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Abstract

The main focus of this master’s thesis is fault-tolerant control systems (FTCSs)
for unmanned aerial vehicles (UAVs). The goals are to develop an automatic-flight
control system (AFCS) with fault detection and isolation (FDI) and a reconfigura-
tion mechanism for accommodation of faults. The literature study reviews methods
for fault-tolerant control and also discusses important faults and failures related to
UAVs.

The FTCS is implemented in MATLAB Simulink with a nonlinear model of the
Cessna 172SP as a simulation plant. Several case studies test the capabilities of
the FTCS using a variety of faults in the absence of noise and disturbances. The
AFCS is tested separately in fault-free conditions.

The AFCS comprises of lookahead-based steering for guidance and a linear-
quadratic (LQ) velocity and rate controller for reference tracking. It was necessary
to implement a kinematic controller to reduce stationary errors. This resulted
in extended control bandwidth which increased the robustness of the AFCS. The
control system gave excellent reference tracking.

Parity space is chosen as the FDI method and variance testing is implemented
for residual validation. The results from the FDI showed that there were large
separations between simulations with and without faults. Multiple faults during a
simulation were also accurately detected.

In a fault situation, fault accommodation is chosen for feedback control. Be-
cause of a narrow control bandwidth of the LQ controller, optimal control was not
achieved for larger faults. However, the kinematic controller increased the band-
width substantially; accurate control was achieved within the extended bandwidth.
Simulations of larger faults showed that increased errors in the LQ controller lead
to rough control signals; this weakens the robustness of the FTCS.
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Sammendrag

Hovedfokuset for denne masteroppgaven er feiltolerante kontrollsystemer (FTCSs)
for ubemannede fly (UAV). Målene er å utvikle et automatisk kontrolsystem for fly
(AFCS) med detektering og isolering av feil (FDI) og en rekonfigureringsmekanisme
for kompansering av feil. Litteraturstudiet gjennomgår metoder for feiltolerant
kontroll og drøfter også viktige feil relatert til UAVer.

FTCSen er implementert i MATLAB Simulink med en ulineær modell av Cessna
172SP som en simulator. Flere case-studier tester egenskapene til FTCSen med en
rekke feil i fravær av støy og forstyrrelser. AFCSen testes separat i feilfrie forhold.

AFCSen består av "lookahead"-basert styring og en lineær-kvadratisk (LQ)
rate- og hastighetskontroller for referansefølging. Det var nødvendig å imple-
mentere en kinematisk kontroller for å redusere stasjonæravvik. Dette resulterte
i utvidet kontrollbåndbredde som økte robustheten til AFCSen. Kontrollsystemet
ga utmerket referansefølging.

"Parity space" er valgt som FDI-metode og variansetesting er implementert for
feildeteksjon. Resultatene fra FDIen viste at det var en stor separasjon mellom
simuleringer med og uten feil. På grunn av dette var det også mulig å oppdage
flere feil i løpet av en simulering.

"Fault accommodation" er valgt for tilbakekobling i en feilsituasjon. På grunn
av smal kontrollbåndbredde på LQ-kontrolleren ble ikke optimal kontroll oppnådd
for større feil. Den kinematiske kontrolleren øker båndbredden vesentlig; nøyaktig
kontroll ble oppnådd innenfor den utvidede båndbredden. Simuleringer av større
feil viste at økt avvik i LQ-kontrolleren fører til grove styresignaler, og dette svekker
robustheten til FTCSen.
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Chapter 1
Introduction

1.1 Motivation

An Unmanned aerial vehicle is defined as "An aerial vehicle that does not require
a human operator and can fly independently or be operated remotely, (...) and
is capable of carrying a lethal or non-lethal payload" (The Oxford Essential Dic-
tionary of the U.S. Military). Though this is a military definition it also applies
for the commercial market. Today UAVs are used for terrain mapping, weather
monitoring, real estate mapping, law enforcement, crop surveying, etc. The need
for aerial monitoring is huge and without UAVs this would be a costly affair. Most
of these tasks require a degree of automatic control so the training of the operator
is minimal.

The advantage of using UAVs is mostly cost related. There is no need for pilots
and the duration of operation depends only on the fuel. A UAV is also able to
travel places where pilots cannot or where there is high risk involved, for instance
disaster areas after nuclear blasts, areas with unstable weather, volcanoes, etc. Also
tedious aerial surveillance can be made fully automatic so that fewer operators are
needed.

Oil extraction in Arctic regions has in the recent years become more probable
because of the development of unmanned vehicles. Drift ice here will pose a threat
for surface vehicles, as it moves freely dependant on wind and currents. Constant
aerial surveillance and mapping of the ice is crucial under these circumstances and
this can be provided by UAVs.

A UAV with a payload can be an expensive piece of equipment and therefore
high demands are set on the automatic flight control system (AFCS). Also in harsh
environments such as the Arctic, failure situations can arise, for instance icing
of a control surface. In these cases the control system should be able to detect
and counteract these failures preventing the aircraft from crashing. Taking failure
situations in to consideration when designing the AFCS will make it fault tolerant.

1.2 Fault Tolerant Control Systems (FTCS)

There is an increasing demand for safety and performance requirements in modern
control systems. Faults occur and conventional control systems may not be able
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to adapt, resulting in reduced performance or even instabilities. Safety-critical
applications such as aircraft, spacecraft, nuclear power plants, chemical plants,
etc. must have capabilities beyond conventional control systems where the cost
and consequences of a malfunction is too great. New control systems must be
capable of maintaining stable control in the event of faults in the system.

Early forms of fault-tolerant control takes shape as monitoring systems, ac-
cording to [Isermann, 2006]. These would observe the outputs of the system and
operate alarms. Typical applications were chemical plants, factories, etc. For air-
craft systems fault tolerance has always been in the form of hardware redundancy.
This resolves faults by adding additional flight controls, sensors, actuators, etc.,
which could substitute the broken components during flight. For instance, Boeing
777 has quadruplex actuator redundancy, i.e. four actuators for the same control
surface. Additionally, along with the introduction of fly-by-wire systems, analyti-
cal redundancy (software redundancy) was introduced in the late 1970s [Zhang and
Jiang, 2008]. As flight computers became more advanced the possibility of more
complicated control systems made it possible to reduce hardware redundancy.

Low weight is crucial for UAVs, the bigger the UAV the more expensive it is
to operate. Therefore, hardware redundancy is very limited and the development
of reliable analytical redundancy is important. These computer systems must be
computationally light because of limitations on CPUs and onboard power supply.

According to [Zhang and Jiang, 2008] "a closed-loop control system which can
tolerate component malfunctions, while maintaining desirable performance and sta-
bility properties is said to be a fault-tolerant control system" (FTCS). The FTCS
can be divided in two main parts:

The first part of the FTCS is detecting that a fault has occurred and determining
its origin. Such systems have many names but a list of definitions are given by
[Isermann, 2006]:

Fault detection: Determination of faults present in a system and time of detec-
tion;

Fault isolation: Determination of kind, location and time of detection of a fault
by evaluating symptoms. Follows fault detection;

Fault identification: Determination of the size and time-variant behaviour of a
fault. Follows fault isolation;

Fault diagnosis: Determination of kind, size, location and time of detection of a
fault by evaluating symptoms. Follows fault detection.

A combination of these terms form the terminology commonly used in this field.
Fault detection and diagnosis (FDD) is the most comprehensive system and is
commonly referred to as fault detection and isolation with identification [Zhang
and Jiang, 2008]. Fault detection and isolation (FDI) is another design. According
to [Isermann, 2006] this does not identify the size of the fault. Due to the field’s
lack of consistent terminology, these terms are often used interchangeably in the
literature.
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Figure 1.1: An active-fault-tolerant control scheme. u is control inputs and y is
system measurements. The figure is adapted from Fig 1 in [Zhang and Jiang, 2008]

The second part of the FTCS is the control system. The reconfiguration mech-
anism has to reconfigure the parameters of the controller, i.e. retuning the con-
troller. Such systems are called reconfigurable control systems according to [Zhang
and Jiang, 2008]. The same principle is also covered by [Blanke et al., 2006]; how-
ever this is introduced as fault accommodation which will be the terminology used
in this thesis. In some cases the reconfiguration mechanism has to alter the struc-
ture of the controller. This could imply rearranging the order of the controllers or
introduce a new controller. This approach, according to [Zhang and Jiang, 2008],
is called restructable control systems and in [Blanke et al., 2006] referred to as
control reconfiguration. The problem of control allocation also falls into this part
of the FTCS. This is the problem of finding the optimal arrangement of actuators
to accomplish the desired behaviour.

There are two main classifications of FTCS: passive (PFTCS) and active (AFTCS).
A PFTCS is designed with a selection of faults in mind. Thus a reconfiguration
mechanism is not required since predesigned controllers take over when faults are
detected. Also FDD techniques may not be necessary. AFTCSs use fault detection
and fault accommodation/reconfiguration methods described above to achieve fault
tolerance. They are also referred to as reconfigurable, restructable, self-repairing
or self-designing control systems and have the capabilities of altering or redesigning
a controller.

A simplified figure of a typical active-FTCS can be seen in Figure 1.1. From
the figure it is seen that the inputs and outputs (I/O) of the system are considered
in the FDD, thus a comparison is performed. The result is a decision sent to the
reconfiguration-mechanism block which in turn alters the existing control system.
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1.3 Contribution of this Thesis
In this thesis several parts related to fault-tolerance will be explored, developed
and implemented through simulations:

• Development of an automatic flight control system (AFCS).

• Development of a linear fault detection and isolation (FDI) system using the
parity space method.

• Development of fault accommodation for model-based control to counteract
occurring faults.

• Implement the fault-tolerant control system on the fixed-wing aircraft Cessna
172SP by using MATLAB Simulink as a simulation platform. The simulation
plant used is from [Vistnes, 2012], Section 1.6.

1.4 Outline of the Thesis
This thesis is divided in 9 chapters presented below. Figure 1.2 describes the
structure of the system and has references to theory and the implementation of
each block.

Chapter 2 Literature Study: In this chapter a literature review will be per-
formed on FTCSs, including types of faults and methods used for detection
and isolation. In the last section the methods are discussed and the FTCS in
this thesis is defined.

Chapter 3 Aircraft Modelling: Necessary background theory about aircraft mod-
elling is presented in this chapter.

Chapter 4 Control Theory: This chapter presents relevant control theory which
will be used later in the thesis.

Chapter 5 Implementation: The theory described in the preceding chapters is
implemented, constructing a simulation platform for the FTCS using MAT-
LAB Simulink.

Chapter 6 Results and Discussion on the AFCS: The results from the AFCS
are presented and discussed separately assuming a fault-free system.

Chapter 7 Case Study: The FTCS is tested through 7 case studies. Different
parts of the FTCS are tested and a variety of faults are used.

Chapter 8 Discussion: A discussion is performed based on the 7 case studies.
General topics are discussed at the end.

Chapter 9 Conclusion and Future work: Conclusions are drawn based on the
overall results. Also, future work which requires investigation is outlined in
order to further develop the FTCS.

4



Chapter 1. Introduction
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FDI
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Th. 2.3
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Figure 1.2: This is an overview of the fault-tolerant control system (FTCS) with
references to the theory (Th.) and implementation (Imp.) of these systems. The
abbreviations are: automatic flight control system (AFCS), fault detection and
isolation (FDI).

1.5 Assumptions
Assumptions will be made throughout the thesis; however the most important ones
are presented here:

• Euler angles will be used in the development of the aircraft model. It is
assumed that θ 6= π

2 as this will result in a singular Jacobian matrix as shall
be discussed in Section A.3. The aircraft used in this thesis is the Cessna
172SP and is not capable of advanced flight manoeuvres resulting in θ = π

2 .

• A decoupled aircraft model will be developed in this thesis. It is assumed that
the longitudinal channel and the lateral channel do not effect one another.

• Fault identification will not be apart of this thesis. It is therefore assumed
that the fault is estimated correctly.

1.6 Aircraft Model
The aircraft model used in this thesis is based on the civil utility aircraft, Cessna
172SP, from [Vistnes, 2012]. The nonlinear model [Vistnes, 2012] is developed with
least-squares method for system identification. [Vistnes, 2012] uses both online and
offline methods and the raw data is obtained from the X-Plane flight simulator.
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Chapter 2
Literature Study

2.1 Faults and Failures
The terms fault and failure are used to describe different degrees of system degra-
dation. According to [Isermann, 2006], in cooperation with IFAC SAFEPROCESS
Technical Committee, a fault is defined as "an unpermitted deviation of at least
one characteristic property or parameter of the system from the acceptable/usual/-
standard condition". A failure is defined as "a permanent interruption of a system’s
ability to perform a required function under specified operating conditions". Thus,
a failure is more severe than a fault. However, these terms are dependent on rela-
tivity. For instance, an actuator failure occurs on one of the ailerons leaving this
control surface unusable. Relative to the overall control, the failure can be inter-
preted as a fault. This is because by using the rest of the control surfaces differently
the aircraft is still controllable.

In aircraft (or vehicles in general) faults can enter the system in three ways: as
actuator faults, system faults or sensor faults. This is illustrated in Figure 2.1. As
the plant is an input/output model (y/u) the dynamics of each block in Figure 2.1
is viewed as one output. However, it is common to separate the sensors from the
rest of the plant and as a result faulty sensors can be solved independently with
the use of sensor redundancy. This concept is introduced in [Sørensen, 2011]. [Alwi
et al., 2011] lists up some common sensor faults that has to be accounted for in
fault-tolerant sensor systems. These are:

- Bias: A bias is a constant error on the sensor output.

- Freezing: When a sensor malfunctions it can sometimes freeze at an arbitrary
value.

- Drift: Sensor drift is a steady increase in deviation of the sensor output.

- Loss of accuracy: The sensor loses accuracy.

- Calibration error: A loss of physical meaning of the sensor readout.

Actuator and system faults, on the other hand, cannot be separated as it is
impossible to measure τ directly. Examples of system faults is structural damage
to the vehicle. For aircraft this could be a change in the aerodynamics or a change
in the centre of gravity.
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yu ymActuators System Sensorsτ

Actuator
faults

System
faults

Sensor
faults

The Plant

Figure 2.1: Types of faults that influence the vehicle. u is the control command
which commands the actuators; τ is the force generated by the actuators that cause
motion in the system; ym is the measurements received by the sensors and y is the
output of the system calculated by the sensor model.

2.1.1 Actuator Faults
According to [Alwi et al., 2011] actuator faults are divided in four categories as
seen in Figure 2.2.

(a) Actuator lock is a failure caused by a mechanical jam such that the actuator
is locked in place.

(b) A float failure occurs when the actuator loses total hydraulic or pneumatic
pressure. The result is a freely-moving control surface that does not con-
tribute to lift.

(c) A hardover actuator failure is when the actuator moves to maximum de-
flection due to electrical or software faults.

(d) Loss of effectiveness is an actuator fault which is a result of a partial loss
of hydraulic or pneumatic pressure. This fault is modelled as a proportional
loss of effect as seen in (2.1.1).

uim = (1− γi)uic (2.1.1)

where i denotes the actuator number, um is the actual control output when
the control surface is faulty, uc is the calculated control output for a fault-free
actuator and γ effect-reduction factor.
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Figure 2.2: Types of actuator faults [Alwi et al., 2011]

Figure 2.3: overview of FDD methods [Zhang and Jiang, 2008]
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2.2 Fault Detection and Diagnosis
As mentioned preliminary FDD is the most comprehensive system. It includes
fault identification which determines the size of the fault, [Isermann, 2006]. Fault
identification can be viewed as a different part of the system, separating the fault
identification from the FDI.

First and foremost the FDD methods can be divided in two main parts: Model-
based and data-based methods. Figure 2.3 gives an overview of methods that
can be implemented in their respective categories. The data-based (or model-free)
methods bases the decision on presence of faults on data pools. This thesis will
focus on quantitative-model-based methods.

The following terminology is defined in [Isermann, 2006]:

Quantitative models: Use of static and dynamic relation among system vari-
ables and parameters in order to describe system’s behaviour in quantitative
mathematical terms.

Residual: a fault indicator based on a deviation between measurements and model-
equation based computations.

Figure 2.4 shows a structure of a typical FDI scheme. The problem of FDI is
twofold: Residual generation and residual validation. A residual is generated by
comparing elements from the system with mathematical models. Methods com-
monly used in FDD/FDI to construct mathematical models are parameter esti-
mation, state estimation, parity space or a combination of them. The first two
methods mentioned are often used to construct a post-fault model by estimating
the behaviour of the system. In these cases the fault identification can be included
in the FDI resulting in a FDD system. Parity space on the other hand compares a
fault-free mathematical model with the faulty system.

Residual validation analyses the residual and determines whether a fault has
occurred or not. Methods used for this task varies. A generalized list is given in
[Zhang and Jiang, 2008]:

• Threshold test on instantaneous or moving average values of the residuals.

• Statistical methods.

• Methods based on fuzzy logic symptom evaluation.

• Methods based on neural network pattern classification.
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Figure 2.4: A model-based FDI structure divided in two stages residual generation
and residual validation. u is the controller input, ys is the system output, ym is
the model output and r is the residual.

2.2.1 The Parity Space Approach

Parity space is defined in [Patton and Chen, 1994] "as a space in which all elements
are residuals (or parity vectors). Residuals and parity vectors are synonyms in this
context". The idea of parity space approaches is to compare the outputs of the
system with the output of a fault-free model, by generating residuals. In [Patton
and Chen, 1994] this is elaborated by using a discrete-linear-state-space model of
the monitored system at time k:

x(k + 1) =Ax(k) +Bu(k) +R1f(k) (2.2.1)
y(k) =Cx(k) +Du(k) +R2f(k) (2.2.2)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rm is the output of the system,
u(k) ∈ Rr is the control input and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rm×n and
D ∈ Rm×r are known system matrices. f(k) ∈ Rq is a fault vector where each
element f i(k) (i = 1, 2, · · · , q) corresponds to a specific fault. These are unknown
time functions. R1 ∈ Rn×q and R2 ∈ Rm×q are fault entry matrices and represents
the effect of the faults on the system.

The input-output description of the system can be developed by inserting the
Laplace transformation of (2.2.1) into (2.2.2):

(zI −A)x(z) =Bu(z) +R1f(z)

x(z) =(zI −A)−1 [Bu(z) +R1f(z)] (2.2.3)

and
y(z) = Cx(z) +Du(z) +R2f(z) (2.2.4)

Inserting x(z) gives:

y(z) =C
[
(zI −A)−1Bu(z)

]
+C

[
(zI −A)−1R1f(z)

]
+Du(z) +R2f(z)

(2.2.5)

y(z) =
[
C(zI −A)−1B +D

]
u(z) +

[
C(zI −A)−1R1 +R2

]
f(z) (2.2.6)
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(2.2.6) is written more compactly by the definitions (2.2.8) and (2.2.9):

y(z) =Guu(z) +Gff(z) (2.2.7)

Gu ,C(zI −A)−1B +D (2.2.8)

Gf ,C(zI −A)−1R1 +R2 (2.2.9)

The Parity Space

The parity space or residual r(z) is realized by defining:

r(z) ,Hu(z)u(z) +Hy(z)y(z) (2.2.10)

Figure 2.5 shows a block diagram of this set-up. For a fault-free system the residual
should be zero. To achieve this it is assumed that the model catches the dynamics
of the system perfectly. This is called the certainty equivalence principle.

r(z) = 0 and y(z) = Gu(x)u(z) (2.2.11)

Applying (2.2.11) to (2.2.10) gives:

Hu(z) = −Hy(z)Gu(z) (2.2.12)

The residual generator is designed by choosing the appropriate transfer matrices
Hu(z) and Hy(z). These have to satisfy (2.2.12). These matrices will typically be
a selection matrix, containing ones and zeros, which selects the desired states.

Further, by inserting (2.2.7) into (2.2.11) the fault dynamics can be modelled:

r(z) =Hu(z)u(z) +Hy(z) [Guu(z) +Gff(z)] (2.2.13)
= [Hu(z) +Hy(z)Gu]u(z) +Hy(z)Gff(z) (2.2.14)

By the assumption of certainty equivalence, (2.2.12) is inserted for Hu(z):

r(z) = [−Hy(z)Gu(z) +Hy(z)Gu]u(z) +Hy(z)Gff(z) (2.2.15)
r(z) =Hy(z)Gff(z) (2.2.16)

The fault dynamics are then described by inserting Gf :

r(z) = Hy(z)
[
C(zI −A)−1R1 +R2

]
f(z) (2.2.17)

According to [Frank, 1990] the residual r can be used as the residual directly,
however in [Blanke et al., 2006] it is proposed that r is filtered such that:

ε = Hrfr(z) (2.2.18)

where Hrf is the residual filter.
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Hy(z)

+
+

u(z) y(z)

r(z)

Residual Generator

System, Gu(z)

Figure 2.5: The transfer function structure of a residual generator [Patton and
Chen, 1994], whereHy(z) andHu(z) are design matrices,Hu(z) = −Hy(z)Gu(z)
and Gu is the transfer function describing the input-output model of the fault-free
system, (2.2.8)

2.2.2 Statistical Residual Validation Methods
Windowing

Windowing is a method used in signal processing for looking at a selected part of
a signal. Windowing can be used to create a set of data which the analysis can be
based upon. Defining the window signal w(k), a rectangular window is given by:

w(k) ,

{
1 M1 ≤ k ≤M2

0 otherwise (2.2.19)

where M1 and M2 can be time or sample variables which defines the size of the
window. Data from a signal x(k) is limited by windowing:

y(k) = x(k)w(k) (2.2.20)

The result is the limited signal y(k):

y(k) =

{
x(k) M1 ≤ k ≤M2

0 otherwise (2.2.21)

Variance Testing

The variance of a signal refers to how spread the signal is from the expected value.
A signal x(k) is evaluated at time t = k. Using a moving window of size n, that is
n − 1 historical values, x(i) is defined where i = {k − (n− 1), · · · , k − 1, k}. The
definition of mean and variance is given in [Sørensen, 2011]:

x̄k =
1

n

k∑
i=k−(n−1)

x(i) (2.2.22)

σ2
k =

n

n− 1

 k∑
i=k−(n−1)

x(i)2 − x̄2
k

 (2.2.23)
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Derivations of the recursive version of (2.2.22) and (2.2.23) are given below. The
idea is that the current mean and variance is to be updated as the moving window
moves one step. This means adding a term at t = k and subtracting the term at
t = k− (n− 1). At time t = k, x̄k−1 is known form the previous recursion and can
be extracted from (2.2.22):

x̄k =
1

n

k−1∑
i=k−(n−1)

x(i) +
1

n
x(k) (2.2.24)

(2.2.25)

The first element of xk−1 (at t = k − 1− (n− 1)), is missing from the summation
and is therefore added and subtracted in the following equation:

x̄k =
1

n

k−1∑
i=k−1−(n−1)

x(i) +
1

n
x(k)− 1

n
x(k − 1− (n− 1)) (2.2.26)

= x̄k−1 +
1

n
[x(k)− x(k − 1− (n− 1))] (2.2.27)

The equation for variation is derived by defining a function y(k):

y(k) ,
1

n

k∑
i=k+1−(n−1)

x(i)2 (2.2.28)

The recursive version is derived similar to (2.2.27):

y(k) = y(k − 1) +
1

n

[
x(k)2 − x(k − 1− (n− 1))2

]
(2.2.29)

The variance is then given by:

σ2
k =

n

n− 1

[
y(k)− x̄2

k

]
(2.2.30)

2.3 Fault Accommodation for Model-Based Con-
trol

This section is based on [Blanke et al., 2006]. Linear quadratic optimal control is
derived in Section 4.2 and relies on a linear model. It produces a control law based
on the model given by (4.2.1). When the system is fault-free this system can be
written as:

ẋ = Ax+
∑
i∈I
Biui (2.3.1)

where I is the set of all actuators and i is the actuator number. When a faults
occur the system dynamics change. IN and IF are subsets of I where IN are

14
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the normal-functioning actuators and IF are the faulty ones. The faulty system
becomes:

ẋ = Ax+
∑
i∈IN

Biui +
∑
i∈IF

βi(ui, θi) (2.3.2)

where
∑
i∈IN

Biui is the contribution of the healthy actuators and
∑
i∈IF

βi(ui, θi) is

the contribution of the faulty actuators.
When a Fault is introduced into the system the fault has to be identified. This

falls under the field of fault identification. As mentioned in Section 2.2 this can
be done by state or parameter estimation methods. The post-fault model where
faults are estimated can be written as:

ẋ = Ax+
∑
i∈IN

Biui +
∑
i∈IF

β̂i(ui, θi) (2.3.3)

When a linear model is utilized this can be rewritten as:

ẋ = Ax+
∑
i∈IN

Biui +
∑
j∈IF

B̂juj (2.3.4)

Finding the optimal control law of (2.3.4) using LQ methods is presented in
Section 4.2.

2.4 Discussion and Definition of Thesis
This thesis will concentrate on actuator faults. Of those introduced in Section 2.1.1
loss of effectiveness will be implemented and be the main focus. More specifically
the faults considered will be on the ailerons and elevator. These control the roll and
pitch motions as seen in Section 3.5. These are chosen because they are the main
stabilizing control surfaces and therefore will give the most interesting results.

As aircraft have fast dynamics the FDI chosen should have a quick reaction time
to faults. Also, power supply on an aircraft or drone is limited and the method
should also be computationally light to support this. Based on this knowledge a
linear parity space is chosen for the FDI [Patton and Chen, 1994]. A perk with using
this method is that "parity space does not require knowledge of fault behaviour"
[Patton and Chen, 1994]. This implies that the parity space could detect faults
that were not accounted for when the FDI was designed. For validation of the
residual statistical methods are chosen, more specifically variance testing.

Fault identification will not be implemented in this thesis, which is the determi-
nation of the size of the fault. However to be able to apply fault tolerant control,
it is assumed that the fault is estimated and a correct value is found. A linear
model is derived to be used for the FDI. The same model is used to apply a linear
quadratic (LQ) controller for the AFCS. This opens the possibility of using fault
accommodation for LQ presented by [Blanke et al., 2006].
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Chapter 3
Aircraft Modelling

The dynamics of an aircraft can be divided in two main parts: The kinematics and
the kinetics.

The kinematics describe the motion and the geometry of a system without
regarding forces and moments. To be able to describe the relations between inde-
pendently moving objects, reference frames are defined. Appendix A will elaborate
on this as well as define vector and matrix notations which will be used throughout
this thesis. Also rotation matrices for linear and angular rotation is defined.

The kinetics describe the forces and moments that act on the vehicle. In this
chapter the equations of motion (3.1.2) is presented and applied for aircraft. Also
a linearisation of the nonlinear aircraft model which was presented in Section 1.6
is derived.

3.1 Equations of Motion

The 6 degrees-of-freedom (DOFs) equation of motion is expressed by [Fossen, 2011a]
as:

η̇ = JΘ(η)ν (3.1.1)
MRBν̇ +NRBν +Gη = τ (3.1.2)

where 3.1.1 is the kinematic equation elaborated in the Appendix A. MRB is the
rigid-body mass matrix,NRB is the rigid-body Coriolis and centripetal matrix and
G is the matrix of gravitational forces. τ is the aerodynamic forces and moments
and also contain contributions of the control surfaces. The derivation of (3.1.2)
using the Euler-Newton formulation can be found in [Fossen, 2011a].

The equations of motion for an aircraft is derived in [Fossen, 2011b] and is given
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on component form as:

m(U̇ +QW −RV + g sin(Θ)) = X

m(V̇ + UR−WP − g cos(Θ) sin(Φ)) = Y

m(Ẇ + V P −QU − g cos(Θ) cos(Φ)) = Z

IxṖ − Ixz(Ṙ+ PQ) + (Iz − Iy)QR = L (3.1.3)

IyQ̇+ Ixz(P
2 −R2) + (Ix − Iz)PR = M

IzṘ− IxzṖ + (Iy − Ix)PQ+ IxzQR = N

3.1.1 Inertia Matrix
From [Fossen, 2011a] the inertia matrix can be expressed, around the centre of
gravity as:

ICG ,

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iy

 (3.1.4)

For aircraft it is realistic to assume xz-plane symmetry (Ixy = Iyz = 0), [Fossen,
2011b]. This reduces the inertia matrix to:

ICG ,

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iy

 (3.1.5)

3.2 Linear State-Space Model Using Perturbation
Theory

Perturbation theory is a method used to linearise non-linear equations of motion.
Each state is divided in a normal value, which are called the nominal value and a
perturbation (a deviation) from the nominal value. The states are defined as:

Φ
Θ
Ψ

 ,

Φ0

Θ0

Ψ0

+

φθ
ψ

 , ν , ν0 + δν =


U0

V0

W0

P0

Q0

R0

+


u
v
w
p
q
r

 (3.2.1)

τ , τ 0 + δτ =


X0

Y0

Z0

L0

M0

N0

+


δX
δY
δZ
δL
δM
δN

 (3.2.2)
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where the left side of the equation is defined in Appendix A.2. The linearised state-
space model is derived by inserting (3.2.1) and (3.2.2) into (3.1.3) and separating
the equilibrium conditions (3.2.3) from the perturbation equations (3.2.4). In ad-
dition it is assumed that φ, θ and ψ are small such that sin(·) ≈ · and cos(·) ≈ 1.
The derivation is given in [Fossen, 2011b] and the result is:

Equilibrium Conditions:

m(U̇0 +Q0W0 −R0V0 + g sin(Θ0)) = X0

m(V̇0 + U0R0 −W0P0 − g cos(Θ0) sin(Φ0)) = Y0

m(Ẇ0 + V0P0 −Q0U0 − g cos(Θ0) cos(Φ0)) = Z0

IxṖ0 − Ixz(Ṙ0 + P0Q0) + (Iz − Iy)Q0R0 = L0

IyQ̇0 + Ixz(P
2
0 −R2

0) + (Ix − Iz)P0R0 = M0

IzṘ0 − IxzṖ0 + (Iy − Ix)P0Q0 + IxzQ0R0 = N0

(3.2.3)

Perturbation Equations:

m [u̇+Q0w +W0q −R0v − V0r + g cos(Θ0)θ] = δX

m [v̇ + U0r +R0u−W0p− P0w − g cos(Θ0) cos(Φ0)φ+ g sin(Θ0) sin(Φ0)θ] = δY

m [ẇ + V0p+ P0v − U0q −Q0u+ g cos(Θ0) sin(Φ0)φ+ g sin(Θ0) cos(Φ0)θ] = δZ

Ixṗ− Ixz ṙ + (Iz − Iy)(Q0r +R0q)− Ixz(P0q +Q0p) = δL

Iy q̇ + (Ix − Iz)(P0r +R0p)− 2Ixz(R0r + P0p) = δM

Iz ṙ − Ixz ṗ+ (Iy − Ix)(P0q +Q0p) + Ixz(Q0r +R0q) = δN
(3.2.4)

3.3 Decoupling of Longitudinal and Lateral Chan-
nels

It is common to decouple the longitudinal and lateral channels. That is, separating
the degrees of freedom (DOFs) 1, 3 and 5, from the DOFs 2, 4 and 6. In other words
this assumes that the longitudinal motions does not affect the lateral and vice versa.
This assumption divides the system in two, which reduces the complexity of the
system.

From (3.2.4) the terms with v, p and r is neglected in the longitudinal channel
and terms with u, w and q are neglected in the lateral channel.
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3.3.1 Longitudinal Channel
From (3.2.4) the longitudinal DOFs are:

m [u̇+Q0w +W0q + g cos(Θ0)θ] = δX

m [ẇ − U0q −Q0u+ g sin(Θ0) cos(Φ0)θ] = δZ (3.3.1)
Iy q̇ = δM

On matrix form the longitudinal channel can be expressed as:

M loδν̇lo +N loδνlo +Gloδηlo = δτ lo (3.3.2)

where the matrices are:

M lo =

m 0 0
0 m 0
0 0 Iy

 , N lo =

 0 mQ0 mW0

−mQ0 0 −mU0

0 0 0

 ,
Glo =

 mg cos(Θ0)
mg sin(Θ0) cos(Φ0)

0

 , (3.3.3)

and vectors are

δνlo =

uw
q

 , δηlo = θ, δτ lo =

δXδZ
δM

 (3.3.4)

3.3.2 Lateral Channel
From (3.2.4) the lateral DOFs are:

m [v̇ + U0r −W0p− g cos(Θ0) cos(Φ0)φ] = δY

Ixṗ− Ixz ṙ + (Iz − Iy)Q0r − IxzQ0p = δL (3.3.5)
Iz ṙ − Ixz ṗ+ (Iy − Ix)Q0p+ IxzQ0r = δN

On matrix form the lateral channel can be expressed as:

M laδν̇la +N laδνla +Glaδηla = δτ la (3.3.6)

where the matrices are

M la =

m 0 0
0 Ix −Ixz
0 −Ixz Iz

 , N la =

0 −mW0 mU0

0 −IxzQ0 (Iz − Iy)Q0

0 (Iy − Ix)Q0 IxzQ0

 ,
Gla =

−mg cos(Θ0) cos(Φ0)
0
0

 , (3.3.7)

and the vectors are

δνla =

vp
r

 , δηla =

[
φ
ψ

]
, δτ la =

δYδL
δN

 (3.3.8)
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3.4 Aircraft Model using Stability and Wind Axes

The model derived in Section 3.3 contains two rather useless states: V and W
that is side and vertical velocity. These are closely related to, and can therefore
be replaced by, the sideslip angle and the angle of attack. By including the two
angles in the model it is easier to keep the aircraft stable in a control situation, as
both of these should be regulated to zero. Also as seen in Section 3.6 these angles
are used frequently to describe the model, therefore it is advantageous to include
them as states.

Assumption 1 It is assumed that α and β is small such that cos(·) ≈ 1 and
sin(·) ≈ ·. It follows that U = VT . From equations (A.4.1) and (A.4.2), the angle
of attack and the sideslip angle can be written as:

sin(α)

cos(α)
≈ α =

W

VT
and sin(β) ≈ β =

V

VT
(3.4.1)

According to [Fossen, 2011b], when linear theory is applied the derivatives can
be expressed as:

α̇ =
1

VT
Ẇ and β̇ =

1

VT
V̇ (3.4.2)

The new state vector is:

ν =


U
β′

α′

P
Q
R

 , ν0 + δν =


U0

β0

α0

P0

Q0

R0

+


u
β
α
p
q
r

 (3.4.3)

The decoupled models can now be derived from (3.3.2) and (3.3.6) by inserting
(3.4.1) and (3.4.2):

Longitudinal Model

m 0 0
0 VTm 0
0 0 Iy

u̇α̇
q̇

+

 0 VTmQ0 mW0

−mQ0 0 −mU0

0 0 0

uα
q


+

 mg cos(Θ0)
mg sin(Θ0) cos(Φ0)

0

 θ =

δXδZ
δM

 (3.4.4)
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AileronsRudder

Elevator

Flaps

Figure 3.1: Control Surfaces (McLean 1990).

Lateral Model

VTm 0 0
0 Ix −Ixz
0 −Ixz Iz

β̇ṗ
ṙ

+

0 −mW0 mU0

0 −IxzQ0 (Iz − Iy)Q0

0 (Iy − Ix)Q0 IxzQ0

βp
r


+

−mg cos(Θ0) cos(Φ0)
0
0

[φ
ψ

]
=

δYδL
δN

 (3.4.5)

Equilibrium Conditions

The equilibrium conditions are found by using Assumption 1 and inserting (3.4.2)
in (3.2.3).

3.5 Aerodynamic Forces and Moments

The aerodynamic forces and moments are divided in three parts: aerodynamic
added mass, aerodynamic damping and forces and moments due to deflections of
the control surfaces. On matrix form (3.5.1) these areMF ,NF andB respectively.
The linear system which is the right hand side of equation (3.1.2) can be expressed
as:

τ = MF ν̇ +NFν +Bu (3.5.1)

For conventional aircraft added mass can be neglected.
To control the attitude, the aircraft is equipped with three main control surfaces:

Ailerons (δA) for roll, elevator (δE) for pitch and rudder (δR) for yaw see Figure
3.1. The airspeed is controlled by thrust using the throttle (δT ) and additional lift
can be induced by the flaps (δF ).

For a nonlinear system the right hand side of (3.1.2) can be expressed as:

τNL = [X,Y, Z, L,M,N ]T = f(x, u) (3.5.2)
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These terms are also commonly expressed as aerodynamic coefficients [Klein and
Morelli, 2006] C(·).

Ci = Ci(α, β,M, h, δs, ) (3.5.3)

for i = {D,Y, L, l,m, n} where α is the angle of attack, β is the sideslip angle,
M is the Mach number, h is the altitude and δs is the control surfaces where
s = {T,E, F,A,R}.

f b =

XY
Z

 = q̄S

CXCY
CZ

 , mb =

LM
N

 = q̄S

 bClc̄Cm
bCn

 (3.5.4)

where q̄ is given by (3.6.5) and S, b and c̄ are found in Appendix B. Here CX
and CZ can also be written as a function of the drag coefficient CD and the lift
coefficient CL such that:

CX = q̄S[−CD cos(α) + CL sin(α)] (3.5.5)
CZ = q̄S[−CD sin(α)− CL cos(α)] (3.5.6)

By linearising (3.5.4) using partial differentiation (4.1.2), the aerodynamic forces
and moments can be written on matrix form (3.5.1), where each element of the ma-
trices are aerodynamic derivatives. This results in an equilibrium part τ 0 and a
perturbation around the equilibrium δτ such that:

τ = τ 0 + δτ (3.5.7)

Also the control surface vector is defined as

u ,


δT
δE
δF
δA
δR

 =


δT0

δE0

δF0

δA0

δR0

+


δt
δe
δf
δa
δr

 (3.5.8)

In the subsequent sections partial differentiation around an equilibrium point,
[x0, u0], will be expressed as XU , which is a partial differentiation of X with respect
to U :

XU ⇔
∂X

∂U

∣∣∣∣
[x0,u0]

(3.5.9)

3.5.1 Longitudinal Channel
τ 0lo = flo(x0, u0) (3.5.10)

Control surfaces in the longitudinal channel include thrust, elevator and flaps:

δulo =

δtδe
δf

 (3.5.11)
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The perturbation model becomes:

δτ lo =

δXδZ
δM

 =

NFlo︷ ︸︸ ︷XU Xα′ XQ

ZU Zα′ ZQ
MU Mα′ MQ

 δνlo +

Blo︷ ︸︸ ︷XδT XδE XδF

ZδT ZδE ZδF
MδT MδE MδF

 δulo (3.5.12)

3.5.2 Lateral Channel

τ 0la = fla(x0, u0) (3.5.13)

Control surfaces in the lateral channel include ailerons and rudder:

δula =

[
δa
δr

]
(3.5.14)

δτ la =

δYδL
δN

 =

NFla︷ ︸︸ ︷Yβ′ YP YR
Lβ′ LP LR
Nβ′ NP NR

 δνla +

Bla︷ ︸︸ ︷YδA YδR
LδA LδR
NδA NδR

 δula (3.5.15)

3.6 Development of Linear Model for the Cessna
172SP

In this section the linear model of the Cessna 172SP is derived. The nonlinear
model from [Vistnes, 2012] uses aerodynamic coefficients and is linearised using
partial differentiation as described above. The values of the coefficients along with
a description are found in Appendix B. In addition to this list q̄ is the dynamic
pressure given by (3.6.5).

3.6.1 Nonlinear Equations of Aerodynamic Forces and Mo-
ments

The following equations are obtained from Appendix E.4 and E.5 in [Vistnes, 2012].
The model for the landing gear is not required as this is designed to only produce
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forces and moments when the wheels touch the ground.

X =q̄S cos(α′)[
−CD0 − CDαα′ − CDα2α

′2 −
CDTC
q̄S

δT − CDδF δF − CDδF2 δ
2
F

]
Y =q̄S

[
CY0 + CYββ

′ + CYδRδR +
CYTC
q̄S

+
b

2VT
(CYpP ) +

b

2VT
(CYrR)

]
+ q̄S sin(α′)

[
CL0

+ CLαα
′ + CLδEδE + CLδF δF + CLδF2 δ

2
F

]
+ δT

Z =q̄S sin(α′)[
−CD0

− CDαα′ − CDα2α
′2 −

CDTC
q̄S

δT − CDδF δF − CDδF2 δ
2
F

]
q̄S (3.6.1)

L =bq̄S

[
Clββ

′ +
ClTC
q̄S

δT + ClδAδA + ClδRδR +
b

2VT
(ClpP ) +

b

2VT
(ClrR)

]
+ q̄S cos(α′)

[
−CL0 − CLαα′ − CLδEδE − CLδF δF − CLδF2 δ

2
F

]
M =q̄Sc̄

[
Cmαα

′ + CmδEδE + Cmq
c̄

2VT
Q

]
+ rbTzδT

N =bq̄S[Cn0
+ Cnββ

′ +
CnTC
q̄S

δT + CnδAδA

+ CnδRδR +
b

2VT
(CnpP ) +

b

2VT
(CnrR)]

3.6.2 Linearisation

x =


U
β′

α′

P
Q
R

 =


U0

β0

α0

P0

Q0

R0

+


u
β
α
p
q
r

 (3.6.2)

The linearized model is derived with the same structure as in Section 3.5. From
(4.1.2) the equilibrium and perturbation equations become:

τ 0 =fτ [x0,u0] (3.6.3)

δτ =
∂fτ
∂x

∣∣∣∣
[x0,u0]

δx+
∂fτ
∂u

∣∣∣∣
[x0,u0]

δu (3.6.4)

where fτ is the nonlinear equations of aerodynamics forces and moments, (3.6.1).
Assumption 1 shows that VT = U . The dynamic pressure q̄ can be written as:

q̄ =
ρ

2
V 2
T =

ρ

2
U2 (3.6.5)
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3.6. Development of Linear Model for the Cessna 172SP

The equilibrium equations (3.6.3) can be derived directly from (3.6.1) by inserting
x0 and u0 and will not be elaborated. The perturbation models of the longitudinal
and the lateral channel is found in the subsequent sections.

Longtudinal Channel

δXδZ
δM

 =

NFlo
δνlo︷ ︸︸ ︷

∂X
∂U

∣∣
[x0,u0]

u ∂X
∂α′

∣∣
[x0,u0]

α ∂X
∂Q

∣∣∣
[x0,u0]

q

∂Z
∂U

∣∣
[x0,u0]

u ∂Z
∂α′

∣∣
[x0,u0]

α ∂Z
∂Q

∣∣∣
[x0,u0]

q

∂M
∂U

∣∣
[x0,u0]

u ∂M
∂α′

∣∣
[x0,u0]

α ∂M
∂Q

∣∣∣
[x0,u0]

q



+

Bloδulo︷ ︸︸ ︷
∂X
∂δT

∣∣∣
[x0,u0]

δt
∂X
∂δE

∣∣∣
[x0,u0]

δe
∂X
∂δF

∣∣∣
[x0,u0]

δf

∂Z
∂δT

∣∣∣
[x0,u0]

δt
∂Z
∂δE

∣∣∣
[x0,u0]

δe
∂Z
∂δF

∣∣∣
[x0,u0]

δf

∂M
∂δT

∣∣∣
[x0,u0]

δt
∂M
∂δE

∣∣∣
[x0,u0]

δe
∂M
∂δF

∣∣∣
[x0,u0]

δf

 (3.6.6)

Each matrix entry is derived below where (3.6.7) to (3.6.9) constitute NFlo and
(3.6.10) to (3.6.12) constitute Blo:

∂X

∂U

∣∣∣∣
[x0,u0]

= SρU0[−CD0
− CDαα0 − CDα2α

2
0 − CDδF δF0

− CDδF2 δ
2
F0

+ α0(CL0
+ CLαα0 + CLδEδE0

+ CLδF δF0
+ CLδF2 δ

2
F0

)]

∂X

∂α′

∣∣∣∣
[x0,u0]

= q̄S[−CDα − 2CDα2α0

+ CL0
+ 2CLαα0 + CLδEδE0

+ CLδF δF0
+ CLδF2 δ

2
F0

]

∂X

∂Q

∣∣∣∣
[x0,u0]

= 0

(3.6.7)
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∂Z

∂U

∣∣∣∣
[x0,u0]

= SρU0

[α0(−CD0
− CDαα0 − CDα2α

2
0 − CDδF δF0

− CDδF2 δ
2
F0

)

− CL0
− CLαα0 − CLδEδE0

− CLδF δF0
− CLδF2 δ

2
F0

]

∂Z

∂α′

∣∣∣∣
[x0,u0]

= q̄S

[−CD0
− 2CDαα− 3CDα2α

2 −
CDTC
q̄S

δT0
− CDδF δF0

− CDδF2 δ
2
F0

− CLα ]

∂Z

∂Q

∣∣∣∣
[x0,u0]

= 0

(3.6.8)

∂M

∂U

∣∣∣∣
[x0,u0]

= SρU0c̄[Cmαα0 + CmδEδE0
] + Sρ

1

4
c̄2Q0

∂M

∂α′

∣∣∣∣
[x0,u0]

= q̄Sc̄[Cmα ]

∂M

∂Q

∣∣∣∣
[x0,u0]

= q̄Sc̄[Cmq
c̄

2VT
]

(3.6.9)

∂X

∂δT

∣∣∣∣
[x0,u0]

= −CDTC + 1

∂X

∂δE

∣∣∣∣
[x0,u0]

= q̄S[CLδEα0]

∂X

∂δF

∣∣∣∣
[x0,u0]

= q̄S[−CDδF − 2CDδF2 δF0
+ αCLδF + 2α0CLδF2 δF0

]

(3.6.10)

∂Z

∂δT

∣∣∣∣
[x0,u0]

= −CDTCα0

∂Z

∂δE

∣∣∣∣
[x0,u0]

= q̄S[−CLδE ]

∂Z

∂δF

∣∣∣∣
[x0,u0]

= q̄S[−α0CDδF − 2α0CDδF2 δF0
− CLδF − CLδF2 δF0

]

(3.6.11)
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∂M

∂δT

∣∣∣∣
[x0,u0]

= rbTz

∂M

∂δE

∣∣∣∣
[x0,u0]

= q̄Sc̄[CmδE ]

∂M

∂δF

∣∣∣∣
[x0,u0]

= 0

(3.6.12)

Lateral Channel

δYδL
δN

 =

NFla
δνla︷ ︸︸ ︷

∂Y
∂β′

∣∣∣
[x0,u0]

β ∂Y
∂P

∣∣
[x0,u0]

p ∂Y
∂R

∣∣
[x0,u0]

r

∂L
∂β′

∣∣∣
[x0,u0]

β ∂L
∂P

∣∣
[x0,u0]

p ∂L
∂R

∣∣
[x0,u0]

r

∂N
∂β′

∣∣∣
[x0,u0]

β ∂N
∂P

∣∣
[x0,u0]

p ∂N
∂R

∣∣
[x0,u0]

r



+

Blaδula︷ ︸︸ ︷
∂Y
∂δA

∣∣∣
[x0,u0]

δa
∂Y
∂δR

∣∣∣
[x0,u0]

δr

∂L
∂δA

∣∣∣
[x0,u0]

δa
∂L
∂δR

∣∣∣
[x0,u0]

δr

∂N
∂δA

∣∣∣
[x0,u0]

δa
∂N
∂δR

∣∣∣
[x0,u0]

δr

 (3.6.13)

Each matrix entry is derived below where (3.6.14) to (3.6.16) constitute NFla and
(3.6.17) to (3.6.19) constitute Bla:

∂Y

∂β′

∣∣∣∣
[x0,u0]

= q̄S[CYβ ]

∂Y

∂P

∣∣∣∣
[x0,u0]

= S
b

4
ρVT [CYp ]

∂Y

∂R

∣∣∣∣
[x0,u0]

= S
b

4
ρVT [CYr ]

(3.6.14)

∂L

∂β′

∣∣∣∣
[x0,u0]

= q̄S[Clβ ]

∂L

∂P

∣∣∣∣
[x0,u0]

= S
b2

4
ρVT [Clp ]

∂L

∂R

∣∣∣∣
[x0,u0]

= S
b2

4
ρVT [Clr ]

(3.6.15)
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∂N

∂β′

∣∣∣∣
[x0,u0]

= bq̄S[Cnβ ]

∂N

∂P

∣∣∣∣
[x0,u0]

= S
b2

4
ρVT [Cnp ]

∂N

∂R

∣∣∣∣
[x0,u0]

= S
b2

4
ρVT [Cnr ]

(3.6.16)

∂Y

∂δA

∣∣∣∣
[x0,u0]

= 0

∂Y

∂δR

∣∣∣∣
[x0,u0]

= q̄S[CYδR ]

(3.6.17)

∂L

∂δA

∣∣∣∣
[x0,u0]

= bq̄S[ClδA ]

∂L

∂δR

∣∣∣∣
[x0,u0]

= bq̄S[ClδR ]

(3.6.18)

∂N

∂δA

∣∣∣∣
[x0,u0]

= bq̄S[CnδA ]

∂N

∂δR

∣∣∣∣
[x0,u0]

= bq̄S[CnδR ]

(3.6.19)
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Chapter 4
Control Theory

This chapter introduces necessary background theory on which this thesis will be
based. This includes subjects within guidance and control, observers and fault
detection. Some of these sections are based on the unpublished project report
submitted in advance of this thesis.

4.1 Linearisation
Assumptions made for this linearisation. A non-linear system is represented on
state-space from:

ẋ = f(x,u) (4.1.1)

where x is the states and u are the inputs. The system is linearised in [Balchen
et al., 2003] using partial differentiation as:

ẋ = f(x0,u0) +
∂f

∂x

∣∣∣∣
[x0,u0]

δx+
∂f

∂u

∣∣∣∣
[x0,u0]

δu (4.1.2)

where x0 and u0 are the nominal value of x and u, and δx and δu are perturbations
around the equilibrium.

4.2 Linear Quadratic Optimal Control
For system (4.2.1) an optimal control law can be found by using a LQ control
strategy which utilizes an algebraic Riccati equation (ARE) [Antsaklis and Michel,
1997].

ẋ = Ax+Bu

y = Cx
(4.2.1)

where x ∈ Rn, u ∈ Rr and y ∈ Rm. A requirement for the implementation is that
the system must be controllable, that is C must be of full rank (rank(C) = n):

C =
[
B|AB| · · · |(A)n−1B

]
(4.2.2)
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G2 B C

A

G2

x yuyd

full state feedback

reference feedforward

Figure 4.1: Block diagram of LQ Regulator with reference feedforward, [Fossen,
2011a]

4.2.1 Trajectory tracking
A reference signal yd is generated from a linear reference model:

ẋd = Adxd +Bdr

yd = Cxd
(4.2.3)

where r is the setpoint vector. The desired trajectory is followed by driving the
state signals to the reference. The error signal is defined as:

e , y − yd (4.2.4)
= C(x− xd) (4.2.5)
= Cx̃ (4.2.6)

The optimal solution is found by minimizing a cost function given by (4.2.8).
Q ∈ Rm×m and R ∈ Rr×r are both diagonal design matrices, which respectively
weight the measured state errors and punishes the use of control input. Only
the states present in the reference signal yd is weighted. (4.2.7) ensures that the
remaining reference values are set to zero, such that Q̃ ∈ Rn×n ≥ 0. This means
that these sates are to be regulated to zero.

Q̃ , CTQC (4.2.7)

J = min

1

2

∞∫
0

(x̃T Q̃x̃+ uTRu)dt

 (4.2.8)

where Q̃ = Q̃
T
and R = RT > 0.

From [Fossen, 2011a] the control law (4.2.9) is implemented. This law includes
full state feedback and reference feedfoward for trajectory tracking.

u = G1x+G2yd (4.2.9)
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Chapter 4. Control Theory

where G1 ∈ Rr×n and G2 ∈ Rr×m are found by:

G1 = −R−1BTP∞

G2 = −R−1BT (A+BG1)−TCTQ
(4.2.10)

P∞ is found by satisfying the ARE (4.2.12). Because there are no time constraints
on the problem (4.2.8) infinite horizon is assumed. As t → ∞ then Ṗ → 0 and
P → P∞:

Ṗ = −PA−ATP + PBR−1BTP − Q̃ (4.2.11)
↓

0 = −P∞A−ATP∞ + P∞BR
−1BTP∞ − Q̃ (4.2.12)

In MATLAB P∞ is found by the use of the function lqr:

1 [K,P,eig]lqr = (A,B,C'*Q*C,R)

which returns K = −G1, P = P∞ and eig which is the eigenvalues of the new
stabilized system (4.2.14). By inserting (4.2.9) in (4.2.1) the system becomes:

ẋ = Ax+B(G1x+G2yd) (4.2.13)
ẋ = (A+BG1)x+BG2yd (4.2.14)

The resulting system is illustrated in Figure 4.1.

4.2.2 Tuning
The matrices Q and R have to be tuned manually. Looking at each matrix sep-
arately a high value of an element will result in a high cost value in (4.2.8). In
other words a high value in the Q matrix will result in a stricter regulation for that
state, tolerating a smaller error. For the R matrix this means that a high control
input for the selected control surface will not be tolerated. In addition the relation
between the tuning matrices also matters. The case where Q >> R means that
it is very important to keep the state errors as small as possible. This means that
the vehicle is free to use more control input to accomplish this; the regulation will
be more aggressive. The opposite case Q << R is that the vehicle is to use less
control input. This can be interpreted as that accuracy is sacrificed for low energy
consumption.

There is a more intuitive way of tuning these matrices instead of picking random
numbers. The Bryson’s tuning rule (4.2.15) opens a more substantial way of tuning.
However this method relies on that the user have a good understanding of the
system. Each element in Q and R can be tuned by the rule:

qii =
1

maximum acceptable value of x̃2
i

rii =
1

maximum acceptable value of u2
i

(4.2.15)
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4.3 The Proportional-Internal-Derivative Controller

The Proportional-Integral-Derivative (PID) controller is the most common feedback
controller used in control theory today. It uses the error dynamics of a process to
achieve a desired state. The performance of the controller is decided by the tuning
constants Kp, Ki and Kd, which have to be tuned manually. The PID controller
is given in (4.3.1) where e signifies the error dynamics in position and v the error
dynamics of the velocity. The block diagram of the system is seen in Figure 4.2.

δ = Kpe(t) +Ki

t∫
0

e(τ)dτ +Kdv(t) (4.3.1)

Figure 4.2: Block diagram of the Proportional Internal Derivative Controller

4.3.1 Anti-Windup

Windup occurs when there is a large step in set point, and the controller is not able
to bring the error to zero in sufficient time. The integral action will accumulate
to an undesirably high value, and the controller will overshoot the reference value.
The time response of the system will have an underdamped characteristic. To solve
this saturation is the key. Saturating the control output will prevent the signal in
becoming too large. However this will not stop the integral winding up. A solution
can be seen in Figure 4.3. The integral blocks in MATLAB Simulink have an
anti-windup function implemented as saturation.
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Figure 4.3: Anti-Windup block diagram

4.4 Reference model

Reference models are used to smooth the reference values. When there is a change
in setpoint a smooth trajectory is created as seen in Figure 4.4. The purpose is to
reduce the error jumps in the controllers, such that they can be tuned to have a
fast and accurate response around zero.

−1 0 1 2 3 4 5

0

5

10

Time [s]

Reference model

 

 

r

x
d

Figure 4.4: Filtering a step with a reference model one achieves a smooth trajec-
tory

When creating a reference model for position and attitude, it is common to
use the dynamics of mass-spring-damper systems in cascade with a low-pass (LP)-
filter, [Fossen, 2011a]. This results in a third order system, which ensures smooth
acceleration and velocity.

The Laplace transformed transfer-function of the cascaded system can be seen
in (4.4.1). xd is the smooth reference value and r is the desired state.

xd
r

(s) =
1

(1 + 1
ωn
s)

ω2
n

s2 + 2ζωns+ ω2
n

(4.4.1)

ωn is the angular frequency of an undamped system and ζ is the dampening ratio.
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4.4. Reference model

Block Diagram Representation

It is necessary to derive the block diagram of (4.4.1) for the implementation in
Chapter 5.1. The state space representation for the LP filter and the mass-spring-
damper system is derived separately:

xLP
r

=
1

1 + 1
ωn
s

(4.4.2)

xd
xLP

=
ω2
n

s2 + 2ζωns+ ω2
n

(4.4.3)

For the LP filter:

xLP (1 +
1

ωn
s) = r (4.4.4)

xLP +
1

ωn
ẋLP = r (4.4.5)

ẋLP = ωn(−xLP + r) (4.4.6)

For the mass-spring-damper system:

xd(s
2 + 2ζωns+ ω2

n) = ω2
nxLP (4.4.7)

ẍd + 2ζωnẋd + ω2
nxd = ω2

nxLP (4.4.8)

Defining x1 , xd and x2 , ẋd, the system can be written in state space represen-
tation:

ẋ1 = x2 (4.4.9)

ẋ2 = −2ζωnx2 − ω2
nx1 + ω2

nxLP (4.4.10)

Using the state space representations of the LP filter, (4.4.6), and the mass-
spring-damper system, (4.4.9) - (4.4.10), the block diagram of the reference model
can be derived as seen in Figure 4.5.

Figure 4.5: Block diagram of a third order reference model, consisting of a low pass
filter in cascade with a mass-spring-damper system.
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Performance and Tuning

The reference model is designed to have slower dynamics than the aircraft. This
way the aircraft is always able to follow the reference signal. The system in Figure
4.5 is tuned with the constants ζ and ωn, where ζ is the dampening ratio and ωn
is the natural frequencies.

Another benefit of the block diagram representation is the possibility of adding
saturations. In Figure 4.5 velocity saturation is added. This will ensure that the
velocity of the reference signal does not exceed the capabilities of the aircraft.
This can also be implemented in acceleration. By limiting the performance of the
reference signal the aircraft will be able to follow it and minimizing the error in
the controller.

4.5 Guidance

The guidance calculates the desired attitude based on the aircraft’s deviation from
the path.

4.5.1 Path following

A path is defined by waypoints in the NED-frame pk , [xk, yk, zk]T , where the
vector between pk and pk+1 describes the current line segment.

Track errors

To be able to describe the aircraft’s position relative to the path, a path-fixed
reference frame (path) is defined with origin in pk. The x-axis, aligned in the
direction of the path, is rotated an angle χp to the north-axis as seen in Figure 4.6.
The z-axis is rotated an angle νD to the down-axis and gives νp , νD − 90◦. 90◦

is subtracted from νD such that a path with νp = 0 is a horizontal path.

χp , arctan2 (yk+1 − yk, xk+1 − xk) (4.5.1)

νp , arctan2
(√

(xk+1 − xk)2 + (yk+1 − yk)2, zk+1 − zk
)

(4.5.2)

The function arctan2 is defined in (4.5.3).

arctan2 (y, x) ,



arctan( yx ) x > 0
arctan( yx ) + π y ≥ 0, x < 0
arctan( yx )− π y < 0, x < 0

+ [
2π] y > 0, x = 0

− [
2π] y < 0, x = 0

undefined y = 0, x = 0

(4.5.3)
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Two rotation matrices forms the final rotation between the path-frame and the
NED-frame as shown in (4.5.6).

R(χp) =

cos(χp) − sin(χp) 0
sin(χp) cos(χp) 0

0 0 1

 (4.5.4)

R(νp) =

 cos(νp) 0 sin(νp)
0 1 0

− sin(νp) 0 cos(νp)

 (4.5.5)

Rn
path , R(χ)R(ν) (4.5.6)

A vector w is defined as the vector from the aircraft to the origin of the path
reference frame: wn , (p(t) − pk). Both waypoints are given in the NED frame,
thus wn. The aircraft’s deviation of the path can then be modelled in the path-
frame:

εpath(t) = Rpath
n wn (4.5.7)

εpath(t) =
[
s(t) e(t) h(t)

]T (4.5.8)

s, e and h are along-track, cross-track error and vertical-track error respectively,
relative to pk.

N

E

xpath

ypath

pk+1

pk p(t)

e(t)

s(t)

χp

N

Figure 4.6: A path is given by the waypoints pk and pk+1, and p(t) is the position
of the aircraft. The aircraft’s deviation of the path in the path-frame is given by
ε = [s(t), e(t), h(t)]T , where s(t) and e(t) is shown in the figure.

Lookahead-based steering

Lookahead-based steering, [Breivik and Fossen, 2009], defines a point on the path
that the aircraft is directed towards, the steering point. The distance between
this point and the projection of the aircraft onto the path is called the lookahead
distance, ∆. The definition of ∆ is given in (4.5.9) and is dependent on one tuning
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variable R. R is the length from the aircraft to the steering point as seen in Figure
4.7, this vector is called the line of sight (LOS)-vector. The steering direction is
defined by two angles: χ for horizontal and ν for vertical steering. Sideslip β and
angle of attack α is included see Section 4.5.2.

∆(t) ,
√
R2 − e(t)2 (4.5.9)

χ(e) , χp + χr(e) + β ν(h) , νp + νr(h) + α (4.5.10)

where

χr(e) , arctan

(
−e(t)

∆

)
(4.5.11)

and

νr(h) , arctan

(
h(t)√

e(t)2 + ∆2

)
(4.5.12)

R is chosen arbitrarily and affects the performance. A small R gives aggressive
steering and a large R gives smooth steering. When this variable is chosen the one
should consider the steering capabilities of the aircraft.

N

E

xpath

ypath

pk+1

pk

p(t)

e(t)

χp

N

χr

∆

χp + χr
R

Figure 4.7: The steering laws in the horizontal plane, (4.5.10), is a summation of
three angles. χp and χr is described in the figure. χr is given by e(t) and ∆.

4.5.2 The Stability and Wind Axes in Guidance

The calculation of the angle of attack and the sideslip angle can be seen in equations
(A.4.2) and (A.4.1).

Because the angle of attack indicates the actual lateral trajectory of the aircraft
this angle is vital for accurate control when landing. Also this angle is an impor-
tant tool to eliminate vertical stationary errors in levelled flight as seen in Figure
4.8. In addition α can help determine the stability of the aircraft; as W becomes
increasingly large the aircraft will lose the ability to create lift and enters a stall.
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Figure 4.8: In method A the lack of lift induces a downward force (Z = G−Lift)
throwing the aircraft off the path. In method B the angle of attack α is included in
the steering law, by angling the force X slightly upwards. X is the thrust generated
by the engine.

The usage of the sideslip angle is similar to the angle of attack: It can be used
to compensate for wind in steady flight and reduce stationary errors as seen in
Figure 4.9.
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Figure 4.9: In method A the environmental force Y is inducing a stationary error
forcing the aircraft off the path. In method B the sideslip angle β is included in
the steering law.
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Chapter 5
Implementation

This chapter contains the implementation of the automatic-flight control system
(AFCS), the fault detection and isolation (FDI) system and the fault-tolerant con-
trol system (FTCS) in MATLAB Simulink. The nonlinear aircraft model of the
Cessna 172SP from [Vistnes, 2012] is used as a simulation plant. Equations which
are used in the MATLAB Simulink model is derived here as well as referenced to
the MATLAB code.

5.1 Automatic Flight Control System (AFCS)
In this report the AFCS comprises of four main parts: The setpoint generator, the
reference model, the kinematic controller and the velocity and rate controller as
seen in Figure 5.1. The AFCS is constructed such that the inner loop stabilizes
the velocities and rates. The outer loop consists of a reference signal generated by
the guidance law in the setpoint generator. The reference signal is filtered through
a reference model which creates the desired velocities and rates for the aircraft to
follow. Stationary errors that occur from small errors in the rates propagating to
the Euler angles are corrected by the kinematic controller. In this Section each
block in Figure 5.1 will be described. Finally the tuning of the AFCS is elaborated
in Section 5.1.4.

Reference
Model

Kinematic
Controller

v/r
Controller

Process
Plantηd

νd

ν

η

ηrSetpoint
Generator

η u

Inner Loop

Outer Loop

Figure 5.1: A simplified overview of the AFCS. V/r means velocity/rate.
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5.1. Automatic Flight Control System (AFCS)

5.1.1 Guidance and Navigation
The guidance and navigation part of the AFCS comprises of two Simulink blocks:
The setpoint generator and the reference model as seen in Figure 5.1.

The navigation algorithm is part of the setpoint generator and has two main
tasks: Creating the current path which the aircraft is to follow and switching paths
when it is required. A path is based on two waypoints in the flight plan. The flight
plan contains all waypoints in the flight mission, and these are appointed before the
flight. The MATLAB code of the navigation part can be seen in the Appendix D.1.
The first part of the code, from line 13, generates the path based on the variable,
i. The second part, from line 54, increments i when a waypoint has been reached.
This is carried out by Algorithm 1. In the path-frame |Path|, s and ∆ all points in
the same direction (xpath). The switch will take place when the steering point is
on top of or past waypoint pk+1. This ensures smooth transitions when switching
paths with respect to χ and ν. However this is not always the case as discussed in
Section 6.2.2.

if |Path| ≤ s+ ∆ then
Switching waypoints by incrementing i

end
Algorithm 1: An algorithm for switching waypoints. s and ∆ are along-track
and lookahead distance respectively, defined in Section 4.5.1

The purpose of the guidance part of the setpoint generator is to designate the
aircraft’s desired trajectory and speed. The desired trajectory consists of two angles
χ (the lateral trajectory) and ν (the longitudinal trajectory), and are determined by
using the lookahead-based steering (see Section 4.5.1). The steering laws (4.5.10)
are

χ(e) , χp + χr(e) + β ν(h) , νp + νr(h) + α (5.1.1)

where χp and νp are the trajectories of the path, χr and νr are given by equations
(4.5.11) and (4.5.12) and α and β are angle of attack and sideslip respectively. The
MATLAB code can be seen in Appendix D.1. From line 19 the track errors are
found by using (4.5.8). From line 35 the lookahead-based steering equations are
implemented.

The reference model block contains the reference models in roll, pitch and yaw.
These are meant to smooth the reference values and the roll command (see Section
5.1.3) such that they do not exceed the limitation of the aircraft. Figure 5.2 shows
the Simulink diagram of the three reference models. Each contain a similar setup
as seen in Section 4.4.
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Figure 5.2: Simulink diagram of the reference model

5.1.2 Control System
The control system comprises of the velocity and rate controller and the kinematic
controller. As will become clear in the proceeding section the velocity and rate
controller does not catch the exact dynamics of the aircraft. There are two reasons
for this, where the first is that η is neglected and thus gravity is also neglected. The
second reason is that the equilibrium conditions from the linearisation is not part
of the control scheme. Both of these result in constant forces and moments acting
on the aircraft which are not modelled. These forces add up and will cause drift.
However, due to state feedback in the controller, the result will be stationary errors
in the respective channels. Stationary errors in the Euler rates will propagate to
large angle errors over time. This means that there should be an outer control loop
that closes these stationary errors; hence a kinematic controller.

Velocity and Rate Control

The purpose of the velocity and rate controller is to primarily stabilize the system’s
rates but also to control the aircraft’s speed. Because a linear aircraft model
is available (Section 3), it is natural to choose model-based control. Two LQ
controllers are implemented, one for the longitudinal channel and one for the lateral
channel.

The longitudinal model is derived by inserting (3.5.15) in (3.4.4)

M loδν̇lo +N loδνlo +Gloδηlo = NFloδνlo +Bloδulo (5.1.2)

δν̇lo = M−1
lo [−Gloδηlo − (N lo −NFlo)δνlo +Bloδulo] (5.1.3)

To get (5.1.3) on state space form, (4.2.1), the term Gloδηlo has to be neglected.
(5.1.3) is now rewritten:

δν̇lo = M−1
lo [−(N lo −NFlo)δνlo +Bloδulo] (5.1.4)

δẋlo = Aloδxlo +Bloδulo (5.1.5)
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5.1. Automatic Flight Control System (AFCS)

where δxlo = δνlo = [u, α, q]T and

Alo = −M−1
lo (N lo −NFlo) and Blo = M−1

lo Blo

The lateral model: Similar to the above derivation the lateral model is found
from equations (3.5.15) and (3.4.5).

δν̇la = M−1
la [−(N la −NFla)δνla +Blaδula] (5.1.6)

δẋla = Alaδxla +Blaδula (5.1.7)

where δxla = δνla = [β, p, r]T and

Ala = −M−1
la (N la −NFla) and Bla = M−1

la Bla

The reference model is made for the complete system in Section 5.1.1. From
(4.2.3) ydlo and ydla can be calculated using respectively Clo and Cla:

ydlo = Cloxd =

[
1 0 0 0 0 0
0 0 0 0 1 0

]

ud
βd
αd
pd
qd
rd

 (5.1.8)

ydla = Claxd =

[
0 0 0 1 0 0
0 0 0 0 0 1

]

ud
βd
αd
pd
qd
rd

 (5.1.9)

The control equations: The derivation of the control equations is similar for
the longitudinal and lateral channels. The subscripts lo and la will therefore be
omitted. The system equations above (5.1.5) and (5.1.7) are actually derived from
the perturbation equations and not the total system. With this in mind the control
law from Section 4.2, (4.2.9), can be rewritten as:

δu = G1δx+G2δyd (5.1.10)

where δyd , yd −Cx0. As u = u0 + δu:

u = u0 +G1δx+G2δyd (5.1.11)

As x is measured from the process plant it is more convenient to express this
equation as:

u = u0 +G1(x− x0) +G2(yd −Cx0) (5.1.12)

G1 and G2 are found by using (4.2.10) and the MATLAB function lqr.
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The tuning matrices are defined below using Bryson’s tuning rule, (4.2.15),
but the values will be derived in Section 5.1.4

Qlo =

[
1

u2
max

0

0 1
q2
max

]
,Rlo =


1

δ2
tmax

0 0

0 1
δ2
emax

0

0 0 1
δ2
fmax

 , (5.1.13)

Qla =

[
1

p2
max

0

0 1
r2
max

]
,Rla =

[
1

δ2
amax

0

0 1
δ2
rmax

]
, (5.1.14)

(5.1.15)

The MATLAB code is found in Appendix D.2. Initiation of the controller is
done up to line 54. When a fault has occurred and is detected the controller gains
has to be calculated again. This is tested at line 65. From line 73 the system
matrices and controller gains are calculated for the longitudinal and lateral model.
The control signal is calculated at line 148.

Kinematic controller

The kinematic controller consists of three PI-controllers for roll, pitch and yaw as
seen in Figure 5.3. These are developed with the same structure as in Section 4.3.
The MATLAB code can be seen in Appendix D.3.

η̃ =

φd − φθd − θ
ψd − ψ

 (5.1.16)
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5.1. Automatic Flight Control System (AFCS)

Figure 5.3: Simulink diagram of the Kinematic controller

5.1.3 Banking
A banking turn is a fundamental manoeuvre to change heading. To perform the
manoeuvre the aircraft is banked, giving it a roll angle different from zero. The lift
generated by the wings are directed away from the vertical axis, giving the aircraft
a force sideways, Y as seen in Figure 5.4.

g

Lift

Y

Φ

Y

Figure 5.4: A bank turn generates a force Y sideways creating a steady turn.

From [McLean, 1990] yaw rate can be expressed as a function of roll such that:

r =
g

U0
sinφ (5.1.17)

where g is the gravitational constant and U0 is the aircraft’s speed.
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When phi < 25◦ it is a good assumption that sinφ ≈ φ. (5.1.17) can therefore
be rewritten for small angles as:

φr =
U0

g
rd (5.1.18)

φr is the reference value which are fed through the reference model and rd is the
desired value of yaw rate. The implementation of the banked turn can be seen in
Figure D.2.

5.1.4 Tuning the AFCS
This section sums up the tuning values of the AFCS. They are obtained based on
Chapters 6 and 6.2.

Guidance and Navigation

Steering laws: For the steering law the only tuning variable is R which is set to
1.3 km as seen in line 36 in Appendix D.1. When choosing this value the steering
capabilities of the aircraft has to be regarded as becomes clear in Chapter 6.

Speed: From the Cessna website [Cessna Aircraft Company] the Cessna 172SP
Skyhawk’s maximum cruise speed is set to 124 ktas (knots true airspeed). The
reference airspeed is then set below this value at 100 knots ≈ 50 m/s. This is seen
in Appendix D.1 line 52.

The reference model has three tuning variables per Euler angle: ωn, ζ and the
velocity saturations. These have to be tuned such that the filtered signals don’t
exceed the aircraft’s limitations. The variables are implemented in the MAT-
LAB script init_Control_Constants.m which are found on the attached DVD
described in Appendix C. The values can be seen in Table 5.1. Chapter 6 will elab-
orate these choices. Finding the velocity saturation in yaw was done by considering
the maximum bank angle: From (5.1.17) r(20◦) = 3.8◦/s. The maximum yaw rate
was set below this number.

Control

The velocity and rate controllers are tuned by the matrices Qlo, Rlo, Qla

and Rla. Because of the systems (5.1.5) and (5.1.7) the tuning is performed based

Table 5.1: Tuning constants for the reference model.
ω ζ velocity Saturation

Roll 1.5 0.8 6 ◦/s
Pitch 2.5 0.8 4 ◦/s
Yaw 0.5 0.8 2.5 ◦/s
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5.1. Automatic Flight Control System (AFCS)

Table 5.2: Tuning values for the velocity and rate controller
Channel State Variables Control Variables
Longitudinal: umax = 2 δtmax = 60 N

qmax = 0.1◦ δemax = 0.7◦

δfmax = 1◦

Lateral: pmax = 1◦ δamax = 2◦

rmax = 40◦ δrmax = 1◦

Table 5.3: Eigenvalue of the control plant for the velocity and rate controller.
Longitudinal model Lateral model
u −253 β −183
α −18.9 p −1.41 + 3.89i
q −0.05 r −1.41− 3.89i

on the perturbation model. This means that the values chosen for the tuning
matrices are the maximum perturbation from the nominal values allowed. These
values were found by prioritizing which states are most important. For example
correct roll rate is much more important than yaw rate. Similarly thrust command
can be given much larger values than the elevator and flaps. These values are
implemented in Appendix D.2.

The eigenvalues of system (4.2.14) are calculated for the longitudinal and lateral
channel the result can be seen in Table 5.3.

Kinematic controller consists of three PI-controllers for each Euler angle. Each
of these comprises of three tuning variables: the proportional term, the integral
term and the integral saturation term for anti-windup. It is important that the
kinematic controller does not drown the reference signal. Therefore the strength
of the reference signal has to be considered when tuning.

The tuning variables are found in Table 5.4 and are implemented in the MAT-
LAB script init_Control_Constants.m which are found on the attached DVD
described in Appendix C.

Table 5.4: Tuning variables for the kinematic controller’s three PIs. Respectively
the proportional term, the integral term and the integral saturation term.

Roll controller Pitch controller Yaw controller
P 10 0.01 0.2
I 0 0.5 0.05
Isat 0.01 0.1
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5.2 Fault Detection and Isolation (FDI)
The fault detection and isolation consists of three main parts: The observer, the
residual generator and the residual validator as seen in Figure 5.5. The purpose of
the FDI is to detect that an actuator is faulty. The resulting vector fac ∈ Rr where
r is the number of actuators, contains information on which actuator is faulty and
is zero when the system is fault-free.

r fac

ys

u ym
Linear
Observer

Residual
Generator

Residual
Validation

Figure 5.5: A scheme of the fault detection and isolation. u is the output of the
controller, ys is the system output, ym is the observer output and r is the residual
or parity vector. fac is a vector with each row representing an actuator which
becomes one when a fault occur.
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5.2. Fault Detection and Isolation (FDI)

5.2.1 The Linear Observer

The Parity Space approach introduced in Section 2.2.1 relies on an accurate linear
model of the system. The aircraft model is derived and linearised in Chapter 3.
In this Section the linear model is implemented in code-form using forward and
backward Euler integration.

Equation (3.1.2) can be rewritten as:

ν̇ = M−1 [−Gη −Nν] +M−1 [τ (x,u)] (5.2.1)

The right side of (5.2.1) is divided in two and using the superposition principle
these can be derived separately.

The linearisation of the first part is covered in Section 3.4, with the equilibrium
conditions (5.2.7). The linearisation of τ (the aerodynamic forces and moments) is
performed in Section 3.6 using (4.1.2). The combined system can be expressed as:

ν̇ =M−1

f(x0,u0)−

G︷ ︸︸ ︷
∂f

∂η

∣∣∣∣
[x0,u0]

δη −

N︷ ︸︸ ︷
∂f

∂ν

∣∣∣∣
[x0,u0]

δν

+ (5.2.2)

M−1

τ (x0,u0) +

NF︷ ︸︸ ︷
∂τ

∂ν

∣∣∣∣
[x0,u0]

δν +

B︷ ︸︸ ︷
∂τ

∂u

∣∣∣∣
[x0,u0]

δu


(5.2.3)

where

x =

[
η
ν

]
=

[
η0

ν0

]
︸ ︷︷ ︸
x0

+

[
δη
δν

]
︸ ︷︷ ︸
δx

and u = u0 + δu (5.2.4)

On the form of (3.1.2) and (3.5.1) the resulting system can be written as:

η̇ =JΘ(η0)ν0 + JΘ(η0)δν

ν̇ =M−1 [F 0(x0,u0)−Gδη − (N −NF )δν +Bδu]
(5.2.5)

where

F 0(x0,u0) = f(x0,u0) + τ (x0,u0) (5.2.6)
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Equilibrium Conditions

From Section 3.4 the equilibrium conditions F 0(x0,u0) are derived: Note that
Ixz = 0 (Appendix B).

U̇0 = −Q0W0 +R0V0 − g sin(Θ0) +
1

m
X0

β̇0 =
1

VT

[
−U0R0 +W0P0 + g cos(Θ0) sin(Φ0) +

1

m
Y0

]
α̇0 =

1

VT

[
−V0P0 +Q0U0 + g cos(Θ0) cos(Φ0) +

1

m
Z0

]
Ṗ0 =

1

Ix
[−(Iz − Iy)Q0R0 + L0]

Q̇0 =
1

Iy
[−(Ix − Iz)P0R0 +M0]

Ṙ0 =
1

Iz
[−(Iy − Ix)P0Q0 +N0]

(5.2.7)

X0, Y0, Z0, L0, M0 and N0 are found from (3.6.3).

Forward and Backward Euler Integration

From [Fossen, 2011a] the discrete-time equations for nonlinear systems are:

ν(k + 1) =ν(k) + hν̇(k) (5.2.8)
η(k + 1) =η(k) + h [JΘ(η(k))ν(k + 1)] (5.2.9)

where h is the sampling interval given by (5.2.14). However to be able to apply
Equations (5.2.8) and (5.2.9) to the linearized system (5.2.5), the state and control
vector (5.2.4) has to be inserted. The result is the Euler integration equations:

ν(k + 1) =ν0(k) + δν(k)

+hM−1 [F 0(x0,u0)−Gδη − (N −NF )δν +Bδu] (5.2.10)
η(k + 1) =η0(k) + δη(k) + h [JΘ(η(k))ν(k + 1)] (5.2.11)

Model and Trajectory Update

Because the linear observer does not catch the nonlinear dynamics exactly the
model will drift with respect to the system. The solution to this problem is to
update the state values (5.2.11) and (5.2.10) periodically. The nominal part of the
state is constant and therefore it is the perturbation part which is updated. From
(5.2.4) where x now is the measurements from the system xs:

δx = xs − x0 (5.2.12)
(5.2.13)
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Table 5.5: Initial trajectory values for the model.
State value
U0 51.4 m/s
α0 -0.0121 [rad]
β0 0.0204 [rad]
δT0 750 N

δx, x0 are the model states.
The model’s trajectory is given by the nominal values: x0 and u0. These also

has to be updated to complement the desired trajectory of the aircraft. For instance
the aircraft require some thrust to keep the aircraft at 100 kn. The initial values
can be found in Table 5.5.

Implementation

The MATLAB code of the linear observer can be seen in the Appendix D.4. Initi-
ation of the code is performed above line 56. The current step is updated at line
56. The logic after line 67 decides when the linearisation is performed. Linearisa-
tion is performed after initiation and after that given by a period of the constant
update_interval. Trajectory update and model update are specified by the sim-
ulation scenario and is therefore separated. Further the model matrices are found
at line 122. The integration equations (5.2.11) and (5.2.10) are found at line 156
and line 170.

The sampling interval used is given by (5.2.14). This is because the solver used
in MATLAB is ode 4 (Runge-Kutta 4). This means that each script is run through
4 times per step.

h = step-size× 1

4
(5.2.14)

5.2.2 Residual Generator
As presented in Section 2.4, the faults will be applied to the ailerons and elevator.
These control surfaces control the aircraft’s roll and pitch and therefore these chan-
nels will be monitored for faults. Both the angle and the rates will be considered.

(2.2.10) defines the residual as:

r(z) ,Hu(z)u(z) +Hy(z)ys(z) (5.2.15)

Inserting (2.2.12) the residual becomes:

r(z) = −Hy(z)Gu(z)u(z) +Hy(z)ys(z) (5.2.16)

Further defining the model output as ym = Gu(z)u the residual can be written on
state space form as:

r(t) = −Hyym(t) +Hyys(t) (5.2.17)
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Table 5.6: Threshold levels for variance testing...
state threshold
roll (φ) 1e− 5
pitch (θ) 1e− 5
roll rate (P ) 5e− 7
pitch rate (Q) 5e− 7

ym and ys has the same states which is [p,Θ,v,ω]T according to Section A.2.
The MATLAB code can be seen in Appendix D.5 and is an implementation of

(5.2.17). Hy is a selection matrix which selects the states φ, θ, P and Q such that:

Hy =

04×3

1 0 0
0 1 0
0 0 0
0 0 0

04×3

0 0 0
0 0 0
1 0 0
0 1 0

 (5.2.18)

5.2.3 Residual Validator
The validation of the residual is performed by variance testing. When a fault has
occurred the dynamics is given by (2.2.17) which is different from zero. When the
variance exceeds a predefined threshold a fault has presumably occurred.

From Section 2.2.2 the statistical methods are derived. The recursive equation
for variance is given by (2.2.30) on a selected window. The MATLAB imple-
mentation is given in Appendix D.6. The variance is calculated in line 25 and
the threshold test is performed in line 44 resulting in the faulty actuator vector,
fac ∈ Rr. faci is 1 if actuator i is faulty.

Finding the threshold values are done in Chapter 7. This is done by regarding
the fault-free system and comparing it to the faulty one. The values are found in
Table 5.6.

5.3 Fault-Tolerant Linear Quadratic Control
In this section the implementation of the fault-tolerant linear quadratic control is
performed. In this thesis the fault identification is not performed and therefore it
is assumed that the fault is known.

The post-fault model is derived in Section 2.3 resulting in:

ẋ = Ax+
∑
i∈IN

Biui +
∑
j∈IF

B̂juj (5.3.1)

where x ∈ Rn, u ∈ Rr. The fault modelled in this thesis is loss of effectiveness and
is given by (2.1.1). The post-fault model can then by expressed as:

ẋ = Ax+
∑
i∈IN

Biui +
∑
j∈IF

B̂jθjuj (5.3.2)
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where θj is the effect-reduction factor and the effect-reduction vector is defined:

θ , [θk, θk+1 · · · θr]T (5.3.3)

The faulty actuator vector fac is introduced in Section 5.2.3 and the effect-
reduction matrix is defined:

Γ , I − diag(fac)diag(θ) (5.3.4)

By defining the new post-fault control matrix

Bf , BΓ (5.3.5)

the post-fault model can be written as:

ẋ = Ax+Bfu (5.3.6)

The implementation of the fault-tolerant control in MATLAB code can be seen
in Appendix D.2 in line 102 and line 133 for the longitudinal and the lateral model
respectively. The values of the vectors Theta_lo and Theta_la should preferably
come from a parameter or state estimator. However, fault identification is not a
part of this thesis and thus these values are fictional.
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Chapter 6
Results and Discussion on

the Automatic Flight
Control System

In this chapter results and a discussion will be presented on the performance of the
automatic flight control system (AFCS).

6.1 Results
A new notation is introduced in the following figures: Subscript r is the reference
value, d is the desired value from the reference model, s is the value from the
system.

6.1.1 Guidance Steering Law
The tuning variable, R, is given three different values according to Table 6.1 and
Figure 6.1 shows the results of the simulations. Scenario 1 results in large deviations
from the path and scenario 3 results in an overshoot. Scenario 2 results in neither.

Using the tuning variable found in scenario 2, the reference and desired values
are plotted in red in Figure 6.2. Ψd is not able to keep up with the reference signal
as it becomes linear in the periods 55-90 s and 125-160 s. In blue in Figure 6.2
R = 1000 and a clear overshoot of Ψd is seen in the periods 100-120 s and 170-200
s.

Table 6.1: The steering law is tuned with three different values.
Tuning scenario: 1 2 3
R [km]: 1.5 1.3 1
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Figure 6.1: The steering law tuning variable R is given three different values.
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6.1.2 Navigation
Figure 6.3 shows the yaw response of Ψr and Ψd with two kinds of turns. The first
turn has an angle of >> 90 and the second turn << 90. The yaw response of turn
one is very smooth with a slight stationary error. There is also a minimal deviation
from the path. This is not the case for the second turn. First of all there is a jump
in Ψr at 53 seconds. This results in a large gap between Ψr and Ψd. In the plot
of the position of the aircraft one can see that the aircraft has experienced a large
overshoot.
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Figure 6.3: Yaw response of two different kinds of turns. p is the aircraft’s position.

6.1.3 Reference Model
Steps are feed into the reference model of the three Euler angles. The desired values
are plotted as well as the response of the aircraft. The reference model is tuned
with the variables from Table 5.1.

In Figure 6.4 the reference model in roll is fed a step of 20◦. The reference
model in roll uses four seconds to adjust, and the aircraft follows the desired signal
perfectly. The same can be said for the roll rate.

In Figure 6.5 the reference model in pitch is fed a step of 10◦. The aircraft’s
pitch is adjusted in three seconds with perfect following of the desired values.
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Figure 6.4: Reference model step in roll channel.
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Figure 6.5: Reference model in pitch channel

Table 6.2: Tuning scenarios for velocity saturation in yaw for the reference model.
Tuning scenario: 1 2 3
Velocity saturation [◦/s]: 3 2.5 2
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Figure 6.6: The response of the yaw angle for the reference model and the aircraft
with three different velocity saturations.

Three tuning scenarios for velocity saturation is used for yaw as seen in Table
6.2. Scenario 1 and 3 represent the extremes and scenario 2 is from Table 5.1.
Figure 6.6 shows the plot of the yaw angle as a response to the step. For scenario
1 the aircraft is not able to catch up with the reference signal. In scenario 2 and
3 the aircraft is able to do this however a stationary error is observed in both of
these scenarios. The aircraft response in scenario 1 and 2 is similar, but are much
steeper than in scenario 3. The response of the yaw rate for the three scenarios can
be seen in Figure 6.7. In scenario 2 and 3 the aircraft is able to exceed the velocity
saturation of the response model.
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Figure 6.7: The response of the yaw rate for the reference model and the aircraft
with three different velocity saturations.
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6.1.4 Kinematic controller
Without the Kinematic Controller

Simulations of the control system without the kinematic controller is seen in figures
6.8 to 6.10.

One can clearly see that the Euler angles in Figure 6.8 are drifting from the
desired values. Also oscillations are seen in the pitch plot. Figure 6.9 only show
the 80 first seconds of the simulation. Stationary errors are seen in all three rates.
Figure 6.10 shows the NE-plot of the simulation, the aircraft has large deviations
from the path during the whole simulation.
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Figure 6.8: Response of the Euler angles without the kinematic controller.
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Figure 6.9: Response of the Euler rates without the kinematic controller.
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Figure 6.10: Response of the aircraft without the kinematic controller.

With the Kinematic Controller

Two different tuning configurations are tested for the kinematic controller in pitch
with constants given by Table 6.3. Results from the first tuning scenario is given by
the figures 6.11-6.14, and results from the second is given by the figures 6.16-6.20.
A comparison of the pitch angles and the pitch rates of both scenarios is given in
Figure 6.21.

Scenario 1: Figure 6.11 shows the control signal from the kinematic controller
and the desired rates. The signal from the kinematic controller becomes dominating
in Q at 60 seconds. From Figure 6.12 it can be verified that a turn is initiated at
54 seconds. The aircraft experiences major unwanted edgy oscillations in roll and
pitch (both angles and rates) at 70-100 seconds. This is seen in figures 6.12 and
6.13.

Table 6.3: Two different tuning configurations for the kinematic controller in pitch.
Channel: Pitch
Scenario: 1 2
KP 0.1 0.5
KI 0.01 0.01
saturation 0.1 0.5
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Figure 6.11: Tuning Scenario 1: The control signal from the kinematic controller
(KC) and the desired rates.

Scenario 2: In Figure 6.16 the control signal from the kinematic controller is
plotted alongside the desired rates. In roll rate the control signal is very week
compared to Pd. The zoomed in plot, Figure 6.17, shows a slight stationary com-
mand of 0.05◦/s. The kinematic control signal in pitch rate and yaw rate is much
stronger. In Figure 6.18 a large error in pitch is experienced at 60 s and 120 s. The
same error is also seen in pitch rate in Figure 6.19.

Comparison: Figure 6.21 shows the comparison of the pitch channel in the two
scenarios. It is clear that the tuning in scenario 2 results in better following of the
pitch angle.
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Figure 6.12: Tuning Scenario 1: Response of the aircraft with the kinematic con-
troller.

10 20 30 40 50 60 70 80 90 100
−5

0

5
System and Reference signal

time [t]

P
 [
d
e
g
/s

]

 

 

P
s

P
d

10 20 30 40 50 60 70 80 90 100

0

2

4

time [t]

Q
 [
d
e
g
/s

]

 

 

Q
s

Q
d

10 20 30 40 50 60 70 80 90 100
−4
−2

0
2

time [t]

Ψ
 [
d
e
g

/s
]

 

 

R
s

R
d

Figure 6.13: Tuning Scenario 1: Response of the aircraft with the kinematic con-
troller.
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Figure 6.14: Tuning Scenario 1: Response of the aircraft with the kinematic con-
troller.
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Figure 6.15: Tuning Scenario 1: Elevator control signal.
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Figure 6.16: Tuning Scenario 2: The control signal from the kinematic controller
(KC) and the desired rates.
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Figure 6.18: Tuning Scenario 2: Response of the aircraft with the kinematic con-
troller.
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Figure 6.19: Tuning Scenario 2: Response of the aircraft with the kinematic con-
troller.
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Figure 6.20: Tuning Scenario 2: Response of the aircraft with the kinematic con-
troller.
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Figure 6.21: Comparing the tuning scenarios in pitch for both angles and rates.
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6.1.5 Velocity and Rate controller
The velocity and rate controller is tested through a simulation with two turns
as seen in Figure 6.22. The results are analysed in the longitudinal and lateral
motions. It is important to note that the states and control outputs plotted in
figures 6.23 to 6.26 are the perturbation. The nominal values are constant during
this simulation and is seen in Table 6.4.

Longitudinal Channel: In Figure 6.23 it can be seen that the aircraft’s forward
velocity is about 2 m/s above the desired value. The pitch rate has a stationary
error during the simulation. The control output in Figure 6.24 is mostly smooth,
however some jumps can be seen.

Lateral Channel: p follows the reference perfectly in Figure 6.25. There is a
small phase shift in r as well as a stationary error. The control output in Figure
6.26 show smooth graphs.

Table 6.4: The nominal state and control output values for the simulation. The
remaining are set to zero.

state/control output Nominal value
U0 51.4 m/s
α0 -0.7 ◦
δT0

750 N
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Figure 6.22: A north-east plot of the simulation.
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Figure 6.23: The states of the velocity and rate controller in the longitudinal
channel.
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Figure 6.24: The thrust dynamics from the velocity and rate controller in the
longitudinal channel.
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Figure 6.25: The states of the velocity and rate controller in the lateral channel.
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Figure 6.26: The thrust dynamics from the velocity and rate controller in the lateral
channel.

6.2 Discussion

6.2.1 Guidance Law

The tuning variable R has to be tuned when considering the aircraft’s turning rate.
If this is too small and the aircraft will not have enough room for making a clean
turn as seen when R = 1000 in Figure 6.1. The result is an overshoot of the second
path as also becomes evident in Figure 6.2 from 90 to 110 s. When R is too big
(scenario 1) the aircraft will suffer from large path deviations. R = 1300 was found
to be perfect as seen in Figure 6.1. The velocity saturation for Ψd is demonstrated;
as Ψd becomes linear in the period 60-100 s and 140-180 s of Figure 6.2.

6.2.2 Navigation

Considering Figure 6.3 containing turn two, the step causes Ψd to experience a large
error with respect to Ψr. In terms of position the large jump causes an overshoot
because the average rate of Ψr is much larger than the velocity saturation of Ψd.
The reason for this jump lies in the waypoint switching algorithm 1. As long as
the angle between LOS vector and the next path is larger than 90◦, Ψr will not
experience a jump. This is illustrated in Figure 6.27. Considering Figure 6.3 along
with figures 6.1 (the red line) and 6.2 (the red line) it is clear that the flight plan
should be constructed such that there are no turns which are less than 90◦. This
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Figure 6.27: An illustration of the problem with the path switching algorithm. The
blue dashed line is the line of sight (LOS) vector before path switch and the red
dashed line is after. In the left part of the figure the red and blue dashed line are
on top of each other.

is the only demand needed assuming that the cross-track error (e) is zero before
the transition.

6.2.3 Reference Model

In Figure 6.6 the response of scenarios 1 and 2 are similar. As scenario 1 is much
steeper than scenario 2 this indicates that the aircraft has met its limit. This is
also supported by Figure 6.7 as the aircraft is able to go faster than the reference
in scenarios 2 and 3 and not in scenario 1. Considering scenario 2, the aircraft
is able to follow the reference as well as catching up to it, signifying this as best
tuning scenario to choose.

6.2.4 Kinematic controller

Because the main controller of AFCS is a rate based controller, the Euler angles
are not considered in the control law. The small stationary errors in rates in Figure
6.9, propagate to large errors in the Euler angles in Figure 6.8 and the position in
Figure 6.10.

The first tuning scenario in pitch is much lower than the second. This becomes
evident when comparing Qd with the kinematic control signal in pitch (KCP ) in
figures 6.11 and 6.16. The consequence of lower gains can be seen when comparing
Figure 6.12 and Figure 6.18 where the stationary error is double for lower gains.
Figure 6.21 shows that scenario 2 has a much closer following in the pitch angle
than scenario 1.

As seen in Section 5.1.2 the kinematic controller alters the reference signals
which are fed to the velocity controller. However, if the control signal from the
kinematic controller becomes too large it will drown the dynamics of the reference
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signal. To be able to have low gains in the kinematic controller the velocity and
rate controller must be accurate.

The edgy oscillations discovered for the first scenario is a result of large devi-
ations in pitch rate around 70 seconds. Figure 6.15 shows a large jump at 68 s of
the elevator control surface. These violent manoeuvres propagate to roll and cause
unwanted oscillations in all channels.

However, the large deviation in pitch and pitch rate which occurs at 56 s is
a result of the banking manoeuvre. This is also evident in figures 6.18 and 6.19.
However in this scenario the kinematic controller issues a large control signal to
counter act this motion as seen in Figure 6.16. It is therefore concluded that higher
gains in pitch in the kinematic controller is necessary. Model couplings is discussed
in Section 6.2.6.

6.2.5 Rate and Velocity Controller

The states in the longitudinal channel follow the references with a small stationary
error in all channels as seen in Figure 6.23. In pitch rate it is the kinematic
controller which "pulls" the rates down by tuning the reference down. The average
speed of the aircraft is a couple of m/s too high. To adjust this the nominal value
for thrust is set to 740 N for levelled flight. In the lateral model, Figure 6.25, p has
perfect following. Yaw rate on the other hand suffers from phase lag. This is due
to the fact that roll is calculated by yaw rate and therefore has to pass through the
reference model two times before the aircraft reacts.

The thruster output in Figure 6.24 has some rapid movements during the sim-
ulation. This is due to the LQ optimal control that does not include constraints.
However in reality thruster dynamics should be considered as movements of the
control surfaces are restricted. The rapid movements could have been dampened
by including thruster dynamics in the control plant and would help ensuring sta-
bility.

6.2.6 Model-based Control

It has been observed frequently that the banking motion of the aircraft affects the
aircraft’s pitch. This is best illustrated in Figure 6.18 at both 60 and 130 s. In this
example the aircraft first initiates a left turn and then a right turn. In both cases
the pitch drops 1 ◦ which is interpreted as the nose rising 1 ◦. In Figure 6.12 (with
lower kinematic controller gains in pitch) this drop is -4 ◦ and a large deviation
occurs in pitch rate during the drop. The controller corrects the rate error by a
large elevator command which induces the consequent oscillations.

Several conclusions can be drawn by this incident. First of all the main reason
for the oscillatory behaviour is due to the large errors in the controller. However,
these could be managed if the controller did not respond with violent control out-
puts. This brings to light that thruster dynamics should have been included in the
control plant model.
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Additionally it was assumed that the system could be decoupled in longitudinal
and lateral motions. It was presumed that feedback control would suffice to correct
the resulting deviations. However this is not the case for the bank-to-turn manoeu-
vre mentioned above; thus for large roll angles the model in pitch is inaccurate.
Another way of correcting this could be to include a feedforward control in the
longitudinal channel which is activated as a turn is initiated.
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Chapter 7
Case Studies

The fault-tolerant control system (FTCS) is tested with seven case studies which
are presented below. A discussion and conclusion of the results are presented in
the chapters 8 and 9.

Faults simulated are on the control surfaces and are reduction of effectiveness.
These could represent a loss of hydraulic pressure in the actuators.

Case 1: Two Turns A simulation with two turns is performed. The performance
of the FDI is analysed in a fault-free situation. Also, filtered and unfiltered
residuals are compared.

Case 2: Two Turns with a Fault Running the same simulation as for case 1, a
fault is simulated in the ailerons. The results from the FDI are analysed.

Case 3: Elevation regulator A simulation is performed with a change in eleva-
tion. Guidance using the angle of attack is presented, and the performance
of the FDI is analysed.

Case 4: Elevation regulator with a Fault The same simulation as in case 3 is
performed. A fault is simulated on the elevator and the results from the FDI
are analysed.

Case 5: Multiple Faults The flight plan from case 3 and 4 are simulated with
two faults. The fault occur with 20 seconds apart, first in the elevator and
then in the ailerons. The results from the FDI are analysed.

Case 6: Different Magnitude of Faults Different magnitudes of fault is simu-
lated on a small part of the flight plan from case study 1 and 2. An analysis
is performed on the results.

Case 7: Fault Accommodation A fault is simulated and the performance of
the control system is then compared with and without fault accommodation
enabled.
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7.1. Case Study 1: Two Turns

7.1 Case Study 1: Two Turns
The flight plan of this case study can be seen in Figure 7.1 along with the aircraft’s
trajectory. The nominal values in the controller are constant during this simulation
and is seen in Table 6.4. Figures 7.2-7.5 show the state of the system and compares
them to the states from the observer. The residual and variance are presented in
figures 7.6-7.7. A comparison is be made between the raw and the filtered values.

Figure 7.2 shows the Euler angles from the system and the observer during the
simulation. There is a slight drift in the roll estimate during the period 70-80 s
and 130-140 s. The pitch estimate is oscillating during the periods 60-80 s and
130-160. Figure 7.3 shows the Euler rates. Oscillations are present in the pitch
rate estimate during 60-100 s and 120-160 s. A small drift in yaw rate is also seen
in the periods 60-80 s and 120-160. According to Figure 7.4 a small drift is present
in roll rate during the periods 60-80 s and 130-155 s. Figure 7.5 shows the forward
velocity, sideslip angle and angle of attack during the simulation. Oscillations in Û
are present during the periods 60-100 s and 130-140 s. β̂ experiences drift during
the periods 60-80 s and 120-160 s. And finally a stationary error is present in α̂
during the periods 60-70 s and 120-160 s.

Figure 7.6 shows the residuals in roll, pitch, roll rate and pitch rate. The periods
with largest deviations from zero are from 60-100 s and 120-160 s.

Further, looking at the unfiltered variance signals in Figure 7.7 (left) spikes are
observed at 40, 100, 140 and 160 seconds. These spikes disappear in the right part
of this figure and the variance is smooth. Also in this plot the largest variance is
observed at the periods 60-100 s and 120-160 s.
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Figure 7.1: Case study 1: A plot of the simulation.
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Figure 7.2: Case study 1: The Euler angles from the system and observer.
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Figure 7.3: Case study 1: The Euler rates from the system and observer.
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Figure 7.5: Case study 1: Forward velocity, sideslip angle and angle of attack from
the system and observer.
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Figure 7.6: Case study 1: The residual from the FDI. Unfiltered values are com-
pared with filtered values.
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Figure 7.7: Case study 1: The variance of the residual from the FDI. Unfiltered
(left) and filtered (right) values are presented.
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7.2 Case Study 2: Two Turns with Fault Present
A fault is introduced in the ailerons at 60 s. During 5 seconds the control surfaces
are reduced to 10 % of normal effect. Variance thresholds for fault detection is
set according to Table 7.1. The flight plan and a plot of the simulation is seen in
Figure 7.8.

Figures 7.9 - 7.10 shows the results of the FDI.
Figure 7.9 shows the residual and the variance of the residual of the simulation.

It is clear that the residual in roll and roll rate increases considerably at 65 seconds.
First the roll rate and followed by roll. Looking at the variance plot roll and roll
rate crosses the threshold at 66.5 and 64.5 seconds which is also reflected in the
plot of the FDI’s decision, Figure 7.10. In the longitudinal model the residuals
increase during the periods 60-100 s and 140-180 s. During the second of these
periods a fault is detected in pitch and pitch rate according to Figure 7.10. Figure
7.11 shows the roll and roll rate from the system, desired values and estimated
values. At 150 s a large aileron command is produced.

Now the fault accommodation algorithm is included in the simulation.

Table 7.1: Threshold values for fault detection in the FDI.
Thresholds values:
Φth 1× 10−5rad2 = 3.28× 10−2deg2

Θth 1× 10−5rad2 = 3.28× 10−2deg2

Pth 5× 10−7(rad/s)2 = 1.6× 10−3(deg/s)2

Qth 5× 10−7(rad/s)2 = 1.6× 10−3(deg/s)2
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Figure 7.8: Case study 2: A plot of the simulation.
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Figure 7.9: Case study 2: The residuals and the variance of the residuals. The
variance is plotted with a logarithmic y-axis
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Figure 7.10: Case study 2: The decision that a fault has occurred in the respective
channels.
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Figure 7.11: Case study 2: Roll and roll rate states and aileron dynamics.
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7.3 Case Study 3:
The flight plan of this case study can be seen in Figure 7.12 and is straight in
the NE-plane, the aircraft’s trajectory can also be viewed. The nominal values in
the controller are constant during this simulation and are seen in Table 6.4. In
Figure 7.12 a large deviation from the path is seen for the blue graph. The red is
following the path perfectly. Every 20 seconds the Φ̂ bounces fast away from Φs as
seen in Figure 7.13. The bursting like behaviour is only seen in the lateral model,
Figure 7.14. Figure 7.15 shows the residual and variance of the residual from the
simulation. the bursting is most prominent in P .

88



Chapter 7. Case Studies

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

−250

−200

−150

−100

−50

0

Elevation graph

sqrt(N
2
+E

2
) [m]

D
o
w

n
 [
m

]

 

 

w/o α

w/ α

path

Figure 7.12: Case study 3: A plot of the simulation. Where the blue line is without
feedback of α, and the red is with.
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Figure 7.13: Case study 3: The Euler angles from the system and observer.
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Figure 7.14: Case study 3: A burst like effect is observed in the lateral model.
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Figure 7.15: Case study 3: The residuals and the variance of the residuals.
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7.4 Case Study 4
The purpose of this study case is to see the effect of a 90 % loss of effectiveness
in the elevator control surface. The fault occurs at 60 s and the trajectory of the
aircraft can be seen in Figure 7.16. The aircraft experiences a stationary error
during the latter part of the graph.

The residual and variance of the residual are presented in Figure 7.17. After 60
seconds oscillations are seen in the residuals of θ̂ and Q. The variance in pitch is
close to the threshold after 60 seconds.

Errors are detected at 68 seconds in roll and 66.5 seconds in Q in accordance
with Figure 7.18. Also in the roll channel there are jumps in the decision graph at
120, 140, 160 and 180 seconds.
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Figure 7.16: Case study 4: A plot of the simulation.
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Figure 7.17: Case study 4: The residuals and the variance of the residuals.
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Figure 7.18: Case study 4: The decision that a fault has occurred in the respective
channels.

7.5 Case Study 5
The same simulation as in case study 3 and 4 is performed. In this case study two
faults occurs, first on the elevator at 60 s and then on the ailerons at 80.

The results are seen in Figure 7.19. In roll and pitch the faults are detected at
respectively 88 and 68 seconds. Further, the variance crosses the threshold some
times after the fault is detected.
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Figure 7.19: Case study 5: The residuals and the variance of the residuals.
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7.6 Case Study 6
For the same scenario from case study 1 and 2, four different magnitudes of faults
were tested according to Table 7.2. These occurred at 60 seconds in the ailerons
during the aircraft’s first turn. Figure 7.21 shows the residual and variance as well
as the effect the fault has in roll. There is a good spread in the residuals and
variances. The effect the fault has on roll is none for cases 1, 2 and 3. For case 4
with the biggest effect reduction Φs is not able to follow Φd during the last part of
the plot.

Looking at the output from the kinematic controller Figure 7.20 it is clear that
the contribution increases as the fault magnitude increases.

Table 7.2: Four different fault magnitudes.
1: No fault (0 % reduction) (blue)
2: 30 % reduction (green)
3: 60 % reduction (red)
4: 90 % reduction (turquoise)
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Figure 7.20: Case study 6: The output of the kinematic controller in each case.
Four different magnitudes of faults in aileron were tested: No faults (blue), 30 %
reduction (green), 60 % reduction (red) and 90 % reduction (turquoise).
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Figure 7.21: Case study 6: Four different magnitudes of faults in aileron were
tested: No faults (blue), 30 % reduction (green), 60 % reduction (red) and 90 %
reduction (turquoise). The residuals and the variance of the residuals is plotted on
the left and the right shows the loss of accuracy in roll.
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7.7 Case Study 7 Fault Accommodation
In this case study a fault occurs at 60 seconds in ailerons which reduces the control
surface to 10 % effectiveness. The flight plan from case study 1, 2 and 6 is simulated.
Two simulations are compared; first without fault accommodation and then with.

In both simulations in Figure 7.22 the aircraft is not able to follow the reference
value. With fault accommodation the performance is worse.

Figure 7.23 shows that the kinematic controller has a bigger contribution with
fault accommodation enabled.
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Figure 7.22: Case study 7: Simulations are done with and without fault accommo-
dation (FA).
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Figure 7.23: Case study 7: A comparison is done of the kinematic controller (KC)
with and without fault accommodation (FA).
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Chapter 8
Discussion

8.1 Case Study 1

First of all it is clear that the largest residuals occur during the two turns. The
observer does an excellent job in estimating the states in the lateral model. There
is a drift in P̂ during the banking which propagates to Φ̂, P̂ and β̂. The reason
for this drift is that |Φ| >> 0 and the assumption that sin(·) ≈ · and cos(·) ≈ 1
becomes weaker. However the effect is so small that it is easily corrected when the
model is updated as can be seen every 20 s.

The longitudinal model is not as accurate as the lateral. When banking is
initialised Θs drops 1◦ as discussed in Section 6.2.6 and the controller corrects
this error. Because this dynamic is not modelled in the observer, this incident
induces the oscillations seen in figures 7.2 and 7.3. Furthermore, because the nose
is elevated the aircraft’s forward velocity and angle of attack are also affected, as
seen in Figure 7.5.

The spikes observed in the unfiltered variance signal Figure 7.7 occur when the
model is updated and are most prominent when the residual is large. To suppress
these spikes a filter is implemented. Smoother residuals result in a more even
variance.

8.2 Case Study 2

The fault in aileron occurs at 60 seconds and gradually increases for 5 seconds until
the elevator is reduced to 10 % effect. According to Figure 7.9 a fault is detected in
roll channel at 66.5 seconds and in roll rate at 64.5 s. As it takes time for the fault
to propagate to roll it is natural that it is first detected in the rates. A fault is also
detected in pitch and pitch rate. The reason for this is a large aileron command
at 150 s. As the roll rate is corrected, this motion propagates to the pitch channel
which has to be corrected by the controller. Also, because the roll induced motion
is not modelled in the longitudinal model, the result is an increase in the residuals
in the lateral channel. The origin of the aileron step is an increased error between
the desired value and the system value in P as seen in Figure 7.11 during the period
148-156 s.
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8.3 Case Study 3

Figure 7.12 shows that without feedback of the angle of attack, α the stationary
error will be substantially large. By adding α to the guidance law, as seen in
Section 4.5.1, perfect following can be achieved.

A bursting like behaviour is seen in the lateral model in figures 7.13 and 7.14.
Since this happens every 20 seconds, it is clear that it is related to the updating
of the model. Every 20 seconds φ̂ is reset to the system value Φ − φ0. As this is
not the equilibrium of the linear model, the signal bounces back to its equilibrium
resulting in bursting effects in the roll rate. R and β are also affected.

The bursting behaviour is also present in the residuals. Compared to the vari-
ance in Figure 7.7, the variances of P and Q are larger.

8.4 Case Study 4

Faults are detected at 68 seconds in roll and 66.5 seconds in roll rate. The variance
in roll rate has a good separation between healthy and faulty residuals. However
because the variance of roll is closer to the threshold, some false decisions occur.
This could be solved by implementing a lower threshold.

8.5 Case Study 5

The results from this simulation resembles the results from the previous case stud-
ies. The roll channel resembles Figure 7.9 and pitch channel resembles Figure 7.17.

The results from the FDI show that there is a clear separation between a faulty
and a fault-free system. This enables the FDI to pick up multiple faults and isolate
them to the correct channel.

8.6 Case Study 6

From this case study it becomes clear that different magnitudes of faults affects
the magnitude of the residual which is natural. The variance of P has the clearest
separation of all the variances. Keeping in mind that the y-axis is logarithmic it
is easy to part the fault with 30 % reduction from the fault-free case. However as
the threshold is set at 1.6× 10−3(deg/s)2 the fault is not picked up right away.

The effect of the fault from case 2 and 3 is nevertheless not severe. Looking
at the effect on the roll channel it becomes clear that perfect following is still
achieved. This is explained when regarding the control output of the kinematic
controller. As the performance of the rate controller is impaired the non-model-
based-kinematic controller drives the stationary errors to zero. The rate controller
using LQ optimal control is limited to a relative small bandwidth. This becomes
evident as the contribution of the kinematic controller increases drastically when
faults occur. Thus, the kinematic controller adds some control bandwidth. However
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Chapter 8. Discussion

when this controller reaches saturation as seen for the simulation with 90 % effect
reduction, the system is not able to follow the reference. The kinematic controller
adds some degree of robustness to the control system. However, it is not possible to
come to a conclusion on this because the LQ does not include physical constraints
in the optimization problem.

Even though perfect following is achieved, the fault can still be reflected in the
residuals. This is because the increased use of control surfaces due to the kinematic
controller, separates the response of the system from the response of the model.
As the response of the system is slower, the system and the observer will behave
differently. This means that a fault can be picked up even if the system seems to
behave as if it were fault-free.

8.7 Case Study 7
Looking at Figure 7.22 it becomes clear that with fault accommodation enabled,
the system has a slower response than without. The reason for this lies in the gain
matrices.

8.7.1 Excluding Rudder
For illustrative purposes the rudder will be excluded in this section. Without fault
accommodation enabled the controller gains are calculated based on the following
control matrix in the lateral channel:

B =
[
0 −91 −2.9

]T (8.7.1)

G1 =
[
−0.1385 1.8175 0.0416

]
G2 =

[
−1.9899 0.0001

]
(8.7.2)

With fault accommodation the new control matrix becomes:

B =
[
0 −9.1274 −0.2925

]T (8.7.3)

which result in the following controller gains:

G1 =
[
−0.3879 0.8495 0.1341

]
G2 =

[
−1.4063 0.0000

]
(8.7.4)

To analyse the control gains the control equation (4.2.9) has to be regarded:

u = G1x+G2yd (8.7.5)

Looking at the feedback of state p (second entry in theG1-matrix) and the reference
feedforward of p (first entry in the G2-matrix), it is clear that these controller gains
have been reduced after the introduction of fault accommodation. By reducing the
control matrix to describe the faulty system the control signal is also reduced. This
means that the relationship between the state signal and the control signal in the
cost function (4.2.8) is altered. The tuning matrices Q and R are tuned with
the fault-free system in mind and therefore the controller has a limited control
bandwidth. These matrices do not hold when the fault is this severe so the R
matrix should be tuned up.
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8.8. General Discussion

8.7.2 Including Rudder
The rudder is included and the controller gains without fault accommodation, is
calculated to be:

G1 =

[
−0.14 1.8 0.042
0.0003 −0.013 0.0016

]
G2 =

[
−1.2 0.0001
0.011 −0.0001

]
(8.7.6)

With fault accommodation the gains become:

G1 =

[
−0.39 0.85 0.14
−0.014 −0.041 0.045

]
G2 =

[
−1.4 0.0000
−0.067 −0.0001

]
(8.7.7)

In this case it can be seen that the contribution of the rudder increases when the
fault accommodation is enabled. While the aileron control is reduced the contribu-
tion of the rudder will increase because of the relations in the tuning matrix. Since
the rudder is not as effective the aileron the overall performance of the aircraft is
still impaired. If the aircraft had been over actuated, for example if flaperons had
been used (flaps that also can be used as ailerons), in addition to ailerons, some of
the control load could be transferred to these. However, this will merely increase
the control bandwidth and make the control system more robust.

[Blanke et al., 2006] mentions that the solution of the fault tolerant control
problem is admissible and not optimal. This means that the performance of the
fault tolerant control system is reduced with respect to the fault-free case. In order
to have an optimal solution of the faulty system the tuning matrices have to be
tuned in advance for different kinds of faults.

Is it better to have lower gains and a correct control plant than have higher
gains and a wrong control plant? From Figure 7.22 it can be seen that the difference
between with and without fault accommodation is not a big. This is mainly due to
the kinematic controller, which has a larger contribution with fault accommodation
to account for the larger stationary errors. It is easier to ensure stability when the
correct model is implemented.

8.8 General Discussion

8.8.1 Parity Space as FDI
By studying the outputs from the observer from the case studies, small oscillations
are always observed. For instance in Figure 7.3 during the period 0 - 60 seconds
small oscillations can be seen in Q. This is also reflected in the residuals in Figure
7.6 in all channels during the same time period. These oscillations are present
because of model uncertainty in the observer. The equilibrium in the linear model
is not the same as that of the system. When the model states are updated to that of
the system they will begin to oscillate between the two equilibriums. Further, when
a fault is present the gap between these equilibriums gets bigger and subsequently
the oscillations become bigger. These oscillations are picked up by the residual
validation.

104



Chapter 8. Discussion

8.8.2 Actuator and System Faults
The fault detection and isolation (FDI) developed in this thesis bases the analysis
on roll and pitch measurements from the system. As mentioned in Section 2.1 it is
hard to differentiate between system faults and actuator faults. In this thesis the
faults regarded are effect reductions of the control surfaces. A fault on the fuselage
of the aircraft can result in similar effects. The FDI merely picks up the difference
between the system and the observer and is therefore able to find faults that were
not accounted for when the FDI was designed. However, after the fault is isolated
measures have to be taken to counteract the fault induced effects. This includes
post analysis of the results which may not be as trivial.

8.8.3 Injection Term vs Model Updating
In this thesis the model update is done every 20 seconds and this is performed
by updating the observer’s states to the measurements from the system. Another
common way of making the observer follow the system is by using an injection
term. The injection term is given by K times the estimate error (8.8.1) and drives
the states in the observer towards that of the system.

˙̂x = f(x̂) +K(x− x̂) (8.8.1)

If an injection term had been used, the observer given by (2.2.1) would instead
become:

x(k + 1) = Ax(k) +Bu(k) +R1f(k) +K(x(k)− x̂(k)) (8.8.2)

This system is not a model of the fault-free system and if a fault occurs the injection
term will try to hide it.

By periodically updating the states in the model, the fault-free property of the
observer will stay intact. As discussed earlier in this section, the model updating
also induce oscillations between the equilibriums of the system and the model which
can be exploited. Also by resetting the states periodically, jumps are induced in
the residual which can be filtered out.

8.8.4 Wind and Turbulence
In case study 2 it is seen that a correction in roll rate propagates to the pitch channel
and causes a false fault detection. If this case is only regarded in the longitudinal
model one can conclude that an external force has affected the aircraft. Similar
effects could be induced by first order wind or turbulence and these are not regarded
in this thesis. However, in a real setting these have to be accounted in the FDI to
minimize false fault detections.
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Chapter 9
Conclusion And Future

work

9.1 Conclusion
The main goal of this thesis is to implement a fault-tolerant control system (FTCS)
on an unmanned aerial vehicle (UAV). The FTCS includes an automatic flight con-
trol system (AFCS) with fault accommodation and a fault detection and isolation
(FDI) system. In this chapter conclusions are drawn based on the discussion of the
results in chapter 8.

• The model-based velocity and rate controller implemented results in accept-
able tracking of the reference signal with the bonus of feedforward control.
The kinematic controller corrects for stationary errors in the rates and adds
control bandwidth. It is observed that when large errors are present in the ve-
locity and rate controller, rough control signals can occur. This compromises
the robustness outside the bandwidth of the kinematic controller.

• Couplings in the longitudinal and lateral model are observed and these have
affected the accuracy of the controller as well as the FDI. This could have
been prevented if a coupled control plant had been enabled.

• The results from the FDI indicate that there is a large separation between a
faulty and a fault-free system. Static thresholds are implemented and these
were easily tuned with simulations of a faulty- and a fault-free system. The
FDI is also able to pick up faults even though the aircraft follows the reference
signal perfectly. This is because the control system is operating outside the
bandwidth of the rate controller but inside the bandwidth of the kinematic
controller. In other words as the control signal from the kinematic controller
becomes large a fault has occurred. Due to the clear separation of a faulty
system from a fault-free, the FDI is also able to pick up multiple faults and
isolate them to their respective channels. However, first order wind and
turbulence are not regarded as these will reduce the accuracy of the FDI.

• It has been noticed that by updating the observer, oscillations are induced
in the residual. The FDI is able to exploit this by regarding the variance of
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this signal.

• As a consequence of the limited bandwidth of the LQ controller, optimal
control is not achieved when fault accommodation is enabled during a fault
situation. Because the kinematic controller adds control bandwidth, the air-
craft is still able to follow trajectories when the fault is not severe. Also, it
has been observed that the LQ controller can generate rough output signals
as a result of large errors. This weakens the robustness of the control system
and stability is not guaranteed. However, instabilities have not been observed
in the study cases, only rapid corrections of large errors in the LQ controller.

9.2 Future Work
• In this thesis static thresholds have been implemented. These are in a very

basic form of fault detection and can be replaced by more advanced methods.
One example is adaptive thresholds as discussed in [Patton and Chen, 1994].

• The simulations performed have been done without noise. Noise can have
many forms, the most important ones are measurement noise, wind and tur-
bulence. To be able to implement this system in a real setting these have to
be accounted for as they can contribute to false alarms.

• In this thesis the fault is assumed to be known. This is done in order to be able
to implement fault accommodation. In reality the fault has to be estimated,
i.e. fault identification has to be implemented. This would upgrade the
system from a FDI to a fault detection and diagnosis (FDD) system.

• The limited bandwidth of the LQ controller resulted in an admissible control
law which was not an optimal solution. Additional work should be done
within robust control systems to improve control in fault situations.
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Appendix A
Kinematics

Kinematics describe the motion and the geometry of a system without regarding
forces and moments. To be able to describe the relations between independently
moving objects, reference frames are defined. These are divided in Earth-centred,
geographical and vehicle reference frames. In this chapter vector and matrix no-
tations are defined which will be used throughout this thesis. Also definitions of
important terms will be introduced.

A.1 Reference Frames
This report follows definitions used in [Fossen, 2011a] and [Fossen, 2011b].

Earth-Centred Reference Frames
ECI: The Earth-centred inertial (ECI) frame {i} = (xi, yi, zi) is a non-rotating

and therefore non-accelerating reference frame with the origin in the Earth’s
centre of mass. Since Newton’s laws of motion does apply this reference frame
is used for terrestrial navigation.

ECEF: The Earth-centred Earth-fixed (ECEF) frame {e} = (xe, ye, ze) is rotating
with respect to the surface of the Earth with the origin in the Earth’s centre
of mass. GPS positions are given in ECEF, and the x-axis is pointing to the
crossing of 0◦ longitude and latitude.

Geographic Reference Frames
NED: The North-East-Down (NED) frame {n} = (xn, yn, zn) is a local tangent

plane used for local navigation. The x-axis is pointing to true north, the
y-axis to the east and the z-axis is pointing to the earth centre perpendicular
to the surface.

Path: The path frame {p} = (xpath, ypath, zpath) is a path-fixed reference frame,
with origin in a waypoint pk and is used for calculating the vehicles deviation
from the path. As a path consist of two waypoints, pk and pk+1, the xpath-
axis points along this vector. the ypath-axis points to the right parallel to the
horizon and the zpath-axis points downward finishing the right hand rule.
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A.2. Vector Notation

Vehicle Reference Frames
BODY: The body-fixed frame {b} = (xb, yb, zb) with origin in the aircraft’s centre

of origin (CO). The x-axis is pointing in the vehicle’s forward direction,
the z-axis is pointing straight down relative to the vehicle and the y-axis
to the right, completing the right-hand rule (see Figure A.1 for a graphical
description).

WIND: The wind frame {w} = (xw, yw, zw) is a reference frame used for naviga-
tion in the horizontal-plane. Wind affects the aircraft and alters the direction
the aircraft travels with an angle β, as seen in Figure A.2. The origin is lo-
cated in CO.

SA: The stability frame {s} = (xs, ys, zs) is given by an angle α according to
Figure A.2. This angle becomes significant when the airflow over the wings
is reduced. To to compensate for the lack of lift the aircraft has to angle it’s
nose upwards. The origin is located in CO.

Body-fixed Reference Points
CO: Centre of origin (CO) is a reference point defined arbitrarily.

CG: Centre of gravity (CG) is the centre of mass of the aircraft. It reduces the
workload when calculating of forces and moments.

A.2 Vector Notation
This section defines important vectors used in aircraft modelling. Also the vectorial
notation, including super- and subscripts are also explained.

η ,


x
y
z
φ
θ
ψ

 =

[
pnb/n
Θnb

]
(A.2.1)

The position vector pnb/n given in the {n}-frame, shows the position of {b} relative
to the {n}-frame. The attitude is given by Euler angles Θnb and shows the relations
between the {b}-frame and the {n}-frame.

ν ,


U
V
W
P
Q
R

 =

[
vbb/n
ωbb/n

]
(A.2.2)
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The velocities are relative to the inertial-frame, which in this report is the NED-
frame. vbb/n shows the linear velocity of {b} relative to the {n}-frame, given in the
{b}-frame. ωbb/n shows the angular velocities of {b} relative to the {n}-frame, given
in the {b}-frame. 

X
Y
Z
L
M
N

 =


forces in xb-direction
forces in yb-direction
forces in zb-direction

roll moment
pitch moment
yaw moment

 =

[
f bb
mb
b

]
(A.2.3)

f bb is the forces acting on the CO, expressed in the {b}-frame. mb
b is the moment

vector about CO, given in the {b}-frame.

A.3 Rotation Matrices

Rotation matrices are used to rotate a frame of reference to another. These matrices
has the properties of the Special Orthogonal group for three dimensions (SO(3))
and are defined in [Spong et al., 2006] as:

• RT = R−1 ∈ SO(3)

• The columns (and therefore the rows) of R are mutually orthogonal

• Each column (and therefore the rows) of R is a unit vector

• detR = 1

A rotation of a vector from one frame of reference to another is expressed as

vto = Rto
fromv

from (A.3.1)

A rotation of an arbitrary angle α around the x-axis is given as:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (A.3.2)

similarly a rotation of α around the y- and z-axis is given by:

Ry(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (A.3.3)
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A.3. Rotation Matrices

A.3.1 Rotation Matrices Between BODY and NED
The three Euler Angles describes the relations between the NED- and the BODY
frame. This is called the vehicles attitude and the angles are roll (φ), pitch (θ)
and yaw (ψ) as seen in Figure A.1. The 6 DOF kinematic equations from [Fossen,
2011a] are seen in (A.3.4) and shows the relation between BODY and NED. The
matrix JΘ(η) is referred to as the Jacobian.

η̇ = JΘ(η)ν (A.3.4)
m[

ṗnb/n
Θ̇nb

]
=

[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

] [
vbb/n
ωbb/n

]
(A.3.5)

Rotation of Linear Velocity

The relation between the NED velocity vector ṗn and the BODY velocity vector
vbb/n is given as:

ṗn = Rn
b (Θnb)v

b
b/n (A.3.6)

whereRn
b (Θnb) is the rotation matrix and is calculated by three separate rotations:

Rn
b (Θnb) , Rz,ψRy,θRx,φ

=

cψcθ −sψcφ+ cψsθsφ sφsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (A.3.7)

where s· = sin(·) and c· = cos(·).

Rotation of Angular Velocity

The relationship between the BODY fixed rates ωbb/n and the Euler rates Θ̇nb is
given in [Fossen, 2011a] as:

Θ̇nb = TΘ(Θnb)ω
b
b/n (A.3.8)

where

TΘ(Θnb) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 where θ 6= 90◦ (A.3.9)

where t· = tan(·). It is important to recognize a disadvantage of using Euler
Angles: The matrix TΘ(Θnb) becomes singular when θ = π

2 . In practice this
means when the aircraft is pointing straight down towards the ground or straight
up. Quaternions is another method used which does not have this flaw. However
this method introduces an additional state to describe attitude which complicates
the kinematics.
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Figure A.1: Definition of the Euler angles, velocities, forces and moments in the
body-axis (McLean 1990)

A.4 Angle of Attack and Side Slip
The stability axis is given by a rotation of α around the yb-axis as seen in Figure
A.2. α is the angle of attack and is defined as:

α , arctan
W

U
(A.4.1)

The wind axis is given by a rotation of β around the zb-axis and is seen in
Figure A.2. The angle β is defined in (A.4.2) where VT =

√
U2 + V 2 +W 2 is the

absolute speed of the aircraft relative to the inertial frame.

β , arcsin
V

VT
(A.4.2)
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A.4. Angle of Attack and Side Slip

Figure A.2: Definitions of the stability axis and the wind axis given by the angles
α and β respectively. (Stevens and Lewis 1992)
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Appendix B
Parameter Values for the

Cessna 172SP Model

These tables contain parameter values for the Cessna 172SP model developed in
[Vistnes, 2012].
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Table B.1: Geometry and Mass Properties of the Cessna 172SP, [Vistnes, 2012]
Parameter Description Value

Aircraft Mass and Moments of Inertia
m Aircraft mass 745 kg
Ix Moment of inertia about x-axis 1502.2 kgm2

Iy Moment of inertia about y-axis 2862.0 kgm2

Iz Moment of inertia about z-axis 4044.5 kgm2

Location of Propulsion System

rbt/b Location of thrust relative to CO

2.225
0.000
0.122


Wing-Shape Parameters
b Wing span 5.9 m
c = c̄ Wing chord 1.6 m
S Wing area 7.5 m2
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Table B.2: 1/2 - Aerodynamics Parameters for the Cessna 172SP: Force and Mo-
ment Coefficients, [Vistnes, 2012]

Parameter Description Value

Drag Coefficient
CD0

Bias term 0.06
CDα Angle of attack 0.58
CDα2 angle of attack squared 1.99
CDTC Trust coefficient 0.09
CDδf Flaps 0.35
CD

δ2
f

Flaps squared -0.13

Lift Coefficient
CL0

Bias term 0.78
CLα Angle of attack 12.43
CLδe Elevator 1.59
CLδf Flaps 3.44
CL

δ2
f

Flaps squared -2.34

Sideforce Coefficient
CY0 Bias term 0.001
CYβ Sideslip Angle -2.13
CYTC Trust coefficient 0.07
CYδr Rudder 0.40
CYp Damping Derivative -0.51
CYr Damping Derivative 1.50

Rolling Moment Coefficient
Clβ Sideslip Angle -0.31
ClTC Trust coefficient -0.04
Clδa Aileron -1.97
Clδr Rudder 0.06
Clp Damping Derivative -6.57
Clr Damping Derivative 1.59

Pitching Moment Coefficient
Cmα Angle of Angle -5.51
Cmδe Elevator -5.50
Cmq Damping Derivative -43.85
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Table B.3: 2/2 - Aerodynamics Parameters for the Cessna 172SP: Force and Mo-
ment Coefficients, [Vistnes, 2012]

Parameter Description Value

Yawing Coefficient
Cn0

Bias term -0.02
Cnβ Sideslip angle 0.91
CnTC Trust coefficient 0.01
Cnδa Aileron -0.17
Cnδr Rudder -0.37
Cnp Damping Derivative -1.57
Cnr Damping Derivative -2.05
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Appendix C
DVD-attachment

A DVD is attached to this thesis. This includes all MATLAB Simulink diagrams
and the necessary scripts to run the simulations. The files are listed below. Note
that a mex compiler must be installed in order to compile the Simulink program.

• cessna172.mdl: This MATLAB Simulink model contains the complete sim-
ulator. In order to compile this file a mex-compiler has to be installed in
MATLAB. The MATLAB script run.m initiates necessary constants.

• Cessna172SP.png: This picture is used by the Cessna 172SP simulation
plant in cessna172.mdl.

• flightplan.m: This MATLAB script initiates the aircraft’s flight plan given
by the matrix WP. Each column consists of a waypoint in the NED-frame.

• init_Control_Constants.m:. This MATLAB script initiates the PI con-
stants of the kinematic controller. Constants for the reference model is also
set here.

• init_Model_Cessna172SP.m: This MATLAB script initiates necessary
constants for the simulation plant [Vistnes, 2012]. Also constants for the
linear observer and the control plant is also initialized. These are position,
velocity, Euler angles and Euler rates.

• LinearModelMatricesLongitudinal.m and LinearModelMatricesLat-
eral.m are functions which returns linear state matrices for the decoupled
model. These functions are used by the velocity and rate controller and the
linear observer.

• plottingsimulation.m: This script can be used to plot the trajectories of
the aircraft after a simulation.

• run.m: This MATLAB script initializes all necessary constants.
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Appendix D
MATLAB-code

In this chapter the MATLAB-code from the Simulink diagram cessna172.mdl are
presented. The Simulink diagrams can be found in the DVD-attachment in Ap-
pendix C. The figures D.1 to D.3 are simplified versions of the Simulink diagrams
and show references to the MATLAB-code below.

Simulation
plant

AFCS

FDI

ys
u

F ac

Figure D.1: A top level representation of the MATLAB Simulink diagram. The
abbreviations are automatic flight control system (AFCS) and fault detection and
isolation (FDI).

AFCS

ys

Guidance and
Navigation
Appendix D.1

Reference
Model

Kinematic
Controller
Appendix D.3

Velocity and
Rate Controller
Appendix D.2

Roll
Command

yr u

νd

ηd

Φr

Figure D.2: The automatic flight control system (AFCS), with references to the
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D.1 Guidance and Navigation

1 function [eta_ref, speed_d] = SetPoint_Generator...
(eta, alpha, beta, acceptanceCircles, WP)
persistent chi_p; %Path direction relative to north (NE-plane)
persistent nu_p; %Path direction relative to down

5 persistent R_rot;
persistent epsilon;
persistent i; %Current waypoint
if(isempty(i))

i = 1;
10 epsilon = [0 0 0]';

end

%% Navigation
14 Path = zeros(size(WP));
15 Path(:,1) = WP(:,i);

Path(:,2) = WP(:,i+1);

%% Guidance
20 % Determining track errors

∆_N = Path(1,2)-Path(1,1);
∆_E = Path(2,2)-Path(2,1);
∆_D = Path(3,2)-Path(3,1);
chi_p = atan2(∆_E,∆_N);

25 nu_p = atan2( sqrt(∆_N^2 + ∆_E^2),∆_D ) - pi/2;
R_chi= [cos(chi_p) -sin(chi_p) 0;

sin(chi_p) cos(chi_p) 0;
0 0 1];

R_nu = [cos(nu_p) 0 sin(nu_p);
30 0 1 0;

-sin(nu_p) 0 cos(nu_p)];
R_rot = R_chi*R_nu;
epsilon = R_rot'*(eta(1:3)-Path(:,1));

35 % lookahead-based steering
36 R = 1300; %Tuning variable for LOS Steering
37 temp = R^2 - epsilon(2)^2;

if(temp<0)
temp = 0;

40 end
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Delta = sqrt(temp); %lookahead distance
nu_r = atan(epsilon(3)/sqrt(epsilon(2)^2 + (Delta)^2));
chi_r = atan(-epsilon(2)/Delta);

45 chi = chi_p + chi_r; % beta;
nu = nu_p + nu_r - alpha;
nu = min(15*pi/180, max(-15*pi/180, nu)); %easy stall control

chi = mod(chi,2*pi); %0-2pi
50 eta_ref = [0 nu chi]';

speed_d = 50; %approx 100 knts
53

%Navigation
55 % Switching waypoint if steering point reaches next waypoint

if ( sqrt((Path(1,1)-Path(1,2))^2 + (Path(2,1)-Path(2,2))^2)...
< epsilon(1)+Delta)

if (i)6= length(WP(1,:))-1
i=i+1;

60 end
end
end
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D.2 Velocity and Rate Controller

1 function ∆ = Velocitycontroller(eta_system,nu_system,
alpha_system,beta_system, nu_d,
F_ac, kinetics,other,aero,thrust,init)

eta_system = [0, 0, 0, eta_system(1), eta_system(2),eta_system(3)]';
5 coder.extrinsic('lqr'); %between mex and matlab

stepsize = 0.01/4;% Stepsize Because of runge kutta 4,
% the matlab func is running 4 times per stepsize.

persistent step state lin_fault
if(isempty(step))

10 step = 0;
state = 1; %Initation of matrices
lin_fault = 1; %linearize with fault;

end
step = step + 1;

15 % Initiating the System Matrices
persistent M_lo N_lo B_bar_lo C_lo C_la N_F_lo

M_la N_la B_bar_la N_F_la A_lo B_lo A_la
B_la G1_lo G2_lo G1_la G2_la;

if(isempty(M_lo))
20 M_lo = zeros(3);

N_lo = zeros(3);
B_bar_lo = zeros(3);
N_F_lo = zeros(3);
M_la = zeros(3);

25 N_la = zeros(3);
B_bar_la = zeros(3,2);
N_F_la = zeros(3);
A_lo = zeros(3);
A_la = zeros(3);

30 B_lo = zeros(3,3);
B_la = zeros(3,2);
C_lo = [1 0 0; 0 0 1];
C_la = [zeros(2,1), eye(2)];
G1_lo = zeros(3,3);

35 G2_lo = zeros(3,2);
G1_la = zeros(2,3);
G2_la = zeros(2,2);

end
%Initiating the Nominal and Perturbation state values

40 persistent U_0 V_0 W_0 P_0 Q_0 R_0 alpha_0 beta_0
phi_0 theta_0 psi_0;
if(isempty(U_0))

alpha_0 = init.alpha;
beta_0 = 0;%init.beta;

45 U_0 = init.v(1);
V_0 = 0; W_0 = 0; P_0 = 0; Q_0 = 0; R_0 = 0; phi_0 = 0;
theta_0 = 0; psi_0 = 0;

end
% Initiating the Nominal Control Values

50 persistent ∆_T_0 ∆_E_0 ∆_F_0 ∆_A_0 ∆_R_0;
if(isempty(∆_T_0))

∆_T_0 = 750; ∆_E_0 = 0; ∆_F_0 = 0; ∆_A_0 = 0;
∆_R_0 = 0;
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end
55

%% State Machine
linearization = 0;
switch state

case 1 %initiation of matrices
60 linearization = 1;

state = 0;
otherwise %No linearization

end
%% If Fault has occured linarization is necessery

65 if(and((F_ac(1)|F_ac(2)|F_ac(3)|F_ac(4)),
66 step*stepsize>init.initPeriod))

if(lin_fault)
linearization = 1;
lin_fault = 0;

70 end
end

if(linearization == 1)
74 % Constants
75 m = kinetics.m;

g = other.g;
c_bar = aero.wingShape.c_bar;
S = aero.wingShape.S;
b = aero.wingShape.b;

80 rho = other.rho_air;
[J,J11,J22] = eulerang(phi_0,theta_0,psi_0);

%% Longitudinal Channel
[M_lo, N_lo, G_lo, B_bar_lo, N_F_lo, nu_0_dot_lo] =

85 LinearModelMatricesLongitudinal(alpha_0, U_0, V_0, W_0, P_0, Q_0,
R_0, phi_0, theta_0,∆_T_0, ∆_E_0, ∆_F_0,
m,g,c_bar,S,rho,aero,thrust,kinetics);

M_inv_lo = M_lo^(-1);
90 A_lo = -M_inv_lo*(N_lo - N_F_lo);

B_lo = M_inv_lo*B_bar_lo;

% Tuning according to bryson rule:
u_max = 2;

95 q_max = 0.1*pi/180;
thrust_max = 60;
elevator_max = 0.7 *pi/180;
flaps_max = 1 *pi/180;

Q_lo = diag([1/u_max^2, 1/q_max^2]);
100 R_lo = diag([1/thrust_max^2, 1/elevator_max^2, 1/flaps_max^2]);

%Fault accomodation
103 %on form ∆_a ∆_e ∆_f ∆_r ∆_t

C_acc_lo = [0 0 0 0 1;
105 0 1 0 0 0;

0 0 1 0 0];
Theta_lo = [0 0.9 0];% loss of effectiveness
Gamma_lo = eye(3)-diag(C_acc_lo*F_ac)*diag(Theta_lo);
B_lo_new = B_lo*Gamma_lo;

110 B_lo = B_lo_new;
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% Calculation of Gains
[K_lo,P_lo,eig_lo] = lqr(A_lo,B_lo,C_lo'*Q_lo*C_lo,R_lo);
G1_lo = -R_lo^-1* B_lo'* P_lo;
G2_lo = -R_lo^-1*B_lo'*((A_lo + B_lo*G1_lo)')^-1*C_lo'*Q_lo;

115
%% Lateral Channel
[M_la,N_la,G_la,B_bar_la,N_F_la,nu_0_dot_la ] =
LinearModelMatricesLateral(beta_0, U_0, W_0, P_0, Q_0, R_0,
∆_T_0, ∆_A_0, ∆_R_0, phi_0, theta_0,

120 m,g,b,S,rho,aero,kinetics);
M_inv_la = M_la^(-1);
A_la = -M_inv_la*(N_la - N_F_la);
B_la = M_inv_la*B_bar_la;

125 % Tuning according to bryson rule:
p_max = 1*pi/180;
r_max = 40*pi/180;
ailerons_max = 2 *pi/180;
rudder_max = 1 *pi/180;

130 Q_la = diag([1/p_max^2, 1/r_max^2]);
R_la = diag([1/ailerons_max^2, 1/rudder_max^2]);

%Fault accomodation
134 %on form ∆_a ∆_e ∆_f ∆_r ∆_t
135 C_acc_la = [1 0 0 0 0;

0 0 0 1 0];
Theta_la = [0.9 0]';% loss of effectiveness

Gamma_la = eye(2)-diag(C_acc_la*F_ac)*diag(Theta_la);
140 B_la_new = B_la*Gamma_la;

B_la = B_la_new;
% Calculation of Gains
[K_la,P_la,eig_la] = lqr(A_la,B_la,C_la'*Q_la*C_la,R_la);
G1_la = -R_la^-1* B_la'* P_la;

145 G2_la = -R_la^-1* B_la'* ((A_la+B_la*G1_la)')^-1 * C_la' * Q_la;
end

%% Control calculations
149
150 % Longitudinal model

y_d_lo = [nu_d(1), nu_d(5)]';
x_lo_0 = [U_0, alpha_0, Q_0]';
u_lo_0 = [∆_T_0,∆_E_0,∆_F_0]';
x_system_lo = [nu_system(1), alpha_system, nu_system(5)]';

155 u_lo = u_lo_0+G1_lo*(x_system_lo-x_lo_0)+G2_lo*(y_d_lo-C_lo*x_lo_0);

% Lateral model
y_d_la = [nu_d(4), nu_d(6)]';
x_la_0 = [beta_0, P_0, R_0]';

160 u_la_0 = [∆_A_0, ∆_R_0]';
x_system_la = [beta_system, nu_system(4), nu_system(6)]';
u_la = u_la_0+G1_la*(x_system_la-x_la_0)+G2_la*(y_d_la-C_la*x_la_0);

% Control Signal
165 ∆ = [-u_la(1), u_lo(2), u_lo(3), -u_la(2), u_lo(1)]';
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D.3 Kinematic Controller
Roll:

1 function [u_roll, error] = PID_roll(PID, phi_tilde, integral_in)
%PID constants:
Kp = PID.roll.Kp;
Ki = PID.roll.Ki;

5 error = phi_tilde;
u_roll = Kp*error + Ki*integral_in;
end

Pitch:

1 function [u_pitch, error] = ...
PID_pitch(PID, theta_tilde,integral_in)

%PID constants:
Kp = PID.pitch.Kp;

5 Ki = PID.pitch.Ki;
error = theta_tilde;
u_pitch = Kp*error + Ki*integral_in;
end

Yaw:

1 function [u_yaw, error] = PID_yaw(PID, psi_tilde, integral_in)
%PID constants for bank turn
Kp = PID.yaw.Kpbank;
Ki = PID.yaw.Kibank;

5 error = psi_tilde;
% 0 - 360 problem fix
if(abs(error)>pi)

error = error - 2*pi*error/abs(error);
end

10 u_yaw = Kp*error + Ki*integral_in;
end
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D.4 The Linear Observer

1 function [eta_out, nu_out,y_m] = LinearObserver(control_surfaces,
eta_system, nu_system, alpha_system, beta_system, kinetics,
aero, other, thrust, init,Scenario)

stepsize = 0.01/4;% Stepsize Because of runge kutta 4,
5 %the matlab func is running 4 times per stepsize.

persistent step state
if(isempty(step))

step = 0;
state = 1; %Initation of matrices

10 end
step = step + 1;

% Initiating the Nominal Control Values
persistent ∆_T_0 ∆_E_0 ∆_F_0 ∆_A_0 ∆_R_0;

15 if(isempty(∆_T_0))
∆_T_0 = 750; ∆_E_0 = 0; ∆_F_0 = 0; ∆_A_0 = 0; ∆_R_0 = 0;

end
% Initiating the System Matrices

persistent M_lo N_lo G_lo B_lo N_F_lo nu_0_dot_lo
20 M_la N_la G_la B_la N_F_la nu_0_dot_la;

if(isempty(M_lo))
M_lo = zeros(3);
N_lo = zeros(3);
G_lo = zeros(3,1);

25 B_lo = zeros(3);
N_F_lo = zeros(3);
nu_0_dot_lo = zeros(3,1);
M_la = zeros(3);
N_la = zeros(3);

30 G_la = zeros(3,1);
B_la = zeros(3,2);
N_F_la = zeros(3);
nu_0_dot_la = zeros(3,1);

end
35 %Initiating the Nominal and Perturbation state values

persistent eta_lo_next nu_lo_next eta_la_next nu_la_next
U_0 V_0 W_0 P_0 Q_0 R_0
alpha_0 beta_0 phi_0 theta_0 psi_0;

if(isempty(eta_lo_next))
40 alpha_0 = init.alpha;

beta_0 = init.beta;
U_0 = init.v(1);
V_0 = 0;
W_0 = 0;

45 P_0 = 0;
Q_0 = 0;
R_0 = 0;
phi_0 = 0;
theta_0 = 0;

50 psi_0 = 0;
%initial eta and nu vectors => ∆_eta/∆_nu = 0.
eta_lo_next = theta_0;
nu_lo_next = [U_0 , alpha_0, Q_0]';
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eta_la_next = [phi_0 psi_0]';
55 nu_la_next = [beta_0 P_0 R_0]';

end
57 %This step

eta_lo_0 = theta_0;
nu_lo_0 = [U_0, alpha_0, Q_0]';

60 eta_la_0 = [phi_0, psi_0]';
nu_la_0 = [beta_0, P_0, R_0]';
∆_eta_lo = eta_lo_next - eta_lo_0;
∆_nu_lo = nu_lo_next - nu_lo_0;
∆_eta_la = eta_la_next - eta_la_0;

65 ∆_nu_la = nu_la_next - nu_la_0;

%% State Machine
68 update_interval = 20; %[s] updating nominal values

if(state 6= 1)
70 if(step*stepsize == init.initPeriod)

state = 2; %linearizing after initiation period
else if(mod(step*stepsize,update_interval) == 0)

%Linearize with a period of "update_interval" s
state = 2;

75 else
state = 0; %Not linearizing

end
end

end
80

linearization = 0;
switch state

case 1 %initiation of matrices
linearization = 1;

85 state = 0; %normal opperation

case 2 %Trajectory update and linearization U
% updating model with system parameters

90 switch Scenario
case 1

linearization = 1;
∆_eta_lo = eta_system(5) - theta_0;
∆_nu_lo = [nu_system(1) - U_0,

95 alpha_system - alpha_0, nu_system(5)]';
∆_eta_la = [eta_system(4) - phi_0,

eta_system(6) - psi_0]';
∆_nu_la = [beta_system - beta_0,

nu_system(4), nu_system(6)]';
100 ∆_T_0 = control_surfaces(5);

∆_F_0 = control_surfaces(3);
case 2

linearization = 1;
theta_0 = eta_system(5);

105 U_0 = nu_system(1);
alpha_0 = atan(nu_system(3)/nu_system(1));
∆_eta_lo = 0;
∆_nu_lo = [0 0 0]';
∆_eta_la = [eta_system(4) eta_system(6)]';

110 ∆_nu_la = [
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asin(nu_system(2)/(sqrt(nu_system(1)^2
+ nu_system(2)^2 + nu_system(3)^2)))

nu_system(4) nu_system(6)]';
∆_T_0 = control_surfaces(5);

115 ∆_F_0 = control_surfaces(3);
case 3
case 4

end
otherwise %No linearization

120 end

if(linearization == 1)
123 % Constants

m = kinetics.m;
125 g = other.g;

c_bar = aero.wingShape.c_bar;
S = aero.wingShape.S;
b = aero.wingShape.b;
rho = other.rho_air;

130 % Linearization
[M_lo, N_lo, G_lo, B_lo, N_F_lo, nu_0_dot_lo] =

LinearModelMatricesLongitudinal(alpha_0,
U_0, V_0, W_0, P_0, Q_0, R_0,
phi_0, theta_0,∆_T_0, ∆_E_0, ∆_F_0,

135 m,g,c_bar,S,rho,aero,thrust,kinetics);
[M_la,N_la,G_la,B_la,N_F_la,nu_0_dot_la ] =

LinearModelMatricesLateral(beta_0,
U_0, W_0, P_0, Q_0, R_0,
∆_T_0, ∆_A_0, ∆_R_0, phi_0, theta_0,

140 m,g,b,S,rho,aero,kinetics);
end
%Control inputs
∆_a = control_surfaces(1) - ∆_A_0;
∆_e = control_surfaces(2) - ∆_E_0;

145 ∆_f = control_surfaces(3) - ∆_F_0;
∆_r = control_surfaces(4) - ∆_R_0;
∆_t = control_surfaces(5) - ∆_T_0;

%Calculation of the next steps
150 V_T = U_0;

%Longitudinal Channel
u_lo = [∆_t ∆_e ∆_f]';
eta_lo_0 = theta_0;
nu_lo_0 = [U_0, alpha_0, Q_0]';

155
nu_lo_next = ∆_nu_lo + nu_lo_0 +

157 stepsize*(nu_0_dot_lo +
M_lo^(-1)*(-G_lo*∆_eta_lo -
(N_lo - N_F_lo)*∆_nu_lo + B_lo*u_lo));

160 eta_lo_next = ∆_eta_lo + eta_lo_0 + stepsize*(nu_lo_next(3));

eta_out_lo = eta_lo_next;
nu_out_lo = nu_lo_next;

165 %Lateral Channel
u_la = [∆_a ∆_r]';
eta_la_0 = [phi_0, psi_0]';
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nu_la_0 = [beta_0, P_0, R_0]';

170 nu_la_next = ∆_nu_la + nu_la_0 +
171 stepsize*(nu_0_dot_la +

M_la^(-1)*(-G_la*∆_eta_la(1) -
(N_la - N_F_la)*∆_nu_la + B_la*u_la));

eta_la_next = ∆_eta_la + eta_la_0 +
175 stepsize*([1 tan(phi_0);

0 1/cos(theta_0)]*(nu_la_next(2:3,1)));

%% Output
y_m = [eta_out;nu_out];

180 end
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D.5 Residual Generator

1 function residual = ResidualGeneration(y_m, y_s)

H_y = [0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 0 0 0 0 0;

5 0 0 0 0 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 0 0 0 0 1 0]; %phi theta U P Q

H_u = -H_y;
residual = H_u*y_m + H_y*y_s;

10 end
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D.6 Residual Validation

1 function [var,Threshold_vec, decision, FaultyActuators]
= ResidualValidation(residual,init)

stepsize = 0.01/4;% Stepsize Because of runge kutta 4,
% the matlab func is running 4 times per stepsize.

5 persistent step
if(isempty(step))

step = 0;
end
step = step + 1;

10
%% Variance testing
numb_res = length(residual);
persistent y n x x_mean;
if(isempty(y))

15 y = zeros(numb_res,1);
x_mean = zeros(numb_res,1);
%% Tuning variable WINDOW size:
n = 400;
x = zeros(numb_res,n-1);

20 end
x_mean_last = x_mean;
x_mean = x_mean_last + 1/n*(residual-x(:,1));
y_last = y;
y = y_last + 1/n*(residual.*residual - x(:,1).*x(:,1));

25 var = n/(n-1)*(y - x_mean.*x_mean);
26

%historical window update
for i=1:n-2;

x(:,i) = x(:,i+1);
30 end

x(:,n-1) = residual;

%% decision
% Variance Tresholds

35 % defining tresholds:
roll_threshold = 2*10^-5;
pitch_threshold = 2*10^-5;
U_threshold = 5*10^-2;
roll_r_threshold = 5*10^-5;

40 pitch_r_treshold = 2*10^-5;

Threshold_vec = [roll_threshold, pitch_threshold, ...
U_threshold, roll_r_threshold, pitch_r_treshold]';

decision = var>Threshold_vec;
45 if(step*stepsize > init.initPeriod + 5) %initation period

%% ∆_a ∆_e ∆_f ∆_r ∆_t
FaultyActuators = [decision(1), decision(2), 0 0 0]';

else
FaultyActuators = [0 0 0 0 0]';

50 end
end
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