
Master of Science in Engineering Cybernetics
June 2010
Thor Inge Fossen, ITK
Pål Jacob Nessjøen, National Oilwell Varco

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Determination of Real-Time Positions
of a Seagoing Vessel Based on Real-
Time Video

Stig Hornang

Problem Description
Study the geometry and dynamics of a typical offshore crane scenario and define the requirements
of a real-time prototype system. Investigate the field of computer vision and find algorithms which
are appropriate for the task and develop custom algorithms when needed. Select an appropriate
platform and implement a prototype system which shows proof-of-concept. Analyze the accuracy
of the system by comparing the measurements with the real positions.

Assignment given: 25. January 2010
Supervisor: Thor Inge Fossen, ITK

Abstract

This thesis investigates the possibility of determining the position of a seagoing vessel based
solely on the video streams from multiple cameras. The problem is addressed in relation to
offshore crane operations where there is relative movement between supply vessel and crane
which is mounted on a rig or platform. The thesis starts by describing the offshore crane
scenario and states the required properties of a prototype system. The video analysis starts
by deriving an algorithm for finding the vessel in the video stream. Other algorithms for video
tracking, finding corresponding points and estimating position and attitude of the vessel’s
cargo deck are presented. The system is implemented as a C++ application and is tested in a
downscaled environment with a realistic, wave-simulated ship model. The measured positions
are compared with the real positions and the accuracy of the signals are analyzed.

Preface

This thesis concludes my master’s degree Engineering Cybernetics at the Norwegian Univer-
sity of Science and Technology. This thesis has been a challenging project which has involved
theoretical work and lots of implementation and experimental testing which suits me well.
I would first of all like to thank Pål Jacob Nessjøen from National Oilwell Varco for a very
interesting project. He also provided invaluable help in building the experimental setup and
was a great travel companion to the Offshore Technology Conference in Houston. I would
also like to thank my co-students for contributing with advice and providing a social, but
productive working environment. I would also like to thank the personnel at the institute’s
workshop for building the motion platform, camera mounts and calibration cube at such a
short notice.

NTNU, Trondheim 26.06.2010
Stig Hornang

I

II

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Previous Work . 4
1.3 Contribution . 5
1.4 Abbreviations . 5

2 System Specification 7
2.1 Problem and Scene Description . 7
2.2 Measurement Quality . 9
2.3 Visualization . 10
2.4 Testing Environment . 10
2.5 Hardware . 10

3 Camera theory 11
3.1 Coordinate Systems . 11
3.2 The Pinhole Camera . 11
3.3 Intrinsic model . 12
3.4 Extrinsic model . 15
3.5 Determination of Camera Parameters . 16
3.6 Recovering Real World Coordinates . 17

4 Video Tracking Design 21
4.1 Tracking Initialization . 21
4.2 Single Point Tracking Method . 30
4.3 Selection of tracking points . 32
4.4 Point Correspondence . 34

5 Position and Attitude Estimation 37
5.1 Position and Attitude Representation . 37
5.2 Estimation of 3-D Rigid Body Transformation 38
5.3 Point Set Managing . 41
5.4 Estimating Rinit and Tinit . 43

6 Software Design 45
6.1 Platform Choice . 45
6.2 Overall Design Principle . 47
6.3 Video Capture . 48

III

6.4 Image Processing . 49
6.5 Position Estimator . 50
6.6 Tracking Control . 50
6.7 Concurrent Computing . 52
6.8 Video Display . 54

7 Software Implementation 57
7.1 Development Tools . 57
7.2 Library Utilization . 57
7.3 Multithreading in Qt . 59
7.4 Video Display . 61
7.5 OTC Specific Implementation . 63

8 Experimental Setup 67
8.1 Application Hardware . 67
8.2 Scenario . 69
8.3 Camera Calibration . 72
8.4 OTC Demo setup . 73

9 Experimental Results 75
9.1 Source Data . 75
9.2 Measurement Results . 76
9.3 Heave Precision Analysis . 81
9.4 Real-time performance . 83
9.5 Vessel Independence . 83

10 Conclusions 85
10.1 Future Work . 85

A Motion Platform Kinematics 87
A.1 Constraints . 89
A.2 Platform Attitude and Position . 91

B Application Notes 93
B.1 Class Descriptions . 93
B.2 Used Libraries . 94
B.3 Known Bugs . 95

C Digital Attachments 97
C.1 Matlab . 97
C.2 Src . 97
C.3 References . 97

References 98

IV

List of Figures

2.1 Typical supply vessel and platform. 8

3.1 The pinhole camera. 12
3.2 The CCS and the image plane of the camera. 13
3.3 Position of the image plane relative to the CCS. 14
3.4 The geometry of two cameras viewing the same real world point 18

4.1 The original video image. 22
4.2 Output from the canny edge detector. 22
4.3 The Hough lines projected on top of the output from the Canny edge detector. 22
4.4 Parametrization of an arbitrary line. 23
4.5 Finding Hough-params for a line given two points v1 and v2 on the line. 25
4.6 Rectified Hough lines . 26
4.7 Template for searching for vessel sides with values µ1 = 2, µ2 = 25, σ = 1 . . . 28
4.8 Computation steps in finding the vessel . 30
4.9 Matched lines for a particular data set. 30
4.10 The matched lines projected on the original line set. 30
4.11 The ROI of an image with the matched rectangle. 31
4.12 Rectangle layout with adjustment factors. 33
4.13 Correspondence search polygons. 35

5.1 Illustration of the vessel-fixed reference system and its motion variables. 38
5.2 The relation between the n-frame and the b-frame. 38
5.3 The rotation and translation of a point set. 39

6.1 The interface class VideoSource and its descendant classes. 48
6.2 The image processing classes which work with the actual image pixels. 49
6.3 The position estimator class and its internal structures. 50
6.4 The states and most of the transitions. 52
6.5 The TrackingManager class and the classes it needs access to. 52
6.6 A one-frame computation using threads. 53
6.7 The main processing classes showing the relevant public methods. 54
6.8 The GUI hierarchy. 55
6.9 The UI hierarchy for the video displaying part. 55

7.1 The logos of the used software libraries. 58
7.2 Peak-to-peak estimation example. 64
7.3 UI used at OTC. 65

V

8.1 Processing unit specifications. 67
8.2 A “Sony XCD-U100” camera fitted with a “Fujinon HF16HA-1B” lens. 68
8.3 The scenario used in experimental results. 69
8.4 Scale model of Siem Emerald. 70
8.5 The devices involved in the actuator control. 71
8.6 The motion platform . 71
8.7 Camera calibration cube placed on cargo deck. 72
8.8 The OTC stand. 73

9.1 Measured position. 77
9.2 Measured attitude. 78
9.3 Measurements where a tracking point drifts before it is removed. 79
9.4 Roll measure comparison for regular and sub-pixel tracking. 80
9.5 Heave measure for cargo deck with and without sub-pixel tracking. 82

A.1 The motion platform and its two coordinate frames. 87
A.2 Vectors used in kinematic derivation. 88
A.3 Vectors for actuator top plate position i. 88

VI

List of Tables

7.1 Classes which are accessed from more than one thread. 60

8.1 Camera specifications. 68
8.2 Lens specifications. 69
8.3 Essensial scale model data. 72

9.1 Amount of samples that are within a threshold of 0.001 m. 81

2

Chapter 1

Introduction

In this chapter the motivation for developing a video camera based vessel tracking system for
offshore crane operations is presented. The relevant previous work in the field of computer
vision is briefly investigated. Finally the contribution which this thesis brings to the field of
computer vision and the contribution of experimental data is presented.

1.1 Motivation

Offshore crane operations are challenging because the crane is often hoisting or lowering some
object which is placed on a moving supply vessel. The crane and the vessel have relative
movement due to waves. Extra caution is required from the crane operator in the phase where
an object is lifted or put down on the vessel. Lack of awareness from the crane operator can
damage both the object being lifted, the ship’s cargo deck and the crane due to the dynamic
forces which may be large. Bad weather is one of the main factors which limits the operational
window of crane operations.

Many operations at sea require the knowledge of a vessels position and attitude. A dynamic
positioning system utilizes measurements in at least three degrees of freedom. Such a sys-
tem is able to keep a vessel stationary even in heavy weather. Most supply vessels have
installed a dynamic positioning system and therefore already know its position and attitude.
In crane operations two independent systems are interacting and information from on system
is not available in real-time in the other system without special compatible software, hardware
and wireless communication between the two systems. Considering the variety of commer-
cial dynamic positioning systems installed in supply vessels today, a common communication
platform is cumbersome and costly to install in every ship. Even if a communication platform
is established, not all ships equipped with dynamic positioning systems have measure devices
for enough degrees of freedom to know every position of its cargo deck.

A system which is able to measure a ships position and attitude based on real-time video
from from cameras is therefore an interesting scheme to investigate further. The information

4 Introduction

about the position and attitude can be used in the determination of when to execute a crane
operation. Or ultimately it can be use in heave compensation of the crane actuators.

1.2 Previous Work

A system which base its measurements on video data rely heavily on the science behind com-
puter vision. And most of the relevant previous work is therefore found within this discipline.

Two of the most central tasks in computer vision are object recognition and video tracking. In
video tracking there are different ways of representing the target. The target representation
depends on the tracking method. The most straightforward approach is to represent the
target object as a small image of the object and compare that with the current video frame
by using two dimensional cross-correlation in the region of interest. The position with the
largest correlation match defines the position of the object. The main problem with cross-
correlation is that the spatial (pixel) representation of the object may change due to scale and
rotation. (Comaniciu & Meer 1999) describes a method called mean-shift tracking which uses
the probability distribution of the object as target representation. This removes the spatial
dependence. For color image this is typically represented by a multi-dimensional histogram
along each of the axes of the color space.

A common approach in object recognition is to use edge detection to capture the shape of
an object. The most famous edge detection algorithm is the Canny edge detector (Canny
1986). The captured edges are compared with a previously stored template. Simpler geometric
properties like straight lines and circles can be found by using the Hough-transform (Duda &
Hart 1972) to extract the parameters of the found objects.

Working with 3-D computer vision requires a geometrical camera model which defines the
relation between 3-D coordinates of the captured scene and the position in the camera image.
Most cameras can be described by the pin-hole model which also will be presented in this thesis.
Camera calibration is the task of finding the camera parameters of a particular camera. The
simplest calibration methods are based on direct linear transformation and ends up solving a
linear system. More advanced calibration techniques exists like (Zhang 1999) which estimates
both the geometrical camera parameters as well as lens distortion by viewing a plane from
different unknown orientations. The problem of finding a position in space from the pixel
coordinates is an undetermined problem, but by using two or more cameras the problem can
be solved if correspondent points in multiple cameras are found.

The main problem in 3-D computer vision is to find correspondent points in two or more
cameras. This can be solved by arranging the cameras in a frontal parallel setup and perform-
ing stereo rectification. This reduces the correspondence search to horizontal line (Bradski &
Kaehler 2008). Alternatives are to constrain the search by utilizing known information about
the object to be tracked. Since stereo arranged cameras capture the scene from approximately
the same angle methods like cross-correlation can be used to find corresponding points.

Estimating both position and attitude of a rigid body requires the measurement of at least
three 3-D points. Estimating the translation and rotation of rigid body based on multiple

1.3 Contribution 5

3-D points is often called 3-D rotation fitting. (Eggert et al. 1997) compares four major
algorithms for estimating 3-D rigid body transformation. These algorithms assume that there
are no outliers in the data sets. A method which is targeted at data sets with outliers is the
RANSAC algorithm (Fischler & Bolles 1981).

1.3 Contribution

This thesis investigate the applicability of computer vision algorithms in vessel position and
attitude measurement. Both new and existing algorithms are presented. A special algorithm
which finds the port and starboard edges of supply vessel is derived. The algorithm finds
the lines in an image which best matches the supply vessel edges. The Canny edge detector
and the Hough-transform is used as the first steps in this algorithm. A simple but effective
correspondence algorithm which uses simple geometric assumptions about the captured scene
is derived without the need for stereo rectification, but only basic camera calibration.

The 6 DOF motion estimation is based on previous results by (Kanatani 1994) and (Arun
et al. 1987), but the algorithms are extended to handle dynamic point sets such that continuous
measurements are provided when the tracking properties of the scene changes.

A prototype system is implemented in C++ using multiple open-source frameworks and li-
braries. The implemented application features a user interface which provides easy camera
calibration, source selection and data export and various visualization features. Many imple-
mentation specific aspects are addressed in this thesis and typical performance bottlenecks
when dealing with high-definition video are explained and taken care of. The prototype sys-
tem is tested in a downscaled environment with a wave simulated ship model and the quality
of the measurements are discussed.

1.4 Abbreviations

CCS Camera Coordinate System
WCS World Coordinate System
ROI Region of Interest
UI User Interface
DOF Degrees of Freedom
FOV Field of View
NED North East Down
NOV National Oilwell Varco
OTC Offshore Technology Conference

6 Introduction

Chapter 2

System Specification

The type of system to be specified in this chapter is commonly called a machine vision system
which is an automated system. The automated property is what differs machine vision from
human vision which requires actions taken by a human. In contrast to a human vision which
is very versatile, this chapter specifies a vision system to be used in a limited environment.
With “limited environment” means for instance what scenarios the system is usable in, what
kind of vessels that can be measured and how much user interaction the system requires. A
vision system which handles “everything” is nearly impossible to create. The specifications in
this chapter will narrow the usable area for the vision system, but every aspect can greatly
reduce the complexity of the system.

2.1 Problem and Scene Description

This specification’s starting point is the scene outlined in the 1.1. There are two floating
structures, the supply vessel and the larger platform which has a crane located on it. The
position, ultimately of any point, on the supply vessel’s cargo deck relative to the platform or
rig should be measured. This information must be based only on the video information from
two or more cameras which are located on the crane. The position data must be available in
real-time in the drivers cabin at the crane.

Camera positioning

The crane base is located approximately 50 meters above sea level. The crane is a boom crane
where the crane has three main movements. The crane base can rotate, the angle of the boom
can change and the hook can be lowered and hoisted with a winch. At least two cameras will
be mounted on the crane base and will therefore swing along with it. It is important that
the relative position and view angle between the cameras are fixed at all times. The cameras
position and field of view must not change due to boom angle change. The separation between
the cameras is a compromise between accuracy and the difficulty of finding correspondence

8 System Specification

Figure 2.1: Typical supply vessel and platform.

as will be described in 4.4. The field of view should capture all the positions at sea level
where the crane can or usually position its hook. This means the complete deck area of a
supple vessel which is only a few meters above the sea level. The cameras field of view (FOV)
should overlap as much as possible. Areas that is only covered by one camera is useless for
3-D position tracking.

Marine vessel

The vessel does not need any special markers to be able to be tracked. It is therefore even more
important to specify the characteristics of the marine vessels that frequently visits a platform
or rig. Marine vessels which are involved in lifting operation offshore are mostly supply vessels.
Supply vessel have a significantly large and rectangle shaped deck which covers at least 50%
of the aft area of the vessel. The port and starboard edges are parallel along the deck. The
aft edge is undefined, but sometimes it is as straight and sometimes it is rounded if the vessel
is also an anchor handling vessel.

Scene dynamics

The size and weight of involved structures put a limit on the magnitude of the acceleration
which can be expected since the forces are involved are limited. A large supply vessel has much

2.2 Measurement Quality 9

slower movement than a small boat. Generally when working with large marine structures
a sampling rate of 10 Hz is sufficient for measurement and feedback control. This is a very
low limit compared two industrial robot vision where the velocities and accelerations are a lot
higher and therefore require much higher sample rate. The low sample rate is especially an
advantage related to machine vision where the sampling rate cannot easily be increased due
to limited computer power.

The rotational movement of a marine vessel is called yaw, pitch and roll (SNAME 1950).
Where yaw is the vessels heading and roll and pitch is the longitudinal and transversal angles
of the vessel respectively. The maximum roll and pitch angles which can be expected is of
course dependent on the weather conditions, but angles larger than 15◦ not considered as
relevant. Simulations later in this thesis shows that at least 6 meter significant wave height is
necessary to achieve these angles with a supply vessel that is not positioned in an optimal way.
The relatively small roll and pitch angles are a great advantage for this vision system. Tracking
without rotation is easier to accomplish and the small rotations ensures that approximately
the same area is visible in the video image at all times.

2.2 Measurement Quality

The quality of the measurements put a limit on the usefulness of the measurement signals. For
use in feedback control the signal must be filtered appropriately, must have little or no lag and
have sufficient accuracy. The measurement signal for this system should be of such quality
that only limited improvement of the system would make the measurement signal usable in
a heave compensation feedback loop. This thesis does not cover closing the feedback loop or
cover the dynamics of a crane, but will focus on creating a measurement system based on
video which at later stage could be used in a feedback control.

Nonetheless, here follows some requirements which are a good starting point of the measure-
ment system:

• The sample rate should be at least 10 Hz.

• The accuacy should be less then ±0.1 meters.

• The position of any point on the cargo deck should be available.

• The position measurement must be available and continuous for the complete time of
one lifting operation (one container lift).

• The measurements may be offset with a constant value, but should be correctable by
operator intervention.

• A limited part of the cargo deck may be occluded by swinging cargo without the loss of
measurement signal.

10 System Specification

2.3 Visualization

The measurement data should be visualized in such way that it is clear that the signal repre-
sents the movement of the vessel. Some visualization techniques are:

• Augmented reality.

• 3-D model.

• Graphs

Augmented reality means that the original video image is superimposed with a synthetic image
which follows the movement of the ship. It is not required to create a fully functional operators
UI, but the UI should show the principle of the above techniques. The rest of the UI can be
created as needed for algorithm testing and debugging.

2.4 Testing Environment

The system should be tested in an environment which is similar to the real environment. A
scenario can be scaled down with any factor and will still be visually identical as the real
scene, but there are factors which cannot be scaled. One of them is the gravity acceleration
g. Therefore any natural movement in a small scale environment will not appear realistically
like waves on water. A way of canceling the scale-down effects is to increase the speed of
time which in turn requires higher sample rate. Sample rate is limited by the vision system
and cannot easily be increased. This concludes that testing the system using the natural
movements of a scaled down system is not possible in real-time.

To create a realistic small scale environment the vessel movement must be simulated and
performed by actuators. The details of the simulated environment is covered in detail in 8.2.

2.5 Hardware

The computational demands of machine vision is rather large. If limitations on size, power
consumption and ruggedness of the processing device can be removed, at least for a prototype
system, the processing capabilities for a given price can be maximized. The consumer PC
industry is the main driving force for cheap and high performance computing power today
and it is definitely in this market one will find the highest performance per price. Additionally
the software development on a regular PC platform is very easy compared to embedded system
development with dedicated processing chips. These facts points out that a desktop PC is the
best development platform and target processing unit.

The specific type of cameras that will be used is be treated in 8.1.

Chapter 3

Camera theory

The geometrical properties of a digital camera are needed to define the relation between
position in space and position in the captured image. The simple and well-known pinhole
camera model will be presented. This model will further be used to form a calibration method
and a triangulation method for recovering real world coordinates from pixel coordinates from
two or more cameras. This triangulation is the basis for finding the 3-D position of a point in
space using multiple cameras.

3.1 Coordinate Systems

Two coordinate systems are defined. One is fixed to the camera and is called the camera
coordinate system (CCS). The exact position and orientation of this coordinate system relative
to the camera is defined later. The other coordinate system is the world coordinate system
(WCS). The position and orientation of the WCS can be chosen arbitrarily, but once chosen
it stays fixed relative to the CCS.

3.2 The Pinhole Camera

Ordinary video cameras use lenses to focus rays of light onto a light sensing array of semicon-
ductors which translates light intensities into a digital representation of the light intensities.
The geometry of regular cameras can be approximated by a model known as the pinhole cam-
era model. A pin hole camera is a rectangular box which projects an image of the outside
world on one of the walls by letting light through a small hole in the opposite wall. See figure
3.1. The small pinhole puts a constraint on the incoming rays such that light ray from an
arbitrary point on the outside object will only illuminate the opposite wall at one position.

Using a pinhole camera instead of a camera with glass lenses results that every object will
appear in focus independent of distance. Although this eliminates the focus problem, the

12 Camera theory

pinhole camera has a major drawback in light sensitivity. The light getting through to the
inside of the camera is very limited. A real camera uses a a convex lens to perform the pin
hole effect. By using lenses the light sensitivity of the camera is improved. The pinhole model
will generally model a well focused imaging system (Ma et al. 2003). Because the pinhole
model disregards the focusing needed in a real camera it is assumed that the focus is always
correct.

Figure 3.1: The pinhole camera.

3.3 Intrinsic model

The intrinsic model is related to the geometry between points in the real world and points in
the image plane. The image plane is the position where the sensor chip is placed. In a real
pinhole camera the image plane is placed behind the pinhole. In the model derived here it will
be considered to be in front of the reference point. This is will just be a non flipped version
of the image that would be formed by a regular pin hole model.

A right handed coordinate system for the camera position and orientation will be defined.
This will later on be referred to as the CCS (Camera Coordinate System). The origin of this
coordinate system is placed where the pinhole originally would be positioned. This is also the
position where the lens of a real camera would be positioned. The z-axis of this coordinate
system is defined according to the view direction of the camera and it is also called the optical
axis. The x-axis points parallel to the horizontal edge of the image plane in the direction of
increasing pixel index. The y-axis points parallel to the vertical edge of the image plane and
in the direction of increasing pixel index. The most common way of indexing pixels is from
the top left to the right bottom when viewed in the positive z-direction. This convention will
be used throughout this derivation.

Let (xc, yc, zc) be the coordinates of a point pw. By looking at figure 3.2 an arbitrary point
on the straight line from the origin to the point pw as a function of the z coordinate is
l(z) =

(
xc

z
zc
, yc

z
zc

)
. The image plane is the plane where the a real camera would capture

its image. The interesting point is the x and y-coordinate of the crossing of the line with the
image plane.

The distance from the origin to the image plane is known as the focal length f . The coordinates
in the image plane is found from l(f) =

(
xc

f
zc
, yc

f
zc

)
. The basic equations for mapping a

real world coordinate expressed in the CCS xc, yc, zc to the image plane where subscript p

3.3 Intrinsic model 13

Figure 3.2: The CCS and the image plane of the camera.

denotes the coordinates in the image plane therefore becomes

xp = f
xc
zc

(3.1)

yp = f
yc
zc

(3.2)

It is convenient to express this relation as a matrix computation, but (3.1) and (3.2) are not
linear mappings. At first the mapping can be defined as the linear operation with f and the
division by zc as a separate operation.

[
xp
yp

]
=

1

zc

[
f 0
0 f

] [
xc
yc

]
(3.3)

Homogeneous coordinates are introduced by adding the zc-coordinate as the third coordinate.
To obtain the real coordinates of the image plane the division has to be done separately. The
following is defined to describe the homogeneous coordinates

X = zc ·xp (3.4)
Y = zc · yp (3.5)

XY
zc

 =

f 0 0 0
0 f 0 0
0 0 1 0

xc
yc
zc
1

 (3.6)

Next, the mapping from the image plane to the actual digital image plane will be defined.

14 Camera theory

Figure 3.3: Position of the image plane relative to the CCS.

A digital camera has a light sensitive chip which is an array of rectangular sensor elements
which is connected to each pixel in the resulting image. The term resolution defines how many
pixels there are on defined length of the image plane. This is physical measure which can be
read from the specifications of camera. The pixels need not be quadratic and as a consequence
the resolution need not be equal in the x and y direction.

To model the resolution two scalars sx and sy are defined for the xc and yc direction respec-
tively. These scaling factors will be positive according to the defining the xc and yc-axis in 3.3.
Next, the position (xp, yp) = (0, 0) need not to correspond to the pixel with the index (0, 0).
In fact, this is seldom the case as the z-axis usually intersects the image plane somewhere in
the middle of the pixel matrix. This point is often called the principal point (Ma et al. 2003).
The offset is modeled by to scalars ox and oy for the xc and yc-axis respectively. By using
homogeneous coordinates both the scaling sx, sy and the offset (ox, oy) can be expressed with
one transformation matrix as follows

uv
1

 =

sx sθ ox
0 sy oy
0 0 1

xpyp
1

 (3.7)

Where (u, v) are the pixel coordinates. A skew factor sθ is also introduced as it makes the
practical decomposition of the final camera matrix a lot easier. The skew factor is proportional
to cot θ where θ is the angle between the image axis xc and yc (Ma et al. 2003). The skew
factor should be small for modern cameras.

By multiplying with zc on both sides of (3.7) using (3.4) and defining

U = u · zc (3.8)

V = v · zc (3.9)

3.4 Extrinsic model 15

The relation becomes

UV
zc

 =

sx sθ ox
0 sy oy
0 0 1

XY
zc

 (3.10)

which can easily be multiplied with the perspective projection matrix

UV
zc

 =

sx sθ ox
0 sy oy
0 0 1

f 0 0 0
0 f 0 0
0 0 1 0

xc
yc
zc
1

 (3.11)

UV
zc

 =

sxf sθf ox 0
0 syf oy 0
0 0 1 0

xc
yc
zc
1

 (3.12)

The intrinsic transformation matrix is denoted K. As seen in (3.12) there is no way to compute
both focal length and resolution from experiments as they are factors of the same parameter.

3.4 Extrinsic model

The extrinsic parameters of the camera model are related to the position and orientation of
the camera relative to the WCS. A matrix that both rotate and translate a point in the real
world to the CCS, can be expressed in homogeneous coordinates as follows

pc =

[
Rc

w T
0T 1

]
pw (3.13)

xc
yc
zc
1

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

xw
yw
zw
1

 (3.14)

Where Rc
w and T transforms a point pw from be given in the WCS to be given in the CCS

as pc. The translation vector is the position of the origin of the WCS given in the CCS.

By combining (3.12) and (3.14) the complete mapping from real world coordinates (xw, yw, zw)
to pixel coordinates is in homogeneous coordinates is expressed as follows

16 Camera theory

UV
zc

 =

sxfr11 + sθr21 + oxr31 sxfr12 + sθr22 + oxr32
syfr21 + oyr31 syfr22 + oyr32

r31 r32

sxfr13 + sθr23 + oxr33 sxftx + sθty + oxtz
syfr23 + oyr33 syfty + oytz

r33 tz

xw
yw
zw
1

 (3.15)

(3.15) is commonly called the camera or calibration matrix. The only obvious requirement is
that the lower most row vector of the three left most elements must be a unit vector because
the elements originate directly from the rotation matrix of the extrinsic camera parameters.

It is also worth mentioning that the matrix can be scaled by any factor and still be valid. This
is because the homogeneous pixel coordinates (U, V) is scaled with zc.

3.5 Determination of Camera Parameters

In this section a simple method for determining the parameters of the calibration matrix will
be presented. The method is input with a set of real world coordinates and corresponding
image pixel coordinates and then solves an overdetermined system of linear equations for
finding the parameters of the matrix.

A calibration rig is usually constructed to perform the practical calibration procedure. Such
rigs have points where the position of each calibration point relative to a common reference
point is known. The reference point can be chosen to be the origin of the WCS and is typically
one of the calibration points on the rig.

The camera calibration matrix is written in a general form with twelve parameters

UV
zc

 =

c11 c11 c13 c14
c21 c21 c23 c24
c31 c31 c33 c34

xw
yw
zw
1

 (3.16)

The expressions for the pixel coordinates is written

u =
U

zc
=
c11xw + c12yw + c13zw + c14
c31xw + c32yw + c33zw + c34

(3.17)

v =
V

zc
=
c21xw + c22yw + c23zw + c24
c31xw + c32yw + c33zw + c34

(3.18)

3.6 Recovering Real World Coordinates 17

A vector c of the unknowns in the camera matrix is defined

c = [c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34]
T

The equations (3.17) and (3.18) is rearranged so the unknowns can be separated in the previous
vector

c11xw + c12yw + c13zw + c14 − uc31xw − uc32yw − uc33zw − uc34 = 0

−c21xw + c22yw + c23zw + c24 − vc31xw − vc32yw − vc33zw − vc34 = 0 (3.19)

From (3.19) the following linear system of equations can established where (xnw, y
n
w, z

n
w) denotes

physical calibration point n with corresponding pixel position (un, vn).

x1w y1w z1w 1 0 0 0 0 −u1x1w −u1y1w
0 0 0 0 x1w y1w z1w 1 −v1x1w −v1y1w
...

...
...

...
...

...
...

...
...

...
xnw ynw znw 1 0 0 0 0 −unxnw −unynw
0 0 0 0 xnw ynw znw 1 −vnxnw −vnynw

−u1z1w −u1
−v1z1w −v1

...
...

−unznw −un
−vnznw −vn

c11...
c34

 = 0 (3.20)

which is a general homogeneous system

Vb = 0 (3.21)

Assuming that all the equations are linearly independent at least n ≥ 6 calibration points must
be recorded to find all the twelve parameters. The solution of the homogeneous system (3.21)
is called the null space where c = 0 is the trivial solution which is uninteresting. Another basis
for the null space is the eigenvector associated with the least eigenvalue of VTV (Zhang 1999).
Any scalar multiple of this basis is a solution.

Since the camera matrix can be scaled with any factor due to the homogeneous coordinates,
the element c34 can be set to 1 in (3.19). This leads to little bit different system that can be
solved by least squares instead of the least eigenvalue method described above. This can be
advantageous in an implementation if e.g. only least square solving is available.

3.6 Recovering Real World Coordinates

Recovering real world coordinates is the process of finding the x, y and z position of a point
in the real world when only the pixel coordinates from two or more cameras and the camera
matrices are known. In this chapter it is assumed that two cameras are available, although
more cameras may be used.

18 Camera theory

Each pixel in a camera defines an infinite long ray pointing out in space. Intuitively it is easy
to understand that by using only one camera it is possible to tell which direction a point is
positioned, but not how far away it is located. By having two cameras viewing the same point
there are two rays pointing out in space. Ideally they are intersecting each other, but the fact
that the two lines in 3D space do not need to intersect, hints that this is an overdetermined
system which may not have a solution.

Figure 3.4: The geometry of two cameras viewing the same real world point. Each pixel defines an
infinite long ray out in space.

The known parameters are the camera matrices for both cameras and the pixel coordinates
in both cameras which are ul, vl, ur and vr. For each camera there are two mappings (3.17)
and (3.18) which defines the relation between real world coordinates and pixel coordinates.
The system that needs to be solved to find the single point position is established based on
(3.17) and (3.18). The equations are separated based on the x, y and z-values which are the
unknowns.

(c11 − c31u)x+ (c12 − c32u)y + (c13 − c33u)z = c14 − c34u (3.22)
(c21 − c31v)x+ (c21 − c32v)y + (c23 − c33v)z = c24 − c34v (3.23)

There are two equations, (3.22) and (3.23), for each camera. For a stereo system there are
then four equations which can be put into a linear system such as this. The pixel coordinates
and the camera matrices for the two cameras are denoted with subscript l and r for left and
right camera respectively.

cl11 − cl31ul cl12 − cl32ul cl13 − cl33ul
cl21 − cl31vl cl21 − cl32vl cl23 − cl33vl
cr11 − cr31ur cr12 − cr32ur cr13 − cr33ur
cr21 − cr31vr cr21 − cr32vr cr23 − cr33vr

xy
z

 =

cl14 − cl34ul
cl24 − cl34vl
cr14 − cr34ur
cr24 − cr34vr

 (3.24)

Xpw = b (3.25)

(3.24) is an overdetermined linear system which can be solved with linear least square. One

3.6 Recovering Real World Coordinates 19

solution is by solving the corresponding normal equation (3.26) as derived in (Edwards &
Penney 2005).

XTXpw = XTb (3.26)

The linear system can easily be extended to include more than two cameras.

20 Camera theory

Chapter 4

Video Tracking Design

From the previous chapter it is concluded that by having two or more cameras and tracking
the same point in all the cameras views it is possible to compute the 3-D position of that point.
This will form the basis for the video measurement system that will be developed through
the next chapters. Finding the position and attitude of the vessel involves several steps like
finding the vessel, selecting tracking points, finding stereo correspondence and computing 3-D
motion. This chapter will develop an algorithm for finding the vessel in the video and present
a single point tracking algorithm.

4.1 Tracking Initialization

This analysis starts by looking at the characteristics which a supply vessel poses to the video
frame compared to the sea. The first to notice is that the sea is largely random. A wave can
be followed from one frame to the next, but after a short time the view can be unrecognizable.
If a supply vessel is present in the video it provides much more structured pixel data. Not
only is the pixel data similar in one frame to the next, but it usually has geometric properties
which are simple. Supply vessel usually have a square shaped loading deck where the width
of the deck is constant along its whole length. The lines which a supply vessels poses to a
video frame will be used as basis for the tracking initialization algorithm derived in the next
sections.

The Hough-transform for extracting infinite straight lines from images will be presented here.
Before the Hough transform can be applied the image must be filtered in such way that the
edges of the supply vessel become clear. The most common method is to use a edge detection
algorithm. One of the more common edge detection algorithms is the Canny edge detector. It
is a multi-stage algorithm where the output is a binary image in equal size as the input image
where white pixels indicate an edge. Refer to the original paper (Canny 1986) for details
about the algorithm.

The Hough transform for finding straight lines parametrizes each possible line with two pa-

22 Video Tracking Design

Figure 4.1: The original video image. Figure 4.2: Output from the canny edge detector.

rameters, ρ and θ. Let ρ define the length of the normal from the origin (upper left corner
of image) to the line to be parametrized. Let θ define the angle between the normal and the
x-axis. See figure 4.4. The hough transform algorithms starts by establishing a two dimen-
sional accumulator along the θ and ρ parameters. The parameter range and resolution of the
accumulator is selected when implementing the algorithm.

Figure 4.3: The Hough lines projected on top of the output from the Canny edge detector.

The algorithm starts by checking each pixel in the input image. Each pixel denotes whether
a pixel is an line or not. High value means high probability and vice versa. For each pixel
(u, v) all the combinations of θ and ρ which corresponds to a line passing through pixel (u, v)
are found. The corresponding positions in the accumulator are added with the pixel value or
incremented with one if pixel values are boolean and true. Pixels which resemble a line will
give parameters which are approximately the same and the accumulator will as a result have
positions with larger values. Those positions can be found by searching for local maximums.

The output from the Hough transform algorithm is a list of parameter pairs which are con-
sidered matched lines. Number of lines depends on adjustable parameters in a particular
implementation.

4.1 Tracking Initialization 23

Figure 4.4: Parametrization of an arbitrary line in terms of angle θ and distance from origin ρ.

Rectifying lines into the sea surface

The output from the Hough transform originates mostly from the geometric properties of the
vessel in the video frame. Edges which are always present are the sides of the vessel. Highly
dependent on the structure of the deck and the cargo which may be present at the deck, there
will certainly be lines which do not correspond to the sides. A search algorithm must be
developed to find the best candidate of lines which represent the port and starboard sides of
the vessel. Due to the positioning of the camera as described in chapter 2, parallel lines at
the sea surface will only appear parallel in the video frame if the image plane of the camera is
parallel to the plane which the parallel lines defines. This is only true if the camera is looking
straight down on the vessel. Since this is not a very likely situation it cannot be assumed that
vessel sides will appear parallel in the video frame.

By making assumptions about the captured scene, the lines found by the Hough-transform can
be rectified in a form which makes parallel vessel edges to appear parallel in the video frame
in most situations. This is possible since the camera’s positions relative to the sea surface
is known through camera calibration. An assumption must be made for this to be possible
is: The edges found must be at zero z-level. If this is not true the non-parallel lines will not
be rectified correctly and/or lines which are not parallel could be misleadingly be rectified to
parallel lines in the video.

It is assumed that the plane z = 0 in the WCS corresponds to the sea surface. Using (3.17)
and (3.18) and setting zw = 0 the mapping from WCS coordinates to pixel indexes becomes

u =
c11xw + c12yw + c14
c31xw + c32yw + c34

v =
c21xw + c32yw + c14
c31xw + c32yw + c34

(4.1)

24 Video Tracking Design

xw and yw in (4.1) are now fully determined from the pixel coordinates u and v and can be
found by solving (4.2)

[
uc31 − c11 uc32 − c12
vc31 − c21 vc32 − c22

] [
xw
yw

]
=

[
c14 − uc34
c24 − vc34

]
(4.2)

Ax = b (4.3)

xw and yw can be found to be

xwyw
zw

 =
1

det A

u(c34c22 − c24c32) + v(c14c32 − c34c12) + c24c12 − c14c22
u(c31c24 − c21c34) + v(c11c34 − c31c14) + c21c14 − c11c24

0

 (4.4)

where

det A = u(c21c32 − c31c22) + v(c31c12 − c11c32) + c11c22 − c21c12 (4.5)

Now the new Hough-parameters ρw and θw for the rectified lines must be found. This can be
done by selecting two points on the original line and computing the corresponding position of
those two points in the xy-plane. The two points can be given as

p1 = [ρ cos(θ), ρ sin(θ)] (4.6)
p2 = p1 + [sin(θ),− cos(θ)] (4.7)

Let now v1 and v2 be the corresponding xy 2-D points for p1 and p1 in the xy-plane computed
by (4.4). Those two points define the line properly, but a little more computation must be
done to find the appropriate Hough parameters. The θ Hough parameter defines the angle of
the vector which intersects the line perpendicularly from the origin. This intersection point is
not necessary v1 or v2 so it must be found.

The intersection point is located on the line defined by v1 and v2 and can be expressed as

vi = v1 + u(v2 − v1) (4.8)

where u is a scalar. Let ui be the value when the intersection is perpendicular. Then the dot
product is zero, that is

(v1 + ui(v2 − v1)) · (v2 − v1) = 0 (4.9)

4.1 Tracking Initialization 25

Solving for ui yields

ui =
y1(y2 − y1)− x1(x2 − x1)
(y2 − y1)2 − (x2 − x1)2

(4.10)

The intersection point vi can now be defined

vi = v1 + ui(v2 − v1) (4.11)

Figure 4.5: Finding Hough-params for a line given two points v1 and v2 on the line.

and the Hough-parameters can be defined

ρw = |vi| (4.12)
θw = atan2(yi, xi) (4.13)

where xi and yi are the coordinates of vi.

Depending on the implementation or choice of the particular Hough-transform algorithm, the
output θ may not be within the interval from 0 to π. For easing the later analysis the θw-
parameter is normalized so it is always between 0 and π and the ρ is corrected accordingly.
The following simple check is used.
if θw > π then
θw ← θw − π
ρw ← −ρw

else if θw < 0 then
θw ← θw + π
ρw ← −ρw

end if

26 Video Tracking Design

Figure 4.6: Rectified Hough lines

After all the lines have been rectified they now represent lines which are parallel to the sea
surface. This means that lines which were originally parallel to each other at sea surface will
appear parallel in the rectified data set. The next step in the analysis is to group lines which
have similar angles. There are are many ways to group lines based on similar angle. One
criteria could be that within each group the θ deviation must be less than some value. It is
not trivial to find an optimal solution. A simple and fast solution will be presented here.

A random line is chosen, a line group is created and the chosen line is added. All the other
lines are compared to the first added line. The lines which have a theta value which does not
differ more than a predefined value are also added to a group. Only lines which have not yet
been added to a line group are compared. The algorithm is given in pseudo code in algorithm
1.

When all the lines has been been grouped together based on similar theta angle, what there
is left is to find the group which has a line distribution which best matches the vessel sides. A
form of voting system should be created to find the best match. If the lines are concentrated at
distances which are the positions of the vessel sides there should be a good match. If the lines
seem to be rather randomly positioned there should be a poor match. One of the parameters
is the spacing between the sides of the vessel, or the width of the vessel. If the width is fixed to
a constant value, the only free parameter is the position of the sides of the vessel. A common
method to search for a particular pattern in a data set is to use cross-correlation. The next
paragraphs will present a way of using this technique to find the position of the vessel edges
in a dataset of nearly parallel lines.

4.1 Tracking Initialization 27

Algorithm 1 Group lines by angle
g ← 0
m {this value is the maximum deviation from the first line added}
for every line as i do
if i is processed then
continue

end if
i← processed
for every line as j do
if j is processed then
continue

end if
d← abs(i.theta - j.theta)
if d < m or d > π −m then
j ← processed
add to group g

end if
end for
g ← g + 1

end for

A cross-correlation based search method

Cross-correlation compares searches a signal with the use of a predefined template. The result
tells where there was the best match between the template and the signal. The signal in this
case is a line group, or more specifically the position of the lines. The lines should be nearly
parallel since each group is grouped based on similar angles. The other parameters is the ρ
value which tells how far the line is located from the origin. The signal to be searched in
must have a defined length which covers all the positions which have a line. The signal will
be a boolean signal since only the existence of a line is known, not in how great extent the
existence is valid. The signal will have “true” at the positions which there exists lines and
“false” elsewhere.

Next the template which is used in the searching must be created. The simplest would be to
find the two lines, if any, whose distance between each other is exactly the predefined vessel
width. This would not work in the presence of noise and errors. Therefore a template with
takes errors into account is a requirement. The template must consist of two regions which
represent the port and starboard positions. The highest value in the template should be at
the positions which are separated with the “vessel width” distance. The value should decrease
with some magnitude further away from this position. The center and decrease rate should
be controlled easily. A curve which have these properties are the normal distribution curve
used in statistics. It is usually used to describe the probability distribution for a stochastic

28 Video Tracking Design

variable. Its functions is given in (4.14).

Φ(x) =
1√

2πσ2
e

−(x−µ)2

2σ2 (4.14)

The peak is controlled with the µ parameters. The “width” or how fast the curve decreases
from the peak is controlled by the σ parameter which is commonly called standard deviation.
About 95% of the area under the curve is located within 2σ on each side of the curve. The
total area under the curve is always 1. The search template is created by using two normal
distribution functions placed at a spacing apart. (4.15) is used for that. It is also divided by
2 such that area under the graph is still 1.

T (x) =
1

2
√

2πσ2

(
e

−(x−µ1)
2

2σ2 + e
−(x−µ2)

2

2σ2

)
(4.15)

Figure 4.7 shows an example where the vessel width is set to be 23 meters and the standard
deviation is 1 meter. The template is constructed such that values that fall outside the 2σ-limit
on each side of the template are neglected.

Figure 4.7: Template for searching for vessel sides with values µ1 = 2, µ2 = 25, σ = 1

To perform the cross-correlation the boolean signal must be created based on the line group
and the template must be discretized with some accuracy. The expression for computing
discrete cross-correlation is given by (4.16) where f is the template function and g is the

4.1 Tracking Initialization 29

signal to be searched in.

s(n) =
∞∑

m=−∞
f(m)g(n+m) (4.16)

Let the template be of limited length such that f(x) 6= 0 ∀ x ∈ [0, t] and 0 everywhere else,
and the signal be of limited length such that g(x) 6= 0 ∀ m ∈ [a, b] and 0 everywhere else.
(4.16) can be rewritten to

s(n) =

t∑
m=0

f(m)g(n+m), n ∈ [a, b− t] (4.17)

One problem with using only cross-correlation is that a large amount of lines can be positioned
in only one of the areas and it will still give a high score, even when it should not be considered
a match since the other edge is not found. To make the algorithm more robust against an
extra check is done along with the cross-correlation. For each computed value of (4.17) it is
also checked that the signal has at least one line within the 2σ area in both normal distribution
curves. If that is not the case the particular value is set to 0 to ensure a low score.

Algorithm 2 Cross correlation with edge check
maxMatch← 0
matchPos← 0
for n = a to b - t do
leftEdgePresent← false
rightEdgePresent← false
for m = 0 to t do
s[n]← s[n] + f [m] · g[m+ n]
if (m < µ1 + 2σ and g[m + n] is true then
leftEdgePresent← true

end if
if (m > µ2 − 2σ and g[m + n] is true then
rightEdgePresent← true

end if
end for
if leftEdgePresent is false or rightEdgePresent is false then
s[n]← 0

end if
if s[n] > maxMatch then
maxMatch← s[n]
matchPos← n

end if
end for
return matchPos {return the position which there was a match}

30 Video Tracking Design

Canny edge detction Hough-transform Rectify lines

Run cross-corr.
for every group

Extract best
group match Vessel edges

Single frame
video image

Group lines by angle

Figure 4.8: Computation steps in finding the vessel

Figure 4.9: Matched lines for a particular data
set.

Figure 4.10: The matched lines projected on the
original line set.

The cross-correlation algorithm 2 is run for every line group. Finding the best match is done
simply by selecting the group with the best match and extracting the position of the matched
template. The information acquired from the algorithm developed in this chapter does not
give any boundedness in the stern/aft direction other than that the vessel is located somewhere
in the region bounded by found vessel edges and the video frame itself.

4.2 Single Point Tracking Method

As described in 2.1 no information about the visual appearance of the vessel should be known
beforehand. This disqualifies any method which looks for special markers on the vessel. The
tracking method must use only the video image itself for tracking. It is also important that
the tracked point does not drift, this means that the algorithm must not end up tracking
another point than the initial point.

Cross-correlation based tracking is chosen because it does not change the target representation
of the tracked object and the representation can be acquired from the video frame itself and
used for successive matches in later frames. This makes the algorithm independent of what
is viewed by the cameras. With the cross-correlation method, the target representation is
simply a small image of the object to find. The method is not very tolerant to scale and
rotation, but as described in chapter 2 a large vessel at sea does not really rotate much. And
the distance from the camera to the vessel is relatively constant so scale change would neither
be a problem.

4.2 Single Point Tracking Method 31

Two dimensional cross correlation

Template matching is a two dimensional variant of cross-correlation. The output of such
algorithm is a an image where the intensities define how great match there is between the
template and the image at a particular position. (4.18) define the basic two dimensional
cross-correlation. T (x, y) defines the pixel intensities in the template image at position (x, y).
I(x, y) defines the image intensities and R(x, y) is the output match image.

R(x, y) =
∑
m,n

T (m,n) · I(m+ x, n+ y) (4.18)

The best match between the template and the image is found by searching for the maximum
value of R(x, y). The found values for x and y denote the upper left corner of the template
whose position gives the best match.

Figure 4.11: A small part of an image (the ROI) with a white square showing the highest match for
the template on the right.

Sup-pixel accuracy

Sub-pixel accuracy is possibility of determining the position of an object in an image beyond
the spatial quantification of the image (the image pixels). This possible when each pixel
has more than one possible value as is true with gray scale and color images. (Skoglund &
Felsberg 2006) describes two methods which can be used to implement sub-pixel accuracy.
One of the is interpolation. This method will be used here.

First the regular template match performed as described in the previous section. When the
position of the template is found, the patch and the matched region in the image including
a small region around the patch are linearly interpolated and a new cross-correlation is run
again. The matched position is the regular cross-correlation plus the sub-pixel cross-correlation
multiplied with a factor which corresponds to the interpolation factor.

32 Video Tracking Design

Tracking fail detection

Tracking fail detection is the ability to detect when tracking of a single point is not working
properly. This is important because tracking of the wrong point leads to wrong correspondence
and can give large errors in the computed 3-D position.

The cross-correlation match gives a hint of how good the match was. If the tracked object
comes occluded there will be a much lower match. This can be use to detect an occlusion type
of tracking fail. Another check is to compute the acceleration of a tracked point. Since it is
a physical object that is tracked the maximum acceleration is limited. If the acceleration is
above some threshold it can stated that the movement is not true and another type of tracker
fail is detected.

4.3 Selection of tracking points

To establish a good tracking constellation the tracking points must be chosen wisely. The two
most important properties are widespread constellation and stable tracking points.

The stability of a video tracking is largely dependent on the feature that is being tracked. Not
every point in a video can easily be tracked. Difficult or impossible points are: evenly colored
areas, straight lines, repetitive pattern and image contaminated by noise. Easy features to
track are: corners and symbols. Selecting features which are easy to track will greatly have
an effect on the quality of the tracking.

A widespread constellation means that the tracking points are spaced far apart from each
other. This gives a better measurement of the edges of the vessel and intuitively better defines
movement of the rigid object. If the points are close together small errors in the measurement
will lead very large angular errors.

Algorithm

The focus of this algorithm is to ensure both a widespread constellation and stable tracking
points. To ensure that the tracking points are spaced far apart a small extension to the
tracking initialization algorithm from 4.1 is developed. Multiple rectangles in the plane z = 0
are created. Depending on the roll and pitch angles of the ship the plane z = 0 approximately
coincides with the vessel’s cargo deck. When the rectangles are mapped to the camera view
they will be transformed to general polygons with four corners.

The rectangles are lay out in two rows, one for the port side and one for the starboard side.
Both rows are infinitely long but only the rectangles that are visible in the video frame as
polygons are computed. The transformed polygons are indexed such that the port and aftest
polygon is rectangle number one. The next polygon is the aftest starboard polygon and so
on. The numbering is showed in figure 4.12. Which polygons that should be populated with
points is tuned to a specific vessel or a setting which works for most vessel is chosen.

4.3 Selection of tracking points 33

To add a tracking point to a polygon, first “good” tracking points must be found in the area
within the polygon. Good tracking points are characterized by corners in images and can
be found by searching for high second derivatives in the image. A previously implemented
algorithm will be used for this. It is described briefly in 7.2. The implemented algorithm uses
results from (Shi & Tomasi 1994).

Figure 4.12: Rectangle layout with adjustment factors: A: polygon width, B: polygon height, C:
edge spacing, D: polygon forward spacing.

Algorithm 3 Add trackers
desiredPolygons {this is a array of polygons which one want to have tracker in.}
for every desiredPolygons as i do
if enough trackers added then
return

end if
if i already has tracker then
continue

end if
goodPoint← find good point in i
add tracker to goodPoint

end for

34 Video Tracking Design

4.4 Point Correspondence

Point correspondence is the task of finding the pixel coordinate in a second camera given
a pixel coordinate in the first camera which corresponds to the same physical point. If two
cameras are placed not too far apart and they have the same orientation, then a method which
looks for similarities in the two images can be used. However, having two cameras too close
together leads to poor depth accuracy. The camera positioning is therefore a compromise
between depth accuracy and the difficulty of finding correspondence.

The method which will be used in this application is mainly based on cross-correlation which
is a method which looks for similarities. Cross-correlation alone is not feasible because there
is a large chance that wrong correspondence is found. To minimize the area to search for
correspondence two constraints will be used. The first is the epipolar constraint and the
second is a custom planar constraint.

Epipolar constraint

As described in 3.6 a pixel in one camera corresponds to an infinite line in space. This infinite
line will be projected as a straight line in any other camera viewing the same volume. This
means that searching for correspondence in the second camera can be reduced to searching
for correspondence along a single straight line ± some error margin. This search line is based
on the epipolar constraint. The corresponding line can be computed if the camera matrices
for both cameras are known. The details of epipolar geometry can be found in (Bradski &
Kaehler 2008). Previously implemented algorithms will be used to compute the epilines in
chapter 7.

Planar constraint

The epipolar constraint limits the correlation search along a line ± some error margin. If there
are similar patterns somewhere else along this line the correlation search could easily match
with the wrong point. To constraint the search even further the search region in the second
camera is constrained to the approximate same xy-plane region as the region surrounding the
point in the first camera. Like the Hough-lines rectify algorithm assumes, this method also
assumes that the object to be tracked is a plane parallel to the xy-plane (the sea surface).
This is true for a cargo deck when the vessel has approximately zero roll and pitch angles.
This will happen from time to time and if the correspondence search fails, typically because
the epipolar line does not intersect with the xy-region, then successive retries must be done
since the vessel is constantly moving.

There are many ways to find a corresponding xy-area in the second camera. The chosen
method for this application is to create a square in the xy-plane which encircles the tracker
in the first camera. This square is mapped to the image plane of the second camera. A valid
correspondent point is required to be inside the square. The mapping of real world planes to
pixel coordinate planes and vice versa is possible because one of the real-world coordinates is

4.4 Point Correspondence 35

constrained to a fixed number.

Figure 4.13: First camera finds surrounding xy-polygon (transparent red). Second camera maps
the polygon onto the same xy-area (transparent red). The epiline (yellow) with some error margin
(transparent yellow) together with the polygon creates the search area (transparent green).

36 Video Tracking Design

Chapter 5

Position and Attitude Estimation

This chapter looks at problem of finding the position and attitude of the vessel cargo deck
based the computation of multiple 3-D points. With multiple 3D points which are attached
to the vessel it is possible to compute position and attitude of the vessel.

5.1 Position and Attitude Representation

Two coordinate systems are defined. The n-frame is fixed relative to the cameras and are
located on the sea surface with the z-axis pointing down and the x and y-axis pointing ar-
bitrarily along the sea surface such that they form a right-handed coordinate system. For
simplicity the cameras are calibrated such that the WCS defined in chapter 3 becomes the
definition of the n-frame. From now n-frame equals the WCS. It is assumed that the n-frame
is fixed and does not move. This is not completely true when the cameras are attached to
a floating structure, but the movement are very slow compared to that of the supply vessel
when attached to a large floating rig. It is assumed that the crane base, and therefore the
cameras, does not rotate when the tracking is active.

The position and attitude of the vessel can be defined by a coordinate system which is attached
to the vessel. This coordinate system is commonly called the body coordinate system or the
b-frame. The b-frame origin can be fixed to any point and with any orientation to the vessel,
but a convention is to have the x-axis along the longitudinal axis of the vessel, the y-axis to
starboard and the z-axis such that a right-handed coordinate system is formed (SNAME 1950).
The origin of the b-frame is often chosen to coincide with the principle axes of inertia. But
since very little information is available about the tracked vessel the center of the cargo deck is
chosen since it is the central part in this tracking system. The orientation is chosen as stated
previously in this paragraph.

The transformation between n-frame and b-frame is represented by rotation and translation.
(5.1) transforms a point from being given in the b-frame to be given in the n-frame. Tn

nb is
the vector from the n-frame’s origin to the b-frame’s origin, which is denoted by the subscript,

38 Position and Attitude Estimation

and it is given in the n-frame which is denoted by the superscript. Rw
b is rotation matrix

which defines the rotation of the b-frame relative to the n-frame.

Figure 5.1: Illustration of the vessel-fixed reference system and its motion variables.

Figure 5.2: The relation between the n-frame and the b-frame.

pn = Rn
bp

b + Tn
nb (5.1)

5.2 Estimation of 3-D Rigid Body Transformation

The estimation of position and attitude is based on the rigid body transformation of a 3D
point set. The chosen algorithm is based on the results from (Eggert et al. 1997) which
compares four major algorithms for estimating 3-D rigid body transformation. The compared
algorithms does not take into account outliers in the data set like the RANSAC algorithm
does (Fischler & Bolles 1981). Therefore it is assumed that every point is valid. The simplest
algorithm was chosen for this thesis as it was concluded that none of the compared algorithms
were superior.

5.2 Estimation of 3-D Rigid Body Transformation 39

The derivation starts by presenting a singular value decomposition based algorithm from (Arun
et al. 1987). Suppose that there are two point sets mi and di which have N correspondent
points. Correspondent means that each point is related to a specific point in the other set.
Let the relation for point i be given by

Figure 5.3: The rotation and translation of a point set.

di = Rmi + T + Vi (5.2)

where Vi is an unknown error vector which exists due to measurement and discretization
noise. R and T can be estimated by minimizing a least squares error criterion given by:

S =
N∑
i=0

‖ di − R̂mi − T̂ ‖2 (5.3)

where R̂ and T̂ are the estimated values for R and T.

If the point sets have the same centroid the term T̂ can be removed from (5.3). T̂ can be
computed afterwards. Let mci and dci be the original point sets translated such that they
have the centroid at the origin.

d̄ =
1

N

N∑
i=1

di (5.4)

m̄ =
1

N

N∑
i=1

mi (5.5)

The following sets now have the origin as centroid

dci = di − d̄ (5.6)
mci = mi − m̄ (5.7)

40 Position and Attitude Estimation

(5.3) can be simplified to

S =
N∑
i=1

‖ dci − R̂mci ‖2 (5.8)

Writing out (5.8) gives

S =
N∑
i=0

(
dci − R̂mci

)T (
dci − R̂mci

)
(5.9)

=

N∑
i=0

(
dT
cidci − dT

ciR̂mci − (R̂mci)
Tdci + (R̂mci)

TR̂mci

)
(5.10)

=
N∑
i=0

(
dT
cidci − dT

ciR̂mci −mT
ciR̂

Tdci + mT
ciR̂

TR̂mci

)
(5.11)

=
N∑
i=0

(
dT
cidci + mT

cimci − 2dT
ciR̂mci

)
(5.12)

(Eggert et al. 1997) states further that minimizing (5.12) is equivalent to maximizing

N∑
i=0

dT
ciR̂mci = trace(R̂H) (5.13)

where H is a 3× 3 correlation matrix defined by

H =

N∑
i=0

mcid
T
ci (5.14)

The proof of this is given in (Arun et al. 1987). Let the singular value decomposition of H be
given by H = UΛVT. Then the matrix R̂ which best maps the first point set to the second
point set can be given by

R̂ = VUT (5.15)

(Eggert et al. 1997) states that optimal R̂ given by (5.15) may not always have a positive
determinant. A negative determinant corresponds to a reflection and a left-handed coordinate

5.3 Point Set Managing 41

system rather then the desired rotation. A solution which compensates for this is given by
(Kanatani 1994) where Trace(R̂TH) is maximized over all rotations by

R̂ = U

1 0 0
0 1 0

0 0 det(UVT)

VT (5.16)

The original document (Eggert et al. 1997) maximizes Trace(R̂H) where R̂ is not transposed.
It can be shown that the solution by (Kanatani 1994) will find R̂T and not R̂. This means
that the solution of (Kanatani 1994) can be transposed such that Trace(R̂H) is maximized
over all rotations by

R̂ =

U

1 0 0
0 1 0

0 0 det(UVT)

VT

T

(5.17)

= V

1 0 0
0 1 0

0 0 det(UVT)

UT (5.18)

Translation

The optimal translation between the two point sets are found as distance between the centroid
of the set di and the rotated centroid of the set mi

T̂ = d̄− R̂m̄ (5.19)

The algorithm which finds the optimal transformation between two point sets which are at-
tached to a rigid object is now established.

5.3 Point Set Managing

At any time there exists two point sets which are measured in the n-frame by the cameras.
The current point set is the set which have the latest computed 3-D positions. The current
point set is defined as di where i ∈ [1, N] and the centroid is called d̄. The initial point set is
another set which is a captured version of an earlier current point set and it is defined as mi

where i ∈ [1, N] and the centroid is called m̄. A point set managing strategy which updates
the two point set correctly must be defined before the previously presented algorithm can be
used. The algorithm should solve the following problems:

• Ability to choose an arbitrary body origin and attitude relative to current the point set.

42 Position and Attitude Estimation

• Provide continuous measurement in the event of a point set change.

The ability to choose an arbitrary body origin is solved by defining a “body offset” vector pbcb
which defines the origin of the b-frame relative to the current centroid. The body origin is
called pnnb then defined such that

pnnb = d̄ + R̂n
bp

b
cb (5.20)

where R̂n
b is the estimation of Rn

b whose computation will be explained in the next section.

Startup procedure

It is assumed that at least three 3-D points are available as this is the minimum number of
points required to define 6 DOF motion. The position of the body origin and the attitude
must be chosen in the startup procedure. For now it is assumed that they are known and
are called Tinit and Rinit. These are the initial values for Tn

nb and Rn
b in (5.1). Different

strategies for finding estimates of these will be discussed later in this chapter.

Let mn
i be the particular point set at some time t. This is the initial point set. Let di be the

current point set at any later time. The next step is to use Rinit = Rn
b to align this saved

point set onto a body frame. This means transform them from being given in the n-frame to
being given in the b-frame. Let mi be the initial point set transformed to the body frame
such that

mi = RT
initm

n
i (5.21)

Next the body offset vector pbcp must be computed. It is computed according to

pbcp = RT
init(Tinit − m̄n) (5.22)

where m̄n is the centroid of the set mn
i for i ∈ [1, N]. To compute the vessel attitude the point

set mb
i is compared with the current point set di for each new available point set measurement

using the method presented in the previous section. The computed R̂n
b will be an estimate of

Rn
b which most optimally transforms mb

i to be aligned with di.

The estimated position of the body origin can now be computed with

T̂n
nb = d̄ + R̂n

bp
b
cp (5.23)

and based on (5.1) any other point pb in the body frame can be computed in the world frame
by

5.4 Estimating Rinit and Tinit 43

pn = R̂n
bp

b + Tn
nb (5.24)

= R̂n
bp

b + d̄ + R̂n
bp

b
cp (5.25)

= R̂n
b

(
pb + pbcp

)
+ d̄ (5.26)

(5.27)

Point set change handling

It can not be assumed that the same set of 3D points are available at all times. Points
may disappear due to loss of tracking and new points may arrive due to improvement of the
tracking. To provide continuous position and attitude measurement in the event of point set
change special actions must be performed. When the current point set change the initial point
set must also be cleared and updated as the initial and current sets must be correspondent.

Let dnewi be the new point set where new points have arrived or old ones may have disappeared.
In general the new point set can be completely different than the previous. Since the new
point set centroid may be different, the body offset vector must be updated such that that
body origin will be located at same position as before. It is updated based on the current
origin such that

pb,newcp = R̂b
n

(
T̂n
nb − d̄newi

)
(5.28)

= R̂b
n

(
d̄i + R̂n

bp
b
cp − d̄newi

)
(5.29)

= R̂b
n

(
d̄i − d̄newi

)
+ pbcp (5.30)

If the old and the new centroids are the same the equation reduces to pb,newcp = pbcp which is
intuitively correct.

To provide continuous attitude measurement the needed actions are similar to that of providing
the initial attitude matrix Rinit during the startup process. The initial attitude matrix is taken
from the latest estimated attitude matrix such that Rnew

init = R̂.

5.4 Estimating Rinit and Tinit

Given the requirement of a body frame which are situated on the middle of the cargo deck,
the difficulty of estimating Rinit and Tinit lies in the unknown position of the tracked 3-D
points on the actual vessel. In this section a method which approximately finds a body origin
which are located at the cargo deck center and an attitude which are aligned correctly with
the vessel. The algorithm uses both information found by the tracking initialization algorithm
and properties of the 3-D point set.

44 Position and Attitude Estimation

From the tracking initialization algorithm two parameters are found: the vessel heading and
the center line of the vessel.

Attitude

The vessel heading is represented with a two dimensional vector in the xy-plane which points
in the forward direction. Let the forward vector be given by vf = [xf , yf]. An initial yaw
angle is computed with ψinit = atan2(yf , xf). Assuming zero roll and pitch angles Rinit

can easily be computed with a rotation around the z-axis where the rotation angle is the
rotation from the n-frame to the the b-frame. The resulting matrix transforms a vector from
the b-frame to the n-frame

Rinit = Rz,ψinit = Rw
b =

cos(ψinit) − sin(ψinit) 0
sin(ψinit) cos(ψinit) 0

0 0 1

 (5.31)

Since the roll and pitch angles not known during the startup procedure, the body frame
selected by the system may easily be misaligned compared to the longitudinal and transversal
axes of the vessel. It can be assumed in most cases that the mean roll and pitch angles of
a vessel are zero because this is the stable position of the vessel when it is at rest. This
can be used to filter out constant offsets originating from unknown startup angles. It can be
implemented by finding the average the of pitch and roll angles, and subtracting the average
values on the roll and pitch measurements.

Position

Finding good estimate of the initial body origin is some what more cumbersome. However,
since the initial yaw angle is found separately, the most aft tracking point can be calculated.
Assuming that the vessel has tracking points close to the aft edge, the most aft point would
be closest to the aft edge. When the aft edge is found all edges except the extent of the bow
is known. If some idea about the longitudinal size of the cargo deck is known, the body origin
can be placed approximately at the cargo deck center.

The estimated position is subject to a z-axis offset which depends on the current position of
the vessel when the startup procedure was run. This offset can be counteracted with more
or less advanced algorithms which estimates a plane position and attitude in the 3-D point
cloud. This is difficult though since containers cranes and other high objects can give outlying
points, which do not belong to the cargo deck, but still are valuable tracking points.

Chapter 6

Software Design

In machine vision systems it is difficult to simulate the image processing algorithms. Therefore
implementing a real-time application is a way of showing proof-of-concept for the theoretical
work. This chapter starts by choosing a development platform which will greatly define
development path. An important part of the software design is to establish a modular view
of the application. This means placing the algorithms defined in the previous chapters into
appropriate modules and define their interface towards the rest of the system.

6.1 Platform Choice

Various aspects must be considered when choosing an implementation platform. Important
platform properties are: built-in features, cost, flexibility and compatibility. Two secondary
aspects are personal previous experience and academic value.

The abstraction level of different platforms can be very different and for programming language
platforms it is separated by the used programming language. High level platforms may not
even have a programming language concept and tend to be more an “application-specific
development environment”. These are merely tools for creating an application without the
explicit need for programming.

Available functionality for a particular platform is usually limited to the available libraries that
there exists for the programming language. Using functionality from a low-level platform in a
high-level platform is possible, but is often cumbersome unless the high-level application has
been prepared for it. The other way around is usually not possible. Although exceptions exists
like Matlab which provides a C-interface which makes it possible to use Matlab functionality
in C and Fortran applications (Mathworks 2010). However, the basic rule is to choose the
platform which provides the most of the useful functionality natively which means in the same
environment or programming language.

46 Software Design

Main application properties

The most significant properties of the application to be implemented are

• Processing high-definition video streams from multiple cameras simultaneously.

• Easy implementation of custom algorithms.

• Various video and image processing algorithms.

• Graphical user interface with flexible visualization.

• Utilizing multi-core computers.

Discussion

The needed properties can be divided into custom algorithms which must be implemented in-
dependently of the chosen platform and functionality that can be provided by a platform. The
custom parts of the application are most of the tracking initialization algorithm, the manager
of the point cloud estimation and large parts of the user interface. Parts that are typically
provided by a platform are camera drivers, video input handling, multi-core optimization and
UI creation tools.

Matlab is a platform which often used in the scientific arena. Although there exists an image
and video processing functionality the support for real-time machine vision is limited. How-
ever, Matlab is useful for fast implementation for algorithm verification and for simulations of
physical systems.

Another platform which always arises as an alternative in real-time systems is LabView from
National Instruments which has its own machine vision portfolio. Here all the typical platform
properties mentioned above are built-in. LabView is considered as a good candidate, but is
not chosen due to the following reasons:

• Not out of the box support for multiple USB cameras which was used in the early testing
stage.

• No previous developer acquaintance with LabView.

• Implementing custom algorithms gives no advantage compared to any other program-
ming languages.

Platform conclusion

The above facts and uncertainties makes LabView a not so good option and Matlab even
worse. A third alternative, Scorpion Vision Software is also an option, but it was discovered

6.2 Overall Design Principle 47

too late in the development process to be a candidate. When the high-level platforms are
thrown away, the fall back is to use general purpose programming languages. The most
widespread general purpose programming language is C. And the widespread use means that
there is a huge amount of libraries available to do common tasks. And as C is a unlicensed
language there is a large driving force for open source development which usually means that
user contributed help is readily available on the Internet.

Although libraries are very useful they do not replace an application framework. An applica-
tion framework extensively controls the execution of the application and eases the development
of threaded and event-based programming. C frameworks exist, but C++ code for standalone
applications is preferred due to the object oriented paradigm. Example of two commercial
C++ application frameworks are Qt (application and UI framework) and ICD’s Control De-
sign Platform (control system framework). Qt quickly arises as a very good alternative as it
is both available for free download under the GNU LGPL license and in a commercial version
if the application is to be sold. Therefore Qt is chosen as framework for this application.
For the image processing part the open source library OpenCV is used. Qt and OpenCV are
presented below.

Qt

Qt is a cross-platform application and UI framework for C++. Qt has a large UI library, takes
care of multi-threading and event based programming which is important in UI programming.
Being a cross-platform framework, Qt abstracts the operating systems underlying API into a
generic C++ class interface which is the same across multiple platforms (Thelin 2007). Qt
uses standard C++, but makes extensive use of a special pre-processor to add features like
event based programming with little effort from the developer. Although Qt is portable this
requires of course that any other library that the application uses must also be portable.

OpenCV

OpenCV is an open source computer vision library. The library comes with both C and C++
API. It is cross platform. Along with a large amount of machine vision algorithms OpenCV
naturally have its own image and matrix format and provides the necessary manipulating
functions for those formats. OpenCV lets the programmer access the low level functions
which performs linear algebra operations on matrices. This includes for instance solving
linear least square systems, finding eigenvalues etc which are useful also outside the machine
vision discipline.

6.2 Overall Design Principle

Software frameworks exists partly because they help achieving a task with less code. Pro-
gramming against a framework often puts the programmer’s “best-practices” on test because

48 Software Design

integrating with the framework requires throughout knowledge about the framework and about
the special features that programming language provide.

A general design principle is to divide into separate parts which have a defined interface to
other parts. An actual implementation of this concept is called object oriented programming
and it is the main properties of C++ and Qt based programming. The design principle of this
application is to divide it into appropriate classes and utilize the most out of Qt but not at the
expense of lower performance. This means for instance that the OpenCV image format could
be chosen as standard format instead of the equivalent Qt image format due to performance
aspects even when interoperability with the framework would be easier with the Qt image
format.

The next sections will go through the main modules and define the classes in each module
and their most important interface towards the rest of the system.

6.3 Video Capture

VideoSource
init()
getVideoSize()
captureFrame()
getFrame()
close()

VideoCV VideoFileVideo1394 VideoImage

Figure 6.1: The interface class VideoSource and its descendant classes.

The task of the video capture part of the application is to retrieve frames from a device or from
data stored on a hard drive. It is desirable to have multiple video inputs for the application to
be able to test both real-time and pre-recorded video. To make the video interface independent
of the video source, an abstract class VideoSource is created. To support a new input device
a subclass which follows the interface of the VideoSource must be created. The following
subclasses capture video frames from various sources and wraps the lower level interfaces into
that of VideoSource. The specific implementation is covered more in detail in chapter 7.

• VideoCV: OpenCV video capture.

• Video1394: IEEE 1394 camera using libdc1394 (covered in 7.2).

• VideoFile: Video file reader using FFmpeg (covered in 7.2).

• VideoImage: Static image used for every frame in the video stream.

6.4 Image Processing 49

6.4 Image Processing

ImageProcessing
processFrame(frame)
addTracker(startRectangle)
removeTracker(id)
getTrackerPos(id)

Camera
setVideoSource(identifier)
initVideo()
processFrame()

Tracker
setFrame(frame)
track()
getPosition()

VesselSearch
setFrame(frame)
signals:
vesselFound(position)

1

1

0...n

Figure 6.2: The image processing classes which work with the actual image pixels.

The image processing parts of the application deals with operations which are performed per
camera. That is operations that work with the actual image pixels. The functionality is
divided into four classes. The Camera class represents the instance of one camera. The camera
class’ main function is to convert the frames from the video source to correct internal format
and forward them to the ImageProcesing class. It also keeps tracks of the camera matrix
associated with the camera.

The ImageProcesing class controls any number of Tracker classes where each instance
tracks a single point in the video. Tracker instances may be removed automatically by the
ImageProcessing class if a Tracker instance does not pass the error detection tests from 4.2.
The tracking initialization algorithm from 4.1 is implemented in the VesselSearch class. The
ImageProcessing class forward the video images to the VesselSearch class when told so by
external request.

Tracker class

An instance of the Tracker class tracks one point in the video stream using the cross-
correlation method from 4.2. The tracked points are added by external request through the
ImageProcessing class by supplying an initial start rectangle. The start rectangle defines the
target representation which is captured from the current video image. The template stays
unchanged throughout the trackers life (until it is deleted).

VesselSearch class

This is the tracking initialization algorithm described in 4.1. A single search is started by
external request. When or if the vessel is found the relevant modules gets notified.

50 Software Design

6.5 Position Estimator

This module takes care of the actual position estimation based on the tracked pixel values as
described in chapter 5. This module keeps track of multiple groups of corresponding points
in different cameras by the help of two structures TrackerGroup and TrackerRef.

TrackerGroup
camera
trackerId

PositionEstimator
addTrackerGroup(group)
setForwardVec(vector)
setCenterLine(line)
compute()
getPosition()
getAttitude()

TrackerRef
camera
trackerId0...n 2...n

Figure 6.3: The position estimator class and its internal structures.

6.6 Tracking Control

By the term “tracking control” means the scheduling and decision making part of the appli-
cation. The ultimate task for this module is to control the other modules such that vessel
measurements are available as much of the time as possible. To simplify the design and more
easily make working system the design is based on the tracking data from two cameras only.
The two cameras must be placed like a stereo vision couple as described in 4.4. From now on
let the left camera be called the primary camera and the right camera the secondary camera.

State machine design

The tracking control module follows a state machine based design and the chosen states for
the state machine are based on the state of tracking.

The initial state is the state when there are no information yet found from the vessel position.
Let this state be called SEARCHING as it means that system is searching for a vessel. In this state
the VesselSearch algorithm is started immediately in the primary camera to find the vessel.
When the vessel is found this marks the transition to a new state called FINDING_AFT. Since
only the port and starboard sides of the vessel are found from the VesselSearch algorithm,
the aft edge must be found by other means. The fact that trackers which are located on the
vessel are more likely to be stable than the ones placed on the sea, can be a good test to find
an approximation of the aft edge.

The VesselSearch algorithm gives out polygons counting from aft to stern direction and port
to starboard. By adding trackers in the low range of polygons some trackers are likely to hit
the sea behind the aft edge and others are likely to hit the vessel close to the aft edge. The
trackers trying to track the sea will most likely fail after a short period of time because of too
low correlation match. The trackers that are left are the ones located on the vessel. Finding
the aftest tracker of those is done by finding the tracker which is inside the polygon with the

6.6 Tracking Control 51

lowest number. All other tracking points except the aftest tracking point are removed as they
are only used to find the aft edge.

Next, correspondence to the aftest point must be found in the secondary camera such that
it can be verified that the aftest tracking point is not something that is only visible in one
camera. This is important as the 3-D position of the aftest point is used later.

When the correspondence for the aftest tracking point is found this marks the transitions
to a state called ADDING_TRACKERS which is suppose to create a tracking constellation which
provides good 6 DOF tracking. This is again done with the use of the polygons from the
VesselSearch class. This means that vessel search algorithm must be run to add new tracking
points. The additional points are added with the aftest tracker and its surrounding polygon
as a reference. This is to have better control of where the trackers will be located. For
instance not placing them behind the aftest tracker. This means that if the aftest tracker fails
in this state the state machine reverts back to SEARCHING. A simple algorithm makes sure
that the trackers makes up for a good constellation by trying to establish trackers on both
port and starboard sides and both in the aft and front areas of the cargo deck. In this state
correspondence in the second camera is added continuously to the added trackers once they
have proven to be stable for some a predefined time.

When enough trackers with correspondence has been added in the ADDING_TRACKERS 6 DOF
estimation is possible given that an estimate of the body origin and the body attitude
has been given to the PositionEstimator. If that is true this will lead to a transition
to the IN_TRACKING state. In this state 6 DOF motion is estimated each frame by the
PositionEstimator. Trackers are still added in this state to improve tracking in case trackers
fails. All this is done while the position estimator provides continuous measurements, but if
the system looses too many trackers, the state reverts back to ADDING_TRACKERS. In this state
the aftest tracker is not used as reference for adding new trackers anymore as this would make
the whole tracking fail in case the aftest tracker would fail. Instead a virtual point which
was saved when the 3-D position of the aftest tracker was known is used. The 3-D point is
projected on to the primary camera as a virtual tracker whenever the position of the original
aftest tracker in the video image needs to be known. If less than three points are available in
this state the state machine reverts back to SEARCHING as 6 DOF estimation is not possible
and the vessel position is unknown.

Figure 6.4 show the states and the most important transitions and below follows summary of
the most important actions which are performed in each state.

• SEARCHING: On entry all trackers are removed. VesselSearch algorithm is run to find
vessel. Multiple trackers added to the aft.

• FINDING_AFT: All except the aftest trackers is removed. Tries to find stereo correspon-
dence for the tracker.

• ADDING_TRACKERS: Trackers are added using the aftest tracker as reference point.

• IN_TRACKING: Trackers are added as needed to ensure good measurements. PositionEstimator
gives continuous measurements.

52 Software Design

FINDING_AFTSEARCHING

ADD_TRACKERSIN_TRACKING

Aftest tracker has correspondence

No. of trackers > 0

Aftest tracker has disappeared

Enough trackers with correspondence

Too few trackers with correspondence

Aftest tracker has disappeared

Figure 6.4: The states and most of the transitions.

The logic of the state machine are implemented in the class TrackingManager. The class needs
access to all the Camera instances for tracking information and access to the PositionEstimator
instance for knowing the 3D positions. The logic functions are run with the function check()
for every frame.

TrackingManager
addCamera(camera)
setPositionEstimator(posEst)
check()

Camera

PositionEstimator

Figure 6.5: The TrackingManager class and the classes it needs access to.

6.7 Concurrent Computing

By dividing the application into multiple threads the operating system’s scheduler will auto-
matically assign threads to available cores. The performance benefit of using threads depends
on the parallelization possibilities of the target hardware (number of cores, hyper-threading
etc.) and whether it is possible to parallelize the computations. The computations in this
application can be analyzed on a per-frame basis. The reason for this is that tracking data
from each camera must be captured at the same time. Tracking data from the previous
frame cannot not be used together with data from the current frame. Any threads must at
least be synchronized at each frame. The interesting part to analyze is then the intra-frame
computations.

Figure 6.6 depicts a one-frame capture and the suggested solution using threads. Each box
symbols a thread. The circular object symbols a synchronization point for which all threads
much reach before the execution can continue. From left to right there are first n video sources
with n tracking threads working in parallel. No information needs to be exchanged between
the tracker threads. To compute 3-D positions from the tracked positions in the video frame,
information from all camera are needed because the computations uses corresponding points
in all cameras. The execution must wait for all the trackers threads to finish. This is explained

6.7 Concurrent Computing 53

Figure 6.6: A one-frame computation using threads. Boxes represent code executing in a thread.
Circles are synchronization points.

by a synchronization point in the figure. Let there be m correspondent point groups. Then
there will be m threads which computes the 3-D position from the pixel positions. Finally
all the 3-D positions are needed when the rigid body transformation is computed, requiring
another synchronization point. There are computations inside the actual tracking algorithm
which can be parallelized, like the cross-correlation algorithm which are computed for each
tracker, but this is not taken into account in this analysis.

Threads

A slightly simpler design than the one described in the previous paragraph will be used as
basis for the implementation. The simplification is that only a single thread computes all the
3-D positions instead of having one thread for each 3D position to be computed. There will
still be one thread per camera such that the tracking algorithms can be run in parallel.

In Qt the main thread that starts the program is also the UI thread. If the image processing
algorithms were to be controlled from UI thread, user interaction could stall the algorithms
and the UI responsiveness would be dependent on the state of tracking. This is not desirable,
therefore a separate controlling thread called CameraManager is needed.

The CameraManager thread makes sure that all cameras are in sync and processes frames taken
at the same time. The position estimation and tracking managing is also run from this thread
to make sure that the position is computed exactly every frame. The relation between these
classes are shown in figure 6.7. The thread support is provided through Qt’s QThread class
such that the CameraManager class and the Camera inherits this class.

The dotted lines in figure 6.7 mark dependencies. First the CameraManager class of course
needs to know about the cameras and it needs to know about the TrackingManager class and
about the PositionEstimator class such that code in those classes can be executed by the
CameraManager. Additionally both the TrackingManager and the PositionEstimator class
needs to know tracking information from all the cameras. The order the classes are called will
be: processFrame() for every Camera instance, compute() in PositionEstimator and finally
check() in TrackingManager.

The summarize the application will be consisted of the following threads:

54 Software Design

PositionEstimator
compute()
addTrackerGroup(group)
getTrackerGroups()
setForwardVec(vector)
setCenterLine(line)

CameraManager
run()
finishThread()

Camera
run()
processFrame()
getImageProcessing()

QThread

TrackingManager
check()
getTrackingState()

Figure 6.7: The main processing classes showing the relevant public methods.

• Main/UI thread

• CameraManager thread

• Camera thread (one per camera)

6.8 Video Display

Displaying general graphics in Qt is very easy and implementing custom graphics requires
minor effort in the object oriented world of Qt and C++. Two video displays are shown for
each camera to visually help debugging the image processing algorithms. One is the source
video from the cameras, the other is a filtered version which shows either the tracker rectangles
(ROI and patch) or the Canny edge detection output and the Hough lines.

All graphical items, including the custom video item, are placed in a canvas area which is
called QGraphicsScene and the canvas is shown in a widget which is called QGraphicsView.
Items which belong together are grouped using QGraphicsItemGroup. Figure 6.8 shows the
graphical layout and figure 6.9 shows the class hierarchy.

6.8 Video Display 55

QGra
phics

Sce
ne

VideoDisplay : QGraphicsItemGroup

VideoFrame : QGraphicsItemGroup

VideoGraphicsItem : QGraphicsItem

VideoFrame : QGraphicsItemGroup

VideoGraphicsItem : QGraphicsItem

Video

Filtered video

Camera 1

VideoDisplay : QGraphicsItemGroup

VideoFrame : QGraphicsItemGroup

VideoGraphicsItem : QGraphicsItem

VideoFrame : QGraphicsItemGroup

VideoGraphicsItem : QGraphicsItem

Video

Filtered video

Camera 2

Figure 6.8: The GUI hierarchy.

VideoFrame
getVideoItem()
setCrosshairPositions(positions)

QGraphicsItemQGraphicsItemGroup

VideoGraphicsItem
setFrame(frame)
setDeckPosition(pos, ang)

1

MainWindow

QMainWindow

1

VideoView
addCamera(camera)
updateFrames()
setDeckPosition(pos, angles)

QGraphicsScene

1

0...n

VideoDisplay
updateFrames() 2

QGraphicsView

Camera
getFrame()
getImageProcessing()

Figure 6.9: The UI hierarchy for the video displaying part.

56 Software Design

Chapter 7

Software Implementation

The software implementation is used in the testing scenarios presented in chapter 8. This
chapter presents tools used to implement the application explains implementation specific
considerations.

7.1 Development Tools

Qt comes bundled with an integrated development environment (IDE) called QtCreator which
is basically an advanced text editor specialized for writing Qt application. It includes among
other things a graphical tool for creating UI and a graphical front end for the GNU debugger.
As with all most textual programming languages one is not restricted to a particular editor,
but the small add-on features which Qt adds to C++ requires an extra step in the build process
and that is automatically taken care of by QtCreator. Additionally, creating UIs using only
text editor is possible, but not very efficient.

The primary development took place on a PC with Ubuntu Linux version 9.10 (also known as
“Karmic Koala”). The reason for choosing a Linux based operating system instead of Microsoft
Windows is that the libdc1394 library does not yet support Windows. The alternative would
be to buy drives from a commercial vendor which was considered a more cumbersome solution
at the time.

7.2 Library Utilization

This section describes where the different libraries are used in the application.

58 Software Implementation

libdc1394

Figure 7.1: The logos of the different frameworks and libraries used for implementing the application.

Qt

Except being the application and UI framework, Qt of course provides access to independent
classes which some operation very compactly written in the source code. The QVector2D and
QVector3D are used in PositionEstimator class wherever 3-D vectors needs to be represented.
QVector2D is used extensively in the VesselSearch for constructing the vessel polygons.

In plain C, traditional arrays either have constant length or must be dynamically allocated
by the programmer. Qt provides a QVector-class (not to be mixed with QVector2D and
QVector3D) which can hold an array of any type of object by the use of C++ templates. This
puts the dynamic memory allocation problem out of the way. This class is used almost every
where in the application.

OpenCV

The main video frame format for the application is chosen to be the OpenCV IplImage format.
The use of this format makes conversion between other formats very easy. And since many of
the image processing algorithms are done using the OpenCV library, no conversion is needed.

OpenCV provides its own capture interface. On Windows this interface can capture any
DirectShow device connected, which typically includes at least any connected web-camera.
This feature was used in the early stage of testing when USB cameras were used. The OpenCV
capture interface is used in the wrapper interface class VideoCV.

The OpenCV library is used extensively in the Tracking class for the cross-correlation based
tracking. OpenCV provides a function cvMatchTemplate(...) which can use different block
matching techniques including cross-correlation. For the sub-pixel accuracy computation in-
terpolating the ROI is done using cvResize(...). To find good tracking points the function
cvGoodFeaturesToTrack(...) is used.

In the VesselSearch class OpenCV is used for the canny edge detection (cvCanny(...)) and
for the Hough-transform (cvHoughLines2(...)).

OpenCV provides functions for performing linear algebra operations on matrices. In the
PositionEstimator class cvSolve(...) is used to compute 3D-positions and cvSVD(...)
which performs singular value decomposition is used to compute rigid body transformation.

OpenCV provides an API for storing matrices. It is used when the user explicitly wants load
camera matrices from .xml- or .yml- files.

7.3 Multithreading in Qt 59

libdc1394

libdc1394 is an API to access firewire cameras which adhere to the IIDC (Instrumentation &
Industrial Digital Camera) standard. Since IIDC cameras follows a strict standard they do
not need a vendor specific driver to function. The library does only support Linux and Mac.
This library is used in the wrapper class Video1394 and in the Sys1394 class.

FFmpeg

FFmpeg is a complete, cross-platform solution to record, convert and stream audio and video.
The interesting part for this application is the libavcodec and libavformat libraries which
together provides functionality for reading recorded video streams in almost any format. FFm-
peg is used in the wrapper class VideoFile.

7.3 Multithreading in Qt

Qt provides extensive thread functionality. In Qt the main thread which starts the application
is always the GUI thread. Additional threads are created by extending the QThread class. Any
code which are executed from the run() procedure are executed in that thread. Functions in
a QThread-enabled class called from another thread is executed by the calling class and not
by the thread which the run()-function is running in.

Qt of course provides cross-platform thread synchronization primitives such as mutual exclu-
sion, semaphores and wait conditions. Such primitives are used in every class which can be
accessed from multiple threads where the simultaneous access could lead to a race conditions
(unpredictable result). Table 7.1 shows which threads that must be thread aware.

The rest of the classes involved in tracking and position estimation are typically either ac-
cessed by only one thread or is shielded from multiple access by another class. For instance
the TrackingManager is only accessed by the CameraManager-class except some small calls
from the UI-thread which does not pose any risk. And the Tracker-class is shielded by the
ImageProcessing-class.

Preventing data corruption due to simultaneous access is done with the QMutex-class which
provides mutual exclusion functionality. The thread synchronization property needed by the
CameraManager and Camera classes to synchronize the cameras, is provided through a combi-
nation of QMutex, QWaitCondition and QSemaphore. See the source code for details on how
it works.

60 Software Implementation

Thread Accessed by
CameraManager

• Itself when telling each Camera object to start processing the
next frame.

• The UI thread when adding or removing Camera-objects and
when starting or stopping camera capture.

Camera

• Itself when processing each frame.

• The CameraManager-thread when starting and stopping this
class’ thread.

ImageProcessing

• The Camera-thread when it tells this object to process the
current frame.

• Indirectly by the CameraManager-thread through
the PositionEstimator-class and through the
TrackingManager-class which e.g. fetches tracker posi-
tions from this class.

VesselSearch

• Indirectly by the Camera-thread through ImageProcessing-
class when the next frame should be analyzed.

• The UI-thread when it wants to display data regarding vessel
search in the UI.

PositionEstimator

• The CameraManager-thread when it tells this thread to com-
pute the next position and attitude estimation.

• The UI-thread when it wants to display position data in the
UI.

Table 7.1: Classes which are accessed from more than one thread and which threads they are accessed
from.

7.4 Video Display 61

7.4 Video Display

The use of multiple high resolution cameras requires copying and processing of large amounts
of data per time. Without efficiency in mind it is very easy to create bottlenecks in the
system. This section explains two concerns that must be addressed in an implementation.
One is handling of video data within the application and other is displaying video on screen
efficiently.

Video frame handling

OpenCV, Qt, OpenGL and libdc1349 all define their own image format and converting between
them is necessary and must so be done wisely. Most image formats used for video are based
on C-structs which have various properties and a pointer to a memory area where the actual
image pixels are located. There exists various formats of the pixel memory. The important
part is to avoid copying the complete video frame data using memcpy(...) whenever possible
as this is a performance bottleneck when dealing with large image sizes.

The OpenCV image format IplImage is chosen as the main image format for the application
such that no conversion is needed when using OpenCV image processing functions. The default
pixel format of OpenCV is “24-bit BGR” which means that pixels are stored with one byte
per channel in the order blue, green, red. When reading video files with FFmpeg, conversion
is usually needed anyway since different video streams use different pixel formats. In this case
the conversion is done internally in FFmpeg with the “sws_scaler”-sub library of FFmpeg such
that the destination format becomes “24-bit BGR” from the beginning. Creating an OpenCV
image is used without copying the pixel data, but by using the original pixel memory location
as source. This is done in the following way:

1 // Create frame header without a l l o c a t i n g p i x e l s t o rage
2 IplImage ∗ frame = cvCreateImageHeader (cvSize (videoWidth , videoHeight) , ←↩

IPL_DEPTH_8U , 3) ;
3 // Set the frame header to po int to the same data as the FFmpeg frame
4 // pFrameBGR−>data [0] i s the FFmpeg−frame ' s p i x e l data
5 frame−>imageData = (char ∗) pFrameBGR−>data [0] ;

Conversion between the other image formats is done in a similar way. More advanced format
checking must be done if the conversion should work in all cases, but only a minimum of code
was implemented to make the conversion work. Since the IIDC cameras used in this project
are gray scale it is irrelevant whether the pixel format is RGB or BGR since the values are
equal, this opts for a simpler conversion or no conversion at all.

Accelerated video display

Displaying high resolution video streams while at the same time rescaling it to fit inside an
application window could easily pose a performance bottleneck. This could result in that the

62 Software Implementation

CPU processing cycles which were meant to be used by image processing algorithms could
be used to display the video image only. The problem of displaying high resolution video is
today of course already solved by the consumer multimedia PC industry. The problem is a
matter of choosing an appropriate method for displaying the video on screen. Some widely
used technologies are presented in the table below:

Name Description
DirectX An API for the Windows operating system for handling video

display and many other multimedia related functionality.
XVideo A video output extension for the X Window System. The

X Window System is a software application which provides
graphics almost exclusively used on Linux systems.

SDL A cross-platform API for displaying video and other multi-
media related functionality.

QtOpenGL Amodule which comes bundled with Qt for displaying graph-
ics using the OpenGL API.

It is a natural choice to use the QtOpenGL module since Qt is already chosen as application
framework. Using an included package requires minimum work to integrate the video display
into to the rest of the application UI. It may be a surprise to use OpenGL for showing video,
but in fact many video players use OpenGL for displaying video. OpenGL is a cross-platform
API which makes it possible to perform operation such as resizing of the video on the graphics
processing unit which ease the load on the CPU.

The video display is implemented using the OpenGL “Pixel Buffer Object” feature which
amongst other things uses direct memory access to transfer the pixel data from system memory
to the graphics card. The actual implementation is very API intricate and further details are
found in the source code.

Augmented Reality Cargo Deck

A virtual cargo deck was projected on top of the video image. This visual feature shows
that the system is tracking the movement of the vessel. The cargo deck was rendered using
OpenGL which already is used to render the video. The main challenge is to match the
OpenGL world to match the world defined by the camera matrix. OpenGL internally use two
matrices to define the mapping between x,y and z and screen coordinates. This is similar to
the camera matrix defined in chapter 3, but the conversion is not straightforward. To do the
conversion a function called argConvGLcpara2(...) was borrowed with some modifications
from a software library called “ARToolKit” (Augmented Reality Toolkit) (ARToolKit 2010).
The library is free for non-commercial use.

7.5 OTC Specific Implementation 63

7.5 OTC Specific Implementation

OTC is an acronym for “Offshore Technology Conference” and is the world’s foremost event
for the development of offshore resources in the fields of drilling, exploration, production, and
environmental protection. OTC is held annually at Reliant Center in Houston (OTC 2010).
A part of this project was to create a demo application to be displayed at OTC representing
proof-of-concept of new technology from National Oilwell Varco. This section covers work
that were specific for the OTC exhibit.

Purpose

In the scope of OTC this application represents new technology which is to be considered
either as an add-on feature to already existing offshore cranes or as a feature for new cranes
delivered by NOV. The purpose of the demo application is to visually proof that the movement
of a supply vessel is captured by cameras and that the position is measured in real-time. The
advantage of knowing this information is explained in 1.1.

OTC user interface

When dealing with crane operations the heave movement is the most important measure-
ment. Special functionality was implemented to compute derivative heave data. The main
functionality was the following:

• Dividing the cargo deck into a grid of 11 × 5 squares.

• Plotting the heave measurement for a user selectable square.

• Storing the heave measurements for the last 40 seconds for every square.

• Estimating the peak-to-peak measurement for each square.

• Visualizing the estimated peak-to-peak for every square using a color coded grid.

The position of any point on the cargo deck can be found from the position of the cargo deck
and the roll, pitch and yaw relative to the n-frame. Position of an arbitrary position on the
cargo deck is given by

p = pnnb + Rn
bp

b
sq (7.1)

where pbsq is a vector describing the position on the deck relative to the center of the deck. In
this application it is pointing to the center of any of the 11 × 5 squares which are defined.

64 Software Implementation

Estimating peak-to-peak heave

For estimating the peak-to-peak amplitude many approaches exists. For example it is possible
to register multiple minimum and maximum points and compute the difference between them
for some time period. A simpler method without much logic was used and it will be briefly
presented here.

Two values are computed. The first value is constrained such that it is always equal or larger
than the heave measurement. If the heave measurement is less than the previous value, the
value follows the heave measurement with a slow first order response. The same computation
applies for the second variable, but it is constrained such that it is always equal or less than
the heave measurement. The estimated peak is found by the difference between the maximum
and minimum value. An example estimation is found in figure 7.2. The algorithm i similar to
how a single phase rectifier behave.

140 160 180 200 220
−0.05

0

0.05

h
e
a
v
e
 [
m

]

time [s]

140 160 180 200 220
0

0.05

0.1

e
s
ti
m

a
te

d
 p

e
a
k
−

to
−

p
e
a
k
 [
m

]

time [s]

Figure 7.2: The workings of the peak-to-peak estimation method. The lower plot is the difference
between the red and the blue curve in the upper plot.

Placement of Body Origin

Two simplifications were done in the placement of body frame:

• Since the yaw angle could not change and was known in advance, it was forced to a
specific value.

• A special “check image” was used to position the body origin. It was based on cross-
correlation by searching for the “winch only” template and position the cargo deck rela-
tively.

7.5 OTC Specific Implementation 65

These two simplification improved the appearance of the augmented reality cargo deck.

Figure 7.3: The final UI used at OTC. The blue rectangle originally showed the third camera (which
was mounted in a 90◦ angle), but the screen shot was taken at a later occasion with only two video
streams available. The heave values were multiplied by 100 such that it would match the real vessel.

66 Software Implementation

Chapter 8

Experimental Setup

An important part of this project is the verifying of algorithms through the software imple-
mentation and a hardware setup. This chapter covers the purchased hardware which was
used during the experiments. Additionally the complete experimental setup is described an
important part is the motion platform which was built to simulate waves.

8.1 Application Hardware

This is the hardware that application uses when it is running. It consists of the processing unit
and the cameras. State of the art hardware was chosen to make sure that lack of processing
power or camera resolution would be a performance issue.

Processing Unit

Architecture Intel x86
CPU Intel Core i7 960/3.2

GHz (quad core)
Memory 12 GB

Video Card Asus Radeon HD 5770
IEEE 1394b interface 2 x FireBoard-800

Figure 8.1: Processing unit specifications.

68 Experimental Setup

Manufacturer Sony
Model XCDU100E

Sensor chip Grayscale, 1600×1200 pixels
Frame rate 15 Hz at 1600×1200 pixels
Color depth 8 bit/16 bit

Interface IEEE 1394b (Firewire 800 Mbit/s)

Table 8.1: Camera specifications.

The processing unit is a high performance Intel-PC with two IEEE 1394b interface cards. Two
cards are needed because the data rate for three cameras exceed the 800 MBit/s limit on one
card. The third camera are not used in machine vision algorithms, but only for visual display.

The processing unit was installed with the chosen Ubuntu version and the necessary libraries
and the application software were installed.

Cameras and lenses

Figure 8.2: “Sony XCD-U100” camera fitted with a “Fujinon HF16HA-1B” lens. Also showing the
two digital connectors at the back allowing daisy-chaining of multiple cameras.

The cameras are of industrial type with uncompressed transfer of image data to the host
computer. Gray scale cameras was chosen because the color information is really not needed
and the picture sharpness of gray scale camera tend to be somewhat better since only one
sensor element is needed per pixel. The most important factor when choosing lens is the focal
length. Higher number means more zoom as illustrated by figure 3.1. The focal length was
chosen such that the cameras captures at least the whole cargo deck at the target distance.

The cameras were run at their maximum resolution of 1600 × 1200 pixels and maximum frame
rate of 15 Hz.

8.2 Scenario 69

Manufacturer Fujinon
Model HF16HA-1B

Focal length 16 mm
Focal/Iris control Manual

Table 8.2: Lens specifications.

8.2 Scenario

The experimental setup consists of two cameras, the processing unit, a motion platform and
a scale model of a supply vessel. The distances in the scenario was placed such that it
approximately is a scaled down version of the supply vessel rig scenario. Two cameras were
used and they were mounted approximately 30 cm apart. The distance from the cameras to
the motion platform was between 2 and 3 meters.

Figure 8.3: The scenario used in experimental results.

Scale Vessel Model

The tracked object is an accurate scale model of a real supply and anchor handling vessel
from Siem Offshore Inc. The vessel name is “Siem Emerald”. The model was rented from the

70 Experimental Setup

Figure 8.4: Scale model of Siem Emerald.

Norwegian Siem offices by National Oilwell Varco for use in this project.

Motion platform

The motion platform is a 3 DOF platform (roll, pitch and heave) designed by National Oilwell
Varco and built by the mechanics at department of Engineering Cybernetics, NTNU. It consists
of a base with three linear actuators with stepper motors and encoders. The actuators motor
controls and power supply are manufactured by Festo. The electric drive makes the actuator
ideal for following arbitrary smooth movements like waves.

The actuators are evenly spaced around a circle such that the angle between them are 120◦.
The actuator bottom mount is a hinge bearing and the actuator end point is mounted to the
motion platform (the top plate) with ball bearing. The stepper motor control is performed by
the supplied motor control box.

To simulate realistic wave movements, a supply vessel model from the Marine Systems Sim-
ulator (MSS) library for Simulink/Matlab (Marine Systems Simulator 2010) was used. In
particular the “DP Force RAO model - zero speed” with the parameters “ShipX: Supply Vessel
(L = 82.80 m)” from MSS Hydro was used. This setting suits well for the Siem Emerald as
it is 91 meters long. The zero speed DP model also suits well considering the crane operation
scenario.

Multiple wave/current scenarios was simulated and recorded, but only one data set is used in
chapter 9. The data set used has 6 meters significant wave height, with the default settings
except: “Torsethaugen” wave spectrum, zero current and wave direction straight ahead. The
significant wave height was chosen based on typical limit where a crane operation must be
canceled due to heave seas.

The center of rotation is approximately at center of the motion platform and the vessel scale
model is located on top of the platform. This does not correspond to the center of orientation
used by the vessel model in MSS. This mismatch is neglected since using the vessel model is
only a way to get realistic wave movement to some extent. The yaw, x and y measurements
are also neglected since the platform can only simulate pitch, roll and heave.

8.2 Scenario 71

Figure 8.5: The devices involved in the actuator control. Built and programmed by Pål Jacob
Nessjøen.

The overall control of the actuator positions is done using a National Instruments CompactRIO
system which is programmed and deployed by Pål Jacob Nessjøen. The roll, pitch and heave
data from MSS is converted to appropriate actuator positions in real-time by the CompactRIO
module. Due to various limitations and uncertainties in the control loop of the actuators it
is not certain that the actuators follows what would be the perfect pitch, roll and heave from
the data set. Therefore the actual actuator positions are measured by the built in encoders
and saved for later analysis. The real roll and pitch angles are computed afterwards using the
forward kinematics of the motion platform which is derived in A.

Figure 8.6: The motion platform designed by National Oilwell Varco and built by mechanics at
Department of Engineering Cybernetics, NTNU.

72 Experimental Setup

Scale 1:100
Length 91 cm
Width 22 cm

Table 8.3: Essensial scale model data.

8.3 Camera Calibration

A cube was used as calibration rig. The cube was placed at the back of the supply vessels
deck. Before calibration the motion platform and vessel was placed with all the actuators half
way extended. This corresponds to the mean values of roll, pitch and heave. The coordinates
of the cube corners was chosen such that the x-axis points forward, the y-axis to starboard
and the z-axis down. This makes it easy to compare the vessel movement measured by the
camera to platform movement because the coordinate system of the platform is chosen the
same way.

Figure 8.7: Camera calibration cube placed on cargo deck.

8.4 OTC Demo setup 73

8.4 OTC Demo setup

The companies attending OTC are designated to separate areas called booths. This project
was assigned to a small area of the NOV booth. The setup is the same as described in 8.2,
except that an additional third camera was used to display an overview of the vessel. No
tracking information was used from this camera. It was only used for augmented reality.

Actions were taken to make the setup to look more visually appealing than the original ex-
perimental setup. This included covering the motion platform with a steel box with the NOV
logo on it and creating a silk seabed to cover the top of the box. Additionally a TV-screen was
used to display the camera video and the visualization of the measurements. A specifically
designed UI was displayed at this screen. The main UI was not displayed at all except at
a hidden administration screen. A separate touch screen computer was used to control the
motion platform. It was important that this system was separated from the machine vision
system to make it clear that the measurements were computed from the camera videos only.

Figure 8.8: The stand at OTC showing the motion platform, the TV-screen and the PC to control
the wave platform.

74 Experimental Setup

Chapter 9

Experimental Results

The experimental results focuses on the measurement accuracy of the application when used
in the setting described in the previous chapter. Primarily the position and attitude measure-
ments from the application are compared to the real data. The real data is found by using
the stored actuator measurements and computing the motion according to the derivations in
A. Aspects regarding tracking stability is also discussed.

9.1 Source Data

The video analysis in this chapter was performed off-line to easier test different schemes with
the same source. The data was recorded at OTC as this proved to be a successful setup. The
experimental setup explained in 8 is still valid. The data set for the motion platform was
run in loop and the video capture was started approximately 30 seconds before the start of a
new loop of the data set. Approximately 400 seconds of video was recorded at 15 frames per
second. The syncing of video measurements and platform measurements was done based on
a manual timing light in the video which indicates when the platform data set starts. This is
not accurate enough to measure latency, but it is used to roughly align the measured and the
motion platform measurements.

The data sets used in this chapter are given in the following table:

Contents Sample rate
Mesaured platform movement Position, attitude 25 Hz
Video mesaurement, regular Position, attitude, number of

points, tracking state
15 Hz

Video mesaurement, 1/3 sub-pixel Position, attitude, number of
points, tracking state

15 Hz

Video mesaurement, 1/6 sub-pixel Position, attitude, number of
points, tracking state

15 Hz

76 Experimental Results

9.2 Measurement Results

In the following sections the first data set without sub-pixel tracking is compared unless
otherwise specified.

Figure 9.1 shows the comparison for the first 250 seconds position part of the data set. The
plots also shows how many 3-D point correspondences which are tracked at any instant. During
the initialization phase the measurements are far off, but stabilizes when the default number
of 3-D points is reached which is six in this case.

The measurements position are correlated with the real position, but clearly there are offsets.
Since the offsets are constant it is likely to believe that the application is not measuring the
correct point. The “real” position is chosen to be the center of the cargo deck. The position
chosen by the application may easily be off center and can result in both scale and offset
errors.

Figure 9.2 shows the attitude measurement given by roll, pitch and yaw. The first thing to
notice is that the roll measurement is a lot more noisy than the pitch measurement. This is
because the point spread in longitudinal direction is much larger than in the lateral direction.
Simply because the vessel is longer than it is wide. Noisy points which are close together will
have a much greater influence on the computed angle than points far apart.

Surprisingly the real yaw angle is not zero although the motion platform was designed to be
a roll, pitch and heave platform only. This is due to the exact kinematic model derived in
A.1 which takes the small actuator angle deflections into account. However, it is not much
correlation between the real and measured yaw values. The measured yaw value fluctuates
between around ±1◦. It is likely to believe that this fluctuations is due to to a body frame
chosen by the application which is not perfectly aligned with the vessel longitudinal/lateral
directions. Misaligned body frame will not measure the desired angles perfectly, but rather a
composite of the two other rotations as well.

The angle measurements have little offsets partly because of the filtering algorithm described
in 5.4.

9.2 Measurement Results 77

0 50 100 150 200 250

0.16

0.18

0.2

time [s]

d
is

ta
n
c
e
 [

m
]

Surge

Real

Measured

0 50 100 150 200 250

0.03

0.04

0.05

0.06

0.07

0.08

time [s]

d
is

ta
n
c
e
 [
m

]

Sway

0 50 100 150 200 250

−0.02

−0.01

0

0.01

0.02

0.03

time [s]

d
is

ta
n
c
e
 [
m

]

Heave

0 50 100 150 200 250

1

3

5

7

9

time [s]

p
o

in
ts

 [
1
]

Tracked 3D points

Figure 9.1: The surge (x), sway (x) and heave (x) positions of the center of the cargo deck. Measured
by the application (black) and computed from the motion platform movement (red). Number of
tracking points is also showed (blue).

78 Experimental Results

0 50 100 150 200 250

−10

−5

0

5

10

time [s]

a
n
g
le

 [
d
e
g
]

Roll

Measured

Real

0 50 100 150 200 250

−10

−5

0

5

10

time [s]

a
n
g
le

 [
d
e
g
]

Pitch

0 50 100 150 200 250

−10

−5

0

5

10

time [s]

a
n
g
le

 [
d
e
g
]

Yaw

0 50 100 150 200 250

1

3

5

7

9

time [s]

p
o

in
ts

 [
1
]

Tracked 3D points

Figure 9.2: The roll (ψ), pitch (θ) and roll (φ) angles measured by the application (black) and
computed from the motion platform movement (red). Number of tracking points is also showed
(blue).

9.2 Measurement Results 79

Loss of tracking point

In figure 9.3 a situation where a tracking point is lost and the roll measure clearly gets affected,
but after about 20 seconds it gets back on track due to the mean filtering.

The removal of tracking point is based on two error checks: too large acceleration or too low
correlation. The acceleration check computes the discrete acceleration and naturally needs at
least three frames. This means that when the acceleration is too large the point may already
have moved and affected the rigid body estimation permanently. It is possible to compensate
for this, but this would add more latency in the system.

250 260 270 280 290 300 310 320
−15

−10

−5

0

5

10

15

time [s]

a
n
g
le

 [
d
e
g
]

Roll

Measured

Real

250 260 270 280 290 300 310 320

1

3

5

7

9

time [s]

p
o
in

ts
 [
1
]

Tracked 3D points

Figure 9.3: Measurements where a tracking point drifts before it is removed.

Sub-pixel tracking

Both 1/3 pixel 1/6 pixel tracking was tested. Figure 9.4 shows the comparison between regular
tracking and subpixel tracking. The roll measure was chosen since it is often the most noisy
measurement and it is therefore easy to see improvements. Already with 1/3th pixel tracking
the roll measurement is greatly improved.

80 Experimental Results

100 120 140 160 180 200

−10

0

10

time [s]

a
n
g
le

 [
d
e
g
]

Roll − regular tracking

100 120 140 160 180 200

−10

0

10

time [s]

a
n
g
le

 [
d
e
g
]

Roll − 1/3 sub−pixel tracking

100 120 140 160 180 200

−10

0

10

time [s]

a
n
g

le
 [
d
e
g
]

Roll − 1/6 sub−pixel tracking

Figure 9.4: Roll measure comparison for regular and sub-pixel tracking.

9.3 Heave Precision Analysis 81

Regular 1/3 Sub-pixel
Front port 79.51% 98.9%
Front starboard 60.86% 95.22%
Aft port 68.75% 97.73%
Aft starboard 79.88% 99.58%

Table 9.1: Amount of samples that are within a threshold of 0.001 m for each corner and for each
tracking type.

9.3 Heave Precision Analysis

There are different ways to define precision. A common approach is to relate it to the prob-
ability distribution of the signal. In this section an accuracy a will be defined as the limit
where 95% of the measurements are the mean value ± the accuracy a.

To find the precision of the measurement it is in this case not appropriate to subtract the
corresponding motion of the motion platform due to the geometric uncertainties described in
9.2. Additionally the measurements from the actuators on the motion platform itself also have
measurement noise which will influence the result with undesired factors. Another means of
finding the accuracy is to assume that the measurement consists of a low-frequent part which
is the vessel motion and a high frequent part which is measurement noise. To analyze the
high-frequent part a high pass filter which filters away the vessel motion is used. It is assumed
that frequencies above 1 Hz is noise.

To catch the worst case measurements all the four corners of the cargo deck are analyzed.
Figure 9.5 shows a small part of the heave measurement just to show the measurement noise
with and without sub-pixel tracking for each cargo deck corner. The 1/3 pixel tracking is
chosen for the sub-pixel variant. The histograms shows the signal distribution after the low
frequency parts has been filtered away. Additionally the figure displays two histograms for the
complete time series of approximately 400 seconds for sub-pixel and regular tracking. Table
9.1 shows the accuracy in terms of number of samples which are within 0.001 meters on each
side of the mean. This number is chosen because it corresponds to an accuracy of 0.1 meters
for the real vessel which is the requirement specified in 2.2. Both regular tracking and sub-
pixel tracking with 1/3th of a pixel precision is showed in the table. It is clear that sub-pixel
tracking improves the measurements quite drastically.

82 Experimental Results

100 110 120 130 140 150

−0.02

0

0.02

0.04

0.06
heave

time [t]

p
o
s
it
io

n
 [
m

]

regular subpixel

−2 −1 0 1 2

x 10
−3

0

200

400
error distribution regular

error [m]

s
a
m

p
le

s
 [
1
]

−2 −1 0 1 2

x 10
−3

0

1000

2000
error distribution 1/3 subpixel

error [m]

s
a
m

p
le

s
 [
1
]

(a) Front port cargo deck corner.

100 110 120 130 140 150

−0.02

0

0.02

0.04

0.06
heave

time [t]

p
o
s
it
io

n
 [
m

]

regular subpixel

−2 −1 0 1 2

x 10
−3

0

500
error distribution regular

error [m]
s
a
m

p
le

s
 [
1
]

−2 −1 0 1 2

x 10
−3

0

500

1000
error distribution 1/3 subpixel

error [m]

s
a
m

p
le

s
 [
1
]

(b) Front starboard cargo deck corner.

100 110 120 130 140 150

−0.02

0

0.02

0.04

0.06
heave

time [t]

p
o
s
it
io

n
 [
m

]

regular subpixel

−2 −1 0 1 2

x 10
−3

0

500
error distribution regular

error [m]

s
a
m

p
le

s
 [
1
]

−2 −1 0 1 2

x 10
−3

0

1000

2000
error distribution 1/3 subpixel

error [m]

s
a
m

p
le

s
 [
1
]

(c) Aft port cargo deck corner.

100 110 120 130 140 150

−0.02

0

0.02

0.04

0.06
heave

time [t]

p
o
s
it
io

n
 [
m

]

regular subpixel

−2 −1 0 1 2

x 10
−3

0

200

400
error distribution regular

error [m]

s
a
m

p
le

s
 [
1
]

−2 −1 0 1 2

x 10
−3

0

1000

2000
error distribution 1/3 subpixel

error [m]

s
a
m

p
le

s
 [
1
]

(d) Aft starboard cargo deck corner.

Figure 9.5: The heave measure and error distribution with and without sub-pixel tracking for each
corner of the cargo deck.

9.4 Real-time performance 83

9.4 Real-time performance

The system was run in real-time at OTC for four days with very little down time. The exper-
imental results are based on off-line processing. This of course leads to another result than
with real-time tracking, but the difference lies mainly in frame rate. Real-time processing
leads to varying frame rate whereas off line processing may process without any frame drop-
ping. Sub-pixel tracking was not used ad OTC because regular tracking with slight low-pass
filtering gave sufficient result. The frame rate was seldom below 10 Hz.

When dealing with real-time systems, non-deterministic behavior usually lies in the scheduling
of processes done by the operating system. The internal communication and data transfer in
the application is known. It is when external devices needs to be accessed that unknown
latency may appear. In machine vision systems the external devices are cameras.

A rough measure was done to find the latency from the real world to the camera display on
screen. The measure showed approximately 0.5 second delay. It was not investigated further
what this delay could be a result of. It is suspected that it is related to the buffering scheme
of the libdc1394-library. The library uses an internal ring-buffer for each camera to store
the frames. If the user application does not read the ring buffer fast enough the buffer fills
up an frames get dropped. This typically happens every time the vessel search algorithm is
run. Slight frame dropping is not really a problem, but because the CameraMananger-thread
restricts the application from exceeding the frame rate of 15 Hz, the application will never
catch up the lag caused by the earlier slowness. The result is that the buffer will always be
filled and there will be a constant lag depending on the buffer size.

This is a design flaw of the application which is very easily fixed by increasing or removing
the processing rate of 15 Hz. This way the application can catch up when there is little work
to do. If the limit is removed the maximum processing rate is only limited by the camera
acquisition rate or the computing power.

9.5 Vessel Independence

The system was created with vessel independence in mind, except the few requirements stated
in 2.1. The system was not tested with other ship models so it is hard to give proof of vessel
independence. The three most critical algorithms are the tracking initialization algorithm
which needs to know the with of the vessel. Secondly the polygons which are used for aiding
the selection of tracking points must be placed in regions which there exist good features to
track on the vessel. And finally the stereo correspondence algorithm is dependent of cameras
that are accurately calibrated and that the cameras’ views are not too different. However, the
tests experience of the Siem Emerald model showed that in most cases it is just a matter of
tuning scalar variables to make everything work.

84 Experimental Results

Chapter 10

Conclusions

A prototype system has been built an implemented for real-time performance. The 6 DOF mo-
tion of a supply ship in medium and high seas was successfully measured by the machine vision
system. The accuracy of the measurements is characterized by offsets, but are generally very
correlated with the real positions. It is discussed that these errors are due to misplacement of
the body coordinate frame onto the vessel. This misalignment pose no practical measurement
error since the operator selects the position to measure on the vessel by visual confirmation.
The system proved to sustain tracking throughout the complete data set of ten minutes with
six meter significant wave height. The system has therefore succeeded in keeping tracking for
more than one container lift.

Sub-pixel tracking clearly leads to better tracking, but the implemented sub-pixel algorithm
requires much more computation than regular tracking. Without improving the algorithm or
the multi-threading properties of single point tracking, sub-pixel may not be possible to run
in real-time. The accuracy of 1/3 sub-pixel tracking shows that the accuracy is within the
requirement of ±0.1 meter which is stated in chapter 2. Real-time observations showed that
the sample rate was never below 10 Hz during regular tracking. Further investigation must
be done to find out if this limit is maintained with an accuracy of ±0.1 meter.

The experiments show that the vessel is automatically found by the custom derived line search
algorithm. The loss of tracking points may distort the tracking for a short period of time and if
the tracking is lost it is regained after a short period of time. The vessel independence feature
has been discussed. It cannot be concluded that the system is completely vessel independent
from the experimental results.

10.1 Future Work

There are a lot of aspects of the implemented application which can be improved. The
most vulnerable algorithm is the tracking initialization part. Testing multiple vessels in the
experimental setup was not done, and the vessel independence is one of the main features which

86 Conclusions

needs improvement. This is a complicated algorithm which must be intelligent to succeed. An
alternative to sub-pixel tracking is model based filtering which also improves the accuracy.

The most important future work is the following:

• Model based filtering to improve accuracy.

• More intelligent tracking initialization.

• More advanced error detection.

Appendix A

Motion Platform Kinematics

Here the forward kinematics of the motion platform will be derived. This model is used to
find the position and attitude of the motion platform given the three actuator lengths. Two
coordinates frames are defined. The actuator frame {a} is located at the center of the actuator
plate. The xa-axis points through actuator 1’s hinge mount, the za-axis is pointing up, normal
to the bottom plate and the ya-axis such that a right handed coordinate frame is formed. The
second coordinate system is attached to the motion platform with the origin at the center of
plate. The xp-axis is pointing from actuator 1’s end point towards the center. zp pointing
down, normal to the plate and yp such that a right handed coordinate frame is formed. Figure
A.1 shows the defined coordinate systems.

Figure A.1: The motion platform and its two coordinate frames.

The following derivation will find the relation between the {a} frame and the {p} frame. First

88 Motion Platform Kinematics

an expression for the position of the end points of the actuator p1, p2 and p3 are derived.

Figure A.2: The location of the vectors describing the fixed actuator hinge position ri and actuator
orientation and length ai.

Since each actuator is hinged to the actuator plate its working area is planar. The position
of the actuator tip can therefore be done in a two dimensions only. Figure A.3 shows the
working geometrics of an actuator in its planar working area. The hinge position of actuator
i is determined by the vector ri and its length is defined by the actuator hinge radius. Finally
the actuator end point is determined by the angle of the actuator itself and its length.

Figure A.3: Vectors for actuator top plate position i.

Actuator 1’s working plane coincides with the yz-plane and has therefore the simplest expres-

A.1 Constraints 89

sion of the actuator end point. It is given by

p1 =

 0
r + a1 cosα1

a1 sinα1

 (A.1)

The two other actuators are the same as actuator 1, except it must be rotated around the
z-axis until such that the original yz-plane coincides with the working area of the actuator.

p2 =

cos θ2 − sin θ2 0
sin θ2 cos θ2 0

0 0 1

 0
r + a2 cosα2

a2 sinα2

 =

sin(θ2)(r + a2 cosα2)
cos(θ2)(r + a2 cosα2)

a2 sinα2

 (A.2)

where θ2 = 2
3π (120◦)

p3 =

sin(θ3)(r + a3 cosα3)
cos(θ3)(r + a3 cosα3)

a3 sinα3

 (A.3)

where θ3 = 4
3π (240◦)

A.1 Constraints

The constraint in this system is the motion platform which is attached to the actuator end
points. There is only one possible position and orientation of the top plate for a given set
actuator lengths. Fortunately the solution is not overdetermined meaning that actuators
could work against each other. This will be shown mathematically later, however it is very
intuitively correct that it must be like that. The motion plate defines constraints on the
distances between every actuator end point. The constraints can be described by

‖ p1 − p2 ‖2 = d (A.4)
‖ p1 − p3 ‖2 = d (A.5)
‖ p2 − p3 ‖2 = d (A.6)

where d is the distance between two arbitrary actuator end points and is equal for all combina-
tion due to the symmetric mount position on the top plate. The unknowns in these equations
are the three actuator angles αi for i ∈ {1, 2, 3}.

Writing out (A.4) yields

90 Motion Platform Kinematics

(sθ2(r + a2cα2))
2 + (r + a1cα1 − cθ2(r + a2cα2))

2

+(a1sα1 − a2sα2)
2 = d2

(A.7)

s2θ2(r + a2cα2)
2 + (r + a1cα1)

2 − 2(r + a1cα1)cθ2(r + a2cα2)

+c2θ2(r + a2cα2)
2 + (a1sα1 − a2sα2)

2 = d2
(A.8)

=1︷ ︸︸ ︷
(s2θ2 + c2θ2)(r + a2cα2)

2 + (r + a1cα1)
2

−2(r + a1cα1)cθ2(r + a2cα2) + (a1sα1 − a2sα2)
2 = d2

(A.9)

r2 + 2ra2cα2 + a2s
2α2 + a22c

2α2 + r2 + 2ra1cα1 + a21c
2α1

−2(r + a1cα1)cθ2(r + a2cα2) + a21s
2α1 − 2a1sα1a2sα2 + a22s

2a2 = d2
(A.10)

r2 + 2ra2cα2 + a22s
2α2 +

=1︷ ︸︸ ︷
(s2α2 + c2α2) a

2
2 + r2 + 2ra1cα1 +

=1︷ ︸︸ ︷
(s2α1 + c2α1) a

2
1

−2rcθ2(r + a2cα2)− 2a1cα1cθ2(r + a2cα2)− 2a1sα1a2sα2 = d2
(A.11)

Finally the terms are grouped by the unknowns α1 and α2

cα1(2ra1 − 2ra1cθ2) + cα2(2ra2 − 2ra2cθ2) + cα1cα2(−2a1a2cθ2)

+sα1sα2(−2a1a2) + 2r2 + a21 + a22 − 2r2cθ2 = d2
(A.12)

Realizing that cθ2 = cos (23π) = −0.5 makes for some more simplification

cosα1(3ra1) + cosα2(3ra2) + cosα1 cosα2(a1a2) + sinα1 sinα2(−2a1a2)

+3r2 + a21 + a22 − d2 = 0
(A.13)

Writing out (A.5) follow the same steps as writing out A.4. Although a2, α2 and cos θ2 must
be replaced with a3, α3 and cos θ3. The numeric value for cos θ3 is the same as cos θ2 because
cos θ3 = cos (43π) = cos (23π) = cos θ2 is the same.

Equation (A.5) becomes

cosα1(3ra1) + cosα3(3ra3) + cosα1 cosα3(a1a3) + sinα1 sinα3(−2a1a3)

+3r2 + a21 + a23 − d2 = 0
(A.14)

Writing out (A.6) is little different

A.2 Platform Attitude and Position 91

s2θ2(r + a2cα2)
2 − 2sθ2sθ3(r + a2cα2)(r + a3cα3) + s2θ3(r + a3cα3)

2

+c2θ2(r + a2cα2)
2 − 2cθ2cθ3(r + a2cα2)(r + a3cα3) + c2θ3(r + a3cα3)

2

+a22s
2α2 − 2a2sα2a3sα3 + a23s

2α3 = d2
(A.15)

The term (2sθ2sθ3 + 2cθ2cθ3) = −1 when inserted for the values for θ2 and θ3

=1︷ ︸︸ ︷
(s2θ2 + c2θ2)(r + a2cα2)

2 −
=−1︷ ︸︸ ︷

(2sθ2sθ3 + 2cθ2cθ3)(r + a2cα2)(r + a3cα3)

+

=1︷ ︸︸ ︷
(s2θ3 + c2θ3)(r + a3cα3)

2 + a22s
2α2 − 2a2sα2a3sα3 + a23s

2α3 = d2

(A.16)

r2 + 2ra2cα2 + a22c
2α2 + (r + a2cα2)(r + a3cα3) + r2 + 2ra3cα3 + a23c

2α3

+a22s
2α2 − 2a2sα2a3sα3 + a23s

2α3 = d2
(A.17)

r2 + 2ra2cα2 +

=1︷ ︸︸ ︷
(s2α2 + c2α2) a

2
2 + (r + a2cα2)(r + a3cα3) + r2 + 2ra3cα3

+

=1︷ ︸︸ ︷
(s2α3 + c2α3) a

2
3 − 2a2sα2a3sα3 = d2

(A.18)

r2 + 2ra2cα2 + a22 + r2 + ra3cα3 + ra2cα2 + a2cα2a3cα3 + r2

+2ra3cα3 + a23 − 2a2sα2a3sα3 = d2
(A.19)

The terms are grouped by the unknowns α2 and α3

cosα2(3ra2) + cosα3(3ra3) + cosα2 cosα3(a2a3) + sinα2 sinα3(−2a2a3)

3r2 + a22 + a23 − d2 = 0
(A.20)

Not surprisingly (A.20) ends up in the same form as the two previous equations due to the
symmetry of the motion platform. The three equations (A.4) (A.5) and (A.6) determines the
three unknowns α1, α2 and α3. Because of the trigonometric properties of the equations it is
difficult or impossible to solve them analytically. It can however easily be solved numerically
using the function fsolve in Matlab.

A.2 Platform Attitude and Position

Suppose the unknowns α1, α2 and α3 are found somehow. Then the actuator end point
positions in the {f}-frame p1, p2 and p3 can easily be found using (A.1), (A.2) and (A.3).
Together they define the position and orientation of the motion platform.

92 Motion Platform Kinematics

What is desirable to find is the rotation matrix which describes the attitude of the platform.
An orthonormal basis describing the {p}-frame relative to the {a}-frame is constructed using
(A.21).

yp =
p3 − p2

‖ p3 − p2 ‖2

zp =
yp × (p1 − p3)

‖ yp × (p1 − p3) ‖2
xp =yp × zp

(A.21)

The rotation matrix from the {a}-frame to the {p}-frame is described by (A.22)

Rp
a =

[
xp yp zp

]
(A.22)

The position of the {p}-frame is the same as the center of the motion platform. The motion
platform are described by three actuator end points which have the same distance from the
center, are evenly distributed and are (necessarily) coplanar. Then the center of the motion
platform can be found by simply computing the centroid of the points.

paao =
1

3
(p1 + p2 + p3) (A.23)

Appendix B

Application Notes

B.1 Class Descriptions

CalibrationDialog: Dialog class for listing calibration points and computing camera matrix.

Camera: Camera processing thread class.

CameraControls: Widget class for controlling camera specific properties.

CameraManager: Holds the main image processing loop. Keeps everything synchronized.

Export: Functionality for exporting measurments to Matlab mat-files.

FrameWriter: Video export class. Writes every frame as an independent JPEG file.

GlWidget: Small class for setting up the OpenGL Wrangler Library.

HoughSVG: Class for exporting Hough lines in vector format.

VideoImage: VideoSource class for using static images as video source.

ImageProcessing: Main image processing algorithms.

MainWindow: Main window.

MapSelector: Widget class for selecting cargo deck square.

Parameters: Widget class for adjusting parameters.

Plot: Widget class for plotting position using QwtPlot.

PositionEstimator: Position and attitude computations.

Presentation: The OTC presentation UI.

SourceSelector: Dialog for user selectable video sources (OpenCV capture or video file).

Sys1394: One of two wrapper classes for the libdc1394 library.

94 Application Notes

Tracker: Class for tracking single point.

TrackingManager: Over control of tracking and position estimation modules.

Util: Utility class for angle to rotation matrix computation, line clipping algorithms etc.

VesselSearch: Tracking initialization algorithm.

Video1394: One of two wrapper classes for the libdc1394 library.

VideoCV: Wrapper class for OpenCV capture.

VideoDisplay: Graphics group organizing the video display for one camera.

VideoFile: Wrapper for FFmpeg video capture.

VideoFrame: Graphics group organizing the video display for one video stream.

VideoGraphicsItem: OpenGL video and augmented reality display class.

VideoScene: Class for handling user the overall video display of multiple cameras.

VideoSource: Abstract class representing a video source.

WaveEstimator: Algorithm for estimating heave amplitude for each square on the cargo deck.

WaveMap: Graphics class displaying heave amplitude using color coded cargo deck with gradi-
ent legend.

B.2 Used Libraries

• Qt (version 4.6.2)

• OpenCV (version 2.0.0a)

• Qwt (version 5.2.1-SVN)

• FFmpeg (version 0.5.1)

• The OpenGL Extension Wrangler Library (version 1.5.3)

• libdc1394 (version 2.1.2, Linux only)

• Matlab External C interface (version R2010a)

B.3 Known Bugs 95

B.3 Known Bugs

• Removing of camera sources while system is tracking leads to crash.

• Video file looping is not reliable.

• The frame rate drops gradually after 1-2 hours of operation.

• When zooming in very much in the video display area, the OpenGL video texture is
misaligned with the designated position.

• The parameter adjustment tab is not working at all.

96 Application Notes

Appendix C

Digital Attachments

Three top level directories are found.

C.1 Matlab

In this directory there is one m-file for generating each figure 9.1, 9.2, 9.3, 9.4 and 9.5.

The following sub directories are found:

Motion platform measurements: Code and measurement data for computing motion plat-
form position and attitude.

Cargo deck corners comparison: Code for computing cargo deck corners using platform
measurement, regular video tracking and 1/3 sub-pixel tracking.

Video measurements: The three video measurements from table 9.1

C.2 Src

The source code for the application.

C.3 References

Digital versions of some of the referenced articles.

98 Digital Attachments

References

ARToolKit (2010). Artoolkit, http://www.hitl.washington.edu/artoolkit/.

Arun, K. S., Huang, T. S. & Blostein, S. D. (1987). Least-squares fitting of two 3-d point sets,
IEEE Trans. Pattern Anal. Mach. Intell. 9(5): 698–700.

Bradski, G. & Kaehler, A. (2008). Learning OpenCV, O’Reilly Media Inc., Sebastopol, CA,
USA.

Canny, J. (1986). A computational approach to edge detection, IEEE Trans. Pattern Anal.
Mach. Intell. 8(6): 679–698.

Comaniciu, D. & Meer, P. (1999). Mean shift analysis and applications, Computer Vision,
1999. The Proceedings of the Seventh IEEE International Conference on 2: 1197–1203.

Duda, R. O. & Hart, P. E. (1972). Use of the hough transformation to detect lines and curves
in pictures, Commun. ACM 15(1): 11–15.

Edwards, C. H. & Penney, D. E. (2005). Elementary Linear Algebra, Prentice-Hall, Inc.

Eggert, D. W., Lorusso, A. & Fisher, R. B. (1997). Estimating 3-d rigid body transformations:
a comparison of four major algorithms, Mach. Vision Appl. 9(5-6): 272–290.

Fischler, M. A. & Bolles, R. C. (1981). Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography, Communications
of the ACM 24(6): 381–395.

Kanatani, K. (1994). Analysis of 3-d rotation fitting, IEEE Trans. Pattern Anal. Mach. Intell.
16(5): 543–549.

Ma, Y., Soatto, S., Kosecka, J. & Sastry, S. S. (2003). An Invitation to 3-D Vision: From
Images to Geometric Models, SpringerVerlag.

Marine Systems Simulator (2010). Marine systems simulator, http://www.marinecontrol.
org/download.html.

Mathworks (2010). Calling matlab software from c and fortran programs, http://www.
mathworks.com/access/helpdesk/help/techdoc/matlab_external/f38569.html.

OTC (2010). Offshore technology conference, http://www.otcnet.org/.

http://www.hitl.washington.edu/artoolkit/
http://www.marinecontrol.org/download.html
http://www.marinecontrol.org/download.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f38569.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f38569.html
http://www.otcnet.org/

100 REFERENCES

Shi, J. & Tomasi, C. (1994). Good features to track, 1994 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’94), pp. 593–600.

Skoglund, J. & Felsberg, M. (2006). Evaluation of subpixel tracking algorithms, ISVC06,
pp. II: 374–382.

SNAME (1950). Nomenclature for treating the motion of a submerged body through a fluid,
Technical and Research Bulletin .

Thelin, J. (2007). Foundations of Qt Development, Springer-Verlag New York, Inc.

Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations,
Computer Vision, IEEE International Conference on 1: 666–673 vol.1.

	Title Page
	Problem Description
	Introduction
	Motivation
	Previous Work
	Contribution
	Abbreviations

	System Specification
	Problem and Scene Description
	Measurement Quality
	Visualization
	Testing Environment
	Hardware

	Camera theory
	Coordinate Systems
	The Pinhole Camera
	Intrinsic model
	Extrinsic model
	Determination of Camera Parameters
	Recovering Real World Coordinates

	Video Tracking Design
	Tracking Initialization
	Single Point Tracking Method
	Selection of tracking points
	Point Correspondence

	Position and Attitude Estimation
	Position and Attitude Representation
	Estimation of 3-D Rigid Body Transformation
	Point Set Managing
	Estimating Rinit and Tinit

	Software Design
	Platform Choice
	Overall Design Principle
	Video Capture
	Image Processing
	Position Estimator
	Tracking Control
	Concurrent Computing
	Video Display

	Software Implementation
	Development Tools
	Library Utilization
	Multithreading in Qt
	Video Display
	OTC Specific Implementation

	Experimental Setup
	Application Hardware
	Scenario
	Camera Calibration
	OTC Demo setup

	Experimental Results
	Source Data
	Measurement Results
	Heave Precision Analysis
	Real-time performance
	Vessel Independence

	Conclusions
	Future Work

	Motion Platform Kinematics
	Constraints
	Platform Attitude and Position

	Application Notes
	Class Descriptions
	Used Libraries
	Known Bugs

	Digital Attachments
	Matlab
	Src
	References

	References

