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Abstract

The NTNU Test Satellite, NUTS, is a satellite being build in a student CubeSat
project at the Norwegian University of Science and Technology. The project was
started in September 2010 as a part of the Norwegian student satellite program run
by NAROM (Norwegian Centre for Space-related Education). The NUTS project
goals are to design, manufacture and launch a double CubeSat by 2014. As pay-
load an IR-camera observing waves in the air-glow layer is planned, as well as a
short-range RF experiment. The satellite will fly two transceivers in the amateur
radio bands. Final year master students from several departments are the main con-
tributors in the project and most of the system components are designed and built
by students.

As the main payload is an IR-camera and one of the main goals once in orbit is
to take pictures of the gravity waves in the atmosphere, a reliable Attitude De-
termination and Control System (ADCS) is important. In order to take reliable
pictures, an absolute requirement is that the camera does not miss the Earth, and
more accurately be able to point towards the Earth in such a matter that unwanted
disturbances, such as stars and other light sources in space, is not in the camera’s
field of view.

In this thesis, a realistic simulation environment have been created in order to as-
sess and design an Attitude Control System (ACS) to be implemented on the satel-
lite. Magnetorquers as the satellite’s actuators have been designed. Further, a de-
tumbling control algorithm using an estimated derivative of the geomagnetic field
measured with a magnetometer, is shown to be working satisfactory, even when
being subjected to heavy environmental disturbances. Linear and nonlinear ref-
erence control algorithms subjected to realistic disturbances in the space environ-
ment have been tested and compared as well. Comparisons between a proportional
derivative (PD) controller and a linear quadratic regulator (LQR) are presented,
and the nonlinear controller proved to give best results and pointing control good
to take pictures of the Earth atmposphere is achieved.
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Sammendrag

Norges teknisk- naturvitenskapelige universitet (NTNU) startet høsten 2010 stu-
dentsatellittprosjektet NTNU Test Satellite, NUTS. Prosjektet er en del av det
nasjonale ANSAT-programmet styrt av NAROM (Nasjonalt senter for romrelatert
opplæring) og Norsk romsenter, som andre norske høyskoler og universiteter også
er en del av. Målene til NUTS-prosjektet er å designe, bygge og sende opp en
dobbel CubeSat i 2014. Hoved payload’en er et infrarødt kamer som skal ta bilde
av jordas amtosfære, og en annen payload er et trådløs databus-eksperiment. Satel-
litten vil ha to radiobånd for kontakt med bakken. Masterstudenter fra mange
forskjellige disipliner er med på prosjektet.

Siden hovedpayload’en er et IR-kamer, å få satellitten til å peke mot jorda er viktig,
og et robust attitude kontrollsystem er å foretrekke.

Det er vist i denne rapporten at man kan detumble stelliten ved bruk av estimer-
ing av derivatet av en måling av det lokale geomagnetiske felt, også når store
forstyrrelse er tilstede. Sammenligninger mellom en ulineær og en lineær kon-
troller har blitt gjort, der den ullineære ser ut til å gi best resultater. Peking av
satellitten mot jorda for å ta bilder av dens atmosfære ser ut til å være oppnådd.
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Chapter 1

Introduction

1.1 The NUTS - NTNU Test Satellite project

The NUTS project is a student satellite project at the Norwegian university of sci-
ence and technology (NTNU), which aims to design, build and launch a satellite of
the CubeSat standard by the year of 2014. The project is part of a national satel-
lite program, ANSAT, where also the Narvik University College and University
of Oslo are bulding a satellite each, called HinCube [1] and CubeSTAR [2] re-
spectively. Apart from building three student satellites, the ANSAT program also
"has the intention to stimulate cooperation between educational institutions in Nor-
way and with industry, and also to give the students experience in team work and
hands-on training. The program also aims to increase the interest for science and
technology in lower educational levels to secure future recruitment to higher educa-
tion" [3]. The program was initiated in 2006 and started up in 2007 as a succession
of the NCUBE-1 and NCUBE-2 projects. The NUTS project were initiated in the
fall of 2010, while students started working on it in the spring of 2011. The project
spans over a wide area of different discipilines, and since the start-up there’s been
more than 30 students involved, and with even more to come. The satellite will
be built following the CubeSat standard developed by the California Polytechnic
State University and Stanford University [4], as a way for schools and universities
to be able to build and launch affordable satellites consisting of mostly commer-
cial off-the-shelf components. Our satellite will be a double CubeSat measuring
10× 10× 20 cm3 and have a maximum weight of 2.66 kg. The main payload will
be an infrared (IR) camera which will take pictures of gravity waves in the Earth’s
atmosphere, and as a secondary payload there’s an internal wireless databus to be
tested in space. As for the attitude control, magnetic torquer is the chosen actua-
tor. A project statement can be found at [5], and for updated information see the
project’s webpage [6].
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CHAPTER 1. INTRODUCTION 2

1.2 Small satellites

After the World War II, when both USSR and USA acquired advanced missile
technology from Germany, the very first signs of the coming space age took place.
On October 4th 1957 the space age begun with the launch of Sputnik 1 by the
USSR. This ignited the space-race between the USSR and the United States of
America, and over the years with ever more decreasing size of electrical compo-
nents into micro- and nanoelectronics have made it possible to make smaller and
smaller satellites at a low cost.

1.3 Small satellite magnetic attitude control systems overview

With the increasing possibilities of having advanced payloads in small satellites,
also nano satellites, comes the need of an accurate attitude control system. There
are numbers of different approaches one can use for ACS, both passive and active
ones.
Passive control schemes includes gravity gradient boom and/or permanent mag-
net; the former mainly supporting pointing stability for active controlled satellites
which already are nadir pointing, and the latter consists of a ferromagnet in order to
make the sattelite’s dipole vector follow the geomagnetic field lines. With the per-
manent magnetic solution our nadir pointing requirement would be compromised,
and since the gravity gradient boom only supports other active controllers, none of
them were chosen to be used in our satellite.
Active schemes are for example liquid or gas thrusters, moment wheels and/or elec-
tromagnetic torquers. As the CubeSat standard doesn’t allow for liquid thrusters,
only gas thrusters are an alternative. However, with the strict space and weight re-
strictions of our satellite and maybe more important, for practical mechanical rea-
sons thrusters were not considered an option for our solution. Moment wheels also
take up some space and weight in a satellite, and one would also need electromag-
netic torquers (magnetorquers) for moment dumping of the wheels. For satellites at
altitudes defined as a low Earth orbit (LEO), i.e. the locus from the Earth’s surface
up to an altitude of 2,000 km, and with a near polar orbit the geomagnetic field
is strong enough and is varying enough to be able to use magnetorquers as control
actuators. Magnetorquers are also relatively cheap and easy to manufacture. Hence
for the NUTS, which will be in a LEO, an active scheme of magnetic actuators is
suitable and an overview of this field will now be presented.

Since the beginning of the space age the use of magnetorquers for attitude control
have been studied White et al. [7]. However, only since the early 90’s the use of
magnetic control for small satellites gained attention; in Wen & Kreutz-Delgado
[8] a general framwork for the attitude tracking control problem for a rigid body
was developed, and in Pittelkau [9] it was shown that roll/yaw dynamics with mag-
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netic control are/can be seen as periodically time varying and an optimal periodic
control law was developed. Nonlinear sliding mode control for satellites is the
topic of the paper by Chen & Lo [10]. In Steyn [11], a rule-based fuzzy controller
is presented in a low-earth-orbit small satellite attitude control system. Three-axis
satellite control based only on magnetic control for a low earth orbit satellite with
optional moments of inertia is shown in Wisniewski & Blanke [12] and is further
revised in Wisniewski & Blanke [13]. In Wisniewski [14] a nonlinear sliding mode
controller is developed for a small near polar LEO satellite without appendages.
In Wang et al. [15], detumbling and attitude acquisition is made possible without
e.g. gravity boom or reaction wheels, only magnetorquers. A control system with
the satellite dynamics represented with an inner and outer loop is used, where the
outer loop is regarded as a regulation system controlled by a virtual input produced
by the inner. Magnetic attitude control using periodic linear systems theory were
investigated in Wisniewski [16], based on the steady state and transient solutions
of the Riccati equation, and it was shown that a LEO near polar with magnetic ac-
tuators can be described with a set of periodic differential equations. The periodicy
being exploited is that of the geomagnetic field surrounding the Earth, which over
24 hours can be said to be periodic. Psiaki [17] also finds periodic linear controllers
using asymptotic linear quadratic regulator (LQR) techniques, which also includes
integral action and saturation logic. In Lovera and Astolfi [18] an optimal periodic
controller for asymptotic stabilization is described and in addition, techniques for
disturbance attenuation for periodic systems subject to periodic disturbances is de-
scribed. For a good overview and survey of the small satellite magnetic attitude
control field, the paper by Silani and lovera [19] is worth the read.

1.4 Previous work

The work done on attitude control in the NCUBE-1 and NCUBE-2 projects, with
contributions from Kristiansen [20], Fauske [21] Busterud [22], Øverby [23] and
Narverud et al. [24], and the thesis by Soglo [25], the makes up the basis of most
of the work on attitude determination and control systems (ADCS) in the NUTS
projects. Other Master theses worth mentioning are Makovec [26] of the HokieSat
project, Andresen et al. [27] from the AAUSAT-II project, Giesselmann [28] of
the Compass-1 project, and the two from the CubeSTAR project by Stray [29] and
Rensel [30].

Since this project is very interdisciplenary, the work of the all members of the
group is crucial to make the system as a whole to work altogether. The different
subsystems of the satellite project are:

• On-board computer (OBC)

• Backplane
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• Electrical power system (EPS)

• Tracking, telemetry & command (TT&C)

• Payload (IR Camera and wireless bus)

• Mechanical

• Attitude determination and control system (ADCS)

• Ground station (not part of the space segment/satellite)

Work on the OBC have been done by Volstad [31] with a focus on hardware design,
and Holmstrøm [32] with software design focus. de Bruyn [33] developed the
a system for the backplane amd EPS with further work done by Jacobsen [34].
An antenna system design were developed by Marholm [35], and uplink security
and access control were the topics in Visockas [36]. Systems for taking, handling
and sending infrared pictures with the IR camera have been done by Bakken and
Rønning [37], while work on the wireless bus experiment is shown in Meland [38].
Rokstad [39] started analysis of the possibilities of making the frame structure
of the satellite in composite material. Ground station work have been done by
Stenhaug [40].

Earlier work on the ADCS part of the project have been done by Jenssen and
Yabar [41], Rinnan [42] and Holberg [43], which all investigates and suggests so-
lutions of the attitude determination problem. In [41] the Extended Kalman Filter
(EKF) for nonlinear estimation of the satellite’s attitude is investigated, and also
a new method called the Extended QUaternion EStimation, abbreviated EQUEST,
for nonlinear attitude estimation were found. This method utilizes vectorized and
non-vectorized measurements for the attitude estimation. For satellites with mag-
netic actuation as ours, the EQUEST method have some advantages over the EKF-
method. In [42] the EQUEST method were further developed, and it now makes
use of quaternion products as opposed to earlier, which used subtractions between
estimated and measured quaternions. This latter method does not result in a new
quaternion, but the former with quaternion products does. As a result, it has a
higher accuracy, but with the cost of more complexity and it’s computationally
more demanding.
Work done in the ADCS part of the project with a focuse on attitude control, are
Tudor [44], and also Holberg [45] and Bråthen [46]. In [44] work on detumbling
the satellite and reference control using a PD-like nonlinear controller were shown
to give good results. using these control algorithms, three perpendicular magnetic
coils (also called magnetic torquers/magnetorquers) were found to give sufficient
actuation for reference control of a spacecraft. Also, a 8-bit, 16 MHz microcon-
troller were found to have the sufficient processing power to compute the geo-
magnetic field using the International Geomagnetic Reference Field (IGRF) model
and simultaneously maintaining correct coil actuation. In [45] an optimal linear
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quadratic regulator (LQR) for reference control were developed, while in [46] dif-
ferent nonlinear controllers were investigated, and a sliding mode and a PD con-
troller similar to the one developed by Tudor [44] proved to work satisfactory.

On-going work: There are on-going work on all the subsystems except the

1.5 Thesis outline

Chapter 2 introduces some mathematical principles used throughout the thesis.
Filters for magnetometer measurements are explained. It also includes Lyapunov
stability theorems, and the concepts of observability, controllability and stabiliz-
ability is introduced.

Chapter 3 presents and explains the models used for simulating the dynamics of a
rigid body in orbit around the Earth, including models for the space environment;
the geomagnetic IGRF model, and gravitational, aerodynamic, solar radiation and
internal dipole disturbance torques. Introduces the magnetic actuator model and
derives the linearized satellite model.

Chapter 4 presents the magnetorquer design for the satellite.

Chapter 5 presents the control strategy and the controllers to be investigated: the
so-called B-dot detumbling controller, the nonlinear PD-like reference controller
and the optimal LQR controller. Some coments on the stability of the three control
algorithms are provided.

Chapter 6 shows the results of the filters for the magnetometer measurements, and
of the three control algorithms investigated. Some comparisons between the dif-
ferent filters and the different control algorithms subjected to dofferent conditions
are made.

Chapter 7 presents the final conclusions and remarks on further work to be done.

Appendix A contains the Matlab code and scripts used to simulate the controllers
and filters.

Appendix B presents some mechanical drawings of the frame used for the magne-
torquers, provided by Christian E. Nomme and Kim Sandvik.



Chapter 2

Theory

Working with navigation from an engineering point of view, is in many ways the
study and effort to try to determine and control the change of dynamics of an ob-
ject/body, such as marine vessels, airplanes and spacecrafts or satellites. Different
coordinate frames are used to model the dynamics of the different objects, and in
order to work with and analyse these, one need mathematical tools to describe how
these objects relate to each other.
Space navigation with respect to a small satellite is often restricted to change its
attitude, which is one of this thesis’ objectives, and is described in chapter 3. In
this chapter, the different reference frames are defined and established, as well as
the most commonly used parametrizations for attitude representation. For a more
in-depth study of these topics, see (Gravdahl and Egeland, 2002) in general and
(Hughes, 1986) for space attitude specifically.

2.1 Coordinate frames

First step in order to analyse and design an ACS control system for a satellite is to
define the different coordinate frames to work with. A satellite’s attitude is maybe
most conveniently described as a deviation relative to a chosen reference coordi-
nate frame. For this reason, and because the topic of attitude, reference frames and
rotations can be a bit mind-boggling, it is important to have clear definitions of the
different frames.

6
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2.1.1 Earth centered inertial frame

The Earth centered inertial (ECI) frame, denoted Fi, has its origin in the center of
the Earth and is an inertial, non-rotational frame in which Newtons’s laws of mo-
tion apply. It is defined by the the unit vectors ~xi, ~yi and ~zi . The ~zi axis points at a
90◦ angle relative to the Earth’s equatorial plane where it coincides with the Earths
rotational axis and continues through the celestial North Pole. The ~xi axis points
in the vernal equinox vector direction, which is the vector pointing from the centre
of the Sun to the centre of the Earth at the vernal equinox. The vernal equinox is
a time of the year when the Earths orbital plane as it rotates around the Sun coin-
cides with the equatorial plane, i.e. the center of the Sun lies in the same plane as
the Earths equator. Finally, the ~yi axis completes the three axis orthonormal frame
according to the right-hand rule.

2.1.2 Earth centered Earth fixed frame

The Earth centered Earth fixed frame (ECEF) frame, denoted Fe, has as the ECI
frame its origin at the Earth’s centre, but it’s different in the way that it rotates
with the Earth. The frame is spanned out by the unit vectors ~xe, ~ye and ~ze. Again,
the ~ze points along the Earth’s rotational axis, while ~xe points in the direction of
0◦ latitude and 0◦ longitude. This means the coordinate frame rotates around the
~ze axis with the angular rate of ωe = 7.2921 · 10−5 rad/s. The ~ye completes the
right-handed orthonormal frame.

2.1.3 Orbit fixed frame

The orbit fixed frame, denoted Fo, follows the orbit trajectory and has its origin at
the satellite’s center of mass. It is defined by the unit vectors ~xo, ~yo and ~zo. The
~zo axis points towards the center of the Earth, and the ~xo axis points in the orbit
normal direction, which is parallel to the orbital angular momentum vector. Again,
the ~yo axis completes the right-handed orthonormal frame.

2.1.4 Body fixed frame

The body fixed frame, denoted Fb, is a moving coordinate system which also has
it’s origin at the satellite’s center of mass. However, unlike the orbit frame it is
fixed to the satellite, and so it rotates and moves with the satellite. It’s defined
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by the unit vectors ~xb,~b and ~zb, and for simplifying further attitude comptutations
it’s commmon to let these vectors coincide with the satellite’s axes of moments of
inertia. We will define it by letting the ~yb axis be that of the maximum inertia, the ~zb
axis be the minimum inertia, and the ~xb axis completes the right-hand orthonormal
system. This choice follows from the result of the stability analysis done in section
5.2. Further, the ~xb axis is called the roll axis, ~yb is the pitch axis and ~zb is the yaw
axis.

2.2 The Rotation Matrix

Our main mission in orbit is to take pictures of the Earth’s gravity field waves in the
upper atmosphere with an IR camera, and hence we want to orient the satellite’s
camera in the nadir direction towards the Earth. In order to compare and manipu-
late the satellite’s attitude relative to a reference frame, one need to or express the
attitude vector in several different frames. One transforms the attitude vector from
one frame to another, and the tool used for doing this is the rotation matrix R.
Another interpretation is that it can also describe the attitude of a rigid body.
The definitions and notation below follows mostly that of Gravdahl and Egeland
[47].

Let Fa and Fc denote two coordinate frames, both ∈ R3. The frames are defined
by the orthogonal unit vectors ~a1, ~a2, ~a3 and ~c1, ~c2, ~c3 respectively. Further, a
vector ~v may be described in both systems Fa and Fc:

~v =

3∑
i=1

vai ~ai and ~v =

3∑
i=1

vci~ci. (2.1)

where vai = ~v · ~ai and vci = ~v · ~ci are the coordinates of the vector ~v in the frames
Fa and Fc, respectively. The column vectors in the two frames are then given by
(for likt Tudor?)

va =

 va1
va2
va3

 and vc =

 vc1
vc2
vc3

 . (2.2)

The relation between the coordinate vector represented in the two different coordi-
nate frames can be found by combining the equations (2.1) and (2.2):

vai = ~v · ~ai = (vc1~c1 + vc2~c2 + vc3~c3) · ~ai =
3∑
j=1

vj (~ai · ~cj) . (2.3)
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Further, one can now transform the coordinate vector from frame Fc to frame Fa
via the rotation matrix Ra

c given by:

va = Ra
cvc where Ra

c = {~ai · ~cj} . (2.4)

So Ra
c is the rotation matrix which takes a vector in the Fc frame and transforms

it to a vector in the Fa frame. A simple way of explaining this is to describe the
transformation as

vto = Rto
fromvfrom.

The elements of a rotation matrix Rto
from are called the direction cosines, and so

the rotation matrix is also called the direction cosine matrix.

The two main properties of the rotation matrix are that its determinant equals unity
and that it is orthogonal:

1. Ra
c = (Rc

a)
−1 = (Rc

a)
T .

2. det R = 1.

From this a special orthogonal group for the rotation matrix, the SO(3) - special
group of order 3 is defined. See Egeland and Gravdahl [47] for proofs.

SO(3) =
{

R|R ∈ R3×3, RTR = I3×3 and det R = 1
}

(2.5)

where I3×3 is the 3 by 3 identity matrix.

One important property of the rotation matrix is called composite rotations. This
means that a rotation from frame Fd to frame Fa can be done by, for instance first
rotating from frame Fd via intermediate frame Fc, and then finally from Fc to Fa.
Say one want to express a vector in the Fd frame, vd, in the Fa frame, and to do
so one need to go via frame Fc. To illustrate consider the following equation to
obtain the rotation matrix Ra

d from Fd to Fa:

va = Ra
cRc

dvd ⇒ Ra
d = Ra

cRc
d. (2.6)

Finally, the rotation matrix has two interpetations:

1. One uses the rotation matrix to transform a vector from one coordinate frame
to another.

2. One uses the rotation matrix to rotate a vector within the coordinate frame it
is represented in.
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2.3 Attitude representation

Attitude simply means how an object is rotated or oriented relative to a reference
frame, and it is evident that the concept of attitude representation and rotation
matrices are highly interconnected. With which parameters one wish to describe
an object’s attitude is what we mean by attitude representation. (Euler angles and
Euler parameters will be presented below.)

2.3.1 Euler angles and roll-pitch-yaw

Euler angles are a classical and intuitive way of expressing the attitude. It consists
of the roll angle φ, pitch angle θ and yaw angle ψ contained in the Euler angle
vector Θ:

Θ =

 φ
θ
ψ

 . (2.7)

In a three-axis orthonormal coordinate system, with ~x, ~y and ~x spanning out the
principal axes, roll describes rotation about the ~x axis, pitch is rotation about the ~y
axis and yaw is rotation about the ~z axis.
From this we get that e.g. the matrix Ry(θ) denotes a single rotation of θ radians
around the ~y axis. The elements of the matrices for all the three axes becomes:

Rx(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (2.8)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.9)

Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.10)

Say that a transformation of a vector from one frame to another consists of first a
rotation φ around the x axis, followed by a rotation θ around the current y axis, and
finally a rotation ψ around the current z axis. Then the resulting rotation matrix
can be written as

Ra
c = Rx(φ)Ry(θ)Rz(ψ). (2.11)



CHAPTER 2. THEORY 11

This formulation is useful and an easier way to interpret a rotation of e.g. a satellite
as a sequence of single rotations rather than a rotation matrix.

Now, the concept of the rotation matrix when relating it to Euler angles can be taken
one step further. In [47], it is shown that the rotation matrix Ra

c can be described
as a rotation θ about an unit vector ~k, and Ra

c is given by

Ra
c = cos(I3×3) + sin θ S(k) + (1− cos θ)k(k)T (2.12)

where the S(k) is the skew-symmetric form of the coordinate vector k defined by

S(k) = −ST (k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 , k =

 k1
k2
k3

 (2.13)

which gives that the cross product can be written on the form

a× b = S(a)b. (2.14)

In litterature the notation k× instead of S(k) is used as well.

The parametrization in equation (2.12) is called the angle-axis parametrization of
the rotation matrix.

How intuitive Euler angles and the roll-pitch-yaw concept may be, one problem
when using this representation is that one risk to get singularities for some angles,
e.g. cos π2 , when calculating the resulting rotation matrix. For this reason Euler
parameters, also called quaternions, is used in the numerical computations in this
project. However, for the ease of interpetation the Euler angles are used when
presenting some of the results in this thesis.

2.3.2 Euler parameters and Quaternions

As mentioned above, since we can risk to get singularities when using Euler an-
gles we are interested in another way to represent the satellite’s attitude. This is
where Euler parameters comes in handy. The Euler parameters is a four-parameter
singularity free attitude representation. The Euler parameters and unit quaternions
are basically the same, and, to not confuse more than necessary, the expression
quaternion will be used from now on. The quaternion q is defined as a complex
number with one real part η and three imaginary parts given in the vector ε defined
by:

η = cos
θ

2
, ε = k sin

θ

2
=

 ε1
ε2
ε3

 (2.15)
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which, as in (2.12), corresponds to a rotation θ about an unit vector k.
The quaternion becomes

q =
[
η ε1 ε2 ε3

]T
. (2.16)

The quaternion also satisfies the constraint

qTq = 1 ⇒ η2 + εTε = η2 + ε21 + ε22 + ε23 = 1. (2.17)

When using the quaternion in practical implementations, equation (2.17) gives that
an object is aligned with the reference frame of interest when q = [1 0 0 0]T .

One can say that the quaternion parameters express a rotation η about an unit vector
ε in a similar manner as in (2.12), and we get the rotation matrix given by the
quaternion parameters η and ε:

Rk,θ = Re(η, ε) = I3×3 + 2η S(ε) + 2S2(ε) (2.18)

Further, once we have the quaternions for the satellite in the body frame and using
(2.18), we can obtain the rotation matrix between the body frame of the satellite
and the orbit frame:

Ro
b = I3×3 + 2η S(ε) + 2S2(ε) (2.19)

And finally we get
Rb
o = (Ro

b)
T (2.20)

which will be made use of later.

While the main advantage when using quaternions, namely that it is singularity
free, is a big one; a disadvantage is that its physical meaning isn’t as intuitive as
Euler angles.

2.4 Frame transformations

Now that the concept of the rotation matrix is established, the practice of trans-
forming vectors between frames will be shown. Two assumptions are made; the
satellite’s orbit eccentricity is zero and the altitude is 600 km.

ECI to ECEF

ECEF to Orbit frame

Orbit to Body frame
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2.5 The inertia matrix

In order to have a good model of the satellite, it is important to know as exactly
as possible what the satellite’s inertia matrix is. Mathematically, the inertia matrix
Io ε <3×3 about an arbitrary origin O is defined according to

Io :=

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 , Io = Io
T > 0. (2.21)

where Ix, Iy and Iz are the moments of inertia about the xb -, yb - and zb - axis
respectively, and Ixy = Iyx , Ixz = Izx and Iyz = Izy are the products of inertia.
If one choose to let the principal axes of inertia coincide with the axes of the body
frame, the inertia matrix reduces to:

I =

 Ix 0 0
0 Iy 0
0 0 Iz

 . (2.22)

where Ix, Iy and Iz are given by:

Ix =

∫
V

(y2 + z2)ρmdV

Iy =

∫
V

(x2 + z2)ρmdV (2.23)

Iz =

∫
V

(x2 + y2)ρmdV

and ρm is the density of the satellite and V is the volume.

Throughout this paper the inertia matrix will be referred to as I, while the identity
matrix wil be referred to as In×n, as in equation (2.18) e.g.

2.6 Magnetometer measurements

As we will see in chapter 5, we want to use magnetometer mesurements in the
detumbling algorithm, the so-called B-dot algorithm. The measurements can be
expected to be noisy, and from the name of the algorithm it’s apparent that the
derivative of the local geomagnetic field, Ḃ, needs to be found.

In signal processing, and in control theory for that matter, derivating a noisy signal
is generally not considered to be a very good idea. The reason for this is that any
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noise in the original raw signal will be carried on and amplified in the process of
finding its derivative. Different methods will be looked into in this chapter to find
the smoothest Ḃ values.

A suitable and sufficient sampling frequency of the magnetometer measurements
have been found to be 1 Hz. With this frequency and with a measuring/actuating
switching every 3 seconds, see section 5.1, we get efficiency and the estimated time
derivative of the local geomagnetic field, ˆ̇B, is stable.

For filter results see section 6.2.1.

2.6.1 Magnetometer filter

For some of the differentiation methods investigated here, the raw and noisy mea-
surement signal is not preferred to use. Before the signal is differentiated we want
to filter it in order to remove most of the high frequency noise, hence a digital
low-pass filter is found. The measured magnetic field might also be used in other
control laws, and in attitude determination schemes, so to filter these measurements
is necessary. We use a standard low-pass filter:

H(s) =
B̂

B
=

ωc
s+ ωc

(2.24)

which when written out in discrete form becomes:

B̂k = a1B̂k−1 + b1Bk (2.25)

where B̂k is the filtered value, at sample k, of the measured value Bk, and a1 and
b1 are the filter coefficients:

a1 = 0.8.

and
b1 = 1− a1.

When simulating and testing this and other filters, the IGRF model discussed in
section 3.4 is used, which calculates the local gemomagnetic field vector repre-
sented in the orbit frame, Bo. Noise corresponding to about 1.5 times the expected
noise floor given in the chosen magnetometer datasheet, see [48], is added to the
computed IGRF value. Since the magnetometer we want to emulate is fixed to the
satellite, we further transform the calculated local geomagnetic field vector Bo to
the body frame, and we get Bb. This vector is our emulated magnetometer mea-
surement, i.e. the raw signal on which we want to test the filter found above, and
also other filters presented below.
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2.6.2 Numerical differentiation

We will here investigate a method of numerical differentiation of a digital signal,
namely the central difference method.

Central difference
This method is a quite well-known and basic formula for numerical differentiation
of a signal. The formula is a first-order finite difference method and takes basis in
the definition of the time derivative of a function f(x), which is:

d

dt
f(x) =

f(x+ ∆t)− f(x)

∆t
. (2.26)

where ∆t is the sample time, i.e. the time between each sample. When imple-
mented on the on-board microcontroller this will be fixed to 1 second, and we get
a sampling frequency of 1 Hz.
The central difference method is the following:

d

dt
f(x) =

f(x+ ∆t)− f(x−∆t)

2∆t
(2.27)

When you have a sequence of samples of a signal, you take the difference between
the next sample and the previous and divides by the change in the time. Now you
get a smaller error then what you would’ve got using the standard derivative def-
inition (called backward difference when used as a numerical differentiator). This
can be directly implemented as a discrete numerical differentiator of the measured
geomagnetic field vector B. We get the following

ˆ̇Bk =
Bk+1 − Bk−1

2∆t
(2.28)

where subscript k, k + 1 and k − 1 demotes the current, next and the previous
sample, respectively.
Since the measurements are noisy, the values Bk−1, Bk and Bk−1 are filtered values
from the filter in equation 2.25 in section 2.6.1.

2.6.3 Digital estimator

Here, an estimation algorithm of Ḃ is presented, based on (Andersen, 2005).

The estimator can be expressed as a Laplace domain filter:

H(s) =
ˆ̇B

B
=

ωcs

s+ ωc
(2.29)

with ωc being the cut-off frequency. A cut-off frequency of ωc = 0.7 rad/s have
been found to be valid.
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We will implement this on a computer and microcontroller, so the estmator needs
to be discrete. In the z-domain it is the following

H(z) = ωc
z − 1

z − e−ωcTs
=
b2(1− z−1)
1− a2z−1

(2.30)

where Ts is the sample time.
And thus

ˆ̇B(1− a2z−1) = b2(1− z−1)B. (2.31)

Written out in the discrete notation used when implemented in the Matlab simu-
lation script and eventually on the on-board microcontroller, we get the recurrent
filter:

ˆ̇Bk = a2
ˆ̇Bk−1 + b2 (Bk − Bk−1) (2.32)

with k and k-1 subscript denoting the current and previous sample, respectively,
and with ˆ̇Bk and Bk being vectors. The filter coefficients is found to be

a2 = e−ωcTs = 0.9324.

and
b2 = 0.2028.

One can see that the estimated ˆ̇B is calculated by using almost all the information
(about 93 %) of the previous estimated value, and adding a low average of the cur-
rent and previously measured values of B. Some high-frequency noise will come
through. See more in chapter 6.

2.7 Stability

In order to evaluate the controller strategies presented in chapter 5, we here look at
some stability tools for linear and nonlinear systems.

First, we present Lyapunov stability theorems extracted from chapter Chapter 4.1
in Khalil [49].

Theorem 1: Let x = 0 be an equilibrium point for ẋ = f(x) and D ⊂ Rn be
a domain containing x = 0. Let V : D → R be a continuously differentiable
function such that

V (0) = 0 and V (x) > 0 in D − {0} (2.33)

V̇ (x) ≤ 0 in D. (2.34)
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Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.35)

then x = 0 is asymptotically stable. �

Theorem 2: Let x = 0 be an equilibrium point for ẋ = f(x). Let V : Rn → R be
a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀x 6= 0 (2.36)

||x|| → ∞ ⇒ V (x)→∞ (2.37)

V̇ (x) < 0, ∀x 6= 0 (2.38)

then x = 0 is globally asymptotically stable. �

2.8 Controllability

A linear system
ẋ(t) = Ax(t) + Bu(t)

is said to be controllable if for all initial conditions x(0) = x0, final conditions xf
and tf > 0, there exists an input u(t), 0 < t < tf , such that

x(t) = xf .

In other words, a linear system is controllable if at any given time t with an input
u(t), it’s possible to make the system assume the state xf .

Further, with the controllability matrix C we have a mathematical definition of
controllability:

Definition 1
For the linear system ẋ(t) = Ax(t) + Bu(t), and with n being the dimension of A ,
the controllability matrix C is defined as

C = [B|AB|A1B| . . . |An−1B]. (2.39)

The linear system is controllable if and only if C has full row rank, i.e. rank(C) =
n.
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2.9 Stabilizability

For a system which is uncontrollable in terms of the definition in 2.8, we have a
tool for ensuring that a system with state-feedback control wil be stable, namely
the concept of stabilizability:

Definition 2
For the a linear system ẋ(t) = Ax(t) + Bu(t) with the state-feedback controller
u = Kx(t), the closed loop system becomes

x(t) = (A + BK)x(t) = Acx(t). (2.40)

The linear closed-loop system is said to be stabilizable if Ac is Hurwitz, i.e. all the
eigenvalues of Ac has strictly negative real parts.



Chapter 3

Spacecraft Dynamics and
Environment

In this section some basic space calculations will be presented, in addition to a
mathematical model of the satellite, the actuators used to control it and the main
surroundings influencing it’s behaviour.

3.1 Basic orbit dynamics

Orbit dynamics are based on the laws of Newton and Kepler. Kepler’s laws de-
scribes unperturbed orbital motions of planets around the Sun, while Newton’s
laws describes the physical laws governing the relationship between the forces act-
ing on a body and its motion due to those forces. In other words, Newton gave us
the mathematical explanation of why planets and satellites follow Kepler’s laws.

Kepler’s laws of planetary motion

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.

2. The line joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

3. The square of the planetary period of revolution is proportional to the cube
of the planet’s mean distance to the Sun.

Newton’s laws of motion

1. An object which experiences no net force will have constant velocity; it will

19
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remain in a state of rest (zero velocity) or it will move in a straight line with
constant velocity (non-zero velocity).

2. The acceleration a of a body is parallel and directly proportional to the net
force F acting on the body, is in the direction of the net force and is inversely
proportional to the mass m the body:

F = ma. (3.1)

3. If a body exerts a force F1 on another body, the other body will exert an
equal force with opposite direction F2 = −F2, to the first body. So F1 and
F2 are equal in magnitude and opposite in direction.

4. The gravitational force between any two objects with mass m1 and m2 and
distance r, is given by1:

F =
Gm1m2

r2
, where G = 6.7638× 10−11

[
m3

kgs2

]
. (3.2)

To find a satellite’s angular velocity while orbiting the Earth, we make use of New-
ton’s universal gravitation law and his famous second law, with a = ω2

0r:

ω2
0r =

Gm2

r2

ω0 =

√
Gm2

r3
(3.3)

We have assumed an orbital altitude of R0 = 600 km. so the distance from the
satellite to the centre of the Earth:

r = Re +R0 = 6371 km + 600 km = 6971 km (3.4)

where Re = 6371 km is the Earth’s mean radius.

3.2 Satellite dynamics

We assume we can treat the satellite as a rigid body. Lets start with the rotational
equivalent of Newtons second law of motion, the law of angular momentum h:

h = Iω (3.5)
1This last law is not one of Newton’s three laws of motion, but since it’s used in our reasoning to

end up with the mathematical model which explains a body’s orbital dynamics, we choose to list it
here. It’s name is Newton’s law of universal gravitation.
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where I is the body’s moment of inertia matrix (see chapter 2.5) andω is the body’s
rotational velocity.
The torque τ = [τ1, τ2, τ3]

T is the total torque acting on the body. The torque law
is then given by

τ =
d

dt
(Iω) (3.6)

When this is expressed in the body frame, relative to an inertial frame, such as the
ECI for our case, we get the following:

τ b =
d

dt

(
Ibωbib

)
+ ωbib ×

(
Ibωbib

)
. (3.7)

The moment of inertia matrix is constant in the body frame, for simplicity we
denote it I, and the torque law then becomes

τ b = Iω̇bib + ωbib × (Iωbib). (3.8)

The last cross-product part of (3.8) comes from the fact that dynamics are described
in the rotating body frame.

After some regrouping and mathematical manipulation we get the following:

Iω̇bib = −S(ωbib)Iω
b
ib + τ b

ω̇bib = I−1
(
−S(ωbib)Iω

b
ib + τ b

)
. (3.9)

Here we have ended up with the satellite’s dynamics expressed by its angular ve-
locity (w.r.t. the inertial frame) time differentiative.
Indeed, how we want to manipulate the satellite is by changing its angular velocity
with the means of a control torque, in order to make it point in a certain direction.
From this perspective, the model in (3.8) is convenient for our purpose.

In component form the model is

ω̇1 =
1

Ix
((Iy − Iz)ω2ω3 + τ1) (3.10)

ω̇2 =
1

Iy
((Iz − Ix)ω1ω3 + τ2) (3.11)

ω̇3 =
1

Iz
((Ix − Iy)ω1ω2 + τ3) (3.12)

The total torque, τ b, in (3.9) consists of a sum of torques acting on the satellite.
These are the magnetic control torque, τ bm, generated by the magnetorquers, and
the total of the disturbance torques, τ bdist. All of these torques will be derived in
later sections.
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3.3 Satellite kinematics

The kinematic equations of motion of how the attitude quaternions change are
given by

η̇ = −1

2
εTωbob (3.13)

ε̇ =
1

2
(ηI3x3 + S(ε))ωbob (3.14)

as given in [47].

Since the attitude we are interested in altering is that of the satellite (body) relative
the orbit frame, the corresponding angular velocity to the quaternions representing
that attitude is ωbob. In order to connect this to the angular velocity ωbib in the
expression for the satellite dynamics in (3.9) we have the following relationship

ωbob = ωbib − ωbio
= ωbib −Rb

oω
o
io

= ωbib + ω0cb2 (3.15)

where ωoio is the orbital angular velocity around the Earth w.r.t. the inertial frame,
and it comes in the form of a rotation about the ~yo axis:

ωoio =
[

0 −ω0 0
]T
. (3.16)

The vector cb2 in (3.16) comes from the column vector representation of the rotation
matrix Rb

o:
Rb
o =

[
cb1 cb2 cb3

]
, (3.17)

where cb1, cb2 and cb3 are the projection of the xo -, yo - and zo - axis in the body
frame. For example, the deviation of the zb - axis and the zo - axis is given by cb3,
and if it satisfy cb3 = [0 0 1]T the two axes are aligned.

For more on angular velocities between different frames in general, and its physical
interpretations, see chapter 6.8 in [47].

3.4 The geomagnetic field model

The International Geomagnetic Reference Field (IGRF) is a global model of the
geomagnetic field sourrounding the Earth, and it is estimated every five years by
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the International Association of Geomagnetism and Aeronomy (IAGA). It con-
sists of a set of Gaussian coefficients that is used to create a spherical harmonical
approximation of the field. The latest version is the 11th generation (IGRF 11, re-
vised 2009) model. The model and its application to satellite attitude control have
already been well studied by Kristiansen, Makovec and Davis in [20; 26; 50], and
a good summary of the model can be seen in Tudor [44]. I therefore refer to these
sources, and only present the main IGRF equation here, which is obtained from
Davis [50].
The magnetic field, B, is defined as the negative gradient of the scalar potential
function V:

B = −∇V (3.18)

V (Rc, λ
′, θ) = Re

k∑
n=1

(
Re
Rc

)n+1 n∑
m=0

(gmn cosmθ + hmn sinmθ)Pmn (λ′) (3.19)

where Re is the mean radius of the Earth, Rc is the distance from centre of Earth
to the point of which one want to find the magnetic field values, λ′ is the co-
latitude (λ′ = 90◦− latitude) and θ is the longitude. Further, P (λ′) is the Schmidt
normalized associated Legendre polynomials, and gmn and hmn are the Gaussian
coefficiants provided by the IAGA for the IGRF. Thus, the final magnetic field
vector components in ECEF spherical coordinates are:

Br = − ∂V
∂Rc

=
k∑

n=1

(
Re
Rc

)n+2

(n+ 1)
n∑

m=0

(gmn cosmθ + hmn sinmθ)Pmn (λ′) (3.20)

Bλ′ = − 1

Rc

∂V

∂λ′

= −
k∑

n=1

(
Re
Rc

)n+2 n∑
m=0

(gmn cosmθ + hmn sinmθ)
∂Pmn (λ′)

∂λ′
(3.21)

Bθ = − 1

Rc sinλ′
∂V

∂θ

= − 1

sinλ′

k∑
n=1

(
Re
Rc

)n+2 n∑
m=0

(−gmn sinmθ + hmn sinmθ)Pmn (λ′) (3.22)

3.5 Actuator model

The satellite’s attitude will be controlled using magnetic coils as actuators, also
called magnetorquers. When applying an electrical current through the windings
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of the coils, a magnetic dipole field will be created. The magnetic dipole can be
described as a vector, and the vector will be perpendicilar to the coil, pointing in
the direction of the extended thumb of one’s hand according to the right-hand rule.
When this field reacts with the local geomagnetic field, a magnetic moment is gen-
erated. In a very intuitive way, the magnetic field generated by the magnetorquers
will try to align itself with the local geomagnetic field surrounding the satellite at
that particular place. Thus, the satellite will experience a torque acting on it; push-
ing it in order to align it with the geomagnetic field.
The magnetic dipole moment generated by the coils is given by the number of
windings N, the current i and the coil area A. In our satellite we will have coils on
the x+-, y+- and z−- panels, so the total moment will be

mb = mb
x + mb

y + mb
z =

 NxixAx
NyiyAy
NzizAz

 . (3.23)

The cross product of the magnetic dipole moment, mb, and the local geomagnetic
field, Bb, generates the magnetic control torque τ bm:

τ bm = mb × Bb = S(mb)Bb. (3.24)

This torque is what will be used to maneuver the satellite.

One inherit problem with magnetic control is that the system at times is underac-
tuated. This comes from the fact that the torque is generated by the cross product
between the magnetic moment, mb, and the geomagnetic field, Bb. If, for instance,
we want to turn the satellite about the x axis, and this is axis is parallel to the
local geomagnetic field vector; then control is lost and the system is in fact un-
deractuated. Further, since when any of the magnetorquers is parallel to the local
geomagnetic field we loose one degree of freedom, from definition 2.8 our system
is uncontrollable.
Another problem is that the coils only can produce a moment perpendicular to the
coil area. Since the desired moment rarely will coincide with one of the coil mo-
ments, one have to do some modifications to the control algorithms. More on this
in chapter 5.

3.6 Environmental disturbances

There are several different environmental disturbances which will act on the satel-
lite while orbiting the Earth, most of them will be disturbance torques. To list some
of them, one should mention

• Gravitation
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• Aerodynamic torque.

• Solar radiation torque.

• Internal magnetic dipole moments and other electrical noise which could
lead to measurement errors.

The disturbances listed above will, without doubt, all act on the satellite. Some
argue that since the size of a CubeSat is relatively small, some of the disturbances
will be so small they can be neglected. In low Earth orbits the most influental
disturbance torques are gravity, aerodynamic and possibly magnetic dipoles. In
any case we choose to model and investigate them here.

3.6.1 Gravitation

The gravitation disturbance comes in form of a gravity-gradient torque, which will
affect any non symmetric body in the Earth’s gravity field.
When a non-symmetric satellite is orbiting the Earth, different gravitation forces
from the Earth will act on different places on the satellite, which will lead to a
gravity-gradient disturbance torque acting on the satellite. According to (Hughes,
1986), it’s given by

τ bg = 3ω2
0S(cb3)Ic

b
3 (3.25)

where I is the satellites moment of inertia, ω0 is the orbital angular velocity from
(3.3) and cb3 is given in (3.17).

The gravitational force will be slightly bigger on the part of the satellite being
closer to the Earth, and because of this the gravity-gradient torque will actually
have a small stabilizable effect on the satellite according to our desired attitude. It
will in a way pull one of the z-facets towards the Earth, depending on the mass
distribution of the satellite. From the stability analysis in section/chapter ??, it’s
shown that the satellite will be gravity-gradient stable if the satellite’s moments of
inertia are designed in a certain way:

Iy > Iz > Iz. (3.26)

3.6.2 Aerodynamic torque

Even though there aren’t many particles crashing into the satellite in LEO altitudes
(the atmosphere by definition ended at 100 km altitude), there are in fact some
areodynamic drag creating a torque on the satellite. In order to have an as accu-
rate model as possible, the model obtained in (Hughes, 1986) takes the satellite’s
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rotating movements into account:

τ ba = ρaV
b
r

(
V b
r ApS(cp)V̂

b
r −

(
I + S(V̂

b
r)J
)
ωbob

)
(3.27)

where

• ρa is the atmospheric density.

• Ap is the total projected area the airflow "sees".

• cp is the location of the atmospheric centre of pressure relative centre of
gravity.

• V b
r is the magnitude of the local atmospheric velocity vector, V b

r =
∣∣Vb

r

∣∣.
• V̂

b
r is the unit velocity vector of the local atmosphere relative to the satellite

surface, V̂
b
r = Vb

r/V
b
r .

• J is the moment of inertia matrix with origin in the centre of pressure.

• ωbob is the angular velocity of the satellite relative the orbit frame.

For practical purposes, the local velocity vector is calculated in the orbit frame, so
we need to transform it to the body frame:

Vb
r = Rb

oV
o
r (3.28)

Lastly, the projected area in (3.27) is constant, while in reality it will vary depend-
ing on the satellite’s attitude. A worst-case area is used, i.e. the projected area seen
when one of the corner sides between the x- and y-sides are pointing in the velocity
direction:

Ap = z
√
x2 + y2. (3.29)

3.6.3 Solar radiation torque

Electromagnetic radiation from the Sun may produce a pressure on the satellite
surface and in this way and create a disturbance torque. The solar radiation torque
expression is given by

τ bs =

(
Fs
c
Ap(1 + q) cos i

)
cps (3.30)

where
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• Fs is the solar constant, Fs = 1367 W/m2.

• c is the speed of light, c = 3× 108 m/s.

• Ap is the total projected area.

• q is the reflectance factor.

• i is the angle of incidence of the Sun.

• cps is the location of the solar centre of pressure relative centre of gravity.

As for the aerodynamic torque, a constant worst-case projected area is used. See
equation 3.29.

3.6.4 Internal magnetic dipole

The way in which the dipole moments of the magnetorquers are created apply
to any kind of conductor which have a current running through it. This leads to
small internal dipole moments being created all the time when any electronics on
board the satellite is being used. It is very difficult to have a model for this to
include in simulation models, for the reason that different electronics have different
characteristics and on the satellite thousands of different components are being
used. To try to model all of this would be very time demanding and not very
constructive. However, it is a matter that is worth being aware of, and one might
want to include these effects as a bias in the control algorithms. This has not been
done at this time, but some very rough estimations of the dipole effects is shown in
chapter 6.
The resulting internal magnetic dipole disturbance torque will be created in the
same manner as the control torque from section 3.5:

τ bm,d = mb
d × Bb = S(mb

d)Bb. (3.31)

3.7 Linearized satellite model

A commonly used controller for attitude control of a small satellite using only
magnetorquers is the Linear-Quadratic Regulator. The word linear makes it clear
that it’s based on linear dynamics, which will be presented here, while the rest
of the controller as a whole will be further investigated in section 5.5. Two as-
sumptions are made here; that in the equlibrium point the disturbance torques of
solar radiation and internal dipole will have a negliable impact on the satellite. the
linearization is done according to Busterud [22] and Øverby [23].
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With the definition of the orbit reference frame in 2.1, the satellite have the desired
attitude when it’s aligned with the orbit frame, i.e. the linearization will be around
the equilibrium points

qeq =

[
ηeq
εeq

]
=

[
1
0

]
(3.32)

Kinematics

Looking at the kinematics equation in (3.14) and using the constraint property of
(2.17), we have that since η is defined by the ε-vector elements, η can be omitted
in the linearization: ε = εeq + δε = δε, where δε are small perturbations from the
equlibrium. When linearizing the satellite kinematics in this equilibrium point we
get:

δε̇ =
1

2
ωbob (3.33)

Rotation matrix

From (2.19) we get that the rotation matrix corresponding to the quaternion de-
scribing the satellite’s attitude relative the orbit frame is

Rb
o = (Ro

b)
T

= I3×3 − 2ηS(ε)− 2S2(ε) (3.34)

which for the equilibrium point can be written as

Rb
o = I3×3 − 2S(δε) (3.35)

Rb
o =

 1 2δε3 −2δε2
−2δε3 1 2δε1
2δε2 −2δε1 1

 . (3.36)

Angular velocity

Using the relationship in (3.15) we get the following expression for the angular
velocity of the satellite relative the ECI frame:

ωbib = Rb
oω

o
io + ωbob (3.37)

And from (3.33) one can see that ωbob = 2ε̇.
Inserting this and (3.36) into equation (3.37), we get the linearized model ofωbib to
be

ωbib =

 2δε̇1 − 2ω0δε3
2δε̇2 − ω0

2δε̇3 + 2ω0δε1

 , (3.38)
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with its time derivative being

ω̇bib =

 2δε̈1 − 2ω0δε̇3
2δε̈2

2δε̈3 + 2ω0δε̇1

 . (3.39)

Magnetic control torque

From (3.24) the magnetic control torque is

τ bm = S(mb)Bb. (3.40)

Since our model of the local geomagnetic field, the IGRF, is expressed in the orbit
frame we have that

τ bm = S(mb)Rb
oB

o (3.41)

which in the equilibrium point is the following

τ bm = S(mb)Bo =

 Bo
zmy −Bo

ymz

Bo
xmz −Bo

zmx

Bo
ymx −Bo

xmy

 . (3.42)

Gravity-gradient

In Busterud [22] it is shown that the expression for the gravity-gradient in (3.25)
written out with quaternion parameters is

τ bg = 3ω2
0

 2(Iz − Iy)(ε2ε3 + ηε1)(1− 2(ε21 + ε22))
2(Ix − Iz)(ε1ε3 + ηε2)(1− 2(ε21 + ε22))

4(Iy − Ix)(ε1ε1 + ηε2)(ε2 + ηε1)

 , (3.43)

and inserting for the equlibrium point we find

τ bg = 3ω2
0

 (Iz − Iy)δε1
(Ix − Iz)δε2

0

 . (3.44)

Areodynamic torque

The aerodynamic torque expression from (3.27) with ωbobeq = 0 from (3.32) in-
serted is

τ ba = ρa(V
b
r )2ApS(cp)V̂

b
r. (3.45)

Further, from (3.28) and the definition of V̂r we have that

V̂
b
r = Vb

r/V
b
r = (Rb

oV
o
r)/V

b
r , (3.46)
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so that when inserting for Rb
o from (3.34) and using the equilibrium quaternion

parameters, we get
V̂
b
r = Vo

r/V
o
r . (3.47)

Here we have also used the fact that the magnitude of the velocity vectors repre-
sented in different frames are the same in the equilibrium, V b

r = V o
r .

And finally we arrive at the linearized aerodynamic torque:

τ ba = ρaV
o
r Ap

 cp2V
o
r3 − cp3V

o
r2

cp3V
o
r1 − cp1V

o
r3

cp1V
o
r2 − cp2V

o
r1

 . (3.48)

Linearized satellite dynamics

Putting together equations (3.9), (3.42), (3.44) and (3.48), the linearized satellite
dynamics becomes

ω̇bib = I−1
[
−S(ωbib)Iω

b
ib + τ bm + τ bg + τ ba

]
(3.49)

We introduce
σx =

Iy−Iz
Ix

, σy = Iz−Ix
Iy

, σy =
Ix−Iy
Iz

. (3.50)

Now we can write the cross-product in (3.49) above as

− I−1S(ωbib)Iω
b
ib =

 σxω
b
ib,yω

b
ib,z

σyω
b
ib,xω

b
ib,z

σzω
b
ib,xω

b
ib,y

 , (3.51)

which in the equilibrium can be approximated with

− I−1S(ωbib)Iω
b
ib =

 σx(δωy − ω0)δωz
σyδωxδωz

σzδωx(δωy − ω0)

 ≈
 −σxω0δωz

0
−σzω0δωx

 . (3.52)

Equation (3.49) written out becomes

ω̇bib =

 −σxω0δωz
0

−σzω0δωx

+

 (Bo
zmy −Bo

ymz)/Ix
(Bo

xmz −Bo
zmx)/Iy

(Bo
ymx −Bo

xmy)/Iz


+ 3ω2

0

 −σxδε1−σyδε2
0

+ ρaV
o
r Ap

 (cp2V
o
r3 − cp3V

o
r2)/Ix

(cp3V
o
r1 − cp1V

o
r3)/Iy

(cp1V
o
r2 − cp2V

o
r1)/Iz

 . (3.53)
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Finally, when inserting for ω̇bib from equation (3.39) and after manipulating2 one
get the linearized model on component form:

δε̈1 = (1− σx)ω0δε̇3 − 4σxω
2
0δε1 +

1

2Ix
(Bo

zmy −Bo
ymz)

+ ρaV
o
r Ap(cp2V

o
r3 − cp3V

o
r2)/Ix

δε̈2 = −3σyω0δε̇2 +
1

2Iy
(Bo

xmz −Bo
zmx)

+ ρaV
o
r Ap(cp3V

o
r1 − cp1V

o
r3)/Iy (3.54)

δε̈3 = −(1− σx)ω0δε̇1 − σzω2
0δε3 +

1

2Iz
(Bo

ymx −Bo
xmy)

+ ρaV
o
r Ap(cp1V

o
r2 − cp2V

o
r1)/Iz

3.7.1 Linearized equations of motion

For this LQR controller the ε-vector of the quaternion and its time derivative is
chosen as the states, and we have the follwing state vector:

x(t) =
[
δε1 δε̇1 δε2 δε̇2 δε3 δε̇3

]T
, (3.55)

with the gain vector
u(t) =

[
mx my mz

]T
, (3.56)

and disturbance vector

v(t) =
[
V o
r V o

r V o
r

]T
. (3.57)

The linearized system represented in the state-space model form becomes

ẋ(t) = Fx(t) + G(t)u(t) + D(t)v(t),

y(t) = Cx(t),

2See Appendix A.2 in [23] for complete deduction of the linearized model
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where

F =



0 1 0 0 0 0
−4σxω

2
0 0 0 0 0 (1− σx)ω0

0 0 0 1 0 0
0 0 −3σyω

2
0 0 0 0

0 0 0 0 0 1
0 −(1− σz)ω0 0 0 −σzω2

0 0

 ,

(3.58)

G(t) =



0 0 0

0 Bo
z (t)
2Ix

−Bo
y(t)

2Ix
0 0 0

−Bo
z (t)

2Iy
0 Bo

x(t)
2Iy

0 0 0
Bo

y(t)

2Iz

−Bo
x(t)

2Iz
0


, (3.59)

D(t) = ρaAp

 (cp2V
o
r3 − cp3V

o
r2)/Ix

(cp3V
o
r1 − cp1V

o
r3)/Iy

(cp1V
o
r2 − cp2V

o
r1)/Iz

 . (3.60)



Chapter 4

Magnetorquer design

In the work of Tudor [44] an early prototype of the magnetorquer was designed.
Since then, a whole lot of different subsystems have been designed and developed
for the NUTS satellite. Most important for the magnetorquer design have been
the progress in the mechanical design of the satellite’s frame. With the good help
of my fellow students Christian E. Nomme and Kim Sandvik, who are currently
working on the mechanical design of the frame, I’ve been able to design a more
realistic magnetorquers which fit with the overall and mehanical satellite design.

There’s two different designs of the magnetorquers; one for the magnetorquer
placed on the z-facet and one for the two magnetorquers placed on the x- and
y-facets.
When working with this, the main restriction proved to be that of space available
on the satellite, with other being power and energy available from the EPS and to
some degree weight of the magnetorquers. Further, when designing the magne-
torquers there are a few tradeoffs. Using the expression for the magnetic moment
generated by the magnetorquers in (3.23), essentially m = niA, we have that we
want to maximize the number of turns N , current i and area A. Thinner copper
wire increases number of turns, but also the thinner the wire, the higher its resis-
tance per meter is, and thus the current decreases. In addition, with higher amount
of turns the longer the wire, and the resistance increases as well. Theres also a limit
of current available from the EPS system, so it will not help very much with a very
low resistance since the current will meet a roof limit.

4.1 Design specification

In the EPS design done by Lars Erik Jacobsen in Jacobsen [34] each subsystem
will have 300 mA accessible, which means 100 mA on each magnetorquer. How-

33
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Parameters Magnetorquer 1 Magnetorquer 2
AWG number AWG 31 AWG 31
Conductor diameter [mm] 0.226 0.226
Mass [g] 36 25
Mean height [mm] 165 77
Mean width [mm] 63 77
Mean ara [mm2] 10395 5929
Cross-section height [mm] 4 4
Cross-section width [mm] 3 3
Number of windings 221 221
Resistance [Ω] 43.03 23.78
Max current in conductor [mA] 113 113
Inductance [mH] 5.6 4.3
Time constant [ms] 0.13 0.18
Magnetic moment [Am2] 0.2596 0.1481

Table 4.1: Table of magnetorquer parameters.

ever, this is merely a current regulator on the EPS module which may be changed.
Further, the EPS provides a 5V power supply and there’s 29 Wh of available en-
ergy from the battery package. The size specification are based on the mechanical
drawings of the magnetorquer frames done by Christian E. Nomme, see appendix
B. From this a mean area is calculated for the two different magnetorquers. The
cross-sectional area specification is also found in the drawings in appendix B. In
table 4.1 the magnetorquer constraints and resulting parameters are found.

4.2 Coil design

The magnetorquer is basically a simple coil of winded wire around a frame.

For the conductor in the coil, copper is the chosen material since it’s the most
available and most of its specifics are quite known, making the design process
easier. The wire evaluation were done based on the American Wire Gauge (AWG)
standard, see [51]. A few different wire diameters were evaluated, and the results
can be found in table 4.2. The calculations resulting in table 4.2 are based on the
size of the biggest magnetorquer (for x- and y-sides), and the chosen wire is AWG
31 with diameter 0.226 mm.

To find the coil’s inductance we first need to know it’s magnetic flux:

Φ = BA = µ0
2
√

2nI

πd
·A = µ0

2
√

2nI

π
√
hw
·A, (4.1)



CHAPTER 4. MAGNETORQUER DESIGN 35

AWG 30 AWG 31 AWG 32 AWG 33
Diameter [mm] 0.305 0.226 0.252 0.230
Resistance [Ω/m] 0.339 0.427 0.538 0679
Max amps [mA] 142 113 91 72
Turns 165 221 266 352
Mass [g] 27 36 43 57
Total Resistance [Ω] 25.51 43.03 65.26 109
Magnetic moment [Am2] 0.2436 0.2596 0.2119 0.1679

Table 4.2: AWG parameters.

where the coil length d is approximated with
√
hw, and h and w is the coil’s height

and width respectively. Now, the inductance of the biggest coil is found by the
formula for a rectangular coil:

L =
nΦ

I
=

2
√

2n2µ0A

π
√
hw

=
2
√

2

π
n2µ0

√
hw

L ≈ 5.6 mH. (4.2)

From this the coil’s time constant is found to be

τ =
L

R
=

5.6

43.03
≈ 0.13ms. (4.3)

This is a very small inductance and thus a small time constant, and one may have
reason to believe the coil’s inductance to be a bit higher. Even if one were to find
the inductance to be tenfold higher than in (4.2), the time constant would be small
enough that doing switching with a few seconds, or even less, is achievable.

Because a magnetorquer frame hasn’t been made yet, a coil prototype haven’t been
made so unfortunately measurements haven’t been done in order to verify the cal-
culated values. A prototype coil without any frame were however made by Tudor
in [44], and it worked nicely.



Chapter 5

Control

The main payload of the satellite, the IR camera, needs to point in the nadir di-
rection towards the Earth in order to take pictures of the gravity waves. With our
definition of the reference frames in section 2.1, the satellite will be nadir-pointing
when the body and reference frames are aligned. From the work done by Snorre
S. Rønning in [37], a requirement for getting any pictures at all is that the satellite
attitude doesn’t deviate more 50 degrees. However, a higher accuracy is desirable.
Further, the satellite while taking pictures should not drift much. Thus, even if the
satellite were to deviate from the desired attitude, we would want it to be stable.
This leads to the requirement that the satellite’s desired angular velocity w.r.t. the
orbit frame is close to zero. The ACS requirements are summed up in table 5.1.

In this chapter the control strategy and control algorithms are presented. In order
to find a way of meeting the ACS requirements, different control algorithms are
presented, evaluated and stability properties are found.

5.1 Control strategy

After being released from the P-POD on the launch vehicle, the satellite will spin
arbitrarily around its three axes. In order to be able to point the satellite at the
desired attitude, its spin needs to be slown down first, i.e. detumbling is necessary.
After detumbling, the satellite’s angular velocity will hopefully be close to zero

Roll Pitch Yaw
Pointing accuracy [◦ deg] ±25 ±25 -
Angular velocity [rad/s] ±1 · 10−3 ±1 · 10−3 ±1 · 10−3

Table 5.1: ACS requirements.

36
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and one can employ pointing control.

The detumble algorithm presented here makes use of a measurement of the Earth’s
geomagnetic field. Since the actuators are magnetic coils (magnetorquers), there’s
a conflict between measuring the magnetic field surrounding the satellite and using
the actuators, which will influence the magnetometer measurements. Because of
this a switching strategy is suggested. What we want to do is store a sequence of the
measured magnetic field, and use the estimator in 2.6.3 to estimate the time deriva-
tive of the local geomagnetic field. This estimated ˆ̇B is the stored and used in the
detumbling algorithm, while the magnetometer is turned off since a measurement
at this stage might be disturbed and thus maybe useless. (Since the magnetome-
ter may be a measurement being used in an attitude determination algorithm, the
switching strategy is used while using all the control algorithms.) A method of
emulating the switching has been implemented in the Matlab script used for simu-
lation.
One can note that one could use a strategy of feed forward from the known actuator
gain in order get a measurement while using the magnetorquers, but this is outside
the scope of this thesis.

After detumbling the satellite, one can, as mentioned above, start pointing con-
trol. Dependent on how large the deviations away from the desired attitude are,
different controller are used. Typically, with more than 20◦ deviation we want to
use the nonlinear PD-like controller based on Soglo [25] and Tudor [44], and for
smaller deviations the linear LQR controller based on Busterud [22], Øverby [23]
and Wisniewski [14]) is preferred.

5.2 Stability requirements

By using Lyaounov theory with the concepts of stability presented in section 2.7,
together with energy considerations of the satellite we can find some requirements
for stability. The stability analysis shown here is heavily based on the Lyapunov
analysis by Soglo [25] and Tudor [44], but also adding the energy contribution
from the aerodynamic torque.

The energy of the system consists of kinetic and potential energy. Kinetic energy
is the satellite’s translational and rotatioinal energy, while the potential energy is
mainly because of gravity-gradient effects.

Let’s start with the kinetic energy:

T =
1

2
mbω

2
oR

2
c +

1

2
(ωbib)

T Iωbib (5.1)
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and when inserting for ωbib we get

T =
1

2
mbω

2
oR

2
c +

1

2
ω2
ocT2 Ic2 − ωocT2 Iωbob +

1

2
(ωbob)

T Iωbob (5.2)

And by grouping 5.2 into
T = T0 + T1 + T2 (5.3)

we arrive at

T0 =
1

2
mbω

2
oR

2
c +

1

2
ω2
ocT2 Ic2 (5.4)

T1 = −ωocT2 Iωbob (5.5)

T2 =
1

2
(ωbob)

T Iωbob (5.6)

The potential energy is dominated by the gravitational force working on the satel-
lite caused by the Earth. We make use of Newton’s law of gravity and the following
assumptions

• The Earth is the only object exerting a gravitational force on the satellite.

• The Earth is close to spherical and has a symmetric mass distribution.

• The satellite is small compared to distance to the centre of the Earth.

The potential energy exerted by the Earth on the satellite is then given by

U = −µMb

Rc
− 1

2
ω2
o(Ix + Iy + Iz) +

3

2
ω2
ocT3 Ic3. (5.7)

with Mb being the mass of the satellite.

From [25] the Lyapunov function candidate is given by

V =
1

2
(ωbob)

T Iωbob +
3

2
ω2
ocT3 Ic3 −

1

2
ω2
ocT2 Ic2 +

1

2
ω2
o(Iy − 3Iz), (5.8)

which when evaluated in the equilibrium states ωbob = 0 and Ro
b = 0, and manipu-

lated and written out on scalar form becomes

V =
1

2
(ωbob)

T Iωbob +
3

2
ω2
o [(Ix − Iz)c213 + (Iy − Iz)c223]

+
1

2
ω2
o [(Iy − Ix)c212 + (Iy − Ix)c232]. (5.9)

If we now define a state vector x =
[
(ωbob)

T c13 c23 c12 c32
]T , we can find the

requirements which needs to be fulfilled in order to have Lyapunov stability. From
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the Lyapunov function candidate in 5.9, we see that the following requirements
have to be met:

Iy > Ix > Iz.

When this is fulfilled, the candidate function in 5.9 is zero in the equlibrium points
when the state vector equals zero. This means the satellite needs to be designed
and built accordingly.

To have Lyapunov stability we need to investigate the time derivative of the Lya-
punov function candidate. Using the result in chapter 7 in Soglo [25], we have that
the time derivative of V in 5.9 is

V̇ = (ωbob)
Tτ bm. (5.10)

This result will be further used to evaluate stabilit of the different control algo-
rithms.

5.3 Detumbling Controller

As already mentioned, one need to detumble the satellite in order to start pointing
control. The detumbling controller proposed here is the B-dot controller. This
is a very common detumbling controller in the small satellite litterature, and as
the name implies, it makes use of the derivative of the magnetic field. This is
only possible in LEO, since for higher altitudes the geomagnetic field is practically
unmeasurable.
The controller was first proposed by Stickler and Alfriend [52], and later improved
by Wisniewski [14]:

mb = −kḂb, k > 0, (5.11)

where mb is the magnetic control output moment, k is the positive control gain
and Ḃ is the time derivative of the measured local magnetic field. The thought
is, that when the satellite is spinning after launch from the P-POD, the surround-
ing geomagnetic field will change accordingly to the satellite’s angular velocity.
Therefore, by measuring the B-field, and caluclating its time derivative and using
it in the negative feedback control-law, the satellite’s energy will decrease, and thus
it’s spin or angular velocity will decrease as well. Based only on measurements of
the magnetic field, it doesn’t need any attitude information and is therefore quite
straight forward and easy to use, hence it’s popularity.

With the expression for the estimated Ḃ found in 2.32, the detumbling control law
becomes

mb = −k ˆ̇Bb, k > 0, (5.12)
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where ˆ̇Bb is the last calculated estimation of Ḃb based on a sequence of measure-
ments of the magnetic field B, according to the switching strategy explained above.

When decreasing the angular velocity by means of decreasing the rate of change of
the magnetic field, the satellite basically behaves like a compass with three degrees
of freedom, and will therefore try to align itself and follow the local geomagnetic
field. It follows that the slowest angular velocity one can expect from the B-dot
controller is the change of the geomagnetic field. This is indeed not very fast.

When inserting this controller into the expression for the magnetic control torque
τ bm, and further into the expression for the derivative of the Lyapunov finction we
get

V̇ = −k(ωbob)
T
[

ˆ̇Bb × Bb
]
, k > 0 (5.13)

This detumbling controller clearly takes energy out of the system, and one can ar-
gue that since this controller will always try to slow the system down, it is asymp-
totically stable in terms of angular velocity for our case. It is, however difficult to
show analytically because we cannot guarantee that ωbob,

ˆ̇Bb or Bb to be positive
semi-definite. Simulations show that it is stable and will slow the satellite down
and keep it close to the equilibrium of ωbob = 0.

5.4 Nonlinear controller

With our main goal of the mission being to take pictures of the Earth’s atmosphere,
we need to point the satellite’s camera towards the Earth. To do this a reference
controller is proposed, and in this section a nonlinear reference controller will be
presented. First of all, with our definition of the satellites axes in section 2.1.4, the
control goal is to align the body frame with the orbit frame. This, when expressed
with quaternions, means that the quaternion describing the rotation of the satellite
(body) relative the orbit frame is desired to be q = [1 0 0 0]T . From the constraint
property of quaternions in equation 2.17, one can see that it will be enough to make
sure the ε-vector part of the quaternion is equal to zero, and we will get the desired
alignment. This controller presented here is based on the works of Soglo [25] and
Tudor [44].

The PD-like controller is given by

τ bd = −pε− kωbob, p, k > 0 (5.14)

which is found by extending the Lyapunov function candidate in equation (5.9)
by using the ε-vector of the quaternions as the error measurement. After some
manipulation one arrives at the controller in 5.14. This is the desired control law,
hence the subscript d. For more see Soglo [25].
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This control law will always calculate a gain assuming the magnetorquers are per-
pendicular to the local geomagnetic field, but this willl seldom be the case. Because
of this we project it down to a plane always being perpendicular to the local ge-
omagnetic field. This way we make sure the calculated control gain is the best
we can get, and we don’t use more gain effort than necessary. Further, it’s for the
magnetorquers we want to calculate the gain, and the control law becomes

mb =
1

||Bb||

(
−p(Bb × ε)− k(Bb × ωbob)

)
(5.15)

Inserting the controller in equation (5.14) into the equation for the magnetic control
torque we get

τ bm =
1

||Bb||

(
−p(Bb × ε)− k(Bb × ωbob)

)
× Bb. (5.16)

This controller is shown in [25] to be uniformly asymptotically stable. [25] also
gives a gain requirement

k > 8ω2
0(Iy − Iz). (5.17)

5.5 Linear-Quadratic Regulator

The other reference controller to be investigated is a Linear-Quadratic Regulator
(LQR). This controller makes use of the linearized satellite model found in section
3.7.1.

A LQR controller is an optimal linear controller which seeks to meet some control
goal while minimizing the effort it takes to achieve this. This type of controller
is a popular and well documented controller to use on spacecrafts with magnetic
actuation. See for example the work of Wisniewski and Blanke [13], Psiaki [17],
Giesselmann [28] and Stray [29]. From its name, it is based on linearized system
dynamics while defining a cost function which is to be minimized. Further, this
method calculates a gain matrix based on state feedback in order to minimize the
cost function. The cost function is often defined as a sum of some key states one
want to minimize the deviation of. In our case this is the attitude of the spacecraft,
represented by the quaternions describing the deviation between the satellite’s body
frame and the orbit frame, which we want to be aligned.

The quadratic cost function for the infinite-horizon LQR controller is given by

J =
1

2

∫ ∞
0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (5.18)

where Q and R are positive semi-definite and diagonal weighting matrices. As
mentioned above, in our case x is the ε-vector of the attitude quaternion, and u is
the magnetic control gain.
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Using the linearized system dynamics found in section 3.7.1, the solution to the
cost function J is

u(t) = −Kx(t), (5.19)

where optimal gain matrix K is the solution of the optimal control problem, given
by

K = R−1B(t). (5.20)

Here, B(t) is the local geomagnetic field mesurement. Further, the soultion to
equation (5.20) is found by solving the Riccati equation. The Riccati differential is
used to minimalization problems with quadratic cost function, and is given by

Ṗ(t) = −P(t)F− FTP(t)−Q + P(t)G(t)R−1(t)G(t)P, (5.21)

where F and G(t) is from the linearized model in section 3.7.1. P(t) converges to
a stationary solution if the system is controllable or stabilizable, and we arrive at

0 = FTP + PF− PGR−1GTP + Q. (5.22)

Now we get the closed-loop system to be:

ẋ = (F−GK)x(t) = Fcx(t). (5.23)

We also need to mention a few words about the weighting matrices Q and R. With
weighting matrices one can choose if one wishes to weigh the states x more with
the matrix Q, or if one wishes to weigh the control inputs u more with the matrix R.
By choosing a larger Q, one will get the poles of the closed-loop system matrix Fc
will have poles further left in the s-plane, and so one will have a quicker response,
but with a higher control effort (more gain/power). With a larger R on the other
hand, one will experience a cheaper controller in terms of control effort, but one
will get a slower response.

When simulating the system with the LQR controller, the Matlab function lqr()
will be used to find K; K = lqr(). This takes the linearized system matrices F and
G, and the weighting matrices Q and R as inputs. It will only return a solution if
the closed loop matrix Fc is Hurwitz.

We have shown in section 3.5 that our system is uncontrollable. From definition
2.9 we have a stable controller if the closed-loop system matrix Fc is Hurwitz.
Our closed-loop system with the optimal gain matrix K is indeed Hurwitz, so the
controller is stable.



Chapter 6

Simulations and Results

6.1 Simulation

This chapter presents results of the numerical simulations done in Matlab. The
MSS toolbox, which is a toolbox developed for marine control, have been used
for all simulations because of it’s functions for calculating rotation matrices and
quaternions. The parameters used in the simulations can be seen in tables 6.1 and
4.1. Further, the matlab function ode45 have been used to numerically integrate
the system using the state matrix

x =
[

(ωbib)
T η εT λ p

]T
. (6.1)

where λ is the satellite’s latitude, and p is the satellite’s power consumption. This
last state p si not a state wwith any impact on the system, but since p =

∫
Wattdt

it is practical to include it as a state in order to monitor the different control
algorithms power consumptions. From this, the wattage use relates to p with
Wh = p

3600s .

Different initial states are chosen for the different control algorithms. As Tu-
dor’s and Soglo’s approach, it’s more intuitive to state the initial conditions with
the satellites angular velocity relative the orbit frame and with the Euler angles,
[ωbib φ θ ψ]. These parameters are then rotated and transformed, respectively to
becomeωbib, η and ε, using the functions euler2q and Rquat from the MSS toolbox.

All the Matlab simulation files can be found in appendix A. The maximum internal
dipole moment found is a very rough estimate based loosely on how much current
each module can use at any time, from [34].

43
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Parameters Value
Mass [kg] 2.6
Size [mm] 100× 100× 200

Moments of inertia [kgm2] Ix = 0.33, Iy = 0.33002, Iz = 0.11

Voltage [V] 5
Maximum current [mA] 113
Maximum magnetic moment [Am2] 0.2596
Maximum aerodynamic torque [Nm] 1.977 · 10−8

Maximum solar radiation torque [Nm] 4.124 · 10−9

Maximum internal dipole moment [Am2] 7.2 · 10−4

Desired Euler angles [deg] φ = 0, θ = 0, ψ = 0

Desired angular velocity [rad/s] ωbob = 0

Table 6.1: Table of simulation parameters.

6.2 Results

6.2.1 Magnetometer measurement filters

The results after simulating the different magnetometer measurement filters from
section 2.6 are presented here. All the testing of the filters have been done in the
detumbling phase, since the change in measured geomagnetic fiekd is expected to
be greatest here.

Low-pass filter

Here are results of the low-pass filter from section 2.6.1, used for the measured
local geomagnetic field.

B̂k = a1B̂k−1 + b1Bk. (6.2)

The plots of the results can be seen in figures 6.1 and 6.2.

Numerical differentiator

Here are results of the numerical differentiator from section 2.6.2 used for the
measured local geomagnetic field.

ˆ̇Bk =
Bk+1 − Bk−1

2∆t
. (6.3)

The plots of the results can be seen in figures 6.3 and 6.4.
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Figure 6.1: Plot of low-pass filter for geomagnetic measurements.

Estimator

Here are results of the estimator from section 2.6.3 used to estimate the derivative
of the measured local geomagnetic field.

ˆ̇Bk = a2
ˆ̇Bk−1 + b2 (Bk − Bk−1) (6.4)

The plots of the results can be seen in figures 6.5 and 6.6.

6.2.2 Detumbling

Simulation of the detumbling controller, with all disturbance torques included. The
detumble control law was found in section 5.3 and is given by:

mb = −k ˆ̇Bb, k > 0 (6.5)

and is using the estimated value of the derivative of the measured local geomagnetic
field. The control law results in the control torque

τ bm = − k

||Bb||

(
ˆ̇Bb
)
× Bb. (6.6)
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Figure 6.2: Zoomed plot of low-pass filter for geomagnetic measurements.

The control gain used in 6.6 is d = 4 · 10−5.

The initial values for detumbling can be seen in table 6.2.

The results of the simulations of the detumbling controller can be seen in figures
6.7 and 6.8, depicting the angular velocity of the satellite w.r.t. to the orbit frame
and the power consumption of the controller, respectively. The total disturbance
torques from section 3.6 are:

τ bd = τ bg + τ ba + τ bs + τ bm,d, (6.7)

and can be seen in figure 6.9.

ωbob = [0.1 − 0.2 0.1]T

φ = 180◦

θ = 30◦

ψ = −75◦

λ = 0◦

p = 0 J

Table 6.2: Initial values for the detumbling simulations.
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Figure 6.3: Plot of the numerical differentiation by central difference method for
geomagnetic measurements

6.2.3 Nonlinear control

Here the simulations using the nonlinear reference controller from section 5.4 is
presented. The control law is:

τ bm =
1

||Bb||

(
−p(Bb × ε)− k(Bb × ωbob)

)
× Bb. (6.8)

In the following subsections the results of using the controller when subjected to
different disturbance torques is presented.

Gravity gradient as only disturbance

The nonlinear reference controller simulated with gravity-gradient torques as only
disturbance torque is presented here. In figures 6.10 and 6.11 one can see plots of
the satellite’s roll, pitch and yaw angles, and the controller’s power consumption,
respectively. The gravity-gradient torque can be seen in figure 6.12.

The control gains used in here is p = 3 · 10−9 and k = 6 · 10−6.



CHAPTER 6. SIMULATIONS AND RESULTS 48

Figure 6.4: Zoomed plot of the numerical differentiation by central difference
method for geomagnetic measurements

The initial values for the nonlinear reference controller simulations with only gravity-
gradient disturbance can be seen in table 6.3. The angular velocity initial values
are the final values from the detumble controller.

Gravity-gradient and aerodynamic disturbance torques

The nonlinear reference controller simulated with gravity-gradient and aerody-
namic torques is presented here. In figures 6.13 and 6.14 one can see plots of
the satellite’s roll, pitch and yaw angles, and the controller’s power consumption,
respectively. The aerodynamic torque can be seen in figure 6.15.

The control gains used in here is p = 1.5 · 10−9 and k = 6 · 10−6.

The initial values for the nonlinear reference controller simulations with gravity-
gradient and aerodynamic disturbances can be seen in table 6.4. The angular ve-
locity initial values are the final values from the detumble controller.
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Figure 6.5: Plot of the digital estimator used for geomagnetic measurements

Gravity-gradient, aerodynamic and solar disturbance torques

The nonlinear reference controller simulated with gravity-gradient, aerodynamic
and solar disturbance torques is presented here. In figures 6.16 and 6.17 one can see
plots of the satellite’s roll, pitch and yaw angles, and the solar radiation disturbance
torque, respectively.

The control gains used in here is p = 1.5 · 10−9 and k = 6 · 10−6.

The initial values for the nonlinear reference controller simulations with gravity-
gradient, aerodynamic and disturbances can be seen in table 6.5. The angular ve-

ωbob = [0.001056 0.000722 − 0.000339]T

φ = 180◦

θ = 30◦

ψ = −75◦

λ = 0◦

p = 0 J

Table 6.3: Initial values for the nonlinear reference controller simulations with only
gravity-gradient disturbance.
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Figure 6.6: Zoomed plot of the digital estimator used for geomagnetic measure-
ments

locity initial values are the final values from the detumble controller.

Nonlinear control with integral action

The simulation of the nonlinear reference controller with integral action is pre-
sented here. When adding more disturbance torques than the gravity-gradient it’s
apparent that we get a constant deviation. The reason for this is that when adding
e.g. aerodynamic torque, after the satellite’s spin is decreased we get a more or less

ωbob = [0.001056 0.000722 − 0.000339]T

φ = 180◦

θ = 30◦

ψ = −75◦

λ = 0◦

p = 0 J

Table 6.4: Initial values for the nonlinear reference controller simulations with
gravity-gradient and aerodynamic disturbances.
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Figure 6.7: Plot of angular velocity ωbob after detumbling.

constant disturbance effect, see figure 6.15. Hence the equlibrium of the satellite is
now shifted and we get a steady-state offset as a result. Because of this the nonlin-
ear controller in 5.14 were augmented with integral action in an attempt to get rid
of the offset.

τ bd = −pε− kωbob − iεe, p, k, i > 0 (6.9)

where εe is the accumulated error of the ε-vector of the quaternion describing the
satellites position w.r.t. to the orbit frame. Because of the quaternion properties
from equation (2.17), and since the desired attitude quaternion is q = [1 0 0 0]T ,

ωbob = [0.001056 0.000722 − 0.000339]T

φ = 20◦

θ = 20◦

ψ = 20◦

λ = 0◦

p = 0 J

Table 6.5: Initial values for the nonlinear reference controller simulations with
gravity-gradient, aerodynamic and solar disturbances.
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Figure 6.8: Plot of energy and power consumption after detumbling.

we get that the quaternion error (or rather the "epsilon"-error) is given by

εe =

∫
εdt. (6.10)

The system is simulated with the nonlinear reference controller augmented with
integral action, and with gravity-gradient and aerodynamic disturbance torues, in
order to have an offset to remove. In figures 6.18 one can see plots of the satellite’s
roll, pitch and yaw angles when the integral gain equals i = 1 · 10−12. In figure
6.19 one can see the same, but now with an integral gain of i = 5 · 10−11. The
other two gains are p = 1.5 · 10−9 and k = 6 · 10−6.

The initial values for the nonlinear reference controller augmented with integral
action, and with gravity-gradient and aerodynamic disturbances can be seen in ta-
ble 6.6. The angular velocity initial values are the final values from the detumble
controller.
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Figure 6.9: Plot of total disturbance torques while detumbling.

ωbob = [0.001056 0.000722 − 0.000339]T

φ = 180◦

θ = 30◦

ψ = −75◦

λ = 0◦

p = 0 J

Table 6.6: Initial values for the nonlinear reference controller simulations with
integral action.
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Figure 6.10: Plot of the Euler angles after nonlinear control, gravity as only distur-
bance.
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Figure 6.11: Plot of energy and power consumption after nonlinear control, gravity
as only disturbance.
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Figure 6.12: Plot of gravity-gradient torques while simulating nonlinear reference
controller.



CHAPTER 6. SIMULATIONS AND RESULTS 57

Figure 6.13: Plot of the Euler angles after nonlinear control, with gravity and aero-
dynamic disturbance torques.
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Figure 6.14: Plot of energy and power consumption after nonlinear control, with
gravity and aerodynamic disturbance torques.
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Figure 6.15: Plot of the aerodynamic disturbance torques while simulating nonlin-
ear control.
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Figure 6.16: Plot of the Euler angles after nonlinear control, with gravity, aerody-
namic and solar disturbance torques.
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Figure 6.17: Plot of the solar disturbance torques while simulating nonlinear con-
trol, with gravity, aerodynamic and solar disturbance torques.
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Figure 6.18: Plot of the Euler angles after nonlinear control with integral action,
i = 1 · 10−12.

6.2.4 Optimal control

Here the simulations using the optimal LQR reference controller from section 5.5
is presented. In the following subsections the results of using the controller when
subjected to different disturbance torques is presented.

Gravity-gradient as only disturbance

The LQR reference controller simulated with gravity-gradient torques as only dis-
turbance torque is presented here.

The initial values for the optimal LQR controller with gravity-gradient as only
disturbance can be seen in table 6.7. The angular velocity initial values are the
final values from the detumble controller. The roll, pitch and yaw initial values
are the final values after using the nonlinear controller with gravity-gradient and
aerodynamic disturbance torques from figure 6.13 in section 6.2.3.

In figures 6.20 and 6.21 one can see plots of the satellite’s roll, pitch and yaw
angles, and the controller’s power consumption, respectively.
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Figure 6.19: Plot of the Euler angles after nonlinear control with integral action,
i = 5 · 10−11.

Gravity-gradient and aerodynamic disturbance torques

The LQR reference controller simulated with gravity-gradient and aerodynamic
torques is presented here.

The initial values for the optimal LQR controller with gravity-gradient and aerody-
namic disturbances can be seen in table 6.8. The angular velocity initial values are
the final values from the detumble controller. The roll, pitch and yaw initial values
are picked to be close to the equilibrium, this being a linear controller.

ωbob = [0.001056 0.000722 − 0.000339]T

φ = −20◦

θ = 20◦

ψ = 130◦

λ = 0◦

p = 0 J

Table 6.7: Initial values for the optimal LQR reference controller simulations with
gravity-gradient as only disturbance.
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Figure 6.20: Plot of the Euler angles after optimal control, gravity as only distur-
bance.

In figures 6.22 one can see plot of the satellite’s roll, pitch and yaw angles.

ωbob = [0.001056 0.000722 − 0.000339]T

φ = 5◦

θ = −9◦

ψ = 6◦

λ = 0◦

p = 0 J

Table 6.8: Initial values for the optimal LQR reference controller simulations with
gravity-gradient and aerodynamic disturbances.
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Figure 6.21: Plot of energy and power consumption after optimal control, gravity
as only disturbance.
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Figure 6.22: Plot of the Euler angles after optimal control, with gravity and aero-
dynamic disturbance torques.



Chapter 7

Discussion and Conclusion

7.1 Discussion

All the filters; the low-pass filter, the central difference method for numerical dif-
ferentiation and the estimator worked nicely, and since they were being tested with
a higher noise than can be expected from the magnetometer to be used, i think it is
safe to say they all gave satisfactory results.

The detumbling controller worked satisfactory as well, and so did the nonlinear
reference controller to a certain degree. When subjected to more than only the
gravity-gradient torques, the nonlinear controller didn’t meet the desired angles.
However, with aerodynaic torques added it were able to settle the satellite with
an offset for the roll, pitch and yaw angles of about -20, 20 and 130 degrees, re-
spectively. Since the last angle, the yaw, is the angle about the z-axis, this doesn’t
have an impact on wether or not we’re able to take a picture of the Earth, as long
as it’s stable at that angle - which it is. From [37] it is argued that with an off-
set of less than 50 degrees, one is still able to take good pictures of the Earth’s
atmosphere with the infrared camera. When adding more disturbances, the solar
radiation torque, the controller didn’t work and weren’t able to stabilize the satel-
lite at any angle. The attempt with integral action augmentation of the nonlinear
controller proved to be unsatisfactory as well.

The optimal LQR regulator worked nicely when only being subjected to gravity-
gradient torques, and also gave good results with rather high initial roll, pitch and
yaw values. When adding aerodynamic torques, it failed.
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7.2 Conlusion

A low pass filter for magnetometer measurements were found to be working satis-
factory.
As for finding the derivative of the local geomagnetic field, the estimator is sug-
gested. This is because if one were to use the numerical differentiator, its necessary
to filter the measurement first, and this will take too much time.

The detumbling controller worked still when being subjected to all the disturbance
torques, and managed to settle the satellite at an angular velocity very close to
zero. The detumbling controller utilizing the estimated value of the derivative of
the local geomagnetic field can be said to work as fine as the one found by Tudor
[44].

The nonlinear controller worked well with gravity-gradient as the only disturbance,
but with aerodynamic disturbance torques there were a ste, and even more when
solar radiation torques were included. However, it can be used since one can still
take pictures of the Earth’s atmosphere with a 20 degrees deiation in roll and pitch,
and yaw does not have an impact of the picture to be taken as long as it doesn’t
drift. Integral action were tried out in an attempt to remove the deviatioins, but it
was unsuccessfull.

The optimal LQR controller worked well with gravity-gradient as the only distur-
bance as well, but with aerodynamic disturbance torques the results were unsat-
isfactory. To use the proposed detumbling algorithm first and then the nonlinear
controller for big deviations in order to be able to use the optimal LQR controller,
can not be said to guarantee good results.

The suggestion is to use the detumbling controller with the estimated B-dot as
proposed, with the nonlinear PD-like controller, and maybe see if there can be done
some mmore investigations on methods to remove the steady-state offset when
subjected to disturbance torques.

If anything, it have been pointed out that no matter how small any disturbance
torque is, since every force and torque acting on a satellite in space is very small,
it has an impact and consequences.
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Appendix A

Matlab Code

%**************************************************************************
% F i l e main .m
% Main s c r i p t . C o n t a i n s t h e f o l l o w i n g s e c t i o n s :
%
% − S i m u l a t e ( i n t e g r a t e ) s y s t e m
% − E s t i m a t e t h e d e r i v a t i v e o f t h e geomagne t i c f i e l d ( t h e B f i e l d )
%
% W r i t t e n by Zdenko Tudor , 2011 . E d i t e d by Gaute Bråthen , 2012 .
%**************************************************************************

c l e a r a l l ; c l o s e a l l ; c l c ;
a d d p a t h ( ’myIGRF ’ ) ;

% I n i t i a l i z e s t o r a g e v a r i a b l e s ( For t e s t i n g and p l o t t i n g p u r p o s e s o n l y )
g l o b a l VAR Btime Bcnt B f i l t Bdot pa r t_sum t a u _ a t a u _ s t a u _ d R_B_O ; % part_sum2 ;

% Bdot = [ ] ;

% C o u n t e r s and g l o b a l v a r i a b l e s used t o save t h e " measured " B f i e l d and Bdot
% t o be used as i n p u t t o c o n t r o l law
c n t = 0 ;
Bcnt = [0 1 ] ;
B f i l t = z e r o s ( 3 , 1 ) ;
Bdot= z e r o s ( 3 , 1 ) ;
pa r t_sum = z e r o s ( 1 , 3 ) ;
% part_sum2 = par t_sum ;
t a u _ a = z e r o s ( 3 , 1 ) ;
t a u _ s = z e r o s ( 3 , 1 ) ;
t a u _ d = z e r o s ( 3 , 1 ) ;
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% Cr ea te p a r a m e t e r s s t r u c t
P = p a r a m e t e r s ( ) ;

% Load n e c c e s s a r y p a r a m e t e r s
o r b i t P e r i o d = P . o r b i t P e r i o d ; % For d e f i n i n g s i m u l a t i o n l e n g t h
s c a l e P l o t = P . s c a l e P l o t ; % For x−axes s c a l i n g when p l o t t i n g

% I n i t i a l and s i m u l a t i o n p a r a m e t e r s
numOfOrbi ts = 3 . 5 ; % S i m u l a t i o n t i m e i n number o f o r b i t s
tSpan = [ 0 , o r b i t P e r i o d * numOfOrbi ts ] ; % Time span f o r ODE45
% tSpan = [ 0 , 2 0 ] ; % For t e s t i n g h i g h e r s a mp l i n g r a t e
Btime = 0 ;

% w_B_OB = [ 0 . 1 ; − 0 . 2 ; 0 . 1 ] ; % I n i t i a l r o t a t i o n a l v e l o c i t y
w_B_OB = [ 0 . 0 0 1 0 5 6 ; 0 . 0 0 0 7 2 2 ; −0 . 0 0 0 3 3 9 ] ; % 0 . 0 0 1 9 ; 0 . 0 0 0 6 ; −0 . 0 0 0 7 % 0 . 0 0 0 1 ; 0 . 0 0 0 6 ; −0 . 0 0 0 3 % −0 .001655;0 .0011 ;0 .00045
0 .001056;0 .000722; −0 .000339
eulAng = [ 2 0 ; 2 0 ; 2 0 ] ; %[180;30;−75]; %[20;20 ;20] ; [−20;20;130] ;
% I n i t i a l o r i e n t a t i o n
% eulAng = [5; −9;6] ;
% [ w_B_IB_tudor , ~ ] = eu l2qua ( P , w_B_OB ’ , eulAng ’ ) % Trans form i n i t i a l p a r a m e t e r s
qua = e u l e r 2 q ( eulAng ( 1 ) * pi / 1 8 0 , eulAng ( 2 ) * pi / 1 8 0 , eulAng ( 3 ) * pi / 1 8 0 ) ;
R = Rquat ( qua ) ;
w_B_IB = R*w_B_OB ;
i n i t L a t = 0 ; % I n i t i a l l a t i t u d e
i n i t J o u l e = 0 ; % Always t o be s e t t o z e r o
i n i t _ e = [0 0 0 ] ’ ; % I n i t i a l e r r o r

% S t a t e v e c t o r x = [ wx wy wz e t a eps1 eps2 eps3 l a t i t u d e t o t a l J o u l e ] ;
x I n i t = [ w_B_IB ; qua ; i n i t L a t ; i n i t J o u l e ; i n i t _ e ] ;

% ODE45 s i m u l a t o n s e t t i n g s
o p t i o n s = o d e s e t ( ’ MaxStep ’ , 1 , ’ OutputFcn ’ , @outFcn , ’ R e f i n e ’ , 1 ) ; %

% o p t i o n s = o d e s e t ( ’ MaxStep ’ , 0 . 1 , ’ OutputFcn ’ , @outFcn , ’ Re lTo l ’ , 1 e−5 , ’ AbsTol ’ , 1 e−8 , ’ R e f i n e ’ , 1 ) ;

% S i m u l a t e s y s t e m
t i c
[ t o u t , you t ] = ode45 (@( t , x ) n o n l i n e a r S a t e l l i t e _ e d i t ( t , x , P ) , tSpan , x I n i t , o p t i o n s ) ;
t o c

p l o t s ( ) ;

%**************************************************************************
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% F i l e n o n l i n e a r S a t e l l i t e .m
%
% xDot = n o n l i n e a r S a t e l l i t e ( T , X , P )
%
% S i m u l a t e s t h e e a r t h− s a t e l l i t e s y s t e m . To be used w i t h an o r d i n a r y
% d i f f e r e n t i a l e q u a t i o n s o l v e r such as MATLAB’ s Runge K u t t a ( 4 , 5 ) method ,
% ODE45 .
% The i n p u t :
% T − t i m e v e c t o r ( i m p l i c i t )
% X − s t a t e v e c t o r , i n i t i a l s t a t e has t o be p r o v i d e d . The s t a t e v e c t o r i s
% o f t h e form X = [W^ B_IB ’ Q’ LAMBDA JOULE ] . W^ B_IB i s a 3 x1 v e c t o r
% c o n t a i n i n g t h e t h r e e r o t a t i o n a l v e l o c i t y components . Q i s t h e q u a t e r n i o n
% v e c t o r o f t h e form Q = [ e t a eps1 eps2 eps3 ] . LAMBDA i s t h e l a t i t u d e o f
% t h e s a t e l l i t e and JOULE i s o n l y a t e s t i n g paramemter which w i l l r e t u r n
% t h e t o t a l J o u l e consump t ion o f t h e s a t e l l i t e d u r i n g t h e s i m u l a t i o n .
% I n i t i a l JOULE s h o u l d a lways be s e t t o z e r o .
% P − s t r u c t c o n t a i n g n e c e s s a r y p a r a m e t e r s ( w_o , I , Rc , c o i l data , v o l t a g e
% and c u r r e n t r a t i n g s ) .
%
% Example :
% [TOUT, YOUT] = ode45 (@( t , x ) n o n l i n e a r S a t e l l i t e ( t , x , P ) , tSpan , x I n i t , o p t i o n s )
% t h i s p r o d u c e s :
% TOUT − t i m e v e c t o r f o r t h e i n t e g r a t i o n
% YOUT − I n t e g r a t e d xDot v e c t o r f o r each t i m e s t e p s i z e (YOUT)= l e n g t h (TOUT) x9
%
% W r i t t e n by Zdenko Tudor , 2011 . E d i t e d by Gaute Bråthen , 2012 .
%**************************************************************************

f u n c t i o n xDot = n o n l i n e a r S a t e l l i t e _ e d i t ( t , x , P )
g l o b a l R_B_O tmpVAR VAR p Btime Bcnt B f i l t Bdot ; % tau_a t a u _ s tau_d ;

% t i c

% Load n e c e s s a r y p a r a m e t e r s from P s t r u c t .
w_o = P . w_o ;
I = P . I ;
J = P . J ;
A_drag = P . A_drag ;
rho_a = P . rho_a ;
v e l = P . v e l ;
s _ c o n s t = P . s _ c o n s t ;
d _ c o n s t = P . d _ c o n s t ;

% N o r m a l i z a t i o n o f q u a r t e n i o n s
x ( 4 : 7 ) = x ( 4 : 7 ) . / norm ( x ( 4 : 7 ) ) ;
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% S t a t e v e c t o r x = [ ] ;
w_B_IB = x ( 1 : 3 ) ; % Angular v e l o c i t y v e c t o r
e t a = x ( 4 ) ; % E u l e r parame te r e t a
eps = x ( 5 : 7 ) ; % E u l e r parame te r e p s i l o n
l a t = x ( 8 ) ; % Lambda

% e = x ( 1 0 : 1 2 ) ; % The i n t e g r a t e d e r r o r o f e p s i l o n
% e_tmp = e ;
% tmpVAR . e = e ; % S t o r i n g i n t e g r a l o f e r r o r

s a t L i m i t 1 = 400 ; % S a t u r a t i o n l i m i t f o r i n t e g r a l a c t i o n
s a t L i m i t 2 = 400 ; % S a t u r a t i o n l i m i t f o r i n t e g r a l a c t i o n

% e u l = q 2 e u l e r ( [ e t a eps ’ ] ) ;

% Ant i−wind up scheme . S e t t o a p r e s e t l i m i t i f e r r o r i s ove r t h e l i m i t ,
% and s e t t o z e r o i f e r r o r i s s m a l l ( i n e f f e c t , don t use i n t e g r a l a c t i o n ) .
i f p>1

i f abs (VAR. e ( p , 1 ) ) > s a t L i m i t 1
VAR. e ( p , 1 ) = s a t L i m i t 1 * s i g n (VAR. e ( p , 1 ) ) ; %z e r o s ( s i z e (VAR . e ) ) ;

end

i f abs (VAR. e ( p , 2 ) ) > s a t L i m i t 2
VAR. e ( p , 2 ) = s a t L i m i t 2 * s i g n (VAR. e ( p , 2 ) ) ;

end

i f abs (VAR. e ( p , 3 ) ) > s a t L i m i t 2
VAR. e ( p , 3 ) = s a t L i m i t 2 * s i g n (VAR. e ( p , 3 ) ) ;

end

i f abs ( eps ( 1 ) ) < 0 . 1
VAR. e ( p , 1 ) = 0 ;

end

i f abs ( eps ( 2 ) ) < 0 . 0 5
VAR. e ( p , 2 ) = 0 ;

end

i f abs ( eps ( 3 ) ) < 0 . 1
VAR. e ( p , 3 ) = 0 ;

end

e_tmp = VAR. e ( p , : ) ’ ;
tmpVAR . e = eps *(VAR. t ( p)−VAR. t ( p−1 ) ) ;
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e l s e
e_tmp = z e r o s ( 3 , 1 ) ;
tmpVAR . e = e_tmp ;

end

% E p s i l o n c r o s s m a t r i x , skew−s y m m e t r i c
S_eps = [ 0 , −eps ( 3 ) , eps ( 2 ) ;

eps ( 3 ) , 0 , −eps ( 1 ) ;
−eps ( 2 ) , eps ( 1 ) , 0 ] ;

% R o t a t i o n m a t r i c e s
R_O_B = eye ( 3 ) + 2* e t a * S_eps + 2* S_eps ^ 2 ;
R_B_O = R_O_B ’ ;

% Angular v e l o c i t i e s o f f ram es r e l a t i v e each o t h e r
w_O_IO = [0;−w_o ; 0 ] ;
w_B_OB = w_B_IB−R_B_O*w_O_IO ;
% w_B_OB = w_B_OB + 200 e−9.* randn ( s i z e ( w_B_OB ) ) ; % Adding n o i s e ( No i se f l o o r from HMC5983 )
tmpVAR . omega = w_B_OB ; % S t o r i n g / s a v i n g t h e " measured " a n g u l a r v e l o c i t y

% % w_B_OB c r o s s m a t r i x , skew−s y m m e t r i c
% S_w_B_OB = [ 0 , −w_B_OB ( 3 ) , w_B_OB ( 2 ) ;
% w_B_OB ( 3 ) , 0 , −w_B_OB ( 1 ) ;
% −eps ( 2 ) , w_B_OB ( 1 ) , 0 ] ;

% % F i l t e r i n g t h e a n g u l a r v e l o c i t y w_B_OB
% i f ( p >1)
% par t_sum2 = 0 .95* par t_sum2 + 0 .05*VAR . omega ( p , : ) ;
% w_B_OB = part_sum2 ’ ;
% end
% tmpVAR . o m e g a F i l t = w_B_OB ; % S t o r i n g / s a v i n g t h e f i l t e r e d a n g u l a r v e l o c i t y

[B_O , B_O_n ] = IGRF ( 1 0 , 1 0 , l a t , 0 , P ) ;
tmpVAR . B = B_O_n ; % S t o r i n g / s a v i n g t h e " measured " B f i e l d
B_B = R_B_O*B_O ;
B_B_n = R_B_O*B_O_n ;
tmpVAR . B_B = B_B_n ; % S t o r i n g / s a v i n g t h e " measured " B f i e l d r o t a t e d t o t h e BODY frame

% i f p>1
%
% e = ( B_O−B_B ) ;
%



APPENDIX A. MATLAB CODE 79

% i f abs ( eps ( 1 ) ) < 0 . 0 5
% VAR . e ( p , 1 ) = 0;
% end
%
% i f abs ( eps ( 2 ) ) < 0 . 0 5
% VAR . e ( p , 2 ) = 0;
% end
%
% i f abs ( eps ( 3 ) ) < 0 . 0 5
% VAR . e ( p , 3 ) = 0;
% end
%
% e_tmp = VAR . e ( p , : ) ’ ;
% tmpVAR . e = e *(VAR . t ( p)−VAR . t ( p−1) ) ;
%
% e l s e
% e_tmp = z e r o s ( 3 , 1 ) ;
% tmpVAR . e = e_tmp ;
% end

% Here t h e usage o f t h e a c t u a t o r s i s i m i t a t e d . Every i t e r a t i o n t h e
% c a l c u l a t e d ( " measured " ) B f i e l d are saved i n outFcn .m. For e v e r y h a l f
% second , r e t r i e v e t h e s e q u e n c e o f " measured " B f i e l d s s i n c e l a s t t i m e t h e
% a c t u a t o r s were used , and use t h i s t o f i l t e r i t and c a l c u l a t e i t s
% d e r i v a t i v e . Use t h e o u t p u t s from B _ f i l t e r A n d D o t ( ) i n t h e c o n t r o l l oop .
i f (~ any ( B f i l t ) && t−Btime >=3)

% d i s p ( ’ S t a r t i n g a c t u a t i o n a t t ime ’ )
Btime = t ;

% Update B c o u n t e r s and r e t r i e v e " measured " B_B f i e l d and t i m e v e c t o r
Bcnt ( 1 ) = Bcnt ( 2 ) ;
Bcnt ( 2 ) = p ;
B = VAR. B_B( Bcnt ( 1 ) : Bcnt ( 2 ) , : ) ;
t imeSpan = VAR. t ( Bcnt ( 1 ) : Bcnt ( 2 ) ) ;

% Compute f i l t e r e d geomagne t i c B f i e l d and t h e d e r i v a t i v e Bdot
[ B f i l t , Bdot ] = B _ f i l t e r A n d D o t (B , t imeSpan , ’ Es t ima to r_1Hz ’ ) ;

% [ B f i l t , Bdot ] = B _ f i l t e r A n d D o t ( B , t imeSpan , ’ c e n t r a l ’ ) ;

end

% Here t h e measur ing i s i m i t a t e d .
% A f t e r 0 . 5 s e c s t o p t h e a c t u a t i o n , i . e . s e t B f i l t and Bdot t o zero , and
% s t a r t measur ing aga in .
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i f ( any ( B f i l t ) && t−Btime >=3)
% d i s p ( ’ S t a r t i n g measurement a t t ime ’ )

Btime = t ;
B f i l t = z e r o s ( 3 , 1 ) ;
Bdot = z e r o s ( 3 , 1 ) ;

end

% S t o r i n g B f i l t and Bdot
tmpVAR . B f i l t = B f i l t ;
tmpVAR . Bdot = Bdot ;

% P i c k i n g c o n t r o l l e r
% [ tau_m ,W] = d e t u m b l i n g C o n t r o l l e r 3 ( P , B_B , Bdot ) ;
[ tau_m ,W] = r e f e r e n c e C o n t r o l l e r ( P , w_B_OB , eps , B f i l t , e_tmp ) ;
% [ tau_m ,W] = L Q c o n t r o l l e r ( P , e ta , eps , w_B_OB , B f i l t , S_eps , e_tmp ) ;

% % S w i t c h c o n t r o l l e r a f t e r t h i s many o r b i t s
% o r b i t S w i t c h = 2;
%
% % Torque from c o n t r o l l e r s . Log ic ’ i f ’ i s f o r c o n t r o l l e r s w i t c h i n g .
% i f t <P . o r b i t P e r i o d * o r b i t S w i t c h *1000
% % Pick d e t u m b l i n g c o n t r o l l e r
% [ tau_m ,W] = d e t u m b l i n g C o n t r o l l e r 3 ( P , B f i l t , Bdot ) ;
% e l s e
% % [ tau_m ,W] = r e f e r e n c e C o n t r o l l e r ( P , w_B_OB , e ta , eps , B f i l t , S_eps ) ;
% [ tau_m ,W] = L Q c o n t r o l l e r ( P , e ta , eps , w_B_OB , B f i l t , S_eps ) ;
% end

%−−−−−S t o r i n g v a r i a b l e s used f o r t e s t i n g p u r p o s e s only−−−−−S t a r t−−−−−
tmpVAR . t o r q u e = tau_m ;
tmpVAR .W = W;
%−−−−−S t o r i n g v a r i a b l e s used f o r t e s t i n g p u r p o s e s only−−−−−−End−−−−−−

% G r a v i t a t i o n a l t o r q u e
c3 = R_B_O ( : , 3 ) ;
t a u _ g = 3*w_o^2* c r o s s ( c3 , I * c3 ) ;
% tau_g = 0;

% S o l a r drag t o r q u e i n ORBOT frame w i t h d i r e c t i o n i n t h e o r b i t a l
% v e l o c i t y p l a n e
% i f ( mod ( p ,5 )==0)
% tau_s_O = [0 −s _ c o n s t 0 ] ’ ;
% t a u _ s = R_B_O* tau_s_O ; % R o t a t e d t o t h e BODY frame
% e l s e
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% t a u _ s = 0;
% end
tau_s_O = [− s _ c o n s t 0 0 ] ’ ;
t a u _ s = R_B_O* tau_s_O ; % R o t a t e d t o t h e BODY frame

% Aerodynamic drag t o r q u e i n ORBOT frame w i t h d i r e c t i o n i n t h e o r b i t a l
% v e l o c i t y p l a n e
c_p = [ 0 . 0 2 0 . 0 2 0 . 0 2 ] ’ ;
c_p_x = Smtrx ( c_p ) ;
Vr = R_B_O*[−1 0 0 ] ’ ;
Vr_x = Smtrx ( Vr ) ;
t a u _ a = rho_a * v e l * ( v e l * A_drag * c_p_x *Vr − ( I + Vr_x* J )*w_B_OB ) ;

% I n t e r n a l d i p o l e t o r q u e
% tau_d = 0;
% i f ( mod ( p ,10)==0)
% d i = d _ c o n s t * randn ( 3 , 1 ) ;
% m_d = d _ c o n s t * ( d i / norm ( d i ) ) ;
% tau_d = c r o s s ( m_d , B_B ) ; % A l r e a d y i n t h e BODY frame
% end
% Di = 0 .1386* ones ( 3 , 1 ) ;
% tau_d = c r o s s ( Di , B f i l t ) ;

% A l l d i s t u r b a n c e t o r q u e s
t a u _ d i s t = t a u _ g + t a u _ a + t a u _ s ;%+tau_d ;
tmpVAR . d i s t T o r q u e = t a u _ g + t a u _ a + t a u _ s ;%+tau_d ;
tmpVAR . t o r q u e = t a u _ s ;

% ************** D i f f e r e n t i a l e q u a t i o n s up da t e ***************

% Angular a c c e l e r a t i o n
wDot_B_IB= I \ ( tau_m+ t a u _ d i s t −c r o s s ( w_B_IB , I *w_B_IB ) ) ;
% wDot_B_IB=I \ ( tau_m+tau_g−c r o s s ( w_B_IB , I *w_B_IB ) ) ;

% Eta
e t a D o t = −0.5* eps ’*w_B_OB ;

% E p s i l o n
epsDot = 0 . 5 * ( e t a * eye ( 3 ) + S_eps )*w_B_OB ;

% V a r i a b l e a s s i g n m e n t
xDot ( 1 : 3 , 1 ) = wDot_B_IB ;
xDot ( 4 , 1 ) = e t a D o t ;
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xDot ( 5 : 7 , 1 ) = epsDot ;
xDot ( 8 , 1 ) = w_o ;
xDot ( 9 , 1 ) = W;
xDot ( 1 0 : 1 2 ) = eps ;

% t o c
end

% Bdot d e t u m b l i n g c o n t r o l l e r
% C o n t r o l s t h e s a t e l l i t e t o f o l l o w t h e geomagne t i c f i e l d .
f u n c t i o n [ tau_m ,W] = d e t u m b l i n g C o n t r o l l e r 3 ( P , B_B , Bdot_B )

% Sign o f Bdot c o n t r o l l e r
% i f ( norm ( w_B_OB) >0 .001)
% % d i s p ( ’ a ’ )
% k_s = −1;
% e l s e i f ( norm ( w_B_OB) <0 .001)
% % d i s p ( ’ b ’ )
% k_s = 1;
% e l s e
% % d i s p ( ’ c ’ )
% k_s = 0;
% end

% C o n t r o l l e r ga in
k = 4e−5;
% k = 1;

% Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g c u r r e n t )
m_B = (−k / norm ( B_B , 2 ) ^ 2 ) * Bdot_B ;

% Moment s e t up by c o i l s a f t e r s c a l i n g
[m_B,W] = c u r r e n t S c a l i n g ( P , m_B ) ;

% Torque s e t up by c o i l s
tau_m = c r o s s (m_B, B_B ) ;
% end

end

% S a t e l l i t e r e f e r e n c e c o n t r o l l e r f o r l a r g e d e v i a t i o n s from R_B_O = eye ( 3 ) .
f u n c t i o n [ tau_m ,W] = r e f e r e n c e C o n t r o l l e r ( P , w_B_OB , eps , B_B , e )
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% C o n t r o l l e r g a i n s
p = 8e−9; %. 4 e−9; %2.5e−7 %5e−8
d = 12e−6; %. 8 e−6; %0.0004 %4e−5
i = 0 ; %5e−11;

% Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g c u r r e n t )
m_B = ( 1 / norm ( B_B , 2 ) ^ 2 ) * ( −p* c r o s s ( B_B , eps ) − d* c r o s s ( B_B , w_B_OB) − i * c r o s s ( B_B , e ) ) ;

% Moment s e t up by c o i l s a f t e r s c a l i n g
[m_B,W] = c u r r e n t S c a l i n g ( P , m_B ) ;

% Torque s e t up by c o i l s
tau_m = c r o s s (m_B, B_B ) ;
end

% S a t e l l i t e r e f e r e n c e LQ−c o n t r o l l e r f o r d e v i a t i o n s from R_B_O = eye ( 3 ) .
f u n c t i o n [ tau_m ,W] = L Q c o n t r o l l e r ( P , e t a , eps , w_B_OB , B_B , S_eps , e )

% Eta
% e t aD o t = −0.5* eps ’*w_B_OB ;

% E p s i l o n
epsDot = 0 . 5 * ( e t a * eye ( 3 ) + S_eps )*w_B_OB ;

% Check i f ’ measur ing ’ or n o t
i f any (B_B==0)

m_B = z e r o s ( 3 , 1 ) ;
e l s e

% LQ ga in m a t r i x
K = K2 ( P , B_B ) ; %Time v a r y i n g LQ

% Moment s e t up by c o i l s b e f o r e s c a l i n g ( s a t u r a t i n g c u r r e n t )
m_B = −K*[ eps ( 1 ) epsDot ( 1 ) eps ( 2 ) epsDot ( 2 ) eps ( 3 ) epsDot ( 3 ) ] ’ ; %e ( 1 ) e ( 2 ) e ( 3 ) ] ’ ;

% m_B = c r o s s ( B_B , m_B ) ;
end

% Moment s e t up by c o i l s a f t e r s c a l i n g
[m_B,W] = c u r r e n t S c a l i n g ( P , m_B ) ;

% Torque s e t up by c o i l s
tau_m = c r o s s (m_B, B_B ) ;
end

% S c a l e s ( s a t u r a t e s ) t h e power consump t ion i f t h e maximum c u r r e n t s are
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% e x c e e d e d
f u n c t i o n [m_B,W] = c u r r e n t S c a l i n g ( P , m_B)

% Load c o i l p a r a m e t e r s from parame te r s t r u c t
N = P .N; % Ny = P . Ny ; Nz = P . Nz ;
Ax = P . Ax ; Ay = P . Ay ; Az = P . Az ;
ix_max = P . ix_max ; iy_max = P . iy_max ; iz_max = P . iz_max ;
V = P .V;

% I f m_B i s z e r o or NaN , i . e . one i s i n measurement mode , s e t t h e moment
% t o z e r o . Also , t o a v o i d e r r o r , s e t t h e r a t i o v a r i a b l e t o ones .
i f ( i sempty (m_B) | | any (m_B==0) | | any ( i snan (m_B) = = 1 ) )

% d i s p ( ’ a ’ )
m_B = z e r o s ( 3 , 1 ) ;
r a t i o = ones ( 3 , 1 ) ;

e l s e
% d i s p ( ’ b ’ )

% C u r r e n t s c a l i n g
% C r e a t e s r a t i o v a r i a b l e c o n t a i n i n g a c o i l ’ s : max c u r r e n t / wanted c u r r e n t .
% The l o w e s t v a l u e i n r a t i o v a r i a b l e , i f below 1 i s t h e h i g h e s t c u r r e n t
% v i o l a t i o n , t h u s a l l t h e c u r r e n t s s h o u l d be s c a l e d by t h i s f a c t o r .
i x = m_B ( 1 ) / ( N*Ax ) ; r a t i o ( 1 ) = ix_max / abs ( i x ) ;
i y = m_B ( 2 ) / ( N*Ay ) ; r a t i o ( 2 ) = iy_max / abs ( i y ) ;
i z = m_B ( 3 ) / ( N*Az ) ; r a t i o ( 3 ) = iz_max / abs ( i z ) ;

end

i f min ( r a t i o ) <1
% d i s p ( ’ c ’ )

m_B = m_B*min ( r a t i o ) ;
end

% Power consump t ion ( Watt )
Wx = abs (V*m_B ( 1 ) / ( N*Ax ) ) ;
Wy = abs (V*m_B ( 2 ) / ( N*Ay ) ) ;
Wz = abs (V*m_B ( 3 ) / ( N*Az ) ) ;
W = Wx+Wy+Wz;

%−−−−−S t o r i n g v a r i a b l e s used f o r t e s t i n g p u r p o s e s only−−−−−S t a r t−−−−−
g l o b a l tmpVAR ;
tmpVAR . moment=m_B;
% tmpVAR .W = W;
% tmpVAR . J = j ;
%−−−−−S t o r i n g v a r i a b l e s used f o r t e s t i n g p u r p o s e s only−−−−−−End−−−−−−
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end

% F u n c t i o n f o r f i l t e r i n g t h e " measured " B− f i e l d , and e s t i m a t i n g t h e
% d e r i v a t i v e o f t h e B− f i e l d .
f u n c t i o n [ B f i l t _ a r r a y , B d o t _ a r r a y ] = B _ f i l t e r A n d D o t (B , t , f l a g )

d e l t a _ t = z e r o s ( s i z e ( t ) ) ;
B f i l t _ a r r a y = z e r o s ( s i z e (B ) ) ;
B d o t _ a r r a y = z e r o s ( s i z e (B ) ) ;

B f i l t _ a r r a y ( 1 , : ) = B ( 1 , : ) ;

s w i t c h f l a g

c a s e ’ Es t ima to r_10Hz ’
% F i r s t , LP f i l t e r i n g o f B u s i n g f i l t e r approach g o t t e n from
% Trygve Utstumo :

a1 = 0 . 8 ;
b1 = 1−a1 ;
pa r t_sum = B ( 1 , : ) ;
f o r k = 2 : l e n g t h (B)

pa r t_sum = a1 * par t_sum + b1*B( k , : ) ;
B f i l t _ a r r a y ( k , : ) = pa r t_sum ;

end

% E s t i m a t i n g Bdot u s i n g d i s c r e t e L P f i l t e r
K = 2 . 6 5 ;
a2 = 0 . 9 3 2 ; %0.9324
b2 = 0 . 7 ;
b2 = K*b2 ;

f o r i =2 : l e n g t h (B)
B d o t _ a r r a y ( i , : ) = a2 * B d o t _ a r r a y ( i −1 , : ) + b2 *(B( i , : ) − B( i − 1 , : ) ) ;

end

B d o t _ a r r a y (~ any ( Bdo t_a r r ay , 2 ) , : ) = [ ] ; % Cancel any z e r o s

% Re tu rn l a s t f i l t e r e d / e s t i m a t e d v a l u e
B f i l t _ a r r a y = B f i l t _ a r r a y ( end , : ) ’ ;
B d o t _ a r r a y = B d o t _ a r r a y ( end , : ) ’ ;

c a s e ’ Es t ima to r_1Hz ’



APPENDIX A. MATLAB CODE 86

% F i r s t , LP f i l t e r i n g o f B u s i n g f i l t e r approach g o t t e n from
% Trygve Utstumo :

a1 = 0 . 8 ;
b1 = 1−a1 ;
pa r t_sum = B ( 1 , : ) ;
f o r k = 2 : l e n g t h (B)

pa r t_sum = a1 * par t_sum + b1*B( k , : ) ;
B f i l t _ a r r a y ( k , : ) = pa r t_sum ;

end

% E s t i m a t i n g Bdot u s i n g d i s c r e t e L P f i l t e r
K = 3 ; %3;
a2 = 0 . 9 3 2 4 ; %0 . 0 3 0 2 1 ; %0.9324;
b2 = K*(1− a2 ) ; %(1−a2 ) ; %0.0676 %0.4156

f o r i =2 : l e n g t h (B)
B d o t _ a r r a y ( i , : ) = a2 * B d o t _ a r r a y ( i −1 , : ) + b2 *(B( i , : ) − B( i − 1 , : ) ) ;

end

B d o t _ a r r a y (~ any ( Bdo t_a r r ay , 2 ) , : ) = [ ] ; % Cancel any z e r o s

% Re tu rn l a s t f i l t e r e d / e s t i m a t e d v a l u e
B f i l t _ a r r a y = B f i l t _ a r r a y ( end , : ) ’ ;
B d o t _ a r r a y = B d o t _ a r r a y ( end , : ) ’ ;

c a s e ’ c e n t r a l ’
% Numer ica l d i f f e r e n t i a t i o n by c e n t r a l d i f f e r e n c e a p p r o x i m a t i o n

a1 = 0 . 8 ;
b1 = 1−a1 ;
pa r t_sum = B ( 1 , : ) ;
f o r k = 2 : l e n g t h (B)

pa r t_sum = a1 * par t_sum + b1*B( k , : ) ;
B f i l t _ a r r a y ( k , : ) = pa r t_sum ;

end

f o r i =2 : l e n g t h (B)−1
d e l t a _ t ( i ) = ( t ( i +1)− t ( i −1 ) ) ;
B d o t _ a r r a y ( i , : ) = ( B f i l t _ a r r a y ( i +1 , : )− B f i l t _ a r r a y ( i −1 , : ) ) . / d e l t a _ t ( i ) ;

end

B d o t _ a r r a y (~ any ( Bdo t_a r r ay , 2 ) , : ) = [ ] ; % Cancel any z e r o s
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% Re tu rn l a s t f i l t e r e d / e s t i m a t e d v a l u e
B f i l t _ a r r a y = B f i l t _ a r r a y ( end , : ) ’ ;
B d o t _ a r r a y = B d o t _ a r r a y ( end , : ) ’ ;

end

end

%**************************************************************************
% F i l e p a r a m e t e r s .m
%
% P = p a r a m e t e r s ( )
%
% C r e a t e s a parame te r s t r u c t P , which i s used t o pas s t h e p a r a m e t e r s
% between d i f f e r e n t f u n c t i o n s .
%
% W r i t t e n by Zdenko Tudor , 2011 . E d i t e d by Gaute Bråthen , 2012 .
%**************************************************************************

f u n c t i o n P = p a r a m e t e r s ( )
% C o i l da ta
% B a t t e r y v o l t a g e
V = 5 ;

% Number o f c o i l w i n d i n g s ( t u r n s )
N = 221 ; %196;

% Ny = 221; %196;
% Nz = 221; %196;

% [m^2] C o i l area
Ax = 0 . 0 6 3 * 0 . 1 6 5 ; %0 . 0 7 9 * 0 . 1 8 4 ; %0.075*0 .175;
Ay = 0 . 0 6 3 * 0 . 1 6 5 ; %0 . 0 7 9 * 0 . 1 8 4 ; %0.075*0 .175;
Az = 0 . 0 7 7 ^ 2 ; %0 . 0 7 9 ^ 2 ; %0.075^2;

% [Ohm] C o i l r e s i s t a n c e
Rx = 4 3 . 0 3 ; %3 4 . 7 8 ; %43.03; %55.47; %47.18;
Ry = 4 3 . 0 3 ; %3 4 . 7 8 ; %43.03; %55.47; %47.18;
Rz = 2 3 . 7 8 ; %1 9 . 2 2 ; %23.78; %33.32; %28.31;

% [A] T h e o r e t i c a l maximum c u r r e n t t h r o u g h c o i l s
ix_max = V/ Rx ;
iy_max = V/ Ry ;
iz_max = V/ Rz ;
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% [A] Real maximum c u r r e n t t h r o u g h c o i l s f o r a g i v e n AWG number ( s e e
% e x c e l−s h e e t ’ C o i l de s ign ’ ) :

% i_max = 0 . 2 2 6 0 ; % Max amps f o r AWG# 28
% i_max = 0 . 1 4 2 0 ; % Max amps f o r AWG# 30

i_max = 0 . 1 1 3 0 ; % Max amps f o r AWG# 31
% i_max = 0 . 0 9 1 0 ; % Max amps f o r AWG# 32

i f ( ix_max >i_max ) % Check i f t h e o r e t i c a l max amps i s h i g h e r than r e a l
ix_max = i_max ;
iy_max = i_max ;

end

i f ( iz_max >i_max ) % Same as aboce f o r t h e z−c o i l
iz_max = i_max ;

end

Re = 6371 .2 e3 ; % [m] Ear th r a d i u s
Rs = 600 e3 ; % [m] S a t e l l i t e a l t i t u d e
Rc = Re+Rs ; % [m] D i s t a n c e from e a r t h c e n t e r t o s a t e l l i t e
m = 2 . 6 ; % 2 . 6 6 % [ kg ] S a t e l l i t e mass
dx = 0 . 0 5 ; % 0 . 0 5 % X−a x i s l e n g t h
dy = 0 . 0 4 9 ; % 0.049 % Y−a x i s l e n g t h
dz = 0 . 1 1 3 ; % Z−a x i s l e n g t h
Ix = (m/ 1 2 ) * ( dy ^2+ dz ^ 2 ) ; % X−a x i s i n e r t i a
Iy = (m/ 1 2 ) * ( dx ^2+ dz ^ 2 ) ; % Y−a x i s i n e r t i a
I z = (m/ 1 2 ) * ( dx ^2+ dy ^ 2 ) ; % Z−a x i s i n e r t i a
j x = 0 . 0 3 ; % 0 . 0 5 % X−a x i s l e n g t h
j y = 0 . 0 3 ; % 0.049 % Y−a x i s l e n g t h
j z = 0 . 0 9 3 ; % Z−a x i s l e n g t h
Jx = (m/ 1 2 ) * ( j y ^2+ j z ^ 2 ) ; % X−a x i s i n e r t i a
Jy = (m/ 1 2 ) * ( j x ^2+ j z ^ 2 ) ; % Y−a x i s i n e r t i a
Jz = (m/ 1 2 ) * ( j x ^2+ j y ^ 2 ) ; % Z−a x i s i n e r t i a
x = 0 . 1 ;
y = 0 . 1 ;
z = 0 . 2 ;
A_xo = x* z ; % Outer s a t e l l i t e area , x−p a n e l
A_yo = y* z ; % Outer s a t e l l i t e area , y−p a n e l
A_zo = x*y ; % Outer s a t e l l i t e area , z−p a n e l
A_drag = z * s q r t ( x ^2 + y ^ 2 ) ; % Maximum area f o r c a l c d i s t u r b a n c e drags

I = diag ( [ Ix Iy I z ] ) ; % I n e r t i a m a t r i x
J = diag ( [ Jx Jy Jz ] ) ; % I n e r t i a m a t r i x

G = 6.67428 e−11; % Ear th g r a v i t a t i o n a l c o n s t a n t
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M = 5 .972 e24 ; % Ear th mass

w_o = s q r t (G*M/ Rc ^ 3 ) ; % S a t e l l i t e a n g u l a r v e l o c i t y r e l a t i v e Ear th

o r b i t P e r i o d = (2* pi ) / ( w_o ) ; % For d e f i n i n g s i m u l a t i o n l e n g t h
s c a l e P l o t = 1 / o r b i t P e r i o d ; % For x−axes s c a l i n g when p l o t t i n g

v e l = 2* pi *Rc / o r b i t P e r i o d ; % O r b i t v e l o c i t y
rho_a = 4 . 8 9 e−13;
a _ c o n s t = 0 . 5 * rho_a * v e l ^2*2 .5* A_drag * 0 . 0 2 ; % Aero drag c o n s t
s _ c o n s t = ( 1 3 6 7 / 3 e8 )* A_drag * ( 1 + 0 . 6 ) * cos ( 0 ) * 0 . 0 2 ;

% S o l a r drag c o n s t
d _ c o n s t = 0 . 0 0 0 7 2 ; % C a l c u l a t e d s e l f , s e e n o t e s

% d _ c o n s t = 4 . 5 9 e−7; % I n t e r n a l d i p o l e c o n s t , Giess lmann , 2006 p . 44 /59

% S t o r e v a r i a b l e s
P . w_o = w_o ;
P .V = V; P . I = I ; P . J = J ;
P .N = N; % P . Ny = Ny ; P . Nz = Nz ;
P . Ax = Ax ; P . Ay = Ay ; P . Az = Az ;
P . Rx = Rx ; P . Ry = Ry ; P . Rz = Rz ;
P . ix_max = ix_max ; P . iy_max = iy_max ; P . iz_max = iz_max ;
P . Re = Re ; P . Rc = Rc ;
P . o r b i t P e r i o d = o r b i t P e r i o d ; P . s c a l e P l o t = s c a l e P l o t ;
P . A_xo = A_xo ; P . A_yo = A_yo ; P . A_zo = A_zo ; P . A_drag = A_drag ;
P . v e l = v e l ; P . rho_a = rho_a ;
P . a _ c o n s t = a _ c o n s t ; P . s _ c o n s t = s _ c o n s t ; P . d _ c o n s t = d _ c o n s t ;

end

%**************************************************************************
% F i l e IGRF .m
%
% A l g o r i t h m f o r f i n d i n g t h e m a g n e t i c f i e l d v e c t o r s from t h e IGRF−11
% model f o r a g i v e n l a t i t u d e LAT and l o n g i t u d e LON i n r a d i a n s , w i t h
% o r d e r n and d eg re e m. The o u t p u t i s t h e m a g n e t i c f i e l d v e c t o r
% r e p r e s e n t e d i n t h e o r b i t f rame .
%
% Crea ted by Raymond K r i s t i a n s e n , 2000
% E d i t e d by Zdenko Tudor , 2011
%**************************************************************************
f u n c t i o n [B , B_n ] = IGRF ( n , m, l a t , lon , P )

% t i c
% Load IGRF11 c o e f f i c i e n t v a r i a b l e s
load ( ’ IGRF11_data ’ )
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i = n ;
j = m;

% Fix l a t i t u d e i n case o f p o s s i b l e s i n g u l a r i t y
mt = mod ( l a t , 2 * pi ) ;
t o l = 1e−9;
i f ( mt >( pi /2)− t o l && mt <( pi / 2 ) + t o l )

l a t =( pi / 2 ) + t o l ;
e l s e i f ( mt >(3* pi /2)− t o l && mt <(3* pi / 2 ) + t o l )

l a t =(3* pi / 2 ) + t o l ;
end

% D e f i n i n g c o n s t a n t s
Re = P . Re ;
Rc = P . Rc ;

% C a l c u l a t i n g c o l a t i t u d e and l o n g i t u d e i n r a d i a n s
t h e t a = ( pi /2)− l a t ;
p h i = l o n ;

% Zero o f f s e t
O = 1 ;

% D e f i n i n g t emporary v a r i a b l e s
Bt2 = 0 ; Bp2 = 0 ; Br2 = 0 ;

% C a l c u l a t i n g Legendre p o l y n o m i n a l s
[ P , dP , S ]= Pfunk ( n , m, t h e t a ) ;

% C a l c u l a t i n g f i e l d v e c t o r s
f o r n =1: i

Bt1 = 0 ;
Bp1 = 0 ;
Br1 = 0 ;
f o r m=0: j

Bt1 = Bt1 + ( S (O+n ,O+m)* g _ d a t a (O+n ,O+m)* cos (m* p h i )+S (O+n ,O+m ) * . . .
h _ d a t a (O+n , O+m)* s i n (m* p h i ) ) * dP (O+n ,O+m) ;

Bp1 = Bp1 + (m*S (O+n ,O+m)* h _ d a t a (O+n , O+m)* cos (m* p h i )−m * . . .
S (O+n ,O+m)* g _ d a t a (O+n , O+m)* s i n (m* p h i ) ) * P (O+n ,O+m) ;

Br1 = Br1 + ( S (O+n ,O+m)* g _ d a t a (O+n ,O+m)* cos (m* p h i )+S (O+n ,O+m ) * . . .
h _ d a t a (O+n , O+m)* s i n (m* p h i ) ) * P (O+n ,O+m) ;

end
Bt2 = Bt2 + ( ( Re / Rc ) ^ ( n + 2 ) ) * Bt1 ;
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Bp2 = Bp2 + ( ( Re / Rc ) ^ ( n + 2 ) ) * Bp1 ;
Br2 = Br2 + ( n + 1 ) * ( ( Re / Rc ) ^ ( n + 2 ) ) * Br1 ;

end

% In C a r t e s i a n c o o r d i n a t e s
eps = 0 ;
X = Bt2 * cos ( eps )−Br2 * s i n ( eps ) ;
Y = −Bp2 / ( s i n ( t h e t a ) ) ;
Z = −Bt2 * s i n ( eps )−Br2* cos ( eps ) ;

B = [X;Y; Z]*1 e−9;
B_n = B + 300 e−9.* randn ( s i z e (B ) ) ; % Adding n o i s e ( No i se f l o o r from HMC5983 ) . I t ’ s r e a l l y 200 e−9!
% t o c
end

%**************************************************************************
%
% A l g o r i t h m f o r c a l c u l a t i n g t h e a s s o c i a t e d Legendre p o l y n o m i n a l s
% f o r t h e g i v e n o r d e r n , d eg r ee m and co− l a t i t u d e t h e t a . The o u t p u t
% i s t h e Legendre p o l y n o m i n a l P , i t s p a r t i a l d e r i v a t i v e dP and
% t h e Schmid t n o r m a l i z a t i o n m a t r i x S .
%
% Crea ted by Raymond K r i s t i a n s e n , 2000
% E d i t e d by Zdenko Tudor , 2011
%**************************************************************************
f u n c t i o n [ P , dP , S ] = Pfunk ( n , m, t h e t a )
O = 1 ; % Zero i n d e x o f f s e t

% D e f i n i n g z e r o m a t r i c e s
P = ones ( n+O, m+O ) ;
dP = z e r o s ( n+O, m+O ) ;
S = ones ( n+O, m+O ) ;
i = n ;
j = m;

% C a l c u l a t i n g S m a t r i x
f o r n = 0 : 1 : i

f o r m = 0 : 1 : j
i f n > 0

i f m == 0
S (O+n , O+m) = S ( n−1+O, 0+O) * ( 2 * n−1)/ n ;

e l s e
i f m == 1

d e l t a F u n = 1 ;
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e l s e
d e l t a F u n = 0 ;

end
S ( n+O, m+O) = S ( n+O, m−1+O)* s q r t ( ( ( n−m+ 1 ) * ( d e l t a F u n + 1 ) ) / ( n+m) ) ;

end
end

end
end

% C a l c u l a t e s t h e Legendre p o l y n o m i n a l P and i t s p a r t i a l d e r i v a t i v e dP
f o r n = 0 : 1 : i

f o r m = 0 : 1 : j
i f n==1

dP ( n+O, m+O) = cos ( t h e t a )* dP ( n−1+O, m+O)− s i n ( t h e t a )* P ( n−1+O,m+O ) ;
P ( n+O, m+O) = cos ( t h e t a )* P ( n−1+O, m+O ) ;

e l s e i f n>1
K= ( ( n−1)^2−m^ 2 ) / ( ( 2 * n−1)*(2* n−3 ) ) ;
dP ( n+O, m+O) = cos ( t h e t a )* dP ( n−1+O, m+O)− s i n ( t h e t a )* P ( n−1+O,m+O) − . . .

K*dP ( n−2+O, m+O ) ;
P ( n+O, m+O) = cos ( t h e t a )* P ( n−1+O, m+O) − K*P ( n−2+O, m+O ) ;

end
i f n==m && n>0

P ( n+O, m+O) = s i n ( t h e t a )* P ( n−1+O, n−1+O ) ;
dP ( n+O, m+O) = s i n ( t h e t a )* dP ( n−1+O, n−1+O)+ cos ( t h e t a )* P ( n−1+O, n−1+O ) ;

end
end

end

end

% %**************************************************************************
% F i l e outFcn .m
%
% s t a t u s = outFcn ( t , ~ , f l a g )
%
% I s run when ODE45 s u c c e s s f u l l y c o m p l e t e s a s t e p .
% T h i s f u n c t i o n i s used i m p l i c i t l y by ODE45 , when ODE s e t t i n g s are
% p r o p e r l y s e t .
%
% Example :
% o p t i o n s = o d e s e t ( ’ OutputFcn ’ , @outFcn , ’ R e f i n e ’ , 1 ) ;
% R e f i n e s e t s how many s t e p s s h o u l d be c r e a t e d f o r each s u c c e s s f u l l s t e p .
% With t h i s s e t t o 1 l e n g t h o f a l l v e c t o r s c r e a t e d by t h e OutputFcn w i l l be
% t h e same as t h e l e n g t h o f ODE t i m e v e c t o r TOUT .
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%
% W r i t t e n by Zdenko Tudor , 2011
%**************************************************************************

f u n c t i o n s t a t u s = ou tFcn ( t , ~ , f l a g )
p e r s i s t e n t i t e ;
g l o b a l tmpVAR VAR p ;

s w i t c h f l a g
c a s e ’ i n i t ’

%i n i t i a l i z e a r r a y s e t c .
p = 1 ;
i t e = 1 ;

VAR. e = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. moment = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. t o r q u e = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. d i s t T o r q u e = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. B = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. B_B = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. B f i l t = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. Bdot = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR. omega = z e r o s ( 2 0 0 0 0 , 3 ) ;

% VAR . o m e g a F i l t = z e r o s ( 2 0 0 0 0 , 3 ) ;
VAR.W = z e r o s ( 2 0 0 0 0 , 1 ) ;
VAR. t = z e r o s ( 2 0 0 0 0 , 1 ) ;

s t a t u s = 0 ;
c a s e ’ done ’

VAR. e ( i t e +1: end , : ) = [ ] ;
VAR. moment ( i t e +1: end , : ) = [ ] ;
VAR. t o r q u e ( i t e +1: end , : ) = [ ] ;
VAR. d i s t T o r q u e ( i t e +1: end , : ) = [ ] ;
VAR. B( i t e +1: end , : ) = [ ] ;
VAR. B_B( i t e +1: end , : ) = [ ] ;
VAR. B f i l t ( i t e +1: end , : ) = [ ] ;
VAR. Bdot ( i t e +1: end , : ) = [ ] ;
VAR. omega ( i t e +1: end , : ) = [ ] ;

% VAR . o m e g a F i l t ( i t e +1: end , : ) = [ ] ;
VAR.W( i t e +1: end , : ) = [ ] ;
VAR. t ( i t e +1: end , : ) = [ ] ;

s t a t u s = 0 ;
o t h e r w i s e

p = p +1;
i t e = i t e +1 ;
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VAR. e ( i t e , : ) = VAR. e ( i t e −1 , : ) + tmpVAR . e ’ ;
VAR. moment ( i t e , : ) = tmpVAR . moment ’ ;
VAR. t o r q u e ( i t e , : ) = tmpVAR . t o r q u e ’ ;
VAR. d i s t T o r q u e ( i t e , : ) = tmpVAR . d i s t T o r q u e ’ ;
VAR. B( i t e , : ) = tmpVAR . B ’ ;
VAR. B_B( i t e , : ) = tmpVAR . B_B ’ ;
VAR. B f i l t ( i t e , : ) = tmpVAR . B f i l t ’ ;
VAR. Bdot ( i t e , : ) = tmpVAR . Bdot ’ ;
VAR. omega ( i t e , : ) = tmpVAR . omega ’ ;

% VAR . o m e g a F i l t ( i t e , : ) = tmpVAR . omegaFi l t ’ ;
VAR.W( i t e , : ) = tmpVAR .W;
VAR. t ( i t e , 1 ) = t ( end ) ;

s t a t u s = 0 ;
end

end

f u n c t i o n K = K2 ( P , B_B)
%**************************************************************************
% LQ ga in m a t r i x c a l c u l a t i o n
%
% W r i t t e n by E l i Overby 2004 , m o d i f i e d by F r e d r i k So la Holberg 2011 .
% M o d i f i e d by Gaute Brå then 2012 .
% Ntnu , Trondheim , December 20 t h 2012 .
%
%**************************************************************************
% g l o b a l I omega_0

% I n i t i a l v a l u e s
w_o = P . w_o ;
Ix = P . I ( 1 , 1 ) ;
Iy = P . I ( 2 , 2 ) ;
I z = P . I ( 3 , 3 ) ;
kx = ( Iy − I z ) / Ix ;
ky = ( Ix − I z ) / Iy ;
kz = ( Iy − Ix ) / I z ;

% The geomagne t i c f i e l d
Bx_0 = B_B ( 1 ) ;
By_0 = B_B ( 2 ) ;
Bz_0 = B_B ( 3 ) ;

% The l i n e a r i z e d s y s t e m m a t r i x
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A = [0 1 0 0 0 0 ;
−4*kx*w_o^2 0 0 0 0 (1 − kx )* w_o ;
0 0 0 1 0 0 ;
0 0 −3*ky*w_o^2 0 0 0 ;
0 0 0 0 0 1 ;
0 −(1 − kz )* w_o 0 0 −kz *w_o^2 0 ] ;

% s i z e ( A )
% e i g ( A )

% The i n p u t m a t r i x f o r t h e l i n e a r i z e d s y s t e m
B = [0 0 0 ;
0 Bz_0 / ( 2 * Ix ) −By_0 / ( 2 * Ix ) ;
0 0 0 ;
−Bz_0 / ( 2 * Iy ) 0 Bx_0 / ( 2 * Iy ) ;
0 0 0 ;
By_0 / ( 2 * I z ) −Bx_0 / ( 2 * I z ) 0 ] ;

% C = diag ( [ 1 1 1 1 1 1 1 1 1 ] ) ;
% D = 0;
%
% SYS = s s ( A , B , C ,D)
% minSYS = m i n r e a l ( SYS )

% SYSd = c2d ( SYS , 1 ) ;

% LQ−w e i g h t i n g m a t r i c e s
% Qmat = d iag ( [ 1 / ( ( 1 6 0 * p i / 1 8 0 ) ^ 2 ) 0 1 / ( ( 1 6 0 * p i / 1 8 0 ) ^ 2 ) 0 1 / ( ( 1 3 0 * p i / 1 8 0 ) ^ 2 ) 0] ) ; % * 1 / ( ( 1 3 0 * p i / 1 8 0 ) ^ 2 ) ; %x
1e−7 1e−7 1e−7
% Qmat = b l k d i a g ( d iag ( [ 1 0 1 0 1 0 ] ) * 1 / ( ( 8 0 * p i / 1 8 0 ) ^ 2 ) , d iag ( [ 1 0 1 0 1 0 ] ) ) ; %x
Qmat = diag ( [1 0 1 0 1 0] ) * 1 / ( ( 6 0 * pi / 1 8 0 ) ^ 2 ) ; %x
Pmat = diag ( [ 1 1 1 ] ) * 1 / ( ( 0 . 0 0 1 ) ^ 2 ) ; %u 0.00091

% C a l c u l a t e t h e ga in m a t r i x
K = l q r (A, B , Qmat , Pmat ) ;

end



Appendix B

Mechanical Drawings and Data

Mechanical drawings for coil (magnetorquer) frames and mechanical data of the
satellite. All privided by Christian E. Nomme.

Figure B.1: Mechanical drawing of magnetorquer to be used and the x- and y-sides.
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Figure B.2: Mechanical drawing of magnetorquer to be used on the z-side.



file:///C|/Users/gautebra/Documents/Satellite/Report/graphics/data.txt[19.12.2012 14:02:25]

============================================================
Measurement Mass Properties

Displayed Mass Property Values
Volume                          = 822752.789791495 mm^3
Area                            = 818187.509097557 mm^2
Mass                            =    1.200376087 kg
Weight                          =   11.771678777 N
Radius of Gyration              =   92.368722593 mm
Centroid                        =    0.217424347,    1.849467925,  -13.335212988 mm

============================================================
Detailed Mass Properties
Analysis calculated using accuracy of    0.990000000
Information Units     kg - mm

Density               =    0.000001459
Volume                = 822752.789791495
Area                  = 818187.509097557
Mass                  =    1.200376087

First Moments
Mx, My, Mz            =    0.260990987,    2.220057071,  -16.007270789

Center of Mass
Xcbar, Ycbar, Zcbar   =    0.217424347,    1.849467925,  -13.335212988

Moments of Inertia (WCS)
Ix, Iy, Iz            = 7881.402909432, 7935.008012060, 5102.006880730

Moments of Inertia (Centroidal)
Ixc, Iyc, Izc         = 7663.836619764, 7721.490900940, 5097.844210592

Moments of Inertia (Spherical)
I                     = 10241.585865648

Products of Inertia (WCS)
Iyz, Ixz, Ixy         =  -16.579474684,  -65.516622122,   -0.072180012

Products of Inertia (Centroidal)
Iyzc, Ixzc, Ixyc      =   13.025459202,  -62.036251727,   -0.554874470

Radii of Gyration (WCS)
Rx, Ry, Rz            =   81.029488479,   81.304581213,   65.194634121

Radii of Gyration (Centroidal)
Rxc, Ryc, Rzc         =   79.903251286,   80.203240256,   65.168032909

Radii of Gyration (Spherical)
R                     =   92.368722593

Principal Axes (Direction vectors relative to the WCS)
Xp(X), Xp(Y), Xp(Z)   =    0.004388892,    0.999978556,   -0.004860637
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