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Abstract

This thesis considers the formation and behavioural control problem of a multi-
robot system. A mathematical model of the mobile vehicles us presented, followed
by an introduction to behavioural control. The Null-Space based Behavioural
(NSB) control [Antonelli, Arrichiello, and Chiaverini, 2005] is presented, and is
used to create task functions for obstacle- and collision avoidance. The formation
problem is solved by a passivity-based approach presented in [Arcak, 2007]. The
two controllers are combined to create a complete controller capable of maintaining
group formations, while avoiding obstacles and inter-agent collisions. The results
are verified by simulations and experiments on custom built robots.
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Sammendrag

(Norwegian translation of the abstract)

Denne masteroppgaven tar for seg formasjon- og oppførselsregulering av et multi-
robot system. En matematisk modell av robotene blir presentert, etterfult av en
introduksjon til behavioural control. Deretter presenteres Null-Space based Be-
havioural (NSB) control [Antonelli, Arrichiello, and Chiaverini, 2005]. Denne
teknikken blir brukt til å lage reguleringssløyfer for kollisjonsunngåelse. Formasjon-
sstyring løses ved en passitivitets-teknikk presentert i [Arcak, 2007]. De to kon-
trollstrukturene blir derretter slått sammen for å lage en komplett formasjons- og
oppførselskontroller, som er i stand til å få en gruppe roboter til å innta en pre-
definert formasjon, uten å kollidere i hverandre eller andre objekter. Systemet blir
testet i simuleringer og eksperimenter på spesialdesignede roboter.
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Cybernetics, for me, is about robotics, control and software. During this thesis,
I’ve had the pleasure of working with not just one, but a team of custom robots
specifically designed and built for my work. I’ve been able to design and implement
every aspect of the system from scratch, which has been a process of much anger
and enjoyment. I am proud to say that my work has resulted in a team of agile,
smart vehicles capable of some pretty cool things.
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at the Department of Engineering Cybernetics, NTNU. The project was started
by myself and Adam Leon Kleppe during the autumn of 2012, to create a team of
mobile robots for demonstrative purposes. My work would not have been possible
without the financial support of the department, and I hope they find good use of
the results. Additional funds were acquired through a scholarship program from
Norsk Forening for Automatisering (NFA), which greatly increased our chances of
success.

I would also like to thank my supervisor Thor I. Fossen for guidance and overall
support for this project.
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Chapter 1

Introduction

1.1 Background and motivation

Two topics will be covered in this thesis, namely behavioural control and coopera-
tive control. The latter is a term used for systems which consists of multiple agents
working together, while behavioural control tries to control how the agent interacts
with the environment.

For example, imagine a vessel that is on-route to a target position, but finds an
obstacle ahead. Behavioural control then dictates how the vessel should deviate
from it’s course to avoid collision. This is an on-line controller, and often consists
of multiple task functions. The job of the behavioural control is then to control
the output flow of each of these tasks.

Cooperative control is an umbrella-term for several types of problems. The forma-
tion problem occurs when multiple agents needs to keep a prescribed distance to
each other. This can either be to minimize drag, or some other mission objective
like the loading or transportation of cargo. Further, in the agreement problem, the
goal is for the agents to reach an agreement over a common variable of interest.
This can be a heading, phase, etc. This is also referred to as synchronization. The
formation problem is usually thought of as a shifted agreement problem, but it can
also be solved by a master-slave architecture where an agent follows a group leader
via trajectory tracking.

The results of this thesis will be used to create a Multi-robot system for demon-
stration and research purposes at the Department of Engineering Cybernetics, in
collaboration with several other students. See [Kleppe, 2013]. The construction and
implementation of the robots has been done during the work of this thesis.



2 Chapter 1. Introduction

1.2 Previous work

Cooperative Control has been an active field of research for many years. Both [Cao
et al., 2013] and [R. M. Murray, 2007] provide an excellent overview over the last
decade of focus in multi-agent systems. Concerning formation control, [R. M. Mur-
ray, 2007] emphasises the work of [Dunbar and R. M. Murray, 2006] who considers
the problem using receding horizon optimal control. Further, [Olfati-Saber and R.
Murray, 2002] uses potential functions obtained from structural constraints of a
desired formations, which results in a distributed bounded state-feedback for each
vehicle. The use of LQR-based optimal design for linear agents are addressed in
[Zhang et al., 2011].

Formation of underactuated marine vehicles is studied in [Børhaug, Pavlov, Pan-
teley, et al., 2011], [Børhaug, Pavlov, and Pettersen, 2007] and [Børhaug, Pavlov,
and Pettersen, 2006]. [Fax and R. Murray, 2004] uses the Nyquist theorem to prove
formation stability using graph theory. In [Qu et al., 2008], a framework based on
matrix theory is proposed to design cooperative control laws.

Distributed formation control of unicycle robots with non-holonomic constrains are
discussed and addressed in [Sadowska and Kostic, 2012]. The proposed controller
utilizes a virtual leader-approach to make the group of agents follow a desired
trajectory.

In 2007, Murat Arcak wrote a paper about using passivity as a design tool for
cooperative control [Arcak, 2007]. It described how one can incorporate communi-
cation topology and feedback of the interconnected system into a set of cascaded
passive systems, and thus being able to prove stability by lyapunov analysis. The
work ended up as a framework which could be used for a wide range of cooperative
control problems, where the most important concerns the agreement problem and
synchronization. For instance, [Ihle et al., 2007] uses this to make three boats syn-
chronize along a path. Further, the passivity property proved to be quite useful for
developing adaptive feedback laws. For instance, in [Bai et al., 2007], the authors
simulates a multi-agent network where only one agent has information about the
mission velocity. The rest of the agents uses adaptive control to converge to the
correct path.

The framework can be used on a wide range of models and systems, as long as
a passive controller can be made. This is trivially accomplished for Newtonian
systems, but somewhat more involved for more complex systems. In [Skjetne et
al., 2004], back-stepping is used for a Lagrangian system, and similar approaches
can be used for Hamiltonian systems.

[Bai et al., 2011] summarizes much of this earlier work. It contains updated re-
search and reference of use for [Arcak, 2007], and incorporates examples and several
simulations and useful discussions. This book have been my main material on this
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topic throughout this thesis.

A great introduction to behavioural control, it’s history and connection to AI
robotics is given in [Murphy, 2000]. Here, the author describes the transition
from hierarchical paradigms, via the pure reactive paradigm to the current hybrid
architectures. The term behavioural control is often said to be the reactive part
of such architectures, where current sensory information is sensed to calculate the
next move. The behavioural control laws presented in [Murphy, 2000] are mostly
focused on potential vector fields.

A small breakthrough on behavioural control was made during the PhD thesis of
Filippo Arrichiello, [Arrichiello, 2006]. In stead of using classical motorscheme or
layerscheme to control the behaviour of mobile robots (for instance, how to avoid
obstacles), he laid the groundwork for NSB; Null-space behavioural control. This
works by defining convex task functions, and by forcing lower priority tasks to
operate in the Null-space of higher priority tasks.

NSB makes it easy to define several tasks, and has been proved to be very useful
in many situations. It has for example been used to solve the flocking problem
[Antonelli, Arrichiello, and Chiaverini, 2008b], control of swarms of Unmanned
Aerial Vehicles [Shiyou et al., 2011], and been tested on marine vessels for caging
and transporting purposes [Arrichiello et al., 2011].

1.3 Contribution and scope of this thesis

The goal of this thesis is to investigate how to properly combine single-agent be-
havioural control with multiple-agent cooperative control; thus creating a set of
agents capable of working together in a complex environment. This would enable
the use of advanced hybrid architectures (involved planning, sensor redundancy
and fault-handling) to be integrated with cooperative formation algorithms. Al-
though these architectures are not studied further in this thesis, the formulation
of formation control as a behaviour is an important first step (also, see [Verret,
2005]). The goals of this thesis can be divided into four parts:

Collision avoidance To maintain integrity of the robot, the agents must preserve
a minimum distance to each other.

Obstacle avoidance The environment has several static obstacles, which must
be kept at a safe distance. The robots must be able to handle a limited
sensing range for the obstacles.

Formation control The agents should converge to a given formation, and hold
it as long as it doesn’t violate collision or obstacle constraints.
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Target The agents, as a unit, should be able to solve simple problems, like moving
to a target location.

The proposed control laws will be investigated in both simulations and on tests on
actual robots.

To limit the scope of this thesis, the following assumptions are made:

• The agents are equipped with bi-directional communication links.

• The communication topology is known and constant. (This is not difficult to
overcome, but in this thesis, it simplifies the amount of on-line calculations)

• Minimal or zero time lag in inter-agent communication. This is a rather hard
constraint, but can be overcome by lowering the sampletime and protocoll
effectiveness.

• The agents position in a common frame is measurable and known.

1.4 Organization of this thesis

The robots used in this project is described in Chapter 2. The robots have been
constructed to have pure holonomic dynamics, and a mathematical model have
been derived. The model developed here will be used in simulations throughout
this thesis.

In Chapter 3, an introduction to behavioural control is given. The Null-Space
based Behavioural (NSB) controller is introduced, and several useful properties is
shown. A stability analysis proves the asymptotic stability of the global task. The
task-functions needed for this thesis is chosen, and the controller is tested in a
simulation.

An introduction to Cooperative Control is given in Chapter 4, followed by a problem
statement. The formation problem is solved by a passivity based approach, giving
high flexibility to the framework. The most important results from [Bai et al., 2011]
is repeated, and two simulations and one experiment are conducted to illustrate
the effects of varying the communication pattern.

The behavioural controller is combined with the solution to the formation problem
in Chapter 5. Also, collision avoidance is added, and the overall system is deemed
stable by a qualitative proof. Two approaches is given to account for both obstacle
and collision avoidance. In the first direct approach, the resulting controller is
suitable for kinematic movement and is tested in simulations and experiments.
The second approach is introduced in Chapter 6, by utilizing a leader to generate
a suitable mission velocity to avoid obstacle collisions. This procedure is tested
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in a Search-and-Rescue mission, where five agents cooperate to move, search and
enclose a target of interest.

Chapter 7 briefly summarizes the results in the preceding chapters, and generally
concludes the thesis.

The digital appendix included with this thesis contains the Matlab and Simulink
code used in the simulations and experiments, the source-code for the camera
application and framework software written for the robot’ embedded computer. It
also includes several videos of the experiments. For further information on the
contents, read the accompanied file readme.txt.

1.5 Nomenclature and notation

• The set of real numbers is denoted R. The notation R≥0 denotes the set of
all real non-negative numbers.

• All vectors in this thesis are column vectors. The set of p by 1 real vectors are
denoted Rp, while the set of matrices with p rows and q columns are denoted
Rp×q.

• The transpose of a matrix A ∈ Rp×q are denoted AT ∈ Rq×p.

• Ip is the identity matrix of dimension Rp×p.

• The p× q zero-matrix is denoted 0p×q, while the p×p zero matrix is denoted
0p. Further, the null-vector and unity-vector of size N ×1 is denoted 0N and
1N , respectively.

• Labeling of coordinate-systems are done by a letter in curly brackets, e.g.
{n}. Vectors represented in that coordinate system is displayed with that
letter in superscript, i.e. vn.

• The superscript d represents a desired value. E.g. vd. The superscript f
represents a formation specification, e.g. xfi , where i is the agent index.

• The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is defined as

A⊗B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq (1.1)

and satisfies the properties

(A⊗B)T = AT ⊗BT (1.2)
(A⊗ Ip)(C ⊗ Ip) = (AC)⊗ Ip (1.3)
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• The notation diag{K1,K2, · · · ,Kn} represents the block-diagonal matrix
K1 0p×q · · · 0p×q

0p×q K2 · · · 0p×q
...

...
. . .

...
0p×q 0p×q · · · Kn

 (1.4)

where Ki ∈ Rp×q, i = 1, · · ·n.

• The cartesian product of the two sets A1 and A2 is denoted as A1×A2. The
resulting set contains all possible combinations of the elements in A1 and A2.

• The notation K = KT > 0 means that K is a symmetric positive definite
matrix, while k > 0 implies k is a positive scalar.

• N (A) and R(A) are the null space (kernel) and the range space of a matrix
A ∈ Rp×q, respectively. The vector x ∈ N (A) if Ax = 0p. Likewise, y ∈
R(A) if there exists a vector v 6= 0p s.t. Ay = v.

• The notation atan2(y, x) represents the four-quadrant arctangent of the real
parts of the elements of x and y satisfying

− π ≤ atan2(y, x) ≤ π (1.5)

• The matrix A is denoted Hurwitz if every eigenvalue λi of A satisfies

Re [λi] < 0 (1.6)

where Re [x] is the real part of x.

• A function is said to be Ck if its partial derivatives exist and are continuous
up to order k

• Given a C2 function P : Rp → R we denote by ∇P its gradient vector, and
by ∇2P its Hessian matrix.

If not otherwise stated, all formation specifications are given in meters.



Chapter 2

The Omniwheeled Robot
System

The robots that the results of this reasearch are beeing used on, is a rather special
robot. It has a triangular shape, with three wheels called omniwheels. (Figure 2.2)
These wheels can provide force in one direction, while still being able to have
transverse movement. This allows the robot to have true planar movement, without
non-holonomic constraints. This effect could also be achieved by other shapes (e.g.
by a square shape using four wheels instead of three), but this would also increase
the cost of the robot. Figure 2.1 displays the first prototype. The robots described
here have been built as a part of the work with this thesis.

Figure 2.1: Picture of the prototype robot.
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Figure 2.2: Image of an Omni-wheel (sometimes called a trans-wheel). Image
courtesy kornylak.com

In this chapter, a brief introduction to the hardware on the robots are discussed,
before a mathematical model of it’s dynamics are derived. Further, the visual
system is introduced.

2.1 Overview

As can be seen in Figure 2.3, the complete system consists of three distinct parts.
The first is the actual robots and their individual computers. Each robot is
equipped with a low-cost computer called a BeagleBone, which is described in
more detail in Section 2.2. This computer contains all code needed to run a single
robot.

The second part is a desktop PC running the visual system. The PC utilizes a
camera to capture the location of each robot in the field, which is then transmitted
to the robots using a network. More details of the visual system can be seen in
Section 2.3. Please note that the PC doesn’t do any control computation, every
control algorithm is processed in a distributed fashion on each robot.

This network is the third part of the overall system, and can be any type of wired
or wireless network. But, for simplicity in this project, the data is transmitted over
a simple wired ethernet network. This made the developement and testing phase of
the project much less troublesome, and would be easy to switch over to a wireless
WiFi network later on.

All controllers presented in this project are developed in a Matlab/Simulink en-
vironment. By using a toolbox called Simulink Coder, these controllers can be
exported to pure C++ code that can be interfaced by the software on the Beagle-
Bone. This makes the developement cycle from simulation and testing to deploy-
ment on the actual robots very easy. Further, the BeagleBone logs all incomming
and outgoing data from the controller application to a memory card. This memory
card is also shared over the network, enabeling the developer to quickly analyse the
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Camera

PC running
OpenCV
software

Robots moving in a planar area Multiple
BeagleBones

UDP network

Figure 2.3: An overview of the complete system. The PC distributes updated
robot location to each robot.

logs after each test. An application has been created in Matlab which processes
the logs and enables advanced plotting capabilities.

2.2 Hardware specification

The heart of the robots is a low-cost computer called a BeagleBone [Beagleboard]1.
The BeagleBone is a small unix-based machine, equipped with a 720 MHz ARM
Cortex-A8 processor. This allows us to use hardware like motors and sensors
usually designed for smaller embedded processors, with the advantages of a full-
fledged operating system. An image of the BeagleBone is seen in Figure 2.4.

This platform was chosen for a number of reasons. Firstly, compared to many
other solutions this is really cheap with each computer costing only $89. Secondly,
another variant of this card has been used with success on similar projects in the
past [Skøien and Vermeer, 2010]. Here, the authors also goes into detail on the
availible operating systems, and goes far to recomend the Angstorm distribution.
This is a popular linux-variant in the community surrounding linux-based embed-
ded systems, and can be installed on a wide array of computers (among others,
both the Raspberry PI [RaspberryPI]2 and BeagleBone are supported).

The operating system gives the developer easy access to hardware support systems
like serial communication, interfaces like i2c and spi, and PWM3 output.

1See organization homepage at http://beagleboard.org.
2See organization homepage at http://www.raspberrypi.org/.
3Pulse-Width Modulated signal. This can be used to control the speed of attached motors.
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Figure 2.4: The BeagleBone hardware platform. Image courtesy of beagleboard.org

2.3 Visual system

To be able to track the position of each individual robot, a simple visual system was
created. It consists of a single color-camera, connected to a PC. The pc utilizes an
open source visual backend called OpenCV [OpenCV]. This framework allows easy
developement of advanced camera applications in C++. We have chosen to track
each robot using a predefined coloured piece of paper attached to each robot.

The image is originally captured in the ordinary colour format RGB. Each pixel
of the image is stored in three separate channels, each describing how much Red,
Green and Yellow that pixel contains. Before image-processing teqniques are used
on the image, it must first be transformed to another format called HSV.

HSV stands for Hue, Saturation and Value. Instead of separating the colors in the
three channels, the color is stored in the single channel Hue. This channel is usually
represented by a value ranging from 0◦to 360◦. Saturation and Value describes how
much black and white are represented, respectively. An image describing the color-
model can be found in Figure C.1. This image representation makes it easy to filter
out certain colors, since we can apply ranges to each color. Green for instance, is
located around 120◦.

2.3.1 Locating the robots in the image

Getting the location of the robot is a multiple-step process. First, a range for each
color must be decided. As noted, Green is located at around 120◦, so a range
from 90◦to 160◦seems usefull. Further, we require a high value for saturation to
only include highly saturated pure colors. The result is a binary image, where the
pixel are white if that particullar pixel in the original image satisifed the range,
otherwise black.
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Figure 2.5 illustrates this first step. In Figure 2.5(a), the original image from the
camera is given. Our goal is to find the location of the green square.

(a) Image taken from camera (b) Isolated green colors from the
original image.

Figure 2.5: Colour localization using OpenCV.

As seen in Figure 2.5(b), the green square is clearly visible, but the image also
contains some noise. This can be removed by a process called erosion. In simple
terms, what this does is shrink the white parts of the image. This leaves the clear
white square in the middle.

The next step is to find the edges of the square. The application uses an algorithm
called the Canny Algorithm [Canny, 1986]. The implementation is a part of the
OpenCV framework, so I will not go into details about it here. Figure 2.6(a) shows
a zoomed-in image of the result.

Finally, now that the edges have been found (also called the contours of the shape),
every distinct contour must be located. OpenCV has implemented an algorithm
adapted from [Suzuki and Abe, 1985] which accomplishes this. The resulting output
is the location of each distinct shape, including its area. The whole process is
repeated for each of the six colours blue, red, green, cyan, yellow and magenta. An
example image where all the colours are located can be seen in Figure 2.6(b).

The complete algorithm is run as fast as possible on the PC, with a resulting
varying sample-time of about 3-4 Hz. To make the robots handle this correctly,
an observer with the ability to do dead-reckoning when no new data is available is
introduced in Section 2.6.
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(a) Location of a single green marker is
done.

(b) Multiple colour-markers have been
found, together with their location.

Figure 2.6: Outline of the located colour markers.

2.4 Kinematics

In this section, the kinetics of the omniwheeled robot is derived. The notation and
nomenclature used is similar to [Fossen, 2011].

The system is limited to planar movement, thus has three degrees of freedom (3
DOF) with movement in surge, sway and yaw. The geographic reference frame
used in this thesis is denoted {n}, and the vector describing the vehicle’ position
and attitude in this reference frame is given by

η := [xn, yn, ψ]T (2.1)

where ψ is the attitude of the body-axis, and xn, yn is the North and East positions,
respectively. The frame {n} is thus named NED (North-East-Down).

Further, let the body-fixed frame, denoted {b}, be described by a principal rotation
ψ about the positive downwards z-axis (see Figure 2.8). By defining

ν := [ẋb, ẏb, r]T (2.2)

where r := ψ̇, the conversion from NED to Body is given by

η̇ = Rn
b (ψ)ν (2.3)

where Rn
b (ψ) ∈ SO(3) ([Fossen, 2011]), is a rotation matrix from {b} to {n} and

is given by:
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Rn
b (ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.4)

2.4.1 State measurement using camera data

The goal of the visual system is to capture the complete state of the robot, η. The
position [xn yn] can be found by locating the appropriate colour-marker. Each
robot has a distinct color in the middle of the robot body, to locate it’s position.
(e.g. the green marker in Figure 2.7(b)). But, in addition to the position, this
state also includes the rotation angle ψ. To capture this, every robot is marked
with two colour-markers. One denotes the position, while the other can be used
to calculate the current angle of the robot. This is illustrated in Figure 2.7, and ψ
can be calculated by:

ψmeasured = atan2(pyellowy − pgreeny , pyellowx − pgreenx) (2.5)

pgreen
pyellow

yn

xn

ψ

(a) Illustration of the two color markers and
how to calculate the measured robot

angle ψ.

(b) The two color markers (green and
yellow) on the robot.

Figure 2.7: Illustration and image of the color markers used on the robot. In this
case, the green is used to measure position, while the yellow is used to calculate the

current angle of robot.
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2.5 Control allocation

In this section, the relationship between the motor inputs and the vehicle dynamics
are derived. This is done to show that with this particular robot, ν is directly
manipulable.

Figure 2.8 gives the structural overview of the robot. It’s equipped with three
motors, marked A,B and C. The motors are bi-directional, and are directly ma-
nipulable. The relationship between the velocity contribution and shaft speed ωi
of one wheel is given by:

vi = ωirwheel, i ∈ {A,B,C} (2.6)

where rwheel is the radius of the wheel, and the positive direction of the shaft
rotation is given by Figure 2.9.

A

B C

yn

xn

30◦
vB

vA

vC
30◦

l

xb

yb

{n}

{b}

r

Figure 2.8: Figure describing the omniwheel

For notational simplicity, let

vx := ẋb (2.7)
vy := ẏb (2.8)

By examining the contribution velocities of each motor,
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vx = 1
3(vB cos 30◦ − vC cos 30◦) (2.9)

vy = 1
3(vA − vB sin 30◦ − vC sin 30◦) (2.10)

r = 1
3l (vA + vB + vC) (2.11)

(l is, as seen in Figure 2.8, the length from the motor to the robot’ center).

By writing on vector-form, and using (2.6)

 vx
vy
r


︸ ︷︷ ︸

ν

= rwheel
3

 0
√

3
2 −

√
3

2
1 − 1

2 − 1
21

l
1
l

1
l


︸ ︷︷ ︸

:=T

 ωA
ωB
ωC


︸ ︷︷ ︸

:=τ

(2.12)

gives
ν = Tτ (2.13)

T ∈ R3×3 is invertible, and by supplying a desired body-velocity vector νd, the
control input vector τ is given by

τ = T−1νd (2.14)

The robot has 3 DOF and 3 control inputs, and by (2.14), the robot is fully actu-
ated.

2.5.1 Motor dynamics and speed restrictions

The motors used on the robots are often called Continuous Servos. They provide
a complete boxed-solution with internal gears, and an easy interface for velocity
setpoint. They are precise, but have a rather slow max rotational speed. The
actual robot will therefore have a maximum travel speed of about 85 mm/s. This
is accounted for in all the tests done on the robots, but most of the simulations
was done before the robots were actually constructed. Thus, for the simulations,
an arbitrary maximum velocity of 1 m/s was used.

Please note that the motors will introduce a small time-constant, but this is as-
sumed negligible.
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Motor

Shaft

ω

Figure 2.9: Motor and positive shaft direction

2.5.2 Control input to rotation speed

The control-input to the motors must be translated from the desired shaft speed
given by the controllers. A simple test-setup where multiple control inputs were
set, and the resulting shaft speed recorded was conducted. The results can be seen
in Figure 2.10. It is seen that the motors have a maximum shaft-speed of about
4.8 rad/s. Further, the relationship is not linear, and a slack is present at zero
speed (that is, at least an input of 4 is needed for the motor to turn). From this
data, a non-linear lookup table was created, using linear regression between the
datapoints. This relationship is used to convert desired shaft speeds to control
inputs for the rest of this thesis.
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Figure 2.10: Relationship between motor control input and resulting shaft speed
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2.6 Observer design

To be able to cope with error-prone measurements and capability for dead-reckoning,
an observer is created. The system equations are repeated for clearence:

η̇ = Rn
b (ψ)ν (2.15)

y = η (2.16)

where y ∈ R3 are the system measurements. These measurements are received from
the camera, where in the example illustrated in Figure 2.7, the green marker is used
to measure xn and yn, while the angle ψ is calculated from (2.5). The observer
equations can be found by copying the dynamics from (2.15) and (2.16):

˙̂η = Rn
b (ψ)ν + Kposỹ (2.17)

ŷ = η̂ (2.18)

where ỹ := y − ŷ and Kpos = KT
pos > 0,∈ R3×3 is a matrix of gains. Note that

the control input ν = Tτ is known. By defining η̃ := η − η̂, the error dynamics
becomes

˙̃η = η̇ − ˙̂η (2.19)
= Rn

b (ψ)ν −Rn
b (ψ)ν −Kposỹ (2.20)

= −Kposη̃ (2.21)

which makes the equilibrium point η̃ = 0 globally asymptotically stable (GAS) by
[Khalil, 2002, Theorem 4.5] since −Kpos is Hurwitz.

To be able to handle dead-reckoning, a corrector-predictor representation of the
non-linear observer are used [Fossen, 2011, Section 11.3.4]. By using Euler integra-
tion, the discrete time corrector-predictor formulation becomes:

Corrector : η̂(k) = η̄(k) + hKpos [y(k)− ȳ] (2.22)
Predictor : η̄(k + 1) = η̂(k) + hRn

b (ψ)ν (2.23)

where h is the sampling time. This structure allows us to disable the corrector
when new measurement are unavailable.
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Program 2.1: Pseudo-code for observer

h = 0 .1 sampling time
η̂ = η0 i n i t i a l s t a t e vec to r

whi l e e s t imat ing

Kpos = hdiag{kpos, kpos, kheading}
i f no new measurement

Kpos = 03×3
end i f

y = camera measurement
η̂ = η̄ +Kpos [y− η̄]
ν = Control system update
η̄ = η̂ + hRn

b (ψ)ν

2.7 The robot as a base for kinematic control

As we have seen in the previous sections, the dynamics of the robot are very simple.
This can be advantageous, as it is now possible to create advanced cooperative
control laws, that operate on the kinematics of the robot. To see this, assume
now that η, the robot’ position and attitude in {n}, is measurable and known. By
keeping r = ψ = 0, the rotation matrix Rn

b (ψ) in (2.3) reduces to I3. Even with
uncertainties in T, this can be accomplished with a controller. Then, the following
is valid:

ẋn = vx (2.24)
ẏn = vy (2.25)

This means that we are able to develop pure kinematic controllers, and still be
able to test them in experiments. Since the purpose of this paper is to look at
kinematic controllers, these robots provides an excellent platform for experiments
and simulations.
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Agent-behavioural Control

This chapter will present the concept of behavioural control, and will introduce the
method of Null-Space-based Behavioural (NSB) control. The concepts developed
here will be used as a framework to combine the cooperative control objectives
presented in Chapter 4 with other objectives like collision avoidance. As the main
focus of this thesis is on the multi-robot system, the presentation of this topic
may be somewhat brief. The reader is encouraged to consult [Arrichiello, 2006] or
[Antonelli, Arrichiello, and Chiaverini, 2005] for a more detailed perspective.

3.1 Behavioural Control

Most robots today must be designed to work in complex environments, and to be
able to process the incoming sensor data in real time. These environments can be
complex to describe mathematically, and thus it is difficult to create a single control
law that encompasses all available information at once. It would seem like a wise
idea to try to divide the overall objectives of the robot into several sub-problems or
tasks. For instance, instead of an objective like "Move to the desired target without
crashing into anything", one could split it into two objectives describing each goal
separately. In our case, the first objective could be keep a minimum distance to an
obstacle, while the second could be to move towards a target location. Figure 3.1
gives a simple overview of a generic behavioural controller.

The concept of behavioural control concerns how these individual tasks should
be combined to create a single motion output to the robot. In general, one can
distinguish between two classes of behavioural control, which are competitive and
cooperative. In a typical competitive scheme, a simple supervisor selects a single
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task that is active at a given time (dependent on sensor information), and let that
task control the motion of the robot. An example of such a competitive scheme is
the layered control system [Brooks, 1986].

Task 1

Task 2

Task n

Behavioural
control

output

Figure 3.1: A schematic overview of a generic behavioural controller. The
controller specifies how the output from each task should be combined to form a

single motion output to the robot.

In a cooperative scheme, a supervisor uses a weighted sum of the task output. These
weights are typically constants, and can be changed from different sets depending
on the current robot situation. It thus consists of a linear combination of the
output from each task. At a given moment, no task is completely achieved, but a
compromise solution is found [Arrichiello, 2006]. The motor schema is an example
of a cooperative behavioural system, and is discussed in more detail in [Emery and
Balch, 2001].

The reader should note that when discussing behavioural control types classified as
cooperative, it does not have a direct link to the term cooperative control, which in
this thesis is reserved for control algorithms used to control multi-robot systems.
Also, the terms task and objective will be used interchangeably to describe a desired
sub-goal for the system. A task is usually represented by a potential function, and
the overall goal is to get the output to converge to a desired value.

3.2 Introduction to NSB

NSB is an abbreviation for Null-Space Behavioural control. Like the name suggests,
it utilizes the null-space of the task functions to provide a framework for task prior-
ity. The theory is based on [Arrichiello, 2006], and examples of use can be found in
[Antonelli, Arrichiello, and Chiaverini, 2008a], [Antonelli, Arrichiello, Chiaverini,
and Cassino, 2009], [Shiyou et al., 2011] and [Arrichiello et al., 2011].

This framework works by controlling the output of a potential function σ = f(p),
where p ∈ Rp position information, σ ∈ Rm is the task-variable to be controlled,
and f(p) : Rp → Rm. In other use-cases, p can be some other configuration
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parameter. In this thesis, the NSB framework is used to control the position p of a
single agent moving in an environment. Each task consists of a separate potential
function.

The desired value of σ is σd(t) ∈ Rm, and our goal is now to find trajectories of
p(t) which leads to σ−σd = 0. To find the dynamics of σ, we differentiate:

σ̇ = ∂f(p)
∂p v := J(p)v (3.1)

where v = ṗ and

J = ∂f(p)
∂p ∈ Rm×n (3.2)

is the output Jacobian matrix. An effective way to generate desired motion ref-
erences pd(t) from the desired potential function output σd(t) is to act at the
differential level by inverting the mapping in (3.1). To extract a desired agent
velocity vd from this, one can seek the minimum-norm velocity:

vd = J†σ̇d (3.3)

where
J† := JT(JJT)−1 (3.4)

To avoid numerical drift in the integration, [Arrichiello, 2006] suggests a closed-
loop version of the algorithm. By defining σ̃ := σd − σ, the proposed velocity
reference vd is now given by:

vd = J†(σ̇d + Λσ̃) (3.5)

where Λ is a suitable constant positive definite matrix of gains, and σd is the
desired task-variable value.

3.3 Multiple tasks

For a single task, (3.5) will make the agent tend to the minimum of the potential
function f(p). For multiple tasks, a merging of different task output velocities
is needed. As discussed earlier, several schemes have been used with success in
the past, including the competitive layered-scheme and the cooperative motor-
scheme. NSB is a cooperative scheme that lets the designer set priorities on tasks,
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where the lower-priority tasks only can move in the null-space of those with higher
priority.

First, choose the i’th task velocity as

vi = J†i (σ̇i,d + Λiσ̃i) (3.6)

For illustrative purposes, lets assume that task i represents a task with priority i,
i.e. task i = 1 represents the highest priority task. By defining Ni ∈ Rp×p, the
nullspace of task i as

Ni := I− J†iJi (3.7)

Multiple tasks can be merged together by letting lower priority tasks move in the
null-space of those with higher priority by, e.g. this 3-task example:

vd = v1 +N1[v2 +N2v3] (3.8)

A geometrical interpretation of a two-task example is given in Figure 3.2. Here,
the two task outputs v1 and v2 are combined to create the NSB output vd (blue
vector). This is done by projecting the lower-priority task v2 onto the null-space
of v1, resulting in the net output vd = v1 +N1v2.

N1v2v1

v2

vd

Figure 3.2: A geometrical interpretation of a two-task example, and the
corresponding output from the NSB controller. v2 is projected onto the null-space

of v1, and the net output is given by the blue vector vd.

To control which task should be active at a given time, the term task manager is
often used in the litterature. In [Arrichiello, 2006] it is used to describe a mechanism
that sets the priority of the tasks dynamically, and is also able to deactivate a task.
In this thesis, a slightly different scheme is introduced. That is, rather than having
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a single task manager, each task is supplied with it’s own activation mechanism that
is able to activate or deactivate that task. The result is much the same as with the
single task manager, but a higher form of modularity is achieved. Figure 3.3 shows
a structure overview of a 3-task example. The task activator decides the state of the
switch depending on the input velocities and optionally other sensory information.
A concrete example of a task activator is given for the obstacle avoidance task in
Section 3.5.1.

Task 3

Task 2

Task 1
vd

I− J†1J1

Task activator

Switch

I− J†2J2

Task activator

Switch

Figure 3.3: An overview of a typical NSB controller. Here there are three tasks
present, and their output velocity is labeled Task 1-3. The task activators use the
switch to set its own state as active or not. Active tasks are propagated up the

chain, and the final output velocity is given in the figure as vd.

3.4 Stability analysis

To analyse the convergence of the combination of all tasks, one can look at the
convergence of each task individually. By definition, if every task reaches its desired
value, the global task is completed. By examining the differential relationship
between σ1, the highest-priority task, and the supplied output vd in (3.8), we get
from (3.1):

σ̇1 = J1vd (3.9)
= J1v1 (3.10)

since JiNi = 0. By further inserting the task velocity v1 from (3.6):
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σ̇1 = σ̇1,d + Λ1σ̃1 (3.11)

the equation can be reformulated as (remember, σ̃1 = σ1,d − σ1)

˙̃σ1 = −Λ1σ̃1 (3.12)

which proves exponential stability of the highest priority task. [Arrichiello, 2006]
further proves the stability of the lower priority task, which holds as long as they
do not conflict with higher priority tasks. It is for this reason the task-manager is
employed, as it is sometimes necessary to deactivate a task if it is no longer needed,
to make sure a lower priority objective is fulfilled.

3.5 Choosing task functions

The robots in this thesis should be designed to move in an environment with static
obstacles. Further, there is need for a simple "move to target location" task. In the
following sections, these task-functions will be specified.

3.5.1 Obstacle avoidance

The ability to avoid obstacles is of crucial importance to maintain the integrity
of the vehicle. Thus, this task is usually ran with the highest priority. This task
should be activated when an obstacle is present near the agent, and the agent is
moving towards the obstacle. The goal of the task is to keep the agent at a safe
distance do ∈ R>0 from the obstacle located at p0 ∈ Rp, thus creating a circle
around the obstacle location. The task potential function can be chosen as:

σo = ||p− p0|| ∈ R (3.13)

with the corresponding desired value

σo,d = do (3.14)

The Jacobian of this task can be calculated according to (3.1)



3.5. Choosing task functions 25

Jo = ∂

∂p ||p− p0||

= (p− p0)T

||p− p0||
∈ R1×p

(3.15)

According to (3.5), the task-velocity output can be calculated as

vo = J†oλo(do − ||p− p0||) (3.16)

where λo is a suitable positive gain.

It is worth noticing that the agent-to-obstacle vector r̂ can be defined from the
Jacobian as r̂ := JT

o . Then, one can geometrically conclude that the null-space of
this task function will be movement along the tangential line of the circle (with
radius do) centered at po. Thus,

No = I− J†oJo = I− r̂r̂T (3.17)

3.5.2 Reach target location

Given a target location pt ∈ Rp, one can simply choose ([Arrichiello, 2006]):

σt = p ∈ Rp (3.18)
σt,d = pt (3.19)

The resulting Jacobian becomes

J = I ∈ Rp×p (3.20)

As before, the task-velocity is, by (3.5):

vt = Λt(pt − p) (3.21)

where Λt ∈ Rp×p is a positive definite diagonal matrix of gains.
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3.5.3 Implementational aspects and task activation

The direct and simple formulation of the obstacle avoidance task has several prac-
tical drawbacks that must be addressed. These are somewhat mentioned in [Ar-
richiello, 2006], and are repeated here with a proposed solution.

First, if the obstacle avoidance task had been active all the time, it would force
the robot to linger on the circle around the obstacle. Since this task has the higher
priority, and has a natural conflict with the second task, some rules for activation
must be set. An intuitive point of view is that the task should only be active if a
collision is actually imminent. This can be formulated by checking if the current
velocity vector coincides with the obstacle circle. Figure 3.4 shows an illustration
of a robot located at p, and its current velocity (output from lower priority task) is
towards the target at pt. By calculating the angle θ between the velocity vector and
the obstacle center, d̂c can be calculated by simple trigonometry. The activation
rules can thus be expressed mathematically as:

The obstacle avoidance task is only active if

d̂o < do, and (3.22)

|θ| ∈
[
0, π2

)
(3.23)

Further, the obstacle-avoidance task is only activated if the robot is within a given
range of the obstacle (to model limited sensor range). If not otherwise specified,
the sensingrange is assumed to be 1.5 times the radii of the obstacle for the rest of
this thesis.

Lastly, a problem occurs if the current velocity is pointed directly at the obstacle
center. At this point, the Null-space of the obstacle is orthogonal to the velocity,
and the resulting output is zero. In the real world, natural sensor noise would
prevent such a situation to occur. Therefore, this problem is not considered nor
discussed in this thesis. In either case, it would be easy to check for this special
condition and simply push the robot slightly in the orthogonal direction to fix the
problem.

A small comment must be made to the move to target-task. As can be seen from
(3.21), this is a simple proportional controller. If the target is far away from the
robot, the output velocity would be equally large. But, most robots have a natural
speed restriction. Thus, if not otherwise noted, the output of this task function
is saturated to the speed of the robots in use. For this thesis, as discussed in
Chapter 2, this restriction is set to 1m/s in simulations and 85mm/s for the actual
robots.
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θ

po − p

pt − p
p

pt

do

d̂o

obstacle

po

Figure 3.4: An overview of the calculations needed to check if the obstacle-task
should be active. By looking at the current velocity vector of the robot (pt − p in

the figure), it can be checked if a collision is imminent.

3.6 Single-agent simulation

To illustrate the capabilities of the NSB behavioural control, a simple test envi-
ronment is simulated. Consider the vehicle modelled in Chapter 2. This is a pure
kinematic system, and the resulting first-order dynamics is

ẋ = u (3.24)

where u ∈ R2 is the control (velocity) input, and x ∈ R2 is the vehicle position.
The simulated environment consists of a single static obstacle, located at po =
[1.3,−0.3]T. The initial position of the robot is x(0) = [0, 0]T. The target position
is pt = [3, 0]T.

The goal is to reach the target position while avoiding the obstacle. Since it is
vital to keep the robot’ integrity, the obstacle avoidance task is chosen as task 1
with the highest priority. To reach the target location is the second task. The task
activator is implemented according to the discussions in Section 3.5.3. This makes
the obstacle avoidance task active only if a collision is imminent. An overview of
the controller is given in Figure 3.5.

Further, the following controller parameters were used for optimal performance,
found by trial and error:
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Obstacle
avoidance

target
vt

vo
u

Reach

I− J†oJo

Task activator

Switch

Figure 3.5: An overview of the controller used in the simulation example. The
NSB controller consists of two tasks; obstacle avoidance and reach target location,

where the first is of highest priority.

do = 0.5
λo = 1
Λt = diag{8, 8}

3.6.1 Results

The results of the simulation can be seen in Figure 3.7. The blue line illustrates
the trajectory of the robot. The line is dashed when the obstacle avoidance task is
deactivated, and is solid when it is active. One can see that the vehicle starts to
turn away from the obstacle when it’s getting close. Further, when the obstacle is
no longer in the way, the obstacle-task is deactivated and the vehicle moves directly
towards the target.

Figure 3.6 illustrates how the controller works when the robot reaches the obstacle.
The length of the vectors are drawn for illustrative purposes, and vary in length
depending on the control parameters for each task. In the figure, x is the current
robot position. It is seen that the output from the goto-target task (vt) points inside
the obstacle circle, and the obstacle task is thus active. The obstacle avoidance
output vo points towards the obstacle surface. vt is then projected onto the null-
space of vo, and the net output u = vo + (I2 − J†oJo)vt is illustrated by the blue
arrow.
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vo

vt

(I2 − J†oJo)vt
u

Obstacle

x

Figure 3.6: An illustration of the NSB control output. In this figure, the robot
located at x must avoid the obstacle marked with a dashed red line. vt is projected
onto the null-space of vo, and the net output u steers the robot around the obstacle.
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Figure 3.7: Illustration of the path taken by the vehicle in the simulation when
avoiding an obstacle. The blue line illustrates the vehicle trajectory. The line is

solid when the obstacle-avoidance task is active, dashed otherwise.
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3.6.2 Discussion

As this proof-of-concept has shown, the NSB framework allows tasks to be fulfilled
quite well. But, for each new task that is implemented, care must be taken when
designing the activator for that task. Failure to do so will result in unexpected
behaviour, and it can sometimes be hard to test for every possible case that a
certain exception might occur. Multiple simulations should be set up to test these
cases. The task activator used in this simulation have been tested under various
conditions during development to ensure that the requirements are met.

The reader should note that the path taken around the obstacle is continuous,
there is no oscillary behaviour. This is an important aspect concerning real-life
usages. Further, it is seen that the path is not necessary optimal with respect to
distance traversed. But it can be argued that if the sensor range was set to infinite
(that is, the obstacle avoidance task can be active regardless of distance to that
particular obstacle), the controller can be tuned to achieve nearly optimal paths.
Further investigations of optimality concerning path length is beyond the scope of
this thesis, as the main motivation for usage in this project is more focused on the
usability of the NSB framework it selves.

3.7 Single-agent experiment

To further verify the proposed solution, the test is repeated with an actual robot. In
this experiment, we consider a single robot operating in a static environment. The
goal is for the robot to reach a predefined desired location, while avoiding a known
obstacle. The camera continuously sends location data for both the robot and the
obstacle position. Internally on the robot, the observer introduced in Section 2.6
is used to smooth the data, while a simple moving average over the last 5 samples
are used on the obstacle location data.

The behavioural controller is illustrated in Figure 3.5. Here, obstacle avoidance is
chosen as the task with the highest priority, while reaching the target location is
secondary. Further, the angle is regulated to zero by a simple P-controller:

rd = −kpψ (3.25)

where kp ∈ R>0. In this experiment, kp = 5. Also note that before τ =
[ωA ωB ωC ]T is applied to the motors, it is transformed to motor speeds as de-
scribed in Section 2.5.2. The rotation matrix Rbn(ψ) is used to transform the
velocities u in the NED-frame to the body-frame. This makes the behavioural
controller consistent with the one used in the simulations. The controller runs at
10 Hz.
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The rest of the set-up are done to match the simulation in the previous section
as close as possible. Some parameters have been changed for the best perfor-
mance:

do = 0.3 (3.26)
λo = 1 (3.27)
Λt = diag{0.5, 0.5} (3.28)

Behavioural
Controller
(Figure 3.5)

Observer data

u
Rbn(ψ)

Angle

T−1
νd τ

Controller
r

Figure 3.8: Illustration of the controller scheme used in the one-robot example.
The black bar represents a vector concatenation.

3.7.1 Results

The results of the test can be viewed in Figure 3.9, where the blue line illustrates
the path taken by the robot. Further, the solid line shows where the obstacle
avoidance task is activated. The task is activated when the robot approaches the
obstacle, and starts to avoid it. It is seen that when the robot has a clear path to
its target, the task is deactivated. The robot reaches its desired position.

By comparing these test results with the one obtained through simulations Fig-
ure 3.5, it is seen that the behaviour of the robot is pretty similar to that of the
simulation. The main difference is the way the robot approaches the obstacle. In
the simulations, the approach is more smooth, while in the test the robot starts
avoiding the obstacle more directly. There are multiple reasons for this, the main
ones are different control parameters and the fact that the simulation was run
with a smaller sampling time (100 Hz for simulation). The reader should also
note that the simulations are not designed to be numerically comparable with the
experiments, but to compare overall behaviour.
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Figure 3.9: The results from the experiment. The trajectory (blue line) is shown
as the vehicle avoids the obstacle. The line is solid when the obstacle-avoidance

task is active, dashed otherwise.

3.7.2 Discussion

This test has proven that the use of the NSB control framework is feasible to use
on actual robots. It has shown that the code generated from Simulink can be used
to create such controllers. Further, it has shown that the whole interconnected
system with the camera and BeagleBone hardware works. The robot was able
to circumvent the obstacle, as it was supposed to. The ability to log data and
directly import it to Matlab for plotting of results have proven to be a very effective
workflow.

3.8 Summary

In this chapter we have looked at the properties of a behavioural control system,
and the concept of Null-Space-based Behavioural (NSB) control was introduced.
We have specified and investigated two interesting task functions, namely obstacle
avoidance and a task to reach a desired location. The stability of the overall frame-
work was proved, and the properties of the task activator was discussed.

To illustrate the properties of the framework, a simple simulation was presented.
It contained a single robot moving in an environment with a single static obstacle.
By using the described controller, the robot was able to circumvent the obstacle
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and reach the target location. This test was repeated on an actual robot, which
also was able to complete its task.

The framework developed here will provide a basis for the behaviour of each indi-
vidual robot in the multi-robot system introduced in the next chapter. The system
is put together in Chapter 5.





Chapter 4

Cooperative Control: The
Formation Problem

Cooperative control is an emerging field in advanced robotics. In essence, it’s
the task of making multiple agents (e.g. several robotic arms, vehicles, etc) work
together towards a single goal. By working together, multiple agents can often
complete a task faster (like mapping a seabed), or the fact that the group can
function even though one robot breaks down. Also, multiple cheap agents could
outperform a single expensive agent.

Multiple types of cooperative systems can be formulated. The easiest to visualize
would be the formation problem; where multiple agents should stay in a relative
formation to reduce drag forces or cover a larger ground area. Other types of
objectives could be target escorting, flocking, guarding and cooperative load trans-
port.

Depending on the system, it is often desired to create distributed feedback laws.
That is, the system should not be dependent on a master agent with global infor-
mation. The agents should only have to rely on sensory information gathered by
it selves and neighbour agents.

The proposed solution to the formation problem is a passivity based approach,
presented in [Bai et al., 2011]. The authors presents a framework that can be
utilized in a range of cooperative control problems. This includes, but is not limited
to, agreement problems and formation problems. Also, in [Ihle et al., 2007], the
framework is used for synchronized path-following for marine vessels.
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4.1 Problem statement

This section is based on [Bai et al., 2011].

Consider a group of N agents, labeled i = 1 . . . N . Each agent consist of a vector
xi ∈ Rp to be coordinated with the rest of the group. The agents are able to
communicate with each other, and the communication-topology is modelled by an
undirected graph G. Thus, all communicationlines are bi-directional. Further, it
is assumed that the G is connected and has ` links. The analysis is simplified
by assigning an orientation to G, by considering one of the nodes to be at the
negative end of the link. A brief introduction to some basic graph-theory is given
in Appendix A.

The objective is to develop feedback-laws that guarantee the following behaviour:
[Bai et al., 2011, A1), A2)]

A1) Each agent achieves in the limit a common velocity vector v(t) ∈ Rp pre-
scribed for the group; that is

lim
t→∞

|ẋi − v(t)| = 0, i = 1, · · · , N (4.1)

A2) If agents i and j are connected by link k, then the difference variable zk

zk :=
∑̀
l=1

dlkxl =
{
xi − xj if k ∈ L +

i

xj − xi if k ∈ L −i
(4.2)

converges to a prescribed compact set Ak ⊂ Rp, k = 1, · · · , `, where dik is
defined as in (A.1)

The target set Ak will have different forms depending on the application. If every
agent has some xi that should reach agreement, Ak will be the origin (for example
when every agent should match phases). Ak can also be designed to make the
agents move to specified relative distances, hence creating a formation.

It is important that the target set Ak is feasible. To develop a condition to this,
some concatenated vectors are introduced:

x := [xT
1 , · · · , xT

N ]T ∈ RpN

z := [zT
1 , · · · , zT

` ]T ∈ Rp`
(4.3)

D can be partitioned in terms of its column vectors:

D = [D1| · · · |D`] (4.4)



4.2. The design steps 37

Further, the definition (4.2) can be rewritten as:

zk = (DT
k ⊗ Ip)x (4.5)

z = (DT ⊗ Ip)x (4.6)

which means that z is restricted to be in the range space R(DT ⊗ Ip) of x [Bai
et al., 2011]. Thus, for the objective A2 to be feasible, the target sets Ak must
satisfy

{A1 × · · · ×A`} ∩R(DT ⊗ Ip) 6= ∅ (4.7)

4.2 The design steps

[Bai et al., 2011] suggests a two-step process, in which the goal is to render the set
Ak in (4.2) asymptotically stable. For each step, the theory is first stated, followed
by applying that step to the system used in this thesis.

4.2.1 Step 1: Internal feedback

Suppose you got a system on the form:

xi = H o
i {τi} (4.8)

The system H o
i describes the input-output dynamics with xi as the output and

τi as the input vector. The goal is to make the system passive from an external
feedback signal ui (to be designed in step 2) to the velocity vector:

yi := ẋi − v(t) (4.9)

where v(t) is a common mission velocity to be achieved by the group, as described
in (4.1).

In practice, this reduces to creating an internal feedback controller τi. The system
with the feedback can often be described by a transfer function, and can be checked
for positive realness which proves passivity ([Khalil, 2002]).

The system should now be on the form

ẋ = Hi{ui}+ v(t) (4.10)
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H o
i

τi xi +
Hi

ui yi

v(t)

∫ xi

Figure 4.1: Description of Step 1. The system H o
i is transformed so that Hi is

passive from ui to yi

where Hi, should be designed to be strictly passive.

Hi can be either a dynamic system, or a static non-linearity. If it is dynamic, it is
assumed to have the form

Hi :
{
ξ̇i = fi(ξi, ui)
yi = hi(ξi, ui)

(4.11)

where yi is the velocity error and ξi ∈ Rni is the state variable of subsystem Hi.
Both f() and h() are assumed to be C2 functions such that

fi(0, ui) = 0⇒ ui = 0 (4.12)

and
hi(0, 0) = 0 (4.13)

As stated, Hi is designed to be strictly passive with a C1, positive definite, radi-
ally unbounded storage function, making the origin of Hi globally asymptotically
stable.

If Hi is a static block, it is restricted to be of the form

yi = hi(ui) (4.14)

where hi : Rp → Rp is a locally Lipschitz function satisfying

uT
i yi = uT

i h(u) > 0 ∀ui 6= 0 (4.15)

thus making it strictly passive by [Khalil, 2002, Definition 6.1].
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4.2.2 Internal feedback for the omniwheeled robot

As discussed in Chapter 2, the mathematical model for the omniwheeled robots
can be expressed as

ẋi = τi (4.16)

where xi ∈ R2 is the i’th robot position, and τi ∈ R2 is the control input, namely
the velocity. Note that this is a pure kinematic expression.

By designing the internal feedback as

τi = ui + v(t) (4.17)

the resulting transformed system is simply

Hi = h(ui) = ui (4.18)

Indeed, yi = h(ui) = ui satisfies (4.15) since uT
i ui > 0 ∀ui 6= 0, rendering the

transformed system strictly passive from ui to yi.

4.2.3 Step 2: External feedback

Before the suggested control-law is presented, let us first prepare the setup given
in Step 1. Each of the agent’ dynamics i ∈ {1, . . . , N} can be concatenated to form
a single block diagram. By post-multiplying x with DT ⊗ Ip, and from (4.6), we
get the structure in Figure 4.2, where

y := [yT
1 , · · · , yT

N ]T ∈ RpN (4.19)
u := [uT

1 , · · · , uT
N ]T ∈ RpN (4.20)

This will be the basis for the feedback structure.

[Bai et al., 2011] then suggests employing a feedback term of the form

ui = −
∑̀
k=1

dikΨk(zk) (4.21)

where the zk’s are the difference-variables introduced in (4.1), and Ψk : Rp → Rp
are nonlinearities to be designed. Note that ui is implementable with local in-
formation, due to the fact that dik is zero for nodes not communicating on that



40 Chapter 4. Cooperative Control: The Formation Problem

DT ⊗ Ip
z1N ⊗ v(t)

+
ẋ

∫
∫ x

H1

HN

y u

Figure 4.2: A block diagram showing the structure of the multi-robot system
before the feedback is introduced.

particular link k. So, intuitively speaking, the feedback-term applies an input ui
as a sum of some function Ψ on the difference-variables zk for each link.

To illustrate this feedback in the diagram, note that the ui’s in (4.21) can be
expressed as

ui = −[di1Ip| · · · |di`Ip]Ψ (4.22)

where
Ψ := [ΨT

1 , · · · , ΨT
` ]T ∈ Rp` (4.23)

Then, the concatination of ui for each i in (4.22) can be written as

u = −(D ⊗ Ip)Ψ(z) (4.24)

By inserting this into Figure 4.2, and rearranging of the blocks containing DT ⊗
Ip and the integral1, we get the structure given in Figure 4.3. Please note the
appearance of ż, as (4.6) implies that ż = (DT ⊗ Ip)ẋ.

4.2.4 Design criteria for the feedback

The goal for this feedback structure is to render the entire system in Figure 4.3
passive. The feedback-path from u to y is passive by design, and the feedforward
path from ẋ toj u can be recognized as a symetric interconnection as in B.1. Thus,
Ψk has to be designed such that the system is passive from ż to Ψ .

1Remember that both of these blocks are linear, and thus can be re-arranged freely.
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1N ⊗ v(t)
+
ẋ

DT ⊗ Ip

∫
∫ z

Ψ1

Ψ`

Ψ
D ⊗ Ip

−u

−
H1

HN

y

ż

Figure 4.3: A block-diagram of the interconnected multi-robot system with
feedback. Hi is the transformed dynamics from Step 1.

One can accomplish this by designing the nonlinearities to be on the form

Ψk(zk) = ∇Pk(zk) (4.25)

where Pk(zk) is a non-negative C2 function. For application to the general problem,
[Bai et al., 2011] lists several additional restrictions for Pk and Ψk. But, for the
formation problem discussed in here, we can design Pk to have the property

zT
k∇Pk(zk) = zT

k Ψk(zk) > 0, ∀zk 6= 0 (4.26)

which ensures that the other requirements are met.2 This makes Ψk a monotone
function, belonging to the sector [0,∞], and thus making it passive from zk to
Ψk(zk).

4.3 Stability results

To investigate the stability of the system, and to assess whether that stability
implies that the objectives A1 and A2 in (4.1)-(4.2) are met, the equilibrium points
of the interconnected system in Figure 4.3 are first investigated.

As stated in [Khalil, 2002, Chapter 6.5], the closed loop state model will consist
of the dynamic states from both subsystems, that is (z, ξ). First, (4.11) to (4.13)
combined with the strictly-passive property, ensures that the equilibrium point
ξ = 0 only occurs when u = 0, thus making (D ⊗ Ip)Ψ(z) = 0. Further, ξ = 0 ⇒
y = 0, which implies that ẋi = v(t),∀i ∈ {1, . . . , N}, which again implies by the
construction of zk that żk = 0. Last, from (4.5), z ∈ R(DT ⊗ Ip).

2As a remark, this criteria also implies that Ψk(0) = 0.
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To sum up, the set of equilibria is given by

E =
{

(z, ξ)| ξ = 0, (D ⊗ Ip)Ψ(z) = 0 and z ∈ R(DT ⊗ Ip)
}

(4.27)

We must now check that these equilibrium points are inside the target sets Ak.
ξ = 0 ⇒ y = 0 is the goal defined in (4.1), so that is ok. Further, we want the
set of equilibrium points of (D ⊗ Ip)Ψ(z) = −u = 0 imply that zk ∈ Ak. It turns
out, that for the agreement problem (where the goal is for the agents to agree on
a value, i.e. zk = 0) this holds when Ψk is designed as in (4.26). This is due to the
fact that since z ∈ R(DT ⊗ Ip) and Ψ(z) ∈ N (D⊗ Ip) imply that z and Ψ(z) are
orthogonal of each other, which by (4.26), is only possible if z = 0.

The passivity and thus asymptotic stability of agreement problem is formally proved
in [Bai et al., 2011]. In the next section, we will use this result for the formation
problem.

4.4 Application to the formation problem

Corollary 2.2 in [Bai et al., 2011] states how the formation problem can be viewed
as a shifted agreement problem, where, instead of Ψk(zk), we utilize Ψ(zk − zdk).
Remember, zdk is the desired value for the link k.

It is further shown that

Pk = δk
2 |zk − z

d
k |2, δk ∈ R>0 (4.28)

which leads to

Ψk(zk) = δk(zk − zdk) (4.29)

satisfies (4.26) and makes the target set Ak a.s.

This leads to the final feedback term ui, and is used for the rest of this thesis:

ui = −
∑̀
k=1

dikδk(zk − zdk) (4.30)
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4.5 Feasibility of the target sets Ak

For the feasibility criteria (4.7) to hold, certain restrictions must be set to the
desired formation structures zdk . It can be seen that zdk must lie in the range space
of (DT ⊗ Ip) for (4.7) to hold.

This means that given a desired formation xf := [(xf1 )T, · · · , (xfN )T]T ∈ RpN ,
where xfi ∈ Rp, i = 1, . . . , N is the i’th’s agent position in the formation relative
some common center, the target sets Ak can easily be calculated as

zd = (DT ⊗ Ip)xf (4.31)

where zd := [(zd1)T, · · · , (zdN )T]T ∈ Rp`

For instance, for a simple triangle-formation as in Figure 4.4, the agents should
reach the formation specified by (4.32) and Figure 4.4.

−1 0 1

−0.5

0

0.5

x

y

 

 

Agent 1

Agent 2

Agent 3

Figure 4.4: The triangle formation used in this example.

xf1 = [−1.0, −0.5]T

xf2 = [1.0, −0.5]T

xf3 = [0.0, 0.5]T
(4.32)

If the agents are connected as in Figure 4.5, the resulting target sets are as fol-
lows:

A1 =
{
z1|z1 = zd1 = [2, 0]T

}
A2 =

{
z2|z2 = zd2 = [−1, 1]T

}
A3 =

{
z3|z3 = zd3 = [−1, −1]T

} (4.33)

For ease of notation, xf and zd may in some places be displayed with their ma-
trix counterpart, Xf and Zd, where Xf := [xf1 | · · · |x

f
N ] ∈ Rp×N , and Zd :=
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1 2

Link 1

3

Link 2Link 3

Figure 4.5: Communication graph for the formation example. Note that the
graph is connected, and every node has the other two nodes as neighbours.

[zd1 | · · · |zd` ] ∈ Rp×`. If not otherwise specified, the target sets Ak are always con-
structed from zdk as in (4.33).

4.6 Simulations

In this section we will simulate the system with N = 4 agents, operating in the
plane (p = 2). The agents are modelled as the omni-wheels described in Chapter
2, with the differential equation

ẋi = τi (4.34)

Step 1 is trivially completed by setting as in 4.18 with τi{ui} = ui. The agents
have will have initial positions on the y-axis:

x0
1 = [−0.5, 0]T

x0
2 = [0.5, 0]T

x0
3 = [1.5, 0]T

x0
4 = [−1.5, 0]T

(4.35)

To investigate the asymptotic behaviour of the system with different communi-
cation schemes, two separate simulations will be run. For both simulations, the
target formation is a square with sides equal to one meter:
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xf1 = [−0.5, −0.5]T

xf2 = [0.5, −0.5]T

xf3 = [0.5, 0.5]T

xf4 = [−0.5, 0.5]T

(4.36)

Also, in both simulations, δk = 1 for k = {1, . . . , `}. Further, the common velocity
v(t) of the group, as described in (4.1) is set to zero.

The simulations can be summarized as follows

• Formation simulation 1: Simple connection.
Here, the agents are connected like a square, where each agent has two neigh-
bours. This gives a total of four links.

• Formation simulation 2: Full connection
Every agent is now connected to every other agents, giving a total of six links.

The goal of both tests are the stability of the interconnected system, and that the
agents reach the target sets.

4.6.1 Formation simulation 1: Simple connection

As can be seen in Figure 4.6, this test uses a simple connection scheme, where
every agent has two neighbours.

1 2

Link 1

34

Link 2

Link 3

Link 4

Figure 4.6: Communication graph for Formation Simulation 1. Notice that the
graph is connected, and each agent has two neighbours.
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Setup

The Incidence matrix D for this test is as in (4.37).

D =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 (4.37)

According to (4.31), this leads to the following desired values for the zk’s:

zd1 = [1.0, 0.0]T

zd2 = [0.0, 1.0]T

zd3 = [−1.0, 0.0]T

zd4 = [0.0, −1.0]T

(4.38)

Results

As can be seen from Figure 4.7, the trajectories of each agent converge to the
desired formation. The agents 1-4 are represented by the colors blue, red, green
and purple, respectively. The dashed lines illustrates the trajectory of a particular
agent, while the small circle is the final position. The grey box illustrates the links,
and is denoted with the final value of zk. By comparing the final formation with
the graph presented in Figure 4.6, we see that the agents have the same positions.
This is done to illustrate the links. By comparing the final link values with the
desired values given in (4.38), we see that the controller successfully achieves the
desired formation.

4.6.2 Formation simulation 2: Full connection

In this simulation, every node is a neighbour of every other node, resulting in the
communication topology illustrated in Figure 4.8.

Setup

The communication pattern results in the following incidence matrix:
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Figure 4.7: Results of Formation Simulation 1. The dashed lines shows the
trajectory of each agent, with the circle as the final position. The grey box

illustrate the links and the annotations denote the final link values zk. And finally,
the initial and final position of the centroid is marked with a cross.

1 2
Link 1

34

Link 2

Link 3

Link 4

Link 5

Link 6

Figure 4.8: Communication graph for Formation Simulation 2. The graph is
connected, and every agent is a neighbour to every other agent, thereby “full

connection”.
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D =


−1 0 0 1 −1 0
1 −1 0 0 0 1
0 1 −1 0 1 0
0 0 1 −1 0 −1

 (4.39)

According to (4.31), this leads to the following desired values for the zk’s:

zd1 = [1.0, 0.0]T

zd2 = [0.0, 1.0]T

zd3 = [−1.0, 0.0]T

zd4 = [0.0, −1.0]T

zd5 = [1.0, 1.0]T

zd6 = [1.0, −1.0]T

(4.40)

Results

Figure 4.9 shows the trajectory of each agent. The agents 1-4 are illustrated by
the colors blue, red, green and purple, respectively. The circle represents the final
position, while the dashed line is the trajectory of that particular agent. It is seen
that the formation is reached. The links are not displayed in this figure, as there
is too many of them to be viewed without interfering with the other elements, but
the formation is indeed reached. The centroid of the formation is illustrated by a
red cross, where the final position is slightly bellow the origo.
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Figure 4.9: Results of Formation simulation 2. The dashed lines shows the
trajectory of each agent, with the circle as the final position. And, the initial and

final position of the centroid is marked with a cross.
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4.7 Formation experiment for four robots

In this section, a test similar to the simulation done in the previous section will
be conducted. In this setup, four robots will attempt to stabilize in a square-like
formation.

4.7.1 Setup

The four robots are connected by a total of 6 links, like illustrated in Figure 4.8.
The goal is for the robots to reach a formation described by a square with sides
equal to 0.4 m, which according to (4.31), leads to the following desired values for
the zk’s:

zd1 = [0.4, 0.0]T

zd2 = [0.0, 0.4]T

zd3 = [0.4, 0.0]T

zd4 = [0.0, −0.4]T

zd5 = [0.4, 0.4]T

zd6 = [0.4, −0.4]T

(4.41)

The robots are initially placed in a straight line, as pictured in Figure 4.10(a).

(a) Initial positions of the four robots,
before test starts.

(b) Final positions of the four robots.

Figure 4.10: Images from the camera, taken before and after the tests. Robots
1-4 are coloured green, magenta, red and blue, respectively.



4.7. Formation experiment for four robots 51

4.7.2 Results

The results of the test can be seen in Figure 4.11. The dashed lines are each robot’
trajectory, while the small circle represents final position. Robots 1-4 are coloured
green, magenta, red and blue, respectively. It is seen that the robots reach the
desired formation. The reader should note that the centroid of the formation is
shifted a little bit to the right, due to drifting, as there have been no effort to
control the position if the centroid in this test.
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Figure 4.11: Results of the four-agent experiment. The dashed lines shows the
trajectory of each agent, with the circle as the final position.

4.7.3 Discussions

When comparing the results of this test to the simulation results in Figure 4.9,
the similarities are striking. They both reach the formation in a somewhat similar
manner, with minor deviations to the trajectory. Most of this deviations come from
tuning and the oversimplistic model used in the simulation.
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4.8 Summary

As can be seen, in both of the simulations and the experiment, the agents converge
to the prescribed target sets Ak, and the formation is achieved. Both the shape and
orientation of the group is stabilized. What is interesting to note, is the difference
in trajectories for the two simulations (Figure 4.7 and Figure 4.9). In the second
simulation, the agent seems to move more directly to the desired position, while
in the first it can be seen that two of the agents moves in an arc towards the goal.
This shows the impact the communication pattern has on the system. Consider
agent 1, in the lower left corner (blue). For test 1, it has two neighbours, agents
2 and 4. Initially, the target for link 1 is reached, but this is not the case for link
4. Thus, the agent will move to the left. When agent 4 starts to reach its target
position relative to agent 3 (green, upper right corner), agent 1 will move back
right.

For simulation 2 (and the experiment), agent 1 has three neighbours. z1 is satisfied,
but both z4 and z5 has a deviation from the desired value. But since the error in
the x-axis is somewhat symmetric for these links, the agent will move directly
downwards to satisfy the deviation on the y-axis.

It can be concluded, that by increasing the number of links, the trajectories will
generally tend to be more optimal in the sense of distance travelled.

We have also seen that the transition from simulation to implemented controllers
on the robot has been successful. The code generated from Simulink Coder presents
a unique way to speed up the development cycle, and we verified that it functions
properly.

The reader should note that no attempt has been made in this section to control
the centroid of the formation. As can be seen in both tests, it moves somewhat
downwards. In the next chapter, the formation control techniques derived in this
chapter will be combined with the single-agent behavioural control presented in
Chapter 3, and the common mission velocity vector v(t) will be utilized to control
the centroid position.



Chapter 5

Combining NSB with
Cooperative Formation
Control

In the previous chapters, cooperative control and behavioural control have been
studied. Simulations and experiments have proven their stability properties sepa-
rately, but it is now time to put them together. Collision avoidance will be added
to ensure the integrity of the robots.

In this chapter, two simulations and two tests will be run. In the first setup, two
agents will be considered. The agents should reach a prescribed formation, without
colliding with each other. This simulation is intended to show the behaviour of the
proposed control-scheme.

Finally, a more complex environment is introduced in the second simulation and
test. This will consists of four (two for the test) agents, moving in formation in the
presence of static obstacles.

5.1 Collision avoidance

The problem of collision avoidance can be solved by imagining each agent as an
obstacle. Although the agents are moving and are thus not static, this simplification
will work since both agents involved in a collision course will deviate from it’s path
to avoid collision. This allows the framework described in Chapter 3 to be used
with only small changes. Most notably, the agents will transmit their position to
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the other agents, and updating their map of the environment. Consider p as the
agent position, and pc the position of the closest agent. Then, the task Jacobian
is simply

Jc = ∂

∂p ||p− pc||

= (p− pc)T

||p− pc||
∈ R1×p

(5.1)

According to (3.5), the task-velocity output vc can be calculated as

vc = J†cλc(dc − ||p− pc||) (5.2)

where λc is a suitable positive gain and dc is the minimum distance between each
agent. Further, the task is activated by the same rules as those for obstacle avoid-
ance.

5.2 Cooperative control as a task function

The behavioural control schemes based on NSB introduced earlier gives a quite
useful framework for incorporating multiple tasks. That is, the output ui from
the formation control can be considered as a separate task. This task will have
the lowest priority, as it is more important to keep the integrity of the agents
(collision) than to stay in formation. When considering an environment without
obstacles (that is, only collision avoidance and formation control), the controller
can be connected as in Figure 5.1. Notice that the internal feedback controller
Hi along with the mission velocity v(t) is added at the end of the chain. For this
scheme to work, we must assume that the addition of the mission velocity will not
result in a collision. Since the mission velocity affects every agent in the system,
this is a reasonable assumption. But, one could image situations where it would
happen, for instance if formation was broken by some other factors. When applying
the mission velocity, we must then make sure that the formation is kept.

The reader should also note, that for the omniwheels described in this thesis,
τi = ui + v(t), making it possible to use ui + v(t) as input to the NSB framework
directly. This enables the mission velocity to also be checked for possible collisions,
and this approach is discussed in Section 5.6.

As stated, the collision avoidance task is only activated when a collision is imminent.
In this setup, it translates to when ui is pointing towards another agent, and
the vector is directed towards a point inside a circle with radius dc around that
agent.



5.3. Simulation: Two agents 55

Collision
avoidance

control

Position
data

Mission
velocity

v(t)

Internal
Feedback

ui

τi
vc

vd

Formation

I− J†cJc
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Figure 5.1: Interconnected controller with formation control and obstacle
avoidance. The Task activator analyses the input flows, and enables the switch

only if a collision is imminent.

5.2.1 Stability analysis

This will be a brief qualitative proof that such an interconnection is stable. As-
suming first that the desired formation xf does not violate the minimum distance
dc in the collision avoidance control, then it is easily seen that when the collision
control is deactivated, we are left with the same structure as earlier. When the
collision task is activated, the NSB framework guarantees the stability of each task
as long as they don’t violate each other. As per our first assumption, this makes
the interconnected controller stable.

5.3 Simulation: Two agents

In this simulation, two agents are considered. Their task functions consists of
formation control and collision avoidance. The initial positions are given by

x10 = [0, 0]T

x20 = [1, 0.1]T
(5.3)

The agents are connected by a single link, which gives the obvious D = [−1, 1]T.
Further, the formation is specified by
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xf1 = [1, 0]T

xf2 = [0, 0]T
(5.4)

That is, agent 1 should be at a distance of 1 along the x-axis from agent 2. The
behavioural control parameters for collision avoidance are dc = 0.2 and λc = 1.
Finally, the agents are modelled by the pure kinematic dynamics described in
Chapter 2.

In this simulation, the only objective is to reach the desired information without
collisions, and thus the mission velocity v(t) ≡ 0. As always, the agents are assumed
to have knowledge of it’s neighbour position.

5.3.1 Results

The final trajectory of the two agents can be seen in Figure 5.2. Agent 1 is coloured
blue, while agent 2 is red. The dashed lines is the trajectory, while the circles rep-
resent final position. Figure 5.3 shows a complete time-series of the simulation,
with several situations included. Note in Figure 5.3(c), how the formation con-
trol output u would violate the collision constraint, and thus making the collision
avoidance task active. This creates an output vd which continuously moves the
agent along the circle arc.
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Figure 5.2: The trajectories and final position of the two agents in the simulation.
Agent 1 is coloured blue, while agent 2 is red.
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(a) Initial position of agent 1 (blue) and
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(b) Point of first intersection, where the
collision avoidance task is activated.
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(c) Here, the agents are moving away from
each other, to avoid collision.
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(d) The agents are no longer on collision
course, and the collision avoidance task

is deactivated.
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(e) Final position.

Figure 5.3: A time-series of the simulation. The small circles are agents’ 1 (blue)
and 2 (red) position, while the dashed lines shows its trajectory. The larger blue

circle around each agent is the minimum distance that must be kept. The
nomenclature used on the velocity vectors are those presented in Figure 5.1.
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5.4 Experiment: Two agents with collision avoid-
ance

The simulation done in the previous section is now repeated on the robots. We
consider two agents, whose objective is to reach a predefined formation without
collisions. The controller structure is identical to the simulation, with the two
tasks being collision avoidance and formation control. Collision avoidance is the
highest priority task. In this test, the radii for collision avoidance is dc = 0.3, as
the robots are approximately 30 cm wide. As before, the two agents are connected
by a single link, resulting in D = [−1, 1]T.

In this test, the robots should form a line with 80 cm between the two robots on
the x-axis:

xf1 = [−0.8, 0]Tm

xf2 = [0, 0]Tm
(5.5)

5.4.1 Results

The trajectory and final position of the two robots can be seen in Figure 5.4.
The formation is reached, and by studying Figure 5.5, it is seen that the robots
avoided the imminent collision. Specifically, at Figure 5.5(c), we see that the
collision is detected and the controller steers the robot away. The annotation vd
represents the resulting desired direction while vt is the output from the formation
behaviour.

5.5 Discussions

As can be seen, by using the control scheme introduced in this chapter, the agents
reach the desired formation without collisions in both simulations and real-life tests
on the robots. The results also show a high degree of similarity in results from the
simulations, compared with the tests. Although it was a simple example, it shows
the power and flexibility of the NSB framework, and how the cooperative control
schemes can be extended to provide useful functionality. The reader should of
course note that the agent in this thesis have very simple dynamics. Although
both frameworks work well with more complex models 1, some more care has to
be taken on tuning of the parameters. The kinematic output could also be used

1For instance, [Bai et al., 2011, Chapter 6] uses the passivity based cooperative control schemes
on Lagrangian systems, and the NSB framework can be used on the output velocity as before.
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Figure 5.4: Test results. Agent 1 is coloured blue, while agent 2 is red. The
formation is reached.

to create reference trajectories for low-level controller to a more complex system.
By limiting the controller to the case of pure kinematics, a direct approach to the
addition of the obstacle-avoidance problem can be done, and this is the focus of
the next sections.

5.6 Adding obstacle avoidance: Direct approach

In the previous section, the behavioural control for collision avoidance was added
to the coordinated agents, to provide a method , to keep the integrity of the robots.
Further, we now wish to add obstacle avoidance to the controller. The direct ap-
proach here, would be to continue to build up the NSB chain, as seen in Figure 3.3.
The problem with this approach is that if the internal controller is created at the
end of the chain, as in Section 5.2, the mission velocity would not be included in
the NSB framework. This is a reasonable approach when considering only collision
avoidance, as the mission velocity affects all agents, but can’t ordinarily be done
with obstacle avoidance. The mission velocity must also be checked for possible
obstacle collisions!

When considering the omniwheels discussed in this thesis, it was seen in Chapter 2,
that the agents have a pure kinematic dynamics. And, it was seen in Section 4.2.2,
the internal low-level controller was a simple addition of the formation output and
mission velocity. That is, τi = ui+v(t). In this special case, τi is simply the velocity
reference. This enables us to use feedback τi directly as input to the behavioural
control part of the controller, rather than at the end as illustrated in Figure 5.1.
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(a) Initial position of robot 1 (blue) and
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(b) The robots are moving towards each
other to reach the prescribed
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0.4 0.6 0.8 1

0.4

0.6

0.8

1

x [m]

y
 [
m

]

Experiment at time: 3.60s

v
d

v
t

v
d

v
t

(c) A possible collision was
detected, and both robots starts
to circumvent the other robot.
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(e) The collision is avoided, and the
robots move towards their goal.
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Figure 5.5: Timeseries of the test. The robots 1 and two are coloured blue and
red, respectively. The dashed lines shows the trajectory, while the small circles
represents current position. The larger blue circle in (c) and (d) represents the

minimum safe-distance of each agent.
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This creates the structure seen in Figure 5.6, valid for omnirobots discussed and
tested here.
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Figure 5.6: Specialized kinematic controller for the kinematic omniwheels. In this
setup, each agent has it’s own obstacle avoidance task. The rules for activation are

the same as discussed in Chapter 3.

5.7 Simulation with obstacle and collision avoid-
ance

In this simulation, four planar agents will be considered. The agents should avoid
colliding with each other, as in the simulation in the previous section. But in
addition, the agents should avoid static obstacles while at the same time following
a mission velocity v(t).

But, care must be taken when including a mission velocity v(t) since such a velocity
might violate obstacle constraints. Thus, the added mission velocity must also be
checked for possible obstacle collisions. This is done by the controller introduced
in the previous section, by Figure 5.6.

The mission velocity is created to make agent 1 tend to the position (x, y) = [10, 0].
This is done by adding a separate controller for agent 1, whose output is distributed
to the other agents. The controller is similar to the one introduced in Section 3.5.2,
but is repeated here for completeness:
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v(t) = λt(x1 − pt) (5.6)

where x1 ∈ Rp is agent 1’ position, pt ∈ Rp is the target location, and λt ∈ R>0 is
a positive gain.

As discussed in Chapter 2, the robots cannot move faster than 1m/s. This restric-
tion is present in the simulated model, but should be included in the controller as
well. Specifically, the output of the goto-target task is saturated at 1m/s. See also
the discussions in Section 3.5.3.

Further, the simulation consists of two separate states. The first state, Initializa-
tion, is where the agents reach the desired formation. In this state, the mission
velocity is v(t) = 0. When the formation is reached, the system is in Move state.
Here, the mission velocity in (5.6) is activated. The state diagram is shown in
Figure 5.7.

Initialization

v(t) = 0

Move

v(t) = λt(p1 − pt)

Formation
reached

Figure 5.7: State diagram of the four-agent simulation. In the Initialization state,
the agents move to the desired formation. When it is reached, the mission velocity

is activated.

The agents initial positions are given by:

x10 = [2, 2]T

x20 = [0, 0.5]T

x30 = [1, 1]T

x40 = [−1, −1]T

(5.7)

and the desired formation is a square with sides equal to 2:

Xf =
[

0 2 0 2
0 2 2 0

]
(5.8)

The gain λt in (5.6) is chosen as λt = 1. Further, λc = 4, λo = 2. The minimum
agent distance is dc = 0.4 as before, and the obstacle radius are do = 0.5.

Two static obstacles are present, their locations are [7, 2.3]T and [6, −0.1]T.
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5.7.1 Results

The final position and trajectory of the four agents can be seen in Figure 5.8.
Further, Figure 5.9 shows the time-series of the simulation, captured at certain
interesting situations. In both figures, the agents 1-4 are coloured as blue, red,
green and purple, respectively. In Figure 5.9(b), we see that agent 1 (blue) and
agent 2 (red) must deviate from their current path to avoid a collision. Further, the
figures clearly shows that the agents reach the desired formation (Figure 5.9(c)),
and stays close to this formation even when some of the agents have to move around
an obstacle (Figure 5.9(e)). In the last frame, Figure 5.9(f), we see that the agents
have reached the final position, and that the formation is kept.
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Agent simulation at time: 20.01s

Figure 5.8: The final position and trajectory of the simulation.

5.7.2 Discussion

As the results show, the proposed kinematic controller makes the agents have the
desired behaviour. They maintain the formation, while at the same time void-
ing collisions and obstacles. But the weaknesses of this direct approach must be
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agents.
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(b) As the agents move to the desired
formation, agent 1(blue) and
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course, to avoid a collision.
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(c) The agents have reached the
desired formation.
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and avoids it.
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(f) Agent 1 reaches its desired position
pt.

Figure 5.9: Timeseries of the simulation. Agents 1-4 are coloured blue, red, green
and purple, respectively. The dashed lines shows the trajectory, while the small

circles represents current position.
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addressed. Mainly, to be able to use obstacle avoidance as described in 5.6, the
velocities must be directly manipulable by τi = ui + v(t). This will generally not
be the case. Further, there is a noticeable ”bump“ in agent 1’s trajectory in Fig-
ure 5.8. This happens because the other agents are moving to avoid the obstacle,
and thus agent 1 moves to adjust its position in the formation. The same effects
can be observed for all four agents.

When dealing with agents with more complex dynamics, it could be desired to
let the group of agents move as a single unit rather than avoiding the obstacles
individually. This is further discussed in Chapter 6.

5.8 Experiment: Two robots with obstacle- and
collision avoidance

The test from the above section is now repeated on the actual robots. In this test,
two agents are considered, as opposed to four in the previous section (the main
reason for this is the lack of space in the lab). The robots are equipped with the
same interconnected controller as introduced in Figure 5.6. Since there now are
only two agents, the desired formation is a vertical line:

Xf =
[

0 0
0 0.4

]
m (5.9)

that is, robot 2 shall position it selves 40 cm above robot 1. There is one static
obstacle present in the environment, who’s position is tracked by the camera and
sent to the robots. As before, the robots will first gather to the correct formation
in the first state, and then move to the target location. The target location is
also tracked by the camera. Figure 5.10 displays the robots (robot 1 has the green
marker, robot 2 the magenta), the obstacle (red) and target location (blue).

As in the previous section, the mission velocity is created by robot 1, and dis-
tributed to the other agent(s).

5.8.1 Results

A timeseries of the results of the test can be seen in Figure 5.11. Figure 5.11(a)
shows the initial position of the robots. The blue and red circle represents robot
1 and 2, while the cyan marker is the target robot 1 must reach. The black circle
is the static obstacle that must be avoided. In Figure 5.11(b), the robots have
reached the formation and robot 1 starts to move towards the target. It’s mission
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Figure 5.10: Image of the robot’ position before the test starts. The two robots
are pictured together with the target (blue) and the obstacle (red).

velocity is sent to robot 2. Further, it is seen that robot 2 avoids the obstacle, and
the group stabilizes at its final position in Figure 5.11(f).

5.8.2 Discussions

The results show that the proposed controller meets its design objective. The group
of robots reach the desired formation, and the group moves towards the target
position. It is thus seen that the direct approach of adding obstacle avoidance is
feasible for the robots discussed in this thesis. The test also proved the capabilities
of the hardware platform, as it was possible for agent 1 to distribute it’s mission
velocity to the other agents in real time.
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(a) Initial position of the robots.
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(c) Robot 2 is approaching the obstacle,
and activates its obstacle avoidance

task.
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(d) Robot 2 has successfully circumvented
the obstacle.
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(e) Both robots starts to approach the
final position.
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(f) Final position for both robots. Target
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Figure 5.11: Timeseries of the test results. Agents 1-2 are coloured blue and red,
respectively. The dashed lines shows the trajectory, while the small circles

represents current position. The cyan marker is the target location, while the black
circle is the obstacle to be avoided.
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5.9 Summary

In this chapter, it was seen that the output from the formation controller could
be used as a task-function in the NSB framework. This made it easy to combine
several group functions, and made it possible for the agents to avoid collisions and
obstacles while still keeping formation. For this purpose, two different controllers
was presented. The first combined the formation control problem with collision
avoidance. This controller was tested in both a simulation and in a real-world test,
and it was seen that this controller could be used for agents with more complex
dynamics than the kinematic robots considered in this thesis. Further, a pure
kinematic controller that included obstacle avoidance was presented. It allowed
the agents to simultaneously avoid both obstacles and collisions, at the cost of a
less generic controller. But, the output of this kinematic controller could be used
to generate reference signals to be used by e.g. a guidance controller.

The controllers were verified by both simulations and tests on robots.

In the next chapter, a different approach to the problem is presented. Here, the
goal is to let the group of agents move as a single unit around obstacles, rather and
avoiding them individually.



Chapter 6

Search and Rescue

In this chapter, a search-and-rescue mission will be simulated. The mission consists
of five agents, which should be able to hold several different formations, dependent
on the current mission state. The position of the object of interest is for the
purpose of this simulation known in advance, but the simulation will contain the
same elements as a more realistic search situation. Further, the concept of an agent
leader is introduced.

6.1 Mission summary

The mission consists of five stages, each has to be completed before the next one. A
simple state-space diagram is illustrated in Figure 6.1. Bellow follows a sequential
description of each state.

1) Initialization This is the first state. Here, the agents are scattered after de-
ployment, and needs to reach a formation designed to minimize drag in the
next state. The desired formation is a v-shape, with the leader agent in the
middle.

2) Move After the formation is reached, the agents should move as a single group
towards the search area. Along the way, there will be static obstacles present.
The agents should avoid these obstacles as a single group, that is, they should
not break formation. Rather, the entire group should move together, to
ensure that no collisions with obstacles occur.

3) Init search When the search location is reached, the agents should scatter to
a search formation. This is a single vertical line, with a distance of 1 m
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InitializationMove

Init search Search Enclose

Reach
search
location

Reach
formation

Reach
formation

Object
found

Figure 6.1: A state-space diagram of the Search and Rescue mission.

between each agent.

4) Search When the search formation is achieved, the agents should move along
a horizontal line, illustrating a search for a target. In this mission, the target
is static, and is considered found when agent 1 reaches its position.

5) Enclose After the target has been found, the agents should enclose the target
with a circle-like formation.

The reader should note that the handling of technical problems or re-tries of search
procedures are considered out of scope of this thesis.

The formations for the states Move, Search and Enclose are given in Figure 6.2(a)
- Figure 6.2(c), respectively.
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Figure 6.2: Formation specifications for the Search and Rescue mission. The
colour-labels displayed in Figure 6.2(a) is valid for all three formations.
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6.2 Agent leader

For this mission, agent 1 will presume the role of a group leader. Mainly, this
means that u1 ≡ 0 forcing the formations to be reached around the leaders current
position. Further, all mission velocities is created by agent 1, and is distributed
to the other agents. It is assumed that every other agent is connected to the
leader.

The mission states that the agents should avoid collisions with each other, as well
as being able to move around static obstacles as a single group. Also, we want to
avoid the specialized controller structure presented in Section 5.6, as we want this
procedure to be valid for agents with more complex dynamics. The solution will
be to let the mission velocity of agent 1 to be created by a separate behavioural
control, specifically designed to let the group avoid the obstacles.

Collision
avoidance

Position
data

Mission
velocity
v(t)

Obstacle
avoidance

target
Goto

Distribute to
other agents

u1 ≡ 0

τi
vc

vd

I− J†cJc

Task activator

Switch

I− J†oJo

Task activator

Switch

Internal
feedback

Figure 6.3: Illustration of the leader’ control system. It consists of two separate
NSB blocks, whose output is merged by the passivity based framework. The upper
part of the diagram is shared with the other agents, except that instead of u1 ≡ 0,
the other agents receive their ui from the formation control, as seen in Figure 5.1.
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The complete controller is presented in Figure 6.3. It is seen that two separate
NSB-blocks are present. The top contains the collision avoidance and formation
control tasks. But as this controller is intended for the leader, u1 ≡ 0 since we want
the other agents to form the formation around this leader agent. The bottom part
of the controller generates the mission velocity v(t). It contains two tasks, collision
avoidance and a task function to go to a target location. These tasks are the same
as those presented in Section 3.5, and the obstacle avoidance task is activated by
the rules discussed in Section 3.5.3. The resulting mission velocity v(t) is used by
the low-level controller, and is distributed to the other agents.

The obstacle avoidance task works by calculating the distance from the robot to
the obstacle. Since the leader now should keep the entire group away from the
obstacle, this distance should be calculated from the barycentre of the robots.
This can simply be calculated by

xbary = 1
N

N∑
i=1

xi (6.1)

where xi ∈ Rp is agent i’s position. Also, the size of the current formation has to
be taken into account. By defining dfarthest as the distance from the barycentre
to the agent farthest away (in the current formation), the obstacle-avoidance task
can be altered from (3.16) to this:

vo = J†oλo(do + dfarthest − ||xbary − xo||) (6.2)

where xo ∈ Rp is the closest obstacle.

6.3 Simulation setup

The initial positions of the agents are given by

X0 =
[

1 0 1 −1 −1
1
2

1
2 2 −1 0

]
(6.3)

where X0 = [xT
1 , . . . , x

T
5 ]T ∈ Rp×N . These initial positions are somewhat random,

and should illustrate that the agents may be deployed by different means. The
group are set to be fully connected, that is, every agent is a neighbour to every
other agent. This is not a necessary assumption for the controller to work as
expected, but as seen in Section 4.6, it may improve agent’ trajectories.
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The search is initiated when the leader reaches the search area, which is given by
the position (x, y) = [15, 0]T. The target is located at (x, y) = [18, 0]T. The gains
for formation control and collision avoidance are δk = 1 ∀k and dc = 4, respectively.
The minimum inter-agent distance are dc = 0.2.

Further, the control parameter for the leader’s mission velocity creation, the gain
Λt to control the convergence of the goto-target task from Section 3.5.2 was chosen
as Λt = diag{2, 2}. The saturation of the velocity output of this task was lowered
to 0.7m/s, to allow agents to ”catch up“ if they fell behind. As for the obstacle
avoidance task, each obstacle has a diameter of 0.5, giving do = 0.5.

There are two static obstacles in the area. They are at located at [6, 1]T and
[10, −0.5]T.

6.4 Results

Figure 6.4 shows the simulation results, and displays the trajectories and final
position of each agent. Agents 1-5 are displayed with the colors blue, red, green,
purple and light-blue, respectively. The dashed line shows the trajectory up until
the current position, which is displayed by a circle. As can be seen, the group
avoids the obstacles, and surrounds the target. Figure 6.6 shows the time-series
of the simulation, highlighting certain interesting situations. Note for instance in
Figure 6.6(c) how the whole group avoids the obstacle, while keeping formation.
Further, the change of formation in Figure 6.6(e) is successful.

Figure 6.5 shows the velocity of the leader over the simulation time. There are
five distinct peak-values in the x-direction velocity. Firstly, it is seen that the
maximum velocity is saturated by the controller output to 0.7m/s as discussed
earlier. The first peak occurs after the initialization state is complete; here the
formation is achieved. The agents then tends in the positive x-direction. The two
following peaks represents the times when the group encountered an obstacle. The
last positive peak occur when the agents are performing the search. The negative
spike occurs when the leader has found the target, and moves slightly backwards.
For velocity information for all five agents, see Figure C.2.

6.5 Discussion

The goal of the simulation was to see if the agents could maneuver in a formation
to the search area, find a target, and enclose it with a new formation. All while
avoiding collisions with other agents and obstacles. As can be seen form Figure 6.4,
the mission was successfully carried out.
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Figure 6.4: The trajectories of the agents in the mission simulation. The dashed
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0 10 20 30 40
−1

−0.5

0

0.5

1
Agent 1 − velocity in x−direction

v
x

time [s]

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4
Agent 1 − velocity in y−direction

v
y

time [s]

Figure 6.5: The velocity of the leader agent in x- and y-direction, respectively.



76 Chapter 6. Search and Rescue

−1 0 1
−1

0

1

2

x

y
Agent simulation at time: 0.00s

(a) Initial positions of all five
agents.

0 1 2
−1

0

1

x

y

Agent simulation at time: 2.01s

(b) The minimum-drag formation
is reached, and the system
enters the Move-state.

4 5 6

−1

0

1

x

y

Agent simulation at time: 10.02s

(c) The leader distributes mission
velocities to make the group

avoid the obstacle.

9 10 11

0

1

2

x

y
Agent simulation at time: 21.00s

(d) The second obstacle is also
avoided.

14 15 16

−1

0

1

2

x

y

Agent simulation at time: 31.02s

(e) The group has reached the
search area, and have now
formed a search-formation.

17 18 19

−1

0

1

x

y

Agent simulation at time: 40.02s

(f) The target was found, and the
group surrounds it with a

circle-like formation.

Figure 6.6: Timeseries of the mission simulation. The agents 1-5 are coloured
blue, red, green, purple and light-blue, respectively. The circle represent position at

a given time, while the dashed lines indicate the trajectory.
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The behavioural control part of the leader controller activates the obstacle avoid-
ance task when the group comes close to the obstacles, and they are on collision
course.

It should be noted that the formation remains constant, even though they are
moving around the obstacles. As the goal was to minimize drag, it would desired
to rotate the formation so it points in the forward direction. This is not consid-
ered further in this thesis, but would be an important aspect when this is to be
implemented on the robots.

The simulation results shows the power of the passivity framework. It allowed
the adoption of complex missions to be carried out, and it had the flexibility to
introduce the concept of a group leader. And although the controller mainly works
on the kinematic level, the framework easily allows more complex dynamics to be
introduced. This has to do with the requirements for the strictly passive internal
feedback that is needed. As long as the controller can be made, the framework
guaranties asymptotic stability of the formation problem.

In this simulation, it was assumed that every agent was a neighbour to every other
agent. As stated earlier, the only requirement is that the connection graph is
connected, and that every agent had access to the mission velocity v(t).

The number of agents in this simulation, five, is set somewhat at random. The
framework could easily be used on a larger number of agents. Also, by creating
sub-nodes in the system, missions could be carried out with several squadrons, each
containing a subset of agents, which worked together. It should be noted that the
number of calculations needed for the formation problem is proportional to each
agents number of neighbours.





Chapter 7

Conclusion and Closing
Discussions

The goal of this thesis was to investigate the use of a cooperative control system to
control the behaviour and formation of a multi-robot system. By carefully inves-
tigating and discussing each part of the controller separately, it was put together
to form a complete controller capable of making the agents avoid collisions with
each other and obstacles, while moving in formations. The results was verified by
simulations and experiments, thus combining advanced control theory with prac-
tice.

First, the mathematical model for the robots was developed. The robots are planar
vehicles, designed to have holonomic dynamics. It was showed that the robot
dynamics could be described by pure kinematic equations, and that further allowed
the controllers to be tested at a kinematic level.

The methods for behavioural control was introduced, along with the Null-Space
based Behavioural control (NSB) framework. This framework allowed predefined
tasks to be assigned a priority, and guaranteed stability of the overall goal as
long as lower priority tasks didn’t conflict with each other. For the purpose of
this thesis, two important task functions were chosen. These described the goals
for collision and obstacle avoidance, and how to move a robot towards a target
location. Simulations and experiments were conducted to illustrate the properties
of the framework.

The formation problem was solved by using a passivity-based solution to the agree-
ment problem. This allowed the creation of a decentralized cooperative controller,
capable of bringing the group of robots (agents) to a specified relative formation.
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By creating a strictly passive internal feedback for the system, the passivity-based
approach allows the control of complex dynamics. This include both Newtonian
and Lagrangian systems. The impact of the communication topology was inves-
tigated by performing two simulations, where it was shown that the agents had
improved convergence rate when more communication links was present.

To combine the behaviour of obstacle and collision avoidance with the formation
controller, the formation output was chosen as a separate task in the NSB frame-
work. The obstacle-avoidance task was altered to provide collision avoidance be-
tween each agent, and a simulation and an experiment was done to prove it’s
functionality. To introduce obstacle avoidance, two methods was proposed. The
first took advantage of the simple kinematic dynamics of the omniwheels, and ap-
plied a direct approach to the problem by stacking the tasks in the NSB framework.
Since no low-level controller is required, the common mission velocity could easily
be included in the chain of tasks and checked for possible collisions.

When a low-level controller is required, this thesis proposes using a leader-agent to
create mission velocities that steers the entire group around obstacles. As mission
velocities applies to every agent in the group, it does not need to be checked for
inter-agent collisions as long as the formation is kept. In this structure, the leader
uses an additional NSB controller to generate the mission velocity. To test this
setup, a Search and Rescue mission was simulated. In this simulation, five agents
including one leader successfully navigated in an environment with static obstacles
while holding a minimum-drag like formation. Further, when the object of interest
was reached, the formation was shifted to a circle to enclose the target.

The output of the kinematic controllers presented in this thesis could also be used
to generate references for other control systems, e.g. a guidance system for marine
vessels. Although this topic is not discussed in detail in this thesis, it could be an
interesting topic for future research.



Appendix A

Graph Theory

This chapter gives a brief introduction to basic graph theory. Although the source
of this material is listed in [Bai et al., 2011], this is standard theory found in many
textbooks.

A.1 Formal definition of a graph

A graph G is an abstract representation of a set V of nodes, connected by links
E. These links may either be directed or undirected, and describes which direction
information can flow between the nodes. A directed link (i, j) is an incomming link
to node j and an outgoing link from node i, and is viewed as an arrow from node
i, pointing towards node j. In a directed link (i, j) we denote node i as being on
the negative side of the link, and node j as the positive end of the link.

Node i Node j

(i, j)

Figure A.1: A simple graph, showing the direction of the link (i, j).

If both (i, j) and (j, i) is in E, we combine the link to an undirected link, and is
displayed as a bi-directional arrow.

We say node i is a neighbour of node j if the link (i, j) exists in the graph G.
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The graph G is called undirected when it only contains undirected links, otherwise
it is a directed graph.

An undirected graph is called connected if there exists a path from any one node
to another.

A.2 Graph incidence matrix D

For an undirected graph, we may assign an orientation to G by considering one
of the two nodes of a link to be the positive end. Further, we denote the set L +

i

(L −i ) of links for which node i is at the positive (negative) end.

Denote ` as the number of links in G, and let N be the number of nodes. We then
define the N × ` incidence matrix D of an undirected graph G as

dik :=

 +1 ifk ∈ L +
i

−1 ifk ∈ L −i
0 otherwise

(A.1)

For example, consider the graph in Figure A.2(a). It has two links, (1, 2) and (2, 3).
The incidence matrix D for this graph is thus given by:

D =


−1 −1
1 0
0 1
0 0

 (A.2)

It can be seen that the i’th row dictates the links going in (+1) and out (-1) of
node i, and the k’th column shows for which two nodes the link k is connected to.
The incidence matrix for Figure A.2(b) is given in (A.3).

D =


−1 −1 0
1 0 −1
0 0 1
0 1 0

 (A.3)
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1 2

Link 1 (1,2)

34

Link 2 (1,3)

(a) Example graph with two links.
1 2

Link 1 (1,2)

34

Link 2 (1,4)

Link 3 (2,3)

(b) Example of a connected graph with
three links.

Figure A.2: Two different graphs to illustrate the computation of the graph
incidence matrix.
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Additional Passivity
Theorems

B.1 Symetric input-output transformation

As stated in [Bai et al., 2011];
Lemma B.1. Let the system H in Figure B.1 be passive, and let E be a matrix
with a compatible dimension. Then the system in Figure B.1 is passive from ū to
ȳ.

Proof. Note that uTy = (ETū)Ty = ūTȳ. Thus, the passivity from u to y translates
to the passivity from ū to ȳ.

ET
ū u y ȳ

H E

Figure B.1: Pre- and post- multiplication of a matrix and its transpose preserves
the passivity of H .





Appendix C

Supplementary Figures

C.1 The HSV image format

Figure C.1: Description of the HSV color model. Courtesy wikipedia.org
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C.2 Agent velocities from Search and Rescue sim-
ulation
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Figure C.2: Velocities of Agents 1-5 in both directions. The data is from the
simulation of the Search and Rescue mission in Chapter 6.
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