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Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions.
Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications
quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too
resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network
attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent
network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS)
which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs
that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks.
Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned
above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that

could be useful to make IoT networks more secure.

1. Introduction

The Internet of Things (IoT) is an emerging technology used
in various fields of application like healthcare, transport, and
smart grid. IoT (to improve the readability, we list in Table 1
the abbreviations used in our article) applications often make
a difference since they comprise very small devices that can,
e.g., be worn on the skin or attached to domestic appliances.
The tininess of the devices and the fact that, to be mobile,
they often have to rely on light batteries, however, limit their
processing capabilities and restrict their energy supply. This
makes traditional security mechanisms too heavy-weight to
be efficiently applied on such systems. In consequence, the
devices are used without sufficient protection such that they
can either be attacked directly or utilized by attackers to
launch attacks on third parties. For instance, multiple IoT
devices were used to start a distributed Denial-of-Service
(DDoS) attack on an American Internet services company

that made it impossible for many customers to access certain
Internet services; see Nordrum [1]. Cases like this reveal that
there is an urgent need to build secure solutions that are
suitable for IoT devices. In general, security of IoT networks
is a relatively new research area that, however, can profit from
related research carried out for similar networks like Mobile
Ad hoc Networks (MANET), Wireless Sensor Networks
(WSN), and Cyber-Physical Systems (CPS). At least some of
the findings in these areas seem to be promising also for the
development of protection mechanisms for IoT networks.
Intrusion Detection Systems (IDSs) are an important
countermeasure against many types of network attacks. Most
existing IDSs, however, require a significant amount of
resources aggravating their usability on small IoT devices.
Thus, there is a demand for special IDS solutions that are
lightweight but, nevertheless, give a high degree of protection.
In this paper, we give a survey of existing IDS approaches
that are suited for IoT networks. Since only relatively few IDSs
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TABLE 1: List of abbreviations.
Al Artificial Intelligence
AODV Ad-hoc On-demand Distance Vector
API Application Programming Interface
BS Base Station
CH Cluster Head
CPS Cyber Physical System
DDoS Distributed Denial of Service
DoS Denial of Service
FSM Finite State Machine
GPS Global Positioning System
IDS Intrusion Detection System
IMS Intrusion Mitigation System
ToT Internet of Things
1PS Intrusion Prevention System
MANET Mobile Ad-hoc Network
RPL Routing Protocol for Low power
and Lossy networks
SVM Support Vector Machine
WSN Wireless Sensor Networks

for IoT systems have, yet, been developed, we further extend
our overview on IDSs proposed for WSNs, MANETs, and
CPSs that have properties similar to IoT applications.

The article is structured as follows. First, we sketch
some relevant aspects of security issues for IoT networks in
Section 2. Thereafter, in Section 3 we give an introduction
to IDSs including a scheme to characterize their proper-
ties that was developed by Anantvalee and Wu [2]. These
characteristics can then be used to distinguish the presented
IDS approaches and evaluate if they are appropriate for
IoT networks. This is discussed in Section 4. Thereafter, we
introduce IDS approaches for WSNs, MANETs, and CPSs
in Section 5 and discuss whether and how the solutions for
these akin network types can be adapted to IoT systems.
This is followed by the introduction of the IDS approaches
particularly developed for IoT networks in Section 6. Finally,
we present two suggestions for interesting research areas in
Section 7 followed by a conclusion.

This article is significantly different to others already
published:

(i) Butun et al. [3] consider various types of IDSs that are
implemented for WSNs. They, however, do not dis-
cuss the eligibility of these methods for IoT networks.

(ii) Granjal etal. [4] present a survey article that discusses
IoT security issues in general, but does not focus on
the development of IDSs.

(iii) Gendreau and Moorman [5] discuss IDSs for IoT
networks but more with the focus on properties, these
systems should have, and less a survey.

(iv) Benkhelifa et al. [6] discuss the advancements in
intrusion detection systems for the IoT. However, they
do not write about intrusion detection solutions for
WSNs, MANETs, and CPSs that have the potential to
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be also implemented for IoT networks. Likewise, in
contrast to this paper, they do not discuss implemen-
tation issues for the IoT networks.

(v) Ammar et al. [7] published another article related to
IoT security. Yet, it is significantly different from ours
as it only explains the security of IoT frameworks with
regard to their internal architecture.

(vi) Restuccia et al. [8] provide a survey on IoT secu-
rity research by considering the application of
machine learning and software-defined networking
only. Therefore, it is significantly different from our
survey article, as we consider a lot more techniques
that are suitable for [oT networks.

(vii) Ud Din et al. [9] only discuss a survey on trust
management techniques for the IoT networks, with-
out considering the advancements in other fields
of IoT security. Further, the authors refrain from
discussing the challenges faced in deploying IDSs on
real platforms. Moreover, the article does not take
advantage of considering work done in akin network

types.

2. IoT Security

As mentioned above, important properties of IoT systems
are the limited processing and energy resources of their
nodes. That is based on the fact that many IoT devices
shall be directly worn by people. This holds particularly
for IoT systems used in healthcare and ambient assisted
living that are seen as major fields of application for the
technology. In consequence, it is often difficult to use well-
known protection technology to safeguard IoT devices. For
instance, encryption tends to be processing-intensive making
it difficult to encrypt and sign data to be transmitted via an
IoT network. Thus, encryption is often omitted making the
wireless communication vulnerable against attacks; see Ngu
et al. [10].

Another characteristic of these systems is their openness
and flexibility. The devices are often placed in physically unse-
cured areas such that they can be easily accessed by attackers.
Moreover, they use decentralized wireless communication
making it easy to connect with them from the outside. In
addition, many IoT applications need to be highly flexible in
accepting new devices for further temporary or permanent
usage. All this makes it relatively simple for attackers to add
malicious behavior to the system. As discussed in Roosta et al.
[11], utilizing these vulnerabilities, various kinds of physical
tampering as well as network attacks can be launched. While
some attacks compromise only few IoT nodes, others can be
massive and bring down whole networks.

Further, due to the required flexibility and the hetero-
geneous nature of the devices, it is often challenging to
develop correctly working, robust, and secure solutions. For
example, the heterogeneity of the devices makes it difficult
to embed them on well-understood infrastructures such
that important functions like network access, routing, or
encryption have to be built up from scratch. In addition,
the developer of an IoT network has also to consider the
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F1GURE 1: Classification of IDSs, taken in modified form from Anantvalee and Wu [2].

varying physical infrastructure. For instance, a patient may
be riding in a car or train operating in a tunnel or in remote
areas without cellular network access; see Balandina et al. [12].
Therefore, bandwidth and throughput of such networks need
to be carefully utilized without draining the scarce battery
resources of a device by too many transmissions. In spite
of these limitations, IoT systems in healthcare have to be
extremely robust and secure to avoid medical malpractice
of their users. All these factors must be considered while
designing, engineering, and deploying an IoT network. For
all these reasons, IoT devices are subject to various kinds of
malicious attacks.

Typical attacks based on physical access are the replace-
ment of nodes or their batteries as well as the reprogramming
of nodes; see Mohammadi and Jadidoleslamy [13]. With
respect to network attacks, we can distinguish between active
and passive attacks; see Khan and Loo [14]. Passive attacks
only extract the vital information from the network without
harming its integrity. In contrast, active attacks assail the
communication of network nodes by tempering, dropping
or misdirecting the data packets. An active attack can easily
influence a large number of IoT devices since a network
often consists of peripherally deployed units that cooperate
with each other based on multihop communication. A well-
known example is Denial-of-Service (DoS) attacks that try to
disable the nodes from providing their tasks. Another active
type of attack is radio jamming in which the communication
is spoiled by the introduction of noise or faulty packets.
A type of attack special to IoT systems with weak devices
is battery exhaustion attacks. For instance, a device is kept
busy by leading it to send or receive data unnecessarily in
order to drain its battery power faster. Alternatively, one can
attack the network layer that is responsible for sending the
packet towards its destination using an appropriate route;
see Popescu et al. [15]. In most IoT devices, the protocol
mechanisms of the network layer are not protected such
that software changes causing packet dropping and the
misdirection of packets are possible.

The typical countermeasure against all these types of
attack is intrusion detection systems (IDSs) that are intro-
duced in the following.

3. Intrusion Detection Systems (IDSs)

The IDS is a well-known technique to protect networks
against attacks as those named above. It is often seen as a
solution for the second line of defense when attacks cannot
be detected by other security mechanisms like encryption or

access control; see Djenouri et al. [16]. The task of an IDS is
to detect unusual activities that potentially indicate ongoing
attacks.

To rate the IDSs presented in this paper, we use, in
adapted form, the classification scheme from Anantvalee and
Wau [2] that is depicted in Figure 1. Thus, we consider the
six criteria decision quality, Responses on Attacks, Attacker
Type, Type of Attack, Detection Technique, and implemen-
tation strategy. The first five are discussed in the following
subsections. Since the selected implementation strategy of an
IDS is very important for its usability for IoT networks, we
look more in-depth on this criterion. This is done in Section 4.

3.1 Decision Quality. Important for the quality of an IDS is, of
course, whether it detects all occurring attacks. Moreover, the
IDS should report only actual attacks but not behavior that is
benevolent but was misinterpreted as an attack. Particularly,
the ratio between alerts given by an IDS and the actual
appearance of attacks is relevant to evaluate the decision
quality. In this context, the following terms are used; see
Patcha and Park [17]:

(i) True positive: an attack is happening in the system
which is correctly detected and alerted by the IDS.

(ii) True negative: no attack is happening in the system,
and the IDS correctly considers the behavior as
normal.

(iii) False positive: no attack is happening in the system,
but the IDS misinterprets the behavior as an attack
and gives a false alert.

(iv) False negative: an attack is happening in the system
which, however, is not detected by the IDS such that
no alert about the attack is given.

According to Zhang et al. [18], an IDS should have a “low
false positive rate, calculated as the percentage of normalcy
variations detected as anomalies, and high true positive rate,
calculated as the percentage of anomalies detected.” Thus,
it should have a minimum number of false positives and
negatives. Moreover, an IDS should have low overhead and
not degrade the system performance which is particularly
relevant for the use in IoT networks. Further, it should not
add new vulnerabilities.

3.2. Responses on Attacks. In its pure form, an IDS is not
intended to antagonize attacks by itself but it shall only alert
the network operators about ongoing attacks such that these



can decide about taking precautions and countermeasures.
An IDS comprises three main components:

(i) Monitoring module: used to constantly monitor the
network traffic and/or events happening at certain
network nodes.

(ii) Detection module: tries to detect a malicious attack
based on the monitored data.

(iii) Alarm module: raises an alarm if an intrusion activity
has been detected.

Most systems used in practice are such IDSs without
autonomous correction capabilities but two variants that can
intervene themselves exist as well; see Fuchsberger [19]:

(i) An Intrusion Prevention System (IPS) automatically
takes countermeasures after detecting an attack guar-
anteeing a timely reaction. On the other side, an
IPS also reacts on false positives which can make
the network unstable. These wrong reactions can be
vulnerability in itself since sometimes false positives
can be deliberately created by attackers who want to
utilize the wrong countermeasures.

(ii) An Intruder Mitigation System (IMS) quarantines
nodes that were detected as sources of malicious net-
work attacks. As measures typically taken by an IMS,
Butun et al. [3] name the generation of audit records
to gain evidence, the information of network nodes
about presumed attackers by revealing its location
and identity, and the initiation of a mitigation process
quarantining the attacker. Also this type is subject to
false positives which might lead to wrong expulsions
of correct working nodes.

The absence of reacting automatically on false positives is
the main reason that pure IDSs are much more often used
in practice than IPSs and IMSs. Indeed, all approaches,
discussed in this article, are IDSs without the ability to correct
autonomously.

3.3. Attacker Type. Like other network types, an IoT system
can be threatened by both, attackers controlling one or more
network nodes and those from the environment that do
not have control over network devices. Thus, we define the
following attacker types:

(i) External attacker: a node outside the network that
connects to network nodes in order to launch a
malicious attack.

(ii) Internal attacker: a node within the network that is
compromised and tries to launch attacks on other
nodes of the network.

One can distinguish whether an IDS is suited to detect attacks
launched from only external attackers, internal ones, or both

types.

3.4. Type of Attack. There are several kinds of attacks to be
used against networks. With respect to the special properties
of IoT networks, we see the following types of attack:
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(i) Selective forwarding (see Karlof and Wagner [20];
Wallgren et al. [21]): due to the weakness of IoT
devices, the strengths of their transmitters are often
limited. Therefore, not all packets can be sent to their
destination in a single hop but intermediate nodes
have to be used to relay messages. By compromising
an intermediate node, an attacker can block the
forwarding of certain packets such that only those
benefitting the attacker are forwarded.

(ii) Sinkhole/black hole/packet dropping (see Karlof and
Wagner [20]; Wallgren et al. [21]): often, IoT networks
organize themselves impromptu using special proto-
cols like the Routing Protocol for Low power and Lossy
networks (RPL) (see IETF [22]). In such protocols, a
node often prefers neighbors that guarantee a short
number of hops to the destination. By falsely claiming
ashorter number of hops than it can provide in reality,
a malicious node can attract a lot of traffic from
its neighbors such that other attacks like selective
forwarding have a greater impact.

(iii) Node selfishness (see Michiardi and Molva [23]): to
conserve its limited resources, a node may falsely
claim a higher number of hops to the destination such
that it has to forward less packets. This selfish behavior
strains the battery of neighboring nodes and degrades
the overall network performance.

(iv) Version number (see Mayzaud et al. [24]): this type
of attack is also relevant for ad hoc networks. If,
due to changes in the topology or congestions, the
routing structure of a network needs to be changed, in
protocols like RPL, a new version number is assigned
triggering a full rebuild of the network. Rebuilding,
however, demands to exchange a relatively large
number of packets such that the energy resources
of the nodes are strained. In consequence, by ini-
tiating many rebuilds, a malicious node may attack
the batteries of weaker nodes. Moreover, during the
rebuilding process, the network tends to be unstable
since data transfer in both versions is active at the
same time which may lead to erroneous behavior like
loops in the routing. These vulnerabilities can be used
for other attacks.

(v) Resource depletion/battery exhaustion (see Onat and
Miri [25]; Boubiche and Bilami [26]): as already
mentioned, avoiding the straining of battery power
is an important property of wireless devices. In this
type of attack, the attacker explicitly tries to deplete
these resources of the network by using multiple
techniques. This may include the generation of high
volumes of unnecessary data injected into the net-
work.

The types of attack introduced above are particular to
IoT networks with resource-constrained nodes. In addition,
these systems are also subject to more standard types of
network attacks that have to be addressed by IDSs, too. In the
following, we name those more general attack types:
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(i) Denial-of-Service (DoS) (see Abraham et al. [27];
Albers et al. [28]): an attacker may overwhelm the
nodes of a network with duties such that they cannot
provide their intended tasks anymore. While DoS
attacks are critical for all network types, they are
particularly problematic for IoT devices since they are
often also Resource Depletion attacks.

(ii) Distributed Denial-of-Service (DDoS) (see Shamshir-
band et al. [29]): this is a variant of DoS in which
an attack is carried out in a coordinated manner by
a team of attackers. In this way, even larger damage
can be done to the network and its nodes.

(iii) Jamming (see Bao et al. [30]; Sajjad et al. [31]): this
is also a variant of a DoS attack. The attacker spoils
the communication within a wireless network by
intentionally transmitting interferences on the used
communication band. Thus, the nodes in the network
cannot cooperate anymore.

(iv) Unauthorized access (see Abraham et al. [27, 32]): this
type of attack refers to gaining access to resources
without permission.

(v) Remote-to-Local (see Tsang and Kwong [33]): this
variant of unauthorized access attacks may happen
if an attacker has the ability to send packets to a
network from the outside, but does not have direct
access to any of the network nodes. In this case, the
attacker may utilize possible vulnerabilities to achieve
unauthorized access to the system.

(vi) User-to-Root (see Tsang and Kwong [33]): this is also
a kind of unauthorized access attack. The attacker
has only access to a normal user account but utilizes
vulnerabilities in the network to get also root access
on the system.

(vii) Probing (see Tsang and Kwong [33]; Abraham et
al. [32]): Attackers launch a collaborative attack by
probing a node. This might give useful information
helping to break its defense mechanisms.

(viii) Spoofing (see Boubiche and Bilami [26]; Chen et al.
[34]): here, packets with a false source IP address are
used to hide the identity of an attacker.

(ix) Packet repetition (see Da Silva et al. [35]): attackers
construct fake packets which appear as if they are
part of the normal communication. Amongst others,
this will lead to an increase in network load and
performance degradation.

(x) Packet delay (see Da Silva et al. [35]): valid data
transmissions are maliciously delayed but, in contrast
to selective forwarding attacks, not removed. Thus,
the attack leads to delayed data delivery and, in
consequence, to network performance degradation.

(xi) Wormbhole (see Maleh et al. [36]; Da Silva et al. [35]):
the attacker uses two or more malicious nodes which
are linked by a nonlegitimate connection, a so-called
tunnel, faking a route that is shorter than the original
one within the network. Packets passing the tunnel
can then be used for other kinds of attack.

(xii) Packet alteration/bad data injection (see Da Silva et al.
[35]): these attacks try to alter the contents of a packet
to inject malicious data into the network nodes.

(xiii) Periodic route error (see Eik Loo et al. [37]): here,
a compromised node broadcasts special route error
messages to neighboring nodes. These messages say
that the route to the border router is down at the
moment and there is a need to search a new path. This
will lead to network performance degradation.

(xiv) Hello flooding, (see Maleh et al. [36]): most proto-
cols supporting the dynamical adding of nodes to a
network use hello messages to indicate that a node
wants to join. An attacker with a strong transmitter
unit may constantly transmit such hello packets to a
large number of neighboring nodes. This may confuse
the receiving nodes, reduce their performance, and
decrease the overall network performance.

(xv) Routing misdirection and disruption (see Zhang et al.
[18]): these attacks are launched by router nodes that
forward traffic along wrong paths. As a consequence,
the data transmission is delayed.

(xvi) Node capture (see Mitchell and Chen [38,39]): a node
is maliciously captured in order to help in launching
other attacks in the network.

(xvii) Eavesdropping (see Shin et al. [40]): this attack is an
unauthorized interception of data that may lead to the
extraction of useful information.

Another group of attacks can apply to trust management
systems that are used to rate the behavior of nodes in a
network. A trust management system provides a computer
system with mechanisms reflecting the natural trust and
reputation gaining process of humans; see, e.g., Khare and
Rifkin [41]. In particular, it allows us to describe the trust
in an entity by a special trust value; see Josang [42]. Using
certain metrics, these trust values are computed from the
numbers of positive and negative experiences the system has
with a trustee. Moreover, the trust values of several trusters
in the same trustee can be aggregated such that one can rate
the general reputation of this trustee. In IoT networks, one
can build reputations of nodes depending on observations of
their behavior by neighboring nodes. If a node proves to be
distrustful, it can be quarantined; see Khan and Herrmann
[43]. Further, one can use the reputation of a node for
routing decisions. Trust management systems, however, are
themselves vulnerable to certain attacks:

(i) Self-promotion (see Chen et al. [44]): a node can
promote itself by either providing good recommenda-
tions for itself or inciting other nodes to do so. Thus,
like with sinkhole attacks, it can gain more traffic
that it may misuse to carry out selective forwarding
attacks.

(ii) Bad-mouthing (see Chen et al. [44]): an attacker can
issue baseless, bad trust evaluations about benevolent
nodes reducing the traffic through them.

(iii) Sybil (see Karuppiah et al. [45]; Mitchell and Chen
[46]): a malicious node creates a large number of



pseudonymous entities that all can rate other parties.
Thus, the attacking node influences the reputation of
other nodes disproportionately. This attack type can
be utilized to target at routing, data storage, and fair
resource allocation in the network.

(iv) Ballot stuffing (see Chen et al. [44]): this is a type
of attack complementary to self-promotion attacks.
Several malicious nodes can form an alliance, and
each node provides positive trust reccommendations
about its allies increasing their reputation values.
Promoting other bad nodes will eventually lead to
higher traffic through them that can be misused, e.g.,
for selective forwarding or sinkhole attacks.

3.5. Detection Techniques. IDSs use signatures, anomalies,
and hybrids between both of them as the main techniques to
detect attacks. These three techniques will be introduced in
the following.

3.5.1. Signature-Based IDSs. Systems following this strategy
are also known as rule-based IDSs. A signature refers to
system and network behavior that typically occurs when
attacks of a certain kind are launched. A signature-based IDS
keeps databases of these signatures and constantly checks the
actual network behavior for compliance with them. If the
observed behavior fits with one or more signatures, the IDS
raises an alarm. Signature-based IDSs have often excellent
false positive rates but are not able to detect novel types of
attack for which they do not have signatures ready. Therefore,
they tend to be subject to a large number of false negatives.
In order to implement this technique, profiles of known
attacks are generated from which the signatures are formed.
An example of a signature could be: “If there are 10 or more
unsuccessful tries to login within 2 minutes, a brute force
unauthorized access attack is on its way”. Da Silva et al. [35]
define a number of rules that are typical for signatures:

(i) Interval rule: the time difference between two consec-
utive packet arrivals is considered.

(ii) Retransmission rule: this rule measures the rate of
correctly retransmitted transit messages by interme-
diate nodes.

(iil) Integrity rule: it is checked if a message is changed on
its way towards the destination node.

(iv) Delay rule: this rule takes the time an intermediate
node needs between receiving and further transmit-
ting a message into account.

(v) Repetition rule: the number of retransmissions of a
certain message by a node is checked.

(vi) Radio transmission range: in order to find newly
deployed unauthorized nodes, the IDS tests if all
messages are originated by known stations within a
certain radio transmission range.

(vii) Jamming rule: the number of collisions faced by
a node is counted. It should not exceed a certain
threshold.
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To detect also version number attacks one can add the
following rule type:

(i) Version number check: if the version number of
an ad hoc network changes, it is checked which
node has initiated this amendment that leads to a
reconfiguration of a network. Only certain nodes have
the permission to trigger adaptations of the version.

3.5.2. Anomaly-Based IDSs. These IDSs use a set of rules to
detect anomalies in the network behavior based on heuristic
techniques. Often, thresholds for certain behavioral patterns
are used to define whether the activity is an intrusion or not.
In this way, a system can recognize not already known attacks.
On the other side, these IDSs tend to produce a relatively
high rate of false positives since, e.g., a threshold can also be
exceeded for other reasons that do not result from malicious
attacks. In addition, it is often difficult to frame a useful
heuristic such that sometimes even well-known attacks can
be hardly detected.

3.5.3. Hybrid IDSs. This type of IDS combines the signature-
and anomaly-based approaches. A hybrid IDS uses two
modules, one that detects attacks based on signatures while
the other one finds anomalies from the normal network
behavior profile. A hybrid IDS has a lower number of false
positives and negatives compared to the singular approaches,
but requires significantly higher computational resources
since both modules have to run in parallel.

4. Implementation Strategies

An IDS may reside in a single node from which the network
traffic is observed or distributed over several nodes. Since IoT
applications are inherently distributed, stand-alone solutions
in which an IDS resides in a local node and protects just
this node are a bad fit. As a centralized solution, we name
an IDS that is implemented on a single node but watches
also other ones and makes its decisions based on the locally
observed behavior. Also this layout does not seem suited for
IoT networks consisting of many nodes since the IDS is quite
processor-intensive such that the node executing it would
be strained. Not surprisingly, we did not find any solutions
using these technologies for the network types discussed
in this paper. In consequence, all implementation strategies
discussed below are distributed.

Altogether, the IDSs used for WSNs, MANETs, CPSs,
and IoT networks follow nine different implementation
strategies listed in Table 2. These strategies are not completely
orthogonal. For instance, the mentioned voting-based IDSs
and reputation-based IDSs are special forms of distributed and
collaborative IDSs that, however, use particular methods to
evaluate network behavior. Also the statistical detection-based
IDSs and machine learning-based IDSs are related. Garcia-
Teodoro et al. [47] distinguishes three main techniques
allowing an anomaly-based IDS to detect the anomalies in
the system. Two are the statistical- and the machine learning-
based IDSs. The third one is knowledge-based IDSs. In this
type of system, the differences with respect to network data
and behavior are “learned” for normal as well as for attack
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TaBLE 2: IDS implementation schemes for IoT networks.

Processor Requirements in Implementation on

ilenenaton b Pocesr et 0 o o S5 R ontined
Nodes Nodes
Hierarchical Bf A C C A
Collborstive D ; B c c
Voting A A A D A
Reputation E A A C A
Cross Layer F F F A D
Mobile Agent E E E C F
Game Theory E E E B F
Statistical Detection E B F B F
Machine Learning E B F B F

T The cluster head has a higher energy consumption that can be rated as E.

conditions. Such an IDS can be implemented using various
techniques from Artificial Intelligence (AI) including Expert
Systems, Finite State Machines, or Data Clustering and
Outlier Detection. Since these Al methods tend to be highly
processor-intensive, this strategy seems to be unsuited for
IoT networks with their vast number of small and resource-
restricted devices. We did not find any knowledge-based
strategies for monitoring the four network types.

Analyzing the various IDSs, we found out that the type
of nodes typically used in an IoT network plays an important
role for deciding about the suitability of an approach. Some
IDSs will only work in networks consisting of a mix of
resource limited and more powerful nodes since the latter
can take the more complex and resource-constraining system
tasks. Other techniques seem to work well also in a network
consisting only of performance-restricted nodes. In Table 2,
we give an overview about how we rate the suitability
of the different implementation strategies with respect to
the energy consumption, the processor requirements, the
accuracy of the methods, and the possibility of implementing
the IDSs on IoTs with many resource-constrained nodes. The
two configuration types, i.e., IoT networks with or without
powerful nodes, are separated with respect to the processor
requirements. In the table, we use letters from A to F as
applied for grading in schools and universities in the US and
other countries. The letter A gives the best rating while F is
the worst.

In the following, we introduce the nine implementation
strategies to greater detail. Further, we elaborate their impact
on energy and processing resources. This determines whether
IDSs using a certain strategy have the potential to be a good
fit for IoT networks.

4.1. Hierarchical IDSs. The network is partitioned into clus-
ters. Here, nodes that are close to each other usually belong
to the same cluster. Each cluster is assigned a leader, the so-
called cluster head (CH), that monitors the member nodes
and participates in network-wide analyses.

The formation of the clusters is often a highly inter-
active process that requires a fair amount of communica-
tion between the nodes and is therefore energy-intensive.
After completing the cluster building, however, most of the
coordination necessary to find signatures or anomalies is
performed within the clusters. Therefore, the resources to
monitor a cluster and to process the observed results tend
to be manageable and will likely not exceed the processor,
storage, and energy restrictions of typical IoT nodes. In
addition, energy is saved due to the smaller number of
messages to be exchanged. On the other side, in spite of the
fact that most of the communication takes place within the
clusters, a CH often has to relay data between members of its
cluster and other CHs. This additional communication can
strain the resources of a CH.

Altogether, using this strategy for IoT networks consisting
just of energy- and processing-restricted nodes will be prob-
lematic as those acting as CHs will probably be significantly
strained over time. Nevertheless, hierarchical IDSs seem to fit
well for IoT systems that contain some more powerful nodes
since these can then take the role of the CHs.

4.2. Distributed and Collaborative IDSs. Here, an IDS is
implemented on several nodes that observe separate aspects
of a system. The locally observed data are then shared
between the different nodes, which make a collaborative
decision whether the network behavior should be rated as
malicious.

This solution is promising for IoT systems without strong
devices since signatures or anomalies are detected by several
collaborating nodes. Thus, the processing effort is spread over
several devices such that the stress for each one is reduced. On
the other side, the coordination between the nodes requires a
lot of data exchange which tends to consume energy.

4.3. Voting-Based IDSs. In this variant of Distributed and
Collaborative IDSs, the decision about evaluating the current
behavior as an intrusion is made collaboratively based on a
ballot of the distributed components.



This type of scheme is lightweight in nature and friendly
for the processor and battery of a node. Thus, it seems suited
for typical IoT systems. However due to its simplistic nature,
the rate of false negatives, i.e., not detected attacks, can be
quite large.

4.4. Reputation-Based IDSs. That is another variant of the
distributed and collaborative IDSs, in which the benevolence
of nodes is rated based on their previous behavior. Thus, each
node has a reputation that can be modeled and calculated
using trust management mechanisms as described in Sec-
tion 3.4.

In general, the trust values do not need a lot of storage,
and the metrics for trust value computation and aggregation
consist of relatively simple calculations that are processor-
friendly. This makes the approach suited for IoT devices. A
problem, however, is the way nodes observe their neighbors.
For that, they often have not only to listen to their own
network traffic but also to those of the observed nodes. That
leads to long channel listening times which may drain the
battery of the unit faster. This aspect is taken up in the sug-
gestion for future research directions discussed in Section 7.2.
Another issue is the exchange of trust values to compute a
general reputation but, thanks to their compactness, that is
less problematic.

Like other Distributed and Collaborative IDSs, this
method seems to be a good fit to IoT networks thanks to
the simple computation and storage mechanisms used but
the potentially significant communication effort can be an
impeding factor.

4.5. Cross Layer IDSs. Each of the implementation strategies
mentioned above operates on a single layer of the OSI
stack and detects attacks on this layer only. In contrast, a
cross layer IDS observes different layers. Critical information
is exchanged between the layers, and the decision about
intrusions is made based on the synthesized observations.

The advantage of this method is a good decision quality.
Realizing this strategy, however, demands to process data
on several layers as well as a large amount of coordination
between different nodes that has to cover all observed layers.
Therefore, this technique tends to require a lot of energy and
computational resources. Thus, this approach seems to be
less suited to IoT networks with the processor and battery
restrictions of their nodes.

4.6. Mobile Agent-Based IDSs. The IDS is realized as a mobile
agent that may relocate itself between the nodes of the
network. In the various positions, the agent may conduct
the observations necessary to decide about the presence of
attacks.

This technology mainly used for MANETs reduces the
communication costs between nodes. On the other side, it
requires lengthy transfers of the agent code and data which
will drain battery power. Moreover, there can be significant
congestions between the network coordinator and the agent
node. The processing power of a node is unevenly strained
by this mechanism since the node only carries out IDS-
related computations when it bears the agent while all other
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nodes cannot contribute to the intrusion detection process.
This can be a problem when nodes with weak processors
slow down the overall analysis process. Finally, it can be
quite problematic to realize the complex agent-handling
functionality on devices with limited APIs.

In consequence, this strategy does not seem to be a good
fit for IoT networks with many restricted devices.

4.7. Game Theory-Based IDSs. In this strategy, an IDS is real-
ized using mathematical models of conflict and cooperation
known from game theory; see Myerson [48].

The eligibility of this method for IoT systems is hard to
predict since the processor and energy load depends heavily
on the games used. If one applies games that only strain few
devices in the network, it may be a fit for IoT networks with
some more powerful devices. A more general problem is that
game theory-based systems tend to be interactive since the
network administrators need to adjust the detection rate from
time to time. This makes them highly personal-intensive and
therefore expensive.

4.8. Statistical Detection-Based IDSs. This is one of the three
strategies mentioned above, where Garcia-Teodoro et al.
[47] suggest to use for anomaly-based IDSs. It comprises
the generation of a stochastic profile for the traffic to be
observed. Thereafter the network is monitored and the real
traffic is compared with the reference profile. The IDS flags
an anomaly if the behavior exceeds a certain threshold in
comparison with the pattern. The statistic models can be
univariate, multivariate, and time series models.

The strategy includes the handling of large amounts of
data which, however, requires strong processors and good
storage abilities. In addition, the statistical computation tends
to be computational intensive. Since the computations are
usually done centrally, statistical detection, yet, can be applied
when an IoT system uses some more powerful components
like a border router. This device can then keep the informa-
tion, compute it based on the detection model to be used, and,
if necessary, forward relevant data from time to time to the
other stations.

Like the hierarchical IDSs, this strategy seems only to fit
to IoT networks that include a fair number of powerful nodes.

4.9. Machine Learning-Based IDSs. This is another strat-
egy suggested by Garcia-Teodoro et al. [47] to categorize
anomaly-based IDSs. In such an IDS, a model of the analyzed
patterns is generated. These models are constantly updated to
increase the detection rate of the IDS. Machine learning can
be realized by various techniques such as Bayesian Networks,
Markov Models, Fuzzy Logic, Genetic Algorithms, Neural
Networks, and Principal Component Analysis.

Since machine learning uses processing-intensive algo-
rithms, the same issues as for statistical detection will apply
and the method seems to suit only IoT networks with a fair
amount of powerful nodes.

5. IDSs for WSNs, MANETSs, and CPSs

As discussed in the introduction, we will not only look on
IDSs particularly developed for IoT networks but also look
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on those protecting adjacent network types. In this respect,
we see WSNs, MANETSs, and CPSs as worthwhile since they
have properties that, in part, resemble those of IoT networks.
These three network types can be described as follows (see
also Mitchell and Chen [49]):

(i) Wireless Sensor Networks (WSNs) are used to trans-
port data from physically dislocated sensors to a
common sink. Thus, the data flows tend to be more
uniform than in IoT networks in which the devices
often have both sensor and actuator functionality.
Further, the WSN nodes are, in general, not connected
to external networks and cannot be accessed through
the Internet. Moreover, they are often screwed to fixed
positions and not mobile. On the other side, like IoT
devices, many WSN nodes have limited energy and
processing capabilities.

(ii) Mobile Ad hoc Networks (MANET) are self-
configuring networks without a central control unit
that have mobile member nodes. Since IoT nodes
can also be mobile; e.g., if they are used in transport
vehicles, their structure is close to those of MANETs.
A difference is, however, that not all IoT nodes
cooperate in an ad hoc style with each other but can
also have a stable network topology.

(iii) Cyber-Physical Systems (CPS) are heterogeneous
control systems for technical systems acting in the
physical space, e.g., transport systems, industrial
plants, or robots. Often, these systems face multiple
interacting control loops, varying networks and hard
real-time properties to fulfill. In addition, many CPSs
operate in hazardous locations with extreme temper-
ature or in the vicinity of dangerous materials. Also,
various units operate in close proximity to each other
such that collisions have to be avoided.

Altogether, the three mentioned networks have properties
that are quite close to those of IoT systems such that the con-
version of IDSs developed for them to IoT networks seems
promising. However, there are some significant differences
that may aggravate this conversion:

(i) Computational capacity: MANET nodes are usually
more powerful units, e.g., modern personal com-
puters with powerful processors and a large storage
capability. That is very different to the often very small
nodes used in IoT or WSN networks.

(ii) Power supply: the same holds for the energy supply.
MANET devices are often plugged or use large bat-
teries while those in the other network types have to
rely on small batteries that can be easily drained.

(iii) Mobility: IoT, MANET, and CPS nodes are often
installed on mobile units while WSN nodes tend to
be fixed.

(iv) Node density: since the nodes of IoT, WSN, and
CPS networks are in many cases used to sense and
influence physical environments, there are typically
more of them in a geographical area than MANET
nodes.

(v) Communication range: due to the physical limitations
of their transmitters, the communication range for
IoT and WSN devices is in the range of 20 to 30
meters, while MANET nodes can transmit data up to
distances of 100 meters.

(vi) Communication bandwidth: likewise, the communi-
cation bandwidth of WSN and IoT devices is less than
that of MANET nodes.

(vii) Internet connectivity: the IoT network and MANET
nodes are often connected via the Internet using an
IPv6-enabled border router, while WSNs and CPSs
are usually private networks that are not connected to
the outer world.

Keeping these differences in mind, we look in the fol-
lowing subsections for particular IDS solutions for WSNs,
MANETs, and CPSs.

5.1. WSNs. The IDSs for Wireless Sensor Networks are
realized using altogether seven of the nine implementation
strategies introduced in Section 4. In each of the following
subsections, we list all approaches realizing a certain strategy.
Further, we discuss if our expectations about the suitability
of the implementation strategies for IoT networks are met
by the actual IDS realizations. To keep track of the various
approaches, we also sketch them together with their most
relevant properties in Table 3. There, we also mark if an
IDS approach seems to be suitable for being used for IoT
networks.

5.1.1. Hierarchical IDSs. In Shin et al. [40], the authors pro-
pose a one-hop clustering mechanism for intrusion detection.
The target application for the proposed solution is industrial
applications. Similarly, Chen et al. [34] talk about an energy-
efficient way for intrusion detection in WSNs using an
isolation table. In their solution, two levels of clustering
are proposed to detect intrusions in a performance-effective
way. When the leader of a lower level detects an intrusion
in a subcluster, it forwards the according message to the
leader of the higher level who forwards it to the base
station. While this approach is performance-effective, since
a leader has to observe smaller subclusters, the problem
of hierarchical IDSs that a malicious leader may not pass
an alert to the sink is not solved here. In Strikos [64],
the author proposes a method to place intruder detectors
to strategic positions of the network such that the whole
network is covered. However, no simulation or experimental
results proving his claims are provided. Rajasegarar et al. [62]
discuss an anomaly detection algorithm for a clustered WSN
that minimizes the communication overhead. The proposed
scheme is evaluated using a real-world project. Eik Loo et
al. [37] present a clustered IDS for WSNs that differentiates
between normal and abnormal traffic using a normal traffic
model. Thus, it is able to detect route errors and sinkhole
attacks. Another approach distinguishing between normal
and abnormal behavior is introduced in Mamun and Kabir
[59]. It comprises a hybrid IDS for WSNs that are divided
into hexagonal regions each having a cluster head. The attack
signatures are propagated from the base station towards the
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TaBLE 3: Comparative analysis of IDSs implemented for WSNs.

IDS Implementation Detection Attacks IoT
Abraham et al. [27] Statistical Detection Signature DoS, Unauthorized Access X
Abraham et al. [32] Statistical Detection Signature Probing, Unauthorized Access X
Agah et al. [50] Game Theory Signature N/A X
Agah and Das [51] Game Theory Signature DosS, Selective Forwarding b 4
Bao et al. [30] Reputation Signature Jamming, Sybil, DoS, Sinkhole v
Boubiche and Bilami [26] Cross Layer Signature Sinkhole, Spoofing, Battery Exhaustion v
Chen et al. [44] Hierarchical Signature Spoofing, Sinkhole 4
Da Siva tal. (35 Callbormve St Backhole, Sectve Forwarding. ¥
Deng et al. [52] Machine Learning Anomaly Blackhole b 4
Doumit and Agrawal [53] Statistical Detection Anomaly N/A 4
Eik Loo et al. [37] Hierarchical Anomaly Periodic Route Error, Sinkhole v’
Guerroumi et al. [54] Hierarchical Signature Sinkhole v
Toannis et al. [55] Dcisélrli)l;l;:i;r;d Signature Selective Forwarding, Blackhole v
Jadidoleslamy [56] Hierarchical Signature N/A v
Khan and Loo [57] Cross Layer Signature Hello Flooding v
Krontiris et al. [58] DCisczlrlTl;l;:iiirI;d Signature Selective Forwarding v
Maleh et al. [36] Machine Learning Hybrid Blackhole, Worml;oolf;vljfélii;l()()dmg > Selective v’
Mamun and Kabir [59] Hierarchical Hybrid N/A v’
Ngai et al. [60] Statistical Detection Anomaly Sinkhole (4
Onat and Miri [61] Statistical Detection Anomaly Hello Flooding v
Onat and Miri [25] Statistical Detection Signature Resource Depletion X
Rajasegarar et al. [62] Hierarchical Anomaly N/A v
Sedjelmaci and Feham [63] Machine Learning Hybrid Routing Disruption v
Shamshirband et al. [29] Game Theory Anomaly Distributed DoS v
Shin et al. [40] Hierarchical Signature Selective Forwarding v
Strikos [64] Hierarchical Signature DoS, Routing Disruption v
Wang et al. [65] Reputation Signature Selective Forwarding 4

TSuited for ToT networks with some stations without energy limitations that can act as cluster heads.

leaf nodes and the mechanism has predefined specifications
for normal and abnormal behavior. The anomaly detection
is done by measuring deviations from the predefined specifi-
cations. A signature-based IDS is presented in Jadidoleslamy
[56]. It is distributed and hierarchical making the detection
of both active and passive response-based attacks possible.
Guerroumi et al. [54] propose an intrusion detection system
against sinkhole attacks on IDSs with mobile sinks. The
scheme is implemented in a hierarchical topology using
attack signatures.

Evaluating these approaches confirms our prediction
about hierarchical IDSs made in Section 4.1. They seem to be
a good fit also for IoT networks since each cluster consists of
a limited number of nodes. Nevertheless, it is good if an IoT
network also contains stronger nodes that can take the role of
the CHs.

5.1.2. Distributed and Collaborative IDSs. In loannis et al.
[55], a collaborative watching scheme is used for a distributed
IDS implementation, in order to detect selective forwarding
attacks. Krontiris et al. [58] present an IDS, which applies
nodes equipped with a local detector that triggers suspicions
about a neighbor. Moreover, the nodes collaborate to evaluate
suspicions in order to detect whether a node in question is,
indeed, an attacker. Similarly, Da Silva et al. [35] discuss a
specification-based IDS that uses a decentralized detection
process. In this algorithm, the collection of a data unit and
its processing is performed in a distributed manner to make
the IDS scalable and robust.

As predicted in Section 4.2, these IDSs seem to fit
generally well to IoT networks while the extended data
exchange necessary for coordination may have an impact on
the energy resources.
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5.1.3. Reputation-Based IDS. Wang et al. [65] propose an IDS
that uses the idea of marking the exchanged packets while
heuristic ranking algorithms identify malicious nodes in the
network. When the sink receives a marked packet, it can
compute the average dropping ratio for each node. If this ratio
exceeds a threshold, the node is declared to be malicious. Bao
et al. [30] propose a probability model-based technique to
analyze subjective versus objective trust. The authors claim
that the proposed scheme has a better detection capability
than anomaly-based IDS. The two schemes are lightweight in
nature. Therefore, as predicted in Section 4.4, they are suitable
for IoT networks.

5.1.4. Cross Layer IDS. Boubiche and Bilami [26] introduce
a cross layer IDS that uses an intrusion detection agent
to exchange information between the physical, MAC, and
network layers of a protocol stack. Comparing the obser-
vations on the different layers makes the agent capable of
detecting multilayer attacks. Another cross layer design is
proposed in Khan and Loo [57]. It detects flooding by using
and comparing parameters from the MAC and network
layers. In both approaches, the processing requirements
seem moderate such that, in contrast to our predictions in
Section 4.5, the IDSs might also be implemented on IoT
networks.

5.1.5. Game Theory-Based IDSs. A noncooperative game for
WSNs is presented in Agah et al. [50] and Agah and Das
[51]. The goal of the game is to determine the weakest
node in the network and thereafter to propose strategies to
defend it against malicious attacks. A disadvantage of this
approach is that the game detects only a single attack even
in the presence of multiple ones, such that the others are left
undetected. This weakness makes the approach less suited to
IoT networks for which we expect simultaneous attacks on
different network nodes. Shamshirband et al. [29] introduce
a game theoretic strategy that adopts a combination of a fuzzy
Q-learning algorithm and a game theoretic approach. The
proposed model consists of sink nodes, a base station, and
an attacker that are tested for distributed DoS attacks. The
authors claim that the proposed model has a better defense
rate than Markovian game theoretic solutions. Since the
approach seems to be lightweight with respect to resources,
it may also be applied to IoT devices.

5.1.6. Statistical Detection-Based IDSs. In Ngai et al. [60],
an IDS for sinkhole attacks is presented that first identifies
suspected nodes and then detects attackers using a network
flow graph. This algorithm applies the Chi-square based
multivariate analysis technique that is carried out using
simulations and theoretical analysis. The authors claim that
the proposed strategy has a low performance overhead which
makes it suited to IoT networks. Doumit and Agrawal [53]
use a hidden Markov Model to find unusual activities.
The authors claim that their algorithm requires minimal
processing resources using experimental scenario. Hence, it
can also be used for an IoT based network. Onat and Miri
[61] discuss an algorithm that is based on processing arrival
traffic. In particular, the arrival traffic pattern for a node is
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observed, and, based on these studies, a technique to find
anomalies is devised. Short term statistics are kept by the
algorithm using a multilevel sliding window that reduces the
resource requirement. Therefore, such a scheme can also be
considered for resource-constrained IoT devices. Another
algorithm by the same authors is introduced in Onat and
Miri [25]. Here, each node develops a model for its neighbors
based on their transceiver behavior and packet arrival rates.
When there are major deviations, this is considered as
abnormal behavior. This approach, however, may require
monitoring every neighbor which can demand a lot of energy
consumption. Thus, it might not be a feasible solution for
IoT devices. Abraham et al. [27] present an IDS that is
effective against Denial-of-Service (DoS) and unauthorized
attacks. It is based on the Genetic Programming Technique.
A fuzzy rule-based classifier for intrusion detection is shown
in Abraham et al. [32]. It is claimed to have 100% accuracy for
every type of attack. The technique, however, seems to be not
very energy-eflicient making it less suited for IoT networks.

5.1.7. Machine Learning-Based IDSs. In Deng et al. [52], an
anomaly-based IDS using a Support Vector Machine (SVM)
is implemented to detect routing attacks. A SVM is also
proposed by Sedjelmaci and Feham [63] who distinguish
between normal and abnormal patterns. The scheme seems
to be energy consuming but it can run on an IoT node
with larger processing capabilities. Thus, as predicted in Sec-
tion 4.9, it fits with IoT networks containing more powerful
nodes. The IDS presented in Maleh et al. [36] bridges machine
learning with using clusters. It is basically a hierarchical
IDS that, however, uses also SVMs to find out about attack
signatures. So, it fits also for IoT networks with some stronger
nodes that both can act as CH and can execute the machine
learning computations.

5.2. MANETS. The approaches for Mobile Ad hoc Networks
(MANETsS) are also arranged with respect to the implementa-
tion strategies used. They are introduced below. Further, we
depict the introduced approaches in Table 4. Here, we also
mark approaches suited to be usable for IoT systems.

5.2.1. Hierarchical IDSs. Kachirski and Guha [68] present an
approach in which only the cluster heads (CH) are responsi-
ble for making decisions such that the energy consumption
is reduced. In Huang and Lee [67], clustering is used in
monitors that are sparsely positioned over the network.
Their purpose is to detect routing intrusions using anomaly
detection. The CH is periodically elected to avoid that the
energy of single nodes is drained too much. Thus, in contrast
to our predictions in Section 4.1, this hierarchical IDS works
also for IoT networks without stronger nodes. Sterne et al.
[73] introduce a dynamic hierarchic scheme that reduces
intrusion detection data packets by data aggregation. The
proposed scheme is tested for intentional data dropping and
attacks on network and higher layer protocols. In Sun et al.
[74], an IDS is presented in which the network is divided into
nonoverlapping physical zones. A local agent is responsible
for broadcasting alerts in its zone. Moreover, a special gateway
zone is defined that aggregates locally generated alerts and
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TABLE 4: Comparative analysis of IDSs implemented for MANETs.
IDS Implementation Detection Attacks IoT
Albers et al. [28] Mobile Agent Signature DoS b 4
Buchegger and Le Boudec [66] Reputation Signature Packet Dropping v
Huang and Lee [67] Hierarchical Anomaly Routing, DoS v
Kachirski and Guha [68] Hierarchical Anomaly Packet Dropping v'
Michiardi and Molva [23] Reputation Anomaly Node Selfishness v
Patcha and Park [69] Game Theory Signature DoS v
Puttini et al. [70] Statistical Detection Anomaly Routing Disruption 4
Rao and Kesidis [71] Statistical Detection Signature Routing Disruption X
Shakshuki et al. [72] Machine Learning Signature Routing Disruption b 4
Sterne et al. [73] Hierarchical Hybrid Packet Dropping, Node Capture v
Sun et al. [74] Hierarchical Anomaly Routing Disruption X
Zhang and Lee [75] Mobile Agent Anomaly DoS b 4
Zhang et al. [18] Mobile Agent Anomaly Routing Misdirection, Packet Dropping X

TSuited for IoT networks with some stations without energy limitations that can act as cluster heads.

disseminates network-wide alarms. The purpose of such a
system is to process the detection results in the zones locally
while the gateway nodes process final system-wide results
from the disseminated results in the various zones. Since
the approach operates with GPS data, it cannot be directly
transferred to IoT networks in which not all nodes can be
expected to have GPS receivers available.

5.2.2. Reputation-Based IDSs. Michiardi and Molva [23]
describe a mechanism that computes the reputation for each
node in a network based on supervision of its behavior
by other nodes. The reputation is used for the routing
decisions, and a node selects neighbors with high reputation
values. Further, a watchdog mechanism is used to deny
communication with a node whose reputation falls below
a certain threshold. In Buchegger and Le Boudec [66], a
system for reactive source routing protocols is presented.
The reputation of a node is updated based on input from
fully trusted nodes that monitor their neighbors using a
special watching scheme. As predicted in Section 4.4, both
presented approaches are relatively lightweight and, with
some modifications, can therefore be used for IoT networks.

5.2.3. Mobile Agent-Based IDSs. In Zhang and Lee [75], the
authors propose an agent-based distributed and collaborative
IDS. The approach uses a local data collection block that
collects and analyzes the observed data in real-time. If it
unambiguously detects an anomaly, it informs either a local
or a global response block in order to initiate a remedy of a
subsystem. If the result of the observations is inconclusive, the
data collection block interacts with those in the neighboring
nodes via a secure channel, and a collaborative decision is
made. Each agent has a local detection engine that uses a
modeling algorithm to decide based on predefined match-
ing criteria whether an incidence is normal or anomalous.
Depending on whether a decision was taken locally or after
coordination with other nodes, either a local or a global
response is initiated. In extension to this work, the authors
introduce a cross layer IDS in Zhang et al. [18]. In this

work, each layer has an IDS module but the detection on
one layer may be initiated by those on the other layers such
that attacks on different layers can be detected. As described
in Section 4.6, due to the amount of coordination required
and the somehow complex functionality to be implemented,
we are skeptical about the usability of this approach on
IoT networks with tiny devices. In Albers et al. [28], the
authors describe a distributed mobile agent-based IDS in
which the agents migrate to the various data sources. Thus,
the work load of each node can be decreased. While this saves
processing resources, the approach might, nevertheless, not
be a suitable approach for IoT based networks since the freely
migrating mobile agents might exceed the abilities of many
IoT nodes.

5.2.4. Game Theory-Based IDSs. Patcha and Park [77] present
an IDS that models interactions between nodes of a MANET
as a noncooperative game with two players. The scheme
requires a central processing unit computing the collected
observations that runs on a high-performance microproces-
sor and demands a relatively large amount of memory for data
storage and processing. Therefore, this scheme may only be
usable for IoT networks with a border router that offers the
necessary processing and storage capabilities.

5.2.5. Statistical Detection-Based IDSs. In Puttini et al. [70],
the authors introduce an IDS based on Bayesian classification.
It models reference behavior statistically observing various
network applications. The behavioral model forms then the
basis for the detection algorithm that monitors the network
for anomalies. Rao and Kesidis [71] use the estimation of
congestions to make decisions about the packet dropping
problem. Their IDS is dedicated to networks without band-
width constraints but that have security requirements. Due to
this limitation, we do not think that this technique is suitable
for resource-constrained IoT devices.

5.2.6. Machine Learning-Based IDSs. In Shakshuki et al. [72],
evolutionary computation techniques are used to detect the



Security and Communication Networks 13
TaBLE 5: Comparative analysis of IDSs implemented for CPSs.

IDS Implementation Detection Attacks IoT

Mitchell and Chen [39] Voting Signature Spoofing, Bad Data Injection v

Porras and Neumann [76] Statistical Detection Hybrid N/A X

Shin et al. [40] Hierarchical Hybrid Eavesdropping, DoS, Routing Misdirection 4

Tsang and Kwong [33] Machine Learning Anomaly DoS, Remote-to-Local, User-to-Root, Probing v'

"Suited for IoT networks with some stations without energy limitations that can act as cluster heads.

presence of attackers in a MANET causing flooding and
route disruption attacks. The performance of such a scheme
is evaluated using simulations for different mobility and
traffic patterns. This technique demands a high processing
capability on all the nodes such that it seems not suitable for
resource-constrained IoT networks.

5.3. CPSs. For Cyber-Physical Systems (CPSs), we found only
four IDS solutions that each uses a separate implementation

strategy. The approaches are described below and depicted in
Table 5.

5.3.1. Hierarchical IDSs. Shin et al. [40] combine one-hop
clustering for intrusion detection with multihop clustering
for data aggregation, carefully balancing the efficiency of the
procedure against the provided security. The approach uses
a base station, gateways, cluster heads, and leaf nodes each
playing a certain role in the IDS. The structure helps to detect
a number of attack types carried out on the network. The
performance for each node seems to be moderate such that,
against our predictions in Section 4.1, the approach might be
a suitable scheme also for resource-constrained IoT devices.

5.3.2. Voting-Based IDSs. The IDS presented in Mitchell
and Chen [39] uses a voting-based mechanism for anomaly
detection. The authors validate their design by considering
spoofing and data manipulation attacks. The scheme is quite
simple and, as predicted in Section 4.3, seems suited for
being implemented also in IoT networks. Nevertheless, the
detection rate for a particular network configuration should
be analyzed thoroughly first.

5.3.3. Statistical Detection-Based IDSs. Porras and Neumann
[76] discuss an IDS that applies hybrid analysis. A signature-
based analysis checks nodes for compliance with a rule set. In
addition, an anomaly-based analysis uses statistical analysis
to detect intrusions that are not yet covered by the rules. The
scheme is not dedicated to any specific attack type such that
a complex analysis of the observed data is expected. That
would make it difficult to implement this technique on IoT
networks.

5.3.4. Machine Learning-Based IDSs. Tsang and Kwong [33]
present an unsupervised machine learning-based approach
to detect anomalies. A goal of this approach is to reduce the
usually high rate of false positives in anomaly-based IDS.
Since this machine learning approach requires significant
computing resources, it is only suitable for IoT networks with
efficient border routers.

6. IDSs for IoTs

In this section, we discuss IDS approaches that have been
explicitly developed for the use in IoT systems. Since the
Internet of Things is a relatively new technology, only few
approaches have been published, yet. Nevertheless, we found
some promising solutions that we again grouped according to
the implementation strategies used. To give a summary, the
approaches are further depicted in Table 6.

6.1. Distributed and Collaborative IDSs. Liu et al. [88] use
artificial immunity mechanisms to protect IoT networks.
Their approach comprehends an attack library to which the
sensed behavior is compared. A similar IDS is introduced by
Kasinathan et al. [84] who, however, use penetration testing
to detect the DoS attacks. Raza et al. [91] introduce a hybrid
IDS for IoT networks that targets typical routing attacks such
as sinkhole, spoofed, and selective forwarding. The technique
is based on network graph inconsistency detection. This
approach is criticized by Matsunaga et al. [96] for its high
rate of false positives. Arshad et al. [80] describe an intrusion
detection mechanism using active collaboration between
resource-constrained devices and border nodes, using a col-
laborative and distributed technique. The technique assigns
processing-intensive tasks to the border nodes, in order to
efficiently exploit their capabilities.

6.2. Reputation-Based IDSs. Cervantes et al. [82] present an
IDS that uses trust-based solutions to detect anomalies in
mobile IoT networks. The solution targets sinkhole attacks on
the routing layer of IoT networks by using a watchdog and
trust-based mechanism. If the trust of a device falls below
a certain threshold, it is declared as a threat to the system.
A similar approach but with particular consideration of the
processing limitations of IoT devices is discussed by ourselves
in Khan and Herrmann [43]. This approach is tailored to
the Routing Protocol for Low power and Lossy networks
(RPL) (see IETF [22]) that has become quite popular for IoT
systems. The communication behavior of network nodes is
observed by their neighbors for selective forwarding, sink-
hole, and version number attacks. Based on the observations,
a general reputation of a node is computed in a processor-
friendly way using the Subjective Logic; see Josang [42]. If
the amount of distrust in a node exceeds a certain threshold,
it will be quarantined. In Khan et al. [85], we further show that
our approach also addresses self-promotion, bad-mouthing,
and ballot stuffing attacks successfully.

6.3. Game Theory-Based IDSs. Sedjelmaci et al. [92] intro-
duce an anomaly detection approach that tries to minimize
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TABLE 6: Comparative analysis of IDSs for IoT networks.

IDS Implementation Detection Attacks

Anthi et al. [78] Machine Learning Anomaly DosS, Hello Flood, Sybil, Sinkhole attacks

Arrington et al. [79] Statistical Detection Anomaly N/A

Arshad et al. [80] Distributed and Collaborative Anomaly Routing and application specific attacks

Azmoodeh et al. [81] Machine Learning Anomaly Junk code insertion attacks

Cervantes et al. [82] Reputation Anomaly Sinkhole Attacks

Fu et al. [83] Statistical Detection Anomaly Bad Data Injection, DoS

Kasinathan et al. [84] Distributed and Collaborative Rule DoS

Khan and Herrmann [43] Reputation Rule Selective Forwarding, Sinkhole, Version Number

Khan et al. [85] Reputation Rule Self Promoting, Bad Mouthing, Ballot Stuffing

La et al. [86] Game Theory Rule N/A

Lietal. [87] Machine Learning Anomaly Probing, DoS

Liu et al. [88] Distributed and Collaborative Rule N/A

Liu and Wu [89] Statistical Detection Anomaly N/A

Liu et al. [90] Machine Learning Anomaly N/A

Raza et al. [91] Distributed and Collaborative Hybrid Spoofing, Sinkhole, Selective Forwarding

Sedjelmaci et al. [92] Game Theory Anomaly DoS

Summerville et al. [93] Statistical Detection Anomaly Wormbhole, Bad Data Injection, User-to-Root

Xiao et al. [94] Machine Learning Anomaly Identity based, Malwares, Offloading attacks

Yang et al. [95] Machine Learning Anomaly Packet dropping, hole attacks, eavesdropping

the energy consumption. In particular, game theory is used to
find out whether the signature of a new attack is expected to
occur. Only then, the energy-intensive anomaly detection is
activated. La et al. [86] propose a model which comprehends
attacks of varying seriousness that demand different degrees
of action. The problem is modeled as a Bayesian game and
its results determine the threshold to declare an activity as
an intrusion. In this way, a lower rate of false positives and
negatives shall be achieved.

6.4. Statistical Detection-Based IDSs. Arrington et al. [79]
simulate IoT-driven smart homes in order to detect behav-
ioral anomalies. The system constructs behavioral models
using special immunity-inspired algorithms for anomaly
detection. These models can then be compared with the data
captured by the IoT sensors to detect deviations from the
expected behavior. Fu et al. [83] present an anomaly mining
IDS to detect anomalies at the perception layer. A distributed
intrusion detection scheme uses the anomaly data to find out
about attacks. A similar approach that, in addition, addresses
the processing limitations of IoT networks, is introduced by
Liu and Wu [89] who propose a very lightweight anomaly
mining algorithm using the Jaccard coeflicient. Summerville
et al. [93] publish an anomaly-based approach that provides
a discrimination between abnormal and normal packets. It
relies on bit pattern matching using a lookup table. The
processing limitations are addressed by making it possible to
implement the algorithm not only traditionally in software
but also directly on the hardware layer.

6.5. Machine Learning-Based IDSs. In recent literature, a
number of machine learning approaches have been presented
for the development of IDS. Yang et al. [95] discuss an active

learning approach using human-in-the-loop for intrusion
detection in the IoT systems. Instead of just using machine
learning, the authors propose to combine machine and
human intelligence which allows them to detect malicious
nodes in the network more accurately. Li et al. [87] depict
a software-defined IoT network for enhancing the perfor-
mance of IoT applications, based on Artificial Intelligence-
based two stage intrusion detection. The approach uses the
Bat Algorithm with Swarm Division and Binary Differential
Mutation for selecting features. However, this may also
increase the overhead in comparison with existing sim-
ilar solutions. Liu et al. [90] discuss intrusion detection
using fuzzy clustering and Principal Component Analysis.
The authors classify the data into low risk and high risk
while analysis is performed using simulations. Although
this approach may have better results in comparison with
traditional techniques, it also increases the implementation
overhead. Xiao et al. [94] explore IoT security using super-
vised learning, unsupervised learning, and reinforcement
learning-based machine learning techniques. Anthi et al.
[78] employ machine learning techniques for detecting net-
work scanning probing and Denial-of-Service (DoS) attacks.
Finally, Azmoodeh et al. [81] use deep learning methods to
detect Internet Of Battlefield Things (IoBT) malware via the
devices Operational Code (OpCode) sequence.

7. Future Directions

Based on the experience made during working for this
publication, we found out two research directions for IDSs
safeguarding IoT networks that, in our opinion, seem worth-
while to be pursued. They are introduced in the following.
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7.1 Intrusion Detection As a Service in Fog Computing. Table 2
gives the impression that one has more possibilities to
apply approaches existing for WSNs, MANETs, and CPSs
also for an IoT network if it contains at least some nodes
with sufficient processing and energy capabilities. That holds
particularly when these high-performance nodes are plugged
such that energy issues are alleviated. These devices can then
execute the computing intensive centralized IDS approaches
while the resource limited nodes only assist by delivering
data. This fits well to the novel Fog Computing concept;
see, e.g., Bonomi et al. [97]. Fog Computing is seen as an
alternative to traditional Cloud Computing in which the
various cloud services are not provided by remote data
centers but by local machines that are under the control of
the local network operator. For instance, local WLAN routers
that are provided with greater processing power and storage
facilities can, besides routing data packets between the wired
and the wireless network segments, offer various services
known from the cloud.

Since border routers connecting an IoT system with the
outside world are often WLAN routers, the new Fog Com-
puting technology can easily be integrated into the network.
For instance, it could run a centralized IDS protecting the IoT
network nodes to which it is connected or take processing-
and energy-intensive tasks of the implementation strategies
discussed in this paper. Moreover, if the IoT is larger and
applies several border routers, one can use their Fog Comput-
ing capabilities to realize a hierarchical IDS. In consequence,
we see the integration of IDSs on Fog Computing platforms
as a promising future research direction. Following the highly
virtual nature of the platforms, the IDS functionality can
then, like other cloud-based functionality, be offered in form
of services, which could be named intrusion detection as a
Service.

7.2. Reducing Active Channel Listening Times When Rating
Network Behavior. To realize an IDS is more difficult for IoT
systems when all nodes are resource-constrained, Table 2
reveals for this case that there are three basic strategies
avaijlable. One is voting-based IDSs that are already suffi-
ciently lightweight to be used in a resource-friendly way.
Unfortunately, their accuracy is still suboptimal and further
research is needed to reduce the rate of false negatives.

The second strategy is to reduce the workload by splitting
it into subtasks executed by different cooperating nodes. That
is done by hierarchical IDSs as well as the Distributed and
Collaborative IDSs. The problem here is that the reduction of
computation efforts takes place at the expense of more data
exchange which leads to a faster battery draining. To avoid
that, one should investigate the research and development
of IDSs that allow the nodes to cooperate with each other
minimizing the amount of data to exchange. Here, recent
developments in communication protocol technology will be
of help. An example is the new IEEE 802.15.4 protocol (see
Bhar [98]) that reduces active channel listening. For that, the
data frames are divided into a number of slots, and a station
has to only listen at time intervals when slots dedicated to
itself are transmitted. For larger systems, that reduces the idle
listening time of a station significantly.
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The third strategy is to use reputation and trust man-
agement that provides IDSs with lightweight computation
and storage mechanisms. The approaches using trust man-
agement, however, are subject to increased active channel
listening since a node now also needs to listen to the
communication towards its neighbors, the behavior of which
shall be evaluated. If our node has to listen continuously, this
can consume a lot of energy. Therefore, it might be helpful to
conduct research in the combination of the approaches with
resource-friendly communication protocols. For instance, a
first analysis to adapt the approach presented in Khan and
Herrmann [43] and Khan et al. [85] to the IEEE 802.15.4
protocol revealed that the active channel listening time can
be easily reduced by two-thirds when the listening strategy
is slightly changed. When our station wants to check if a
message sent by itself to another station is correctly forwarded
to rule a selective forwarding attack out, it only needs
to listen to the slots to itself and the one through which
the other node forwards the message of interest. Thus, the
additional listening cost can be effectively limited. Altogether,
the dedication of research in combining energy-efficient
networking with reputation-based IDSs seems a promising
field of research.

8. Conclusion

We provided an overview about recent trends in using
Intrusion Detection Systems in the Internet of Things. In
particular, we presented a number of solutions directly devel-
oped for IoT systems as well as those for the adjacent network
types WSNs, MANETs, and CPSs. Based on this overview,
we could name a number of issues for the various IDS types
that reduce their applicability of the existing approaches.
This allowed us to find out the schemes of IDSs that appear
promising to the IoT. Moreover, we identified two research
directions promising to alleviate the weaknesses of the IDSs
for being used with IoT networks. Altogether, we got the
impression that the majority of the existing IDSs are not
completely suited for the resource limitations of the IoT but
that the developments point into the right direction. After
conducting some efforts into research and development, we
see a high potential for adequate solutions that will protect
the IoT and its users effectively.
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