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Variation of Elastic Energy Shows
Reliable Signal of Upcoming
Catastrophic Failure
Srutarshi Pradhan*, Jonas T. Kjellstadli and Alex Hansen

PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

We consider the Equal-Load-Sharing Fiber Bundle Model as a model for composite

materials under stress and derive elastic energy and damage energy as a function of

strain. With gradual increase of stress (or strain) the bundle approaches a catastrophic

failure point where the elastic energy is always larger than the damage energy. We

observe that elastic energy has a maximum that appears after the catastrophic failure

point is passed, i.e., in the unstable phase of the system. However, the slope of

elastic energy vs. strain curve has a maximum which always appears before the

catastrophic failure point and therefore this can be used as a reliable signal of upcoming

catastrophic failure. We study this behavior analytically for power-law type and Weibull

type distributions of fiber thresholds and compare the results with numerical simulations

on a single bundle with large number of fibers.

Keywords: material failure, fiber bundle model, elastic energy, damage energy, catastrophic failure, reliable signal

1. INTRODUCTION

Accurate prediction of upcoming catastrophic failure events has important and far-reaching
consequences. It is a central problem in material science in connection with the durability of
composite materials under external stress [1–5]. The same problem exists at a large scale (field-
scale) associated with mine and cave collapses, landslides, snow avalanches and the onset of
earthquakes due to plate movements [6, 7]. In medical science, understanding fracturing of human
bones exposed to a sudden stress is an important research area [8]. These phenomena belong
to the class of phenomena called stress-induced fracturing, where initially micro-fractures are
produced here and there in the system and at some point, due to gradual stress increase, a
major fracture develops through coalescence of micro-fractures and the whole system collapses
(catastrophic event). Such stress-induced failures occur also in very different domains—for
example, in breakdown of social relationships and mental health [9, 10].

The central question is—when does the catastrophic failure occur? Is there any prior signature
that can tell us whether catastrophic failure is imminent? The inherent heterogeneities of the
systems and the stress redistribution mechanisms (inhomogeneous in most cases) make things
complicated and a concrete theory of the prediction schemes, even inmodel systems, is still lacking.

In this article, we address this problem (prediction of catastrophic events) in the Fiber Bundle
Model (FBM) which has been used as a standard model [11–14] for fracturing in composite
materials under external stress. We will show theoretically that in the Equal-Load-Sharing (ELS)
model: (1) At the catastrophic failure point, the elastic energy is always larger than the damage
energy. (2) The elastic energy variation shows a distinct peak before the catastrophic failure point
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and this is a universal feature, i.e., it does not depend on the
threshold distribution of the elements in the system. (3) The
energy release during final catastrophic event is much bigger
than the elastic energy stored in the system at the failure
point. Our numerical results show perfect agreement with the
theoretical estimates.

We organize our article as follows: After the brief introduction
(section 1), we define the elastic energy and the damage energy
in the Fiber Bundle Model in section 2. In sections 3 and 4
we calculate the elastic and damage energies of the model in
terms of strain or extension. In several subsections of sections
3 and 4 we explore the theoretical calculations for power-law
type andWeibull type distribution of fiber thresholds. Simulation
results are presented and numerical results are compared with
the theoretical estimates in these sections. We present a general
analysis of elastic energy variations and existence of an elastic-
energy maximum in section 5. In section 6 we identify the
warning sign of catatrophic failure by locating the inflection
point. Here, in addition to uniform and Weibull distributions,
we choose a mixed threshold distribution and present the
numerical results, based on Monte Carlo simulation, to confirm
the universality of the behavior in the ELS models. Finally, we
keep some discussions in section 7.

2. THE FIBER BUNDLE MODEL

The fiber bundle model consists of N parallel fibers placed
between two solid clamps (Figure 1). Each fiber responds linearly
with a force f to a stretch or extension 1,

f = κ1 , (1)

where κ is the spring constant. κ is the same for all fibers. Each
fiber has a threshold x assigned to it. If the stretch 1 exceeds this
threshold, the fiber fails irreversibly. When the clamps are stiff,
load will be redistributed equally on the surviving fibers and this
is called the equal-load-sharing (ELS) scheme. Throughout this
article we work with ELS models only.

The fiber thresholds are drawn from a probability density p(x).
The corresponding cumulative probability is:

P(x) =
∫ x

0
dx′p(x′) . (2)

When the fiber bundle is loaded, the fibers fail according to their
thresholds, the weaker before the stronger. Suppose that n fibers
have failed. At a stretch 1, the fiber bundle carries a force:

F = κ(N − n)1 = Nκ(1− d)1 , (3)

where we have defined the damage:

d =
n

N
. (4)

When N is large enough, d may be treated as a
continuous parameter.

FIGURE 1 | The fiber bundle model.

We will now assume that the stretch 1 is our control
parameter. We can construct the energy budget according to
continuous damage mechanics [1, 15]. Clearly, when we stretch
the bundle with external force, work is done on the system. At a
stretch1 and damage d, the elastic energy stored by the surviving
fibers is:

Ee(1, d) =
Nκ

2
12

(

1− d
)

. (5)

The damage energy of the failed fibers is given by:

Ed(d) =
Nκ

2

∫ d

0
dδ

[

P−1(δ)
]2

. (6)

The total energy at stretch 1 and damage d is, then:

E(1, d) = Ee(1, d)+ Ed(d). (7)

3. ELASTIC ENERGY AND DAMAGE
ENERGY AT THE FAILURE POINT

We are going to analyze the energy relations when the bundle
is in equilibrium. We know that there is a certain value, 1 =
1c, beyond which catastrophic failure occurs and the system
collapses completely. We are particularly interested in what
happens at the failure point. Is there a universal relation between
elastic energy and damage energy at the failure point?

When N is large, we can reframe (Equations 5, 6) and express
the energies in terms of external stretch (or extension) 1 as:

Ee(1) =
Nκ

2
12

(

1− P(1)
)

. (8)
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and

Ed(1) =
Nκ

2

∫ 1

0
dx

[

p(x)x2
]

. (9)

The force on the bundle at a stretch 1 can be written as:

F = κ(N − n)1 = Nκ(1− P(1))1. (10)

The force must have amaximum at the failure point1c, therefore
setting dF(1)/d1 = 0 we get:

1− 1cp(1c)− P(1c) = 0. (11)

3.1. Uniform Threshold Distribution
We start with the simplest threshold distribution: the uniform
distribution, which is well-known in fiber bundle research [14].
For a uniform fiber threshold distribution within the range (0, 1),
p(x) = 1 and P(x) = x. Therefore we get, from Equation (11),

1c =
1

2
. (12)

Now putting 1c = 1/2 in Equations (8, 9), we get:

Ee(1c) =
Nκ

16
, (13)

and

Ed(1c) =
Nκ

2

∫ 1/2

0
dx

[

x2
]

=
Nκ

48
. (14)

Therefore, the ratio between damage energy and elastic energy at
the failure point (1c) is:

Ed(1c)

Ee(1c)
=

1

3
. (15)

3.2. Power-Law Type Threshold
Distribution
Now we move to a general power law type fiber threshold
distributions within the range (0, 1),

p(x) = (1+ α)xα . (16)

The cumulative distribution takes the form:

P(x) =
∫ x

0
p(y)dy = x1+α . (17)

We insert the expressions for p(x) and P(x) into Equation (11)
and find the critical extention:

1c =
(

1

2+ α

)
1

1+α

. (18)

We can calculate the elastic energy and damage energy at the
failure point 1c:

Ee(1c) =
Nκ

2
12

c

(

1− P(1c)
)

=
Nκ

2
12

c

(

1− 11+α
c

)

, (19)

FIGURE 2 | Ratio between damage energy and elastic energy at the failure

point 1c vs. power law exponent α. Single bundle with N = 107 fibers.

Dashed line is the theoretical estimate (Equation 21).

and

Ed(1c) =
Nκ

2

∫ 1c

0
dx

[

p(x)x2
]

=
Nκ

2

1+ α

3+ α
13+α

c . (20)

Plugging in the value of 1c (Equation 18) into the above
equations for elastic energy and damage energy we end up with
the following relation:

Ed(1c)

Ee(1c)
=

1

3+ α
. (21)

Clearly, the ratio depends on the power factor α (Figure 2).
When α = 0, the threshold distribution reduces to a uniform
distribution and we immediately go back to Equation (15).

3.3. Energy Balance
It is easy to show that the work done on the system up to the
failure point1c is equal to the sum of the energies Ee and Ed. The
total work done on the system can be calculated as:

W(1c) =
∫ 1c

0
d1F(1) . (22)

Inserting the expression for F(1) into the integral we get, for a
general power law type distribution,

W(1c) = Nk12
c

[

1

2
−

11+α
c

3+ α

]

, (23)

which is the total of elastic energy and damage energy, W =
Ee + Ed (see Equations 19, 20). In fact, the energy conservation
here is analogous to the one in thermodynamics.
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3.4. Energy Release During the Final
Catastrophic Avalanche
It is known that when the extension exceeds the critical value
1c, the whole bundle collapses via a single avalanche called the
final or catastrophic avalanche [14]. Can we calculate how much
energy will be released in this final avalanche? It must be equal to
the total damage energy of the fibers between threshold values
1c and the upper cutoff level of the fiber thresholds for the
distribution in question.

We calculate the damage energy of the final avalanche for
power-law type distributions as

Edfinal =
Nκ

2

∫ 1

1c

dδ
[

p(δ)δ2
]

=
Nκ

2

(1+ α)

(3+ α)

(

1− 13+α
c

)

. (24)

It is important to find out whether the damage energy for the
catastrophic avalanche has a universal relation with the elastic or
damage energies at the failure point. As already mentioned, the
bundle has stable (equilibrium) states up to 1 ≤ 1c. Therefore,
if we correlate the final avalanche energy with Ee or Ed values at
1c, we can predict the catastrophic power of the final avalanche.

Comparing the expressions for Ee1c
, Ed1c

and Ed
final

we can

write the following relation:

Ed
final

Ed1c

=
[

(2+ α)
3+α
1+α − 1

]

. (25)

As Ee1c
= (3+ α)Ed1c

, we can easily get the other relation:

Ed
final

Ee1c

=
1

3+ α

[

(2+ α)
3+α
1+α − 1

]

. (26)

We can get the last relation (Equation 26) by comparing
expressions (Equations 24 and 19) directly. These theoretical
estimates are compared with numerical simulation results in
Figures 3, 4.

Now, if we put α = 0, we get these energy relations for
uniform fiber threshold distribution:

Ed
final

Ed1c

=
[

(2)3 − 1
]

= 7. (27)

And

Ed
final

Ee1c

=
1

3

[

(2)3 − 1
]

=
7

3
. (28)

Thatmeans the energy release during final catastrophic avalanche
is much bigger than the the elastic energy stored in the system just
before failure (final stable state when 1 = 1c).

It is commonly believed that during catastrophic events like
earthquakes, landslides, dam collapses etc., the accumulated
elastic energy releases through avalanches [6, 7]. We observe a

FIGURE 3 | Ratio between damage energy of final catastrophic avalanche and

damage energy at the failure point 1c vs. power law exponent α. Single

bundle with N = 107 fibers. Solid line is the theoretical estimate (Equation 25).

FIGURE 4 | Ratio between damage energy of final catastrophic avalanche and

elastic energy at the failure point 1c vs. power law exponent α. Single bundle

with N = 107 fibers. The dashed line is the theoretical estimate (Equation 26).

different scenario in this simple fiber bundle model where the
system is doing work during the catastrophic failure phase as the
external force is still acting on the bundle. As a result, the energy
release (during catastrophic failure event) becomes much bigger
than the elastic energy stored at the final stable phase.

4. ENERGY-ANALYSIS FOR WEIBULL
DISTRIBUTION OF THRESHOLDS

We now consider the Weibull distribution, which has been
used widely in material science [14]. The cumulative Weibull
distribution has a form:

P(x) = 1− exp(−xk), (29)
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where k is the Weibull index. Therefore the probability density
takes the form:

p(x) = kxk−1 exp(−xk). (30)

As the force has amaximum at the failure point1c, inserting P(x)
and p(x) values in expression (Equation 11) we get:

exp(−1k
c )− 1ck1

k−1
c exp(−1k

c ) = 0. (31)

From the above equation we can easily calculate the critical
extension value as:

1c = k−1/k. (32)

The elastic energy at the critical extension 1c is:

Ee(1c) =
Nκ

2
12

c

(

1− P(1c)
)

=
Nκ

2
12

c exp(−1k
c ), (33)

and the damage energy is:

Ed(1c) =
Nκ

2

∫ 1c

0
dδ

[

p(δ)δ2
]

=
Nκ

2

∫ 1c

0
dδ k

[

exp(−δk)δk+1
]

. (34)

Putting,

δk = u, (35)

we get:

Ed(1c) =
Nκ

2

∫ 1k
c

0
du

[

exp(−u)u2/k
]

. (36)

This integral is exactly calculable for k = 1 and k = 2.

4.1. Weibull Distribution With k = 1
For Weibull index k = 1, 1c = 1 and the damage energy
expression at the failure point takes the form:

Ed(1c) =
Nκ

2

∫ 1

0
du exp(−u)u2. (37)

Using integration by parts we arrive at the result:

Ed(1c = 1) =
Nκ

2

(

2− 5e−1
)

. (38)

We get the elastic energy at the failure point directly by putting
k = 1 in Equation (33),

Ee(1c = 1) =
Nκ

2e
; (39)

Therefore, the ratio between damage and elastic energies at the
failure point for Weibull distribution with k = 1 is:

Ed(1c)

Ee(1c)
= 2e− 5 . (40)

FIGURE 5 | Damage energy and elastic energy vs. extension 1 (up to the

failure point 1c) for Weibull distribution of thresholds with Weibull index k = 1.

The simulation data (solid lines) are for a single bundle with N = 107 fibers.

FIGURE 6 | Ratio between damage energy and elastic energy vs. extension 1

(up to the failure point 1c) for a fiber bundle with Weibull distribution of

thresholds. In simulation, we used a single bundle with N = 107 fibers. Circle

and triangle are the theoretical estimates (Equations 40, 44) for the ratios at

the failure point 1c.

In Figure 5, we have shown numerical results of the variation of
elastic and damage energies with strain for Weibull distribution
(with k = 1). The theoretical estimates of the ratio between
damage and elastic energies at the failure point are compared
with numerical results in Figure 6.

4.2. Weibull Distribution With k = 2
For Weibull index k = 2, 1c = 1/

√
2 and the damage energy

expression at the failure point is:

Ed(1c) =
Nκ

2

∫ 1/2

0
du exp(−u)u. (41)
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Again, using integration by parts we arrive at the result:

Ed(1c = 1/
√
2) =

Nκ

2

(

1−
3

2
√
e

)

. (42)

We get the elastic energy at the failure point directly by putting
k = 2 in Equation (33):

Ee(1c = 1/
√
2) =

Nκ

2

1

2
√
e
. (43)

Therefore, the ratio between damage and elastic energies at the
failure point for Weibull distribution with k = 2 is:

Ed(1c)

Ee(1c)
= 2

(√
e−

3

2

)

. (44)

The theoretical estimates of the ratio between damage and elastic
energies at the failure point is compared with numerical results in
Figure 6. In Appendix A, we give a general argument that elastic
energy will be always bigger than damage energy at the critical
(failure) point.

5. ELASTIC ENERGY MAXIMUM

There are two distinct phases of the system: A stable phase for
0 < 1 ≤ 1c and an unstable phase for 1 > 1c. If we plot
the elastic energy and damage energy vs. 1, we see that damage
energy always increases with1 but elastic energy has a maximum
at a particular value of 1, let us call it 1m. Can we calculate
the exact value of 1m for a given threshold distribution? Is it
somehow connected to1c? In this section we are going to answer
these questions.

We recall the elastic energy expression (Equation 8). If we
differentiate the elastic energy with respect to the extension 1,
we get:

dEe(1)

d1
=

Nκ

2

[

21
(

1− P(1)
)

− 12p(1)
]

, (45)

Which is 0 at 1m, with:

1m =
2(1− P(1m))

p(1m)
. (46)

If we consider a general power law type distribution p(x) =
(1+ α)xα , within (0, 1), we can write:

1m =
[

2

3+ α

]
1

1+α

= 1c

[

2(2+ α)

3+ α

]
1

1+α

> 1c. (47)

For Weibull distribution P(x) = 1− exp(−xk), we can write:

1m =
[

2

k

]
1
k

= 1c2
1
k > 1c. (48)

Therefore we can conclude that 1m is bigger than 1c, i.e., elastic
energy shows a maximum in the unstable phase (Figures 7, 8).
A more general treatment for the relation between 1m and 1c is
given in the Appendix B.

FIGURE 7 | Force and elastic energies vs. extension 1 for fiber bundles with

uniform distribution of thresholds: Comparison with simulation data for a single

bundle with N = 107 fibers.

FIGURE 8 | Force and elastic energies vs. extension 1 for fiber bundles with

Weibull distribution of thresholds: Comparison with simulation data for a single

bundle with N = 107 fibers.

6. ELASTIC ENERGY INFLECTION POINT:
THE WARNING SIGN OF CATASTROPHIC
FAILURE

Are there any prior indications of the catastrophic failure
(complete failure) of a bundle under stress? In the fiber bundle
model, although the elastic energy has a maximum, it appears
after the critical extension value, i.e., in the unstable phase of the
system. Therefore it can not help us to predict the catastrophic
failure point of the system.

However, if we plot dEe/d1, the change of elastic energy
with the change of extension value 1, we see that dEe/d1 has a
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maximum and, most importantly, this maximum appears before
the critical extension value 1c (Figures 7, 8). In this section
we calculate the particular value of 1 at which dEe/d1 has a
maximum. Let us call this1 value1max. We will also see whether
there is a relation between 1max and 1c.

6.1. Theoretical Analysis
We recall the expression for the derivative of elastic energy with
respect to strain of extension (Equation 45). Taking derivative of
the equation, we get:

d2Ee(1)

d12
=

Nκ

2

[

2
(

1− P(1)
)

− 41p(1)− 12p′(1)
]

. (49)

Setting d2Ee(1)/d12 = 0 at 1 = 1max we get for a general
power law type distribution:

1max =
[

2

(3+ α)(2+ α)

]
1

1+α

= 1c

[

2

3+ α

]
1

1+α

. (50)

This expression confirms that 1max < 1c for α ≥ 0. For a
Weibull distribution with index k, we can write:

d2Ee(1)

d12
=

Nκ

2

[

k212k − (k2 + 3k)1k + 2
]

exp(−1k). (51)

The solution (of d2Ee(1)/d12 = 0) with (−) sign is the
acceptable solution for the maximum. Hence,

1max =

[

(k+ 3)−
√

(k+ 3)2 − 8

2k

]
1
k

= 1c

[

(k+ 3)−
√

(k+ 3)2 − 8

2

]
1
k

< 1c, (52)

since,

[

(k+ 3)−
√

(k+ 3)2 − 8

2

]1/k

< 1 ∀ k > 0. (53)

From Equations (50) and (52) we see that the relation between
1max and 1c depends on the threshold distributions and we can
express 1c in terms of 1max with a prefactor as:

1c = G(α)1max, (54)

for power-law type distributions and

1c = H(k)1max, (55)

for Weibull distributions. Now can we find a reasonable
approximation for the prefactor that is useful for more than one
threshold distributions? An intuitive first choice is the result for
the uniform distribution with α = 0 gives 1c = 1.51max.
This is a good approximation for α close to 0, as expected, but

FIGURE 9 | The prefactor (Equations 54, 55) vs. α, k values of the fiber

threshold distributions and the suggested prediction-window.

not for very large α values. This prediction is also exact for a
Weibull distribution with k ≃ 2. If k is noticeably smaller, then
the prediction 1.51max is smaller than the true failure point 1c.
In this case the estimate errs on the side of caution, and the
bundle can withstand more than the estimate predicts. A better
choice would be to set a prediction-window (1.2 to 1.5) for the
prefactor G(α), H(k). Then it can cover a wide range of α and k
values (see Figure 9). Overall, such a prediction-window for the
failure point works well when the threshold distribution does not
vary too much with 1. If we have prior information about the
threshold distribution in the system (i.e., range of k or α values),
it is possible to narrow down the prediction window and this
is consistent with the common philosophy—extra information
helps to develop a better prediction scheme.

A more general argument is given in Appendix C for the
relation between 1max and 1c.

6.2. Comparison With Simulation Data
In Figures 7, 8 we compare the simulation results with the
theoretical estimates. The simulations are done for a single
bundle with large number (N = 107) of fibers and the agreement
is convincing. We have used Monte Carlo technique to generate
uncorrelated fiber thresholds that follow a particular statistical
distributions (uniform and Weibull distributions). It is obvious
that in simulations we can measure energy values in the stable
phase only.

6.3. Simulation Results for a Mixed
Threshold Distribution
Now we choose a mixed fiber threshold distribution. Can we see
similar signature (maximum of dEe/d1 appears before 1c) as
we have seen in previous section? The chosen distribution is a
mixture of uniform distribution andWeibull distribution (k = 1)
which is shown in Figure 10. We assign strength thresholds to
N/2 fibers from a uniform distribution and to N/2 fibers from
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FIGURE 10 | A mixture of uniform and Weibull (k = 1) distributions.

a Weibull distribution. The simulation result (Figure 11) reveals
that dEe/d1 has a maximum which appears before the failure
point 1c and 1max is somewhere in between the respective
1max values for uniform and Weibull threshold distributions—
as expected intuitively. If we express the 1c value in terms of
1max, the prefactor is well inside the prediction-window, shown
in Figure 9.

7. DISCUSSIONS

The Fiber Bundle Model has been used as a standard model for
studying stress-induced fracturing in composite materials. In the
Equal-Load-Sharing version of the model, all intact fibers share
the load equally. In this work we have chosen the ELS models
and we have studied the energy budget of the model for the entire
failure process, starting from intact bundle up to the catastrophic
failure point where the bundle collapses completely. Following
the standard definition of elastic and damage energies from
continuous damage mechanics framework, we have calculated
the energy relations at the failure points for different types of
fiber threshold distributions (power law type and Weibull type).
At the critical or catastrophic failure point, the elastic energy is
always larger than the total damage energy. Another important
observation is that the elastic energy variation has a distinct peak
before the catastrophic failure point. Also, the energy-release
during final catastrophic event is much bigger than the elastic
energy stored in the system at the failure point (see section 3
and section 4). Our simulation results on a single bundle with
large numbers (107) of fibers, show perfect agreement with the
theoretical estimates. We have chosen a single bundle, keeping in
mind that for prediction purposes it is important and necessary
that the warning sign can be seen in a single sample.

These observations can form the basis of a prediction scheme
by finding the correlation between the position (strain or stretch
level) of elastic energy variation peak and the actual failure point.
The main concern is to find a direct relation between the elastic
energy inflection point (1max) and the failure point (1c). We

FIGURE 11 | Force and elastic energies vs. extension 1 for a fiber bundle

(107 fibers) with a mixed distribution of thresholds.

found that 1c and 1max are related through a prefactor that
depends on the exponent of the threshold distribution. Then we
tried to find a window of the prefactor (Equations 54 and 55) that
can cover a wide range of threshold distributions (Figure 9) so
that we can express the failure point in terms of energy inflection
point, i.e., 1c = prefactor · 1max and the approximate prefactor
window is 1.2 to 1.5 (Figure 9). Moreover, it is also possible to
predict the size (energy release) of the final catastrophic event
by measuring the stored elastic energy of the system at the
failure point.

Our observations in this work have already opened up some
scientific questions and challenges: what happens for Local-Load-
Sharing (LLS) models [16]? Does the elastic energy variation
show similar peaks before the catastrophic failure point? Can we
measure and analyze the elastic energy during a rock-fracturing
test in terms of the applied strain?

During rock-fracturing experiments [17–20], one canmeasure
axial stress (force), axial and radial strain directly through
strain gauges. Amount of damage can be recorded via acoustic
emissions (AE) in terms of number of events (micro cracks)
and the energy of the events. Clearly, total acoustic energy is
the amount of damage energy in the system. It is possible to
calculate the amount of work done on the system from applied
force and effective strain value. Therefore, the difference between
total work done and the damage energy (accumulated acoustic
energy) will be the elastic energy of the system. Once we plot the
elastic energy vs. strain curve, it is straight forward to estimate
the elastic energy growth rate by measuring the slope of the curve
at different strain points.

Our next article will resolve some of these issues –we are now
working on energy budget of LLS models.
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APPENDIX

As stated in section 2, the elastic energy in the system at extension
1 is:

Ee(1) =
Nκ

2
12(1− P(1)), (56)

where P(1) is the cumulative probability distribution of the fiber
thresholds. The force per fiber σ = F/N required to continue the
breaking process at a given extension 1 is:

σ (1) = κ1(1− P(1)) (57)

The critical extension 1c where the bundle collapses is hence
given by:

0 =
dσ

d1

∣

∣

∣

∣

1c

= κ(1− P(1c)− 1cp(1c)). (58)

A. Elastic vs. Damage Energy at the Critical
Point
Numerical data seems to suggest that Ee > Ed at the critical
point for most threshold distributions. Let us try to prove this
analytically by investigating the difference between elastic and
damage energy:

Ediff (1) = Ee(1)− Ed(1)

=
Nκ

2

[

12(1− P(1))−
∫ 1

0
dx x2p(x)

]

. (59)

The derivative of this energy difference is:

dEdiff

d1
=

Nκ

2

[

21(1− P(1))− 12p(1)− 12p(1)
]

= Nκ1
[

1− P(1)− 1p(1)
]

= N1
dσ

d1
.

(60)

We can now express the energy difference in terms of the forces
acting on the fiber bundle. We integrate this expression to find:

Ediff (1) =
∫ 1

0
dx

dEdiff

dx
= N

∫ 1

0
dx x

dσ

dx

= N

[

1σ (1)−
∫ 1

0
dx σ (x)

]
(61)

by partial integration. In particular, this gives the result:

Ediff (1c) = N

[

1cσc −
∫ 1c

0
dx σ (x)

]

(62)

at the critical point. Since σc = max σ (1), we see that
Ediff (1c) > 0 for all threshold distributions. The only exception
possible is a threshold distribution with a constant force σ (1) =
σc. But this results in a lower cut-off 10 = 1c > 0 (for the
threshold distribution to be normalizable), and then Ee(1c) >

Ed(1c) = 0.

B. Elastic Energy Maximum Point
First, rewrite (Equation 58) as:

1 = g(1c) ≡
1− P(1c)

1cp(1c)
. (63)

This definition of g(1) will be useful in the following derivations.
The maximum of the elastic energy is found at an extension 1m,
which is given by:

0 =
dEe

d1

∣

∣

∣

∣

1m

∝ 21m(1− P(1m))− 12
mp(1m), (64)

i.e.,

1

2
=

1− P(1m)

1mp(1m)
= g(1m). (65)

Comparing this expression to Equation (63) allows us to find a
relation between 1c and 1m. We investigate the function g(1):

g(1) =
1− P(1)

1p(1)
=

1− P(1)

1− P(1)− dσ
d1

=

{

< 1 for dσ
d1

< 0

> 1 for dσ
d1

> 0
.

(66)

It is clear from Equation (66) that for a threshold distribution
with only a single maximum in the load curve, g(1m) = 1/2
must occur in the unstable phase, i.e., 1m > 1c.

C. Elastic Energy Inflection Point
The elastic energy maximum occurs after the critical point and
is hence unsuitable as a predictor for failure. But what about the
maximum of the derivative of the elastic energy, the inflection
point 1max? As stated in the section 6:

d2Ee

d12
∝ 2(1− P(1))− 41p(1)− 12p′(1). (67)

Setting this second derivative to zero and rearranging terms gives
the equation:

2(1− P(1max))− 41maxp(1max) = 12
maxp

′(1max). (68)

To investigate the relation between 1max and 1c, we combine
this with the relations dσ/d1 = 1 − P(1) − 1p(1) and
d2σ/d12 = −2p(1)− 1p′(1) evaluated at 1max to get:

dσ

d1

∣

∣

∣

∣

1max

= −
1max

2

d2σ

d12

∣

∣

∣

∣

1max

. (69)

Let’s once again assume that we are working with a threshold
distribution that has only a single maximum in its load curve.
Then dσ/d1 > 0 corresponds to the stable phase and dσ/d1 <

0 corresponds to the unstable phase. We see that any threshold
distribution with d2σ/d12 < −2/1 · dσ/d1 everywhere
in the unstable phase must have 1max in the stable phase,
i.e., 1max < 1c.

This is a general (but weak) condition that is sufficient, but not
necessary, for 1max < 1c.
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