̵2

12m
. (8)

The expressions for the Mie-FH1 potential are obtained by omit-
ting the term in Eq. (5) with prefactor D2. As illustrated in Fig. 1,
the Feynman–Hibbs corrections influence pair potential in three
different ways:

1. The effective particle diameter increases.
2. The effective potential well-depth decreases.
3. The range of the potential increases.

These effects become more pronounced as the temperature
decreases, at a rate conveniently quantified by the de Boer parameter,

Λ =
h

σ
√
m𝜖

. (9)

One can interpret the de Boer parameter as the ratio between the
de Broglie wavelength and a length which characterizes the inter-
molecular interactions. For fluids influenced by quantum effects,

FIG. 1. Pair interaction potential for the LJ (black solid line) and LJ-FH2 (blue
dashed line) potentials, at reduced temperature T∗ = 4 and de Boer parameter
Λ = 3. The FH correction increases the effective diameter σeff and decreases the
well depth 𝜖eff, compared to the classical LJ parameters σ and 𝜖. The inset in the
upper right corner details how the effective range of the potential increases.

this dimensionless parameter is an additional parameter that must
be used on top of the characteristic length and energy scales in
any theory of corresponding states for quantum fluids.7 Using
the Lennard-Jones classical potential, Λ has been found to vary
between approximately 0 (xenon) and approximately 3 (helium),34

where higher values of Λ imply that quantum effects become more
significant.

Exchange effects arise due to the indistinguishability of iden-
tical particles. At high temperatures, i.e., in the classical limit,
exchange effects are approximated by including the factor 1/N! in
the partition function; at low temperatures, this approximation is
less accurate, especially for dense systems.3 However, theoretical
work35,36 using h̵-expansions indicates that the contribution to the
effective potential from exchange effects is negligible. This work
therefore ignores these effects.

B. The SAFT-VRQ Mie equation of state
The SAFT-VRQ Mie equation of state (where Q stands for

quantum) is based on a third-order Barker–Henderson7,37 perturba-
tion theory and can be viewed as an extension of the monomer term
of the SAFT-VR Mie EoS,18,29 which is the present state-of-the-art
perturbation theory for Mie fluids. The reduced, residual Helmholtz
energy ares = Ares/NkBT can be written as

ares
= aHS + βa1 + β2a2 + β3a3, (10)

where aHS is the reduced, residual Helmholtz energy of a hard-
sphere system of diameter d specified below, while a1, a2, and a3
are the first-, second-, and third-order perturbation coefficients,
respectively.

Following the perturbation theory of Barker and Henderson,
we split the Mie-FH potential into a reference potential u0(r, β) and
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a perturbation potential u1(r, β), where

u0(r,β) = {
uMie-FH(r,β) r ≤ σeff
0 r > σeff

(11)

and

u1(r,β) = {
0 r ≤ σeff
uMie-FH(r,β) r > σeff

, (12)

where σeff is defined by the relation

uMie-FH(σeff,β) = 0. (13)

We emphasize that σeff(T) is always larger than σ, except when there
are no quantum corrections. The difference between σ and σeff is
illustrated in Fig. 1.

1. The van der Waals attractive energy
Before addressing the terms in the perturbation theory, we

define the van der Waals attractive energy of the fluid,

evdW
= 2π∫

∞

σeff

uMie-FH(r,β)r2dr. (14)

In the expressions for the second and third order terms in the pertur-
bation theory, we will use the dimensionless van der Waals energy,
α, defined by

α = −
evdW

2π𝜖effσ3
eff

, (15)

where 𝜖eff is defined as the minimum value of the effective potential,

𝜖eff(β) = min
r
(uMie-FH(r,β)). (16)

This minimum is located at r𝜖, which is found by solving

∂uMie-FH(r𝜖,β)
∂r

= 0. (17)

We emphasize that 𝜖eff(T) ≠ 𝜖, except when there are no quantum
corrections. The difference between 𝜖 and 𝜖eff is illustrated in Fig. 1.
For the quantum-corrected Mie potential, we split the dimension-
less van der Waals energy, α, into contributions from the classical
potential and the quantum corrections,

α = αMie + αFH1 + αFH2, (18)

αMie
=

C𝜖
𝜖eff
[(

σ
σeff
)
λa 1
λa − 3

− (
σ
σeff
)
λr 1
λr − 3

], (19)

αFH1
=

C𝜖
𝜖eff

D
σ2 [(

σ
σeff
)

2+λa Q1(λa)

λa − 1
− (

σ
σeff
)

2+λr Q1(λr)

λr − 1
], (20)

αFH2
=

C𝜖
𝜖eff
(
D
σ2 )

2
[(

σ
σeff
)

4+λa Q2(λa)

λa + 1
− (

σ
σeff
)

4+λr Q2(λr)

λr + 1
]. (21)

2. The hard-sphere reference
Following Barker and Henderson,37 we define the hard-sphere

diameter d as

d = ∫
σeff

0
[1 − exp(−βuMie-FH(r,β))]dr, (22)

where the σeff is used as the upper integration limit. The Carnahan
and Starling EoS38 is used to describe the hard-sphere contribution,
where the compressibility factor is given by

ZHS
=

PHS

ρkBT
=

1 + η + η2
− η3

(1 − η)3 , (23)

where P is the pressure, and the packing fraction, η, is calcu-
lated by using the number density ρ = N/V and the hard-sphere
diameter, d,

η =
ρπd3

6
. (24)

The reduced isothermal compressibility of the hard-sphere EoS,
given by Eq. (23), is

KHS
= kBT

∂ρ
∂PHS =

(1 − η)4

1 + 4η + 4η2 − 4η3 + η4 . (25)

The reduced, residual Helmholtz energy of the hard-sphere system,
aHS, is found by integrating the residual part of the Carnahan and
Starling EoS,

aHS
=

1
NkBT ∫

∞

V
(PHS

− Pid
)dV =

3 − 2η
(1 − η)2 , (26)

where Pid = NkBT/V is the ideal-gas pressure at the given tem-
perature and volume. A statistical-mechanical argument7 shows
that the compressibility factor for the hard-sphere system is related
to the value of the radial distribution function (RDF) at contact,
gHS
d (d), by

ZHS
= 1 + 4ηgHS

d . (27)

Using the Carnahan and Starling expression in Eq. (23) for ZHS, the
quantity gHS

d (d) can thus be written as

gHS
d (d) =

1 − η/2
(1 − η)3 . (28)

3. The first-order perturbation term
The first order perturbation term is given by39

a1 = 2πρ∫
∞

σeff

gHS
d (r)uMie-FH(r,β)r2dr, (29)

where gHS
d (r) is the radial distribution function of the hard-sphere

fluid at position r. Gil-Villegas et al.28 found that they could accu-
rately correlate a1 using algebraic expressions, thus avoiding numer-
ical evaluation of the integral with quadrature techniques. For the
square-well potential fluid, the contact diameter equals σ, and the
integration is from σ to∞. For soft potentials however, Lafitte et al.18

showed that it was necessary to split the integral of a1 into two
parts, since the radial distribution function (RDF) at contact is given
at d ≠ σ. The same approach is followed in this work. By first
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integrating from d to ∞, and then including a correction integral
from d to σ, a1 can be written as

a1 = 2πρ∫
∞

d
gHS
d (r)uMie-FH(r,β)r2dr (30)

− 2πρ∫
σeff

d
gHS
d (r)uMie-FH(r,β)r2dr (31)

= I1A + I1B. (32)

Similar to the classical Mie potentials, the uMie-FH potentials can be
represented as a sum of generalized Sutherland potentials, described
by a power law in r,

uS
(r; λ) = −𝜖(

σ
r
)
λ
. (33)

The definition of the generalized Sutherland potential presented in
Eq. (33) does not include the hard-core part. We introduce the
following scaling factors for the different parts of the potential:

Q̃0 = 1, (34)

Q̃1(λ) = Q1(λ)
D
σ2 , (35)

Q̃2(λ) = Q2(λ)(
D
σ2 )

2
. (36)

The Feynman–Hibbs-corrected Mie potential can then be written as

uMie-FH(r) = −Q̃0uS
(r; λr) + Q̃0uS

(r; λa)

− Q̃1(λr)uS
(r; λr + 2) + Q̃1(λa)uS

(r; λa + 2)

− Q̃2(λr)uS
(r; λr + 4) + Q̃2(λa)uS

(r; λa + 4). (37)

The a1 integration can therefore be performed as a sum of integrals
over Sutherland potentials, aS

1(λ). To simplify the integration, the
reduced center–center distance, x = r/d, between two hard spheres
of diameter d is introduced. Furthermore, it is convenient to define
x0 = σ/d and xeff = σeff/d. This gives the following result for the
contributions to a1:

aS
1(λ) = 2πρ∫

∞

d
gHS
d (r)u

S
(r; λ)r2dr

= 2πρd3
∫

∞

1
gHS
d (xd)u

S
(xd; λ)x2dx. (38)

The Mean-Value Theorem (MVT) states that18

∫

∞

1
gHS
d (xd)u

S
(xd; λ)x2dx = gHS

d (ξ)∫
∞

1
uS
(xd; λ)x2dx (39)

for some ξ ∈ [d, ∞). The van der Waals attractive energy for the
Sutherland potential can be integrated analytically to give

aS
1(λ) = −12η𝜖xλ0(

1
λ − 3

)gHS
d (ξ). (40)

Gil-Villegas et al.28 showed that gHS
d (ξ;η) can be correlated by using

an effective packing fraction ηeff, giving gHS
d (ξ;η) = gHS

d (1;ηeff).
Lafitte et al. developed this further for the Mie potential, and the
same λ correlation for ηeff as presented in Refs. 18 and 40 has been
used in this work. For completeness, we repeat the correlations here.
First,

gHS
d (η; λ) ≈

1 − ηeff(η; λ)/2
(1 − ηeff(η; λ))3 , (41)

where the effective packing fraction correlation is given by

ηeff(η; λ) = c1(λ)η + c2(λ)η2 + c3(λ)η3 + c4(λ)η4, (42)

and is valid for 5 < λ ≤ 100. The coefficients in Eq. (42) are given
from

⎛
⎜
⎜
⎜
⎝

c1
c2
c3
c4

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0.81096 1.7888 −37.578 92.284
1.0205 −19.341 151.26 −463.50
−1.9057 22.845 −228.14 973.92

1.0885 −6.1962 106.98 −677.64

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

1
1/λ
1/λ2

1/λ3

⎞
⎟
⎟
⎟
⎠

.

(43)

The complete integral for I1A is then approximated as a sum of
contributions from Sutherland potentials,

I1A ≈ C∑
j
wjaS

1(η; λj), (44)

where wj are the prefactors from Eq. (37): the prefactor becomes
±Q̃0 for the Mie potential, −Q̃1(λr) and Q̃1(λa) for the FH1 con-
tribution, and −Q̃2(λr) and Q̃2(λa) for the FH2 contribution.

Nezbeda and Iglesias-Silva41 successfully used a linearization of
the RDF to approximate it in the vicinity of contact (x = 1). The RDF
is then described from the RDF at contact and its differential,

gHS
d (xd) ≈ g

HS
d (d) + (x − 1)(

∂gHS
d (xd)
∂x

)

x=1
. (45)

Using Wertheim42 theory, they derived the following differential:

(
∂gHS

d (xd)
∂x

)

x=1
= −

9(1 + η)
(1 − η)3 . (46)

By using this approximation, the second integral of Eq. (30) simpli-
fies to

I1B ≈ −12η[gHS
d (d)∫

xeff

1
uMie-FH(xd,β)x2dx

+ (
∂gHS

d (xd)
∂x

)

x=1
∫

xeff

1
uMie-FH(xd,β)(x − 1)x2dx]. (47)

Expressing the quantum-corrected Mie potential in the hard-sphere
reduced center–center distance variable, x, gives terms of type x−λ

inside the integrand. To simplify the integration further, the integral
functions Iλ and Jλ are introduced,

Iλ(λ) = ∫
xeff

1

x2

xλ
dx = −

x(3−λ)eff − 1
λ − 3

, (48)

Jλ(λ) = ∫
xeff

1

(x3
− x2
)

xλ
dx (49)

= −
x(4−λ)eff (λ − 3) − x(3−λ)eff (λ − 4) − 1

(λ − 3)(λ − 4)
. (50)

The contribution from each term of the effective quantum potential
to the integral I1B can then be described using B and the prefactor
wj,

I1B ≈ C∑
j
wjx

λj
0 B(η; λj), (51)

with
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TABLE I. ϕi ,n coefficients.

n ϕ1,n ϕ2,n ϕ3,n ϕ4,n ϕ5,n ϕ6,n ϕ7,n

0 7.536 555 7 −359.44 1550.9 −1.199 32 −1911.28 9236.9 10
1 −37.604 63 1825.6 −5070.1 9.063 632 21 390.175 −129 430 10
2 71.745 953 −3168.0 6534.6 −17.948 2 −51 320.7 357 230 0.57
3 −46.835 52 1884.2 −3288.7 11.340 27 37 064.54 −315 530 −6.7
4 −2.467 982 −0.823 76 −2.7171 20.521 42 1103.742 1390.2 −8
5 −0.502 72 −3.193 5 2.0883 −56.637 7 −3264.61 −4518.2 . . .
6 8.095 688 3 3.709 0 0 40.536 83 2556.181 4241.6 . . .

B(η; λ) = 12η𝜖(
1 − η/2
(1 − η)3 Iλ(λ) −

9η(1 + η)
2(1 − η)3 Jλ(λ)). (52)

4. The second-order perturbation term
The second order perturbation is approximated by the follow-

ing expression:18

a2 = −πρKHS
(1 + χ)∫

∞

σeff

gHS
d (r)(uMie-FH(r,β))2r2dr, (53)

where the isothermal compressibility of the hard-sphere reference
KHS is described by Eq. (25) and χ is a correlated correction
factor.

Using Eq. (37), the quadratic potential term of the integral,
(uMie-FH(r,β))2, can be expressed as a new sum of Sutherland poten-
tials. For the Mie potential, there are three terms corresponding to
the first three terms of Eq. (54). The FH1 potential is represented
with the first nine terms of Eq. (54), while for the FH2 potential there
are 18 terms,

u2
Mie-FH = uS

(r; 2λa) + uS
(r; 2λr) − 2uS

(r; λr + λa) + Q̃1auS
(r; 2λa + 2) + Q̃1ruS

(r; 2λr + 2) − [Q̃1a + Q̃1r]uS
(r; λa + λr + 2)

+ Q̃2
1au

S
(r; 2λa + 4) + Q̃2

1ru
S
(r; 2λr + 4) − 2Q̃1aQ̃1ruS

(r; λa + λr + 4) + Q̃2auS
(r; 2λa + 4) + Q̃2ruS

(r; 2λr + 4)

− (Q̃2a + Q̃2r)uS
(r; λa + λr + 4) + Q̃2aQ̃1auS

(r; 2λa + 6) + Q̃2rQ̃1ruS
(r; 2λr + 6) − (Q̃2aQ̃1r + Q̃2rQ̃1a)uS

(r; λa + λr + 6)

+ Q̃2
2au

S
(r; 2λa + 8) + Q̃2

2ru
S
(r; 2λr + 8) − 2Q̃2aQ̃2ruS

(r; λa + λr + 8). (54)

Here, Q̃1a = Q̃1(λa), Q̃1r = Q̃1(λr), and likewise for Q̃2.
To represent the correction factor, χ, we have used the same

correlation as Lafitte et al.,18

χ = f1(α)ζ̄x + f2(α)ζ̄5
x + f3(α)ζ̄8

x , (55)

but with a different definition of the dimensionless van der Waals
parameter, α [see Eq. (18) and Sec. II B 1 for a discussion]. Here, ζ̄x
is defined as

ζ̄x =
πρσ3

eff

6
. (56)

f i are correlations of the dimensionless van der Waals energy, α, and
is given by

fi(α) =
∑

n=3
n=0 ϕi,nα

n

1 +∑n=6
n=4 ϕi,nαn−3

, i ∈ 1, . . . , 6, (57)

where the coefficients are given in Table I.

5. The third-order perturbation term
To represent the third order perturbation term, we have used

the same correlation as developed by Lafitte et al.,18 but with the
effective well depth and the effective dimensionless van der Waals
parameters as input,

a3 = −𝜖3
eff f4(α)ζ̄x exp(f5(α)ζ̄x + f6(α)ζ̄2

x). (58)

III. NUMERICAL METHODS
In this section, we provide details on numerical aspects related

to solving the EoS in Sec. III A, how the Monte Carlo simulations
have been set up in Sec. III B and how the parameter fitting proce-
dure has been carried out in Sec. III C. The EoS was implemented
in the in-house thermodynamic library presented in Ref. 16, and
we refer to previous work for details on routines for solving phase
equilibria.43–46

A. Details on the numerics in the solution
of SAFT-VRQ Mie
1. Solving for the effective diameter and well-depth

When calculating properties from SAFT-VRQ Mie, additional
complexities appear that are not present for classical Mie fluids.18

While Mie potentials are explicit in σ and 𝜖, the corresponding
quantities for the quantum-corrected potential, σeff and 𝜖eff, are
only defined implicitly and must be obtained by iterative proce-
dures. Furthermore, since they are functions of β, these parame-
ters must be determined at each temperature. We calculated σeff by
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solving uMie-FH(r, β) = 0 with a Newton-Raphson solver with analyt-
ical derivatives and using the value of σ from the Mie potential as
initial guess. In a similar manner, the effective well depth, 𝜖eff, was
determined by solving Eq. (17), ∂uMie-FH(r, β)/∂r = 0, for r𝜖eff with
analytical derivatives in the Newton-Raphson solver and the value
of r𝜖 from the Mie potential as initial guess. The effective well depth
was then determined from Eq. (16).

2. Integration of the hard-sphere diameter
The Barker and Henderson37 hard-sphere diameter is defined

by Eq. (22), where the integral must be evaluated numerically.
Figure 2 shows how the integrand, Id, varies with the distance
between two particles for the LJ potential at two different temper-
atures. It illustrates that in the region enclosed by r/σ = 0 and the
dashed vertical lines, the integrand is numerically indistinguishable
from one, and thus effectively constant. To integrate numerically in
the entire interval, [0, 1] is therefore inefficient, as a large number
of points would be needed in a quadrature to obtain an accurate
estimate of the hard-sphere diameter. In this work, we followed a
different strategy by first determining the region where the inte-
grand was effectively constant. The hard-sphere diameter integrand
is given as

Id = 1 − exp(−βuMie-FH(r,β)). (59)

To determine the maximum distance, rd, where Id = 1 for the numer-
ical integration is equivalent to solving exp(−βuMie-FH(r,β)) = ε,
where ε is the machine precision for the floating point represen-
tation used in the integration. The distance where the integrand
becomes numerically invariant in a double precision integration is
illustrated by the vertical dashed lines in Fig. 2. To determine the ver-
tical dashed lines typically requires 5 or 6 evaluations of the poten-
tial function and the first and second order differentials, where we
used a second order Newton solver. After splitting the integration

FIG. 2. The integrand of the Barker and Henderson hard-sphere diameter expres-
sion [Eq. (59)] for the LJ fluid. The green solid line is for the reduced temperature
T⋆ = 30, and the blue solid line is for T⋆ = 2. The dashed lines indicate the max-
imum dimensionless diameter where the integrand numerically equals one on a
double-precision computer. The computed hard-sphere diameters are indicated
with crosses.

region into two parts, the integration in the region [rd, σeff] was
carried out to a high accuracy by using a 21 point Gauss–Kronrod
quadrature.47

B. Monte Carlo simulations
1. Thermodynamic properties as ensemble averages

To obtain the thermodynamic properties of Mie-FH fluids from
simulations, they must be formulated as ensemble averages, denoted
as ⟨⋅⟩, in the appropriate ensemble. The procedure is well-known
for classical potentials,48 but the standard formulae for computing
residual properties must be modified when the potential depends on
temperature. The residual contributions are rigorously derived by
taking derivatives of the configurational partition function,

Z(β) = ∫ e−βVFHM(rN ;β)drN , (60)

where rN is the vector of positions for N particles and VFHM is the
total potential energy of the system. The internal energy per particle
is given by

U
N
=

3
2
kBT +

1
N
⟨VFHM(rN ;β) + β

∂VFHM(rN ;β)
∂β

⟩, (61)

where the first term is the ideal gas contribution and the ensem-
ble average is the residual contribution. Equation (61) clearly
reduces to the classical formula when the potential is temperature-
independent. Equation (61) is equally valid in the NVT, NPT, and
μVT ensembles. The isochoric heat capacity is given by

cV =
⟨U2
⟩NVT − ⟨U⟩2NVT
NkBT2

−
1

NkBT2 ⟨2
∂VFHM(rN ;β)

∂β
+ β

∂2VFHM(rN ;β)
∂β2 ⟩

NVT
, (62)

with averages in the NVT ensemble as denoted by the subscript. The
isobaric heat capacity per particle is given by

cP =
⟨H2
⟩NPT − ⟨H⟩2NPT
NkBT2

−
1

NkBT2 ⟨2
∂VFHM(rN ;β)

∂β
+ β

∂2VFHM(rN ;β)
∂β2 ⟩

NPT
, (63)

where H = U + PV is the total enthalpy and the averages are in
the NPT ensemble as denoted by the subscript. The expressions
for mechanical properties, such as isothermal compressibility, coin-
cide with the classical expressions48,49 since they do not include
temperature derivatives of the partition function.

2. Single-phase NPT simulations
We performed NPT Monte Carlo simulations48,49 of supercriti-

cal Mie-FH fluids to determine densities and isobaric heat capacities.
The simulation box contained 750 particles, and we used a cut-
off of 4.5σ and the long-range corrections (LRCs) described in the
Appendix. Each simulation cycle consisted of, on average, 750 dis-
placement moves and two volume moves. The step lengths for each
type of move were adjusted during equilibration toward acceptance
ratios between 30% and 50%; the acceptance ratio for displacement

J. Chem. Phys. 151, 064508 (2019); doi: 10.1063/1.5111364 151, 064508-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

will be higher than this for the lowest densities, in which case the
step length was set equal to half the box length.

Accurate estimates of heat capacities require long runs. We
equilibrated the system for 5 × 104 cycles and then sampled the
system for 106 cycles. To ensure that our error estimates were within
acceptable limits, we ran every NPT simulation using two differ-
ent seeds for the random number generator; the final results are the
average of the two runs.

3. Gibbs ensemble Monte Carlo simulations
We performed Gibbs Ensemble Monte Carlo (GEMC) simula-

tions49,50 of various Mie-FH fluids to determine coexistence prop-
erties. A total of 1000 particles were distributed in the vapor and
liquid simulation boxes. We applied a (temperature-independent)
cutoff of rc = 5σ, and during the simulations, we used the long-
range corrections described in the Appendix. A Monte Carlo cycle
consisted of 1002 moves selected at random that made, on average,
500 displacement attempts, 500 box swap attempts, and 2 volume-
change attempts. The maximum volume change and the maximum
displacement in each box were adjusted toward an acceptance ratio
between 30% and 50%. With these parameters, the simulations
seemed to explore the phase space efficiently, yielding reliable esti-
mates for coexistence densities after about 5× 104 cycles. To increase
the accuracy, we equilibrated each simulation with 104 cycles and
subsequently sampled averages during a production run of 106

cycles. Following previous work,13,51,52 the critical temperature was
estimated from the simulations using the renormalization group
scaling laws, and the critical pressure was estimated by extrapolating
a least-square fit of the Antoine equation ln P = A + B/T.

To ensure a correct GEMC implementation, we verified the
equality of pressures and chemical potentials in the two simula-
tion boxes and also verified the phase behavior against independent
direct coexistence canonical MD simulations for the Mie(12,6)-FH1
potential.

C. Regression of parameters for real fluids
The number of parameters of the Mie-FH potentials is the same

as in Mie potentials, namely, σ, 𝜖, λa, and λr. It has been shown
that for the Mie family of fluids, there is a conformality relation-
ship between the exponents λa and λr, i.e., multiple combinations of
(λr, λa) provide for essentially the same macroscopic properties.53,54

Hence, it makes sense to employ a fixed value of one of the two
exponents while using the second one as an adjustable parameter.
Commonly, one will fix λa = 6 consistent with the London dispersion
exponent.53 The final parameter, Λ, is not a fitted parameter but is
uniquely determined by the values of σ, 𝜖, and the molecular mass.
For practical use of the quantum-corrected potentials, these param-
eters must be determined to represent real fluids with the highest
possible accuracy. The influence of quantum effects becomes larger
at lower temperatures, where the relative importance depends on the
fluid.

In this work, we present parameters for helium, neon,
deuterium, and three types of hydrogen; the two spin-isomers
orthohydrogen (the protons in the H2 molecule spin in the same
directions), parahydrogen (the two protons spin in opposite direc-
tions), and normal-hydrogen which is a 3-1 mixture of ortho-para
hydrogen that represents the equilibrium configuration at high
temperatures.

We expect the potentials to become less reliable at low enough
temperatures, since the Feynman–Hibbs potentials originate in an
expansion performed at high temperatures, as discussed in Sec. II A.
As SAFT-VRQ Mie does not perfectly predict the thermodynamic
properties of Mie-FH fluids, and seeing as a main goal is designing
accurate potentials, it is important not to overfit the EoS to prop-
erties for which it poorly represents the underlying potential. With
this in mind, our procedure for finding the optimal parameters was
as follows:

1. We start by identifying the regions and properties where
SAFT-VRQ Mie provides the most accurate representation of
the underlying potential (see Sec. IV A).

2. We fix λa = 6 and explore λr = 8, 9, . . ., 24, where for each
choice of λr, we determine the values of σ and 𝜖 that minimize
the average squared relative deviation between the predictions
from SAFT-VRQ Mie and experimental data where it provided
a most accurate representation of the underlying potential. The
properties used for fitting are saturation pressures and liquid
densities, the critical temperature, and supercritical densities
and isobaric heat capacities. We used multiparameter EoSs as
a substitute for experiments, as these are designed to represent
critically evaluated experimental data within their accuracy.
We used the EoS by Leachman et al.34 for hydrogen, the EoS
by Katti et al.55 for neon, the EoS by Ortiz-Vega56 for helium,
and the EoS by Richardson et al.57 for deuterium.

3. The optimal choice of λr was determined both by comparing
deviations from experimental data, a visual inspection of both
the vapor–liquid equilibrium (VLE) envelope and supercritical
isobars, and simulations of the underlying potential to check
that they also reproduce the experimental data.

IV. RESULTS AND DISCUSSION
A. The ability of SAFT-VRQ Mie to represent
generic Mie-FH fluids

We evaluate the accuracy of SAFT-VRQ Mie in representing
the thermodynamic properties of generic Mie potentials with first
and second order Feynman–Hibbs corrections (Mie-FH1 and Mie-
FH2), by first comparing to results from molecular simulations.
Three choices of attractive and repulsive exponents (λr, λa) will be
examined in detail, (10, 6), (12, 6), and (24, 6). These exponents are
chosen to span potentials with different degrees of softness. The gen-
eral trend is that the phase envelopes of Mie-fluids become broader,
and the critical temperature and pressure decrease with increasing
repulsive exponent. Furthermore, the de Boer parameter has been
varied from 1 to 3 to probe a range of quantum corrections. The
results for generic Mie fluids have been plotted in terms of reduced
variables, namely, reduced temperature T⋆ = kBT/𝜖, reduced pres-
sure P⋆ = Pσ3/𝜖, reduced number density ρ⋆ = ρσ3, and reduced heat
capacity per particle c⋆p = cp/kB.

Results for the vapor–liquid equilibrium are shown in Fig. 3
for Mie-FH1 and in Fig. 4 for Mie-FH2. Here, the lines are pre-
dictions from SAFT-VRQ Mie and the symbols are simulation
results from GEMC, including an estimation of the critical point
(see Sec. III B 3 for details). Figures 3 and 4 display an excellent
agreement between the EoS and the simulation results, both for
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FIG. 3. Vapor–liquid equilibrium dia-
grams for fluids interacting with Mie-
FH1 potentials: Mie(10,6)-FH1 [(a) and
(b)], Mie(12,6)-FH1 [(c) and (d)], and
Mie(24,6)-FH1 [(e) and (f)]. Symbols are
GEMC simulations, while lines are cal-
culations using SAFT-VRQ Mie. Each
plot shows three different values of the
de Boer parameter: Λ = 1 (dashed-
dotted lines, circles), Λ = 2 (dashed
lines, squares), and Λ = 3 (solid lines,
triangles). The stars are scaling-law esti-
mates of critical points.

saturation densities and pressures, as well as the critical tempera-
ture. SAFT-VRQ Mie has a similar accuracy as the present state-
of-the-art EoS for classical Mie fluids, which can be seen by com-
paring the results in Figs. 3 and 4 to the corresponding Figs. 7
and 8 for Mie fluid presented in Ref. 18. This is as good as can be
expected, as SAFT-VRQ Mie builds on the developments presented
in Ref. 18. Even though the EoS predicts saturation densities to a
very high accuracy, the saturation pressures and critical pressure
are slightly overestimated. This is particularly visible for the green
dashed-dotted lines, where Λ = 1. The same trend can be seen in
Fig. 8 of Ref. 18 for classical Mie fluids.

For classical Mie fluids, the critical temperature and pres-
sure decrease when the repulsive exponent λr increases with a
fixed attractive exponent λa.18,54 The quantum-corrections make the
potential shallower and less attractive. Hence, an increase in the de
Boer parameter is expected to have a similar effect on the phase

envelope as increasing the repulsive exponent of the Mie potential.
Figures 3 and 4 show that this is indeed the case for the Feynman–
Hibbs-corrected potentials with λr = 10 and λr = 12. However,
λr = 24 is an exception from this trend as illustrated in Figs. 3(e), 3(f),
4(e), and 4(f). A comparison of the blue dashed lines and the orange
solid lines shows that Λ = 2 gives a higher saturation pressure than
Λ = 3 at a given temperature.

The deviation from the trend for λr = 24 is caused by the adi-
mensionalization of T, P, and ρ in Figs. 3 and 4, which have been
scaled by the parameters of the Mie potentials, 𝜖 and σ. For Mie-
FH1 and Mie-FH2, these parameters differ from 𝜖eff and σeff, and the
relative difference becomes larger with increasing repulsive expo-
nent. Figure 1 illustrates that 𝜖eff and σeff are more suitable energy
and length scales for the quantum corrected potentials. Indeed, if we
use the effective parameters in the scaling, we recover the expected
monotonic trend (not shown).
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FIG. 4. Vapor–liquid equilibrium dia-
grams for fluids interacting with Mie-
FH2 potentials: Mie(10,6)-FH2 [(a) and
(b)], Mie(12,6)-FH2 [(c) and (d)], and
Mie(24,6)-FH2 [(e) and (f)]. Symbols are
GEMC simulations, while lines are cal-
culations using SAFT-VRQ Mie. Each
plot shows three different values of the
de Boer parameter: Λ = 1 (dashed-
dotted lines, circles), Λ = 2 (dashed
lines, squares), and Λ = 3 (solid lines,
triangles). The stars are scaling-law esti-
mates of critical points.

Figure 5 shows that SAFT-VRQ Mie also reproduces the super-
critical densities and isobaric heat capacities from GEMC simula-
tions to a high accuracy. For supercritical densities, SAFT-VRQ Mie
represents the underlying potential nearly within the accuracy of the
MC-simulations. Isobaric heat capacities are slightly less accurate,
and deviations exceeding 10% can be observed. The softest potential
(10,6) with a higher de Boer parameter has the largest relative devia-
tions, which is apparent by comparing the orange triangles with the
solid line in Fig. 5(b).

B. Describing real fluids
In Sec. IV A, we established that SAFT-VRQ Mie was capa-

ble of describing the thermodynamic properties of generic Mie flu-
ids with Feynman–Hibbs-corrections to a high accuracy. We shall

next exploit the one-to-one correspondence between the EoS and
the interaction potential to identify the parameters 𝜖, σ, λa, and λr
for the Mie-potential (FH0), Mie-FH1, and Mie-FH2 that yield the
best possible representation of real fluids. This one-to-one corre-
spondence allows us to use the EoS to fit the model parameters to
thermophysical and volumetric properties in a wide range of tem-
peratures, pressures, and densities. While one can then employ the
EoS to directly evaluate fluid properties, as an additional benefit, the
parameters can also be employed in the molecular simulation of flu-
ids.60 This is particularly convenient if one wants to study confined
fluids.13

We have regressed the potential parameters for neon, helium,
orthohydrogen, parahydrogen, normal-hydrogen, and deuterium,
and refer to Sec. III C for details on the regression procedure. The
parameter λa was fixed to the London-dispersion exponent 6, which
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FIG. 5. Supercritical densities and iso-
baric heat capacities at reduced pres-
sure P⋆ = 1 for fluids interacting with
Mie-FH2 potentials: Mie(10,6)-FH2 [(a)
and (b)] and Mie(24,6)-FH2 [(c) and (d)].
Symbols are GEMC simulations, while
lines are calculations using SAFT-VRQ
Mie. Each plot shows three different val-
ues of the de Boer parameter: Λ = 1
(dashed lines, circles), Λ = 2 (dashed-
dotted lines, squares), and Λ = 3 (solid
lines, triangles).

is the generally recommended choice for modeling fluids with the
Mie potential.59 Other choices for λa were investigated, but they did
not result in further improvement.

Table II presents the regressed parameters for the interaction
potentials of the real fluids and their resultant average absolute rela-
tive deviations, commonly referred to as average absolute deviations
(AADs), between SAFT-VRQ Mie and the reference EoS. The AADs
have been computed both for properties of the VLE envelope (liquid
density, pressure, liquid isobaric heat capacity, and critical point) as
well as supercritical properties (density, isobaric heat capacity, and
speed of sound). The AADs for supercritical properties are aver-
ages over four temperatures between 50 K and 300 K, and pressures
from 1 bar to 200 bars; helium is an exception in that the lowest
temperature used was 20 K.

The general trend for the regressed parameters is that increas-
ing the order of the Feynman–Hibbs correction decreases σ and
increases 𝜖 and λr (see Table II). These effects are larger for the fluids
that exhibit larger quantum effects, i.e., they are smallest for neon
and largest for helium and hydrogen. The trends for 𝜖 and σ can
be rationalized as follows: since these potentials represent the same
fluid, their 𝜖eff and σeff should be similar at a given temperature.
As discussed in Sec. II A, 𝜖eff < 𝜖 and σeff > σ, where the differ-
ence increases for higher order quantum correction. The potential
parameters in Table II must have the observed trend to counteract
this effect.

In the following, we will examine the representation of each
fluid in further detail.

1. Neon

To identify the optimal parameters for neon, we used the
multiparameter EoS by Katti et al.55 as a reference. For neon, the
Feynman–Hibbs quantum corrections do not offer much improve-
ment, as the quantum effects are small. The optimal repulsive expo-
nent was found to be 9.70 for the Mie-fluid,59 which increases to 13
for Mie-FH1 and Mie-FH2. All three models, Mie-FH0 (no quan-
tum corrections), Mie-FH1, and Mie-FH2 are highly accurate for
PTρ-properties. However, Mie-FH0 has a better accuracy for sat-
uration properties, Mie-FH2 yields better supercritical predictions.
The Mie-FH1 model gives the most accurate predictions of the iso-
baric heat capacities of the saturated liquid-phase, where the Mie-
FH2 model offers little improvement in comparison to the Mie-fluid.
However, this only tells part of the story: the AADs for saturated liq-
uid isochoric heat capacity for the Mie-FH0, Mie-FH1, and Mie-FH2
models are 15.03%, 6.43%, and 2.20%, respectively, i.e., a strong, sys-
tematic improvement with increasing order of the Feynman–Hibbs
correction. This is in agreement with the work by Vlasiuk et al.,61

who also found large improvements for the isochoric heat capacity
of neon by employing Feynman–Hibbs-corrections. We note that
the reference equation for neon incorporates only a single data set
of isochoric heat capacities taken from a 1966 study,62 so the results
should be interpreted with caution.

Figure 6 shows results from SAFT-VRQ Mie for the Mie-
FH1 model (dashed lines), the reference EoS for neon (solid lines),
simulation results (symbols), and the volume-shifted SRK63,64
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TABLE II. Optimal parameters for the interaction potentials of real fluids and average absolute deviations (AADs) relative to the reference equations of state.34,55–57 The
properties are saturated liquid density ρsat, saturation pressure psat, saturated liquid isobaric heat capacity csat

p , critical temperature Tc , supercritical density ρsup, supercritical

isobaric heat capacity csup
p , and supercritical speed of sound wsup.

Parameters %AAD

Substance FH σ/Å (𝜖/kB)/K λr ρsat psat csat
p Tc ρsup csup

p wsup

D2 0 3.1538 21.2 8 2.15 5.24 45.15 1.25 1.42 2.19 9.34
D2 1 3.0203 30.273 10 0.73 0.30 3.18 1.29 0.27 0.59 9.55
D2 2 2.9897 36.913 12 2.37 4.44 32.44 3.51 0.80 1.24 10.86

H2 0 3.2574 17.931 8 3.84 9.01 93.32 3.38 3.44 5.76 3.35
H2 1 3.0243 26.706 9 0.29 2.31 21.59 0.48 0.54 1.84 4.95
H2 2 2.9195 55.729 20 0.33 2.57 40.09 0.87 0.88 0.48 3.82

Hea 0 3.3530 4.44 14.84 7.81 56.53 218.99 0.04 16.08 5.78 15.64
He 1 2.7443 5.4195 9 5.48 34.32 177.23 0.84 2.05 2.24 0.87
He 2 2.5490 10.952 13 7.17 38.37 303.24 0.21 0.75 1.90 0.89

Neb 0 2.8019 29.875 9.6977 0.06 0.40 5.98 1.69 0.67 0.82 1.37
Ne 1 2.7778 37.501 13 0.49 0.40 1.39 1.20 0.36 1.16 0.81
Ne 2 2.7760 37.716 13 0.66 0.69 5.17 1.47 0.22 0.91 0.84

O–H2 0 3.2571 17.935 8 3.82 8.91 93.24 3.58 3.45 5.78 1.24
O–H2 1 3.0239 26.716 9 0.29 2.22 21.50 0.29 0.52 1.85 1.10
O–H2 2 2.9191 55.749 20 0.34 2.48 40.08 0.68 0.88 0.56 1.06

P–H2 0 3.2557 17.849 8 3.91 8.88 91.95 3.22 3.45 5.65 1.30
P–H2 1 3.0235 26.586 9 0.28 2.22 20.77 0.55 0.50 1.80 1.06
P–H2 2 2.9185 55.519 20 0.36 2.47 38.70 0.93 0.93 0.44 0.96

aModels from Ref. 58.
bModels from Ref. 59.

(SRK-VS, dotted line). We evaluated several cubic EoSs and found
that the SRK-VS EoS gave the best accuracy for neon. Cubic EoSs
such as SRK are known to predict poorly the density of the satu-
rated liquid-phase, and a volume-shift is often used to improve on
this.64

The agreement of the Mie-FH1 model with both simulations
and results from the reference EoS is excellent, and generally much
better than SRK. Figures 6(a)–6(e) illustrate that the volume-shift of
SRK does not improve the predictions much as it fails to correct the
slope of the saturation density line. Table II shows that SAFT-VRQ
Mie with Mie-FH1 predicts the saturation density and pressures of
neon within a relative accuracy below 0.5%. Similar to in Sec. IV A,
SAFT-VRQ Mie agrees with GEMC results to a very high accuracy,
with a small deviation at the critical point. The critical tempera-
ture and pressure estimated from GEMC are overestimated slightly
by SAFT-VRQ Mie, where the Mie-FH1 potential is closer to the
experimental results for neon as shown in Fig. 6.

2. Helium
For helium in the supercritical region, quantum corrections

vastly improve predictions of the speed of sound, isobaric heat
capacity, and density in comparison to the classical Mie-fluid,

reducing the AAD in the density and the heat capacity from 16.1%
for Mie-FH0 to 2.1% for Mie-FH1 and 0.8% for Mie-FH2, where a
higher-order quantum correction gives a more accurate representa-
tion.

Figure 7 compares results from SAFT-VRQ Mie with the Mie-
FH1 model to the reference EoS by Ortiz-Vega,56 SRK, and sim-
ulation results. It shows that Mie-FH1 is incapable of represent-
ing the phase envelope of helium to a high accuracy. The largest
deviation is in the saturation pressures of helium, which are sig-
nificantly underpredicted by the Mie-FH potentials, as shown in
Fig. 7(e). This also leads to an underprediction of the vapor-phase
densities, as shown in Fig. 7. Similar results were obtained with
Mie-FH2.

Of the fluids studied in this work, helium has the largest quan-
tum effects. The fluid phase envelope of helium spans from 2.17 K
(triple point) to 5.20 K (critical point). This is much lower than
hydrogen, which has the second largest quantum effects and a triple
point at 13.8 K. Since the Feynman–Hibbs corrections originate in
a high temperature expansion, there is a lower temperature limit
where it is no longer expected to be accurate. We find that the Mie-
FH1 model represents accurately the thermodynamic properties of
the underlying potential and agrees with experiments until about
20 K. This serves as a lower limit for the Feynman–Hibbs-expansion
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FIG. 6. Thermodynamic properties of
neon: supercritical densities (a), iso-
baric heat capacities (b), and vapor–
liquid equilibrium envelopes [(c)–(e)].
The dashed lines are predictions from
SAFT-VRQ Mie for the optimized Mie-
FH1 potential and the symbols are the
corresponding simulation results, where
the stars are scaling-law estimates of the
critical point. The solid lines are obtained
with the reference EoS for neon,55 and
the dotted lines are obtained with the
volume-shifted SRK EoS.63,64

for helium. These conclusions are partially supported by the work of
Trejos and Gil-Villegas,24 who developed an EoS for the Feynman–
Hibbs-corrected square-well potential. While their EoS yielded good
predictions of saturation densities down to 3 K, it severely over-
predicted the critical pressure and was inaccurate for supercritical
isobaric heat capacities.

The reason for the inadequacy of Feynman–Hibbs corrections
may be understood from the low mass and low critical tempera-
ture of helium, since the corrections involve powers of the quan-
tity 1/(T

√
m). Fortunately, the saturation envelope of helium is at

sufficiently low temperatures to be outside the range of most indus-
trial applications, such as hydrogen liquefaction.14 Only supercritical
helium is relevant in this context, and in this region the Feynman–
Hibbs-corrected Mie fluids provide an accurate representation of
helium at moderate pressures.

3. Orthohydrogen, parahydrogen,
and normal-hydrogen

Table II shows how the Feynman–Hibbs corrections signifi-
cantly improve the representation of both spin-isomers of hydro-
gen, namely, ortho-hydrogen (O–H2, for which the spins of the
protons are the same) and para-hydrogen (P–H2, for which the
spins of the protons are opposite), as well as normal-hydrogen. Nor-
mal-hydrogen is synonymous to “hydrogen,” which is the room-
temperature equilibrium configuration, consisting of a 3:1 mixture
of ortho and para-hydrogen. In predicting the thermodynamic prop-
erties of the hydrogen variants, we find that Mie-FH2 is most accu-
rate at supercritical temperatures, where the AADs of the super-
critical density and isobaric heat capacities decrease from 3.4% and
5.8% for the Mie-potential to 0.9% and 0.5% for Mie-FH2. However,
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FIG. 7. Thermodynamic properties of
helium: supercritical densities (a), iso-
baric heat capacities (b), and vapor–
liquid equilibrium envelopes [(c)–(e)].
The dashed lines are predictions from
SAFT-VRQ Mie for the optimized Mie-
FH1 potential, and the symbols are the
corresponding simulation results, where
the stars are scaling-law estimates of the
critical point. The solid lines are obtained
with the reference EoS for helium,56 and
the dotted lines are obtained with the
SRK EoS.63

the Mie-FH1 potential gives the most accurate representation of the
VLE region.

The potential parameters for ortho- and para-hydrogen are
different due to the difference in their residual thermodynamic
properties, as shown in Tables 13–15 in Ref. 34.

The parameters as well as the AADs of the three types of hydro-
gen are very similar. This is expected, as the spin properties of the
nucleus have a small influence on the effective intermolecular poten-
tial, as discussed in Ref. 34. One exception is the speed of sound, w,
in the supercritical region, where ortho and para-hydrogen has sig-
nificantly lower deviations than normal-hydrogen. This makes little
sense, as normal-hydrogen can be represented accurately as an ideal
mixture of its two spin-isomers.34 A closer inspection of Ref. 34
reveals that no speed-of-sound experiments have been carried out
for normal-hydrogen in the regions where the AAD was computed.

For para-hydrogen, where the AAD is lower, there are indeed mea-
surements available,34 and speed-of-sound data for ortho-hydrogen
have been manufactured from these by use of the principle of
corresponding states.

Figure 8 presents results for the supercritical isobars and the
vapor-liquid equilibrium of normal-hydrogen in comparison to the
highly accurate multiparameter EoS by Leachman et al.34 (solid line).
It displays an excellent agreement between SAFT-VRQ Mie and the
simulation results (symbols) as well as with the parameterization of
the experimental data provided by the multiparameter EoS. SAFT-
VRQ Mie improves the predictions by a large margin in comparison
to the volume-shifted SRK cubic equation of state (red dotted lines).
Similar to neon (see Sec. IV B 1), the GEMC results with the Mie-
FH1 potential have a critical pressure which is closer to experiments
than SAFT-VRQ Mie.
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FIG. 8. Thermodynamic properties of
normal-hydrogen: supercritical densi-
ties (a), isobaric heat capacities (b),
and vapor–liquid equilibrium envelopes
[(c)–(e)]. The dashed lines are predic-
tions from SAFT-VRQ Mie for the opti-
mized Mie-FH1 potential and the sym-
bols are the corresponding simulation
results, where the stars are scaling-law
estimates of the critical point. The solid
lines are obtained with the reference
EoS for normal-hydrogen,34 and the dot-
ted lines are obtained with the volume-
shifted SRK EoS.63,64

An interesting behavior shown by helium and hydrogen at the
phase envelope is that both the specific isobaric and the specific iso-
choric heat capacities in the saturated vapor are higher than that
of the corresponding liquid-phase.34,56 This is also seen to a much
smaller extent for deuterium, where the heat capacities are nearly the
same in both phases.57 Classical potentials do not exhibit this feature,
but it can be reproduced by the Mie-FH potentials. The formula for
the heat capacity of Mie-FH potentials displayed in Eq. (63) has a
contribution that includes temperature-derivatives of the potential.
Simulations show that this contribution is negative and increases in
magnitude with increasing density. By heavily weighing saturation
heat capacities in the parameter regression of the Mie-FH poten-
tials, it is possible to qualitatively reproduce this behavior. However,
since this will be on the expense of the accuracy of other variables,
the specific heat capacities at saturation were not weighed in find-
ing the optimal parameters. With the optimal Mie-FH1 parameters

displayed Table II, the heat capacities of the two phases at VLE are
almost equal, which gives high AADs of the liquid-phase heat capac-
ities exceed 20%. This is nonetheless an improvement with respect
to the Mie-potentials. To ensure that these high AADs are not a
result of inaccuracies in the perturbation theory, we performed addi-
tional simulations of the Mie-FH1 model for normal-hydrogen at
saturation densities at 1 bar, which showed excellent agreement with
SAFT-VRQ Mie (not shown).

4. Deuterium
We have plotted results for deuterium in Fig. 9. It displays an

excellent agreement between SAFT-VRQ Mie with Mie-FH1, simu-
lations and the reference EoS57 for prediction of phase equilibria as
well as supercritical properties.

Similar to hydrogen, deuterium has two spin-isomers, ortho-
and para-deuterium. Normal deuterium is a 2:1 mixture of
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FIG. 9. Thermodynamic properties of
normal deuterium: supercritical densi-
ties (a), isobaric heat capacities (b),
and vapor–liquid equilibrium envelopes
[(c)–(e)]. The dashed lines are predic-
tions from SAFT-VRQ Mie for the opti-
mized Mie-FH1 potential and the sym-
bols are the corresponding simulation
results, where the stars are scaling-law
estimates of the critical point. The solid
lines are obtained with the reference EoS
for deuterium,57 and the dotted lines are
obtained with the SRK EoS.63

ortho- and para-deuterium and is the equilibrium configuration at
room temperature.57 The optimal parameters for normal deuterium
are shown in Table II. These parameters can also be used to describe
residual properties of ortho- and para-deuterium with SAFT-VRQ
Mie. This is justified by the fact that the difference in properties of
the spin-isomers of deuterium is smaller than for hydrogen, and the
optimal parameters for normal-hydrogen are almost equal to those
of ortho- and para-hydrogen (see Table II for details). For caloric
properties, one should use the correct ideal gas heat capacities for
each spin isomer.57

Like helium and hydrogen, deuterium has a lower specific heat
capacity in the saturated liquid-phase than in the vapor-phase, even
though the difference is smaller than for hydrogen. Only the Mie-
FH1 model is capable of reproducing this behavior, where the AAD
decreases from 45.2% for Mie-FH0 to 3.5% for Mie-FH1. In fact,
the Mie-FH1 model is by far the most accurate for all the properties

of deuterium except for the critical temperature and the speed of
sound. However, the speed-of-sound measurements for deuterium
display a high degree of scatter that may be the cause of some of the
deviations between SAFT-VRQ Mie and the reference EoS.57

C. General discussion of Feynman–Hibbs corrections
Increasing the order of the Feynman–Hibbs corrections gener-

ally yields more accurate results at high temperatures, which is evi-
dent from the AADs for most of the fluids in Table II. This is further
supported by Fig. 10, which shows an extension of the saturation
line into the supercritical TP-space determined by (∂cp/∂T)P = 0,
i.e., a maximum of the isobaric heat capacity. The extension shown
in Fig. 10 lies close to what is called the Widom line.65 It forms
a continuous extension of the saturation line and goes through a
region of abrupt (but continuous) change in density, as illustrated
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FIG. 10. The experimental critical point
(green circle) and locus corresponding
to (∂cp/∂T)P = 0 for the compo-
nents neon (a) and hydrogen (b) using
SAFT-VRQ Mie with optimized parame-
ters (dashed lines) and the SRK EoS63

(dotted lines). The green solid line is
computed from the reference EoS,34,55

where the states below the critical point
are saturation points.

in, e.g., Fig. 8(a). For all real fluids we consider in this paper, increas-
ing the Feynman–Hibbs-order of the model yields more accurate
predictions of this line.

Although SAFT-VRQ Mie gives a highly accurate representa-
tion of the thermodynamic properties of Mie-FH1 and Mie-FH2
fluids, we find that the simulated properties of the molecular models
often lie closer to experimental data than the perturbation theory.
An example is hydrogen, where Fig. 8 shows that the simulations are
usually closer to the reference data than the predictions by SAFT-
VRQ Mie. This indicates that there is a potential for further improv-
ing the perturbation theory, in particular near the critical point.
Moreover, this also shows that we have avoided overfitting the EoS
to regions where the underlying perturbation theory is inaccurate in
determining the optimal fluid parameters.

Furthermore, the force field implicit in the parameter fit-
ting shows to be robust and transferable and is appropriate for
large molecular simulations (either in size or complexity) to probe
confinement, transport properties, etc. This is a well-established
approach for classical Mie fluids.66–68

Previous work13 has suggested that the LJ-FH1 potential yields
an accurate representation of the VLE envelope of neon, normal
hydrogen, and helium. By performing GEMC simulations with the
same potentials, we were able to reproduce their simulation results
for neon and hydrogen, but obtained different results for helium.
Since SAFT-VRQ Mie accurately reproduces all the new GEMC
results (not shown), we believe the GEMC data presented for helium
in Ref. 13 to be incorrect.

Finally, we mention that supercritical densities and heat capac-
ities for real fluids are more accurately predicted by SAFT-VRQ
Mie than the SRK EoS. This is not shown in Figs. 6–9 to ease
readability.

V. CONCLUSION
Classical interaction potentials with Feynman–Hibbs correc-

tions can be used to accurately describe the thermophysical prop-
erties of fluids influenced by quantum effects at low temperatures
such as helium, hydrogen, neon, and deuterium. In this work, we
have presented an equation of state (EoS) for Mie-fluids with first
(Mie-FH1) and second-order Feynman–Hibbs corrections (Mie-
FH2). The EoS is based on perturbation theory with a third-order
Barker–Henderson expansion of the Helmholtz energy. The EoS is

called SAFT-VRQ Mie, where Q is short for quantum. This paper
is the first in a series of two, where Paper II will be devoted to
mixtures.69

We demonstrated that the SAFT-VRQ Mie EoS reproduces
accurately results from Monte Carlo simulations for generic Mie-
FH1 and Mie-FH2 fluids, where it displays a similar accuracy
as the present state-of-the-art for classical Mie fluids. We next
exploited the link between the EoS and the interaction potentials
to find the optimal force-field parameters to represent the ther-
modynamic properties of neon, helium, normal-hydrogen, ortho-
hydrogen, para-hydrogen, and deuterium. Highly accurate multipa-
rameter EoSs that represent most available experimental data within
their accuracy were used as references.

For all examined fluids, the Feynman–Hibbs corrections sig-
nificantly improved the accuracy in the supercritical regions, where
Mie-FH2 was slightly more accurate than Mie-FH1 except for deu-
terium. The improvement in absolute average deviation (AAD) for
supercritical properties was largest for the fluids with the highest
de Boer parameters, hydrogen and helium, where the AADs of
supercritical densities were reduced from 16% and 3.4% for the Mie-
fluids to 0.8% for Mie-FH2. The Mie-FH1 potential was found to
give the most accurate representation of the phase envelopes for all
fluids except helium. Only a modest improvement at high tempera-
tures was obtained by increasing the order of the quantum correc-
tions from one to two, and Mie-FH2 extrapolated more poorly to
low temperatures than Mie-FH1.

We found that both Mie-FH1 and Mie-FH2 underpredict the
saturation pressure of helium, which results in an underprediction of
the densities of the saturated vapor-phase. We presume that this cor-
responds to a break-down of the high-temperature expansion, and
its validity for helium starts to become questionable at temperatures
below 20 K. Unlike classical fluids, helium and hydrogen have spe-
cific isobaric heat capacities for the saturated vapor-phase which are
higher than those of the liquid-phase. The optimal parameters for
Mie-FH1 and Mie-FH2 do not reproduce this behavior qualitatively,
and the isobaric heat capacities of these fluids are poorly represented
for the saturated liquid-phase.

The potentials developed in the present work are sufficiently
accurate for a wide range of applications. To further increase the
accuracy or extend the range of applicability of the semiclassical
potential approach, we expect that using a more general functional
form than Mie potentials will yield little improvement. Instead,
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perturbing from a quantum hard-sphere system is a promising
path toward further refining the semiclassical potential modeling
approach.
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APPENDIX: LONG-RANGE CORRECTIONS
TO THE PRESSURE AND ENERGY
FOR THE MIE-FH POTENTIAL

When performing computer simulations of the Mie potential
with Feynman–Hibbs corrections, the potential is usually truncated
at a certain cutoff radius rc. To correct for this, one introduces
long-range corrections (LRCs). The Mie-FH2 potential can be writ-
ten as u(r, β) = uC(r) + uD(r, β) + uDD(r, β), where uC is the Mie
potential, uD is the FH1 correction, and uD + uDD is the FH2 cor-
rection. Since the LRCs are additive, it suffices to give the long-
range corrections for uC, uD, and uDD separately; for example, the
long-range correction to the energy per particle can be split as ELRC

= ELRC
C + ELRC

D + ELRC
DD . The corrections to the pressure and energy

are given by the general formulae PLRC
= −(2πρ2

/3) ∫
∞

rc
du
dr r

3dr and
ELRC

= (ρ/2) ∫
∞

rc
4πr2u(r)dr, which means that

ELRC
C = 2πρC𝜖[ σλr

(λr − 3)rλr−3
c
−

σλa

(λa − 3)rλa−3
c
], (A1)

ELRC
D = 2πρC𝜖D[λrσ

λr

rλr−1
c
−
λaσλa

rλa−1
c
], (A2)

ELRC
DD = πρC𝜖D2

[
(λr + 2)λr(λr − 1)σλr

rλr+1
c

−
(λa + 2)λa(λa − 1)σλa

rλa+1
c

],

(A3)

PLRC
C =

2πρ2C𝜖
3
[

λrσλr

(λr − 3)rλr−3
c
−

λaσλa

(λa − 3)rλa−3
c
], (A4)

PLRC
D =

2πρ2C𝜖
3

D[
λr(λr + 2)σλr

rλr−1
c

−
λa(λa + 2)σλa

rλa−1
c

], (A5)

PLRC
DD =

πρ2C𝜖
3

D2
[
(λr + 4)(λr + 2)λr(λr − 1)σλr

rλr+1
c

−
(λa + 4)(λa + 2)λa(λa − 1)σλa

rλa+1
c

]. (A6)
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