
Vehicle Collision Avoidance System

Eivind Hope Sørbø

Master of Science in Engineering Cybernetics

Supervisor: Thor Inge Fossen, ITK

Department of Engineering Cybernetics

Submission date: June 2013

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name:	
 	
 	
 	
 Eivind	
 Sørbø	

Department: Engineering	
 Cybernetics	

Thesis title (Norwegian): Kollisjonsunngåelsesystem	
 for	
 fartøy
Thesis title (English): Vehicle	
 Collision	
 Avoidance	
 System	

Thesis Description: The purpose of the thesis is to develop and simulate a collision avoidance
system for a vehicle. Both static and dynamic obstacles should be considered.

The following items should be considered:

1. Literature study on collision avoidance methods.
2. Construct a vehicle simulator in Matlab for generation of vehicle trajectories. The vehicle

simulator should be used in the case studies.
3. Choose methods for collision avoidance and implement and test the methods in Matlab using

the vehicle simulator. Discuss stability and convergence properties of the collision avoidance
methods.

4. Discuss methods for target tracking as well as estimation of bearing and velocity using
position data.

5. Identify, motivate and present good cases for comparing the different collision avoidance
methods. Cases for both static and dynamic obstacles should be included.

6. Conclude your results.

Start date: 2013-­‐01-­‐14	

Due date: 2013-­‐06-­‐10

Thesis performed at: Department	
 of	
 Engineering	
 Cybernetics,	
 NTNU
Supervisor: Professor	
 Thor	
 I.	
 Fossen,	
 Dept.	
 of	
 Eng.	
 Cybernetics,	
 NTNU	
 	

Abstract

In this thesis a collision avoidance system for a small vehicle has been studied. A
literature study on collision avoidance methods has been performed. Two of the
methods, the Null-Space-Based behaviour (NSB) control and Dubins method for
collision avoidance are investigated further and implemented in a collision avoid-
ance system. The stability of the methods has been discussed and concluded that
they are both locally stable.

A vehicle model have been constructed to test the methods on both static and
dynamic circle shaped obstacles. Through four case studies, it has be shown that
both methods manage to avoid all obstacles and reach a target, which is consistent
with the stability analysis of the methods.

In the development of the collision avoidance methods it was assumed that the
position and velocity for the obstacles where known. At the end of this thesis,
methods for target tracking using the position measurement from a simulated radar
has been discussed. A simulation has shown that it is possible to get good estima-
tion of the velocity and bearing for a tracked object, using the measured position
data from the simulated radar.

A digital attachment of the work done in this thesis is added, for possible rerun of
the simulations. Also the data of the results has been stored in the attachment.

iii

iv

Sammendrag

I denne avhandlingen er et antikollisjonssystem for et lite fartøy blitt studert. Et
litteraturstudie om antikollisjons metoder har blitt utført. To av metodene, Null-
Space-Based behaviour (NSB) kontroll og Dubins metode for å unng̊a kollisjoner er
det forsket videre og implementert i en kollisjonshindrende simulatior. Stabiliteten
av metodene har vært diskutert, og konkluderte med at de er lokalt stabile.

En fartøys modell er blitt konstruert for å teste metodene p̊a b̊ade statiske og
dynamiske hindringer. Gjennom fire case-studier og det er vist at begge metodene
klarer å unng̊a alle hindringer og n̊a et m̊al, noe som er konsistent med stabilitets-
analyse av metodene.

I utviklingen av kollisjonshindrende metodene ble det antatt at posisjon og hastigheten
til hindringer var kjent. P̊a slutten av denne avhandlingen, har metoder for m̊al
søking ved hjelp av posisjonen m̊aling fra en simulert radar vært diskutert. En
simulering har vist at det er mulig å f̊a god estimering av hastighet og rettning for
et objekt, ved hjelp av de m̊alte posisjonsdataene fra den simulerte radar.

En digital vedlegg av arbeidet som er gjort i denne avhandlingen er lagt til, for
mulig re-simuleringen. Ogs̊a dataene av resultatene er lagret i vedlegget.

v

vi

Preface

This thesis is the final work of my Master degree in cybernetics at the Department
of Engineering Cybernetics of the Norwegian University of Science and Technology
(NTNU). In the last year I have been working with collision avoidance system for
a small vehicle though a project report and this Master thesis. The work have
been challenges, but fun and it has taught me how to proceed in solving a larger
technical problem and present the finding in a report.

I would like to thank my supervisor Thor I. Fossen at the Department of Engi-
neering Cybernetics for his guidance in this thesis.

Eivind sørbø
Trondheim, June 2013

vii

List of Figures

1.1 Model of the collision avoidance system 2
1.2 Definition of rotation direction around obstacles, where the defini-

tion of clockwise is shown to the left and anticlockwise to the right . 3

3.1 A task manager with three tasks and the supervisor 18
3.2 Simple test system used to test the NSB algorithm 22
3.3 The vehicle gets stuck when trying to pass the obstacle 23
3.4 vehicle approach an obstacle head on, it gets stuck 24
3.5 Unnecessary obstacle avoidance . 24
3.6 Overlapping obstacles . 25

4.1 Dubins path with internal tangent, Reprinted from Cooperative Path
Planning of Unmanned Aerial Vehicles [Tsourdos et al., 2011] 28

4.2 Dubins path with one obstacle . 30
4.3 Dubins paths from one obstacle to another obstacle 31
4.4 Dubins paths between two obstacles 34
4.5 All Dubins path from start to target with tow obstacles 36

5.1 Model of the collision avoidance system, where the focus is on the
guidance system . 38

5.2 Heads-on situation the vehicle and the obstacle has opposites headings 39
5.3 When the vehicle detect a collision and the passing direction is an-

ticlockwise . 40
5.4 When the vehicle detect a collision and the passing direction is clock-

wise . 40
5.5 When the vehicle detect a collision and the vehicle is approaching the

obstacle from behind and the other where the obstacle approaching
the vehicle from behind. 41

5.6 The figure shows the vehicle and the obstacle on a collision course
and the velocity vector to the obstacle is rotated into the BODY
frame to the vehicle. The 1, 2, 3 and 4 illustrate the first, second,
third and fourth quadrant. 43

ix

5.7 Collision detection method checks if the trajectory for the vehicle to
the target collide with the trajectory of the obstacle 44

5.8 Collision detection test, the two figures shows the estimated trajec-
tories and the distance between then 45

5.9 Shows the two tangent points on the obstacle circle and the dotted
line from the target illustrates, which side the vehicle has to be on
in order to pass the obstacle clockwise or anticlockwise 47

5.10 Activation circles for the NSB controller. The figure shows the two
activation circles implemented in the NSB controller where the ve-
hicle is inside of activation circle one 49

5.11 Dubins method: The figure shows how the Dubins method generat-
ing waypoints when the vehicle consider an obstacle to be a threat
and is outside of the activation circle 51

5.12 LOS steering law: The figure shows the vehicle with the LOS steering
law when the vehicle steers on the line between the two waypoints. . 53

6.1 The model of the collision avoidance system, where the focus is on
the vehicle model and the low-level surge and heading controller . . 58

6.2 Results from the steady turning radius test performed on the vehicle 62

7.1 Simulation case one: static obstacle with the NSB controller, plotted
in the xy-plane . 68

7.2 Simulation case one: static obstacle with the Dubins method for
collision avoidance, plotted in the xy-plane 69

7.3 Simulation case two with the NSB controller: The vehicle is avoiding
two obstacles approaching from the left and right by passing the
obstacles clockwise and anticlockwise 72

7.4 The internal dynamic for the vehicle in the simulation shown in
Figure 7.3 . 73

7.5 Simulation case two with the Dubins method: the vehicle are avoid-
ing the first obstacle clockwise and the second anticlockwise. 74

7.6 The internal dynamic for the vehicle in the simulation shown in
Figure 7.5 . 75

7.7 Simulation case three with the NSB controller: the vehicle approach-
ing an obstacle heads-on and avoiding it anticlockwise 78

7.8 Simulation case three with the Dubins method: the vehicle ap-
proaching an obstacle heads-on and avoiding it anticlockwise 79

7.9 Simulation of the NSB controller when vehicle approaches the obsta-
cle from behind and when the obstacle speeds up and the obstacle
approaches the vehicle from behind. 82

7.10 Simulation of Dubins method for collision avoidance when the vehicle
approaches the obstacle from behind and then the obstacle speeds
up and the obstacle approaches the vehicle from behind. 83

7.11 Case one with static obstacles with the path of the vehicle with both
collision avoidance methods plotted as the blue and black lines and
the obstacles plotted as the red circles 85

7.12 The path of the vehicle with both the collision avoidance methods
in case two with dynamic obstacle approaching from the left and right 87

7.13 The path of the vehicle with both the collision avoidance methods
in case three with dynamic obstacle approaching the vehicle heads-on 88

7.14 The path of the vehicle with both the collision avoidance methods
in case four with dynamic obstacle approaching from behind 89

8.1 Model of the system, where the focus is on estimation of velocity
and bearing using the position data from the radar 92

8.2 The figure show the distance and the bearing to a obstacle, which
can be extracted from a radar measurement 94

8.3 Object-tracking: The tracked object in the xy-plane, the estimated
positions in x and y in the NED frame and the bearing to the tracked
object . 102

8.4 Object-tracking: The estimated velocity in the BODY frame and
the error in surge, positions and the bearing 103

A.1 The internal dynamic for the vehicle in the simulation shown in
Figure 7.1 with the NSB controller 114

A.2 The internal dynamic for the vehicle in the simulation shown in
Figure 7.2 for the Dubins method . 115

A.3 The internal dynamic for the vehicle in the simulation shown in
Figure 7.7 . 116

A.4 The internal dynamic for the vehicle in the simulation shown in
Figure 7.8 . 117

A.5 The internal dynamic for the vehicle in the simulation shown in
Figure 7.9 . 118

A.6 The internal dynamic for the vehicle in the simulation shown in
Figure 7.10 . 119

B.1 The estimated position to the object using the model 8.20 122
B.2 The estimated x, y position, the heading and the velocities using the

model 8.20 . 123

List of Tables

5.1 Tuning parameter for NSB in case studies in Chapter 7 48

6.1 Parameter for the vehicle model used in the simulations in chapter 7 60
6.2 Results from the turning radius test 61
6.3 Tuning parameter used in simulation studies for a vehicle with fast

dynamic, according Table 6.1 . 63

7.1 Obstacle list from case one . 66
7.2 Runtime results from case one: Multiple static obstacles 66
7.3 Obstacle list from case two . 70
7.4 Runtime results form case two . 70
7.5 Obstacle list from case three . 76
7.6 Runtime results form case three . 76
7.7 Obstacle list from case four . 80
7.8 Runtime results form case four . 80

8.1 Discrete Kalman filter . 98
8.2 Parameter for the object model used in the simulation for object-

tracking . 99
8.3 Initial condition for the object . 100

xiii

Contents

Thesis Description . i
Abstract . iii
Sammendrag . v
Preface . vii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Previous work . 2
1.3 Scope of this thesis . 2
1.4 Definitions and Nomenclature used in this thesis 3
1.5 Outline of this these . 5

2 Literature study 7
2.1 Collision avoidance methods . 7

2.1.1 Optimization problems . 8
2.1.2 Dynamic Window . 8
2.1.3 Astar (A?) . 10
2.1.4 Potential Field . 11
2.1.5 Limit cycle . 12
2.1.6 Collision Cone Approach . 13

2.2 Summary . 14

3 Null-space-based method for collision avoidance 15
3.1 Null-Space-Based behavioural Control 15

3.1.1 Mathematical modelling . 16
3.2 Null-Space-based Behavioral control for collision avoidance 17

3.2.1 Task manager . 17
3.2.2 The resulting velocity vector 20

3.3 Stability of NSB . 20
3.4 Limitations and improvement . 21
3.5 Summery . 23

xv

4 Using Dubins path for collision avoidance 27
4.1 Dubins path . 27
4.2 Dubins methods for collision avoidance 28

4.2.1 Dubins path around one obstacle to a target 28
4.2.2 Dubins path between obstacles 30

4.3 The length of a Dubins path . 33
4.4 Summary and discussion . 35

5 Collision avoidance strategy and implementation of the guidance
system 37
5.1 Collision avoidance strategies . 38

5.1.1 Obstacle approach; Heads-on 39
5.1.2 Obstacle approach; from left or right 39
5.1.3 Collision from behind . 40
5.1.4 Multiple obstacles . 41
5.1.5 Choose direction mathematically 41

5.2 Collision detection . 43
5.3 Implementation of the Null-Space-Based behaviour control 46
5.4 Implementation of the Dubins method for collision avoidance 48
5.5 Steering law . 51

5.5.1 Steering law for the NSB controller 51
5.5.2 Steering law for the Dubins method 52

5.6 Stability and convergence of the methods 53
5.6.1 The NSB controller . 53
5.6.2 Dubins method . 55

5.7 Summary . 55

6 Vehicle simulator and control design 57
6.1 Vehicle model . 57

6.1.1 Vehicle parameters used in this thesis 60
6.1.2 Max turning radius . 60

6.2 Surge and heading controllers . 61
6.2.1 Tuning parameters . 63

6.3 static and dynamic obstacles . 64

7 Simulation: Collision avoidance using the vehicle model 65
7.1 Case one: Multiple static obstacles 66
7.2 Case two: Dynamic obstacles approaching from left and right 70
7.3 Case three: Dynamic obstacle avoidance in a heads-on situation . . . 76
7.4 Case four: Dynamic obstacle avoidance form behind 80
7.5 Discussion . 84

7.5.1 Case one: Static obstacles . 84
7.5.2 Obstacles from left and right 85

7.5.3 Heads-on . 86
7.5.4 Approach form behind . 88

7.6 Conclusions from the simulations . 90

8 Object tracking and estimation of velocity and bearing to obsta-
cles 91
8.1 Object-tracking equipment . 91
8.2 Target tracking methods . 93

8.2.1 Discussion . 95
8.3 Kalman filter . 96

8.3.1 Tuning parameters and the initial conditions for the Kalman
filter . 98

8.4 Object simulator . 99
8.5 Simulation: Object-tracking . 99

8.5.1 Results . 100
8.5.2 Discussion and conclusion . 100

9 Conclusion and further work 105
9.1 Conclusion . 105
9.2 Further work . 106

Bibliography 106

Appendices 111

A Simulations results from collision avoidance 113

B Simulations results from target tracking using the model in body121

C Dubins calculations 125

Chapter 1

Introduction

1.1 Background and motivation

The main topics of this thesis are the development of collision avoidance system for
a small vehicle and compare two collision avoidance methods. A collision avoidance
method is a controller that is a part of the guidance system. In case of a collision it
alters the preplanned path, so the vehicle does not collide. There are many different
approaches to how the collision avoidance method interact with the vehicle. In a
passenger jet, the system only tells the pilot, which way to safely turn if a collision
is detected. Or a more autonomous approach, the collision avoidance system takes
full control of the vehicle and guides it past any obstacles. In this thesis the focus
will be on the autonomous approach, where the collision avoidance system re-plan
the path generated by the guidance system in case of a possible collision.

Collision avoidance is a research field, which has become more relevant in recent
years as the number of autonomous vehicles has increased. For a fully autonomous
vehicle it can be the difference between a successfully executed mission or a total
failure. If the vehicle collides with an obstacle it may have to abort the mission or
in worst case be totally destroyed. The key features of a collision avoidance method
are the stability properties and computational time. If the method is globally sta-
ble the method will converge to the target for any given cases while a locally stable
method will only converge to the target for some cases. The computational time
is most important if the method needs to re-plane the path very often, which is
the case for dynamic obstacles with unknown trajectories. Thus it is interesting
to study the stability properties of these methods and consider the computational
time while implementing them.

1

2 1.2. PREVIOUS WORK

1.2 Previous work

There has been done a lot of research within collision avoidance in the recent
years and some of these methods are summarised in Chapter 2. The main work
in this thesis is based on [Arrichiellos, 2006] the Null-Space-Based Behavioural
control (NSB), the Dubins path [Dubins, 1979] and [Tsourdos et al., 2011]. This
is a continuation of the project report, which focused on static obstacles avoidance
with the NSB controller and compared the path length to a optimal Dubins path,
which was calculated off-line without the vehicle model.

1.3 Scope of this thesis

Controller
Vehicle

law Avoidance Detection

Estimator

Radar

Model

Collision CollisionSteering

Low-level

Figure 1.1: Model of the collision avoidance system

The objective of this thesis is to develop a collision avoidance system, which should
handle both static and dynamic obstacles and generate good case studies to test
the collision avoidance methods on a vehicle simulator. The task is solved by first
performing a literature study on published collision avoidance methods and use
the theory to develop two collision avoidance methods to handle both static and
dynamic obstacles in a safe manner. The vehicle simulator and controller are de-
veloped in order to test the methods and create a more realistic case study for

1.4. DEFINITIONS AND NOMENCLATURE USED IN THIS THESIS 3

the simulations. In these case studies it will be assumed that the guidance system
receive the position and velocity from the radar of all obstacles in range of the
vehicle. Further it is studied methods for target tracking and estimation of the
obstacles velocity and bearing using position data from a simulated radar and a
Kalman filter.

Figure 1.1 shows the model of the collision avoidance system developed in this
thesis and it can be seen that the guidance system is divided into three modules;
collision detection, collision avoidance and the steering law. From the radar there
are two arrows, one to the estimator and one directly into the collision detection
block. The first one, illustrates the system when assuming the guidance system
have all relevant data. The second one, illustrates when the system needs to filter
and estimate the velocity and bearing.

1.4 Definitions and Nomenclature used in this the-
sis

Traversing obstacles

All the obstacles will be drawn in 2-D and Figure 1.2 shows the definitions on
traversing the obstacles clockwise and anticlockwise.

Clockwise Anticlockwise

vehicle

obstacleobstacle

vehicle

Figure 1.2: Definition of rotation direction around obstacles, where the definition
of clockwise is shown to the left and anticlockwise to the right

Definition of a null space

The null space of matrix A is the set of all vectors x for, which Ax = 0.

N(A) = {x ∈ Rn : Ax = 0}

4 1.4. DEFINITIONS AND NOMENCLATURE USED IN THIS THESIS

Reference frames

NED: The North-East-Down (NED) coordinate system {n} = {xn, yn zn}, with
origin on is defined relative to the Earth’s reference ellipsoid. In this thesis only
the xn and yn of the NED frame will be used.
BODY: The body-fixed reference frame {b} = {xb, yb, zb} with origin on is moving
with the vehicle. In this thesis only the xb and yb of the BODY frame will be used.

Nomenclature

η: ∈ R3×1 the vehicles x and y position and the heading ψ in NED frame
po: ∈ R2×1 the x and y position for the center of obstacle in the NED frame
νbv : ∈ R3×1 the velocity in x and y of the vehicle and the turning rate r

in the BODY frame
νbo : ∈ R2×1 the velocity of the obstacle in the BODY frame of the vehicle
νno : ∈ R2×1 the velocity of the obstacle in the NED frame
β: angle between the velocity vector of the of the vehicle and an obstacle
R : ∈ SO(3) ∪ R3×3,Rotational matrix, where SO(3) is a subset of all

orthogonal matrices of order 3, that is SO(3) ∪ O(3)
O(3) := defined as {R|R ∈ R3×3,RRT = RTR = I}
Ni: ∈ R2×2 the null space of tasks i = 1,2 and 3
Ji: ∈ R2×2 Jacokian matrix of task i = 1,2 and 3
[a, b,−]: is vector where the third element is not relevant
ti: ∈ R2×1 is the tangent waypoints calculated from the Dubins method

||x|| : Euclidean norm ||x|| :=
√
x21 + · · ·+ x2n

1.5. OUTLINE OF THIS THESE 5

1.5 Outline of this these

This thesis is organized as follow:

• Chapter 2, a literature study of different methods on collision avoidance.

• Chapter 3, the Null-Space-Based behavioural control (NSB) will be presented
together with a simple test system for testing the algorithm.

• Chapter 4, the Dubins path will be presented and how to use the Dubins path
in a collision avoidance approach.

• Chapter 5, implementation of the NSB controller and the Dubins method
for collision avoidance. Then a discussion of stability of the methods and
collision avoidance strategies for static and dynamic obstacles.

• Chapter 6, implementation of the vehicle model and the surge and heading
controllers.

• Chapter 7, simulations from the case studies of the collision avoidance system

• Chapter 8, target tracking and estimation of bearing and velocity using po-
sition data

• Chapter 9, present the conclusion of this thesis and recommend further works.

6 1.5. OUTLINE OF THIS THESE

Chapter 2

Literature study

This chapter will present the literature study performed in this thesis on collision
avoidance. Two of the methods, which have been studied are not summarized
here, Null-Space-based Behavioural control (NSB) and Dubins path. They will be
presented separately in Chapter 3 and 4, respectively.

2.1 Collision avoidance methods

The collision avoidance methods can be roughly divided in two categories, local and
global. The global approach requires knowledge about the entire environment and
all obstacles must be known and is more a path planning problem than a collision
avoidance problem. These methods can, as the name suggests give a global solution
of the problem. The local methods only requires knowledge of a local area and make
new decisions as the vehicle moves along the path towards the target.

7

8 2.1. COLLISION AVOIDANCE METHODS

2.1.1 Optimization problems

Optimization is a common way to solve an path planing or collision avoidance
problem. An optimization problem can be expressed as

min
x

F(x) (2.1)

subject to :

gi(x) = 0, i = 1, ...n (2.2)

hj(x) ≤ 0, j = 1, ...n (2.3)

Where F(x) is the object function, which is minimized and gi(x) and hj(x) are
the constraints. The object function can be optimized with respect to path length,
fuel consumption, weather condition, time or speed, depending on the application
of the vehicle. There are several methods for solving the optimization problem
depending on the problem. Some of the methods are integer linear programming,
SQR and QP. For more detail on these methods, see [Nocedal and Wright, 2006].
One challenge when solving a optimization problem is that it requires a lot of
computation time. This is normally not a problem for off-line path planning before
the mission have started. However in a collision avoidance approach with unknown
obstacles, the use of optimization can be very challenging. Each time the vehicle
discover a new obstacle it needs to redo the optimization problem, which takes
time. The optimization approach can be used in both global and local methods and
several methods use optimization to solve smaller sub-problems to find a collision
free path.

2.1.2 Dynamic Window

The Dynamic Window approach was developed by Dieter Fox, Wolfram Burgard,
and Sebastian Thrun and published in 1997,[Foxy et al., 1997]. The method was
designed for mobile robot that operated with high speed. This was done by incor-
porate the dynamic of the robot as constraints in the collision avoidance system
and solving the problem as a optimization problem.
The Dynamic Window approach suggested in [Foxy et al., 1997] is divided into two
steps:

• Create a velocity search space with the dynamic of the vehicle.

• Solving a optimization problem with respect to heading, speed and distance
between the vehicle and the obstacle using the search space as constraints.

2.1. COLLISION AVOIDANCE METHODS 9

Search space

The search space suggested in [Foxy et al., 1997] consists only of velocity vectors
that are safe and reachable for the vehicle within the next iteration. If a velocity
vector collided with an obstacle it is not considered. The search space suggested
in [Foxy et al., 1997]

Va = {(v, ω)|v ≤
√

2dist(v, ω)v̇b ∧ v ≤
√

2dist(v, ω)ω̇b} (2.4)

Vd = {(v, ω)|v ∈ [va − v̇t, va + v̇t] ∧ ω ∈ [ωa − ω̇t, ωa + ω̇t]} (2.5)

Vs = v ∈ vpossible ∧ ω ∈ ωpossible (2.6)

Where Va are all admissible velocities, which allow the vehicle to make a full stop
without colliding with obstacles. dist(v, ω) is the shortest distance from the vehicle
to the obstacle.
Vd are all velocities that the object can reach at next time interval, which are
limited by the dynamic of the vehicle. Vs are the space of possible velocities, then
the resulting search space can be defined as

Vr := Vs ∩Va ∩Vd (2.7)

Maximizing the objective function

The object function suggested in [Foxy et al., 1997] is

G(v, ω) = σ(αH(v, ω) + βD(v, ω) + γV(v, ω) (2.8)

which is maximized over Vr. Where σ is a function that smoothness the sum of
the three components, which results in a more side-clearance from the obstacles.
All the three components , H, D and V are normalized from [0, 1] with α, β and
γ. H(v, ω) are the measured heading, which can be expressed as

heading(v, ω) = 180− θ (2.9)

Where θ are the angle of the target point relative to the objects heading. heading(v, ω)
should be max if the vehicle is moving directly towards the target. D(v, ω) is the
distance to the nearest obstacle on the path. If there is no obstacle, this values
should be a large constant. V(v, ω) is the velocity of the vehicle and supports fast
movements. When maximizing G, it will result in the best heading towards the
target with the highest speed and minimum clearings to the obstacle in theory.

Further works within the Dynamic Window approach

Since the Dynamic Window approach is susceptible to local minimum, most of the
subsequent work within the Dynamic Window approach has been on developing it

10 2.1. COLLISION AVOIDANCE METHODS

into a global method, without any local minimums.

In [Brock and Oussama.Khatib, 1999] they study the use of the Dynamic Win-
dow approach for holonomic robots to overcome the problem of local minimum.
The advantages of holonomic robots are the instantaneous acceleration in all direc-
tion, which increase the manoeuvrability. In this paper they claim that the use of
a holonomic dynamic widow approach would result in a global Dynamic Window
approach. However as stated in [Ögren and Leonard, 2005] they never formally
showed that the method was globally stable. In facts [Ögren and Leonard, 2005]
constructed an exampled where the robots entered a limit-cycle and never reached
the target, disproving that the holonomic Dynamic Window approach develop in
[Brock and Oussama.Khatib, 1999] was global stable as stated. After disproving
that the holonomic dynamic widow approach they develop an algorithm scheme to
the Dynamic Window and proved convergence by Lyapunov.

2.1.3 Astar (A?)

In 1968 Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research first
described the A star algorithm. It is an extension of the Dijkstra algorithm with
a heuristics function, which increases the performers of the algorithm. A star is a
discrete path finding algorithm, which can be used in collision avoidance to find
a collision free path from a initial node to a goal node. The algorithm uses a
distance-plus cost heuristic function f(x)

f(x) = h(x) + g(x) (2.10)

to determine the order in, which it searches the nodes in the tree. Where the x is
the vertex, which gives the lowest f(x) values. g(x) represents the cost function,
which is the cost of moving from a start node to any node x, and h(x) represent
the heuristic estimated cost from node x to the goal. The heuristics function keeps
a sorted priority queue of alternate path segment along the way and makes the
algorithm convert faster to the target then a best-first search that need to explore
the whole graph. For further reading on A star, see [Liu and Narayanan, 2011] and
[Loong et al., 2011]

The problems with A star is that it requires a lot of computing time and if the
problem becomes large with many nodes the method becomes very computation-
ally intensive. Also it is discrete, which means that it finds an optimal path in a
discrete grid, and this may differ from a optimal path in a continuous grid.

2.1. COLLISION AVOIDANCE METHODS 11

2.1.4 Potential Field

Khatib in 1985 [Khatib, 1985] suggested an idea of an imaginary force that acted
on a vehicle, which could be used for off-line path planning. In the paper it was
suggested that the obstacles should send out a repulsive force and the target should
send out an attractive force acting on the vehicle. The sum of these forces should
then determined the Potential Field, which could be used as a reference path. The
Potential Field method became very popular and is a commonly used method for
path planning and obstacle avoidance, because of it’s mathematical elegance and
simplicity. In 1986 Krog and Thorpe [Krogh and Thorpe, 1986] suggested a gener-
alized Potential Field, which combined a global and local path planning.

One of the most recent published Potential Field method is [Yongjie and Yan, 2009],
which suggested an artificial Potential Field where the repulsive force from the ob-
stacle could be expressed as

Urep =

{
1
2kr(

1
d(x,xobs)

− 1
ρ)2, if d(x,xobs) ≤ ρ0

0 if d(x,xobs) > ρ0
(2.11)

Frep =

{
kr(

1
d(x,xobs)

− 1
ρ)2 1

d(x,xobs)2
∂d(x,xobs)

∂x , if d(x,xobs) ≤ ρ0
0 if d(x,xobs) > ρ0

(2.12)

Where ρ represents the limit distance of the Potential Field influence and d(x,xobs)

is the shortest distance to the obstacle, and ∂d(x,xobs)
∂x is the the partial derivatives

of d(x,xobs). For the attractive force they suggested:

Uatt(x) =
1

2
ka|x− xd|2 (2.13)

Fatt = −∇Uatt = −ka|x− xd|2 (2.14)

where ka > 0 is a constant and x the positions of the vehicle and xd the target.
The sum of Frep and Fatt should give the total Potential Field.

Other varieties of the Potential Field are:

• Vector field histogram, which crates a two dimensional Cartesian grid, were
each cell holds a certainty value ci,j . The certainty value represents if there is
an obstacle in the cell, it should be large if there is an obstacle and low other-
wise. Simultaneously, the Potential Field concept is applied to the Cartesian
grid, see [Borenstein and Koren, 1989] for more detail.

• Harmonic Potential Field Path, use a harmonic function that satisfies the
Laplace equation, such as the velocity potential function over a North, East

12 2.1. COLLISION AVOIDANCE METHODS

plane (N,E)

5φ =
∂2φ

∂E2
+
∂2φ

∂N2
= 0 (2.15)

Other harmonic function could also be used. Such as the steam function,
which could represent the contours of a streamlines and represent the trajec-
tories particles following a velocity vector field, See [Daily and Bevly, 2008]

• Personalized Potential Field, which includes a risk feeling variable that de-
termines the contours of the Potential Field, see [NoriyasuNoto et al., 2011].

The Potential Field method have some problems that the reader should be aware
of, such as:

1. Trap situations due to local minima, for instance if there is a u-shaped ob-
stacle.

2. No passage between closely spaced obstacles. Since all obstacle sends out a
repulsive force, which force the vehicle to go around all obstacles, even if the
vehicle could go through. For the same reason, if there is an obstacle close
to the target, the vehicle would not reach the target.

3. Oscillations in the presence of obstacles and narrow passages, due to fluctu-
ation in the Potential Field.

Several papers on how to modify the Potential Field method and avoid some of
these problems have been published. In [Yongjie and Yan, 2009] they suggested a
method for avoiding trap situations, which is perhaps the most serious situation.

2.1.5 Limit cycle

Yongwoo Lee and Youdan Kim presented a way of solving the obstacle avoidance
problem using a limit cycle around the obstacle, [Lee and Kim, 2011]. The limit
cycle is generated around the obstacle and the corresponding vector field gives
the steering command around the obstacle. The benefits with this approach are
that it’s very simple and intuitive, which resemble a human way of dealing with
collision avoidance problem. The calculation load for calculating a limit cycle
is not very high, which make this method very suitable if processing capacity
is a problem. [Lee and Kim, 2011] suggested constructing a limit cycle as a two
dimensional vector field with radius r. Let x and y be the position around the the

2.1. COLLISION AVOIDANCE METHODS 13

circle,

ẋ = sign(u)x+ µy(r2 − x2 − y2) (2.16)

ẏ = −sign(u)y + µx(r2 − x2 − y2) (2.17)

ψd = arctan(
ẏ

ẋ
) (2.18)

where u is the direction of the limit cycle and ψd is the desired steering angle around
the obstacle on the limit cycle. This method can be combined with an other steering
law and when the vehicle discover an obstacle it analysis if the obstacle is a threat
or not. If it is a threat than it switching from the other steering law to the limit
cycle.

2.1.6 Collision Cone Approach

In the collision cone approach, a collision cone is defined for each obstacle and if the
obstacles relative velocity with respect to the vehicle velocity is within a collision
cone, it is considered to be critical. If the vehicle avoid the collision cone to the
obstacles, it will also avoid a collisions. In [Watanabe et al., 2007] they present a
collision cone approach for static obstacle in a 3-Dimension environment. In this
paper they calculated two vectors from the vehicle position to the safety circle
around the obstacle. And then testing if the velocity vector for the vehicles would
collide with the obstacle circle before the vehicle has reaching the target. If a colli-
sion is detected, a minimum effort guidance law was applied for waypoint following
with obstacle avoidance. This method only considers changing the heading to the
vehicle and not the speed. [Chakravarthy and Ghose, 1998] presented a collision
cone approach for dynamic obstacles, but only for a 2-dimensional problems. They
first consider the collision as a two pointed objects with the kinematic equation

Vr = Vb cos(β − θ)− Va cos(α− θ) (2.19)

Vθ = Vb sin(β − θ)− Va sin(α− θ) (2.20)

where Vr and Vθ are the relative velocity’s components with respect to the vehicle.
Va , α and Vb , β are the velocity and heading components to the vehicle and the
obstacle respectively. θ is the angle from the xy-plane to the vector between the
vehicle and the obstacle. Then they calculated a collision cone

αcollisionMin ≤ α < αcollisionMax (2.21)

For collision avoidance they suggested using the collision cone (2.21) to make a colli-
sion cone with respect to the velocity such that the vehicle could regulate the speed
such that the vehicle with its current heading would be outside of the collision cone.

14 2.2. SUMMARY

The collision cone suggested in [Chakravarthy and Ghose, 1998] involved a lot of
if else statements divided into different cases depending on the angle and speed of
the vehicle and the obstacle. In total there where was 14 if statements divided in
four cases only to find the collision cone in (2.21) and 38 if statements divided in
seven cases to find the collision cone with respect to the velocity.

2.2 Summary

In this chapter it has been studied optimization, Dynamic Window, A star, Po-
tential Field, limit cycle and collision cone approaches for collision avoidance. The
optimization method presented first in Section 2.1.1 is normally not considered a
collision avoidance method on its own, but rather a tool that some of the other
methods use to solve the collision avoidance problem, such as the Potential Field
and the Dynamic Window methods. The main difference between this two meth-
ods is the way they set up and solve the optimization problem. The weakness
of both of these methods is that they are subject to local minimization, which
can make the methods fail. Also depending on how the methods set up the opti-
mization problem, the problem can be very computationally intensive. This is a
problem especially considering dynamic obstacles or an environment where there
are several unknown obstacles, which causes the methods to be resolved very often.

The collision cone approach from [Chakravarthy and Ghose, 1998] is the only method
studied that uses speed regulation instead of heading control in order to avoid a
collision. Also in contrast to the other methods, the collision cone can be solved
using only kinematic equation and not optimization. However as seen in the arti-
cles [Watanabe et al., 2007] and [Chakravarthy and Ghose, 1998] it results in a lot
of if else statements, which make this method very complex and error detection can
be a problem. The collision cone from [Watanabe et al., 2007] shows, it is possible
to combine the collision cone as a detection algorithm and use optimization to find
a collision free heading. The A star is the only one of these methods, which is
discrete and also gives a optimal solution, but in a discrete grid. The limit circles
are very similar to the vector field, but instead of making a vector field of the entire
map it only uses the limit circle to make a vector field around the obstacle.

Chapter 3

Null-space-based method for
collision avoidance

3.1 Null-Space-Based behavioural Control

The basic idea behind Null-Space-Based behavioural (NSB) control originated ac-
cording to [Cellini et al., 2007] in robotics research, with the control of redundant
manipulators as objective. The null space based method subdivide all the different
tasks and solve them as if they worked alone. Then combining the output from
these tasks to obtain a motion command. In a general approach with n tasks, the
task manager could look like this:

• Task 1: First priority task, with the highest priority

• Task 2: Second priority task, which gives a velocity contributions in the null
space of task 1

• Task n: Nth priority task, which gives a velocity contributions in the null
space of all the higher priority tasks

Each of the tasks generate a velocity vector defined as

νi := {ẋni , ẏni } ∈ R2×1

where i is the number of the task. Before adding the velocity vectors together, the
lower-priority velocity is projected into the null-space of the higher priority tasks.
One should note that if there are too many tasks, the lower-priority tasks might
not run, since the lower-priority tasks is projected into the null space of all the
higher tasks.

15

16 3.1. NULL-SPACE-BASED BEHAVIOURAL CONTROL

3.1.1 Mathematical modelling

The mathematical modelling of the NSB, which have been used in this thesis have
been found in [Arrichiellos, 2006]. A short description is given here. Let η and ν
be the position and velocity vectors for the vehicle. σ is the task variable, which
is the system should minimize.

η =
[
x, y, −

]T
(3.1)

ν =
[
ẋ, ẏ, −

]T
(3.2)

σ = f(η) (3.3)

σ̇ =
∂f(η)

∂η
ν := J(η)ν (3.4)

where J(ν) is the configuration-dependent task Jacobian matrix. Solving (3.4)
with respect to the minimum norm velocity, using least squares

νd = J†σ̇d (3.5)

where J† is the pseudo inverse, for all J 6= 0

J† := JT (JJT)−1

[Arrichiellos, 2006] suggested the following close loop control for the desired velocity

νi = J†i (σ̇i,d + Λσ̃i) (3.6)

Where σ̃i = σi,d − σi and Λ > 0 is the gain matrix. Projecting the lower priority
task into the higher priority task gives the desired velocity νd and for a n tasks
system the desired velocity becomes

νd = ν1 +

n∑
i=2

Ni(J)νi (3.7)

where Ni(Ji) is the null-space projection, which can be expressed as

Ni(J) =

i−1∏
j=1

(I− J†jJj) (3.8)

For n = 3 task system the minimum norm velocity becomes

νd = ν1 + (I− J†1J1)(ν2 + (I− J†2J2)ν3) (3.9)

3.2. NULL-SPACE-BASED BEHAVIORAL CONTROL FOR COLLISION
AVOIDANCE 17

3.2 Null-Space-based Behavioral control for colli-
sion avoidance

When considering Null-Space-based Behavioral (NSB) control for collision avoid-
ance it is important that the controller is able to reach a target while avoiding any
obstacles. Also it should have the ability to traverse the obstacles both clock and
anticlockwise in order to generate a safer path for the vehicle. This is solved by
a three task controller and since obstacle avoidance is most critical, thus it is set
to be the primary task. This section will present the mathematical theory for the
three tasks of the NSB controller

• Task 1: Obstacle avoidance

• Task 2.1: Traverse obstacle

• Task 2.2: Go to target

The implementation of the controller is described in Chapter 5. It can be seen
that tasks Traverse obstacle and go to target are named task 2.1 and 2.2. This
is because they are mathematically identical and they both goes to a point, but
considering that they have two different behaviours and is never active at the same
time they have been divided up. This will be descried more in chapter 5 while
presenting the implementation of the controller.

3.2.1 Task manager

Figure 3.1 illustrates the task manager with three tasks and the supervisor. The
supervisor decide, which tasks that should be active or not and it can be seen that
all tasks generate one velocity vector each and the lower priority tasks are projected
into the null space of task one. Normally task 2.2 should be projected into the null
space of task 2.1 also, but since task 2.1 and 2.2 are never active at the same time
it is not necessary. Also it should be noted that if task 1 is not active, task 2.1 or
2.2 do not need to be projected into the null space of task one.

Task 1: Obstacle avoidance

Obstacle avoidance is the primary task of the system and since the obstacle have
been defined as circle, the calculation of ν1 becomes straight forward. Let the task
variable σ1 be the length from the vehicle to the obstacle center and σ1,d be the

18
3.2. NULL-SPACE-BASED BEHAVIORAL CONTROL FOR COLLISION

AVOIDANCE

∑
(I− J†1J1)

Task 1

Task 2.1
ν2

vd

Task 2.2 (I− J†1J1)

∑
Supervisor

ν1

ν3

Figure 3.1: A task manager with three tasks and the supervisor

safety distance d, which the vehicle should stay outside of.

σ1 = ‖η − po‖ (3.10)

σ1,d = d (3.11)

(3.12)

with the corresponding Jacobi matrix J1 ∈ R2×1 according to (3.4)

J1 :=
∂σ1

∂η

J1 =
η − po
‖η − po‖

= r̂T
(3.13)

where po is the position of the center of the obstacle and r̂ is the unit vector aligned
with the obstacle-to-vehicle direction. r̂T exist if and only if

η 6= po (3.14)

since this would cause a singularity in J1 Then according to (3.6) ν1 becomes

ν1 = J†1λ1(d− ‖η − po‖) (3.15)

with the null space N(J1) ∈ R2×2

N(J1) = I− J†1J1 = I− r̂r̂T (3.16)

Task 2.1: Traverse obstacle

The second priority task is introduced such that the controller can guide the vehicle
both clock and anticlockwise around obstacles. The task variables σ2 and σ2,d

3.2. NULL-SPACE-BASED BEHAVIORAL CONTROL FOR COLLISION
AVOIDANCE 19

becomes

σ2 = η (3.17)

σ2,d = to (3.18)

(3.19)

where to is a point on the obstacle, which is calculated form (4.7) or (4.9) depending
on the direction the vehicle will take around the obstacle.. And since it is only a
straight line the Jacobi matrix becomes

J2 = I (3.20)

where I ∈ R2×2. Then according to (3.6) the second task velocity becomes

ν2 = Λ2(to − η) (3.21)

Then the null space N2 becomes zero according to (3.8) and any velocity projected
into this null space becomes zero. However task 2.2 will never be active if task 2.1
is active, thus this null space will never be used.

Task 2.2: Go to target

The third task in the controller is go to target. A way to solve this is to consider
a straight line between the vehicle and the target. Then the task variables σ3 and
σ3,d becomes

σ3 = η (3.22)

σ3,d = pgoal (3.23)

(3.24)

And since it is only a straight line the Jacobi matrix becomes

J3 = I (3.25)

where I ∈ R2×2. Then according to (3.6) the second task velocity becomes

ν3 = Λ2(pgoal − η) (3.26)

The null space of task 2.2 also becomes zero, but considering that there are no
lower priority tasks this null space will not be used.

20 3.3. STABILITY OF NSB

3.2.2 The resulting velocity vector

According to (3.7) the desired velocity vectors becomes

νd = ν1 + (I− J†1J1)ν2 + (I− J†1J1)ν3 (3.27)

When both ν1 and ν2 is active, it will result in a sliding motion around the obstacle
and toward the target and when ν1 and ν2 is active, it will result in a sliding motion
towards the point to on the obstacle circle. The resulting desired velocity vectors,
νd will not be used directly into the controller, but a heading controller will follow
the angle to this vector. This will be descried more in Chapter 5.1

3.3 Stability of NSB

In order to analysis the convergence of the global task to see if the NSB can complete
all tasks, one must evaluate the convergence of each task variable separately. Start
with (3.27) and multiplying it with J1 and observing that J1(I− J†1J1) = 0.

J1νd = J1ν1 (3.28)

Using (3.5) and (3.6) for i = 1 and inserting for νd and ν1, gives the error dynamic
of the first task.

σ̇1 = σ̇1,d + Λ(σ1,d − σ1) (3.29)

˙̃σ = −Λσ̃ (3.30)

where σ̃ = σ1,d−σ1 and ˙̃σ1 = σ̇1,d−σ̇1 The proof that σ1 converge towards σ1,d is
straightforward, by using the Lyapunov function and Theorem 4.1 in [Khalil, 2001]

V =
1

2
σ̃1Pσ̃1

T (3.31)

where

V(0) = 0 and V(σ̃) > 0 in D − [0] (3.32)

V̇ = ˙̃σ1Pσ̃1
T

V̇ = −Λσ̃1Pσ̃1
T

V̇ < 0 in D − [0]

(3.33)

Where D is the domain containing σ̃ = 0 and since Λ and P are positive definite.
Then σ̃ = 0 is asymptomatic stable, which means that σ̃ converges to zero and σ1

converges towards σ1,d. Thus, the primary task is always fulfilled.

3.4. LIMITATIONS AND IMPROVEMENT 21

The second priority task 2.1 is only fulfilled if it is not in conflict with the higher
priority task. By multiplying (3.27) with J2 and observing that N2 = 0

νd = J2ν1 + J2(I− J†1J1)ν2 (3.34)

Using (3.5) and (3.6) for i = 1, 2 and inserting for νd, ν1 and ν2 , gives

σ̇2 = J2J
†
1(σ̇1,d + Λ1σ̃1) + J1(I− J†1J1)J†2(σ̇2,d + Λ2σ̃2) (3.35)

Assuming that there are no conflict:

J2J
†
1 = 0

Then the resulting error dynamic for task 2 becomes

˙̃σ2 = −Λ2(σ2,d − σ2) (3.36)

Using the Lyapunov function and Theorem 4.1 in [Khalil, 2001]

V2 =
1

2
σ̃2Pσ̃

T
2 (3.37)

where

V2(0) = 0 and V2(σ̃2) > 0 in D − [0] (3.38)

V̇2 = ˙̃σ2Pσ̃
T
2

V̇2 = −Λ2σ̃2Pσ̃
T
2 in D − [0]

(3.39)

which is negative definite and σ̃2 is asymptotic stability stable and will converge to
zero, which mean that σ2 converge towards σ2,d. The assumption that J2J

†
1 = 0

can be verified since the point σ2,d is on the obstacle circle, thus the NSB controller
can achieve both task one and two.
The stability analysis of task 2.2 becomes very alike the stability analysis of task
2.1. The difference is that the assumption J2J

†
1 = 0 is not true as long as the

target is no the obstacle circle and it will not converge as long the null space of
task two is zero. However as a separate task it will converge to the target.

3.4 Limitations and improvement

Before modelling the NSB controller into the vehicle simulator a test system have
been implmented to test the algorithm, consisting of the NSB controller and an

22 3.4. LIMITATIONS AND IMPROVEMENT

integrator for transforming the velocity vector to position measurement as shown
in Figure 3.2. This system was only used to test the NSB algorithm for static
obstacles, thus only task 1 and task 2.2 was implemented. From the stability
analysis and testing the algorithm it was discovered four problems:

1. After avoiding the obstacle the vehicle got stuck on the obstacle circle and
did not continue to the target. This is shown Figure 3.3 and is because of
the desired velocity vector enters a equilibrium point. If tasks 1 and 2.2 are
active, this equilibrium point is located in the intersect point between the
obstacle circle and the line from the center of obstacle to the target.

2. If the vehicle start position, obstacle center and the target are placed on a
straight line, then the vehicle will stop on the obstacle circle and not reach
the target. This is shown Figure 3.4. This is a very unlikely situation, since
the center of the obstacle has to be exactly on the line from the vehicle to
the obstacle. A small change in heading or noise in the system would have
solved this problem.

3. The vehicle is pulled toward the obstacle even if the vehicle is not on collision
courses with the obstacle. This is shown in Figure 3.5 and the solid line is the
path for the vehicle and the doted line is a straight line from start to target.
It is desired that the vehicle should follow this line instead of approaching
the obstacle. The reason that the vehicle is pulled towards the obstacle is
very simple. ν1 gives a velocity contribution toward the obstacle, even if the
vehicle is not on a collision course

4. The method can fail if two obstacles overlapped each other. This is illustrated
in Figure 3.6, and it can be seen that the vehicle travel around the first
obstacle and then into the safety circle to the second obstacle. Also in this
case, the vehicle gets stuck between the two obstacles.

Null space

1
s

νd η
based method

Figure 3.2: Simple test system used to test the NSB algorithm

3.5. SUMMERY 23

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20

x [m]

y
 [

m
]

Start position

Target

Obstacle

Null space based collision avoidance

Final position

Vehicle path

Figure 3.3: The vehicle gets stuck when trying to pass the obstacle

3.5 Summery

This chapter has presented a mathematical description of a three task NSB con-
troller for collision avoidance, performed a stability analysis and constructed a test
system for the NSB controller. From the stability analysis and the test system
it was discovered some limitations with this approach, which one must take into
consideration when designing the final controller.

24 3.5. SUMMERY

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20

x [m]

y
 [

m
]

Start position
TargetObstacle

Null space based collision avoidance

Final position

Vehicle path

Figure 3.4: vehicle approach an obstacle head on, it gets stuck

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20

x [m]

y
 [

m
]

Null space based collision avoidance

Start position

Target

Obstacle

Vehicle path

optimal path

Figure 3.5: Unnecessary obstacle avoidance

3.5. SUMMERY 25

5 10 15 20 25 30 35

5

10

15

20

25

x [m]

y
 [

m
]

Null space based collision avoidance

Start position

Target

Obstacle

Obstacle

final position

Vehicle path

Figure 3.6: Overlapping obstacles

26 3.5. SUMMERY

Chapter 4

Using Dubins path for
collision avoidance

The Dubins path has been proved by Lester Eli Dubins to be the shortest path
between two points and is therefore considered an optimal method with respect to
the length, [Dubins, 1979]. The method was originally intended for path planning,
but in thesis the method will be implemented as a waypoint collision avoidance
method to avoid both static and dynamic obstacles.

The Dubins method has been chosen to be implemented as a collision avoidance
method in order to compare the NSB controller against an optimal method and to
study the difference between the NSB controller and the Dubins method consider-
ing the computational time.

This chapter is organized as following; first a general description of a Dubins path,
then how to calculate the path from a starting position, around one single obstacle
and multiple obstacles to a target. At the end of the chapter, it will be a discus-
sion on how to implement the Dubins method for collision avoidance, which will
be presented in Chapter 5.

4.1 Dubins path

Lester Eli Dubins showed in 1957 a mathematical proof that the shortest path
between to points consist of straight lines and arc circles. For more detail on
this proof see [Dubins, 1979].[Tsourdos et al., 2011] has the following definition of

27

28 4.2. DUBINS METHODS FOR COLLISION AVOIDANCE

a Dubins path; The shortest possible path that meets the maximum curvature
bound between two points with specific orientations in a plane is either a CLC or
a CCC path, or a subset of them, where C represents circular arc and L represents
straight-line tangent to C. A Dubins path is illustrated in Figure 4.1 where the
black line is the path, Ps is the start position and Pf is final position. It can be
seen that the direction on the line from Px to Pn is equal the tangents to the two
circles in the points Px and Pn. Px is the end of the first arc circle and Pn is the
start of the second arc circle in Figure 4.1. The procedure of making a Dubins
path in 3-dimensional can be found in [Tsourdos et al., 2011]. This chapter will
only focus on the 2-dimensional path.

Os

Px

Ps

ρs

Cs

T

Of
Pf

Pn

C

Cf

Csec

ρf

Figure 4.1: Dubins path with internal tangent, Reprinted from Cooperative Path
Planning of Unmanned Aerial Vehicles [Tsourdos et al., 2011]

4.2 Dubins methods for collision avoidance

This section will show how to find a Dubins path around one or several obstacles
and to a target by calculating waypoints to the start of the arc circles and the end
of the arc circles, which represent the obstacles. The problem has been divided in
two sub-problems

• First, find a Dubins path from a start position and around one single obstacle
to a target.

• Second, find a Dubins path between two obstacles.

4.2.1 Dubins path around one obstacle to a target

Finding a Dubins path from a start position and around one obstacle to a target
has been done by using vector geometry and the result is shown in Figure 4.2. The

4.2. DUBINS METHODS FOR COLLISION AVOIDANCE 29

figure shows two valid Dubins paths from a start position pstart and around one
single obstacle with center po whit radius ro to a target ptarget. The path from
pstart → t2 → t4 → ptarget is define as the clockwise path and pstart → t1 →
t3 → ptarget anticlockwise. The goal is to find the unknown points t1, t2, t3, t4
and arch segments on the obstacle circle from t1 to t3 and t2 to t4.

The first step is to define the vectors SO from pstart to po and ST2 from pstart to
t2 with lengths dso and dst2.

SO := po − pstart
ST2 := t2− pstart

Then calculate the lengths dst2 and dso. The length dst2 can be found by Pythago-
ras, since ST2 is unknown and dso using the euclidean norm between po and pstart

dso = ||po − pstart||2 (4.1)

dst2 =
√
d2so − r2o (4.2)

The second step is to find the angle θt2 between the xy-plane and the vector ST2

θt2 = θt2,1 + θt2,2 (4.3)

Where θt2,1 is the angle between SO and ST2 and θt2,2 is the angle from OS to
the xy-plane. ST2 is unknown, but the length dst2 is not, thus the lengths ro and
dso are used to find θt2,1. The two angles then becomes

θt2,1 = asin(
ro
dso

) (4.4)

θt2,2 = atan2(SOy,SOx) (4.5)

The last step is to use the two dimensional rotation matrix

R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(4.6)

and the point t2

t2 = R(θt2)

[
1
0

]
dt + pstart (4.7)

Finding t1 is very similar and the same angles θt2,2 and θt2,1 can be used, the only
difference is the rotation direction.

θt1 = θt2,2 − θt2,1 (4.8)

and t1 becomes

t1 = R(θt1)

[
1
0

]
dt + pstart (4.9)

The two line from t3 and t4 to the target can be found using the same approach
that was used to t1 and t2, only switching the pstart with the ptarget.

30 4.2. DUBINS METHODS FOR COLLISION AVOIDANCE

To target

t3 = R(θt3)

[
1
0

]
dobstaclTarget + ptarget (4.10)

t4 = R(θt4)

[
1
0

]
dobstaclTarget + ptarget (4.11)

Where θ3 , θ4 and dobstacleTarget can be found in Appendix C.

−5 0 5 10 15 20 25 30

−5

0

5

10

15

Start position θ

t
1

t
2

t
3

t
4

Target

Obstacle

x [m]

y
[m

]

Dubins path with one obstacle

Figure 4.2: Dubins path with one obstacle

4.2.2 Dubins path between obstacles

How to generate a Dubins path between two obstacles is shown in Figure 4.3. The
figure shows all Dubins paths between two obstacles. There is in total four possible

4.2. DUBINS METHODS FOR COLLISION AVOIDANCE 31

paths and eight unknown points, which must be calculated, t1, t2, t3, t4, t5, t6, t7
and t8. This is done by dividing the problem into two parts. First finding the
paths with opposite rotational direction, t1 → t2 and t5 → t6. Then the paths
with same rotational direction, t3 → t4 and t7 → t8. The obstacle to the left in
Figure 4.3 is defined as obstacle one and the obstacle to the right as obstacle two.
Finding the Dubins path between two obstacles is slightly different than finding
the paths around only one single obstacle. However, one can use the same strategy
for finding these paths.

1. Find the length from a known point to the unknown.

2. Find the angle from a known point to a unknown point.

3. Rotating with the known angle and length to the unknown point.

0 10 20 30 40 50 60

−15

−10

−5

0

5

10

15

20

25

30

Obstacle
Obstacle

t1

t2

t3

t4

t5

t6

t7 t8

x [m]

y
[m

]

From obstacle to obstacle

possible paths

Figure 4.3: Dubins paths from one obstacle to another obstacle

32 4.2. DUBINS METHODS FOR COLLISION AVOIDANCE

Finding the Dublin path between two obstacles with opposite
rotation direction

Figure 4.4(a) shows one Dubins path from one obstacle to another with opposite
rotational direction. Both of the tangent point t1 and t2 are unknown and the
only information, which is known is the positions and the radius of the obstacles,
po1,po2, ro and ro2. The first step is to find the length between the two obstacles
doo, which is given by

doo = ||po1 − p02|| (4.12)

Then using Pythagoras to find the length, dtt between the two tangent point ,t1
and t2

dtt =
√
d2oo − (ro2 + ro1)2 (4.13)

Then define two vectors from the center of the first obstacle to t2 as Vo1t2 with
length do1t2 and from the second obstacle center to t1 as VO2t1 with length dO2t1.

Vo1t2 := t2− po1
Vo2t1 := t1− po2

These vectors are unknown, but the length can be found by Pythagoras

dO1T2 =
√
d2oo + r2o (4.14)

dO2T1 =
√
d2oo + r2o2 (4.15)

The last step is to find the angles from pO1 and pO2 to t1 and t2 such that we
can rotate and find the tangent point t2 and t1. The cosine rule gives the angle
between VO1T2 and VO1T1 and the angle between VO2T1 and VO2T2

θ1 = acos(
d2oo + d2O2T1 − r2o2
2 ∗ doo + dO2T1

) (4.16)

θ2 = acos(
d2oo + d2O1T2 − r2o
2 ∗ doo + dO1T2

) (4.17)

and the angle to vector Vo1o2 between the two obstacle in the xy-plane

φ = atan2(Vo1o2,y,Vo1o2,x) (4.18)

Then the tangent point t1 and t2 becomes

t1 = R(φ+ θ2 + π))

[
1
0

]
dO2T1 + pO1 (4.19)

t2 = R(φ+ θ1)

[
1
0

]
dO1T2 + pO2 (4.20)

Finding the path from t5 and t6 is very similar since the two obstacle are symmetric
the same geometry is applied.

4.3. THE LENGTH OF A DUBINS PATH 33

Finding the Dublin path between two obstacles with same
rotation direction

Figure 4.4(b) shows a Dubins path between two obstacles with the same rotation
direction. Finding this path is slightly easier than finding a Dubins path between
two obstacle with opposite rotation direction. From Figure 4.4(b) one can identify
that the rectangle given by the corners pO1, pO2, t4 and t3 can be divided into
one right angled triangle and one rectangle. The first step is to find the length
dt3t4 from t3 to t4. Since p01, pO2 and t5 makes right angled triangle and define
the vectors VO1T5 from pO1 to t5, with length dO1T5, which is parallel to vector
Vt3t4 from t3 to t4 with length dt3t4.

VO1T5 := t5− pO1

Vt3t4 := t4− t3

Considering that the two vectors VO1T5 and Vt3t4 are parallel and part of the same
rectangle, which means that the length, dO1T5 is equal to dt3t4 and dt3t4 can be
found by Pythagoras

dt3t4 =
√
d2oo − (ro2 − ro1)2 (4.21)

The second step is to find the angles, θ and φ. θ is the angle between the vector
Vo1o2 and Vo1t5. φ is the angle from the xy-plane to the vector Vo1o2, which is the
vector between the two obstacles.

θ = acos(
dt3t4
doo

) (4.22)

φ = atan2(Vo1o2,y,Vo1o2,x) (4.23)

Then the point t3 and t4 are given by

t3 = R(φ− θ − π

2
)

[
1
0

]
ro + pO1 (4.24)

t4 = R(
3π

2
− θ + φ)

[
1
0

]
ro2 + pO2 (4.25)

Finding t7 and t8 in Figure 4.3 is very similar sine the two obstacle are symmetric
the same geometry is applied.

4.3 The length of a Dubins path

The length of the Dubins path consist only of lines and arc lengths, thus the sum
of these length will give us the total length of the Dubins path. The arc length is

34 4.3. THE LENGTH OF A DUBINS PATH

10 20 30 40

−5

0

5

10

15

20

t1

t2
O1

O2

x [m]

y
[m

]

(a) Dubins path between two obstacle with
opposite rotation direction

10 20 30 40

−5

0

5

10

15

20

t3

t4

t5

O1
O2

x [m]

y
[m

]

(b) Dubins path between two obstacle with
the same rotation direction

10 20 30 40

−5

0

5

10

15

20

t1

t2

t3

t4

O1
O2

x [m]

y
[m

]

(c) Dubins path between two obstacle with
the same and opposite rotation direction

Figure 4.4: Dubins paths between two obstacles

4.4. SUMMARY AND DISCUSSION 35

given by

Lb = ro∆θ

where ∆θ are the angles between the first and last waypoint on the obstacle circle.
The total length is given by the

L =

n1∑
i1=0

Lli1 +

n2∑
i2=0

Lbi2 (4.26)

where Lli1 is the length of the line and Lbi2 are the arc length. The shortest path
from start to target can be found by iteration all the possible Dubins path using
(4.26) to find the shortest.

4.4 Summary and discussion

In this chapter it has been shown how to generate a Dubins path from a start
position, around one or two obstacles and to the target. The tangent points ti
can be used as waypoints in the development of the Dubins method for collision
avoidance with a steering law that follows the waypoints. However as seen in
Figure 4.5, which shows all four possible paths from a start position, around two
obstacles and to a target the problem becomes what path to choose. If the method
chooses to consider all obstacles in range such as in Figure 4.5, equation (4.26) can
be used on all paths to find the shortest. This will give n2 possible paths, which the
method will have to check in order to find the shortest, where n is the number of
obstacles in range of the vehicle. Also considering that the method does not know
about all obstacles, which is in the path between the vehicle and the target and that
the method can’t foresee where the obstacles will be in the future. It might not be
smartest to use the computational time to calculate all possible paths. Thus it is
decided in this thesis that the Dubins method will only consider one obstacle at a
time, which will result in less computational time and choose the passing direction
on either the safest path or the shortest considering only one obstacle at a time.
The implementation of the Dubins method for collision avoidance is described in
Chapter 5.

36 4.4. SUMMARY AND DISCUSSION

0 10 20 30 40 50 60

−15

−10

−5

0

5

10

15

20

25

30

x [m]

y
[m

]

Start position
TargetObstacle

Obstacle

Dubins paths

path

Figure 4.5: All Dubins path from start to target with tow obstacles

Chapter 5

Collision avoidance strategy
and implementation of the
guidance system

The theory about the two collision avoidance methods, which was chosen in this
thesis, has been presented in Chapter 3 and 4. This chapter will present the imple-
mentation of the collision avoidance methods and the strategies to avoid collision,
which is both part of the guidance system. When considering only static obstacles
the collision avoidance problem is quite simple as opposed to dynamic obstacles. In
a case with circle shaped static obstacles it is safe to both pass them clockwise and
anticlockwise. However when considering dynamic obstacles with unknown future
trajectory the problem becomes more challenging since the methods have to take
in consideration and estimate where the obstacles will be in the future.

The guidance part of the model for the collision avoidance system is shown in
Figure 5.1. This chapter is organized as following; first the collision avoidance
strategies for static and dynamic obstacles, then the rest of the guidance system,
which consists of the collision detection, collision avoidance and the steering law
as shown in the Figure 5.1.

37

38 5.1. COLLISION AVOIDANCE STRATEGIES

controller
Vehicle

law Avoidance Detection

Estimator

Radar

Model

Collision CollisionSteering

Guidance system

Low-level

Figure 5.1: Model of the collision avoidance system, where the focus is on the
guidance system

5.1 Collision avoidance strategies

The collision avoidance strategies will be based on the assumption that there are
no communication between the vehicle and the obstacles, thus the vehicle has to
consider that the obstacles will not do anything to prevent the collision. When de-
tecting an obstacle on collision course with the vehicle, there are two main strategies
to avoid a collision.

• Altering the speed, slow down or speed up, which allow the vehicle to maintain
the preplanned path towards the target.

• Altering the vehicles heading and pass the obstacle clockwise or anticlockwise,
which allow the vehicle to maintain the current speed.

The vehicle could also use a combination of the two and both slow down and alter
the heading, which can be used in very dangerous situation. The decision if the
vehicle should pass static obstacles clockwise or anticlockwise will be based on the

5.1. COLLISION AVOIDANCE STRATEGIES 39

shortest path around the obstacle and towards the target. The NSB controller will
do this automatically, since (3.7) the two tasks obstacle avoidance and go to target
active results in the shortest path to the target considering only one obstacle.
The Dubins method has to test the angles between two vectors from the vehicle
to the first waypoints on the obstacle circle and from the vehicle to the target,
which can be found by the cosine rule. The smallest angle will give the shortest
path around the obstacle. Considering dynamic obstacles the problem becomes
more challenging and finding the shortest path around obstacles will no longer be
considered, but finding the safest path around. This section describes three main
collision situations, which can occur between the vehicle and one single obstacle.
The main goal is to find out how the vehicle should pass dynamic obstacles, without
colliding and minimizing the risk of collision in the future.

5.1.1 Obstacle approach; Heads-on

Figure 5.2 illustrates a heads-on situation, where the vehicle and an obstacle has
opposite direction and is heading directly towards each other. This will lead to
an extra dangerous situation since the relative velocity between them will become
larger, thus the safety circle around the obstacle will be increased with a factor two.
Altering the speed will not be an option, since this will not avoid the collision.
Therefore only altering the heading will be considered and passing the obstacle
clock or anticlockwise will be equally safe. However in this thesis the vehicle should
pass anticlockwise in this situation as shown in the figure.

Vvehicle
Vobstacle

Figure 5.2: Heads-on situation the vehicle and the obstacle has opposites headings

5.1.2 Obstacle approach; from left or right

Figure 5.3 illustrates two cases with one obstacle on collision course with the ve-
hicle where the passing direction should be anticlockwise. This can be seen from
the two velocity vectors, if the vehicle had passed the obstacle clockwise the risk of
the two velocity vectors could collide, thus passing anticlockwise would be safest.
Figure 5.4 illustrates the opposite situation where the safest passing direction is
clockwise to avoid the collision.

40 5.1. COLLISION AVOIDANCE STRATEGIES

One could argue that the vehicle could alter the speed in these two cases to avoid
an collision. In a narrow environment where it would be difficult to alter the pre-
planned path this could be a good alternative. This will not be considered in this
thesis since it is assumed that the environment is not narrow and the NSB or the
Dubins methods are not designed to altering the speed to avoid collision.

Vvehicle
Vobstacle

Vvehicle

Vobstacle

Figure 5.3: When the vehicle detect a collision and the passing direction is
anticlockwise

Vvehicle

Vobstacle

Vvehicle

Vobstacle

Figure 5.4: When the vehicle detect a collision and the passing direction is
clockwise

5.1.3 Collision from behind

Figure 5.5 illustrates two cases with collision from behind, one where the vehicle
has greater speed than the obstacle and approaching the obstacle from behind, and
the other where the obstacle has greater speed than the vehicle and approaching the
vehicle from behind. In the case where the vehicle is approaching the obstacle from
behind, it is decided to pass the obstacle anticlockwise as seen in top of the figure.
If the obstacle approaching the vehicle from behind the passing direction should be
clockwise. Considering that the two methods are not very suited for handling an
obstacle that approaches the vehicle from behind. It is placed a virtual obstacle in
front of the vehicle with the same distance as the distance to the obstacle behind.

5.1. COLLISION AVOIDANCE STRATEGIES 41

Such that the vehicle will actually pass the virtual obstacle. However, avoiding the
virtual obstacle will also result in avoiding the real obstacle as seen in the bottom
of the figure.

Vvehicle Vobstacle

VvehicleVobstacle Vobstacle

Figure 5.5: When the vehicle detect a collision and the vehicle is approaching the
obstacle from behind and the other where the obstacle approaching the vehicle

from behind.

5.1.4 Multiple obstacles

If there is more than one obstacle on collision course with the vehicle, only the
obstacle, which will collide with the vehicle first will be processed by the collision
avoidance methods.

5.1.5 Choose direction mathematically

In order to achieve the strategy described above the function ChooseDirection
is implemented in the collision detection block. It uses the assumption that the
vehicle knows the velocity vector and the bearing to the obstacle to decide if the
vehicle should pass the obstacle clockwise or anticlockwise. Figure 5.6 illustrates
how the function works in a case where the vehicle and an obstacle is on collision
course. The function rotates the velocity vector to the obstacle νno , which is given
in the NED frame to the BODY frame of the vehicle νbo

νbo = R(ψ)νno (5.1)

42 5.1. COLLISION AVOIDANCE STRATEGIES

Where ψ is the vehicles heading and R(ψ) ∈ SO(2) ⊂ R2×2 is the two dimensional
rotation matrix

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(5.2)

which will give the velocity vector the obstacle in the NED frame of the vehicle.
The direction to this vector β is given by

β = atan2(νbo,y,ν
b
o,x) (5.3)

Considering that atan2 only gives a four quadrant solution (from −π < θ < π) and
it is desired with a four quadrant solution (from 0 < θ < 2π), thus the function
must add 2π if β becomes less than zero. Since β is the angle to the obstacle in the
BODY frame of the vehicle, this will also be the angle in a four quadrant solution
between the vehicle and the obstacle. Thus by testing which quadrant β lies in,
the function determines the direction the vehicle should pass the obstacle on. This
is illustrated in the right part of Figure 5.6, which shows the velocity vector to
the obstacle rotated in the BODY frame of the vehicle and it can be seen that β
is in the third quadrant in this case. Considering the collision avoidance strategy
above, it is checked if β lays in the first or second quadrant. Then vehicle should
pass clockwise and if the β lays in the third or fourth quadrant, the vehicle should
pass anticlockwise. This will cause the two velocity vectors never to cross and the
vehicle would always pass behind the obstacle, thus making the path safer.

The last things the function checks are; if the vehicle and the obstacle is on a
heads-on collision course, if the vehicle is approaching an obstacle from behind or
if the obstacle is approaching the vehicle from behind. The heads-on problem is
solved by testing if

|β − π| < HeadsOnConstant

is true or not. The HeadsOnThreshold is a constant, which is used to define the
heads-on situation. In this thesis it is considered to be a heads-on situation if the
vehicle and the obstacle has opposite direction ± 20 degrees, thus the heads-on
constant is set as ±0.35 rad (± 20 degrees). In the same way, the approach from
behind situations is defined. By testing if

β < approachFromBehindConstant Or

2π − β < approachFromBehindConstant

is true or not. If it is true a second test is performed to see if the vehicle is approach-
ing the obstacle or the obstacle is approaching the vehicle. By testing if the vehicle
is closer to the target than the obstacle. The approachFromBehindConstant is
set to 0.2 rad in this thesis (11.5 degrees)

5.2. COLLISION DETECTION 43

Vehicle

Vvehicle

obstacle Vobstacle

Vobstacle

Vvehicle

1

2

3

4

β

Figure 5.6: The figure shows the vehicle and the obstacle on a collision course
and the velocity vector to the obstacle is rotated into the BODY frame to the

vehicle. The 1, 2, 3 and 4 illustrate the first, second, third and fourth quadrant.

5.2 Collision detection

The collision detection method developed in this thesis should determine if any
obstacles in range of the vehicle is on collision course with the vehicle and if there
are more than one, find the one that is the biggest threat. The method has defined a
constant value called threat, which is set to 1 if there is a threat and zero otherwise.
It is assumed that the vehicle knows the current velocity of the obstacles, but not
the future velocity. Therefore the method assumes that the vehicle and the obstacle
will continue with the same velocity to calculate the future trajectories. Thus the
method needs to redo and retest if the obstacles and the vehicle is on collision
course in every iteration. Figure 5.7 illustrate how the method works where the
vehicle is placed in three different places and the estimated trajectories are plotted
as the dotted lines. First the vehicle discovers an obstacle and based on the two
trajectories the collision detection activates the collision avoidance system. In the
second place, the method retest if the obstacle and the vehicle are still on collision
cures. By using the estimated trajectory from the obstacle and the trajectory
the vehicle would have if the vehicle had moved directly to the target. Finally the
path to the target is clear and the collision detection should deactivate the collision
avoidance system by setting the threat value to zero. The collision detection system
returns the position and safety radius for the obstacle to the collision avoidance
system.

The trajectory of the vehicle N(t) and the obstacle O(t) are estimated using the

44 5.2. COLLISION DETECTION

target

νobstacle

νvehicle

νvehicle

νvehicle

obstacle

vehicle

vehicle

vehicle

Figure 5.7: Collision detection method checks if the trajectory for the vehicle to
the target collide with the trajectory of the obstacle

equation of motion.

O(t) =

[
xo(t)
yo(t)

]
=

[
Vot cos(θo) + po,x
Vot sin(θo) + po,y

]
(5.4)

N(t) =

[
xv(t)
yv(t)

]
=

[
Vvt cos(θvehicleTarget) + pv,x
Vvt sin(θvehicleTarget) + pv,y

]
(5.5)

Where θo and θvehicleTarget are the headings to the obstacle and the direction to
the vector between the vehicle and the target. Vo and Vv are the current speeds of
the obstacle and the vehicle. t is the time horizon and have been set from 0 to 50
second in this thesis. By finding the distance f(t) between these two trajectories

f(t) = ||N(t)−O(t)||2 (5.6)

where || • || is euclidean norm and testing if f(t) is less than a threshold value (less
than the safety radius for the obstacle). A possible collision is detected and the
collision avoidance system is activated. There can be a possibility of more than one
obstacle that can be a threat. Therefore the method calculate the length C from
the vehicle position to O(tFirstCollision), where tFirstCollision is the first t in f(t)
that is under the threshold value. The obstacle, which is a threat and has lowest
C value is considered the biggest threat.

Figure 5.8(a) shows an algorithm test of the collision detection system. The esti-
mated trajectories are plotted in the xy-plane and the green line between the two

5.2. COLLISION DETECTION 45

0 20 40 60 80 100 120 140 160

−20

0

20

40

60

80

100

t = 1 t = 6 t = 11

Vehicle

Obstacle

x [m]

y
 [
m

]

xy−plot of a collision detection test

vehicle trajectory

obstacle trajectory

ThresholdValues

(a) xy plot of the estimated trajectory of the vehicle and the obstacle. Where the
distance between the two trajectory at time t is shown in the green dotted line for t
= 1, 6 and 11. The black circle is the threshold value

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

time [s]

d
is

ta
n
c
e
 [
m

]

Collision detection test

f(t)

Threshold Value

(b) The distance function between the obstacle and the vehicle, if the distance func-
tion becomes less than the threshold value the collision avoidance system is activated

Figure 5.8: Collision detection test, the two figures shows the estimated
trajectories and the distance between then

46
5.3. IMPLEMENTATION OF THE NULL-SPACE-BASED BEHAVIOUR

CONTROL

trajectories are f(t) at t= 1, 6 and 11, where t=11 is the first value under the
threshold value. Thus the collision avoidance system should be activated and the
C value should be calculated from this point. Figure 5.8(b) shows the entire f(t)
function to Figure 5.8(a) with the threshold value.

5.3 Implementation of the Null-Space-Based be-
haviour control

The NSB controller developed in this thesis should be able to handle both static
and dynamic obstacles in a safe manner. The controller should also be able to follow
the desired direction around the obstacles (clockwise or anticlockwise), according
to the collision avoidance strategies presented in Section 5.1. As a result of this,
the three tasks NSB controller described in Chapter 3 have been implemented

• Task 1: Obstacle avoidance

• Task 2.1: Traverse obstacle

• Task 2.2: Go to target

Task 1 is the obstacle avoidance task, which make sure that the vehicle does not
enter the safety radius of the obstacles. This task is only active inside activation
circle one. The activation circles one and two is shown in Figure 5.10. Task 2.1
makes the vehicle converge to a point on the obstacle circle depending on the
passing direction such that the vehicle can choose direction around the obstacles
and is activated inside of activation circle one. Figure 5.9 shows the two tangent t1,2
points on the obstacle circle, which task 2.1 converges towards. When the vehicle
has passed the dotted line from the target and through the obstacle, task 2.1 can
be turned off. Since the vehicle will continue passing the obstacle with the same
direction if task 2.2 is activated. Task 2.2 will makes the vehicle converge to the
target. Table 5.1 shows the tuning parameter for the tasks in the NSB controller
and the size of the activation circles, the d is the size of the safety circle to the
obstacle. The main reason for the two activation circles in the NSB controller is
that the vehicle can converge to the tangent points without having to project the
velocity vector in the null-space of task one, which would have resulted in curved
motion towards the point ti instead of a straight line.

The pseudo code of the NSB controller implemented is shown bellow and the threat
value in the code is received from the collision detection method, see Section 5.2.
It can be seen that task 2.1 can be turned off and on by setting ν2,1 to zero and the
null-space equal the identity matrix, thus task 2.1 will not give any contribution to
the desired velocity, making it a two task controller with only obstacle avoidance
and go to target. Or setting ν2,1 according to (3.21) and the null-space equal zero,

5.3. IMPLEMENTATION OF THE NULL-SPACE-BASED BEHAVIOUR
CONTROL 47

Target

Vehicle

t1

t2

Anticlockwise

clockwise

Figure 5.9: Shows the two tangent points on the obstacle circle and the dotted
line from the target illustrates, which side the vehicle has to be on in order to pass

the obstacle clockwise or anticlockwise

thus turning of task 2.2 of. Assuming task 2.1 is turned of and the vehicle is inside
of activation circle two the desired velocity becomes ν1 plus ν2,2 projected into
the null-space of task one, thus choosing the shortest paths around the obstacle
will avoiding it. When the obstacle is avoided the obstacle detection system sets
the threat value false and the vehicle continues toward the target with the desired
velocity equal ν2,2.

For dynamic obstacles or static obstacles where the vehicle is heading directly
towards the obstacle center ν2,1 gives a velocity contribution toward a point ti de-
pending on the passing direction according to (4.9) or (4.7) on the obstacle circle.
When the vehicle is inside of activation circle one the desired velocity becomes only
ν2,1, thus making the vehicle choose the passing direction around the obstacle. In-
side of the activation circle two the desired velocity becomes ν1 plus ν2,1 projected
into the null-space of task one until the vehicle has reached t. Then ν2,1 is set
to zero and the null-space becomes an identity matrix. Thus making the desired
velocity ν1 plus ν2,2 projected into the null-space of task one until the threat is
avoided. The HasReachObstacle function is the function that tests if the vehicle is
close or has passed the point ti on the obstacle circle.

48
5.4. IMPLEMENTATION OF THE DUBINS METHOD FOR COLLISION

AVOIDANCE

Table 5.1: Tuning parameter for NSB in case studies in Chapter 7

Case number λ1 λ2 λ3 Activation circle one Activation circle two
One 5 5 3 - 3d
Two 5 5 10 10d 1.6d
Three 5 5 10 10d 1.6d
Four 5 5 10 10d 1.6d

NSB controller: pseudo code

ν1 according to (3.15)
ν3 according to (3.26)
N1 according to (3.16)
if HasReachObstacle == true Or ActivateTaskTwo == false then

ν2,1 = [0, 0]T

N2,1 = I
else

ν2,1 according to (3.21)
N2,1 = 0

end if
if Activation circle one == TRUE and Threat == true then

Vd = ν2,1 +N2,1ν2,2
else if Activation circle two == true and Threat == true then

Vd = ν1 +N1ν2,1 +N1N2,1ν2,2
if Inside the safety circle then

Vd = ν1
end if

else
Vd = ν2,2

end if

5.4 Implementation of the Dubins method for col-
lision avoidance

The Dubins method for collision avoidance developed in this thesis should, as the
NSB controller be able to handle static and dynamic obstacles. The Dubins method
for collision avoidance developed using the theory in Chapter 4 to generate way-
points, which generates a path that fulfills the criteria of a Dubins path. However,
considering that the method only consider one obstacle at a time and the vehicle
can not turn infinitely fast, the path might differ from an optimal Dubins path

5.4. IMPLEMENTATION OF THE DUBINS METHOD FOR COLLISION
AVOIDANCE 49

Obstacle

Vehicle

Activation circle one

Activation circle two

Figure 5.10: Activation circles for the NSB controller. The figure shows the two
activation circles implemented in the NSB controller where the vehicle is inside of

activation circle one

calculated off line where all obstacles are known. The waypoints generated by the
method are sent to a steering law such that the vehicle can follow the generated
path. Figure 5.11 shows how the Dubins method generate waypoints for avoiding
an obstacle when the vehicle is outside of the activation circle. The only difference
between inside or outside the circle is inside the vehicle does not need to run the go
to obstacle function while outside it needs to find the first waypoint on the obstacle
circle. The pseudo code for the method is shown below. It can be seen that the
method is divided into three main cases.

• If there is no threat

• If there is a threat and the obstacle is dynamic

• If there is a threat and the obstacle is static

The first one, if no obstacles are in range or are considered to be a threat, go directly
to the target. The difference between the last two is that, for static obstacles the
code is only run once, while for dynamic the code is repeated and regenerate a new
set of waypoints as the obstacles are moving. It can be seen that the method for all
three cases first generate one waypoint according to (4.7) or (4.9) (depending on
the passing direction), then the last waypoint before the target by (4.10) or (4.11)
and the waypoint named circle waypoints, such that the vehicle can follow the circle
trajectory smoother. However if the vehicle had been inside of the activation circle
it would not needed to go to the obstacle. Thus the method only generates the

50
5.4. IMPLEMENTATION OF THE DUBINS METHOD FOR COLLISION

AVOIDANCE

circle waypoints and the last waypoint before the target using the vehicles position
as the first waypoint.

Dubins method: pseudo code

WP is a matrix containing all the waypoints generated by the Dubins method
if Threat == false Or NoNewObstacleInRage == true then

WP = [vehicle position , target]
else if Threat == true And DynamicObstacle == true then

if Inside activationCircle == true then
wpk+1 = FindWaypointFromObstacleToTarget
wpcircle = FindWaypointOnObstacleCircle
WP= [vehicle position , wpcircle , wpk+1 , target]

else
wpk+1 = FindWaypointFromVehicleToObstacle
wpk+2 = FindWaypointFromObstacleToTarget
wpcircle = FindWaypointOnObstacleCircle
WP= [vehicle position ,wpk+1 , wpcircle , wpk+2 , target]

end if
else if Threat == true And DynamicObstacle == false then

if NotLastObstacle == true then
if Inside activationCircle == true then

wpk+1 = FindWaypointFromObstacleToTarget
wpcircle = FindWaypointOnObstacleCircle
WP= [vehicle position , wpcircle , wpk+1 , target]

else
wpk+1 = FindWaypointFromVehicleToObstacle
wpk+2 = FindWaypointFromObstacleToTarget
wpcircle = FindWaypointOnObstacleCircle
WP= [vehicle position ,wpk+1 , wpcircle , wpk+2 , target]

end if
end if

else
WP = Last WP

end if

5.5. STEERING LAW 51

Obstacle

Target

Vehicle

First and last Waypoints

Circle Waypoints
Activation circle

Desired vehicle path

Figure 5.11: Dubins method: The figure shows how the Dubins method
generating waypoints when the vehicle consider an obstacle to be a threat and is

outside of the activation circle

5.5 Steering law

The steering law is the second part of the guidance system. This will use the output
from the collision avoidance methods to generate a desired heading that is sent to
the controller.

5.5.1 Steering law for the NSB controller

The NSB controller gives a desired velocity vector as output, so the steering law
will have to find the heading χd,NSB of this vector

χd,NSB = atan2(νd,y,νd,x) (5.7)

where νd,x,νd,y is the x and y component in the NED frame of the desired velocity
vector νd.

52 5.5. STEERING LAW

5.5.2 Steering law for the Dubins method

The Dubins method for collision avoidance generates waypoints, thus the steering
law should manage to follow the path generated by these waypoints. Therefore the
LOS (Line-of-Sight) steering law presented in [Fossen, 2011] is chosen.

χd,Dubins(e) = χp + χr(e) (5.8)

where

χp := ak (5.9)

ak = atan2(WPk+1,y −WPk,y,WPk+1,x −WPk,x) (5.10)

is the path-tangential angle and

χr := atan(
−e
∆
−Ki

∫ t

0

e dτ) (5.11)

where Ki is the integral and e is the cross track error

e = −(ηx −WPk,x) sin(ak) + (ηy −WPk,y) cos(ak) (5.12)

and from Figure 5.12 it can be seen that Pythagoras can be applied

e(t)2 + ∆(t)2 = R2 (5.13)

where ∆ > 0 is the lookahead distance ahead of the direct projection of η(t) on to
the path. R is a tuning parameter, which needs to be tuned. By using the control
law

Kp =
1

∆
(5.14)

where

∆ =
√
R2 − e2 (5.15)

then χr becomes

χr = atan(−eKp −Ki

∫ t

0

e dτ) (5.16)

In this thesis the tuning parameter Ki and R are set as

Ki = 0.00001 , R = 40 (5.17)

There have also been set a saturation limit on the integral effect, such that if
∫
e dτ

becomes more that 200 it goes to zero in order to avoid integral wind-up.

5.6. STABILITY AND CONVERGENCE OF THE METHODS 53

WPk

WPk+1

Vehicle

∆

U

Re

Figure 5.12: LOS steering law: The figure shows the vehicle with the LOS
steering law when the vehicle steers on the line between the two waypoints.

5.6 Stability and convergence of the methods

The stability of the methods is very important to consider when designing a collision
avoidance system. Considering stability in a collision avoidance approach means
that the methods will converge to the target without colliding with any obstacles.
The distinction between a locally stable method and a globally stable method, is
that the local cannot guarantee to converge to the target for every case, only if some
given assumption valid. The global methods will converge for any given cases.

5.6.1 The NSB controller

The stability properties for the NSB controller are studied in Chapter 3, Section
3.4. From this stability analysis and the discussion from the test system, which was
used for testing the NSB algorithm it was found several equilibrium points, which
caused the method to fail. The problems was divided up into four sub problem,
which is illustrated in Figure 3.3 - 3.6;

The first one where the vehicle got stuck on the obstacle circle is solved by the
collision detection system. Considering that the equilibrium point on the obstacle
circle lies on the line from the obstacle center to the target, such that the obstacle
will not be a threat in this point. Thus the collision detection system will turn

54 5.6. STABILITY AND CONVERGENCE OF THE METHODS

off the collision avoidance and the vehicle will continue towards the target before
reaching the equilibrium point for all obstacles.

The second problem occurs only if the vehicle is heading directly towards the
obstacle center and if the vehicle position, center obstacle and the target are on
a straight line. Then the NSB controller fails, but this is very unlikely to occur
since the obstacle center, vehicle and the target need to be perfectly aligned. For
dynamic obstacles the traverse obstacle task will solve this problem by considering
that the vehicle converge to a point ti on the obstacle circle for then heading to the
target. Thus the vehicle will never have a heading, which is directly towards the
obstacle center. However for static obstacles this situation can occur. Two different
methods have been considered for solving this problem for static obstacles:

• first, to add a ε = [0.1, 0.1] to the targets position if the situation occurred.
This would have solved the problem since the obstacle center, vehicle and
the target would not by perfectly aligned, but this would have resulted in a
velocity vector that would have headed very much towards the obstacle and
not around it.

• The second method for solving this problem and also added to the NSB
controller was to detect if the angle to the vector between the vehicle and the
target is equal the angle to the vector between the obstacle center and the
target. If true, the heading is directly towards the obstacle center and then
use the traverse obstacle task with a default rotation direction as clockwise
and converge towards the point ti on the obstacle circle.

The third problem, where the vehicle was dragged unnecessary towards a non-
threatening obstacle does not have a direct impact on the stability of the system
and the collision detection system has solved this problem for all obstacles. Con-
sidering that the collision avoidance task will not be active unless there is an actual
collision threat.

The last problem that was discussed in Section 3.4 when the NSB controller steered
the vehicle into another overlapping obstacle and stopped is an example on what
happen if the vehicle takes a path around an obstacle, which does not lead to the
target. This problem was discussed in my project report, fall 2013 and solved by
merging all overlapping obstacle together and making a large obstacle around all
of them. In this thesis it will be assumed that all paths around all obstacles leads
to the target (no dead ends) such that merging obstacles will not be considered.

The conclusion form this analysis is that the method is not globally stable since
there are cases, which make the NSB controller not converge to the target. Also
(3.13) include a singularity when η = po, which makes it not globally stable. How-
ever under the following assumption

5.7. SUMMARY 55

• All path around the obstacles leads to the target. No dead ends.

• The collision detection system prevents the vehicle to reach the equilibrium
points on the obstacle circle

• η 6= po, which prevents the singularity in (3.13)

the method is locally stable.

5.6.2 Dubins method

The Dubins method for collision avoidance presented in Section 5.4 is a waypoint
generating algorithm, thus the stability analysis becomes a two step process.

• Step one: Stability of the waypoints generated. Does the method manage to
generate feasible waypoints to the target for all cases ?

• Step two: Stability of the path following algorithm. Does the method mange
to follow the path generated ?

Considering that the vehicle does not know where all obstacles are before the vehi-
cle is in range of the obstacles, an argument can be made that if the method decides
to take a path around one obstacle, which leads to a dead end the method does not
have the ability to turn around and tray another route. Also if the target is inside
the obstacle circle the method would fail since the vehicle would go to the target
at the end of the waypoint list, thus the method is not globally stable. However
under the assumption, that there are no dead ends and the target is outside of any
obstacles, the method will generate a path to the target, thus the method is locally
stable.

The LOS steering law is stable and will converge to the path if the cross track
error e (5.12) goes to zero.

lim
t→∞

e(t) = 0 (5.18)

In [Breivik and Fossen, 2004] it is proven that the cross track error converge to zero
if the speed is non-zero for the LOS steering law by a Lyapunov analysis. Thus the
steering law will converge to the path generated by the Dubins method.

5.7 Summary

In this chapter it has been shown how the guidances system for the vehicle sim-
ulator was implemented. The guidance system consists of the collision detection,

56 5.7. SUMMARY

collision avoidance and the steering law. The collision detection method detects
if obstacles are on collision course with the vehicle, by estimating the trajectory
of the vehicle towards the target and the trajectory of the obstacle and assuming
that they will continue with the constant speed, and testing if the distance between
these tow trajectories are under a threshold value. If a threat is detected and the
obstacle is dynamic the system determines the passing direction, by rotating the
velocity vector to the obstacle into the BODY frame of the vehicle and checking,
which quadrant it is in. For static obstacles the shortest path around the obstacles
is chosen. Both the collision avoidance methods presented use the same collision
detection method. Considering that the NSB controller generates a desired veloc-
ity vector and the Dubins method generates waypoints, two steering laws where
implemented: One for following the heading to the desired velocity vector and one
LOS steering law for waypoint following. The stability and convergence of the two
collision avoidance methods has been discussed and concluded that they are not
globally asymptotically stable, only locally stable.

Chapter 6

Vehicle simulator and
control design

Figure 6.1 shows a model of the vehicle simulator and this chapter will present the
vehicle model and the controller block as seen in this figure. The vehicle simulator
is developed under the following assumptions:

1. There are no environmental forces that act on the vehicle, so the environ-
mental force acting on the vehicle is not considered.

2. All signals to the vehicle and controller are assumed to be perfect.

This chapter is organized as following: first the vehicle model will be presented
with a analysis of the model, then the surge and heading controllers.

6.1 Vehicle model

As shown in [Fossen, 2011], the 3 DOF (Degree of Freedom) non-linear equation
of motion for a vehicle can be written as

η̇ = R(η)ν (6.1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (6.2)

Where R ∈ R3×3 is the rotation matrix from BODY to NED frame and η =
[x, y, ψ]T and ν = [u, v, r]T are the position and velocity vectors, which is given in
NED and BODY frame respectively. M is the mass matrix, which consists of the
mass of the vehicle and the added mass. C(ν) is the Coriolis and added Coriolis

57

58 6.1. VEHICLE MODEL

Controller
Vehicle

law Avoidance Detection

Estimator

Radar

Model

Collision CollisionSteering

Vehicle simulator

Low-level

Figure 6.1: The model of the collision avoidance system, where the focus is on the
vehicle model and the low-level surge and heading controller

6.1. VEHICLE MODEL 59

matrix. D(ν) is the non-linear dampening term and g(η) is the linear dampening
term. τ is all the external forces that acts on the vehicle. Since the main focus in
this thesis is on collision avoidance, the vehicle model used is very simplified with
the following assumptions:

1. Only consider a 3 DOF model (surge, sway and yaw).

2. The vehicle is moving with constant or at least slowly varying speed, such
that U =

√
u2 + v2 = u, since u� v

3. There are no coupling effects in surge, sway and yaw.

4. Considering only low velocity, such that all the linear terms dominate the
non-linear terms and the vehicle behaves as a first order system.

Given these assumptions one can transform the no-linear system (6.1) and (6.2)
into a decoupled first order system with 3 DOF. The velocity model in sway is
disregarded, since it is assumed u� v. The velocity in surge can be expressed as

Tsurgeu̇+ u = τsurge (6.3)

where u is the surge velocity and Tsurge is a time-constant in surge for the vehicle.
τsurge is the force that acts on the surge motion.

The first order Nomoto model from [Fossen, 2011, eq. (7.49)] is often used in linear
autopilot for heading control. In this thesis it has been used to model the turning
rate in yaw.

Tyaw ṙ + r = bδ (6.4)

Where Tyaw is a time-constant in yaw and r is the turning rate in yaw, bδ is the
force that acts on the yaw motion. In this thesis it is considered a single rudder and
under the assumption that the vehicle is moving with constant speed, b becomes
constant, δ is the rudder angle. In reality bδ is speed depending and no-linear, but
this is not considered in this thesis. There should also be included some limitation
on the rudder and in this thesis the limitation has been set as δ = ±35 deg.

Using the rotational matrix R for 3 DOF.

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (6.5)

and by remembering that the sway velocity is neglected ν = [u, 0, r], then from
(6.1) the position velocity in NED becomes

ẋ = ucos(ψ)

ẏ = usin(ψ)

ψ̇ = r

(6.6)

60 6.1. VEHICLE MODEL

where u is the vehicle speed in BODY frame.

6.1.1 Vehicle parameters used in this thesis

Based on the systems (6.3) and (6.4) it is chosen to test the collision avoidance
methods using the model parameter according to Table 6.1. The time-constant on
a real vehicle can vary from a couple of seconds to a couple of minutes, depending
on the vehicle. It can be seen in the table that the parameters used in this thesis
gives a relatively fast responding vehicle.

Table 6.1: Parameter for the vehicle model used in the simulations in chapter 7

Parameters Value
Tsurge 5
Tyaw 4
byaw 1
ksurge 3
δmax, δmin ±35 deg
τmax, τmin ±10

6.1.2 Max turning radius

When designing a collision avoidance system or performing a path planning, it
is essential to know how fast the vehicle can turn. It makes no sense to avoid
obstacles, which the dynamic of the vehicle can not achieve. Thus it is better to
increase the size of the safety radius around the obstacles, such that the path will
be feasible. In [Fossen, 2011] one can find a test to determine the steady turning
radius for a vehicle. This will give an indication on how fast the vehicle can turn.
The test is performed by turning the vehicle over at maximum speed with maximum
rudder angle. The definition on turning radius R can be found in [Fossen, 2011,
eq. (12.47)]

R :=
U

r
(6.7)

where U is the vehicles speed and r is the turning rate, which can be found form
the Nomoto model and have the explicit solution

r(t) = exp(− t

Tyaw
)r(0) + (1− exp(− t

Tyaw
)bδmax) (6.8)

6.2. SURGE AND HEADING CONTROLLERS 61

The steady turning radius is when t→∞ and r becomes bδ. From (6.8) it can be
seen that r converge faster for smaller Tyaw, but the final value of r becomes the
same. The steady turning radius becomes (t =∞)

R(∞) =
Umax
bδ

(6.9)

This test has been performed for the vehicle model in (6.3) and (6.4). The results
are shown in Figure 6.2 for the vehicle with the model parameters in Table 6.1.
The figure shows the path of the vehicle when it achieves the steady turning radius,
which is 10 meters. It can be seen in Figure 6.2(b) that the vehicle starts turning
after 30 seconds and have achieved the steady turning radius after 40 seconds when
the turning rate has reached its maximum value. Table 6.2 summarizes the most
important results from the test, the steady turning radius, transfer, advance and
tactical diameter. The transfer and advance is the length from when the vehicle
starts turning in x and y direction respectively, to the vehicles position (x and y)
when the vehicle have reached 90 degree in heading the first time. When considering
obstacle avoidance and deciding a minimum safety circle for the obstacle it is
unlikely that the vehicle will achieve a steady turning radius, considering that it
require more than 360 degree turn. Also the vehicle will have to react much faster.
However a 0−90 degrees turn is more likely and using the maximum of Transfer at
90 degrees heading or Advance at 90 degrees heading from Table 6.2 as minimums
safety radius around the obstacles will ensure that the vehicle manage all the turns.
In this thesis the Advance at 90 degrees heading is 27 meter and the Transfer at
90 degrees heading 17, thus the minimum safety circle around the obstacle will be
27.

Table 6.2: Results from the turning radius test

Steady turning radius 10
Transfer at 90 degrees heading 17.24 meter
Advance at 90 degrees heading 27.102 meter
tactical Diameter at 180 degrees 29.93 meter

6.2 Surge and heading controllers

In this thesis it is desired that the vehicle should keep a constant speed and be
steered by a heading controller. To achieve this, two decoupled controllers, a surge
and a heading controller have been implemented. The surge controller should keep

62 6.2. SURGE AND HEADING CONTROLLERS

180 190 200 210

10

15

20

25

30

35

xy plot of steady turning radius test

x [m]

y
 [
m

]

R = 10 m

(a) xy plot of the vehicles position in the
steady turning radius test

0 20 40 60 80
0

5

10
Vehicle speed U

time [s]

s
p
e
e
d
 [
m

/s
]

0 20 40 60 80
0

0.5

1
Vehicle turning rate

time [s]tu
rn

in
g
 r

a
te

 [
ra

d
/s

]

(b) The speed U and the turning rate r to the
vehicle in the steady turning radius test

Figure 6.2: Results from the steady turning radius test performed on the vehicle

the vehicle at a contestant speed, therefore a PI controller has been chosen.

τ = Kp,surgeud −
∫ t

0

Ki,surgeũdτ (6.10)

Where ũ := u− ud and ud is the desired velocity, Kp,surge and Ki,surge are the P
and I-gains to the controller. Considering the second order mass damper system

mẍ+ dẋ+ kx = τ (6.11)

then comparing the mass damper equation with (6.3)

m = 0, d = Tu, k = 1

Then in order to find the P-gain and I-gain [Fossen, 2011, Table 12.4] has been
used.

ωn,1 =
1√

1− 2ξ4surge +
√

4ξ4surge − 4ξ2surge + 2

ωb,surge (6.12)

Kp,surge = mω2
n,1 (6.13)

Ki,surge =
ωn,1
10

Kp,surge (6.14)

Where ωb,surge is the desired bandwidth and ξsurge is the relative damping ratio
ξsurge > 0. Both parameters are tuning parameters and the values used are listed
in Table 6.3.

6.2. SURGE AND HEADING CONTROLLERS 63

The heading controller should both be able to keep a constant heading and manage
to follow a fast change in heading. Therefore a PID controller has been chosen.

δ = Kd,yawψ̇ −Kp,yawψ̃ −
∫ t

0

Ki,yawψ̃dδ (6.15)

Where Kp,yaw , Kd,yaw and Ki,yaw are the P , D, I-gains to the heading controller.

ψ̃ := ψ − ψd , where ψd is the desired heading. Considering the Nomto model for
yaw motion, (6.4) and inserting ψ̇ = r.

Tyawψ̈ + ψ̇ = bδ (6.16)

and compare it with the mass damper system (6.11)

m =
Tyaw
b

, d =
1

b
, k = 0

and finding the P-gain I-gain D-gain as in [Fossen, 2011, Table 12.4]

ωn,2 =
1√

1− 2ξ4yaw +
√

4ξ4yaw − 4ξ2yaw + 2

ωb,yaw (6.17)

Kp,yaw = mω2
n,2 (6.18)

Kd,yaw = 2ξyawωn,2m− d (6.19)

Ki,yaw =
ωn,2
10

Kp,yaw (6.20)

6.2.1 Tuning parameters

The tuning parameters used for the controllers are given in Table 6.3, where each
controller have been tuned to give a fast response.

Table 6.3: Tuning parameter used in simulation studies for a vehicle with fast
dynamic, according Table 6.1

Controller Parameter Value
Surge controller ωb,surge 0.8
Surge controller ξsurge 1.1
Heading controller ωb,yaw 0.7
Heading controller ξyaw 0.9

64 6.3. STATIC AND DYNAMIC OBSTACLES

6.3 static and dynamic obstacles

Obstacles can be divided into two main categories, static or dynamic obstacle
depending if they are moving or not. The simulations in Chapter 7 all obstacles
are simulated as particles with a safety radius that the vehicle should stay out of.

The obstacles are tracked in the radar as shown in Figure 6.1 and it is assumed
that the collision avoidance system receive the position and velocity from the radar
perfectly filtered, thus the signal is sent direly to the collision detection block
(bypass the estimation block) as illustrated in Figure 6.1.

O =

x
n
o1 yno1 d1 bool1
...

...
...

...
xnoi ynoi di booli

 , V =

ẋ
n
o1 ẏno1
...

...
ẋnoi ẏnoi

 (6.21)

O ∈ Ri×4 and V ∈ Ri×2 are the position and velocity matrix for the obstacles,
where the xnoi and ynoi are the x and y position of the obstacles in the NED frame
and di is the safety radius, which the vehicle should pass outside of. The last bool
value in O is a dummy value, that is true if the vehicle is close enough to see the
obstacles and false otherwise. The ẋnoi and ẋnoi are the velocity to the obstacles in
the NED frame.

Chapter 7

Simulation: Collision
avoidance using the vehicle
model

This chapter will present four case studies of the NSB controller and the Dubins
method for collision avoidance using the vehicle simulator described in Chapter 6.
The following cases will be studied:

• Case one: Multiple static obstacles.

• Case two: Dynamic obstacles approaching from the left and right.

• Case three: Dynamic obstacle approaching heads-on.

• Case four: Dynamic obstacle approaching from behind.

The first case will test the collision avoidance methods on static obstacles. The next
three cases will consider dynamic obstacles approaching the vehicle from different
directions creating all the situations that was discussed in the collision avoidance
strategies Section 5.1. This will test the collision avoidance strategies and if the
collision avoidance methods manage to follow the correct direction around the
obstacles. The two collision avoidance methods will be compared with respect to
the path of the vehicle and the average computational time of the methods during
the simulations. This chapter is organized as following, first each case will be
presented with the simulation results, than a discussion and the conclusion of the
results.

65

66 7.1. CASE ONE: MULTIPLE STATIC OBSTACLES

7.1 Case one: Multiple static obstacles

The first case will be in an environment with four static obstacles where two of
them are placed in the direct path of the vehicle, such that the vehicle will have
to perform obstacle avoidance and ignore the two others. The simulation will be
run with the vehicle simulator described in Chapter 6, with the NSB controller
and the Dubins method. The path of the vehicle is plotted in the xy-plane with
obstacles position and radius according to Table 7.1. The start and target positions
are ηstart = [1, 1, 0] and ηtarget = [600, 80,−]. The goals of these simulations are
to test:

• If the vehicle manage to avoid all obstacles and safely reach the target.

• Compare the path of the vehicle with the NSB controller against the Dubins
method for collision avoidance.

• Compare the average computational time of the NBS controller against the
Dubins method.

Table 7.2 shows the average runtime for both methods, the steering law and the
simulation time before the vehicle reached the target. The internal dynamic for the
vehicle in these simulations are given Figure A.1(NSB controller) and Figure A.2
(Dubins) in appendix A.

Table 7.1: Obstacle list from case one

x-position y-position radius
140 30 45
280 -18 35
420 72 90
200 150 40

Table 7.2: Runtime results from case one: Multiple static obstacles

Methods Collision avoidance Steering law Simulation time
NSB controller 0.724× 10−5 s 0.132× 10−5 s 59.2 s
Dubins 0.298× 10−5 s 0.298× 10−5 s 56.7 s

Simulation results with the NSB controller

Figure 7.1 shows the path of the vehicle in the xy-plane with the NSB controller at
6, 15, 30.2, 37 and 59.3 seconds in simulation time for static obstacles. The first

7.1. CASE ONE: MULTIPLE STATIC OBSTACLES 67

figure(a) shows all the obstacles between the vehicles start position and the target.
Figure 7.1(b) show the vehicle passing the first obstacle anticlockwise. The arrows
in Figure 7.1(b)-(c) V 1, V 2.2 and Vd represent the velocities from task 1, 2.2 and
the sum of V 1 and V 2.2 projected into the null space of task 1. In (d) it can be
seen that the vehicle has passed the second obstacle clockwise and the threat is
avoided, thus Vd is pointing towards the target. In Figure 7.1(e) the vehicle has
reached the target without colliding with any of the obstacles and it shows the
complete path of the vehicle.

Simulation results with Dubins method for collision avoidance

Figure 7.2 shows the simulation of case one multiple static obstacles with the
Dubins method for collision avoidance at 5.9, 14.0, 20, 29, 35 and 56.7 seconds
in simulation time. The first figure(a) shows all the obstacles between the vehicles
start position and the target. Figure(b)-(c) shows the vehicle passing the first
obstacle anticlockwise and in (d)-(e) the vehicle pass the second obstacle clockwise.
The black stars in Figure 7.2(b) and (d) are the next waypoints that the vehicle is
aiming towards. The complete path can be seen in Figure 7.2(f) when the vehicle
has reached the target.

68 7.1. CASE ONE: MULTIPLE STATIC OBSTACLES

0 100 200 300
−100

−50

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 6.00s

Target

(a) The simulation at time 6 seconds, the
vehicle has not detected the obstacle and is
heading towards the target

0 50 100 150

−50

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 15.00s

Vd

V1

V2.2

(b) The simulation at time 15 seconds,
the NSB controller has activated tasks
1 and 2.2 and is passing the obstacle
anticlockwise

100 150 200 250

−50

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 30.20s

Vd

V1
V2.2

(c) The simulation at time 30.2 sec-
onds, the NSB controller has activated
tasks 1 and 2.2 and is passing the ob-
stacle clockwise

150 200 250

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 37.00s

Vd

(d) The simulation at time 37 seconds,
the collision detection method has de-
activated the collision avoidance and
the vehicle is heading towards the tar-
get

0 100 200 300
−100

−50

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 59.20s

Target

(e) The simulation at time 59.2 seconds, the
vehicle has reached the target

Figure 7.1: Simulation case one: static obstacle with the NSB controller, plotted
in the xy-plane

7.1. CASE ONE: MULTIPLE STATIC OBSTACLES 69

0 100 200 300 400

−100

0

100

200

x [m]

y
 [
m

]

Dubins method at time: 5.90s

Target

(a) The simulation at time 5.9 seconds, the
vehicle has not detected the obstacle and is
heading towards the target

0 50 100 150

−50

0

50

100

x [m]

y
 [
m

]

Dubins method at time: 14.00s

(b) The simulation at time 14 seconds,
the vehicle has detected the obstacle
and is passing the obstacle anticlockwise

50 100 150 200

−50

0

50

100

x [m]

y
 [
m

]

Dubins method at time: 20.00s

(c) The simulation at time 20 seconds,
the vehicle is passing the first obstacle

100 150 200 250

−50

0

50

100

x [m]

y
 [
m

]
Dubins method at time: 29.00s

(d) The simulation at time 29 seconds,
the vehicle is heading towards the sec-
onds obstacle

100 150 200 250

0

50

100

150

x [m]

y
 [
m

]

Dubins method at time: 35.00s

(e) The simulation at time 35 seconds,
the vehicle has reached the first way-
point on the obstacle circle

0 100 200 300 400

−100

0

100

200

x [m]

y
 [
m

]

Dubins method at time: 56.70s

Target

(f) The simulation at time 56.7 seconds, the
vehicle has reached the target

Figure 7.2: Simulation case one: static obstacle with the Dubins method for
collision avoidance, plotted in the xy-plane

70
7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT

AND RIGHT

7.2 Case two: Dynamic obstacles approaching from
left and right

Case two: In these simulations there will be one obstacle approaching the vehicle
from the left and one obstacle approaching the vehicle from the right. Both of
them have been constructed such that the vehicle will have to perform collision
avoidance in order to safely reach the target. The starting position, safety radius,
heading and speed for the obstacles are given in Table 7.3. Table 7.4 shows the
average runtime for both methods, the steering law and the simulation time before
the vehicle reach the target. The start and target positions are ηstart = [5, 7, 1]
and ηtarget = [180, 60,−]. The goals of these simulations are to

• Test the collision avoidance methods with dynamic obstacles approaching the
vehicle from the left and right.

• Test if the collision avoidance systems manage to follow the correct path
around the obstacles.

• Compare the average runtime of the collision avoidance methods and the
internal dynamic of the vehicle with the two collision avoidance methods.

Table 7.3: Obstacle list from case two

Starting position [x , y] radius speed heading
[200 , 200] 30 2.55 −168.7 degrees
[−30 , 140] 20 5 126 degrees

Table 7.4: Runtime results form case two

Methods Collision avoidance Steering law Simulation time
NSB controller 0.575× 10−5 s 0.24× 10−5 s 52 s
Dubins 0.468× 10−5 s 0.26× 10−5 s 49.9 s

Simulation results with the NSB controller

Figure 7.3 shows the path of the vehicle in the xy-plane for the NSB controller
at 8, 15, 27.4 and 52 seconds in simulation time. It can be seen that the vehicle
avoided the first obstacle clockwise and the second obstacle anticlockwise. Fig-
ure 7.3(b) includes the desired velocity vector Vd and it can be seen that it points
towards a point on the obstacle circle such that the vehicle will avoid the obstacle
clockwise. Figure 7.3(d) shows the vehicle passing the first obstacle inside of ac-
tivation circle two with the velocity vectors V 1 and V 2.1 for the tasks 1 and 2.1.

7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT
AND RIGHT 71

The complete path of the vehicle is shown in Figure 7.3(f) where the blue dotted
line is the path of the vehicle and the red dotted lines are the paths of the obstacles.

Figure 7.4 shows the internal dynamic (vehicle speed, turning rate steering com-
mand, vehicle heading and the rudder angle) for the vehicle.

Simulation results with the Dubins method for collision avoidance

Figure 7.5 shows the path of the vehicle in the xy-plane with the Dubins method
for collision avoidance at 8, 12, 18, 28, 39 and 49.9 seconds in simulation time. It
can be seen that the vehicle avoid the first obstacle clockwise and the second obsta-
cle anticlockwise before reaching the target. The black stars in Figure 7.5 are the
next waypoints, which the vehicle aims towards and the target. The blue dotted
line is the path of the vehicle and the red dotted lines are the path for the obstacles.

Figure 7.6 shows the internal dynamic (vehicle speed, turning rate steering com-
mand, vehicle heading and the rudder angle) for the vehicle.

72
7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT

AND RIGHT

−100 0 100 200 300

0

100

200

x [m]

y
 [
m

]

NSB controller at time: 8.00s

Target

(a) The simulation at time 8 seconds. The
vehicle has detected a threat and activated
the collision avoidance

−50 0 50 100

−50

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 8.00s

Vd

(b) The Figure 7.3(a) zoomed in. The desired
velocity νd points at a point on the obstacle
circle such the vehicle will pass clockwise

−100 0 100 200 300

0

100

200

x [m]

y
 [
m

]

NSB controller at time: 15.00s

(c) The simulation at time 15 seconds. The
vehicle is passing the obstacle clockwise

−50 0 50 100

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 15.00s

Vd

V1
V2.1

(d) The simulation at time 15 seconds,
both tasks 1 and 2.1 is active and the
two velocity vectors from the tasks are
shown as V1 and V2.1

−100 0 100 200 300

0

100

200

x [m]

y
 [
m

]

NSB controller at time: 27.40s

Target

(e) The simulation at time 27.4 seconds. The
vehicle has passed the first obstacle and de-
tected the next obstacle

−100 0 100 200 300

0

100

200

x [m]

y
 [
m

]

NSB controller at time: 52.00s

Target

(f) The simulation at time 52 seconds. The
vehicle has passed the second anticlockwise
and reached the target

Figure 7.3: Simulation case two with the NSB controller: The vehicle is avoiding
two obstacles approaching from the left and right by passing the obstacles

clockwise and anticlockwise

7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT
AND RIGHT 73

0 20 40 60
1

2

3

4

5

6

7
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.3

0 20 40 60
−0.4

−0.2

0

0.2

0.4
Turning rate r, for the vehicle

(b) The turning rate for the simulation in Fig-
ure 7.3

0 20 40 60
−0.5

0

0.5

1

1.5

2

2.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the NSB controller for the sim-
ulation in Figure 7.3

0 20 40 60
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle for the
simulation in Figure 7.3

Figure 7.4: The internal dynamic for the vehicle in the simulation shown in
Figure 7.3

74
7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT

AND RIGHT

0 100 200
0

50

100

150

200

250

x [m]

y
 [
m

]

Dubins method at time: 8.00s
Target

(a) The simulation at time 8 seconds. The
vehicle has detected an obstacle and has cal-
culated the tangent line to the obstacle and
starts to turn towards it in order to avoid
the obstacle.

−50 0 50 100

0

50

100

150

x [m]

y
 [
m

]

Dubins method at time: 12.00s

(b) The simulation at time 12 seconds,
the vehicle is approaching the obstacle.

0 100 200
0

50

100

150

200

250

x [m]

y
 [
m

]

Dubins method at time: 18.00s

(c) The simulation at time 18 seconds. The
vehicle has passed the first obstacle and has
not discovered the seconds obstacle.

0 50 100 150

50

100

150

200

x [m]

y
 [
m

]

Dubins method at time: 28.00s

(d) The simulation at time 28 seconds
the vehicle has discovered the second
obstacle and is heading for the first way-
point on the obstacle circle.

0 100 200
0

50

100

150

200

250

x [m]

y
 [
m

]

Dubins method at time: 39.00s

(e) The simulation at time 39 seconds. The
vehicle has passed the second obstacle.

0 100 200
0

50

100

150

200

250

x [m]

y
 [
m

]

Dubins method at time: 49.90s
Target

(f) The simulation at time 49.9 seconds.
The vehicle has reached the target and the
simulation is finished.

Figure 7.5: Simulation case two with the Dubins method: the vehicle are avoiding
the first obstacle clockwise and the second anticlockwise.

7.2. CASE TWO: DYNAMIC OBSTACLES APPROACHING FROM LEFT
AND RIGHT 75

0 10 20 30 40 50
0

2

4

6

8
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.5

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4
Turning rate r, for the vehicle

(b) The turning rate for the simulation in Fig-
ure 7.5

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the NSB controller for the
simulation in Figure 7.3

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.5

Figure 7.6: The internal dynamic for the vehicle in the simulation shown in
Figure 7.5

76
7.3. CASE THREE: DYNAMIC OBSTACLE AVOIDANCE IN A HEADS-ON

SITUATION

7.3 Case three: Dynamic obstacle avoidance in a
heads-on situation

Case three will simulate a heads-on situation, where the vehicle and the obstacle
move towards each other heads-on. The vehicle will move towards the target and
the obstacle will start at the target and move towards the vehicles start position.
The start position, safety radius, heading and speed for the obstacle are given in
table 7.5. Table 7.6 shows the average runtime for both methods, the steering
law and the simulation time before the vehicle reached the target. The start and
target positions are ηstart = [5, 7, 1] and ηtarget = [150, 200,−]. The goals of these
simulations are:

• Test the collision avoidance methods in a heads-on situation and to test if
the vehicle chooses the right direction around the obstacle.

• Compare the average runtime of the collision avoidance methods and the path
of the vehicle.

The internal dynamic for the vehicle in this simulations are given Figure A.3(NSB
controller) and Figure A.4 (Dubins) in appendix A.

Table 7.5: Obstacle list from case three

Starting position [x , y] radius speed heading
[150 , 200] 20 7.8 −130

Table 7.6: Runtime results form case three

Methods Collision avoidance Steering law Simulations time
NSB controller 0.526× 10−5 s 0.263× 10−5 39.5 s
Dubins 0.520× 10−5 s 0.292× 10−5 40 s

Simulation results with the NSB controller

Figure 7.7 shows the path of the vehicle in the xy-plane for the NSB controller
at 12.2, 14, 18, 21.7 and 39.6 seconds in simulation time. In (b) the collision
avoidance system is activated and it can be seen that vd points away from the
obstacle circle. In (c) both task 1 and 2.1 are active and the three arrows V 1, V 2.1
and Vd are the velocity vectors from task one, task 2.1 projected into the null space
of task 1 and the desired velocity, which is the sum of V 1 and V 2.1 projected into
the null-space of task 1. (d)-(e) shows when the threat is avoided and the vehicle
starts heading towards the target again. The complete path can be seen in (f)

7.3. CASE THREE: DYNAMIC OBSTACLE AVOIDANCE IN A HEADS-ON
SITUATION 77

where the blue line is the path of the vehicle and the red is the path of the obstacle
with the red safety radius.

Simulation results with the Dubins method for collision avoidance

Figure 7.8 shows the path of the vehicle in the xy-plane for the Dubins method
at 14, 16, 18.2, 25 and 40.1 seconds in simulation time. The black starts with
the black line from the vehicle is the next waypoint, which the vehicle is aiming
towards. In (a)-(b) the vehicle aims at the first waypoint outside of the stander
obstacle circle and in (c) the vehicle is heading towards the last waypoint outside of
the obstacle circle. The threat is avoided in (d) and the vehicle is heading towards
the target in (e), the complete path of the vehicle is shown in (f).

78
7.3. CASE THREE: DYNAMIC OBSTACLE AVOIDANCE IN A HEADS-ON

SITUATION

−100 0 100 200

0

50

100

150

200

x [m]

y
 [
m

]

NSB controller at time: 12.20s

Target

(a) The vehicle position inside of activation
circle one at time 12.2 seconds. The colli-
sion detection method has detected a colli-
sion threat and activates the NSB controller
to go anticlockwise with increased safety
circle

−50 0 50 100

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 12.20s

Vd

(b) The vehicle position at time 12.2
seconds zoomed in, where vd points
away from the obstacle

0 50 100

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 14.00s

Vd
V1

V2.1

(c) The vehicle position inside of acti-
vation circle two at time 14 seconds, It
can be seen from the velocity vectors
that both task 1 and 2.1 are active

0 50 100 150

0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 18.00s

Vd

(d) The vehicle position at time 18
seconds zoomed in and the threat is
avoided

50 100 150
0

50

100

150

x [m]

y
 [
m

]

NSB controller at time: 21.70s

Vd

(e) The vehicle position at time 21.7
and the vehicle is heading towards the
target

−100 0 100 200

0

50

100

150

200

x [m]

y
 [
m

]

NSB controller at time: 39.50s

Target

(f) The vehicle position at time 39.5 sec-
onds. The simulation is finished and the
vehicle has reached the target

Figure 7.7: Simulation case three with the NSB controller: the vehicle
approaching an obstacle heads-on and avoiding it anticlockwise

7.3. CASE THREE: DYNAMIC OBSTACLE AVOIDANCE IN A HEADS-ON
SITUATION 79

0 100 200
0

50

100

150

200

x [m]

y
 [
m

]

Dubins method at time: 14.00s

Target

(a) The vehicle position at time 14 seconds.
The collision detection has detected a colli-
sion threat and activate the collision avoid-
ance method to go anticlockwise with in-
creased safety circle

0 50 100

0

50

100

x [m]

y
 [
m

]

Dubins method at time: 14.00s

(b) The vehicle position at time 14 seconds
zoomed in

0 50 100
0

50

100

x [m]

y
 [
m

]

Dubins method at time: 16.00s

(c) The vehicle position at time 16 sec-
onds. The vehicle heading towards the
last waypoint on the obstacle before the
target

20 40 60 80 100120

20

40

60

80

100

120

x [m]

y
 [
m

]

Dubins method at time: 18.20s

(d) The vehicle position at time 18.2
seconds. The obstacle in no longer a
threat and the vehicle makes a waypoint
at its current position and the next at
the target

0 100 200
0

50

100

150

200

x [m]

y
 [
m

]

Dubins method at time: 25.00s

(e) The vehicle position at time 25 seconds.
The vehicle is on the path to the target

0 100 200
0

50

100

150

200

x [m]

y
 [
m

]

Dubins method at time: 40.00s

Target

(f) The vehicle position at time 40 seconds.
The simulation is finished and the vehicle
has managed to reached the target without
colliding with the obstacle

Figure 7.8: Simulation case three with the Dubins method: the vehicle
approaching an obstacle heads-on and avoiding it anticlockwise

80 7.4. CASE FOUR: DYNAMIC OBSTACLE AVOIDANCE FORM BEHIND

7.4 Case four: Dynamic obstacle avoidance form
behind

Case four will simulate the vehicle approaching an obstacle from behind and pass
it with the collision avoidance methods. After 40 seconds into the simulations the
obstacle will increase the speed by 4.5 times its initial speed and approach the
vehicle from behind, forcing the vehicle to perform obstacle avoidance again before
reaching the target. The starting position, safety radius, heading and speed for the
obstacles are given in table 7.5. The average runtime for both methods, the steering
law and the simulation time before the vehicle reached the target are given in Table
7.8. The start and target positions are ηstart = [5, 7, 0] and ηtarget = [400, 500,−].
The goals of these simulations are to

• Test the collision avoidance methods when the vehicle approaches the obstacle
from behind and when the obstacle approaches the vehicle from behind.

• Compare the average runtime of the collision avoidance methods and the path
of the vehicle.

The internal dynamics for the vehicle in these simulations are given Figure A.5(
NSB controller) and Figure A.6 (Dubins) in appendix A.

Table 7.7: Obstacle list from case four

Starting position [x , y] radius speed heading
[50 , 62] 30 2 51.3 degrees

Table 7.8: Runtime results form case four

Methods Collision avoidance Steering law Simulation time
NSB controller 0.637× 10−5 s 0.377× 10−5 s 103.6 s
Dubins 0.338× 10−5 s 0.27× 10−5 s 99.9 s

Simulation results with the NSB controller

Figure 7.9 shows the path of the vehicle in the xy-plane with the NSB controller
at 5, 8.9, 12, 47, 55 and 103.8 seconds in simulation time. The first subfigure (a)
shows the vehicle right after start when the vehicle approaches the obstacle from
behind and (b)-(c) shows the vehicle passing the obstacle the first time anticlock-
wise. Subfigure (d)-(e) shows the obstacle increasing the speed and approaching
the vehicle, such that the vehicle has to perform collision avoidance again in order

7.4. CASE FOUR: DYNAMIC OBSTACLE AVOIDANCE FORM BEHIND 81

to let the obstacle pass clockwise. The complete path for the vehicle and the ob-
stacle are given in Figure 7.9(f), where the path for the vehicle is plotted as the
blue dotted line and the path for the obstacle is plotted as the red dotted line with
the red safety circle.

Simulation results with the Dubins method for collision avoidance

Figure 7.10 shows the path of the vehicle in the xy-plane with the Dubins method
for collision avoidance at 5, 8, 45, 60, 65 and 99.9 seconds in simulation time. In
Figure 7.9(a)-(b) it can be seen the vehicle approaching the obstacle from behind
and passing it anticlockwise and in (c)-(d) the obstacle is approaching the vehicle
and the vehicle avoid the obstacle by moving out to the left. After 65 seconds
in Figure 7.9(e) the threat is avoided and the vehicle starts moving on the line
from the point where the threat was avoided first to the target. The vehicle has
reached the target after 99.9 seconds and the complete path of the vehicle is shown
in Figure 7.9(f).

82 7.4. CASE FOUR: DYNAMIC OBSTACLE AVOIDANCE FORM BEHIND

0 200 400

0

100

200

300

400

500

x [m]

y
 [
m

]
NSB controller at time: 5.00s

Target

(a) The simulation at time 5 seconds, the
vehicle has detected the obstacle

−50 0 50 100

−50

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 8.90s

Vd

(b) The simulation at time 8.9 sec-
onds, the vehicle is inside of activation
circle one and is passing the obstacle
anticlockwise

0 50 100
−50

0

50

100

x [m]

y
 [
m

]

NSB controller at time: 12.00s

Vd
V1

V2.1

(c) The simulation at time 12 seconds,
the vehicle is inside of activation circle
two and the tasks obstacle avoidance
and traverse obstacle are active

150 200 250

150

200

250

300

x [m]

y
 [
m

]

NSB controller at time: 47.00s

Vd

(d) The simulation at time 47 seconds,
the obstacle has speeded up and ap-
proaching the vehicle from the behind
and the vehicle has started obstacle
avoidance

100 150 200 250

200

250

300

350

x [m]

y
 [
m

]

NSB controller at time: 55.00s

Vd

V1
V2.1

(e) The simulation at time 55 seconds,
the vehicle is inside of activate circle
two and the tasks obstacle avoidance
and traverse obstacle are active

0 200 400

0

100

200

300

400

500

x [m]

y
 [
m

]

NSB controller at time: 103.60s

Target

(f) The simulation at time 103.6, the vehicle
has reached the target

Figure 7.9: Simulation of the NSB controller when vehicle approaches the
obstacle from behind and when the obstacle speeds up and the obstacle approaches

the vehicle from behind.

7.4. CASE FOUR: DYNAMIC OBSTACLE AVOIDANCE FORM BEHIND 83

0 200 400
0

100

200

300

400

500

x [m]

y
 [
m

]

Dubins method at time: 5.00s

Target

(a) The vehicle position at time 5 seconds
approaching the obstacle from behind

−50 0 50 100

−50

0

50

100

x [m]

y
 [
m

]

Dubins method at time: 8.00s

(b) The simulation at time 8 seconds,
the vehicle is heading to the first way-
point on the obstacle circle in order to
pass the obstacle anticlockwise

100 150 200 250

150

200

250

300

x [m]

y
 [
m

]

Dubins method at time: 45.00s

(c) The simulation at time 45 seconds
the vehicle has passed the obstacle, but
the obstacle is speeding up and the ve-
hicle has to perform obstacle avoidance
again

100 150 200 250

250

300

350

400

x [m]

y
 [
m

]
Dubins method at time: 60.00s

(d) The simulation at time 55 the vehi-
cle heading to the first waypoint on the
virtule obstacle circle in order to move
out of the path of the obstacle

150 200 250 300
250

300

350

400

x [m]

y
 [
m

]

Dubins method at time: 65.00s

(e) The simulation at time 65, the vehi-
cle has managed to get out of the obsta-
cles path and is heading to the target

0 200 400
0

100

200

300

400

500

x [m]

y
 [
m

]

Dubins method at time: 99.90s

Target

(f) The simulation at time 99.9, the vehicle
has reached the target

Figure 7.10: Simulation of Dubins method for collision avoidance when the
vehicle approaches the obstacle from behind and then the obstacle speeds up and

the obstacle approaches the vehicle from behind.

84 7.5. DISCUSSION

7.5 Discussion

In this chapter four simulation cases have been presented with the NSB controller
and the Dubins method for collision avoidance: One case with static obstacles and
three cases with dynamic obstacles. In this section there will be a discussion about
the results from these cases.

From the simulation cases it was found the average runtime for the methods and
the steering laws, with the performance tool in Simulink. It was discovered that
using this performance tool to find the average times was very unreliable since
running the same simulation twice could give two difference results. Also for the
steering law, which performs exactly the same calculations for all the simulations
vary from (0.26 − 0.377)10−5 seconds for the LOS and (0.13 − 0.26)10−5 seconds
for the steering command from the NSB controller. However in all the simulations
the Dubins method for collision avoidance was faster than the NSB controller with
some margin, but the LOS steering law was slower. Thus it can be concluded that
the Dubins method is less computational intensive (excluding the steering law) than
the NSB controller even considering the unreliable performance tool in Simulink.
If the steering law is included the methods becomes more or less equal.

7.5.1 Case one: Static obstacles

The first case study where the vehicle had to avoid several static obstacles is shown
in Figure 7.1 for the NSB controller and in Figure 7.2 for the Dubins method. It can
be seen from both simulations that the vehicle avoids the first obstacle by passing
it anticlockwise and the second clockwise, while ignoring the two other obstacles,
which was not a threat. In Figure 7.1(b)-(c) it is shown the vehicle avoiding the
first obstacle anticlockwise and the second clockwise, which is plotted with the ve-
locity vectors V1 and V2.2 from the two tasks obstacle avoidance and go to target.
It can be seen that task 2.1 Traverse obstacle is not activated since the vehicle is
only avoiding static obstacle. The sum of the two tasks generates a desired velocity
Vd, which points away from the obstacles, thus avoiding the collision. It should be
noted that the velocity vector from task 2.2 does not point at the target when it
is projected into the null-space of task 1.

The path of the vehicle for both simulations are plotted in Figure 7.11 with the
four static obstacles. It can be seen that the vehicle with the Dubins method moves
much closer to the obstacles, while the vehicle with the NSB controller moves fur-
ther away from the obstacles in a s-shaped curve. Considering that the vehicle
moves with constant speed, which is equal in both simulations and the vehicle
with the Dubins used less time to reach the target, thus the path with the Dubins

7.5. DISCUSSION 85

method is shortest.

From Table 7.4 it can be seen that the Dubins method for collision avoidance
had an average runtime 41% faster than the NSB controller. It should be noted
that the Dubins method does not generate new waypoints so often for static ob-
stacles, while the NSB controller run continuously, which can account for most of
the difference.

50 100 150 200 250 300

−100

−50

0

50

100

150

200

x [m]

y
 [
m

]

The path of the vehicle with both methods

NSB

Dubins

Figure 7.11: Case one with static obstacles with the path of the vehicle with both
collision avoidance methods plotted as the blue and black lines and the obstacles

plotted as the red circles

7.5.2 Obstacles from left and right

The second case study, which considers dynamic obstacles approaching the vehicle
from the left and right is shown in Figure 7.3 for the NSB controller and Figure 7.5
for the Dubins method. Both of the methods passed the first obstacle clockwise
and the second anticlockwise. The velocities for the obstacles rotated into the
BODY frame of the vehicle are in the fourth quadrant for the first obstacle and
the second quadrant for the second obstacle. Thus both of the methods have be-
haved according to the collision avoidance strategies described in Chapter 5 and
successfully reached the target without colliding with any obstacles. It can be seen
in the simulations that passing the obstacles from behind was safest. Considering
that, an increase or decrease in speed for the obstacles would not have caused any
problems for the vehicle.

86 7.5. DISCUSSION

The path of the vehicle for both simulations are shown in Figure 7.12. It can be
seen that the vehicle with Dubins method makes a harder turn after the first obsta-
cle, while the vehicle with the NSB controller moves in a slower circler path around.
From Table 7.4 it can be seen that the vehicle with the NSB controller uses more
time to reach the target than with the Dubinds method. The larger turning circle
for the NSB controller around the first obstacle could account for this. It should
be noted that the NSB controller can be tuned differently and achieve different be-
haviour and turn faster. However νd depend on both the tuning parameter for the
tasks and the safety radius for the obstacle. Thus one set of parameter could work
good for on set of obstacles, but bad for another set. The tuning parameter used
in this thesis have been found to fit obstacles with a safety radius from 20-50 meter.

The internal dynamic in the simulations are plotted in Figure 7.4 for the vehi-
cle with the NSB controller and Figure 7.6 for the vehicle with the Dubins method.
It can be seen that the speed for both simulations are alike, this is because the
vehicle in both simulations have used a constant speed value (7 m/s) and only
the heading have been used to avoid collisions. The steering command from the
collision avoidance methods and the vehicles heading are plotted in the figurers (c).
It can be seen that the steering commands for both methods haves a lot of jumps.
This is a consequence of the methods switching between different states, the NSB
controller have the activations circles and the Dubins methods have the waypoints
that it switching between, but the vehicle manages to follow the steering command
relatively well. Even considering the saturations in the rudder, which is shown in
the figures (d).

7.5.3 Heads-on

The third case, where the obstacle and the vehicle is on a heads-on collision course
are shown in Figure 7.7 for the NSB controller and Figure 7.8 for the Dubins
method. From Figure 7.7(b)-(c) it can be seen that the desired velocity vector
from the NSB controller steer the vehicle away from the obstacle and in (d) the
threat is avoided. In the simulation with the NSB controller the safety circle was
increased by a factor of two inside of activation circle one, but not inside of acti-
vation circle two where the obstacle avoidance task was active. It was simulated
and tested to have an increased safety circle inside of activation circle two also,
but the vehicle entered the increased safety circle, which resulted in oscillation in
vd. This was also a problem with the Dubins method and in Figure 7.8(c) it can
be seen that the vehicle is inside of the increased obstacle circle, since the black
star, which is the next waypoint is on the wrong side of the vehicle. It should
be noted that only increasing the safety circle around the obstacles in a heads-on
situation might not be the best idea, since both of the methods failed to keeps the

7.5. DISCUSSION 87

0 50 100 150

50

100

150

200

x [m]

y
 [
m

]

The path of the vehicle with both methods

NSB

Dubins

Figure 7.12: The path of the vehicle with both the collision avoidance methods in
case two with dynamic obstacle approaching from the left and right

vehicle outside of the increased obstacle circle. If the speed to the obstacle had
been increased, the methods might even fail to keep the vehicle outside of the orig-
inal safety circle. A other approach could in these cases be to estimate where the
obstacle and the vehicle would collide and set this point as an obstacle and used it
as input to the collision avoidance methods. Or estimated the point between the
collision point and the current location of the obstacle as center of a new obstacle
with a radius equal the distance from the new center to the obstacle plus the old
safety radius. This would have resulted in a new obstacle that overlapped the old
obstacle and the collision point. However this shows the importance of considering
the dynamic of the vehicle and also the dynamic of the obstacles when designing
a collision avoidance system. The increased safety circle has saved us this time,
but it cannot be guaranteed for all cases. In Figure 7.7(d) the threat is avoided for
the NSB controller and the vehicle moves towards the target. The same happen in
Figure 7.8(e) for the vehicle with the Dubins method.

The paths of the vehicle with the two methods are plotted in Figure 7.13. It
can be seen that the paths are very alike before the obstacle, but around the obsta-
cle the NSB takes the vehicle further away from the obstacle and after the obstacle
the Dubins method as shown in Figure 7.8(e) moves on the line generated by way-
points from the vehicles position after the threat was avoided and the target while
the NSB only aiming towards the target.

88 7.5. DISCUSSION

0 50 100 150

20

40

60

80

100

120

140

160

180

x [m]

y
 [
m

]

The path of the vehicle with both methods

NSB

Dubins

Figure 7.13: The path of the vehicle with both the collision avoidance methods in
case three with dynamic obstacle approaching the vehicle heads-on

7.5.4 Approach form behind

Case four, where the vehicle approaches the obstacle from behind and passes it for
then having to perform obstacle avoidance again when the obstacle increases the
speed, is shown in Figure 7.9 for the NSB controller and Figure 7.10 for the Dubins
method. It can be seen from Figure 7.9(a)-(c) and Figure 7.10(a)-(b) that the vehi-
cle in both simulations successfully manage to avoid the obstacle anticlockwise the
first time without any problems. After 40 seconds into the simulation the obstacle
increase the speed and the vehicle has to perform obstacle avoidance again. This
is shown in Figure 7.9(d)-(e) and Figure 7.10(c)-(e) for the NSB controller and the
Dubins method respectively. For the NSB controller in Figure 7.9(d)-(e) it can be
seen that the vehicle starts turning slowly to the left as it should according to the
collision avoidance strategy described in Chapter 5. However when the obstacle
gets closer to the vehicle, it starts turning very hard to the left and the heading is
almost 90 degrees of with respect the target. Thus the vehicle has to turn more
after the threat is avoided. The vehicle with the Dubins method for the same
situation is slightly different, the turning direction is the same as with the NSB
method, but the vehicle keeps more or less same course until the threat is avoided.
This causes the vehicle to turn less when the vehicle gets back on the path to the
target in comparison to the NSB controller.

The decision to avoid the obstacle clockwise if the obstacle approaches the ve-
hicle from behind can be argued. It is seen from the simulations that the vehicle

7.5. DISCUSSION 89

crossing in-front of the obstacle, thus making the velocity vector to the obstacle
and the vehicle to cross. This can lead to a collision if the vehicle does not have
time to cross over before the obstacle has reached the vehicle. It might be smarter
to let the vehicle decide how to pass the obstacle based on, which direction the
two velocity vector does not collide. In this case it would be anticlockwise and the
vehicle would have moved out to the right, but if the obstacle also had a collision
avoidance system and behaved in the same way that the vehicle when passing the
obstacle the first time. It could have resulted in both the vehicle and the obstacle
moving out to the right until they had collided into each other.

The Figure 7.14 shows the two methods plotted in the xy plane, the vehicle pass
the obstacle the first time at position [80, 45] and the second time at [200, 200].
It can be seen that the two methods behave very alike around the obstacle the
first time, but not the second time. Here the NSB controller makes a large s-turn
where the Dubins method cross over and goes to the target. It can be seen from
the simulations that the vehicle with the NSB controller used 103.6 second on the
simulation and with the Dubins method 99.9 seconds and this is most likely because
of the passing the seconds obstacle.

0 100 200 300 400

50

100

150

200

250

300

350

400

450

x [m]

y
 [
m

]

The path of the vehicle with both methods

NSB

Dubins

Figure 7.14: The path of the vehicle with both the collision avoidance methods in
case four with dynamic obstacle approaching from behind

90 7.6. CONCLUSIONS FROM THE SIMULATIONS

7.6 Conclusions from the simulations

A collision avoidance system using both the NSB controller and the Dubins method
on a vehicle for collision avoidance have been studied with four simulations cases in
this chapter. The methods worked very well for both static and dynamic obstacles
and the vehicle has successfully managed to reached the target for all for cases.
It has been seen that the Dubins method described in Chapter 5 was faster then
the NSB method considering the average calculation time in all the simulations
and the vehicle used less time to reach the target in all cases except in the heads-
on simulations. Both of the methods resulted in jumps for the steering command,
which resulted in saturation in the rudder for the vehicle when they jumped between
different states, but the vehicle manage to follow the steering command relatively
well.

Chapter 8

Object tracking and
estimation of velocity and
bearing to obstacles

In Chapter 3 to 6 of this thesis, it was assumed that the collision avoidance system
received filtered and perfect information about the obstacles position, bearing and
velocity. However this assumption have to be verified. In this chapter methods for
object tracking and estimation of bearing and velocity using position data from
a simulated radar will be discussed. Then there will be a simulation case to test
the methods using a Kalman filter. Figure 8.1 illustrates the collision avoidance
system where the focus is on the radar and estimation without the bypass.

8.1 Object-tracking equipment

One of the must common equipment for object-tracking is the radar. The radar
will give a distance and an angle between the object and the vehicle as illustrated
in Figure 8.2. The figure shows the vehicle and the object as two particles with a
distance d between the vehicle and the object and the angle β to this vector.

Given a distance d and the angle β to the length from the vehicle and to the object
it is possible to calculated the position function f(β, d) to the object

f(β, d) =

[
xno
yno

]
(8.1)

91

92 8.1. OBJECT-TRACKING EQUIPMENT

Controller

Vehicle

law Avoidance Detection

Estimator

Radar

Model

Collision CollisionSteering

Estimation of

bearing and velocity

Low-level

Figure 8.1: Model of the system, where the focus is on estimation of velocity and
bearing using the position data from the radar

8.2. TARGET TRACKING METHODS 93

and use the position measured in a filter to estimate the velocity and the bearing
to the object. From geometric equations we have

x2 + y2 = d2 (8.2)

tan(β) =
y

x
(8.3)

where x = xno −xnv and y = yno − ynv . Inserting (8.2) in (8.3) and solving for xno and
yno

xno = ±

√
d2

tan(β)2 + 1
+ xnv (8.4)

yno = ±

√
tan(β)2d2

tan(β)2 + 1
+ ynv (8.5)

Which gives the x, y position to the obstacle in the xy-plane. The bearing θo to
the object can be found by two or more position measurements

θo = atan2(yno (k)− yno (k − 1), xno (k)− xno (k − 1)) (8.6)

where xno (k) and yno (k) is the position of the object in the xy-plane at time k. Or
by using the velocity in the NED frame

θo = atan2(vno , u
n
o) (8.7)

where vno is the y-component of the velocity and uno is the x-component of the
velocity in the NED frame. In the rest of this thesis it is assumed that f(β, d) is
measured and will be used directly into the filters with a sampling time of 10 Hz
to estimate the velocity and bearing of the objects.

Pn
o (k) := f(β, d) at 10Hz

8.2 Target tracking methods

For object-tracking of an unknown object it is unlikely to have a perfect model
of the object since parameters are unknown. Two models have been studied for
estimation of velocity and bearing, one using the NED frame and one using the
BODY frame. In NED it is assumed that the Coriolis effect can be neglected and
that the NED frame is equal the inertial frame (flat earth navigation), such that

94 8.2. TARGET TRACKING METHODS

β

Vobstacle

Pobject(x, y)

Pvehicle(x, y)
Vvehicle

d
istan

ce

Figure 8.2: The figure show the distance and the bearing to a obstacle, which can
be extracted from a radar measurement

Netwons laws can be applied. This assumption can be justified for small distance
between the vehicle and the object and considering that the range of a radar is not
that long, the assumption is reasonable.

Newtons second law anM =
∑
F have been used to estimate the position and

velocity in the NED frame. Since both the mass M and the force
∑
F is unknown,

the
∑
F/M term is replaced with a bias term B′ and

Ḃ′T +B′ = 0 (8.8)

where T is a tuning parameter. The model in the NED frame used to estimated
the velocity becomes:

η̇no = νno (8.9)

ν̇no = B′ (8.10)

TnḂ′ +B′ = 0 (8.11)

where ηno = [xno , y
n
o]T is the x and y position in the NED frame and νno = [ẋno , ẏ

n
o]T

is the velocity in the NED frame. Tn = diag([T1, T2]) is tuning parameter

T1 = T2 = 10

and B′ = [B1, B2]T is the bias term, which replace the
∑
F/M in x and y

direction. It has been tested with other tuning parameter (T1 and T2), but it has
been found that these values work best for tracking the object presented in Section
8.4. The system can be written on the linear state space form

ẋno = Axno + Bu (8.12)

yno = Hxno + v (8.13)

8.2. TARGET TRACKING METHODS 95

where

xno = [xno , y
n
o , ẋ

n
o , ẏ

n
o , B1, B2]T

A =

I2×2 02×2 02×2
02×2 I2×2 02×2

02×2 02×2 −Tn−1

 , B = 06×6

H =
[
I2×2 02×4

]
and v is white noise from the radar signals. For the method in the BODY frame a
vessel has been used

η̇bo = νbo (8.14)

Mν̇bo + Dνno = bτ (8.15)

where ηbo = [xbo, y
b
o]
T is the x and y position in the BODY frame and νbo = [ubo, v

b
o]
T

is the velocity in the BODY frame. Since all the terms are assumed to be unknown
the model can be simplified by defining

Tb :=
M

D
(8.16)

Bb :=
bτ

M
(8.17)

(8.18)

where Tb = diag(T1b, T2b) is tuning parameter and Bb = [b1b, b2b]T is states
with

Ḃb − 1

T

b

Bb = 0 (8.19)

The system can be written on the linear state space form

ẋbo = Axbo + Bu (8.20)

where

xbo = [xbo, y
b
o, u

b
o, v

b
o, b1

b, b2b]T

A =

I2×2 02×2 02×2
02×2 I2×2 02×2

02×2 02×2 −Tb−1

 , B = 06×6

8.2.1 Discussion

The output from the radar measurement simulated in this thesis will be the ob-
stacles position Pn

o (k) = [xno (k), yno (k)]T in the NED frame and will be sampled

96 8.3. KALMAN FILTER

at 10Hz with white noise. The output from the estimator should be the filtered
position in NED, the bearing of the obstacle and the velocity in the BODY frame.
This will give the collision avoidance methods the data it needs to avoid collision
with the obstacles. It can be seen from the models in NED and BODY that the
bearing is not included, thus it needs to be calculated. There are two ways of
calculating the bearing, one uses the position data from two or more samples:

θo = atan2(yno (k)− yno (k − 1), xno (k)− xno (k − 1)) (8.21)

where xno (k) and yno (k) is the position of the object in the xy-plane at time k. Or
by using the velocity in the NED frame.

θo = atan2(ẏno , ẋ
n
o) (8.22)

where ẋno is the x-component of the velocity and ẏno is the y-component of the
velocity in the NED frame. The method in the NED frame can use the input
directly and calculate the bearing from the estimated velocity using (8.22). The
second method in the BODY frame cannot use the the measurement input directly
since it needs the bearing of the obstacle before it can rotate the positions from
NED to BODY frame. It was tested using the position measurement and (8.21), but
because of the noise introduced into the system it was difficult to get a good bearing
θo on the object. This resulted in a worse position estimate then the measurement
position with white noise and the velocity could not be estimated. The simulation
results from the method in the BODY frame is included in the Appendix B and
the only focus further will be on the method using the NED frame.

8.3 Kalman filter

Considering that the radar is simulated to run at 10 Hz and the filter will run at
100 Hz, the discrete Kalman filter is chosen to estimate the velocity and bearing
for the object. Kalman filter was published in 1960 [Kalman, 1960] and is one of
the most commonly used estimation method. As stated in [Vik, 2012] the linear
discrete Kalman filter has the following properties:

1. The estimate is unbiased and of minimum variance

2. The Kalman filter is the optimal linear state estimator

3. The Kalman filter is asymptotically stable

if the following assumption are valid:

1. The process and measurement noise are white and Gaussian

8.3. KALMAN FILTER 97

2. The initial state is Gaussian

3. The system is linear

4. The system is observable

Table 8.1 summarize the discrete kalman filter. Using forward Euler

x(k + 1) = x(k) + hf(x(t), u(t)) (8.23)

to discretize the model (8.9) -(8.11) in NED on discrete from

x(k + 1) = ΦNED(k)x(k) + ∆(k)u(k) + Γw(k) (8.24)

y(k) = H(k)x(k) + v(k) (8.25)

where

ΦNED =

I2×2 I2×2h 02×2
02×2 I2×2 I2×2h
02×2 02×2 I2×2 − hT−1

 , ∆ = 06×2 (8.26)

H =
[
I2×2 02×4

]
, Γ = 1 (8.27)

h in ΦNED is the step size in the euler equation and in this thesis it has been set
as 0.01. It can be seen that the model does not include the bearing θo, thus (8.7)
is used with the estimated velocity in the NED frame.

The pseudo code for the kalman filter implemented in Matlab is shown below. It
can be seen that the equation from Table 8.1 is used, however there are only a
correction in the filter for every 10 samples since the filter runs at 100 Hz and the
input runs at 10 Hz.

98 8.3. KALMAN FILTER

Estimator: pseudo code

yn measured from radar
Rd(k) = Rd(k)T > 0
Qd(k) = Qd(k)T > 0
H(k) according to (8.27)
Γ(k) according to (8.27)

if counter == 10 then
K = K(k) = P̄(k)H[H(k)P̄(k)H(k) + Rd(k)]−1

counter = 0
else

K = 0
end if

x̂ = x̂+K[y −Hx̄]
P̂(k) = [I−K(k)H(k)]P̄(k)[I−K(k)H(k)]T + K(k)Rd(k)KT (k)
x̄ = Φ(k)x̂(k)
P̄(k + 1) = Φ(k)P̂(k)ΦT (k) + Γ(k)Qd(k)ΓT (k)
counter = counter + 1
Find θ̂object according to (??)
Find velocity in BODY according to (??)

Table 8.1: Discrete Kalman filter

Tuning matrix Qd(k) = Qd(k)T > 0 Rd(k) = Rd(k)T > 0
Initial conditions x̂(0) = x0

P̄ (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T]
Kalman gain matrix, K(k) = P̄(k)H[H(k)P̄(k)H(k) + Rd(k)]−1

State estimate update and x̂(k) = x̄(k)K(k)[y(k)−H(k)x̄(k)]

Error covariance update P̂(k) = [I−K(k)H(k)]P̄(k)[I−K(k)H(k)]T

+K(k)Rd(k)KT (k)
State estimation propagation x̄(k + 1) = Φ(k)x̂(k) + ∆u(k)

Error covariance propagation P̄(k + 1) = Φ(k)P̂(k)ΦT (k) + Γ(k)Qd(k)ΓT (k)

8.3.1 Tuning parameters and the initial conditions for the
Kalman filter

For the Kalman filter one needs to define the tuning matrix’s Rd, Qd, the initial
condition for the state estimator x̂0 and the initial covariance propagation matrix
P̄. In this thesis the Rd have been set as the variance of the white noise (0.12)

8.4. OBJECT SIMULATOR 99

multiplied with the step size h , Rd = diag([0.12, 0.12])h. The Qd as been set as
Qd = diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01]. The initial for the state estimator
has been set to the first measured value of xno and yno and zero for the four other
terms. The initial covariance propagation matrix P̄ has been set to 06×6.

8.4 Object simulator

In order to test the tracking method on an object, the vehicle model (6.3)-(6.6) in
Chapter 6 has been used with the controller and the LOS steering law presented
in Chapter 5 as the object. The parameters to the object model is shown in Table
8.2.

Table 8.2: Parameter for the object model used in the simulation for
object-tracking

Parameters Value
Tsurge 5
Tyaw 7
byaw 1
ksurge 1
δmax, δmin ±35 deg
τmax, τmin ±10

8.5 Simulation: Object-tracking

In this section there will be one simulation of object-tracking using the Kalman
filter and the model in the NED frame, where the object represent an obstacle.
The initial conditions of the object is shown in Table 8.3 and the object will follow
the path generated by the waypoints and follow the speed according to Table 8.3.
After 100 seconds into the simulation the speed of the object will increase from 3
m/s to 7 m/s. The measured position data, which is the input to the Kalman filter
is set to 10 Hz while the Kalman filter will run at 100 Hz and the noise on the
input position data has a variance of 0.1. The goals of this simulation are to:

• Test the estimation of velocity and bearing using the position data.

• Test the Kalman filter ability to follow a change in both heading and speed.

• See if the results are good enough to be used in the collision avoidance system.

100 8.5. SIMULATION: OBJECT-TRACKING

Table 8.3: Initial condition for the object

Conditions values
Starting position [x, y, ψ] [1 1 0]
speed from 0 to 100 seconds 3 m/s
speed from 100 to 200 seconds 7 m/s

waypoints
−5 200 500
5 150 800

8.5.1 Results

In Figure 8.3(a) the path of the tracked object is plotted in the xy-plane, where
the black stars are the waypoints and the blue line is the path of the object.
Figure 8.3(b) shows the x, y positions in the NED frame and the bearing to the
tracked object where the blue line is the estimated values and the red line is the
true values. The velocity in the BODY frame (ubo, v

b
o) to the tracked object and

the error between the estimated ubo and the true value is shown in Figure 8.4(a)
where the red dotted line is the true value without noise and the blue line is the
estimated values. The error between the estimated positions and the true value is
shown in Figure 8.4(b) and the error in bearing for the time interval from 50 to
200 seconds.

8.5.2 Discussion and conclusion

In the simulation in Section 8.5, shown in Figure 8.3 and Figure 8.4 it has been
tested a discrete Kalman filter tracking an object. The path is plotted in the xy-
plane in Figure 8.3(a) and the error between the estimated and the true values for
the positions is plotted in Figure 8.4(b). It can be seen that the error in x and y is
approximately 1 to -0.6, except at time 0-20 seconds and around time 100 seconds.
The first jump in the error is expected since the filter need time to calibrate and
the second around time 100 seconds is most likely because of the change in the
speed. However the position estimation overall is relatively good.

For the velocity, it can be seen that the Kalman filter manages to estimate the
velocity relatively well, but in the start of the simulation (from 0 to 15 seconds)
the estimation of velocity have a overshot to 5 m/s when the true value is 3 m/s
before the filter converge to the true value. Considering that the filter starts with
wrong initial values and the filter normally needs time to start up, it is not that
surprising results. When locking at the change in velocity (at time 100 seconds)
the filter manages to follow the change and converge to the new value. The sway
velocity is estimated to be approximately 2 ×10−15m/s to -2 ×10−15m/s, which

8.5. SIMULATION: OBJECT-TRACKING 101

is approximately zero and the true value is zero, thus the speed for the object will
be equal the velocity in surge u. The heading, which is shown in the bottom of
Figure 8.3(b) uses 15 seconds to converge and manages to follow the change in
heading relative well. The error is around 0.02 to -0.04 [rad] if the start and the
change in heading is not included. The jump in heading is not included since the
error is so large, which can also be seen in Figure 8.3(b). It can be concluded
that it is possible to use both the velocity and bearing from the filter in a collision
avoidance system. However it can be smart to let the filter run for a couple of sec-
ond before the collision avoidance system starts using the estimated values. The
error in speed or bearing can be compensated in the collision avoidance system
with increased safety circle around the obstacle.

102 8.5. SIMULATION: OBJECT-TRACKING

−100 0 100 200 300 400 500 600
−100

0

100

200

300

400

500

600

700

800

900
xy plot of the estimated trajectory

x [meter]

y
 [
m

e
te

r]

(a) The xy-plot of the estimated path as the blue line and the true path as the red line.
The black stars are the waypoints

0 20 40 60 80 100 120 140 160 180 200
0

500

1000
Estimated x−position

time [seconds]

x
 [
m

e
te

r]

0 20 40 60 80 100 120 140 160 180 200
−1000

0

1000
Estimated y−position

time [seconds]

y
 [
m

e
te

r]

0 20 40 60 80 100 120 140 160 180 200
0

1

2

Estimated heading θ
o

time [seconds]

θ
o
 [
ra

d
]

(b) Estimated x,y positions and the bearing as the blue line and the true values as the
red lines

Figure 8.3: Object-tracking: The tracked object in the xy-plane, the estimated
positions in x and y in the NED frame and the bearing to the tracked object

8.5. SIMULATION: OBJECT-TRACKING 103

0 20 40 60 80 100 120 140 160 180 200
0

5

10
Estimated velocity u in body

time [second]

u
 [
m

/s
]

0 20 40 60 80 100 120 140 160 180 200
−2

0

2
x 10

−15
Estimated velocity v in body

time [second]

v
 [
m

/s
]

115 120 125 130 135 140
−1

0

1
Error between the true value and the estimated u

time [second]

E
rr

o
r

[m
/s

]

(a) The estimated velocity in the BODY frame and the error velocity in surge

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

Time [second]

E
rr

o
r

in
 x

 [
m

]

Error between the estimated and the true η

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

Time [second]

E
rr

o
r

in
 y

 [
m

]

40 60 80 100 120 140 160 180 200
−0.2

0

0.2

Time [second]

E
rr

o
r

in
 θ

o
 [
ra

d
]

(b) The error in the positions and the bearing

Figure 8.4: Object-tracking: The estimated velocity in the BODY frame and the
error in surge, positions and the bearing

104 8.5. SIMULATION: OBJECT-TRACKING

Chapter 9

Conclusion and further work

9.1 Conclusion

In this thesis a collision avoidance system has been constructed with two collision
avoidance methods, the NSB controller and the Dubins method for collision avoid-
ance. The vehicle model was implemented to simulate more realistic case studies,
which is presented in Chapter 7. One case with static obstacles and the last three
with dynamic obstacles. In all the simulations with the collision avoidance methods
the vehicle manage to reach the target without colliding with any obstacles. This
is consistent with the stability analysis, which concluded with locally stability for
both methods.

The average calculation time to the collision avoidance methods simulated in Chap-
ter 7 was logged and it was concluded that the Dubins method was faster than the
NSB controller in all cases, but the LOS steering law, which the Dubins method
used was slower than finding the steering command to the NSB controller. By con-
sidering both the steering laws and the methods, which resulted in a total average
calculation time that was approximately equal for both methods. Thus the average
calculation time could not be used to determine, which method that is best. By
considering the complexity of the codes. The Dubins method included a lot of if
else statements, which made it more complex in comparison to the NSB controller.
Also the fact that the Dubins method would enter the obstacle circle if the target
is inside of the obstacle circle, where the NSB method could at least guarantee not
to enter the obstacle circle. Thus it is recommended to use the NSB controller for
further work.

In Chapter 8 it was discussed methods for target tracking as well as estimation

105

106 9.2. FURTHER WORK

of bearing and velocity and it was concluded that with a model in NED and a
Kalman filter it is possible to get good estimation of velocity and bearing using
position data, which can be used in the collision avoidance system.

9.2 Further work

It is recommended for further work within collision avoidance system to continue
with the NSB controller rather than the Dubins method. Mainly because of all
the if else statement in the Dubins method, which made it more complex than
the NSB controller. Also it should be investigated different approaches on the
most dangerous situations like the heads-on situation shown in Section 7.3 and the
approach from behind shown in Section 7.4.

Bibliography

[Arrichiellos, 2006] Arrichiellos, F. (2006). Coordination Control of Multiple Mobile
Robots. PhD thesis.

[Borenstein and Koren, 1989] Borenstein, J. and Koren, Y. (1989). Real-time ob-
stacle avoidance for fast mobile robots.

[Breivik and Fossen, 2004] Breivik, M. and Fossen, T. I. (2004). Path following for
marine surface vessels. OCEANS ’04. MTTS/IEEE TECHNO-OCEAN ’04.

[Brock and Oussama.Khatib, 1999] Brock, O. and Oussama.Khatib (1999). High-
speed navigation using the global dynamic window approach. lEEE International
Conference on Robotics and Automation Detroit. Michigan May 1999.

[Cellini et al., 2007] Cellini, Mati, Pollini, and Innocenti (2007). Obstacle avoid-
ance for autonomous ground vehicles in outdoor environments.

[Chakravarthy and Ghose, 1998] Chakravarthy, A. and Ghose, D. (1998). Obstacle
avoidance in a dynamic environment: A collision cone approach. AIAA Guid-
ance, Navigation and Control Conference and Exhibit.

[Daily and Bevly, 2008] Daily, R. and Bevly, D. M. (2008). Harmonic potential
field path planning for high speed vehicles.

[Dubins, 1979] Dubins, L. E. (1979). On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal positions and
tangents. American Journal of Mathematics, pages 497–516.

[Fossen, 2011] Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and
Motion Control. WILEY.

[Foxy et al., 1997] Foxy, D., Burgardy, W., and Thrunyz, S. (1997). The dynamic
window approach to collision avoidance.

[Fu-guang et al., 2005] Fu-guang, D., Peng, J., Xin-qian, B., and Hong-jian, W.
(2005). Auv local path planning based on virtual potential field.

107

108 BIBLIOGRAPHY

[Gunnarsson et al., 2002] Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J.,
Karlsson, R., and Nordlund, P.-J. (2002). Particle filters for positioning and
navigation, and tracking.

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45.

[Khalil, 2001] Khalil, H. K. (2001). Nonlinear systems. IE.

[Khatib, 1985] Khatib, O. (1985). Real time obstacle avoidance for manipulators
and mobile robots. Robotics and Automation. Proceedings. 1985 IEEE Interna-
tional Conference.

[Koren and Borenstein, 1991] Koren, Y. and Borenstein, J. (1991). Potential field
methods and their inherent limitations for mobile robot navigation.

[Krogh and Thorpe, 1986] Krogh, B. H. and Thorpe, C. E. (1986). Integrated
path planning and dynamic steering control for autonomous vehicle. Robotics
and Automation. Proceedings. 1986 IEEE International Conference.

[Lee and Kim, 2011] Lee, Y. and Kim, Y. (2011). Distributed unmanned aircraft
collision avoidance using limit cycle.

[Liu and Narayanan, 2011] Liu, F. and Narayanan, A. (2011). Real time replan-
ning based on a* for collision avoidance in multi-robot systems. The 8th Inter-
national Conference on Ubiquitous Robots and Ambient Intelligence URAI 20.

[Loong et al., 2011] Loong, W. Y., Long, L. Z., and Hun, L. C. (2011). A star path
following mobile robot. International Conference on Mechatronics.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical Op-
timization. Springer.

[NoriyasuNoto et al., 2011] NoriyasuNoto, HiroyukiOkuda, YuichiTazaki, Shin-
kichiInagaki, and TatsuyaSuzuki (2011). Obstacle avoidance assisting system
basedon personalized potentialfield.

[Tsourdos et al., 2011] Tsourdos, A., White, B., and Shanmugavel, M. (2011). Co-
operative Path Planning of Unmanned Aerial Vehicles. WILEY.

[Vik, 2012] Vik, B. (2012). Integrated Satellite and Inertial Navigation Systems.
Department of engineering cybernetics.

[Watanabe et al., 2007] Watanabe, Y., Calisey, A. J., and Johnsonz, E. N. (2007).
Vision-based obstacle avoidance for uav‘s. IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS.

[Yongjie and Yan, 2009] Yongjie, Y. and Yan, Z. (2009). Collision avoidance plan-
ning in multi-robot based on improved artificial potential field and rules.

BIBLIOGRAPHY 109

[Ögren and Leonard, 2005] Ögren, P. and Leonard, N. E. (2005). A convergent
dynamic window approach to obstacle avoidance. IEEE TRANSACTIONS ON
ROBOTICS, VOL. 21, NO. 2, APRIL 2005.

110 BIBLIOGRAPHY

Appendices

111

Appendix A

Simulations results from
collision avoidance

The internal dynamic for the vehicle in the simulations from Section 7.1 , 7.3 and
7.4 with the NSB controller and the Dubins method for collision avoidance are
shown in this appendix.

113

114

Case One static obstacles

0 20 40 60
1

2

3

4

5

6

7
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.1

0 20 40 60
−0.4

−0.2

0

0.2

0.4
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.1

0 20 40 60
−1

−0.5

0

0.5

1

1.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the NSB controller in simu-
lation shown in Figure 7.1

0 20 40 60
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.1

Figure A.1: The internal dynamic for the vehicle in the simulation shown in
Figure 7.1 with the NSB controller

115

0 20 40 60
0

2

4

6

8
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.2

0 20 40 60
−0.2

0

0.2

0.4

0.6
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.2

0 20 40 60
−1

−0.5

0

0.5

1
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the LOS steering law in Fig-
ure 7.2

0 20 40 60
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.2

Figure A.2: The internal dynamic for the vehicle in the simulation shown in
Figure 7.2 for the Dubins method

116

Case Three: Heads-on situation

0 10 20 30 40
1

2

3

4

5

6

7
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.7

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.7

0 10 20 30 40
−0.5

0

0.5

1

1.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the NSB controller in simu-
lation shown in Figure 7.7

0 10 20 30 40
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.7

Figure A.3: The internal dynamic for the vehicle in the simulation shown in
Figure 7.7

117

0 10 20 30 40
0

2

4

6

8
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.8

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.8

0 10 20 30 40
0

0.5

1

1.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the LOS steering law in sim-
ulation shown in Figure 7.8

0 10 20 30 40
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.8

Figure A.4: The internal dynamic for the vehicle in the simulation shown in
Figure 7.8

118

Case four: Approach form behind

0 50 100 150
1

2

3

4

5

6

7
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.9

0 50 100 150
−0.4

−0.2

0

0.2

0.4
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.9

0 50 100 150
0

0.5

1

1.5

2

2.5
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the NSB controller in simu-
lation shown in Figure 7.9

0 50 100 150
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.9

Figure A.5: The internal dynamic for the vehicle in the simulation shown in
Figure 7.9

119

0 20 40 60 80 100
0

2

4

6

8
Vehicle speed u

(a) The vehicle speed for the simulation in
Figure 7.10

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2
Turning rate r, for the vehicle

(b) The vehicle turning rate for the simulation
in Figure 7.10

0 20 40 60 80 100
0

0.5

1

1.5

2
Vehicle heading

ψ

ψ
d

(c) The vehicles heading and the steering
command from the LOS steering law in the
simulation shown in Figure 7.10

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Rudder δ for the vehicle

(d) The rudder angle for the vehicle in simu-
lation Figure 7.10

Figure A.6: The internal dynamic for the vehicle in the simulation shown in
Figure 7.10

120

Appendix B

Simulations results from
target tracking using the
model in body

121

122

−100 0 100 200 300 400 500 600
−200

0

200

400

600

800

1000
Estimated xy−plot

x [m]

y
 [
m

]

Figure B.1: The estimated position to the object using the model 8.20

123

0 20 40 60 80 100 120 140 160 180 200
−1000

0

1000

time [s]

x
 [
m

]

Estimated x position

true Value

Estimated Value

0 20 40 60 80 100 120 140 160 180 200
−1000

0

1000

time [s]

y
 [
m

]

Estimated y position

true Value

Estimated Value

0 20 40 60 80 100 120 140 160 180 200
−2

0

2
Estimated heading

time [s]

θ
o
 [
ra

d
]

true Value

Estimated Value

(a) The estimated x, y position and the heading to the object using the model 8.20

0 20 40 60 80 100 120 140 160 180 200
−60

−40

−20

0

20

40
Estimated velocity u

time [s]

u
 [
m

/s
]

true Value

Estimated Value

0 20 40 60 80 100 120 140 160 180 200
−30

−20

−10

0

10

20

time [s]

v
 [
m

/s
]

Estimated velocity v

true Value

Estimated Value

(b) The estimated velocity to the object using the model 8.20

Figure B.2: The estimated x, y position, the heading and the velocities using the
model 8.20

124

Appendix C

Dubins calculations

Calculation of dobstacleTarget, θ3 and θ4

dobstacleTarget = ||po − ptarget||

where po and ptarget are the positions for the obstacle and the target and the vector
from the target position and the obstacle is defined as TO

TO := po − ptarget

The length from the target to one of the tangent points is given by

dt3 =
√
d2obstacleTarget − ro2

where ro is the radius for the obstacle and defining θ4 and θ4 as

θ4 := θtoTarget,1 − θtoTarget,2
θ3 := θtoTarget,1 + θtoTarget,2

where

θtoTarget,1 = atan2(TOy,TOx)

θtoTarget,2 = asin(
ro

dobstacleTarget
)

Which is the calculation needed to find 4.10 and 4.11.

125

126

	Title Page
	Thesis Description
	Abstract
	Sammendrag
	Preface
	Introduction
	Background and motivation
	Previous work
	Scope of this thesis
	Definitions and Nomenclature used in this thesis
	Outline of this these

	Literature study
	Collision avoidance methods
	Optimization problems
	Dynamic Window
	Astar (A)
	Potential Field
	Limit cycle
	Collision Cone Approach

	Summary

	Null-space-based method for collision avoidance
	Null-Space-Based behavioural Control
	Mathematical modelling

	Null-Space-based Behavioral control for collision avoidance
	Task manager
	The resulting velocity vector

	Stability of NSB
	Limitations and improvement
	Summery

	Using Dubins path for collision avoidance
	Dubins path
	Dubins methods for collision avoidance
	Dubins path around one obstacle to a target
	Dubins path between obstacles

	The length of a Dubins path
	Summary and discussion

	Collision avoidance strategy and implementation of the guidance system
	Collision avoidance strategies
	Obstacle approach; Heads-on
	Obstacle approach; from left or right
	Collision from behind
	Multiple obstacles
	Choose direction mathematically

	Collision detection
	Implementation of the Null-Space-Based behaviour control
	Implementation of the Dubins method for collision avoidance
	Steering law
	Steering law for the NSB controller
	Steering law for the Dubins method

	Stability and convergence of the methods
	The NSB controller
	Dubins method

	Summary

	Vehicle simulator and control design
	Vehicle model
	Vehicle parameters used in this thesis
	Max turning radius

	Surge and heading controllers
	Tuning parameters

	static and dynamic obstacles

	Simulation: Collision avoidance using the vehicle model
	Case one: Multiple static obstacles
	Case two: Dynamic obstacles approaching from left and right
	Case three: Dynamic obstacle avoidance in a heads-on situation
	Case four: Dynamic obstacle avoidance form behind
	Discussion
	Case one: Static obstacles
	Obstacles from left and right
	Heads-on
	Approach form behind

	Conclusions from the simulations

	Object tracking and estimation of velocity and bearing to obstacles
	Object-tracking equipment
	Target tracking methods
	Discussion

	Kalman filter
	Tuning parameters and the initial conditions for the Kalman filter

	Object simulator
	Simulation: Object-tracking
	Results
	Discussion and conclusion

	Conclusion and further work
	Conclusion
	Further work

	Bibliography
	Appendices
	Simulations results from collision avoidance
	Simulations results from target tracking using the model in body
	Dubins calculations

