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Summary

The correctness of a real-time computer system depends, not only on
producing correct computational results, but also on the time when those
results are produced. Producing a result at the wrong time is considered an
error, just as producing the wrong result, or producing no result at all.

Modern programming languages often contain high level features de-
signed to improve the quality of programs, by making them more readable
or more maintainable. However, when it comes to control of timing, most
languages still include only low-level primitives such as control of thread
priorities and access to a clock; these can be hard to use correctly and may
lead to programs of low quality. This thesis argues that because timing is no
less important than computational results in a real-time system, it should
be supported on equal terms with computation by real-time programming
languages. Thus the quality standards that apply to the computational
primitives of a real-time language should also apply to its temporal primi-
tives.

Real-time programming is an inherently concurrent problem, and to
achieve high quality primitives for manipulating timing it is necessary to use
an underlying high quality concurrent programming paradigm. One such
paradigm is process-oriented programming, where systems are constructed
using synchronous, message-based communication between self-contained
parallel processes. Within this paradigm, no process may affect the state
of another, except through mutually agreed upon communication. This
increases modularity, making it easier to verify the correctness of a com-
plete system by examining its parts, one at a time. Systems that are more
modular are easier to maintain and can be said to have higher quality.

So far, process-oriented programming has not been widely used for real-
time applications. One reason for this is that existing process-oriented lan-
guages have only limited support for real-time programming. Another rea-
son has been the lack of suitable analysis techniques: while the analysis of
timing in traditional real-time systems is a well-developed field, the methods
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used are often not applicable to process-oriented designs.

This thesis is divided into two main parts. The topic of the first part is
the design of real-time language primitives that allow temporal constraints
to be implemented while maintaining program quality, and that are com-
patible with process-oriented design. The topic of the second part is schedu-
lability analysis of process-oriented real-time systems.

The main contributions of the thesis are:

Language Primitives for Process-Oriented Real-time
The thesis evaluates existing real-time language primitives, such as
explicit setting of priorities or deadlines, delay-statements and so on,
with respect to commonly accepted notions of what constitutes high
quality programming. It is argued that several commonly used prim-
itives are of low quality; in particular, the use of scheduling priorities
in code is strongly discouraged. It is argued that when implementing
a relative time constraint, such as a period or a relative deadline, one
should use language primitives that explicitly reference relative times.
A new primitive, the “Time-construct” is developed, which assigns a
relative deadline to a block of code, while at the same time preventing
the block from terminating until its deadline. It is demonstrated that
this construct, together with a triggering mechanism for implementing
sporadic tasks, allows for intuitive and readable implementations of a
wide range of temporal constraints.

Process-oriented design requires the use of synchronous communica-
tion rather than mutual exclusion based synchronization, which is cur-
rently more widely used. The consequences of using synchronous com-
munication in a real-time setting is discussed and several observations
are made regarding how to best implement this type of communication
without undermining the ability of the system to meet its temporal
constraints.

The Toc Programming Language
A prototype real-time programming language called “Toc” is devel-
oped, together with a compiler and a run-time system. Toc is based on
the process-oriented language of occam. The language mechanisms in
occam that relate to timing are replaced with the primitives that were
deemed to have high quality, including the time-construct. The exe-
cution model is also replaced: whereas scheduling in occam is largely
non-deterministic, scheduling in Toc is based on earliest deadline first
(edf).
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It is common for real-time systems to separate between hard and soft
real-time requirements, and between real-time and non-real-time com-
ponents. For the sake of argument this thesis takes the opposite stand;
that any part of a real-time system that cannot be given a meaningful
deadline for its completion can be omitted entirely. Arguments sup-
porting this hypothesis include (1) if the execution of some component
of a program can be postponed indefinitely without violating the sys-
tem specification, then that component is in fact not required, and
(2) if the execution of a program component can not be postponed
indefinitely, then it has, by definition, a deadline for its completion.

To test this hypothesis, the Toc scheduler is made lazy and will only
execute a process if it is explicitly given a deadline, or if its execution
is required by a process with a deadline. Processes whose execution is
not necessary in order to meet deadlines will never be executed, even
when the system is idle. This forces the programmer to become aware
of all the deadlines that apply to a system. Moreover, when used in
conjunction with the Toc edf scheduler, no process will be completely
denied execution even in times of high loads.

Toc is applied to a case study involving control of an elevator model.
The usability of Toc, and the practical consequences of using a lazy
scheduler are discussed based on results from that study. It is found
that using a lazy scheduler will sometimes require the programmer to
specify deadlines that seem obscure or arbitrary, and that are unlikely
to be part of the specification of a system; thus at least partially
rejecting the stated hypothesis.

Other contributions pertain to schedulability analysis:

Analysis of Synchronous Client–Server Systems.
Systems using synchronous communication have proved to be difficult
to analyze with respect to schedulability, limiting their use for hard
real-time applications. This thesis develops a schedulability analysis
that supports synchronously communicating real-time systems with a
client–server structure. The analysis works for uniprocessor systems
scheduled using either edf or fixed priorities. To allow for analysis, a
variant of both the priority inheritance and the priority ceiling protocol
are developed for these systems.

It is demonstrated that deferring parts of the computation generated
by a server call until after the call will in some cases improve schedu-
lability. This transformation is difficult to achieve when using tra-
ditional communication methods such as protected objects, because
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then one cannot move computation out of a critical section while main-
taining mutual exclusion.

Current multiprocessor schedulability analyses have only limited support
for job-level parallelism (jlp): each real-time task is typically required to
be serial, or to have a simple parallel structure. Malleable jobs, where the
number of processors assigned to a job is dynamic, is not widely supported.
This makes it more difficult to analyze process-oriented systems, which often
have a complex structure of parallelism. Two contributions improve on this:

Formal Modeling of Processes in Systems with jlp

A formal model is presented that allows reasoning on the temporal
properties of processes with an arbitrary parallel structure. It is de-
fined what it means for a process to be easier to schedule than another,
and what it means to have an upper bound on execution time; these
new definitions are required when allowing jlp, as execution times
can no longer be effectively modeled by scalar numbers. Counterintu-
itive temporal behavior is demonstrated to be inherent in all systems
where processes are allowed an arbitrary parallel structure. For ex-
ample, there exist processes that are guaranteed to complete on some
schedule, but may not complete if executing less than the expected
amount of computation. Not all processes exhibit such counterintu-
itive behavior, and a subset of processes that are well-behaved in this
respect is identified.

Fair Intra-Job Scheduling and jlp

A framework is presented for analyzing complete systems where jobs
may have a complex parallel structure. The requirement is that the
intra-job scheduler is reasonably fair, that is, it must distribute pro-
cessors equally to all parallel processes of the same job, even within
short windows of time. Communication between jobs is not permit-
ted, though it is possible to model deterministic communication within
branches of the same job. Upper bounds on interference and demand
are developed. The framework is then used to construct a pessimistic,
but sustainable schedulability test for systems scheduled with edf.
The edf test has poor worst-case performance, but does allow schedu-
lability analysis for a class of systems for which no other analysis
currently exists. Moreover, the framework itself should be useful for
constructing analyses with better performance.
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Chapter 1

Introduction

I identified the machine—it seems to me
to be an Old Testament God with a lot
of rules, and no mercy.

J. Campbell

To some, computers are a triumph of engineering; immensely complex sys-
tems of perfectly interconnected components, with parts that are atomic in
scale and astronomical in number. Others find them frustrating, unreliable
and short-lived.

When a computer crashes or otherwise fails to do what was expected,
this is usually caused by mistakes made by its programmer. A computer
will do exactly as told even if given an arbitrarily complex program, but it
may not always be clear to the programmer until later what, in effect, the
computer was told to do.

The failure of a computer program has the potentially greatest conse-
quences when the computer is used to control or monitor a safety-critical
system, such as a control system. Notable incidents caused or amplified
by programming errors include the crash of the first Ariane 5 rocket, the
Northeast us blackout of 2003, and the out-of-control Therac 25 radiation
therapy machine [41, 72, 82].

Control systems have two common properties which complicate their
implementation. First, they are real-time, and must be fast enough to keep
up with events over which they have limited control. For a real-time system,
producing a result too late is an error, no less so than producing the wrong
result or no result at all. This is in contrast to non-real-time systems such as
a desktop computer, where a late result, although undesirable, may still be
of some use. Compare an occasional three second delay in a word-processor

1



Introduction

to a three second delay by the brake system of your car.

Second, most real-time software is concurrent and consists of multiple
threads of execution. Concurrency may add significant complexity to com-
puter programs, in part because of the state explosion problem; it may be
intractable for a programmer to anticipate the behavior of a complex concur-
rent system, even when he knows intimately the behavior of each individual
part. A particular difficulty with concurrency errors is that they may only
manifest themselves in uncommon situations, and so are less likely to be
detected by testing.

Many features of modern programming languages, such as encapsula-
tion and object-orientation, are there to enhance the quality of programs,
by making them safer, more readable or more maintainable. Several design
philosophies have been proposed in order to achieve the same when program-
ming concurrently. In this thesis, we consider process-oriented program-
ming, a programming paradigm based on synchronous, message-based com-
munication between self-contained parallel processes. Within this paradigm,
no process may affect the state of another, except through mutually agreed
upon communication. This improves modularity, and helps avoid the race
conditions that may occur when concurrent processes compete for reading
from or writing to the same memory. The cost is a more rigid structure that
also prohibits some legitimate and safe designs.

This thesis argues that because timing is no less important than compu-
tational results in real-time programming, it should be supported on equal
terms with computation by real-time programming languages.

Unfortunately, the same approach that is used to manage computational
results cannot be use to manage timing: whereas programming languages
have statements that manipulate the computational result of a program in
predictable ways, statements that manipulate timing mostly do so indirectly.
A computer cannot be explicitly programmed to complete a task within a
certain time limit: If a computer is given a task, it will work on it until the
task is completed, or it is interrupted, or until the end of time, with little
regard to which it is going to be. The only means of hurrying a task available
to the programmer is, if the computer is working on several tasks at once, to
prioritize one task over another. Thus managing prioritization of processes
often remains the only degree of freedom available for a programmer for
ensuring that a real-time system meets the deadlines of its specification.

The thesis will assume a process-oriented design philosophy as a starting
point for the concurrency related features of a language; this methodology
has already been shown to have many of the desired properties of language
constructs, being readable, scalable, safe and maintainable. A valid question
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is whether it is at all possible to hold a language’s real-time features to an
equally high standard. For one thing, achieving modularity of program
components, so that they can be verified in isolation from the rest of the
program, is never entirely possible for timing related properties: whether a
component meets its deadline is at minimum dependent on the amount of
processing time available, which will always depend on other components
in the system. However, it may still be possible to have modularity of
implementation, in the sense that the correctness of an implementation
does not depend on the implementation of other processes. These problems
are discussed in part I of the thesis.

Even if a program is perfectly optimized and priorities are optimally
managed, a system may still miss deadlines—it may simply not have the
computational power required to perform its tasks fast enough. In order
to find out whether or not the system will in fact meet its deadlines, one
will have to perform schedulability analysis of the system after it has been
programmed, taking into account the hardware and environment on which
the system is to execute. Alas, it is not possible to accurately predict how
much time a computer will require to execute a given program, except in
the most trivial cases. Instead, analyses must use pessimistic worst-case
estimates, which means that systems may well be deemed unschedulable
even when they are not.

Existing schedulability analyses techniques tend not to support the com-
munication primitives or system structures that a process-oriented design
requires. Part II of the thesis develops schedulability analyses techniques
that allow analysis of certain real-time systems with a process-oriented de-
sign.

1.1 Contributions

The thesis includes major contributions in two categories; contributions to
the design of real-time language primitives, and contributions to schedula-
bility analysis of process-oriented real-time systems.

The first contributions are related to manners of which a programmer
can integrate specification of temporal constraints into a programming lan-
guage, in ways that are intuitive and that preserve modularity as best as
possible.

Contribution 1: The thesis evaluates existing real-time language primitives,
such as explicit setting of priorities or deadlines, delay-statements and so
on, with respect to commonly accepted notions of what constitutes high
quality programming. A new high quality primitive is developed that allows
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the specification of a wide range of temporal constraints in a readable and
modular manner and that is compatible with process-oriented design. The
use of synchronous communication in real-time systems is discussed, and a
few observations are made as to how this type of communication should and
should not be used.

Contribution 2: An experimental programming language called “Toc” is de-
veloped that incorporates the new real-time primitive. Toc is lazy scheduled,
which means that it does not execute processes without an associated dead-
line, even if the system is otherwise idle. A compiler and run-time system
has been developed. Toc is demonstrated in a case study where a system
programmed in Toc is used to control a physical elevator model.

Contribution 3: A uniprocessor schedulability analysis is developed for process-
oriented systems where communication has a client–server structure. The
analysis supports uniprocessor systems scheduled using either earliest dead-
line first (edf) or fixed priorities. To allow for analysis, a variant of both
the priority inheritance and the priority ceiling protocol is developed for
these systems.

Contribution 4: The thesis presents a formal model for reasoning on the
temporal behavior of jobs in real-time multiprocessor systems that allow
job-level parallelism (jlp). Counterintuitive temporal behavior is demon-
strated to be inherent in all systems where processes are allowed an arbitrary
parallel structure. For example, there exist processes that are guaranteed
to complete on some schedule, but may not complete if executing less than
the expected amount of computation. Not all processes exhibit such coun-
terintuitive behavior, and a subset of processes that are well-behaved in this
respect is identified. The analysis assumes that the intra-job scheduler—the
scheduler that assigns processors given to the job to the parallel branches
of that job—is work-conserving, but otherwise undefined.

Contribution 5: A schedulability analysis is developed for complete systems
where jobs are allowed a complex parallel structure. The analysis assumes
that the intra-job scheduler is reasonably fair. The analysis does not allow
communication between jobs.

1.2 Publications

This thesis is based on the following peer-reviewed conference papers, pub-
lished between 2008 and 2011:

[61] Martin Korsgaard and Sverre Hendseth. Combining EDF scheduling
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with occam using the Toc programming language. In Alistair A. McE-
wan, Wilson Ifill, and Peter H. Welch, editors, Communicating Process
Architectures 2008, pages 339–348. IOS Press, September 2008.

[65] Martin Korsgaard and Amund Skavhaug and Sverre Hendseth. Improv-
ing real-time software quality by direct specification of timing require-
ments. In Proceedings of the 35th Euromicro Conference on Software
Engineering and Advanced Applications, pages 528–536. IEEE Com-
puter Society, 2009.

[62] Martin Korsgaard and Sverre Hendseth. Design patterns for commu-
nicating systems with deadline propagation. In Peter H. Welch et. al,
editor, Communicating Process Architectures 2009, pages 349–361. IOS
Press, November 2009.

[63] Martin Korsgaard and Sverre Hendseth. The Computation Time Pro-
cess Model. In Peter H. Welch et. al, editors, Communicating Process
Architectures 2011, pages 273–286. IOS Press, June 2011.

[64] Martin Korsgaard and Sverre Hendseth. Schedulability analysis of mal-
leable tasks with arbitrary parallel structure. In Proceedings of the 17th
International Conference on Real-Time Computing Systems and Appli-
cations, pages 3–14. IEEE Computer Society, August 2011.

The first three publications [61, 62, 65] are the basis for chapters 3 and 4, but
have been extended and reorganized for inclusion in this thesis. Chapters 7
and 8 are based on [63] and [64], respectively, with minor modifications.

1.3 Thesis Organization

Part I of the thesis discusses real-time programming language primitives
with respect to metrics of quality, such as maintainability and readabil-
ity: Chapter 2 contains background information, including definitions of
program quality, and introductions to concurrency, process-oriented pro-
gramming and scheduling. Chapter 3 evaluates existing real-time language
primitives based on the given quality criteria, and suggests a new primitive
suitable for programming reactive systems. Chapter 4 describes the exper-
imental programming language Toc, which implements the new primitive.

Part II concerns schedulability analysis: Chapter 5 reviews existing
schedulability analysis techniques for both uniprocessor and multiprocessor
systems. Chapter 6 develops a novel schedulability analysis for systems that
use synchronous client–server based communication. Chapter 7 presents a
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simple process algebra for reasoning on real-time jobs in systems that allow
jlp. Chapter 8 develops a novel schedulability analysis for complete sys-
tems that support jlp, when the intra-job scheduler is reasonably fair and
when there is no communication between jobs.

Part III includes the thesis conclusion and a list of possible directions
for future work.

Finally, the appendixes list the complete syntactic and lexical structure
of Toc (appendix A), the full source code of an elevator control system imple-
mentation in Toc (appendix B), the nomenclature for part II (appendix C),
as well as a list of abbreviations (appendix D) and a glossary (appendix E).
The last section in the thesis is the list of references.
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Primitives
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Chapter 2

Preliminaries on Real-time
Programming Languages

British Left Waffles on Falkland Islands

Newspaper headline

This thesis will discuss programming language primitives for real-time sys-
tems, based on the notion that some primitives are better than others even
though both can be used to achieve the same effect; that there is a difference
between a program being good, and a program that merely works. In order
to perform these comparisons with precision it is necessary to first develop
some consistent notion of what constitutes quality in programming. This is
the topic of section 2.1. An introduction to parallel programming is given
in section 2.2, where various concurrency mechanisms are discussed from a
program quality point of view. This thesis will focus on the process-oriented
programming paradigm, which is introduced in section 2.3. The chapter is
concluded by an introduction to real-time scheduling, in section 2.4.

2.1 Quality in Programming

Given two programs that are functionally identical, it may still be that
one program is better than another, given some definition of code quality.
Likewise, even though two programming languages have the same expressive
power, one may be better suited for a certain task, or even better altogether.
In this thesis, various real-time programming frameworks will be discussed.
These are largely equivalent with respect to expressive power, in that most
systems can be programmed within any framework. Still, some languages
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are more equivalent than others, and to be able to discuss these notions in a
more precise manner, some definition of program quality will be necessary.

A starting point is Dijkstra, who argued that the fundamental problem
of programming is to manage complexity [39]. As a program grows larger,
the programmer must take care to reduce this complexity, or it may easily
become too high to cope with. Programs with lower complexity are generally
more readable and maintainable, and are likely to have fewer bugs [79].

Reducing complexity can be done by dividing the program into layers
and modules. Layers provide abstraction by hiding details about a program
component that is not necessary to understand its function. Using higher-
level languages is one way of providing this kind of abstraction; indeed,
using a high-level language at all, instead of just machine code, was the first
and arguably most important step [22].

The other main way of reducing complexity is to partition the program
into modules, which allows reasoning on the correctness of a system by look-
ing at one part at a time. The greatest reduction in complexity is achieved
when the modules have strong cohesion and loose coupling, which means,
respectively, that each module has a clearly-defined functional responsibil-
ity, and that it does not rely too much on the implementation details of
other modules [96].

The concepts of cohesion and coupling can also be applied to the state-
ment level. Structured programming, like using for-loops instead of counters
and gotos, provides another form of layering and yields higher abstraction.
A language feature can be said to have weak cohesion if it requires the im-
plementation of what is functionally a single feature to be spread out across
the program, or if it combines multiple non-related functionalities into a
single statement. A statement may be said to have tight coupling with an-
other statement if their effects depend critically on each other; this becomes
more problematic when the statements are located far apart in code.

Related to the concept of coupling is the concept of safety from Hoare
[54]1. A statement is unsafe if it may fail silently, that is, if neither the
compiler nor the run-time system will warn about cases where the ordinary
meaning of the statement breaks down. Conversely, a statement is safe if
it either succeeds or yields an explicit error. Unsafe statements may result
in undefined behavior, and be susceptible to machine- or implementation
dependent effects. For example, array operations in C are unsafe, because
an array index out of bounds will silently return or modify an arbitrary
memory location, whereas an array operation in Java is safe, because it will
either succeed or explicitly fail.

1Hoare called it “security”.
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The above concepts will be used to compare programs with respect to
quality:

Definition 2.1 (Program Quality)
An implementation A of a program component has low quality if any of the
following points hold:

1. A is unsafe (safety).

2. A exposes unnecessary details (wrong level of abstraction, readability).

3. A has an ill-defined responsibility, and should have been split up; or
A requires the implementation to be spread out (cohesion).

4. A has hidden side-effects or relies on details about remote parts of the
program, or on obscure details about the computing platform (cou-
pling).

An implementation B can be said to have higher quality than A if both
produce acceptable results, but B scores better on the above points.

2.2 Concurrency

Concurrency, also known as multithreading or parallel computing, is em-
ployed for a number of reasons. For one thing, it is required when executing
programs on multiprocessor systems, which again are required to increase
performance beyond what a single processor can provide, or to reduce energy
consumption. On multiprocessor systems it is the system, not the program,
that dictates the use of concurrency; this may leave programmers with the
non-trivial task of parallelizing a serial program.

On the other hand, it may be that the program at hand is in itself
parallel. This is for example the case for real-time systems, where multiple
more or less independent processes must be executed simultaneously on
the same computing platform, interleaved in such a way that all processes
satisfy their timing requirements. Here, the problem is that of transforming
a parallel problem into a serial representation. A system that is both real-
time and multiprocessor will have similar challenges, as it is usually not
possible to assign a single real-time process to each processor; nor would it
be particularly efficient.

Concurrent programming is considered difficult in several existing pro-
gramming languages, because it often results in low quality programs. Con-
sider the following quote cited in the official documentation of Java Swing [97]:
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It is our basic belief that extreme caution is warranted when
designing and building multi-threaded applications, particularly
those which have a gui component. Use of threads can be very
deceptive. In many cases they appear to greatly simplify pro-
gramming by allowing design in terms of simple autonomous
entities focused on a single task. In fact in some cases they do
simplify design and coding. However, in almost all cases they
also make debugging, testing, and maintenance vastly more dif-
ficult and sometimes impossible. [...]

Concurrency is essential to real-time programming, because the problem
to be solved is fundamentally concurrent. To achieve high quality on the
temporal primitives of a real-time language it is necessary to have underlying
concurrency mechanisms that also have high quality, and where debugging,
testing and maintenance is not “difficult and sometimes impossible”. This
section will present existing approaches to concurrency in other languages,
and illustrate why some have high quality and some do not. Process-oriented
programming, which has high quality, will be used as a basis for the real-
time primitives developed in chapter 3.

This thesis limits its discussion to imperative, general-purpose program-
ming languages. Completely different approaches to real-time programming
have also been successful, such as the synchronous languages of Esterel [13]
and lustre [32]. These languages do not have the flexibility of impera-
tive languages—in particular they are limited to finite-state programs—but
they have more predictable timing and are easier to verify formally. Lustre
has been used in avionics and nuclear power plants [50] where the loss of
flexibility to verification is easily justified.

Terminology: Threads, tasks and processes

The terms “thread”, “task” and “process” are all used in the literature to
describe a parallel component of a program. Process-oriented programming
derives its terms from the communicating sequential processes (csp) [56],
where the word “process” has the more general meaning of any program
component, parallel or not. This thesis will mainly use “process” in the
csp sense, and explicitly use “parallel processes” to emphasize that a set of
processes may execute in parallel. The term “task” will be used to describe
top-level processes in schedulability analysis, and for some well-defined real-
time concepts such as the periodic or sporadic task. The term “thread” will
occasionally be used to explicitly denote a thread of execution.
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Listing 2.1: Parallel in occam

PROC Main()
PAR
a()
b()

:

Listing 2.2: Goroutines in Go

func main() {
go b()
a()
runtime.Goexit()

}

2.2.1 Programming Parallel Processes

Say the definition of a program specifies that some processes are to be
executed in parallel on a uniprocessor system (ie, interleaved). One imple-
mentation approach is to split up processes manually, and cycle through
them, executing one piece at a time. This is known as the cyclic executive
model [eg, 5]. This is a simple method in principle, and requires no support
from the run-time system.

The disadvantage is that all processes become tightly coupled, so that
adding or modifying a process may require changes to the other processes
in the system. For large systems, this maintenance penalty would be pro-
hibitively large. Instead, concurrent programming languages feature some
automatic method for achieving the same effect, by using either a built-in
scheduler or taking advantage of os support.

The method for specifying parallelism varies greatly from language to
language. A few languages have explicit parallel constructs, such as PAR in
occam (see example in listing 2.1) or the go statement in Go (listing 2.2).

Ada (listing 2.3) has a task construct that can be used to define a process
to be executed in parallel with other tasks. A task is declared like a normal
variable, and must have its body defined within the same declaration scope.
In Java and C#, parallel processes can be started by instantiating objects
from special Thread classes.

C has no built-in support for parallel programming, and an external
concurrency library is therefore necessary to write parallel programs. Li-
braries based on the Portable Operating System Interface for Unix (posix)
is a common choice on Unix-based system.

2.2.2 Shared Memory-Based Communication

Communication between parallel processes is the main challenge of concur-
rent programming. Processes can communicate either by sharing memory
or by passing messages. Shared memory is the more common of the two,
and is the basis for concurrency in eg, Ada, C/posix and Java.
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Listing 2.3: Tasks in Ada

procedure Main is
task Task B;
task body Task B is begin

b();
end Task B;

begin
a();

end Main;

In most systems, sharing memory is the concurrency mechanism closest
to the underlying computer architecture, and shared memory based commu-
nication typically has high performance in systems where processes indeed
share physical memory. Sharing a variable in this case is also easy: A shared
variable can be accessed directly by any process that has it in scope, or that
knows its memory address.

Sections of code that use shared memory are critical sections, and must
be protected against simultaneous accesses to avoid race conditions. This
is accomplished by using synchronization primitives such as semaphores or
mutexes, or higher level mechanisms such as protected objects or monitors.
Concurrent Pascal was the first well-known language to use protected shared
memory to communicate between parallel processes, and was the first lan-
guage to support monitors [20, 55]; a protection mechanism now also used by
Java and Ada (in Ada it is called a protected object). A monitor consists of
private variables and a set of procedures that can operate on those variables.
The procedures are guaranteed to be executed under mutual exclusion, and
from everywhere else the private variables are inaccessible.

Concurrent Pascal compilers check for and prohibit unsafe sharing of
variables at compile-time, thereby removing race conditions caused by con-
current accesses to a variable. However, one of the advantages of shared
memory based communication is the possibility of implementing certain
high-performance lock-free synchronization patterns [eg, 53, 80, 98], where
carefully written code improves performance in a safe way by omitting syn-
chronization. Lock-free synchronization can yield significant and sometimes
necessary performance improvements, so a shared-memory implementation
that prohibits all unprotected memory access may not be desirable.

For many languages used in real-time systems concurrency is unsafe by
default, so that sharing variables safely requires extra code when it should
arguably be the other way around [21]. This is true for eg, Ada, C and Java.
Because concurrent sharing of variables in these languages is by default
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unsafe, any statement on a shared variable becomes unsafe. For example,
the statement

i = i + 1;

may or may not increment i if i is a shared variable.

C has become the most popular language for real-time programming
even with no built-in concurrency support. Safe sharing of memory in C

is only possible through the use of external libraries, which mostly provide
low-level primitives, leaving it to the programmer to ensure correct use.
Moreover, one of C’s greatest strengths—the flexibility of allowing arbitrary
pointers—makes it impossible to implement compiler safety checks for the
sharing of variables [100]. The flexibility of C does allow some very efficient
synchronization methods, such as lock-free queues, but makes the language
inherently unsafe. To compensate for this, subsets of C have been developed
that attempt to make the language safer by restricting the use of certain
language features; an example is misra c [52]. It has also been shown
that when using shared-memory based concurrency in languages without
inherent concurrency support (such as C) it will always be the case that
concurrency errors can be introduced by the compiler itself, for example
during optimizations [19, 24].

2.2.3 Message Based Communication

The alternative to shared memory-based concurrency is for processes to
communicate by passing messages. Message passing can be either asyn-
chronous or synchronous. Asynchronous message passing is used by the
“mailbox” approach of eg, Erlang and Concurrent ml. With asynchronous
message passing, senders and receivers are decoupled in time; receivers may
choose to wait if no messages are available, but senders are never blocked.

The alternative is synchronous message passing, or synchronous commu-
nication, as used by Go and occam, and by the task entries of Ada. With
synchronous communication, the sender must always wait for the receiver
and vice versa, so that each interaction is a rendezvous, ie, a synchronization
point between sender and receiver.

The main advantage of strictly using message based communication is
that concurrency becomes safe by default; when tasks do not share memory
there can be no race conditions due to unsafe sharing of variables. Mes-
sage based communication also improves modularity. Each process is only
involved in communications that it actively participates in, so the state of
the variables of a process will only be changed by itself. This results in a
wysiwyg property not present in shared memory based systems [102], and
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invisible coupling between processes are removed. Also, where monitors
and protected objects should not in general be nested [74], no such restric-
tions apply to message based communication. In this sense, systems that
use message based communication scale better than those based on shared
memory.

One drawback of using synchronous communication is related to per-
formance. Synchronous communication always involves at least one task
switch. In a setting where task switches are expensive this can represent
a significant performance penalty. Both occam and Go get around this by
using light-weight processes; process creation and switching times in occam
are in the magnitude of tens of nanoseconds [104]. However, light-weight
processes are generally not preemptible, which may present problems for
real-time systems.

2.3 Process-Oriented Programming

Process-oriented programming is a programming paradigm for concurrency.
Key elements are the usage of parallel processes to achieve modularity; the
use of synchronous communication between parallel processes, and the ab-
solute encapsulation of process state. The result is a programming tech-
nique that ensures that all statements are safe, and where any kind of non-
determinism must be specified explicitly as such.

In a strict process-oriented program, the local variables of a process can
only be changed by that process: this is a much stronger guarantee than
provided by eg, private variables in object-oriented programming (oop): in
oop threads of execution are not localized, so a call from one object to
another may indirectly result in changes in the first object, making code
harder to read.

The process-oriented paradigm was developed along with the occam pro-
gramming language. The initial target of occam was the Transputer, an
early microcontroller capable of parallel execution. Each Transputer could
execute multiple threads by using the equivalent of a built-in scheduler,
but Transputers could also be used in clusters in order to increase total
computational power. When programming occam on the Transputer, the
programmer could specify two processes to execute in parallel without need-
ing to know if this meant that they would execute on the same or on different
Transputers. Moreover, the programmer was encouraged to always consider
whether statements could be executed in parallel, by requiring an explicit
keyword also for statements that were to be executed in sequence.

Similarly, the programmer could write channel-based communication be-
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tween parallel processes without needing to know if the communicating pro-
cesses would execute on the same Transputer or not. If they were, a channel
would be compiled to a virtual, shared-memory based channel. If the pro-
cesses were on different Transputers then the communication would use a
physical link over an actual wire. The occam programming language was
ideal for the Transputer, because it allowed the parallelism of a program to
be decoupled from the parallelism of its hardware.

In contrast to other imperative programming languages, which use se-
quential procedures or passive objects to achieve modularization, the pri-
mary method for writing a modular occam program is to divide it into multi-
ple parallel processes that communicate through explicitly defined channels.
Unlike for example Ada, which contains primitives for synchronous commu-
nication, but also allows safe and unsafe sharing of variables, the occam
compiler will refuse to compile a program that it cannot verify to be safe.
It also strictly prohibits any kind of aliasing (ie, simultaneously referring
to the same variable by different names). The result is a language that is
somewhat cumbersome to use, but which effectively prohibits many kinds
of subtle programming errors such as race conditions or aliasing bugs.

The Transputer is no longer in use, but the Transputer/occam combina-
tion has direct a successor in the xcore processor family and xc programing
language of xmos. The occam language is still used in academia, and for
complex systems simulation [106]. The newest version of the language is
occam-π [104]; a much larger language with support for dynamic and recon-
figurable process networks. Process-oriented concurrency libraries have been
developed for other languages as well, most notably jcsp for Java [102]. It
is also possible to write process-oriented program without explicit language
support [99].

2.4 Real-Time Scheduling

Whereas the scheduler in a desktop os may seek to maximize performance
as experienced by a user, the goal of the scheduler in a real-time system is
to schedule processes so that they meet their deadlines. How to best ac-
complish this is discussed here; an introduction to schedulability analysis—
determining whether processes in fact do meet their deadlines—is given in
chapter 5.

The simplest real-time schedulers are priority driven. In these sched-
ulers, processes are assigned priorities, and the scheduler always executes
the highest priority process that is ready. Two scheduling algorithms of this
type are fixed priority scheduling (fps) and earliest deadline first (edf).
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The deadline of a process as compared to a global clock is called the
absolute deadline, while the deadline relative to the release of the process,
ie, the time when the process becomes eligible for execution, is called the
relative deadline. Under edf, the scheduling priority of a process is defined
by its absolute deadline, so that an earlier absolute deadline yields a higher
priority. Edf is optimal on uniprocessor systems, in the sense that if a
system is schedulable, then it is also schedulable under edf [75]. Edf is a
dynamic priority scheme: the actual scheduling priority of processes depend
on their release pattern, which is generally not known in advance.

When using fps, the priority of each process is set explicitly. The opti-
mal priority assignment on uniprocessors is the deadline-monotonic priority
ordering (dmpo), where process priorities are ordered by relative deadlines:
a shorter relative deadline results in a higher priority [71]. Real-time systems
are often modeled as a set of periodic tasks so that each task has a deadline
at the end of its period. In this case the equivalent of dmpo is referred
to as rate-monotonic priority ordering (rmpo) [75]. No optimal scheduling
strategies exist for multiprocessor systems when relative deadlines are not
equal to periods or when processes communicate. This is discussed further
in section 5.3.

When processes share resources under mutual exclusion, one process may
be blocked waiting for another process to release a resource. This can cause
a phenomenon known as priority inversion [67]. In its most basic form, a
priority inversion is any situation where a high priority process is blocked
waiting for a lower priority process to release a resource; thus some degree
of priority inversion is unavoidable when synchronization between processes
of different priorities is required. The more serious situation is that of an
unbounded priority inversion, which occurs if the lower priority process is
interrupted by an intermediate priority process before it completes, leaving
the higher priority process waiting for a potentially long chain of processes
with lower priorities than itself.

The root cause of the problem is that the scheduler does not actively
help to execute code necessary to complete its most urgent process. There
are several ways to alleviate the problem. One is to use the priority in-
heritance protocol (pip) [35], where a lower priority process will inherit the
highest priority of the processes that are blocked by it, thus limiting the
priority inversion to one level. The pip suffers from certain problems; in
particular it has poor performance with nested critical sections and can be
hard to implement correctly, as exemplified by its inventors failing to do so
themselves [107].

Another solution is to use a ceiling protocol, such as the priority ceiling
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protocol (pcp) [92] or the stack resource policy (srp) [2]. Compared to pip,
these protocols reduce maximum blocking and also prohibit certain types of
deadlock. The srp is more general as it works with both fixed priority and
edf systems.

The srp uses a total ordering of processes known as preemption levels. If
a process A has a lower preemption level (or only “level”) than B, then A will
never preempt B; ie, it is never the case that A is allowed to begin execution
when B is already executing. For fps, the preemption level ordering is
equivalent to the priority ordering. For edf, the preemption level ordering is
equivalent to the reverse ordering of relative deadlines, ie, a shorter relative
deadline implies a higher preemption level.

The srp works as follows: Whenever a task holds a resource, the re-
source gains the preemption level of the highest level process that may at
some point use it (the ceiling of the resource). The scheduler executes the
oldest, highest priority process, and does not allow processes to begin execu-
tion unless they have a higher level than all resources. This has three signifi-
cant consequences: mutual exclusion is achieved without explicit blocking, a
higher priority process can be blocked by at most one lower priority process,
and no process will be blocked after starting execution [2].

2.4.1 Handling of Temporal Errors

A scheduling overload is a situation where the system is unable to complete
all processes within their deadlines. Edf and fps behave differently during
scheduling overload. With edf there may be a domino-effect where many
processes miss their deadlines, but all processes will be executed eventually.
Furthermore, if the processes are periodic, then the overload will cause their
average periods to increase as if multiplied by the same factor [33], which
can be considered a form of fairness.

With fps, if the overload is caused by one process executing for too
long, then processes with a higher priority than the process causing the
overload are guaranteed not to be affected. However, other processes will
loose deadlines arbitrarily, and, in general, predictability during overload is
only guaranteed for the highest priority process [31]. Lower priority pro-
cesses may never be executed if the overload is permanent.

Some languages [eg, 45, 70, 85] allow the programmer to add exceptions
or similar mechanisms that react to missed deadlines, so that they can be
handled as an error. This helps for situations where a missed deadline
requires an explicit action. However, if the scheduling overload is caused by
a misbehaving process that is taking up more cpu time than anticipated,
then it is not necessarily this process that will miss its deadlines. Explicit
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handling of missed deadlines is thus only useful to handle the effect of a
scheduling overload, not its cause.

To handle the cause of a scheduling overload, it is necessary to stop tasks
from executing for too long. This assumes that the system is known to be
schedulable as long as each task executes less than some budget of cpu time
dedicated to that task. Then, if a task exceeds its budget it can be stopped
or demoted to a lower priority; it will likely miss its own deadline, but will
not cause other tasks to miss their deadlines, isolating temporal errors in the
system. In some cases a task can be replaced with some form of a degraded
backup solution that requires less execution time. When this is not possible,
or not enough, then the situation cannot be resolved without violating the
specification of the system one way or another.

Execution time budgets are supported directly by eg, Ada 2005 [49] and
the Real-time Specification for Java (rtsj) [85].
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Chapter 3

Language Primitives
for Process-Oriented Real-Time

– One morning I was sitting in front of
the cabin smoking some meat, when—
– Smoking some meat?
– Yes, there wasn’t a cigar store in the
neighborhood.

G. Marx

Existing programming language mechanisms for controlling temporal be-
havior range from low-level primitives such as delay functions, to higher level
structures that express periodicity and relative deadlines. In this chapter,
these mechanisms are evaluated from a program quality point-of-view. It is
argued that many low-level primitives, such as explicit setting of priorities,
delay-statements and so on, do not hold up to commonly accepted standards
for what constitutes high quality programming, and that this can only be
remedied by using primitives that have a higher level of abstraction.

Concurrency is an essential property of real-time programming, and high
quality concurrency mechanisms are needed to ensure high quality of a real-
time system. In this thesis, process-oriented programming is chosen as the
concurrency paradigm. Existing real-time languages that support high-level
timing primitives are not compatible with this paradigm, as they do not sup-
port complex parallel structures nor allow for synchronous communication.
Conversely, existing process-oriented languages are not suitable for use in
real-time systems, as they provide insufficient control over scheduling, and
lack the necessary synchronization protocols.

A new timing primitive is developed in this chapter that allows timing
requirements to be implemented in a readable and modular manner, and
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that is compatible with process-oriented design. The use of synchronous
communication in a real-time context is then discussed, and observations
are made concerning the consequences of using synchronous communication
rather than mutual exclusion based synchronization. These observations are
required for the next chapter, when a process-oriented real-time language
using the new timing primitive is developed.

3.1 Introduction

To control the temporal behavior of a system, a programmer can use in-
terrupts, access to a clock, some means for delaying execution (eg, sleep()),
and the ability to manipulate scheduling priorities. Most existing real-time
programming languages require the programmer to use these primitives di-
rectly. The objective of this chapter is to develop higher level language
primitives for implementing temporal constraints. The primitives should
have the highest possible quality according to definition 2.1 (page 11), lead-
ing to the following design criteria:

1. The primitives should be safe and not behave unexpectedly.

2. They should be concise and have an appropriate level of abstraction,
low enough so that the necessary temporal constraints can be imple-
mented, but no lower.

3. They should not require the implementation of a single temporal con-
straint to be spread out across the program; ideally, there should be a
one-to-one correspondence between a requirement in the specification
and that requirement in the implementation.

4. Finally, statements using the primitives should be maintainable and
not tightly coupled to other parts of the program. If there is a local
change in the temporal specification, it should only require a local
change in source code.

The implementation of the primitives themselves must use the means
available for controlling the timing of a computer system: access to a clock,
adding delays and managing scheduling. Process-oriented programming
is chosen as the concurrency paradigm; the primitives must therefore be
compatible with process-oriented design, and support the complex parallel
structures and synchronous communication that a process-oriented system
requires.
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All systems to be implemented will be assumed to be reactive systems,
ie, systems that do not “explicitly reference the time frame of the enclosing
environment” (as defined by Burns and Wellings [28]). In reactive systems,
all timing requirements are relative to events in the system and never to an
absolute clock. It will also be assumed that all timing requirements in the
system are predicates that are either satisfied or not; sliding scale objectives
such as minimizing jitter or power consumption will not be considered.

3.1.1 Outline

The structure of this chapter is as follows: Section 3.2 discusses the types
of temporal constraints possible in reactive systems, and how these can be
implemented in imperative programming languages. Section 3.3 discusses
real-time primitives in existing languages and to what extent they satisfy
the above design criteria. A new set of language primitives are introduced
in section 3.4 that can be used to implement a wide range of temporal
constraints. Process-oriented programming requires the use of synchronous
communication between processes, instead of the mutual exclusion based
synchronization typically used in real-time systems. In section 3.5, the con-
sequences of using synchronous communication in a real-time system are
discussed.

3.2 Classification of Temporal Constraints

The term “temporal constraint”will be used to denote any part of the spec-
ification of a real-time system that refers to time. A temporal constraint
could for example be that some response to an event must be executed
within a given deadline, that some process should be repeated with a speci-
fied period, or that a system should wait some maximum time for an event,
before timing out and doing something else.

In reactive systems, all temporal constraints are relative, and can be
classified as being either the minimum or the maximum time between either
a stimulus (S) or a response (R) [37]. The full table of combinations are
listed in table 3.1.

Constraints 1–4 describe requirements that the environment, including
users, are expected to satisfy. A specification containing such a constraint
will typically specify some action to be taken by the system if the envi-
ronment does not satisfy the constraint, for example by timing out and
performing an alternative procedure.
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Table 3.1: Stimuli–Response Type Temporal Constraints [37]

Environmental Constraints

1. min. time from S to S.
Range of intervals between external events.

2. max. time from S to S.

3. min. time from R to S.
Reaction time of environment.

4. max. time from R to S.

Delay Constraints

5. min. time from S to R. A minimum response time requirement.
6. min. time from R to R. A minimum period requirement.

Deadline Constraints

7. max. time from S to R A maximum response time requirement.
8. max. time from R to R A maximum period requirement.

Constraints 5–8 describe requirements of the system; that it should nei-
ther respond too fast nor too slow. The minimum time constraints can be
implemented with delays; the maximum time constraints (ie, deadlines) by
manipulating scheduling priorities. A program can enforce a delay, and thus
guarantee that a minimum time constraint is satisfied, but cannot do the
same for a deadline constraint—a system can merely improve the chances
that a deadline constraint is met by assigning it a suitable scheduling pri-
ority. In some cases it is possible to prove that a deadline is in fact met by
performing schedulability analysis.

In Dasarathy [37], a stimulus was considered to be a signal from the user
to the system, while a response was a signal from the system to the user.
These definitions are appropriate from the point of view that a specification
should only define interactions between the system and the environment,
and leave other details to be decided by the implementation. However,
in order to achieve modularity it is also necessary to be able to describe
the temporal behavior of each module separately, not only the behavior of
the complete system. Therefore, stimulus and response constraints will be
defined as seen from the module for which the specification applies.

Also, in imperative languages there is typically no explicit communica-
tion with the environment; an input may be performed by reading from a
particular memory address; an output by calling a particular function. A
stimulus may in some cases be an explicit trigger, such as an interrupt, or it
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may be implicit, such as a state change discovered by polling. It is therefore
convenient to define stimuli and responses based on temporal scopes, where
a temporal scope is defined as a collection of sequential statements with as-
sociated temporal constraints. Temporal scopes can be nested or arranged
in sequences, and may overlap. Every stimulus and response can then be
associated with the beginning or completion of a temporal scope:

Definition 3.1 (Stimulus and Response)
A stimulus is defined as some abstract condition for allowing a temporal
scope to begin execution. A response is defined as the completion of a
temporal scope.

With this in mind, the temporal constraints 1–8 in table 3.1 can be given
the following imperative implementation outlines:

1–4. The implementation of the environmental constraints is a matter of
comparing clock times and taking an appropriate action if a stimulus
comes too soon, or timing out if it comes too late. This will require
some means for suspending the release of a temporal scope, direct or
indirect access to a clock, and some mechanism for timing out.

5–6. Minimum response time constraints can be implemented by using some
kind of delay mechanism. It is usually only possible to delay the start
of a temporal scope; one cannot explicitly delay its completion.

7–8. Maximum response times are deadline constraints; the meeting of
these constraints can be facilitated by manipulating scheduling pri-
orities.

Not all combinations of constraints can be implemented. In general, the
actual execution time of a block of code is not known in advance, nor is the
delay caused by interference from higher priority processes. A constraint
that requires the completion of a temporal scope to be precisely timed is
therefore not implementable, because it would require a delay which mag-
nitude would only be known later.

3.2.1 Periodic and Sporadic Task Models

Say a control algorithm should ideally perform its measurements periodi-
cally with a period of T , and set its control outputs exactly T time units
later, while performing its next set of measurements. An implementation
of the algorithm must allow some time for performing the measurements,
and for computing and setting control outputs. Say that a mathematical

25



Language Primitives for Process-Oriented Real-Time

assumption behind the control algorithm is that these times are close to
zero, and that the implementation must therefore keep the times small.

A problem with this is that it is difficult to determine how small these
times need to be; any chosen upper bound for something that is mathemat-
ically assumed to be zero is likely to be artificial. Moreover, the periodic
controller would require at least three different temporal constraints; a pe-
riod, plus maximum delays for reading measurements, and for setting control
outputs, which would complicate its implementation.

Because of the complexity, both of correctly implementing such con-
straints, and of determining what those constraints actually are, complex
temporal constraints are uncommon in practical applications. Instead, real-
time processes such as the above controller are often given simplified timing
requirements. The most common simplifications are

1. The implicit deadline periodic task.

2. The constrained deadline periodic task.

3. The sporadic task.

In schedulability analysis, it is typically assumed that systems only consist
of these types of processes. These task models are also supported directly
in some real-time environments such as the rtsj.

The first task type is the implicit deadline periodic task, in which an
instance of the task is released periodically, and where the deadline of each
instance is set to the next release. Such a task is simple to implement,
requiring only a delay mechanism to restrict the period and a mechanism
to set scheduling priority to manage the deadline. A generalization of the
implicit deadline task is the constrained deadline periodic task, in which the
relative deadline is allowed to be less than or equal to the period. These
tasks have an equally simple implementation, but are more complicated to
analyze.

The implicit and constrained deadline periodic tasks are not defined
based on any stimuli, only on responses, and therefore only specify response–
response constraints (6 and 8 in table 3.1). Each task instance is a temporal
scope, and each response is associated with the completion of a task instance.

To compute the permitted minimum and maximum times between re-
sponses in a constrained deadline task, first assume that each instance has
some unknown minimum execution time Cmin. The earliest time an instance
can complete is then Cmin after its release; the latest an instance can com-
plete while satisfying its temporal constraints is at its deadline, D after its
release. The greatest time between completion times is found by assuming
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(a)

(b)

Figure 3.1: Temporal constraints for constrained deadline task: (a) shows minimum
response–response time; (b) shows maximum response–response time.

the earliest possible completion of the first instance, followed by the latest
possible completion of the last. The least time can be found by assuming
the opposite (illustrations are given in figs. 3.1a and 3.1b). From this it can
be seen that the time between one response and the nth next response have
the following lower and upper bounds:

min. time from R0 to Rn = n · T +Cmin − D

max. time from R0 to Rn = n · T + D −Cmin (3.1)

When Cmin is not known, a worst-case can be found by assuming it is zero.
This yields the following result:

Observation 3.1 (Temporal Constraints of Constrained Deadline Task). The
specification of a constrained deadline periodic task with deadline D and
period T is equivalent to the following temporal constraints:

min. time from Ri to Ri+n = n · T − D

max. time from Ri to Ri+n = n · T + D (3.2)

for all n ≥ 1, where Ri is the completion of one instance of the task, and
Ri+n is the completion of the nth consecutive instance after Ri.

In other words, for a constrained deadline periodic task, the maximum
response–response jitter for any sequence of instances is ±D. By letting
D = T , the temporal constraints for an implicit deadline periodic task are
obtained:
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Observation 3.2 (Temporal Constraints of Implicit Deadline Task). The spec-
ification of an implicit deadline task with period T is equivalent to the fol-
lowing temporal constraints:

min. time from Ri to Ri+n = (n − 1) · T

max. time from Ri to Ri+n = (n + 1) · T (3.3)

For an implicit deadline periodic task the maximum jitter is ±T , that
is, the completion of two instances can be almost simultaneous, or be up to
almost 2T apart.

An aperiodic task is defined as a task that is released based on some
other criterion than time. Examples include tasks that handle data from an
irregular input stream, interrupt handlers, or tasks that handle non-periodic
events such as errors. A sporadic task is defined as a repeated, aperiodic task
that is also given a minimum inter-arrival time (mit). A mit is necessary
in order to allow schedulability analysis, else the analysis would need to
assume a worst-case where the task executes continuously and inhibits all
execution of lower priority processes.

The mit is an environmental constraint; it cannot be enforced, but vio-
lations can be detected. Depending on the application, several choices are
available for what to do if the mit is violated; examples include ignoring
excess triggers or storing them in a queue. More complex release criteria
can also be implemented, eg, if the sporadic task handles incoming data it
can check whether data is available at the end of each instance, and suspend
itself only if there is nothing left for it to do.

So long as stimuli do not violate the mit, a sporadic task definition is
equivalent to the following temporal constraints:

Observation 3.3 (Temporal Constraints of Sporadic Task). The definition
of a sporadic task with minimum release time T and relative deadline D is
equivalent to the following temporal constraints:

min. time from S i to S i+1 = T

max. time from S i to Ri = D (3.4)

for all consecutive stimuli S i and S i+1, where Ri is the response to stimuli
S i.

Although common, approximating complex temporal constraints with
periodic tasks may cause unacceptable behavior in some real-time systems.
For control systems in particular, low jitter may be essential to control
performance [101]; and as illustrated by observation 3.2, an implicit deadline
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task may exhibit significant jitter without violating its temporal constraints.
As shown in observation 3.1, a constrained deadline task can reduce allowed
jitter by reducing the relative deadline, but this will also limit the available
computation time for the task.

In contrast, by using a repeated sequence of temporal scopes it is pos-
sible to specify precisely both jitter and allocated computation time, but
the temporal constraints will be harder to meet, and a more complex im-
plementation is required.

3.3 Existing Language Primitives

Some languages, such as the Real-time Specification for Java (rtsj), support
the periodic and sporadic task models directly by allowing periods, dead-
lines and even mit violation policies to be specified explicitly when creating
a task. A few, mostly academic languages support some form of direct spec-
ification of stimulus–response type constraints; examples include Real-time
Euclid [60], the Distributed Programming System (dps) [70], Real-Time c

(rtc) [45] and pearl [46]. Of these, only pearl has seen widespread in-
dustrial use.

In most languages, however, support for implementing temporal con-
straints consists of lower level primitives such as delay functions, access to
clocks, and mechanisms for explicitly setting scheduling priorities. In this
section various existing language primitives will be described and evaluated
according to the design criteria of section 3.1.

3.3.1 Primitives for Implementing Deadline Constraints

Most computer systems maintain the same speed whether executing an ur-
gent process or not; the only means of hurrying a process is then, if the
computer is working on several processes at once, to prioritize one over an-
other. This means that deadline constraints must be implemented using
some form of prioritization of processes.

Different types of programming language primitives are available for con-
trolling this prioritization. Four mechanisms will be discussed: relative and
absolute prioritization, and the setting of relative and absolute deadlines.

Primitives that Specify Relative Priorities

Traditionally, occam uses a prioritized parallel (PRI PAR) to specify process
priorities, along with a prioritized alternation (PRI ALT) to prioritize com-
munication. These are relative prioritization primitives, as they can only
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Listings 3.1 to 3.4: Uses of the Prioritized Parallel and Alternation

PAR
PRI PAR
P
Q

PRI PAR
R
S

:

PAR
PRI PAR
c ! x
d ! y

PRI ALT
d ? v
P

c ? u
Q

:

PRI PAR
P
Q

:

PRI PAR
Q
P

:

specify the priority of a process relative to another process referred to in the
same statement. Relative prioritization has multiple issues that complicate
the implementation of real-time constraints; in occam-π the PRI PARs were
removed, and a statement for setting absolute process priorities was added
in their place. However, the mechanism is noteworthy for its unique attempt
at process prioritization, and will be discussed here for completeness.

One problem is that relative prioritization allows several types of ambi-
guity in programs [42]. Combining PAR and PRI PAR, for example, may
lead to parallel processes having incomparable priorities, such as for exam-
ple P and R in listing 3.1. Moreover, it is not well-defined how to handle
combinations of PRI ALT with PRI PAR, especially since they can be used
to specify conflicting requirements: In listing 3.2 the PRI PAR prioritizes
communication on channel c over communication on channel d, while the
PRI ALT does the opposite.

A further problem with the prioritized constructs of occam in particular,
is that compilers do not have to fully support it. The language reference [91]
allows implementations to limit the use of PRI PAR, by prohibiting replica-
tion or nesting, limiting the number of priority levels recognized, or ignoring
it altogether. The Transputer, for example, has only two priority levels,
which made it unsuitable for many real-time applications [108].

Furthermore, relative prioritization does not allow composition with re-
spect to correct implementation of deadline constraints. If one process P
contains two sub-processes with deadlines 10 and 30, and process Q contains
two sub-processes with deadlines 20 and 40, then neither prioritizing P over
Q (listing 3.3) nor Q over P (listing 3.4), will yield the desired results of pri-
oritizing processes according to urgency. To achieve proper prioritization in
general, all processes must be defined in a single, top-level PRI PAR. This
means that it is impossible to have a free structure of real-time processes,
which is one of the essential requirements for process-oriented design.

30



Existing Language Primitives

Finally, the use of PRI PARs suffers from low readability in that a
PRI PAR does not reflect the deadlines being implemented; it is impos-
sible to read an ordering of processes under a PRI PAR and derive the
temporal constraints behind the ordering. This makes the correctness of an
implementation hard to verify by examining the source code.

Primitives that Specify Absolute Priorities

A widely available primitive for implementing deadline constraints is a
Set Priority()-type statement that explicitly sets the scheduling priority of
the current process. This is used by Ada, C/posix, Java, occam-π and
others. However, the quality criteria in section 3.1 immediately suggest
that scheduling priorities should not be used explicitly in code: Like the
prioritized parallel, a Set Priority() statement does not reflect the timing
requirement being implemented; it is essentially unreadable, and its cor-
rectness is impossible to verify in isolation. As an example, consider the
statement

Set Priority(5);

The priority, in this case “5”, only indirectly represents a temporal con-
straint. Its correctness depends on the deadline constraint being imple-
mented, which is not part of the code nor is derivable from it. Its correct-
ness also depends on the priority and deadline of all the other processes in
the system, so that the addition or modification of one process may require
changes to the priority assignments of other processes. Statements that
set priorities are therefore tightly coupled to each other, reducing program
quality.

Primitives that Specify Absolute Deadlines

The conversion from deadlines to priorities is one-way only, so in order to
achieve close correspondence between the specification and implementation
of deadline constraints, there must be explicit references to the deadlines
in the source code. Deadline specifications also have the advantage that
they are uncoupled and therefore modular; unlike a priority specification,
the correctness of a deadline does not depend on other deadlines.

Pearl, as well as some other real-time languages with high-level timing
constructs, only support direct specification of priorities, and are therefore
unable to provide modularity when implementing deadline constraints.

In contrast, support for edf was included in Ada from the 2005-standard
[30]. The support is somewhat incomplete, and other language features that
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Listing 3.5: Example of edf Support in Ada [from 27]

1 task A is
2 pragma Priority(5);
3 pragma Deadline(10); −− gives an initial relative deadline of 10 milliseconds
4 end A;
5 task body A is
6 Next Release: Real Time.Time;
7 begin
8 Next Release := Real Time.Clock;
9 loop

10 −− code
11 Next Release := Next Release + Real Time.Milliseconds(10);
12 Delay Until And Set Deadline(Next Release, Real Time.Milliseconds(10));
13 end loop;
14 end A;

relate to process priorities, such as inheritance and ordering in queues, do
not take deadlines into account [27].

The methods used in Ada to support edf are limited to low-level prim-
itives for setting the absolute deadline of the current task. In reactive sys-
tems, the relative deadlines of the specification must therefore be combined
with clock times before being passed on. Creating an implicit deadline task
with these methods thus requires the programmer to compute the absolute
deadline for each instance, and also to manually insert a suitable delay be-
tween the end of one instance and the release of the next. The deadline of
the first instance of a process must be set separately at compile-time with
a pragma directive.

The example in listing 3.5 [from 27] shows an implicit deadline task with
a period of 10 ms. The assigned priority (line 2) is the preemption level of
the task, which is used for synchronization together with the srp.

Quality wise there are a number of problems with this approach:

1. The preemption level is set explicitly, and its correctness depends on
the relative deadline of all other tasks. This is not an intrinsic problem,
however, as the compiler could be made to infer the preemption levels
from the deadlines.

2. The solution contains multiple statements (lines 3, 6, 8 and 11–12) for
expressing something common to all implicit deadline tasks, indicating
that the level of abstraction is too low.

3. There is a lack of cohesion between the statements controlling the pe-
riod and deadline; their value (ie, “10”) must appear in three different
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statements.

4. The solution suffers from low readability: the intention of the programmer—
to write an implicit deadline periodic task—is not readily apparent
from this construction.

A consequence of these quality issues is that the code in listing 3.5 has
a subtle programming error. The initial deadline is 10 ms after system
initialization, but the Next Release variable is set to 10 ms after the task
is first allowed to execute. This will be later than the initial deadline if the
system contains earlier deadline tasks. The result is a more or less arbitrary
gap between the first two instances of the task.

Most of the statements in listing 3.5 are used to convert relative deadlines
into absolute deadlines, and are required because Ada does not support
setting relative deadlines directly.

The use of Ada is not limited to reactive systems and the Ada prim-
itives must allow implementation of both absolute and relative deadline
constraints. While relative constraints can be implemented using primitives
referring to absolute time, the opposite is not true. Also, it is possible in
Ada to wrap uses of low-level primitives into an object with a higher level
of abstraction (eg, an implicit deadline task class), which can take care of
the details and be easy to use. However, correct implementation of such a
class is not trivial, as shown illustrated by the subtle bug in listing 3.5.

Primitives that Specify Relative Deadlines

The above discussion leaves the specification of relative deadlines as the
preferred way to implement deadline constraints in reactive systems. The
dps and rtc are two languages that allow this.

The dps contains language constructs for explicitly implementing tem-
poral scopes. Each temporal scope is given a mandatory delay part, plus an
optional execution time part and deadline part. For example, implementing
a relative deadline of 20 s for a body of code is written

start now within 20 sec do
/∗ body ∗/

end

It is also possible to specify a form of exception handling for when a deadline
is missed. Similarly, in rtc, relative deadlines can be implemented by using
a within deadline construct. Here, a deadline miss can be handled by using
an optional else clause, as in
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Listing 3.6: Incorrect Implementation of Periodic Task in C/posix

unsigned next = clock();
while (1) {

P();
next += 1000000; // microseconds
usleep(next − clock());

}

within deadline(60) {
/∗ body ∗/

} else {
/∗ handle missed deadline ∗/

}

These methods for implementing deadline constraints are readable and pro-
vide one-to-one correspondence between the specification and the imple-
mentation. They also allow deadlines to be specified locally.

Direct specification of relative deadlines is also possible in the rtsj, as
part of a real-time task’s PeriodicParameters. However, this does not affect
scheduling priority, and is only used for detecting missed deadlines.

3.3.2 Primitives for Implementing Delay Constraints

Consider the problem of assigning a one second period to a periodic task
using a relative delay function. A very naive implementation would be to
insert a one second delay at the end of each instance; this ensures that the
task will execute at most every second, but its period is likely to be longer
than that, because the delay does not take into account the execution time
of the task itself. Each release would be further delayed compared to a task
with a perfect one second period, and the task is said to experience drift.

A more complex, but still naive, implementation is to compute the next
point of release, and delay for the remaining time difference using a sleep()-
like mechanism to produce a relative delay. An example is shown in list-
ing 3.6.

This implementation suffers from a race condition, which will be referred
to as the clock–delay race: The problem is that time will elapse between
the reading of the clock and the call to usleep(), so although the task will
not experience drift, every release will be delayed for too long, reducing the
execution time available for the task (this phenomenon is sometimes referred
to as local drift). The effect of this delay is greatly increased if the process is
preempted by a higher priority process in the critical section between reading
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Listing 3.7: Correct Implementation of Periodic Task in C/posix

struct timespec next;
clock gettime(CLOCK REALTIME, &next);
while (1) {

P();
next.tv sec += 1; // 1 second
clock nanosleep(CLOCK REALTIME, TIMER ABSTIME, &next, NULL);

}

the clock and delaying. The normal method for ensuring that a process is
not preempted—making it non-preemptible—cannot be used, because the
critical section ends in a delay: If the process is non-preemptible while it
sleeps then other processes are prevented from executing, but if it makes
itself preemptible before the delay then the race condition reappears.

One way to avoid these problems is to use a delay primitive capable
of delaying until an absolute clock time, such as delay until in Ada or
clock nanosleep() in C/posix. An example of using the latter is given in
listing 3.7.

In reactive systems, delays are always relative to a stimulus or a response.
The need to use absolute times to implement these delays is therefore un-
fortunate; in listing 3.7 this complicates what would otherwise have been a
trivial one-liner. This poses a problem for designing a high quality delay
primitive for reactive systems: Relative delay statements cannot be used di-
rectly because of the clock–delay race, but absolute delays are undesirable,
because they require extra code to use, and, in reactive systems, are never
directly required.

A solution is to have the delay statement specify delays relative to some
given point in code, rather than being relative to the beginning of the delay
statement itself. For example, in the rtsj, the period of a task can be
set explicitly, and the waitForNextPeriod() function can be called to delay
until the next periodic release. This function will also update the relative
deadline and other properties that change with each release.

Other high-level primitives for delays and periods include the start after

and every statements of the dps; here, a periodic task with a period of 10 s
can be written

from every 10 sec within 10 sec do
/∗ body ∗/

end

The same periodic task can be written in rtc using an every block:
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every (10) {
within deadline (10) {

/∗ code ∗/
} }

These approaches are much simpler than the equivalent Ada implementation
in listing 3.5, largely because the latter needs to compute absolute deadlines
and delays from a relative specification.

A problem with the above construct in rtc, however, is that it does not
guarantee that the every statement and the within deadline statements are
synchronized, which could increase local drift.

3.3.3 Primitives for Implementing Environmental Constraints

The environmental constraints are those relating to the timing of stimuli
from the environment. Implementation of these constraints consists of tim-
ing these stimuli, and taking appropriate actions if a stimulus comes too
early or too late. Such stimuli will be referred to as events, and a language
primitive that implements this by explicitly handling an event or timing out
will be called a handle–timeout construct.

When handling an environmental constraint there is typically no syn-
chronization between the process raising the event and the handler. It is
therefore necessary to take into account that events may be raised when
the handler is not ready. Likewise, a timeout is essentially an explicit race
condition, and one must decide what to do with events that are raised after
the timeout expired.

• One choice of action is to discard all events that are raised when the
handler is not ready to accept them. This can be implemented using
for example suspend–resume, with the handler calling suspend() on it-
self and the triggering processes calling resume() on the handler. Note
that this mechanism involves another race condition: If the handler
becomes ready just before the event is raised then the event will be
handled; if it becomes ready just after then the event is discarded.

• Another choice is to use a binary semaphore-style mechanism to imple-
ment the event handler. This allows up to one raise to be remembered
when the handler is not ready. Using a binary semaphore prevents any
single event from being discarded due to a race, but there is still a race
condition as to whether two consecutive events will be handled once
or twice.
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Listing 3.8: A Handle–Timeout Construct in the dps

accept on (port1, port2) within 10 sec
when port1 (arg) : /∗ statements ∗/
when port2 (arg) : /∗ statements ∗/
when timeout : /∗ statements to handle timeout ∗/

end accept

Listing 3.9: A Handle–Timeout Construct in Ada

select
accept Trigger do

A;
end Trigger;

or
delay 1.0;

B;
end select;

• It is also possible to use a counting semaphore-style mechanism, which
will avoid race conditions altogether by always providing one handling
of the event per raise. However, this is not appropriate for all types
of events; examples include events that cause the system to wake up
from a sleep state.

A handle–timeout construct is supported directly by the dps; the syntax
is illustrated in listing 3.8. In C/posix, semaphores can be used, by using
sem wait() to wait for an event, or its timed counterpart, sem timedwait()
to combine an event handler with a timeout. Signaling the event with
sem post() is then used to raise the event.

A handle–timeout construct can be used to implement both timeout
constraints and minimum delay constraints. For example, the Ada construct
in listing 3.9 will call A if Trigger is called before 1.0 s has elapsed; otherwise
B will be called. If implementing a timeout constraint, then A is called if the
constraint is satisfied and B otherwise; if implementing a minimum delay
constraint, then B is called if the constraint is satisfied and A otherwise.
By nesting the construct it is also possible to implement both types of
constraints for a single stimulus.

In the rtsj, there are no dedicated handle–timeout constructs. Instead,
an independent timer such as a OneShotTimer can be used to respond to
the timeout, while a separate thread waits for the event. The lack of direct
handle–timeout support is somewhat mitigated by having explicit support
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for sporadic tasks; the rtsj allows both a mit and a mit violation policy
to be set directly. The possible mit violation policies are IGNORE, which
ignores violating triggers; EXCEPT, which does the same, but also raises an
exception in the thread firing the trigger; REPLACE, which merely changes
the deadline of the current task instance; and SAVE, which creates a queue
of triggers to be released successively.

The handle–timeout constructs are high quality language primitives and
satisfy the design criteria in section 3.1: They are readable and concise, and
allow timeout constraints to be implemented directly and to be localized in
code. Moreover, by integrating the primitive for handling the event with
the timeout primitive, the language (or library) can ensure that the timeout
is atomic and therefore safe; a manual implementation would need to take
care in order to handle an event and a timeout that happen close in time.

3.4 New Language Primitive: The Time-Construct

In section 3.3 it was argued that most existing primitives for specifying
deadline and delay constraints have too low level of abstraction, resulting
in implementations of low quality. It was also argued that this is not true
for the handle–timeout construct—a common primitive for specifying envi-
ronmental constraints.

Existing languages that do support high-level primitives for specifying
deadline and delay constraints, such as the dps and rtc, have limitations
that make them unsuitable for process-oriented programming as these lan-
guages support neither synchronous communication nor an arbitrary struc-
ture of parallel processes. A new primitive for implementing deadline and
delay constraints will therefore be developed that supersedes these existing
high-level primitives. It will be explained how this primitive can be used,
together with a handle–timeout construct, to create high quality implemen-
tations of periodic and sporadic tasks plus a wide range of stimulus–response
type constraints, in a manner that is compatible with process-oriented de-
sign.

3.4.1 The Time-Construct

The reasoning behind the new primitive follows an observation about the
relationship between the deadline of a process, and the release of a process
following in sequence:

Observation 3.4 (Duality of Deadline and Delay Constraints). Say process
B is executed in sequence after process A. If B must be guaranteed a release
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before time d, then the deadline of A cannot be later than d. Conversely, if
d is the deadline of A, then B cannot be guaranteed a release before d.

Moreover, if d is in fact the absolute deadline of A, then there cannot
be any temporal constraints that require B to be released before d. As
a consequence, if A completes earlier than d, the termination of A, and
therefore the release of B, can be delayed until d without violating any
temporal constraints.

Now, consider the case where B should not be released until some time
r later than d. This can be implemented by inserting an empty pseudo-
process C between A and B, and setting deadline of C and the release of
B to r; again, the deadline of a process can be set to the same time as
the release of a process following in sequence. This is the basis for the
time-construct:

Definition 3.2 (The Time-Construct)
The time-construct takes a process P and assigns it a time t, both as mini-
mum response time, and as maximum desired response time.

Each time-construct thus defines a temporal scope. The maximum re-
sponse time property of the construct sets a relative deadline. It is specified
only as “desired” to account for the possibility that the actual response time
exceeds t, which may happen during scheduling overload, or due to incon-
sistent temporal specifications. The minimum response time property sets a
minimum time from release to when the construct is allowed to terminate; in
practice this is the earliest release time of processes following in sequence.
In contrast to the maximum response time, the minimum response time
property can be enforced by adding a sufficiently long delay.

The time-construct can be used to create deadlines, periods, delays, spo-
radic and periodic tasks, and a wide range of other temporal scope specifica-
tions. The idea of the time-construct is language-independent: the examples
in this chapter will use a C-like syntax; in chapter 4, the construct is given
an occam-like syntax.

3.4.2 Required Properties of an Implementation

For the time-construct to work as intended, the language and run-time sys-
tem must behave in certain ways. An important element is how the base
time of the construct is defined: the time which is used to compute the
absolute deadline of a construct from its relative time parameter. The ba-
sic principle is that the base time should be the deadline of the preceding
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Table 3.2: Use of the Time-construct

Description Code

1 Set deadline d to P. The block may not terminate
before its deadline.

time (d) {
P();

}

2 Delay for t. time (t) {
}

3 Implicit deadline periodic task executing P with
deadline and period equal to t.

while (true) {
time (t) {

P();
}

}

4 Constrained deadline periodic task executing P,
with relative deadline d and period t.

while (true) {
time (t) {

time (d) {
P();

}
}

}

5 Sporadic task executing P, with a relative dead-
line and mit of t, released once for each signal of
the semaphore sem.

while (true) {
sem wait(&sem);
time (t) {

P();
}

}
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time-construct, or if there was no immediately preceding time-construct,
the completion time of the previous statement. In particular, the following
properties are required by an implementation:

Property 3.1: If two time-constructs are arranged in a sequence then the
latter should have its base time set to the deadline of the first. Loops count
as sequences.

Property 3.2: If two time-constructs are separated only by flow control mech-
anisms (eg, if, while) then they should count as being in sequence.

Property 3.3: If the body of a time-construct begins with another time-
construct, then the two constructs should have the same base time.

Property 3.4: After a time-construct terminates, determining the deadline
of any time-constructs that follow in sequence, or count as following in
sequence, must be considered urgent.

Properties 3.1 and 3.2 eliminates drift and improves readability: A time-
construct in a loop will then implement a periodic task without drift, and
sequences of time constructs will have a final deadline and combined mini-
mum response time exactly equal to the sum of the times of the constructs.

Property 3.2 is also necessary to allow conditional time-constructs and
to ensure that a loop with a time-construct behaves like a sequence of con-
structs, even when it requires evaluation of a loop condition. A consequence
of this rule is that the evaluation of expressions used in control structures
will fall under the deadline of the succeeding construct.

Property 3.3 allows a relative deadline and a minimum response time to
be set separately, but relative to the same base time, and property 3.4 is
needed to ensure that the system is aware of all its pending deadlines.

3.4.3 Implementing Periodic and Sporadic Tasks

The properties of the time-construct makes it suited for creating periodic
and sporadic tasks. Because a deadline and minimum termination time is
set simultaneously, an implicit deadline task requires just one time-construct
and a loop (row 3 in table 3.2). The implementation is quite readable: An
implicit deadline task is a loop where each iteration takes t units of time.

If two time-constructs are nested then the innermost process will be
assigned two deadlines and two earliest termination times, and must satisfy
both sets of constraints. Meeting both deadlines is implied by meeting the
earlier of the two deadlines, and not terminating until any of the earliest
termination times is implied by not terminating until the latest earliest
termination time. A constrained deadline task can therefore be written by
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Listing 3.10: Low-Jitter Controller using the Time-Construct

while (true) {
time (1) {

/∗ Take measurements ∗/
}
time (98) {

/∗ Compute output ∗/
}
time (1) {

/∗ Set output ∗/
}

}

nesting two time-constructs in a loop (row 4); the innermost construct sets
the deadline and the outermost sets the period. Arbitrary deadline tasks
(ie, allowing d > t) are not as easily constructed using time-constructs;
the behavior if the inner construct has a larger time value than the outer
construct will be the same as if the two constructs were swapped (although
in the first case it will register as a deadline miss for the outer construct).

A sporadic task is written by having a time-construct following an event
handling mechanism (row 5). In this example, the task has a deadline and
a mit of t; a deadline shorter than the mit can be implemented by adding
a nested time-construct.

The implementation of tasks in the manner shown relies on the system
having all of properties 3.1 to 3.4. Property 3.1 is needed to avoid drift
between instances; the base time of the next iteration must be set exactly
to the deadline of the preceding instance. Property 3.2 is needed because
there is a loop condition; here it is just “true”, but it could be of arbitrary
complexity. Property 3.3 is required for the constrained deadline task, to
ensure that the deadline counts from the time of the release of each instance.
Finally, property 3.4 is required so that the scheduler is made aware of the
deadline of the next instance as soon as it is ready; it may be the earliest in
the system.

3.4.4 Implementing Stimulus–Response Type Constraints

More complex temporal constraints can also be implemented using the time-
construct. For example, consider the control loop illustrated in listing 3.10.
The loop has a period of 100 time units, with one unit allocated to taking
measurements and one to setting the outputs, while the remaining 98 is allo-
cated to computation. The period here is not set explicitly, but can be read
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Listing 3.11: Combining Handle–Timeout and Time-Constructs

while (true) {
struct timespec timeout = { 1, 0 }; /∗ one second ∗/
if (!sem timedwait(&sem, &timeout)) {

time (100) {
time (10) { /∗ event received, do something normal ∗/

P();
}

}
} else {

time (2) { /∗ timed out, do something urgent ∗/
Q();

}
}

}

by taking the sum of the individual time-constructs. The implementation
in listing 3.10 is as concise as is possible; every time-construct corresponds
to exactly one temporal constraint.

An example of implementing an environmental constraint is given in
listing 3.11. Here, a sporadic task is triggered by a semaphore with a timeout
of one second. If a trigger is handled before the timeout then P is executed
with a deadline of 10, and a minimum of 100 time units is required until
next release. On timeout Q is executed with a deadline of 2, and the next
release can be accepted immediately after the deadline. Again, note that
each time value in the specification corresponds to exactly one statement in
the implementation.

3.5 Synchronous Communication in Real-Time Systems

Communication between processes will typically require some form of syn-
chronization; this may in turn disrupt their temporal behavior and reduce
their ability to satisfy temporal constraints.

In shared-memory based systems, synchronization between processes oc-
cur whenever one process attempts to access a resource currently held under
mutual exclusion by another process. Synchronization protocols (eg, the
pip, pcp or srp) are used to manage these accesses in order to minimize
the effect they have on whether processes meet their deadlines, by transfer-
ring some notion of urgency from the process being blocked to the process
causing the blocking.

Process-oriented systems do not traditionally associate notions of ur-
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gency with communication. The prioritized alternation, for example, cannot
be used to take the urgency of the sender into account, only the preferences
of the alternation process. Some work has been done on the theory of
message-based priority in csp [68], but this has not resulted in alternative
process-oriented programming techniques or language primitives.

In real-time programming, managing the temporal aspects of communi-
cation is essential, in order for the implementation of real-time requirements
not to be undermined by the side effects of communication. Synchronous
communication, as used in process-oriented programming, has different ef-
fects on the timing of the processes involved than communication by sharing
memory, and will require a different kind of run-time support in order to
work well in a real-time setting. Several guidelines have been set out for
how to best use shared memory-based communication in a real-time set-
ting (examples include keeping critical sections short, and not nesting them
when using the pip [eg, 107]). In this section, similar guidelines are set out
for synchronous communication.

3.5.1 Synchronization Protocols for Synchronous Communication

Unless some notion of urgency is associated with the need to communicate
then priority inversions will quickly ensue; while process A is waiting to
communicate with process B, then B must be considered at least as urgent
as A.

When scheduling synchronous entry calls in Ada, the process with the
entry will have its priority raised to the highest of any of the processes
that wait for it, thus limiting priority inversions to one level. However,
the mechanism only works one way: if the process serving the entry has a
deadline for itself, then it cannot raise the priority of the process it is waiting
for because it does not know which it is—any number of processes may make
calls to the same entry, and as callers do not commit in advance there is no
method for determining who the next caller will be. For a synchronization
protocol to be effective, an urgent process must always be able to identify
the processes that are blocking it. If this process can be identified, and
its relative urgency increased, then unbounded priority inversions can be
avoided:

Observation 3.5. Sufficient and necessary conditions for developing a syn-
chronization protocol is that for each urgent process that is blocked, it must be
possible both to identify which process that it is waiting for, and to promote
the execution of this process, eg, by raising its scheduling priority.
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Two synchronization protocols for the special case of client–server sys-
tems are developed in section 6.3. Here, client processes may have deadlines,
but when a client wishes to communicate, it must be by performing a call
to a specific server process. Server processes may accept calls from multiple
clients without knowing which will perform a call first, but are not allowed
to have deadlines. Therefore, it is never necessary to increase the urgency of
a potentially undetermined client in order to meet the deadline of a server,
and the requirement in observation 3.5 is satisfied.

In occam, channels are one-to-one, so a synchronization protocol can be
implemented that will work with channels and that is symmetric (one is
developed in section 4.4.4); though a related problem occurs if there is an
explicit deadline for completing an alternation. Therefore, in general,

Observation 3.6. Processes that communicate with an unspecified client,
such as occam ALT or Ada select, should not be subject to deadline con-
straints of their own.

The restriction only applies to programs where it is urgent that some al-
ternating process communicates, but it is deliberately specified as non-
deterministic which process that it should communicate with. Such a con-
struction is not likely to be part of a real-life program, so the restriction in
observation 3.6 is not likely to be problematic in practice.

3.5.2 Inconsistent Specifications

When communication is synchronous it is not difficult to construct programs
where communication between processes makes it impossible for them to
satisfy their temporal constraints, no matter which synchronization proto-
col is applied. For instance, if A wants to communicate synchronously with
B, but only after at least 10 seconds, and B wants to communicate syn-
chronously with A, but not later than in 5 seconds, then the specifications
are inconsistent and cannot both be satisfied. If using the time-construct,
then the deadline constraint will yield for the delay, and B will be said to
have stalled.

In general, a process with a deadline constraint should therefore never
attempt to synchronize with a process that may be subject to a delay con-
straint. Although such an arrangement could be made to work if the pro-
cesses were both written with this in mind, the resulting code would nev-
ertheless have low quality, as changes in the temporal specification of one
process could cause unexpected problems in the other.
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Observation 3.7. To avoid stalls, a process subject to a deadline constraint
should not communicate synchronously with a process that may be subject
to a delay constraint.

Observation 3.7 prohibits direct synchronous communication between
processes that contain time-constructs. In process-oriented systems, such
processes should instead communicate via an intermediate process, which
could serve as a form of temporal buffer between the processes—though this
will only work if the purpose of the communication is the exchange of data
and not the synchronization in itself.

Raising an event is a type of communication where the source has a dead-
line constraint, and where the target in many cases has a delay constraint
(eg, a mit). The purpose of the communication, as seen from the source,
is to mark a point in time that may be used as a reference for temporal
constraints belonging to the target process, and thus temporal buffering is
not permissible. A consequence of observation 3.7 is therefore the following:

Observation 3.8. Mechanisms for raising events or triggering sporadic
tasks should not be synchronous.

As an example, consider the handle–timeout construct in listing 3.9:
Unless the triggering mechanism is asynchronous, the process raising the
event will be blocked when the handler is not ready or has timed out. This
is usually not desirable; even less so if the event is raised from performance
critical code such as an interrupt. In Ada, a non-blocking raise can be
implemented in the triggering process by using a conditional entry call rather
than committing to a regular entry call. Then, the event will not be raised
unless the handler is ready, resulting in a non-blocking suspend–resume style
triggering mechanism.

A similar restriction is implied by observation 3.5. Say a process wishes
to communicate with an event handling process, but not in order to raise
its event. If the handling process is currently waiting for an event then
there is no way to hurry its execution. Therefore, in order to enable the
use of synchronization protocols, no process should take the initiative to
communicate synchronously with an event handling process.

3.5.3 Deadlock

Process-oriented programs often conform to a design pattern that helps
guarantee the absence of deadlocks. One is the client–server paradigm [78,
105]. Here, each process acts as either a client or a server in each commu-
nication, and each communication is initiated by a request and terminated
by a reply.
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Theorem 3.1 (Welch et al. [105]). If the following three criteria are met,
then the system is deadlock-free:

1. Between a request to a server and the corresponding reply, a client
may not communicate with any other process.

2. Between accepting a request from a client and the corresponding reply,
a server may not accept requests from other clients, but may act as a
client to other servers.

3. The client–server relation graph must be acyclic.

An advantage of this method is that it works well with the requirement
in observation 3.5 and is therefore well suited to use with a synchronization
protocol.

An alternative design pattern for deadlock-freedom is io-par [105], where
absence of deadlock is guaranteed when all processes proceed in a sequential
cycle of computation followed by all io in parallel. The whole system must
progress in this fashion, similar to bulk synchronous parallelism (bsp) [93].
This pattern is not so suitable for real-time systems, because it implies that
synchronization must always involve all processes, inhibiting the specifica-
tion of local delay and deadline constraints.

It is also possible to use a model checker such as spin [57] or fdr2 [43]
to prove the absence of deadlocks under more general conditions.

3.6 Discussion

At the beginning of this chapter, a list of four criteria for a high quality real-
time language primitive was given, derived from the programming quality
criteria in definition 2.1. The primitive should (1) be safe and behave intu-
itively, (2) be concise and at an appropriate level of abstraction, (3) allow
one-to-one correspondence between a requirement in the specification and
that requirement in the implementation, and (4) be maintainable and not
tightly coupled to other parts of the program.

Existing primitives for implementing temporal constraints were evalu-
ated with respect to these criteria. It was found that in general, using
primitives at a low level of abstraction leads to low quality programs, and
moreover, that a real-time language targeting reactive systems should have
primitives that allow explicit specifications of relative temporal constraints,
rather than using primitives based on absolute time, as this will greatly
increase readability.
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The time-construct satisfies these criteria. It is safe, in that it has two
basic functions which it performs: it sets the deadline and minimum termi-
nation time, with the minimum termination time always being maintained,
and the deadline being maintained if possible. It allows concise and read-
able implementations of temporal constraints for reactive systems; typically
with one statement per timing requirement. Also, the deadlines set by a
time-construct are not coupled to other constructs, which helps maintain
modularity of temporal implementations.

It may be argued that the setting of deadlines and termination times
represents two functionalities that should not be made into one statement,
and that time-constructs therefore have weak cohesion. The design of the
construct was motivated by observation 3.4, noting the duality between the
deadline constraint of one process and the release of the process following
in sequence. This duality is what allows the simple implementation of eg,
the implicit deadline task and the controller in listing 3.10. Also it allows
an intuitively simple reading of code using the time-construct: A time-
construct with time t will require t time to execute. Nevertheless, as a
result of this dual functionality there are certain sets of temporal constraints
cannot be implemented using time-constructs, such as periodic tasks where
D > T .

Several observations were made concerning the use of synchronous com-
munication in a real-time setting. Observation 3.5 describes a necessary
condition for developing a synchronization protocol: whenever an urgent
process is blocked it must be possible to identify which process it is waiting
for and to promote the execution of that process. Observation 3.6 notes that
this condition is not satisfied for entry calls or alternations whenever the ur-
gency of the alternating process is higher than that of any potential clients.
This implies that some restrictions on process organization are necessary in
order to apply synchronization protocols to synchronous communication.

The simultaneous setting of deadlines and termination times has an im-
pact on which processes that can communicate without causing stalls. Ob-
servation 3.7 implies that when using time-construct to implement temporal
constraints, two processes that contain time-constructs should not commu-
nicate directly; this is more restrictive than if deadline and delay constraints
were specified separately.

Observation 3.8 stated that mechanisms for raising events or triggering
sporadic tasks should not be synchronous, as it may cause the firing process
to stall. This necessitates the inclusion of at least one non-synchronous
mode of communication even in a process-oriented system.

Finally, deadlock avoidance in synchronously communicating systems
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was discussed, and it was concluded that one technique for avoiding dead-
locks, the client–server paradigm, is suitable for real-time systems; while
another, io-par, is not. Guaranteeing the absence of deadlock is a neces-
sary condition for schedulability analysis, and the client–server paradigm
will be used for this during the analysis in chapter 6.

The next chapter introduces the programming language Toc, which de-
scribes an implementation of the time-construct in a process-oriented lan-
guage. A case study of controlling an elevator is performed; the quality and
usability of the time-construct is then discussed based on concrete examples.
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Chapter 4

The Toc Programming Language

Wouldn’t the sentence “I want to put a
hyphen between the words Fish and And
and And and Chips in my
Fish-And-Chips sign” have been clearer
if quotation marks had been placed
before Fish, and between Fish and and,
and and and And, and And and and, and
and and And, and And and and, and
and and Chips, as well as after Chips?

M. Gardner

The previous chapter discussed the design of real-time language prim-
itives for process-oriented systems with respect to program quality. It was
argued that the specification of explicit temporal scopes using time and
handle–timeout constructs would allow a wide range of temporal constraints
to be implemented in an intuitive manner. A few observations were also
made regarding the use of synchronous communication in real-time systems.

In this chapter, these findings will be used to design a process-oriented
real-time programming language, which will be called “Toc”. Toc is based
on a subset of occam 2.1, with the addition of the new timing primitives,
and a new, real-time scheduling model. A prototype compiler and run-time
system have been developed for Toc.

4.1 Introduction

The primitives described in the previous chapter were language independent,
so in order to experiment with them they had to be integrated into an actual
language. occam 2.1 was chosen as a basis for this language because of its
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simplicity and consequent ease of implementation. Also, being a process-
oriented language, occam is able to realize the high quality implementation
of concurrency that was hoped to achieve for the implementation of temporal
constraints.

An important part of the design of a real-time, concurrent language is the
scheduling model. It was decided to use edf for scheduling Toc programs,
because this was thought to be a better match for the time-constructs, which
use deadlines in their specification.

Another scheduling design choice is what to do with a process that is
neither subject to temporal constraints of its own, nor needs to be executed
in order for other processes to meet their temporal constraints. In fixed
priority systems one may set a default priority that applies to such processes.
When using edf it would be possible to assign a default deadline, such as a
“very late”deadline, later than any deadlines specified explicitly. The default
priority or deadline could then be used for background tasks, so that they
are scheduled for execution only when no real-time tasks are eligible for
execution.

The Toc scheduler on the other hand, does not set default scheduling
parameters this way. Instead, the Toc scheduler is lazy , and only executes
code that must be executed in order to meet a deadline. Code that is not
subject to a deadline constraint will never be executed, even if the system
is otherwise idle. This choice is motivated by the following hypothesis:

Hypothesis 4.1 (Laziness Hypothesis). Any part of a real-time system that
cannot be given a deadline for its completion can be omitted entirely.

The initial arguments in favor of the hypothesis were (1) that if the
execution of some component of a program can be postponed indefinitely
without violating the system specification, then that component is in fact
not required, and the system will satisfy its specification even without this
component. (2) Conversely, if the execution of a program component can-
not be postponed indefinitely, then it has, by definition, a deadline for its
completion.

Experimenting with the validity of the laziness hypothesis and the prac-
tical implications of using a lazy scheduled real-time programming language
were some of the motivations behind the implementation of Toc.

4.1.1 Outline

This chapter continues with a brief introduction to occam 2.1, on which
Toc is based. The details of the Toc language are presented in section 4.3;
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the Toc scheduler in section 4.4. In section 4.5, some details about the
implementation of the compiler and run-time system are discussed. Sec-
tion 4.6 presents a case study where Toc is used to control a model elevator.
The chapter concludes with a discussion about the usability of Toc and the
validity of the laziness hypothesis.

4.2 The occam 2.1 Programming Language

Toc is based on occam 2.1, a concurrent, process-oriented, imperative pro-
gramming language inspired by csp. This section provides a brief introduc-
tion to the language and its scheduling model.

4.2.1 occam 2.1 Language Fundamentals

Only a very brief presentation to occam will be given here. The reader may
refer to the language reference [91] for a more in-depth introduction.

occam does not have quite the same lexical rules as other languages.
For example, periods (.) are permitted in identifiers, and asterisks (*) are
used rather than backslashes as escape characters in strings. Also, occam
uses layout resolution rather than curly braces to identify blocks of code, as
does for example Python and Haskell, but the occam rules are more strict
and requires each block level to add exactly two spaces of indentation.

All occam programs are constructed using a set of primitive processes.
In occam 2.1 these are assignment (:=), channel output (!), channel input
(?), SKIP, which does nothing, and STOP, which halts the program. There
are also primitive processes for reading clocks and for timeouts.

Composite processes are made by using a set of compound constructors.
These are SEQ, PAR, ALT, IF, WHILE and CASE. The compound processes
SEQ, PAR, ALT, and IF may be replicated by using the FOR keyword.
They may also be nested. Perhaps uniquely to occam, the SEQ constructor
is needed to make two statements execute in sequence. The constructors
PAR and ALT may also be prioritized, as discussed in section 3.3.

occam contains the typical set of arithmetic, logical and bitwise opera-
tors found in eg, C, but unlike C, occam expressions cannot have side effects.
Also, there is no operator precedence or associativity, so all expressions with
more than one binary operator must be parenthesized.

In occam, sharing a variable between parallel processes is not legal un-
less it is used read-only by all the parallel components; instead, processes
communicate using channels. Channels may be used to exchange primitive
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data such as integers, but may also have more complex protocols, including
sequence protocols and case protocols.

The alternation (ALT) is used to explicitly introduce non-determinism.
An ALT contains a set of pairs of guards and actions: a guard consists of a
Boolean expression and/or a channel communication; an action may be any
process. The ALT will execute one non-deterministically chosen action for
which the associated guard is open; that is, if it has a boolean expression
then this must evaluate to TRUE, and if there is a channel, then it must be
ready to communicate. In occam 2.1, a communication guard can only be
an input process.

Safety in occam 2.1 is ensured by a set of usage rules. One rule states
that if a channel is shared by multiple components in a PAR, then it may
only be used for input by one parallel component, and only for output by one
parallel component. Another rule states that a variable that is assigned to
by any component in a PAR may not be referenced by any other component
in that PAR. There are several other usage rules, such as a rule prohibiting
aliasing (referring to the same variable by different names).

The usage rules are enforced at compile-time. For all usage rules, the
elements of an array may be considered separate variables with respect to
the rules, but only if it can be determined at compile-time that the usage
rules for each individual element are not violated.

An extended rendezvous is a language extension from occam-π that is
not part of occam 2.1. It allows the programmer to force the execution
of a process “in the middle” of a channel communication; that is, after
the processes have rendezvoused but before they are released. The process
to execute is called the during-process. occam-π only supports extended
inputs, which are written using the double question-mark operator, as in

channel ?? var
During(var)

Extended rendezvous turned out to be a necessary addition to the Toc
language (this will be explained in section 4.4.6). For more information
about extended rendezvous or other occam-π language extensions, see the
occam-π quick reference guide [103].

4.2.2 occam 2.1 and Fairness

As a concurrent, non-real-time language, occam 2.1 has an execution model
based on non-determinism: it is generally not defined which process to
execute, or which alternative to take, if multiple choices are available.
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In non-real-time systems, programmers tend to expect that the sched-
uler is reasonably fair and allows each process a more or less equal share
of processing time [69], and most non-real-time schedulers maintain at least
some degree of fairness. However, because scheduling decisions in non-real-
time programs should be considered non-deterministic from a programmer’s
point of view, the correctness of a well-written program should not depend
on the decisions made by the scheduler. If fairness between processes is sig-
nificant for an implementation to work, then this must be handled explicitly.
The following examples illustrate this.

Example 4.2.1 (Fairness in Go)
Consider the Go program in listing 4.1, which prints "a"s and "b"s in par-
allel to stdout. An execution of this program (compiler: 6g r60.3 9516)
resulted in the sequence

〈a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b, . . . 〉 (4.1)

with minor deviations from perfect alternation occurring every few thousand
elements. An execution of the same program when compiled with a different
compiler (gccgo 4.6.1) resulted in the more irregular

〈b, b, b, b, a, b, b, a, a, b, a, b, a, b, a, b, a, b, . . . 〉 (4.2)

There is nothing in the program in listing 4.1 that dictates fairness, so
none of these outputs can be considered more correct than the other. In
fact, an output in which only "a"s were printed could also be considered
equally correct.

Unlike the internal scheduler in Go, an occam 2.1 scheduler typically
makes no attempt at being fair. occam 2.1 has a prioritized alternation con-
struct, PRI ALT, which guarantees priority to textually earlier alternatives,
unlike the standard ALT, which makes no such guarantees. However, most
compilers treat every ALT as a PRI ALT [69], making ALT and PRI ALT

equally unfair. Similarly, there is a PRI PAR, which guarantees priority to
textually earlier processes, as opposed to the PAR which makes no such
guarantees, but again, a programmer cannot rely on a PAR to exhibit more
fairness than a PRI PAR.

Example 4.2.2 (Fairness in occam)
As an illustration of this, consider the occam 2.1 program in listing 4.2,
which also prints "a"s and "b"s in parallel to stdout. The occam version is
more complex than the Go version, mainly because it is not legal in occam
for two processes to share stdout, so that a separate process must be made
to function as a multiplexer.
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Listing 4.1: Fairness of Go

func printer(s string) {
for {

fmt.Println(s)
}

}
func main() {

go printer(”a”)
go printer(”b”)
runtime.Goexit()

}

Listing 4.2: Unfairness of Occam

PROC output.multiplexer (CHAN BYTE out, [ ]CHAN BYTE input)
WHILE TRUE
BYTE in:
ALT i = 0 FOR SIZE input
input[i] ? in
SEQ
out ! in
out ! ’∗n’ −− newline

:
PROC printer (CHAN BYTE channel, VAL BYTE c)
WHILE TRUE
channel ! c

:
PROC main (CHAN BYTE stdin?, stdout!, stderr!)
[2]CHAN BYTE cs:
PAR
output.multiplexer(stdout, cs)
printer(cs[0], ’a’)
printer(cs[1], ’b’)

:
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Executing this program (compiler: kroc 1.4.0) results in the sequence

〈b, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, . . . 〉 (4.3)

After the first "b" the program will only print "a"s.

The favoring of "a"s in example 4.2.2 occurs because the ALT is, in effect,
implemented as a PRI ALT. Being completely unfair may be counterintu-
itive, but it has the advantage of not even giving the illusion of fairness; an
illusion which could conceivably cause failure in systems where fairness is
required, and where the scheduler behaves fairly in most, but not all of the
time. For example, a programmer that only checks the first few hundred
lines of output from eq. (4.1) may be lead to believe that this program is
perfectly fair, and will output "a"s and "b"s in perfect alternation, even
though this is not the case.

The choice of being completely unfair has a similar rationale to the
laziness hypothesis: a programmer cannot rely on a program exhibiting
behavior that is not required of it, and if something is not required, then it
may be omitted.

In contrast to occam, Toc is a real-time programming language, so no-
tions of fairness are less relevant. Instead, most scheduling decisions are
made based on real-time constraints. However, there may still be situations
where real-time constraints are not sufficient to decide which processes that
are to be executed, for example when several parallel processes must be
executed to meet a single deadline. In these situations, the Toc scheduler
will behave like the occam scheduler, and schedule eligible processes without
providing any kind of fairness guarantees.

4.3 The Toc Programming Language

Toc is based on a subset of occam 2.1, and—except for some additions and
omissions—has the same structure of primitive and compound processes,
and requires programs to satisfy the same usage rules. Toc is to be con-
sidered an experimental language, and some features of occam 2.1 that did
not seem necessary for experimenting with Toc have been omitted. There
are also minor syntactic differences, mostly made because they simplified
writing the Toc compiler; these are to be considered limitations of the ex-
isting version rather than changes made for their own sake, and are listed
in section 4.5. The complete syntactic and lexical structure of Toc is listed
in appendix A.
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Table 4.1: Use of the TIME Construct

Use Code

Set deadline d milliseconds to process P. The con-
struct may not terminate before its deadline.

TIME d MSEC
P()

Delay for t seconds. TIME t SEC
SKIP

Periodic task executing process P, with deadline
and period equal to 10 μs.

WHILE TRUE
TIME 10 USEC
P()

Periodic task executing process P, with relative
deadline d and period t, both of TIMESPEC

types.

WHILE TRUE
TIME t
TIME d
P()

4.3.1 The TIME Construct

Toc includes a new type, TIMESPEC, which can represent relative or ab-
solute time. The postfix operators DAY, HOUR, MIN, SEC, MSEC, USEC

and NSEC take an integer value and return a TIMESPEC. Plus, minus
and relational operators can be used with TIMESPEC expressions, and the
keyword NOW can be assigned to a variable to get the current clock time.

TIME is the Toc implementation of the time-construct. It takes an
expression of TIMESPEC type and a process, and assigns the specified time
both as a relative deadline and a minimum completion time for the process.
An example is

TIME 10 MSEC
PRINT ”Hello World!”

If a deadline is missed, then a run-time warning will be issued, and the base
time of any subsequent TIME constructs moved forward accordingly.

A few examples are given in table 4.1; these correspond to examples in
table 3.2 of the previous chapter.

4.3.2 The HANDLE–TIMEOUT Construct

The other new construct in Toc is the HANDLE construct, with an optional
TIMEOUT part, which implements a handle–timeout construct. Toc con-
tains an event type, EVENT, to use with this construct. An event variable
counts the number of times it has been raised (with RAISE). A HANDLE

construct takes an event variable and a process, and if the event variable
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Table 4.2: Use of the HANDLE Construct

Use Code

Sporadic task with mit and relative deadline t,
signaled by executing RAISE e.

WHILE TRUE
HANDLE e
TIME t
P()

If e is raised within 1 s, execute P with a dead-
line of 10 ms, and delay 100 ms until next pos-
sible handling of e. If e is not raised before the
timeout, execute Q instead with a deadline of
2 ms.

HANDLE
e
TIME 100 MSEC
TIME 10 MSEC
P()

TIMEOUT 1 SEC
TIME 2 MSEC
Q()

has a positive raise count, it will be decremented, and the process executed.
A HANDLE construct will block while the raise count is zero.

The first statement in the handle block is typically a TIME construct,
so that subsequent statements in the block are assigned a deadline.

Variables of the EVENT type must satisfy an additional usage rule,
stating that if an EVENT is shared by multiple components in a PAR, it
may only be used in a HANDLE construct by one parallel component.

The reason not to use synchronous channels to communicate events is
that this could lead to stalls as noted in observation 3.8, as a task wishing to
raise an event when the handler was not ready would be blocked. Raising an
event with the RAISE primitive, on the other hand, is an operation which is
guaranteed not to block. The EVENT type also carries timing information:
A TIME construct in sequence to the HANDLE gets its base time set to
either the time of the RAISE, or the time of the HANDLE becoming ready,
whichever is latest.

Two examples of using the HANDLE construct are shown in table 4.2.
The first is a sporadic task with minimum inter-arrival time (mit) and
relative deadline t, released by raising the event e. The task will be released
one time per raising of the event. The second example shows a process with
fairly complex temporal behavior, including a timeout.

If placed in a loop then the body of a HANDLE construct will be exe-
cuted exactly once per raising of the event; that is, the event trigger mecha-
nism is similar to a counting semaphore. The decision to implement it this
way, rather than eg, a suspend–resume, was not made because a counting
semaphore is intrinsically more useful; on the contrary, events are often used
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Listing 4.3: Binary Semaphore Style Event Manager

PROC Event.manager(EVENT e, CHAN INT raise, ready)
BOOL handler.ready:
INT x:
ALT
handler.ready & raise ? x
SEQ
handler.ready := FALSE
RAISE e

NOT handler.ready & raise ? x
SKIP

ready ? x
handler.ready := TRUE

:

to wake up processes that have been idle, in which case duplicate signals
should be forgotten, and a suspend–resume would have been more practical.

However, when more complex criteria exist for coordinating events, it
may be necessary to have an event managing process between the raising
processes and the handling process, which can take in event requests and
dispatch them as needed. In this setting, what is needed is an event primitive
that is suitable as a building block for programming more complex behavior.
A suspend–resume mechanism is less appropriate for this; in particular, the
race condition between suspend and resume can make their behavior difficult
to anticipate. The behavior of a counting semaphore is race-condition free—
it always provides one release per raise—and is therefore a better choice for
a building block.

As an example, a binary semaphore type event mechanism can be im-
plemented with EVENT and HANDLE by using an event managing process,
as shown in listing 4.3. Here, the process with the HANDLE block sends
a message to the event manager that it is ready to receive a new event
immediately after receiving the previous event. The manager discards all
incoming events until it has received such a message. Processes wishing to
raise the event must signal the handler using a synchronous channel.

4.4 The Toc Scheduler

This section explains the design and implementation of the lazy edf sched-
uler of Toc, an edf scheduler with the additional property that it does
not execute processes without an associated deadline, even if the system is
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otherwise idle.

4.4.1 Basic Scheduling Algorithm

In section 3.3 the explicit use of priorities to implement deadline constraints
was discouraged, because of problems with readability and maintainability.
However, this does not prevent the use of priorities for scheduling; a compiler
can convert deadlines in code to static priorities using for example dmpo,
which would avoid the problems of coupling and readability, while allowing
the scheduler to use fixed priorities.

Nevertheless, edf was chosen as the basic scheduling algorithm for Toc.
One reason was that edf has better performance on uniprocessor systems,
because it retains more information: the conversion to fixed priorities is
lossy and is unnecessary when the actual deadlines are known.

Another reason is that edf handles scheduling overloads in a more ap-
propriate manner: When systems scheduled with fps become overloaded,
processes with low priorities may never be able to execute, even though
their low priorities are set due to scheduling considerations, not due to a
low relative importance. Using fps therefore assigns a secondary semantic
meaning to the setting of a process deadline: any process with a long rela-
tive deadline is implicitly considered less important than one with a short
deadline. In contrast, using an edf scheduler will prevent long deadline
processes from being completely denied execution.

The Toc scheduler is also lazy. The use of a lazy scheduler is permitted
if one accepts the laziness hypothesis (hypothesis 4.1): If a process does
not have a deadline, then it can be delayed indefinitely without violating its
temporal constraints, and this is precisely what a lazy scheduler will do.

The alternative to a lazy scheduler is to allow background tasks, ie,
processes that execute when no real-time processes are ready. However,
it can be argued that all processes have some kind of deadline constraint
associated with them; if it was possible to postpone a process indefinitely,
then it would not need to be included in the system. In this sense, omitting
a deadline specification for a process does not mean the process does not
have a deadline, but rather that the programmer does not know, or does
not care, what it is. For better or worse, forcing the programmer to assign
explicit deadlines, also to processes that would otherwise be implemented
as background tasks, means that their actual timing requirements can no
longer be ignored.

A lazy scheduler also provides a form of fail-fast approach to the specifi-
cation of deadlines. Without a lazy scheduler, missing a deadline specifica-
tion for a task, or incorrectly considering a task to be of background priority,
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is an error that in most situations will not be detected; the effects may only
become apparent when the system load is high. With a lazy scheduler, a
task with no deadline will never be executed, and any testing of that task
will immediately fail.

An argument for allowing background tasks is that some processes are
so much more important than others that the latter should be dropped
entirely when the load on the system is high. Still, completely disabling
a process during high loads may have serious consequences, even if the af-
fected processes are considered non-critical, and suitable for implementation
as background tasks. For example, a process that performs system logging
has been described as non-critical [29], but, if one assumes that the system
meets its deadlines under normal conditions, then the extraordinary situa-
tion where not all deadlines will be met may be exactly the kind of situation
where system logging is needed the most.

4.4.2 Implementation of Laziness

In practice, there must be some exceptions to the laziness rule; for example,
control and loop structures that contain TIME constructs should not require
separate deadlines of their own, or it would become difficult to properly im-
plement conditional or periodic tasks. The precise definition of the laziness
of Toc is instead the following:

Definition 4.1 (Toc Laziness)
In Toc, no primitive processes except SKIP are executed unless needed to
complete a process with a deadline.

The restriction to primitive processes means that compound process
constructors are exempted from the laziness rule, and are allowed to execute
until reaching an inner primitive process. This restriction is necessary to
allow the TIME constructs themselves to be evaluated: A periodic process
can then be created by wrapping a TIME construct in a WHILE, without
needing to set a deadline for the WHILE.

The laziness rule prevents non-primitive processes from being executed
without a deadline, but it does not imply that code executed without a dead-
line only requires insignificant execution time. For example, an arbitrarily
complex expression may be used as the condition in a WHILE construct. It
does mean, however, that no code with side effects will be executed without
a deadline, and consequently, that all functionality that manipulate input
or output from a program will need to be given a deadline.

The exception for SKIP is necessary to satisfy the csp law that SKIP
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Listing 4.4: Conditional Task that Requires Non-Lazy SKIP

SEQ
IF

p
TIME t.1

P()
TRUE

SKIP
TIME t.2

Q()

is an identity process for the sequence operator [88], ie, that the semantic
meaning of a process does not change if a SKIP is inserted in sequence before
or after it. Moreover, a practical benefit of making an exception with SKIP

is that it simplifies the writing of conditional TIME constructs:

In occam, conditionals may have many branches, and be nested and
replicated, but the behavior of a conditional process must be defined for all
cases: In contrast to most other imperative languages, where conditionals
typically default to a behavior similar to SKIP when no predicates eval-
uate to true, occam IFs defaults to STOP, which deadlocks the program.
A default behavior of SKIP is instead achieved by appending an explicit
TRUE–then–SKIP branch to the conditional.

As a consequence, if SKIP was lazy, ie, required a deadline to execute, a
conditional TIME construct that was not selected would prevent the eval-
uation of TIME constructs in sequence to the conditional. For example,
the conditional task in listing 4.4 would then not work properly: unless the
whole process had a deadline, the second TIME construct would only be
executed when p was true. By exempting SKIP from the laziness rule, the
second TIME construct will always be executed.

For symmetry, it would seem appropriate to exempt STOP from the
laziness rule as well. STOP is mostly used in error situations, either ex-
plicitly as one may use the abort() function in C, or implicitly, such as the
equivalent process to a deadlock, or to an ALT where all guards are closed
by FALSE Boolean expressions. A lazy STOP will only halt the program if
it has a deadline for its completion, while a strict (ie, non-lazy) STOP will
halt the program when it becomes eligible for execution. This topic has not
been given much consideration, and in the current version of the language,
SKIP is the only strict primitive process.
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4.4.3 Discovery and Base Times

The Toc run-time schedules strict code using a mechanism for partial execu-
tion called discovery. Discovery is started on processes without a deadline
when there is a chance to reach a TIME construct without having to exe-
cute any primitive processes except SKIP. Discovery stops when a primitive
process except SKIP is encountered.

Discovery is necessary to allow the Toc scheduler to be aware of all the
deadlines in the system, and needs only to be started whenever there is a
chance to uncover a TIME construct that may begin execution. This limits
the need for discovery to the following situations:

1. At the start of a program, on procedure Main.

2. After a TIME construct is completed, on processes in sequence.

3. After a HANDLE construct accepts an event, or after a TIMEOUT.

4. After a channel communication, on processes in sequence at both ends.

If a PAR is discovered during discovery then the discovery will continue on
all branches of that PAR.

The base time of TIME constructs found during discovery is set to the
time of the event that caused the discovery. For the situations listed above,
the base time is set, respectively, to

1. The startup-time of the program.

2. The deadline of a newly completed TIME construct if the deadline
was met, or its actual completion time if the deadline was missed.

3. The time when an event was raised, or the time when the timeout
expired.

4. The time when the communication rendezvous was completed.

These rules satisfy the required properties of time-constructs set out in
section 3.4 (properties 3.1 to 3.4).

Information from the compiler can be used to skip discovery in cases
where it can be known in advance that no TIME constructs will be discov-
ered, for example if the next process in sequence is a primitive process that
is not SKIP.
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4.4.4 Deadline Inheritance over Channels

occam 2.1 does not associate notions of urgency with its communication. If
a process wishes to communicate on a channel that is not ready, then the
process will be blocked and another non-deterministically chosen process will
execute instead. In a real-time system this kind of behavior would quickly
lead to priority inversions, and some means for associating urgency with
communication is therefore necessary. In Toc this is achieved by deadline
inheritance through channels.

As noted in observation 3.5, all synchronization protocols require that
whenever a process is blocked, it must be possible to identify which process
is blocking it. In Toc this is ensured by the usage rules: A channel that
is used for input or output by a process cannot be used for the same by
any other processes in parallel. The Toc compiler enforces these rules at
compile-time, and while checking that each channel is only used for input
and for output by one process at a time, it also creates an expression for
which process use that channel. This expression is then used run-time to
find out, when a process wants to communicate on a channel, which process
holds the other end and should inherit its deadline.

The process whose execution leads to the next communication on an end
of a channel is said to own that end of the channel:

Definition 4.2 (Channel Ownership)
The input (output) owner of a channel is the process whose execution will
lead to the next input (output) on that channel.

The initial input and output owner of a channel is the process following
the declaration of the channel. Channel ownership is updated run-time at
the beginning and end of every PAR, using information gathered by the
compiler during the usage rules check.

Deadline inheritance is implemented in the scheduler by allowing pro-
cesses to “forward” execution: If a process with a deadline requires commu-
nication with another process, then every time the first process is allowed
to execute, it will instead perform a context switch to the second process.
This has the same effect as deadline inheritance, with the second process
inheriting the deadline of the first. When channel ownership is known, the
desired behavior of the forwarding mechanism may be defined as follows:

Definition 4.3 (Deadline Inheritance over Channels)
If the current process needs to complete an input (output) on a channel
that is not ready, then forward execution to the output (input) owner of
that channel.
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Per definition, the owner is the process whose execution will lead up to
the next communication on that channel, so this forwarding is the fastest
way of completing the communication. The forwarded process is executed
up to the rendezvous point; then the forward is canceled and execution
continues from the side with the earliest deadline.

4.4.5 Timing-Aware Alternation

In occam 2.1, if multiple guards are open in an alternation, then one may be
chosen non-deterministically, although as noted earlier, most implementa-
tions of alternation are completely unfair and will always select the textually
earlier process. In Toc, the choice should be based on deadlines whenever
possible. Three separate cases can be identified:

1. At least one communication guard is open, where the owner of the
other end has an associated deadline.

2. At least one guard is open, but there are no communication guards
where the owner of the other end has a deadline.

3. No guards are open.

In the first case, the choice of alternative is simple: it is the guard where
the process owning the other end of the channel has the earliest deadline.
This situation occurs eg, when the ALT has inherited the deadline from
the owner of the channel being selected. Note that if the program satisfies
observation 3.6, then this first case is the only one that will occur.

In the other cases the choice is less obvious. The ALT itself has a deadline
to meet, or it would not be executed, but in complex programs it is not
always feasible to determine which alternative that best helps it meet that
deadline. Therefore, if at least one guard is open, but no guards have owners
with associated deadlines, a guard may be selected non-deterministically.
The current implementation always selects the textually earlier open guard
in this case.

However, there may not be any open guards at all. In occam, the alter-
nation process will wait if no guards are open, but in Toc the other processes
may be lazy, so merely waiting is not an option. Instead, if there are no
open guards then the ALT must forward execution to some process which
owns an end of a channel used in one of the guards, until that, or another
guard, becomes open.

In both Toc and occam, if all guards have a closed Boolean condition
then the ALT will act as a STOP.
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Listing 4.5: Lazy Forward

WHILE TRUE
INT x:
SEQ
input ? x
output ! x

:

Listing 4.6: Strict Forward

WHILE TRUE
INT x:
input ? x
output ! x

:

occam 2.1 restricts communication guards to inputs because of the im-
plementation difficulty associated with resolving mutually communicating
alternations. An efficient algorithm for implementing this has now been
developed [76], so this restriction could possibly be relaxed. In Toc, output
guards are often practical and are therefore permitted. However, mutually
communicating ALTs are still not supported and may silently deadlock; this
is a limitation of the current implementation.

4.4.6 Use of Extended Rendezvous

Laziness complicates the writing of multiplexers and simple data forward-
ing processes. An illustration is given in listing 4.5: If something arrives
on channel ‘input’ then it will not immediately be passed on to channel
‘output’ because there is no deadline driving the execution of the second
communication. The output will first happen when driven by the deadline
of the next input, as the latter cannot proceed before the former has com-
pleted. An extra TIME construct can be added to perform the output with
a new deadline, but this could cause a stall for the next process to use the
‘input’ channel. Moreover, the deadline of such a TIME construct will ei-
ther be arbitrary or a repeated specification of an existing deadline, neither
of which are desirable from a quality point of view. Another undesirable
solution would be to avoid forwarding data altogether, but this would put
severe restrictions on program organization.

The extended rendezvous feature of occam-π [104] solves the problem.
In Toc, when using an extended rendezvous then the deadline driving the
communication must also drive the during-process, because its completion
is required to complete the communication. An example of the correct way
to forward data is shown in listing 4.6.

occam 2.1 only supports extended inputs, which use a double question-
mark (??) operator. Toc supports both extended inputs and outputs, but
does not use any special operators for it. The existence of the indented
during-process is instead used to identify the communication as extended.
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This is unproblematic for single communications, but has a notable effect on
alternations as there is already a process indented under the communication.
A consequence of this is arguably the most important syntactic difference
between occam and Toc:

In Toc, communications in alternations are extended rendezvouses
by default.

If a non-extended rendezvous is desired in an alternation, the during process
must be set to SKIP and the alternative process written below it; eg,

ALT
request ? x
SKIP
reply ! y

There are drawbacks both of making extended rendezvous the default, and
not making it the default, each which reduce the readability of certain pro-
grams.

The drawback of keeping occam notation, and not making extended
rendezvouses the default for alternations, is to introduce a type of timing-
related programming error that is hard to spot. For example, say that a
process reads from channels in an ALT, and is supposed to do some work
on incoming data under the deadline of the sender, as part of an extended
rendezvous. However, the extra question mark is missing, so that the ren-
dezvous is instead non-extended. The consequence is that each request will
be handled under the deadline of the next request. If requests are frequent
then this is an almost silent error that is hard to trace in a large system,
and is made worse by being caused by an almost invisible typo.

The drawback of instead making extended rendezvous the default, is
another type of almost invisible error, one that will cause the system to
deadlock. This occurs when the alternating process performs an explicit
reply through another channel. The reply can not be part of an extended
rendezvous, as this will cause a circular wait and deadlock. Therefore, a
SKIP must be inserted as the during process, with the reply being the non-
extended part of the action (like in the above example). This is a SKIP that
may easily be forgotten.

The reason for choosing the second kind of error over the first is that
a system with the second type of error will never work; it will deadlock at
every request of that type made to the server. The first kind of error, on
the other hand, is subtle and may hardly be noticeable if there are frequent
requests, as the output of one request will be handled with the deadline of
the next.
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4.5 The Toc Compiler and Run-time System

A brief overview of the implementation of the compiler and run-time system
will be given here, together with a list of limitations of the current version.

Note: It is worth pointing out that neither the compiler nor the run-time
system was written with performance in mind; performance has been sacri-
ficed for simplicity of implementation whenever possible. The compiler and
run-time system were written in order to experiment with new language
primitives, rather than to improve existing primitives, and performance was
therefore not considered an important feature. In particular, the run-time
system adds its own preemptive scheduler on top of an existing os scheduler,
which significantly increases task switch times compared to a more efficient
run-time.

4.5.1 Compiler Overview

The Toc compiler (tocc) is a six-stage compiler, with the five first stages
written in Haskell, and the final stage performed by an external C-compiler.
The Haskell sources utilize Glasgow-extensions [77], and have only been
tested with the Glasgow Haskell Compiler (ghc). The output from the fifth
compiler stage is standard ansi C99, but has only been tested with gcc.

The Toc language definition is written in a format called lbnf, which
is processed using the multi-language parser generator bnfc [81]. This pro-
duces lexer and parser definitions, which in turn are translated to Haskell
code by alex and happy—the Haskell equivalents of lex and yacc—re-
spectively. Layout is resolved between lexing and parsing, by annotating
the token stream with ‘{’, ‘}’ and ‘$’-symbols, denoting the beginning of a
block, the end of a block, and the end of a line, respectively. The layout
rules are described in detail in appendix A. The main compiler stage takes
a Toc syntax tree as input and generates a C syntax tree as output, which
is then written to a file using a C pretty-printer. The C-file is compiled by
gcc and linked with the run-time library to create an executable. As gcc
is supported by a large variety of platforms, this allows the Toc compiler
to produce reasonable platform-independent programs. An overview of the
process is given in fig. 4.1.

The design of the main compiler stage is fairly straight-forward and will
not be discussed in detail. Each parallel branch is converted to a function
so that it can be executed separately; the compiler also keeps track of a tree
of variable scopes so that different instances of the same branch—these are
created when replicating parallels—get a unique copy of their own variables,
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Figure 4.1: Overview of Compiler Stages in tocc

but share variables from their common stem. Whenever a variable is used,
it is flagged by the type of use (eg, read, output, abbreviate). Usage rules
are evaluated when a variable goes out of scope.

The usage rules are fairly simple to evaluate for scalars. With arrays, the
indexing expressions may also have to be analyzed if correct use cannot be
ensured without taking the indexes into account. In that case indexes will be
limited to expressions of constants, literals and replicators (variables defined
by a FOR). The compiler will, if necessary, simulate all required replicators
to determine which indexes of an array that are used by any given process.
Better, but more complex methods exist, such as the Omega Test [83],
which has been used by other occam compilers to do usage rules checks
analytically, rather than by simulation [23].

4.5.2 The Run-Time System

The run-time system is written in C/posix, and uses posix-threads to
manage parallel processes. This limits the number of simultaneous parallel
processes that can exist compared to a system using light-weight processes,
and increases the overhead associated with switching between them. Ideally,
the run-time system should be replaced with a system that supports light-
weight processes; however, these are generally not preemptible, which is
one reason why they achieve low overhead and fast switching times. If one
were to use light-weight processes in a real-time system one would have to
find a balance between the low overhead and fast switching times gained
from non-preemptible light-weight processes, with the responsiveness that
is achieved by having processes fully preemptible.

The run-time system performs its own scheduling of processes to accom-
modate for laziness and edf. It is organized as three modules, which are
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Figure 4.2: Overview of the tocc Run-Time Library

structured as shown in fig. 4.2.

The first module, systhread, manages operating system threads in such
a way that at most one thread executes at any given time. It thus allows
the system to execute its own scheduler under an existing os. Posix signals
are used to suspend and resume threads, but threads may also voluntarily
suspend themselves. This is the only module that depends on posix threads;
by replacing this module it should be possible to port the existing run-time
to non-posix compliant operating systems as well.

The second module is scheduler, which implements the lazy edf sched-
uler. In addition, it provides functionality for forwarding execution, so that
the currently executing process can ask for another process to be executed
in its place. This module also manages discovery, which is handled by tem-
porarily giving processes zero relative deadline. Discovery ends when the
processes call interface end discovery(), these calls are inserted by the com-
piler before primitive processes that are not SKIP.

The third module is the interface, which contains functions that are
called by the compiled Toc programs. The interface contains run-time sup-
port for primitives such as alternations, the creating of parallel processes and
communication over channels, and translates this functionality into requests
to the scheduler.

4.5.3 Examples of Translated C-code

A few examples will be presented to show the structure of the translated C-
code; these are likely to be more instructive than presenting further details
of the compiler itself. The examples show the output from the fifth compiler
stage (the input to gcc) when compiling the Toc program in listing 4.7. The
output has been filtered through an automatic code formatter (indent) to
improve readability, and a pair of superfluous curly braces was removed to
save space.

The translated main() function is shown in listing 4.8. It zero-initializes
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Listing 4.7: Translated C-Code: The Toc Source

PROC Main()
CHAN INT channel.1, channel.2:
PAR
TIME 1 SEC
SEQ
PRINT ”a”
channel.1 ! 42

TIME 2 SEC
SEQ
PRINT ”c”
channel.2 ! 42

INT rv:
WHILE TRUE
ALT
channel.1 ? rv
PRINT ”b”
PRINT ”d”

channel.2 ? rv
PRINT ”e”

:

a scope, and sets itself as the input and output owner of all new channels.
Then, a parallel structure is created and its branches are initialized with
function pointers to their start-up processes and the parent scope. The
interface activate par() function will forward execution to a child branch
until all of them have terminated.

The first of the branches with a TIME construct is shown in listing 4.9.
After signaling to the run-time system that a new parallel process (“thread”)
has been created, it creates its own scope, and takes the sending side of
the channel that it will use later. The TIME construct is then initial-
ized. After that, a primitive process is encountered, and a call to inter-
face end discovery() is therefore made; this call does nothing if the process
already has a deadline.

The process then outputs 42 on channel.1. This requires two calls to
the run-time library. First, interface pre write channel() is called to indi-
cate that the sender is ready; this call will block until the receiver have
rendezvoused, then it returns with the memory address where the receiver
wishes to store the data from the channel. The run-time system will for-
ward execution to the receiver—identified by being the input owner of the
channel—if it is not yet ready to communicate. After writing the data, the
sender calls interface post write channel(). This is the last action to be part
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Listing 4.8: Translated C-Code: The main() function

void Main()
{

struct scope 1 t scope 1 = { {0}, {0} };
interface channel take receiver(& scope 1.channel 1);
interface channel take sender(& scope 1.channel 1);
interface channel take receiver(& scope 1.channel 2);
interface channel take sender(& scope 1.channel 2);
{

struct par t par = { 0 };
struct thread t threads[3] = { {{0}} };
interface init par(&par, threads, 3);
interface set par(&par, 0, (void ∗(∗)(void ∗)) par 2 0, & scope 1);
interface set par(&par, 1, (void ∗(∗)(void ∗)) par 2 1, & scope 1);
interface set par(&par, 2, (void ∗(∗)(void ∗)) par 2 2, & scope 1);
interface activate par(&par);

}
}

Listing 4.9: Translated C-Code: A TIME Construct

void par 2 0(struct scope 1 t ∗ scope 1)
{

interface start thread();
struct scope 3 t scope 3 = { scope 1 };
interface channel take sender(& scope 3.parent−>channel 1);
{

struct timespec newtime = { 0 };
struct timeblock t timeblock = { 0 };
newtime = timespec sec(1);
interface init timeblock(&timeblock, newtime, 1);
interface end discovery();
printf(”%s”, ”a”);
printf(”\n”);
interface end discovery();
{

int ∗ tocc4 =
(int ∗)interface pre write channel(& scope 3.parent−>channel 1);

∗ tocc4 = 42;
interface post write channel(& scope 3.parent−>channel 1, false);

}
interface end timeblock(&timeblock);

}
interface channel give sender(& scope 3.parent−>channel 1);
interface end thread();

}

73



The Toc Programming Language

of the TIME construct, which it is then deleted, canceling the deadline of
the process. Finally, the process passes ownership of its channel end to its
parent and terminates. The branch with the second TIME construct is near
identical to the first, and will not be shown.

The alternating process is shown in listing 4.10. It starts like the other
two processes, by initializing a scope and taking ownership of its channel
ends. The alternation is implemented as a while-loop, cycling through its
guards and calling interface try alt() on each, with the channel and the
Boolean expression as arguments (this is the inner loop, the outer is the
WHILE from the Toc source). When this function returns true, then that
alternative should be selected; a goto at the end of each action will then
exit the loop. Otherwise, if no alternative was found appropriate, then in-
terface retry alt() is called. This function makes the ALT less particular
for the next iteration of the loop; the conditions for accepting an alterna-
tive follow the progression described in section 4.4.5. If all alternatives are
blocked by a Boolean guard, then the ALT is equivalent to a STOP, and will
terminate the program. This will show up as a run-time error describing
the error and the source, which is file text.tocc, line 15, column 9.

Each alternative reads from a channel. Again, two run-time system calls
are required: interface read channel() and interface post read channel().
To the first function, the address of an immediate variable is passed, which
the sender uses to write its data. The during-process is then executed,
before the second system call.

The examples of translated C-code given above illustrate the most Toc-
specific parts of the C-code generation in the compiler. The translation
of other language features, such as those relating to basic computation or
control structures, are more straightforward, and further examples will not
be given.

4.5.4 Limitations in the Current Version

The current implementation is a prototype, and has several limitations.
First, due to limitations in the parser generator, there are minor syntactic
differences between Toc and occam. These are to be considered shortcom-
ings of the current implementation, rather than changes made for their own
sake.

Some differences are minor; eg, while occam uses asterisks (∗) as the
escape character in strings, Toc uses backslashes. However, one difference
in particular is significant: Arrays in occam are declared with size brackets
to the left to improve readability; the declaration
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Listing 4.10: Translated C-Code: The ALT

void par 2 2(struct scope 1 t ∗ scope 1)
{

interface start thread();
struct scope 7 t scope 7 = { scope 1 };
interface channel take receiver(& scope 7.parent−>channel 1);
interface channel take receiver(& scope 7.parent−>channel 2);
struct scope 8 t scope 8 = { & scope 7, 0 };
while (1) {

struct alt t alt = { 0 };
interface init alt(&alt);
interface end discovery();
while (1) {

if (interface try alt(&alt, 1, & scope 8.parent−>parent−>channel 1)) {
int tocc10;
interface read channel(& scope 8.parent−>parent−>channel 1,

& tocc10, true);
scope 8.rv = tocc10;

interface end discovery();
printf(”%s”, ”b”);
printf(”\n”);
interface post read channel(& scope 8.parent−>parent−>channel 1);
interface end discovery();
printf(”%s”, ”d”);
printf(”\n”);
goto alt 9 alt finished;

}
if (interface try alt(&alt, 1, & scope 8.parent−>parent−>channel 2)) {

int tocc11;
interface read channel(& scope 8.parent−>parent−>channel 2,

& tocc11, true);
scope 8.rv = tocc11;

interface end discovery();
printf(”%s”, ”e”);
printf(”\n”);
interface post read channel(& scope 8.parent−>parent−>channel 2);
goto alt 9 alt finished;

}
interface retry alt(&alt, ”test.tocc”, 15, 9);

}
alt 9 alt finished:

interface end alt(&alt);
}
interface channel give receiver(& scope 7.parent−>channel 1);
interface channel give receiver(& scope 7.parent−>channel 2);
interface end thread();

}
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[4]CHAN [2]INT array:

declares four channels each using a two-element integer array as data type.
Also, in occam it is possible to create an abbreviation without a type, eg,

a IS b:

In Toc, however, due to limitations on lookahead in the parser generator, all
declarations are required to start with a keyword or an identifier that could
not have been part of an expression. Therefore, abbreviations require the
type, even though it is implied by the right-hand side; and array declarations
must have the brackets on the right side. The above array declaration thus
becomes

CHAN[4] INT[2] array:

For similar reasons, procedure names in Toc must use identifiers that start
on an upper-case letter, and is immediately followed by a non-uppercase
letter.

Another limitation is that Toc does not have any kind of io interface
built into the language. Input and output must instead be handled using
external functions; these can be declared with the EXTERN keyword and
must be linked into the program using command line arguments to the
compiler.

There is also some functionality in the compiler that has not been im-
plemented and a few known bugs, including

• A VALOF cannot be used, except as the first process in a function.

• The current time NOW can be used in functions, even though it is not
pure.

• The usage checker is overly tolerant in some cases involving abbrevi-
ations and procedures.

• Expressions are translated directly to C; therefore, all arithmetic op-
erators will overflow, like C, not raise errors as in occam.

• No dynamic count is allowed in a PAR FOR; a constant expression is
required.

• Programs with mutually communicating alternations will compile, but
may deadlock at run-time.
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4.6 Case Study: Elevator Control

One of the systems that have been implemented in Toc is a control sys-
tem for a miniature elevator model. This implementation will be used to
demonstrate programming in Toc, and key parts of the implementation will
be presented and discussed.

4.6.1 Hardware Setup

The system hardware consists of a four-floor elevator model, with a mo-
torized sliding metal plate symbolizing the car of the elevator. Proximity
sensors provide feedback for when the car is at a floor, and a button panel
provides input from the user. The buttons also have lights on them to pro-
vide feedback to the user. The model does not have a mechanical door;
instead, a light is used to indicate that the “door” is open.

In total, the inputs from the elevator consist of 11 buttons, one toggle
switch and four proximity sensors:

1. Six call buttons that represent buttons external to the elevator: three
“call-up” buttons for floors 1 to 3 and three “call-down” buttons for
floors 2 to 4.

2. Four “go-to” buttons, representing buttons inside the elevator.

3. A “panic” button.

4. One “door obstruction” toggle switch, which if turned on represents
something obstructing the door.

5. Four proximity sensors, one for each floor, to detect the position of
the elevator when moving.

The outputs are:

1. 11 button lights, one on each button.

2. A light representing whether the door is open or not.

3. An analog output to a motor. However, the motor is sufficiently geared
down to be used at maximum speed without the need for further
control.

The elevator is connected to a computer through a dac interface card that
is controlled using the comedi library [90]. All inputs must be polled as

77



The Toc Programming Language

there are no interrupts or similar mechanisms that notify the system of a
change in input state. The host computer runs a standard Ubuntu Linux
distribution.

4.6.2 Software Specification

The elevator should behave like an ordinary elevator and serve requests
according to the standard elevator algorithm; that is, it should only change
direction at the end of its range, or if nobody is waiting or wants to go
further in the current direction.

Lights on buttons should represent pending requests of that type. If a
user is waiting to go in one direction, and the elevator stops at that floor,
heading in the opposite direction, then the user’s request should not be
served.

Pushing the panic button should automatically clear all queues and stop
the elevator, and also prevent the door from closing. This panic state may
only be canceled by pushing one of the goto buttons inside the elevator.

Opening and closing the “door” is assumed to take 1 s. If users are
entering or exiting at a floor, then the elevator should stop and keep the
doors open for at least 10 s, before closing the door and performing the
next appropriate action. The closing of the door may be delayed by the
obstruction switch, or by an additional request for the same floor: the doors
should close 10 s after the last time the obstruction switch was turned off
or there was a request to the current floor.

It was also discovered that in order to stop at a floor—and not drift
past it—the motor direction has to be reversed a short time as a means of
breaking. A suitable duration was found to be 5 ms.

Design of Temporal Specifications

The inputs to the system are polled, and intuitively, polling is best handled
using an implicit deadline periodic task. The polling period is a temporal
constraint that depends on the minimum duration of the inputs to be polled,
eg, the minimum duration of a button press, but also on the response time
requirements from sensor stimuli to system response. For this system, a
polling period of 20 ms was thought to be appropriate, which guarantees a
maximum of 40 ms between two consecutive polls (observation 3.2).

In a traditional real-time system, the 20 ms implicit deadline of the
polling task would be the only deadline in the system, and all the responses
to polling stimuli would be driven by this deadline. The other temporal
constraints—the 5 ms breaking duration, 1 s for opening and closing doors
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and the 10 s for allowing users to walk on or off—would be implemented
using delays and timeouts.

One issue with this approach is that the only deadline constraint in the
system is derived from an implementation detail—polling—and not from
the behavioral requirements of the system as seen from its users. It is
possible to implement the system using only the polling deadline also when
programming in Toc, but it is more natural to use the polling deadline to
drive only the polling, and instead trigger other deadlines when stimuli are
detected.

In this way, one becomes free to specify temporal constraints for the
system as one sees fit. As Toc is a lazy scheduled language, every action
performed by the elevator must be given a deadline, or be driven by another
action with a deadline; the programmer must therefore explicitly consider
which temporal constraints apply to each function the software is required
to perform.

Ideally, the set of necessary temporal constraints would be uniquely given
by the problem to be solved, but in practice there is a great deal of flexibility
in how to specify these constraints. For example, in the following implemen-
tation it was chosen not to specify a separate deadline for turning on button
lights in response to a button push; this is instead driven indirectly by the
polling deadline.

The set of temporal constraints also depends on the organization of mod-
ules in the system, as there may be a conflict between the desire to specify
system-wide deadlines, and the desire for low coupling between modules.
For instance, say that the system should complete system-wide initialization
within a certain time. However, the code for initializing a module typically
resides in that module, so in order to implement a system-wide initializa-
tion deadline one must either centrally organize initialization, tightening
coupling, or repeat the initialization deadline in each module, weakening
cohesion.

It is also necessary to consider how to avoid stalls and deadlocks when
designing the set of temporal constraints. If a process communicates with
another process using a channel, then deadlines in the former may drive
actions in the latter, but the latter should not contain delay constraints or
the system may stall (observation 3.7). Stalls may be avoided by replacing
channel communication with events, but then the event handling process
must specify its own deadline, so this change will affect the temporal spec-
ifications of the system. Similarly, the raising of an event will never block,
so events may replace channel communications as a method for deadlock
avoidance. However, this will also require a new deadline for handling the
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Table 4.3: Elevator Example: List of Temporal Constraints

No. Description Type Value

1 Polling interval Impl. deadl. peri. task 20 ms
2 Reversing the motor Delay 5 ms
3 Initialization Deadline 10 ms
4 Panic event Event handler 10 ms
5 End-of-panic event Event handler 1 s
6 Wake up from idle Event handler 1 s
7 Floor sensor event Event handler 100 ms
8 Opening the door Deadline 1 s
9 Waiting to close the door Timeout 10 s
10 Obstruction event Event handler 10 ms
11 Closing the door Deadline 1 s

event, affecting the set of temporal constraints.

4.6.3 Implementation Overview

For the elevator implementation it was chosen to divide the system into the
following main modules, referred to by their procedure names:

1. PROC FilteredIO, responsible for io.

2. PROC Mover, handling the motor and sensors.

3. PROC Queue, handling button presses and queuing logic.

4. PROC Door, handling obstructions, and opening and closing of the
door.

The organization is shown in fig. 4.3. In the following text, the most notable
parts of the implementation will be discussed, including the implementation
of all the temporal specifications, and how the choice of module composition
affected the design of these specifications.

The full list of temporal constraints is given in table 4.3. Each of the
constraints corresponds to a TIME or TIMEOUT construct in the imple-
mentation source code.

Note: In the following listings, some code is removed and replaced with
“...” due to space considerations. The full source code for the elevator
implementation can be found in appendix B.
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Figure 4.3: Elevator Example: Overview of Processes

4.6.4 The FilteredIO Process

An observation made during the early stages of the implementation was that
the code for handling panics was almost orthogonal to the code that handled
non-panic situations, and that the latter code could be greatly simplified by
moving the handling of panics into a separate process.

The FilteredIO process was designed to implement this; it handles pan-
ics, as well as system io, in such a way that the functionality of the rest
of the system can be implemented without taking panic into account. For
example, in panic state, button presses will be discarded instead of being
passed down to the application, and motor commands passed up from the
application will be ignored. A visual overview of FilteredIO is given in
fig. 4.4. For simplicity, the names of internal channels are not shown.

The IO.Input Process

The IO.Input process contains the polling functionality, and the polling pe-
riod temporal constraint. A fragment of it is shown in listing 4.11, where the
WHILE...TIME arrangement can be identified as implementing an implicit
deadline periodic task. The listing also shows the detection of a button push
for one of the goto buttons inside the elevator. When detecting a change
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Figure 4.4: Elevator Example: Overview of the FilteredIO Process

Listing 4.11: Elevator Example: The IO.Input Process

PROC Io.Input(VAL INT handle, CHAN IO.INPUT input)
BOOL [floors] call.down.state:
...
WHILE TRUE

TIME 20 MSEC −− Polling interval
SEQ

...
SEQ i = 0 FOR floors

SEQ
Io.Read.Bit(handle, port.goto[i], bit)
IF

bit AND (NOT goto.state[i])
input ! goto ; i

TRUE
SKIP

goto.state[i] := bit
...

:
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in state from not-pushed to pushed, a message is sent through the “input”
channel.

The use of channels rather than events to communicate inputs means
that the receiving process may choose whether or not to add its own tem-
poral constraint for handling the input. For example,

• by reading from the input channel using an extended rendezvous, the
receiving process can handle the input using the deadline propagated
through the channel, ie, the polling deadline.

• By using a non-extended input it can simply store the information of
the input, delaying its handling until required by another deadline.

• By raising an event as a response to the input it can trigger a sporadic
task, which then assigns its own deadline to handling the input.

If the IO.Input process had raised an event to signal new input rather than
communicating it through a channel, then the receiving process would have
had no choice but to handle the input using a sporadic task. An advantage of
this, on the other hand, would have been looser temporal coupling between
IO.Input and the receiving process; as it is now, the polling process may
miss deadlines if the receiving process is too slow in handling the input.

The IO.Output Process

Output from the system is handled by the IO.Output process. It too com-
municates with external processes using channels, and sets its outputs using
extended rendezvouses. This way, it can function as a passive library with
respect to real-time constraints, and let the various processes that require
output decide the urgency. The alternative, of using events to communicate
outputs, would mean that the IO.Output process would have had to set its
own deadlines for applying output.

A section of the IO.Output process is shown in listing 4.12. The pro-
cess reads each output command from a single channel, and processes the
commands using the deadline from the implicit extended rendezvous.

When a motor speed of 0 is requested, the motor direction is reversed
for 5 ms before the motor is stopped. Because of the extended rendezvous,
the channel communication is not considered complete before this process
has finished, and the sender of the motor command will therefore also be
delayed 5 ms.
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The Panic Process

IO.Output and IO.Input are connected to a multiplexer and demultiplexer
process, respectively. As channels are one-to-one only, this is necessary to
allow multiple processes access to io. The input demultiplexer has a special
handling of panic button presses, which raises a panic event rather than
being passed on (fig. 4.4).

When the system is in panic state, the elevator must be stopped, and all
further commands be ignored, until a user presses a goto button inside the
elevator. The queue should also be cleared. By raising a panic event, rather
than sending a panic button push through a channel, one must assign an
explicit deadline to handling the panic button press, distinguishing it from
other button presses.

End-of-panic is also raised as an event, and thus also requires its own
temporal constraint. In this case it might have been more intuitive not to
specify a constraint, but use the polling deadline instead. However, this
would cause a circular graph of communications (see fig. 4.4) which would
make it harder to prove that the system is free from deadlocks.

The implementation of the Panic process is made somewhat compli-
cated due to the lack of an alternation process that accepts events. This
must instead be accomplished using two HANDLE constructs in parallel. As
parallel branches are not allowed to share variables or channel ends, opera-
tions that are common to the handling of both a panic and an end-of-panic
event must be placed in a separate parallel process. The implementation
(listing 4.13) therefore contains three parallel branches; two event handlers,
and a common server used by the handlers.

4.6.5 The Mover Process

The Mover process (fig. 4.5) is responsible for starting and stopping the
motor. It is implemented as two mutually exclusive processes, Mover.Idle,
which is executing only when the elevator is standing still, and Mover.Moving,
which is executing only when the elevator is moving.

The Idle and Moving processes are quite similar (the latter is shown in
listing 4.14). Each handles an event; the former handles the wake.up event
and the latter handles the sensor event. In response to the event, they
both request the current floor from a common server, and send a what.now
request to the Queue process, stating which floor they are at, and which
direction they were going before they got there. The Queue process responds
with either “move”, “sleep” or “open”, based on the state of the queue. Note
that because Toc accepts outputs in alternations, the data direction between
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Listing 4.12: Elevator Example: The IO.Output Process

PROC Io.Output(VAL INT handle, CHAN IO.OUTPUT output)
...
WHILE TRUE

...
output ? CASE

goto.light ; floor ; setting
Io.Set.Bit(handle, port.light.goto[floor], setting)

...
motor.speed ; speed

IF
speed = 0

SEQ
Io.Set.Bit(handle, port.motordir, NOT previous.motor.dir)
TIME 5 MSEC −− breaking duration

SKIP
Io.Write.Analog(handle, port.motor, 0)

TRUE
SEQ

previous.motor.dir := speed < 0
Io.Set.Bit(handle, port.motordir, previous.motor.dir)
Io.Write.Analog(handle, port.motor, 2048+abs(speed))

:

Listing 4.13: Elevator Example: The Panic Process

PROC Filter.Panic(EVENT panic.event, no.panic.event, ...)
CHAN SIGNAL do.panic.signal, dont.panic.signal:
BOOL panic.state:
PAR

WHILE TRUE
HANDLE panic.event

TIME 10 MSEC −− panic event
do.panic.signal ! signal

WHILE TRUE
HANDLE no.panic.event

TIME 1 SEC −− end−of−panic event
dont.panic.signal ! signal

WHILE TRUE
ALT

do.panic.signal ? CASE
signal

Update.Panic(panic.state, TRUE, panic.signal, panic.light, ...)
dont.panic.signal ? CASE

signal
Update.Panic(panic.state, FALSE, panic.signal, panic.light, ...)

:
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Figure 4.5: Elevator Example: Overview of the Mover Process

Listing 4.14: Elevator Example: The Mover.Moving Process

PROC Mover.Moving(EVENT sensor, open.door, CHAN QUEUE.REQUEST req, ...)
HANDLE sensor

TIME 100 MSEC −− floor sensor event
FLOOR f:
SEQ

−− Request current floor from the floor server, then ask Queue what to do.
floor ? f
request ! what.now ; f ; dir
reply ? CASE

move ; dir
motor ! dir

sleep
SEQ

dir := dir.none
motor ! dir.none
idle := TRUE

open
SEQ

motor ! dir.none
idle := TRUE
RAISE open.door

:
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clients and servers can be chosen freely: For example, in listing 4.14 the
Mover.Moving process performs a server call to Mover.Floor.Server with a
single input on the floor channel.

The Mover.Idle and Mover.Moving processes do not contain main loops,
in contrast to most of the other major processes in the system. Instead,
they handle a single event and then return to the parent Mover process,
which then decides whether to call Mover.Idle or Mover.Moving.

The Mover.Moving process uses a 100 ms deadline for handling the sen-
sor event. When also considering the polling period, this guarantees a maxi-
mum 100+40 ms stimulus–response time from the time the elevator activates
a sensor until the motor has been stopped. The Mover.Idle process is given
a relaxing 1 s to restart the elevator in response to a wake.up event; this
(plus 40 ms) represents the maximum allowed delay from a user presses a
button, or from the door closes, until the elevator must have begun to move
in response.

4.6.6 The Queue Process

The Queue process (listing 4.15) is a passive server with no temporal speci-
fications of its own. It holds the state of the queue (which buttons that have
been pressed on which floors), and contains the queuing logic that consti-
tutes the elevator algorithm. It serves both the Mover processes, which send
what.now requests to the queue; and the FilteredIO process, which sends
button press updates.

On button presses, the Queue process requests that the corresponding
light is lit, updates the internal queue state and, if the elevator is idle,
raises a wake.up event. It also outputs a same.floor.button signal to the
Door process whenever the elevator is standing still and a button request
for the current floor is pressed.

On what.now requests, the Queue process checks the queue and de-
termines what the elevator should do at this point. Because the Mover
processes require a reply to the call, the call cannot be handled using an ex-
tended rendezvous, which will have to be suppressed by inserting a SKIP as
the during process (the first process in the guard). The system will deadlock
if this SKIP is forgotten.

Because the server call is not extended, the rendezvous is considered
complete when the channel communication on the request channel has been
performed, and after that the Queue process will no longer inherit the dead-
line of the caller. However, the Queue process will re-inherit this deadline
when the calling process attempts to communicate on the reply channel,
until the communication on this channel is also completed. It is therefore

87



The Toc Programming Language

Listing 4.15: Elevator Example: The Queue Process

PROC Queue(...)
...
WHILE TRUE

ALT
...
request ? CASE

what.now ; current.floor ; current.dir
SKIP −− This SKIP suppresses extended rendezvous
SEQ

What.to.do(button.light, queue, current.floor, current.dir, sleeping)
IF

current.dir <> dir.none
reply ! move ; current.dir

NOT sleeping
reply ! open

sleeping
reply ! sleep

:

little difference between the temporal behavior of a server call that uses
extended rendezvous and a server call that uses explicit request and reply
channels.

4.6.7 The Door Process

The main challenge of implementing the door functionality is to correctly
handle the temporal specifications: the door should close 10 s after it was
opened, or 10 s after the last time an obstruction was removed, or a button
on the same floor was pressed, whichever is latest. This requires aHANDLE–
TIMEOUT construct where closing the door happens on timeout. Therefore,
any stimuli that should make the door not close must raise an event. In the
case of an obstruction it is not so that the door should close 10 s after the
obstruction event occurred; rather it should close 10 s after the obstruction is
removed. This means that one must either introduce an end-of-obstruction
event, or keep repeating the obstruction event for as long as the obstruction
is present.

The implementation does the latter. For this, it uses an event server,
called Door.Obstruction.Server (listing 4.16), which remembers the state of
obstruction, and re-raises the obstruction event each time the main door
process, Door.Door (listing 4.17), begins its 10 s countdown and the ob-
struction is still present.
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Listing 4.16: Elevator Example: The Door.Obstruction.Server Process

PROC Door.Obstruction.Server(...)
BOOL obs, watch:
WHILE TRUE

ALT
same.floor.button ? CASE

null
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

obstruction ? obs
IF

obs
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

TRUE
SKIP

obstruction.watch ? watch
IF

obs
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

TRUE
SKIP

:

Listing 4.17: Elevator Example: The Door.Door Process

PROC Door.Door(...)
WHILE TRUE

HANDLE open.door
BOOL close:
SEQ

TIME 1 SEC −− opening the door
SEQ

door.light ! TRUE
obstruction.watch ! TRUE

WHILE NOT close
HANDLE

obstructed −− obstruction event
TIME 10 MSEC

obstruction.watch ! TRUE
TIMEOUT 10 SEC −− keeping the door open

TIME 1 SEC −− closing the door
SEQ

close := TRUE
obstruction.watch ! FALSE
door.light ! FALSE
RAISE wake.up

:
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Figure 4.6: Elevator Example: Overview of the Door Process

To signal that it begins a new countdown, the main door process will
send TRUE through the obstruction.watch channel. When the door is closed
it will send FALSE through the same channel to signal that it is no longer
interested in receiving obstruction events. The arrangement of the processes
is illustrated in fig. 4.6.

The handling of the obstruction event itself becomes somewhat artificial
due to the lack of an actual door mechanism; it involves simply not closing
the door, but instead to begin another 10 s countdown.

4.6.8 Deadlock and Stall Analysis

To show that the system is free from deadlocks one can use the criteria for
deadlock freedom in client–server systems (theorem 3.1).

When applied to this system, the servers are the processes that contain
alternations, and the clients are processes that communicate with these
alternations, although in general there may be servers without alternations
if they serve only a single client. The raising of events need not be considered
for deadlock analysis, as this will never cause a process to be blocked.

Theorem 3.1 contains three criteria, which if all satisfied, imply that the
system is free from deadlocks:

1. The first criterion is that a client may not communicate with other
processes between a server call and the reply. Most of the server calls
in the elevator implementation have an implicit reply due to the use
of extended rendezvous, in which case the request and reply is the
same statement with no room for communication in between. The
exception is the what.now call from Mover to Queue. Here one may
see that the criterion holds by inspecting the source code of listing 4.14
and noting that there is no communication between the request and
the reply statements.

2. The second criterion is that a server should not accept new calls when
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it is already serving a call from a client. This can be verified by noting
the absence of nested alternations, so that all channel communication
performed during ongoing server calls is indeed calls to sub-servers
where the server acts as a client.

3. The third criterion is that the client–server relation graph must be
acyclic. The client–server relation graph is visualized in fig. 4.7, with
the direction of arrows being from clients to servers. Note that in order
to show that the graph is acyclic one has to split composite processes
such as FilteredIO into sub-processes. The graph is arranged so that
all clients are strictly above servers that they communicate with, and
the graph is therefore acyclic.

All the criteria are satisfied, and the system must therefore be free from
deadlocks.

The system is free from stalls if no process subject to a deadline con-
straint attempts to communicate synchronously with a process that may be
under a delay constraint (observation 3.7). As can be seen in fig. 4.7, this
is true for all communications except for calls to the IO.Output process,
which will delay for 5 ms while stopping the motor, yet acts as a server to
other processes.

All processes that directly or indirectly communicate with IO.Output
therefore risk being stalled for up to 5 ms. As it is, the 5 ms delay is shorter
than all other deadlines, so although other processes may stall their dead-
lines may still be met. (Whether or not they are actually met depends on
their execution time). The current implementation of the breaking con-
straint is therefore not particularly good from a program quality point of
view, because of the unfortunate coupling between the value of the breaking
duration and the value of other deadlines in the system. The stalls could
have been avoided by handling the stopping of the motor in a separate
process and triggering it as an event.

4.7 Discussion

This chapter has discussed the Toc programming language, the implemen-
tation of a Toc compiler and run-time system, and their use on an example
system involving control of a miniature elevator model. In this section,
results from the elevator implementation will be used to evaluate the Toc
language design, and the Toc lazy scheduling model.
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Figure 4.7: Elevator Example: Acyclicity of the client–server relation graph
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Listing 4.18: Possible Design of Toc Event Alternation

HANDLE
e1

...
e2

...
TIMEOUT

...

4.7.1 Evaluation of Toc Language Design

The elevator implementation revealed cases where the Toc language can be
improved.

For example, in the FilteredIO.Panic process (listing 4.13), a somewhat
complex implementation is required for a simple specification because Toc
lacks support for alternation between events. Syntactically, this would be a
relatively simple feature to include. A mechanism for alternation between
events should be distinct from ALT because the latter is used in servers,
and event-handling processes must never act as servers (observation 3.6). A
better alternative would be to allow multiple events under a singleHANDLE,
as illustrated in listing 4.18. Such a mechanism would be similar to the
handle–timeout construct of the dps (see listing 3.8).

In FilteredIO.Panic the events are mutually exclusive, and one will not
be raised while the other is being handled. When events are not mutually
exclusive, then other factors must also be taken into consideration, such as
how the execution time of one event handler will affect the response time of
the others, and how to prioritize between multiple events that are ready to
be handled. The workaround used in the elevator implementation—parallel
handle constructs in parallel with a common server—is not very readable,
but it does have a temporal behavior that is relatively simple to understand.

Another issue is the design of the RAISE and HANDLE primitives them-
selves. Their behavior was chosen so that event triggers would behave simi-
lar to counting semaphores, with one handling of an event per raising of the
trigger. This has the advantage of being race condition free, and therefore
easier to use as a building block for creating more complex event managing
processes.

However, limiting the language to a single behavior may have been un-
necessary: Even though the use of counting semaphore event triggers is the
best choice for event managing processes, there is no particular reason why
Toc should not directly support other type of event counters as well. One

93



The Toc Programming Language

Listing 4.19: Entry Call Equivalent of Extended Rendezvous

select
accept Call (...) do

During;
end Call;
Afterwards;

or
...

end select;

solution would be to allow event variables to be created with a maximum
counter value. For example, the following syntax might have been used
to create a counting semaphore trigger, a binary semaphore trigger, and a
suspend–resume style trigger, respectively:

EVENT counting.semaphore:
EVENT(1) binary.semaphore:
EVENT(0) suspend.resume:

For the last type of trigger, raised events would only be handled if the han-
dling process is currently waiting for the event, otherwise they would be
discarded. This type of trigger would have simplified the obstruction han-
dling, as one would no longer need to manually ensure that late obstruction
signals from one floor is remembered when the doors open at the next floor
(see listings 4.16 and 4.17).

Another design choice was to make ALT rendezvouses extended by de-
fault, because this seemed to be more intuitive, and because it removed a
class of subtle and hard-to-find timing bugs caused by forgetting to make
a communication extended when it should have been. The drawback is
that communication guards that cannot be extended may now deadlock if
the programmer forgets to make then non-extended by inserting a SKIP

as the during process (see eg, listing 4.15). Either communication guard
rendezvouses are extended by default, or they are not, and as neither choice
is entirely satisfactory this problem cannot be fully solved. This dilemma
would not have appeared if using Ada-style synchronous entry calls to com-
municate rather than channels. Then, all communications would be ex-
tended, and there would be a clear syntactic difference between the during
process and processes to be executed afterwards, as shown in listing 4.19.

All but one server call in the elevator implementation uses extended
rendezvous, so the choice of making them default was appropriate, at least
for this system. Requiring the extra SKIP whenever a server replies to its
caller through another channel is not a nice syntactic rule. Still, the deadlock
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that is caused by forgetting this is the type of bug that is always found during
testing, as the system will never work when the SKIP is omitted. The subtle
timing bugs that would have occurred if it was possible to program a non-
extended rendezvous when an extended rendezvous was intended would have
been much harder to catch.

4.7.2 Evaluation of Lazy Scheduling and Laziness Hypothesis

When the scheduler is lazy, it is possible for the system to end up in a
deadlock-like state, where it is not doing anything because there are no
active deadlines. Unlike a deadlock, which is caused by a circular wait, this
situation is instead caused by the programmer failing to provide a deadline
constraint.

An example would be if the programmer forgets to specify a deadline for
initialization in the elevator implementation: the entire system would then
act as STOP and do nothing. It may be difficult to spot these errors, as the
statements involved are not executed even though they are not explicitly
blocked, and even though the system is not doing anything else.

This kind of programming error would undoubtedly become common if
lazy scheduled systems were to be used. A compiler could in many cases
detect this type of error and issue a warning message. In some instances,
such as when no TIME constructs are reachable from Main(), detecting the
situation would be trivial. However, in other cases, such as those involving
deadline inheritance through channel arrays indexed by complex expres-
sions, detecting the situation might not be feasible. The current compiler
implementation never issues this kind of warning.

This chapter began by stating the laziness hypothesis: that any part of a
real-time system that cannot be given a meaningful deadline can be omitted.
Because the Toc scheduler is lazy, results from the elevator implementation
can be used to evaluate this hypothesis, and to assess whether or not lazy
scheduling is a useful property to include in a programming language.

The primary effect of the laziness hypothesis as applied to Toc, is that
programmers are required to provide deadlines for all functionality in the
system. However, programmers may choose to circumvent this requirement,
for example by assigning a deadline of 0 to a set of processes, which in ef-
fect will yield non-deterministic scheduling priorities (and a lot of missed
deadlines). Another effect of the lazy scheduler is that it prevents the use
of background tasks, ie, non-real-time tasks. Again, this can be circum-
vented by assigning very long deadlines to tasks. Because processes may be
assigned deadlines that are nonsensical or arbitrary, the validity of the lazi-
ness hypothesis in practice, and the usefulness of a lazy scheduler, depend
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largely on whether all functionality can be given deadlines whose values are
meaningful.

The temporal constraints for the elevator implementation and the as-
sociated time values are listed in table 4.3. An attempt to categorize the
values of the constraints with respect to how they are determined is given
below; this may give an indication of just how meaningful each actual value
can be said to be.

Precise
Some constraints, such as the polling interval, have values that can be
considered“physical constants” in some loose sense. It is not necessary
to poll a button every millisecond, because no user would be physically
able to push a button for such a short time. Moreover, if users are
unable to push a button for a shorter time than, say, 40 ms, then there
is no practical benefit of polling more often than that. The minimum
time of a button press can therefore be considered a constant (albeit
one that may be difficult to find), which makes it is possible, at least
in theory, to determine precisely what the polling interval should be.

Other temporal constraints that may fall into this category are the
breaking duration for the motor and the response time for the floor
sensor event: The precision needed when stopping at a floor can be
considered a physical property of the system, and these temporal con-
straints a function of this property.

Limit of acceptability
If a user pushes a panic button then the elevator should stop. If it
was possible for the elevator to stop immediately, then that would
be optimal, but as it is not, then some upper bound on acceptable
stop times would have to be used instead. Compared to a “precise”
constraint, it is harder to argue that there exists a correct answer to
what the values of such a constraint should be, rather it is more of
a compromise between what one would ideally want, and what the
system is able to achieve.

The response-time of an obstruction event also falls into this category.

Design choice
Some temporal constraints have values that can be chosen relatively
freely, and where the actual value represents a design choice of the
type that would typically be part of the system specification. How
long to keep the doors open at each floor is an example of this. Too
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short or too long, and users may experience a lower quality of service,
but apart for that the exact value is a matter of choice.

Because the system is merely simulating elevator doors, the time it
takes to open and to close these “doors” is also in this category.

Arbitrary
This leaves three temporal constraints: the deadline for handling the
end-of-panic event, the wake up from idle time, and the deadline for
initialization. Although there is a range of acceptable values—the
elevator should not require an hour to wake up from idle state, for
example—the range of acceptable values span many orders of magni-
tude and the exact value is of little importance. Moreover, the need
for a separate constraint is so obscure that it is unlikely to appear in
the specification of the system.

These arbitrarily valued temporal constraints deserve special notice, as
their mere presence calls into question whether or not all deadlines can be
said to have meaningful values.

Take the initialization deadline, for example. A millisecond could be an
acceptable value for this deadline, but for a real elevator, so could a minute.
The system is not doing anything else at the time of initialization, so the
choice of deadline will not have any effect on scheduling. It is therefore hard
to argue that initialization can be given a meaningful deadline. On the other
hand, if the elevator required a year to initialize, this would obviously be
too much, so there is a deadline somewhere in the interval between a second
and a year, that if missed would be essentially the same as a failure. Still,
it may be more appropriate to use TIME 0 or an equivalent to schedule
initialization, than to provide an arbitrary valued deadline for it.

Another arbitrarily valued temporal constraint is the deadline for han-
dling the end-of-panic event. The introduction of this event was a conse-
quence of the choice of modular composition in the system; a choice which
was made because it enabled the use of a well-established method for prov-
ing the absence of deadlocks. The more intuitive implementation of using
an end-of-panic channel would not have required a separate deadline, but
would have lead to a circular chain of client–server calls. The fact that
design choices in the implementation may lead to changes in the set of tem-
poral constraints is significant, and implies that for Toc programs, real-time
constraints cannot be considered solely to be in the domain of the system
specification.

Despite the occasional need for arbitrary deadlines, lazy scheduling has
certain advantages. For one thing, it ensures completeness of the temporal

97



The Toc Programming Language

specifications of a system, so that functionality that should be given a dead-
line must be given a deadline. In contrast, systems that use fixed priorities
or contain background tasks may suffer starvation of processes when the
system load is high, without this explicitly being an error. By assigning
deadlines to all functionality in the system one avoids this kind of silent
starvation in cases of high load.

In Toc, inconsistent specifications will be reported at run-time. For
example, the floor sensor event indirectly controls the motor as part of its
deadline, and may be stalled for the 5 ms delay required to stop the motor.
If the programmer assumed that the floor sensor event could be handled in
less than 5 ms, and assigned such a deadline to it, then this mistake would
be reported run-time as “missed deadline” warnings, explicitly informing
the programmer of the mistake. Systems that are scheduled using priorities
cannot automatically provide this kind of feedback.
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Chapter 5

Preliminaries on Schedulability Analysis

I love deadlines. I like the whooshing
sound they make as they fly by.

D. Adams

Quite different from the question of how to program a real-time system
in order to best implement its timing requirements, is the question of, when
given an already programmed real-time system, whether its timing require-
ments will be met. Variations in execution times and changes in the arrival
patterns of sporadic tasks means that a worst-case is unlikely to be found
merely by testing, instead requiring a more analytic approach.

The problem is essentially twofold. One part is the problem of deter-
mining the worst-case execution times (wcets) of the different components
of the system when executing on the chosen computing platform; that is,
the mapping from the source code of a single process to some upper bound
on its execution time.

The second part is the schedulability analysis itself, which combines
these wcets to determine whether processes meet their deadlines when
being executed together on the same system. This is the problem discussed
in this part of the thesis.

Both wcet and schedulability analysis requires adherence to certain
constraints. Wcet analysis, for example, typically prohibits features with
unpredictable or non-deterministic execution times, such as recursion, un-
bounded (while) loops and dynamic memory.

Schedulability analysis imposes other kinds of limitations. Some analysis
techniques assume implicit deadlines; others require that only mutual ex-
clusion synchronization is used to communicate between processes, or that
a specific synchronization protocol must be applied. For multiprocessor sys-
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tems, a common requirement is that each job must in itself be serial and
contain no parallel processes.

Principles of process-oriented design are in direct conflict with two of
these requirements:

1. Process-oriented design prohibits mutual exclusion synchronization,
while most schedulability analyses assume it.

2. In process-oriented programs, parallel processes are used as a means of
structuring and organizing a program. Most schedulability disallows
this by requiring that each deadline constraint maps to exactly one
thread of execution.

This part of the thesis will present three contributions to schedulabil-
ity analysis, aimed at making the analysis less incompatible with process-
oriented design. First, in chapter 6, a schedulability analysis for synchronously
communicating systems is presented. The communication between processes
must have a client-server structure. The analysis supports both fixed pri-
ority scheduling (fps) and earliest deadline first (edf), but only works for
uniprocessor systems.

The second two contributions relate to multiprocessor schedulability
analysis. Chapter 7 presents a formal model and algebra for reasoning on
the temporal behavior of real-time processes with a complex parallel struc-
ture. The model assumes discrete time, and an intra-job scheduler that
is work-conserving, but otherwise undefined. The analysis provides funda-
mental insight into the temporal behavior of parallel jobs when executing
on multiple processors.

In chapter 8, a schedulability analysis framework is presented for systems
of independent real-time processes where jobs are allowed a complex parallel
structure. In contrast to the analysis of chapter 7, this analysis assumes
continuous time, and an intra-job scheduler that is reasonably fair.

5.1 Basics, Terminology and Nomenclature

Moving to this second part of the thesis will inevitably involve some change
in terminology, as the topic turns away from implementation of real-time
processes towards an abstract representation of their execution times. This
section will introduce the basic terminology; a complete nomenclature for
this part of the thesis is given in appendix C. Also refer to the general
introduction to real-time scheduling in section 2.4 for other relevant terms
and definitions, as these will not be repeated.
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It will be assumed that the systems to be analyzed can be modeled as
a set of cyclic, top-level tasks that execute in parallel, and unless otherwise
noted, independently of other tasks. A task is real-time if it is subject to
temporal constraints, and non-real-time otherwise. Tasks will be denoted
with upper-case letters (A, B, . . . ).

Each instance of a real-time task is called a job and will be denoted with
lower-case letters (a, b, . . . ). A job has a release, denoted r, and an absolute
deadline for when it must have completed its work, which will be denoted d.
Tasks have relative deadlines, denoted D, which specifies the time between
the release and deadline for jobs from that task (r + D = d). The period
of a task A will be denoted TA, and is defined to be the minimum inter-
arrival time (mit) of jobs, even for tasks that are periodic; this provides a
convenient unified way of modeling both sporadic and periodic tasks.

If fps is used then all tasks must be given a fixed priority, which will
be denoted PA for each task A. The effective scheduling priority of a task A
will be denoted π(A). Under edf the priority will change for each job. The
effective priority may also be changed by the synchronization protocol, and
so may not be constant even under fps.

For all priority driven schedulers, each task A can be assigned a preemp-
tion level, denoted π̂(A). If π̂(A) ≥ π̂(B), also written B ≺ A, then B will never
preempt A; that is, it will never be the case that a newly released job of B
has a higher priority than an existing job of A. Under fps, the preemption
level of a task is equivalent with its priority. Under edf, B ≺ A is equivalent
to DA ≤ DB.

For systems where all jobs are serial, the wcet of a job or task can be
described by a single scalar, which is denoted C. The utilization of a task
A, denoted UA, is its computational requirement divided by its period, or
CA/TA. The utilization Usum of a system is the sum of the utilizations of its
tasks:

Usum =
∑
X∈T

UX =
∑
X∈T

CX

TX
(5.1)

where T is the set of tasks.

It is sometimes convenient to define the density of a job A, denoted λA,
as its computation divided by its relative deadline, and the density of a
system, λsum, as the sum of the density of its tasks:

λsum =
∑
X∈T
λX =

∑
X∈T

CX

DX
(5.2)
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Wcets are always upper bounds, and a schedulability test must there-
fore take into account that tasks may execute less than their wcets. Simi-
larly, only a lower bound on inter-arrival time is known for sporadic tasks. A
schedulability analysis is sustainable [9] if a system determined to be schedu-
lable remains schedulable when decreasing its required work, increasing task
periods or in other ways relaxing its timing requirements. A schedulability
analysis is called exact if it provides sufficient and necessary conditions for
schedulability; or pessimistic if it only provides sufficient conditions.

5.2 Uniprocessor Schedulability Analysis

Real-time schedulability analysis for uniprocessor systems is a well-developed
field. Most analyses have a basic form for task sets that are independent,
where tasks never share resources or in other ways block the progress of
other tasks. These analyses are then extended to the more general case of
communicating tasks.

5.2.1 Independent Task Systems

Systems of independent, implicit deadline tasks are often called Liu-Layland
(ll)-systems, because of two famous schedulability tests by Liu and Layland
[75]. The first of these applies to systems scheduled with edf, and illustrates
the optimality of the edf scheduler on multiprocessor systems:

Theorem 5.1 (ll-edf [75]). An edf-scheduled ll-system is schedulable,
if and only if

Usum ≤ 1 (5.3)

The second test gives sufficient, but not necessary conditions for a sys-
tem to be schedulable under a fixed-priority scheduler, when priorities are
ordered by decreasing periods (rmpo):

Theorem 5.2 (ll-rmpo [75]). An rmpo-scheduled ll-system is schedula-
ble if

Usum ≤ N
(
21/N − 1

)
(5.4)

where N = |T| is the number of tasks.

The right hand side of eq. (5.4) converges to ln 2 ≈ 0.69 for large values
of N, so any ll-system with utilization lower than this is schedulable under
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rmpo. However, the bound given in eq. (5.4) is pessimistic, and systems
with higher utilizations may be schedulable in practice. A more recent and
better test for this type of tasks is the hyperbolic bound test [18], which
accepts a much larger ratio of schedulable task sets.

There are a number of problems with utilization-based schedulability
tests: They must assume implicit deadlines; they do not work for arbitrary
priority orderings and they are not exact when applied to fixed priority
systems.

An alternative is response-time analysis (rta) [58], which provides an
exact schedulability test for fixed-priority systems of any priority ordering
and for constrained deadlines (D ≤ T ). As the name implies, rta works
by computing the worst-case response time of a task, which for task A is
denoted RA, and is the maximum time between release and completion for
any job of A. When RA ≤ DA, then A will meet its deadlines. For fixed-
priority systems of independent tasks, the response-time of a task is its
own execution time plus the sum of interference from higher priority tasks.
This is a recursive problem, as the number of higher priority jobs that may
interfere again depends on the response-time:

Theorem 5.3 (rta [58]). A constrained deadline system is schedulable un-
der fps if, for all tasks A ∈ T

RA ≤ DA (5.5)

where

RA = CA +
∑

X∈T : X	A

⌈
RA

TX

⌉
CX (5.6)

Equation (5.6) can be solved as a fixed-point equation, by iterating from
the starting point RA = CA [1].

Rta cannot easily be used with edf. An analysis method that works
with edf for independent task sets, and for arbitrary deadlines, is the pro-
cessor demand criterion (pdc) [10, 11]. The pdc is based on the observation
that for a system to be unschedulable under edf, there must exist some win-
dow in time where jobs with release and deadline within the window require
more computation than is available in that window. The worst-case required
computation as a function of window length t is called the demand-bound
function, and is denoted dbf(t). The worst-case demand-bound of any win-
dow can found by assuming that all tasks are released synchronously and
at maximum rate, and then computing the sum of their demands:

dbf(t) =
∑
X∈T

max

{
0,

(
1 +

⌊
t − DX

TX

⌋)
CX

}
(5.7)
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The downward saturation to zero is only required for non-constrained dead-
line tasks; ie, when D > T .

The pdc can then be stated as follows:

Theorem 5.4 (pdc [10, 11, 109]). A task system is schedulable if

∀l ∈ R+ : dbf(l) ≤ l (5.8)

Two useful upper bounds lub are known such that if theorem 5.4 holds
for all l up to either of these bounds, then it will hold for any l. One upper
bound is based on the utilization of the system [109]:

lub = max

⎧⎪⎪⎨⎪⎪⎩max
X∈T

(DX − TX) ,
1

1 − Usum

∑
A∈T

UA · (TA − DA)

⎫⎪⎪⎬⎪⎪⎭ (5.9)

another on the length of the synchronous busy period, which is the period
from 0 to the first processor idle time, given that all tasks are released
simultaneously and at their maximum rates [87, 94]. The value of this
upper bound can be found by the (guaranteed) convergence of the recursion

w0 =
∑
A∈T

CA wn+1 =
∑
A∈T

⌈
wn

TA

⌉
CA (5.10)

that is, the upper bound lub is equal to any wn for which wn+1 = wn.

These two alternative upper bounds are independent, and the two are
combined in the Quick processor-demand analysis (qpa), by Zhang and
Burns [109], which is a pdc-based schedulability test that is much faster
than previously existing tests.

5.2.2 Mutual Exclusion Synchronization

Traditional schedulability analysis typically support synchronization be-
tween tasks using resources shared under mutual exclusion. Because of
the problem of unbounded priority inversions, it is necessary to apply a
synchronization protocol (see section 2.4) in order to analyze systems of
communicating tasks. These protocols make it possible to provide upper
bounds on the maximum interference experienced by a task due to blocking
by lower priority tasks. This can then be incorporated into a schedulability
analysis. For fixed priority systems, rta can be modified to account for
blocking by simply adding a blocking term to eq. (5.6):
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Theorem 5.5 (rta with blocking [28]). A constrained deadline system is
schedulable under fps if, for all tasks A ∈ T

RA ≤ DA (5.11)

where

RA = CA + BA +
∑

X∈T : X	A

⌈
RA

TX

⌉
CX (5.12)

and BA denotes the maximum time a job from task A may be blocked waiting
for lower priority tasks.

A task may be blocked directly, by sharing a resource with a lower
priority task; or indirectly, if some higher priority task shares a resource
with a lower priority task. The usage function is useful for describing where
blocking can occur [28]. If shared(A, B) denotes the set of resources shared
between tasks A and B, the usage function can be defined as follows:

usage(r, A) =

⎧⎪⎪⎨⎪⎪⎩1 if ∃L,H ∈ T s.t. L ≺ A � H ∧ r ∈ shared(L,H)

0 otherwise
(5.13)

which reads: if r is a resource and A a task, usage(r, A) is 1 if it is possible
that task A may, directly or indirectly, be blocked due to the sharing of r,
and 0 otherwise.

If a system uses the priority inheritance protocol (pip), a worst-case sit-
uation can be assumed where all shared resources are held by lower priority
tasks. The maximum blocking BA for a task A is then

BA =
∑
r∈S

usage(r, A) Cr (5.14)

where Cr is the wcet of the critical section of resource r, and S is the set
of resources in the system. If a system uses the stack resource policy (srp)
or the priority ceiling protocol (pcp), each instance of a task may only be
blocked by one lower priority task, so maximum blocking can be expressed
as

BA = max
r∈S

usage(r, A) Cr (5.15)

which is clearly less than or equal to the maximum blocking with inheritance.
The pdc can also be changed to account for blocking. Instead of a

blocking term for each task, this requires a blocking function B(l):
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Theorem 5.6 (pdc with blocking [6]). A task system scheduled under edf

is schedulable, if

dbf(l) + B(l) ≤ l (5.16)

for all l ≥ 0, where B(l) is the maximum time tasks with deadlines D > l may
block a task with deadline D ≤ l.

An edf usage function analogous to the fixed-priority case can be defined
as

usageEDF(r, l) =
{

1 if ∃L,H ∈ T s.t. DL > l ≥ DH ∧ r ∈ shared(L,H)

0 otherwise

(5.17)

If a system uses the pip, a worst-case situation can be assumed where all
resources are held by tasks with relative deadline D > l. In that case,
maximum blocking is

B(l) =
∑
r∈S

usageEDF(r, l) Cr (5.18)

If a system uses the srp, only one task with D > l may be blocking another
task with D ≤ l [2]. Therefore, the blocking term is simply

B(l) = max
r∈S

usageEDF(r, l) Cr (5.19)

More precise blocking terms for the pip, which are valid when resource usage
is strictly nested, will be developed in section 6.4. An example of their use
is presented in section 6.5.1.

5.3 Multiprocessor Schedulability Analysis

There are two fundamentally different approaches to multiprocessor schedul-
ing. The first is partitioned scheduling, where each task is permanently
assigned to a single processor. This simplifies analysis for each processor,
but introduces an optimal partitioning problem that is np-hard [36]. The
second approach is global scheduling, where tasks are allowed to migrate
between processors at run-time. Here, there is no partitioning problem,
but the analysis itself becomes more difficult. The two approaches are in-
comparable under priority driven schedulers: Some systems may only be
schedulable with a partitioned approach, while other systems may only be
schedulable with a global approach [7].
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Figure 5.1: Dhall’s Effect: The task set has utilization U ≈ 1 (if CB,...,E is small),
but is not schedulable under edf even if the system contains 4 processors.

Global multiprocessor schedulability analysis is considerably more com-
plex than uniprocessor analysis. Two well-known observations illustrate
this:

1. Dhall’s effect, which describes the existence of multiprocessor systems
that are unschedulable under edf on a large number of processors,
even if their utilization is only 1 (ie, 100% of one processor).

2. The multiprocessor anomaly, which is a common name for the observa-
tion that in multiprocessor systems, tasks executing at their maximum
rate does not necessarily constitute a worst-case scenario.

Examples will be given.

Example 5.3.1 (Dhall’s Effect)
Consider a system of five tasks, A, B, . . . , E, executing on a system of 4
processors. Assume implicit deadlines. Let

CB,...,E ≈ 0+ CA = TA

TB,...,E = x where x < TA

The utilization of the system is close to 1. However, task A has no slack,
and consistently requires one processor in order to meet its deadline. Under
edf, however, it will be considered the least urgent, because its deadline is
the latest. The scheduler will prioritize the other tasks and A will miss its
deadline. This is illustrated in fig. 5.1. Note that it is possible to construct
a similar system for an arbitrary number of processors.

Example 5.3.2 (Multiprocessor anomaly [example from 7])
Consider a dual processor system with tasks A, B and C, where

CA = 1 CB = 1 CC = 5

TA = 2 TB = 3 TC = 6
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(a) (b)

Figure 5.2: The multiprocessor anomaly. Task set is schedulable when executing
at maximum rate (a), but not when a task release is delayed (b).

These tasks are schedulable if released synchronously and at their maximum
rates (fig. 5.2a), but not if the second job of A is delayed by 1 (fig. 5.2b). This
is because C only suffers interference when A and B executes simultaneously.
If TA = 3 then this happens twice within each job of C; if TA = 2 then it
only happens once.

5.3.1 Independent Task Systems on Multiprocessors

It is possible to create a utilization/density-based schedulability test for
multiprocessor systems that take Dhall’s effect into account, by explicitly
considering the maximum utilization or density of any task in the system.
This is the approach used by the gfb-test:

Theorem 5.7 (gfb-test [17, 48]). A constrained deadline system of inde-
pendent tasks is schedulable under multiprocessor-edf if

λsum ≤ m · (1 − λmax) + λmax (5.20)

where

λmax = max
X∈T

CX

TX
(5.21)

Two other well-known schedulability analyses for multiprocessor edf

are the bak-test [3, 4] and the bcl-test [16, 17]. A comparison in Baruah
and Baker [8] found the two tests to be similar in performance, despite the
bak-test being significantly more sophisticated. The same paper presented
a new test for multiprocessor edf:

Theorem 5.8 (from [8]). A system is global-edf-schedulable upon a plat-
form of m identical unit-capacity processors if

Λ ≤ μ − (�μ� − 1) δmax (5.22)
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where

Λ = max
t∈R+

(
dbf(t)

t

)
μ = m − (m − 1) δmax

Multiprocessor rta-based analyses for fps and edf were developed by
Bertogna and Cirinei [15]. The analysis for edf has better performance
than the bak, bcl and gfb-tests, and being based on response-times, yield
additional information compared with a simple yes/no to schedulability.
The equations are somewhat complex and will not be re-stated here.

For uniprocessor systems of independent tasks, edf is known to be an
optimal scheduling algorithm, in that every schedulable system is schedu-
lable under edf. For multiprocessor systems there is no priority driven
scheduling algorithm that has this property. However, a different kind of
algorithm known as proportional-fair (pfair) [12] is known to be optimal
for implicit deadline systems.

The pfair algorithm is an idealization of a scheduling algorithm, that
for any time window of length Δt, allows each task T to progress by Δt ·UT .
The idea is to execute each task as slow as possible, so that each task finishes
exactly at its deadline. In practice, an implementation must execute larger
time slices of each task in order to avoid excessive task switches, which
would reduce performance. Efficient implementations and extensions to the
pfair algorithm are discussed in Srinivasan [95].

5.3.2 Mutual Exclusion Synchronization on Multiprocessors

In a uniprocessor platform, when a high priority job requires a resource held
by a lower priority job, the system can execute the lower priority job until
the resource is freed. Although the higher priority job is blocked, the system
is kept busy, and no lower priority jobs will be able to lock further resources
until all higher priority jobs have completed.

Neither of this applies to multiprocessor systems. If the blocking, low
priority job is already executing on a different processor, the higher priority
job can do nothing but wait, leaving its processor idle. Allowing other
tasks to use that processor will not improve worst-case schedulability, as
the highest priority job will still be blocked.

Moreover, as lower priority tasks may execute simultaneously with higher
priority tasks, a high priority task can be blocked by lower priority tasks
that were released after it, and if the high priority task accesses a resource
several times, it may be blocked at each access, not only once, as is the
case for uniprocessor systems. Furthermore, using for example the srp in
its original form will mean that when a resource with the highest ceiling is
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held by any task, no new jobs may start to execute on any processor, which
would be inefficient.

There is no perfect solution to these problems; multiprocessor synchro-
nization protocols must balance the problem of excessive blocking that hap-
pens when low- and high priority tasks execute simultaneously; with the
problem of low utilization that happens when too many lower priority tasks
are prevented from executing when processors are idle.

The first multiprocessor synchronization protocol was the multiprocessor
pcp (mpcp), developed by Rajkumar et al. [84]. A similar protocol, the
multiprocessor srp (msrp) was developed by Gai et al. [44]. Both the mpcp
and msrp require partitioned schedulers. Their theoretical performances
are similar, but the mpcp behaves slightly better in practice due to less
overhead [44].

These protocols divide resources into those that are local, (ie, used only
by tasks executing on one processor), and those that are global (ie, shared
between tasks on different processors). Uniprocessor synchronization pro-
tocols are used for local resources. For the mpcp, a task becomes non-
preemptible when it acquires a global resource; for the msrp it gains a
higher preemption level than any task, preventing any new job from start-
ing. When a task is blocked waiting for a global resource, the mpcp will
block the task, allowing other tasks to execute; while the msrp will spin the
task, keeping the processor busy while it is waiting.

The first protocol for global scheduling that also allowed schedulability
analysis was the edf-hybrid (edf-h) protocol developed by Devi et al. [38].
The edf-h protocol is an edf scheduler that disables preemptions for any
task that holds a shared resource. Because of this it becomes essential to
keep critical sections short, as all assigned scheduling priorities are subverted
whenever any task is holding a resource.

A protocol called parallel pcp (p-pcp) was introduced in Easwaran and
Anderson [40]. It only supports fps and does not support nested resources.
It works by allowing some tasks, limited by a parameter vector, to execute
even when a strict pcp would prevent it. The parameter vector can be
tuned to increase concurrent execution, or conversely, to reduce worst-case
blocking.

5.3.3 Job-level parallelism (jlp)

Most existing multiprocessor analyses assume that each job is serial and is
never able to simultaneously execute on multiple processors. A real-time
system where one job may simultaneously utilize more than one processor
is said to allow job-level parallelism (jlp). Jlp implies a global scheduler.
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A classification of systems with jlp is given in Goossens and Berten
[47]. Here, a parallel job is defined to be rigid, if the number of processors
required by the job is determined a-priori, moldable if it is determined by the
scheduler, but does not change during the execution of the job, or malleable
if the number of processors assigned to the job may change during the
execution of the job. A task is defined to be rigid if all its jobs are rigid,
and so on. Schedulability analyses of rigid tasks can be found in eg, Goossens
and Berten [47] and Kato and Ishikawa [59].

A limitation with existing analysis that allow non-rigid tasks is that they
do not properly take into account the parallel structure of the task that a
job implements: The analysis given in Han and Lin [51] assumes that all
jobs are fully parallelizable to an arbitrary degree with no overhead. The
analysis in Collette et al. [34] allows costs to be added to the parallelization
of a job, which can also be used to model an effective limit to the degree
of parallelization, but it does not discuss how to model actual programs, or
which programs that can be modeled. The analysis in Lakshmanan et al. [66]
assumes that jobs have a basic fork-join structure, where the main thread of
a job may fork into multiple branches, but where the branches themselves
are not allowed to fork. A similar constraint is used in Berten et al. [14],
where jobs with this structure are called multi-phase jobs.

Job-level parallelism is the main topic of chapters 7 and 8.
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Chapter 6

Analysis of Client-Server Structures

Buffalo buffalo that Buffalo buffalo
buffalo, buffalo Buffalo buffalo.

W. J. Rapaport

In this chapter, a schedulability analysis for systems using synchronous
client–server based communication will be developed. The analysis can be
used on Toc programs if they have a simple parallel structure and satisfy
the criteria for deadlock-freedom given in theorem 3.1. The analysis can
also be used on other synchronously communicating client–server systems.
It supports both edf and fps, and versions of the pip and srp protocols.
It is limited to uniprocessor systems.

6.1 Introduction

When tasks communicate via shared variables and only use mutual exclusion
for synchronization, then all execution that is required to complete a task
will be local to the thread of execution associated with that task. Some of
this code represents resource usage; its execution must not be interleaved
with execution of another task accessing the same resource. In a client–
server system, however, resource usage is not incorporated into the local
code of a task. Instead, the resources (ie, the servers) are themselves tasks.

An intuitive first step for analyzing the schedulability of client–server
systems is to consider a server shared between two tasks to be a resource
shared under mutual exclusion between those two tasks. From this start-
ing point, two significant differences from mutual exclusion synchronization
become apparent:
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1. A server task may execute code that is not directly part of a call
from a client, and thus a server may not immediately be ready to
serve a client even if no other clients currently hold the server. This
is in contrast to resources in shared-memory based systems, where a
resource is always ready unless another task is holding it.

2. It is no longer reasonable to assume that resource accesses can be kept
short, as a significant part of the computation required to complete a
real-time task may be performed as part of calls to servers.

The last point makes the extension of existing multiprocessor analysis (see
section 5.3.2) such as the edf-h more difficult, because the edf-h relies on
making a task non-preemptible whenever it holds a shared resources. The
p-pcp is not suitable either, as it does not support nested resources, which
are required in all practical client–server systems. The analysis presented
here will therefore focus on uniprocessor systems.

In earlier literature, tasks that communicate synchronously have been
considered hard to analyze [eg, 29]. The reasoning has often been the diffi-
culty of resolving situations that arise when one job requires synchronization
with another job that has not yet been released (ie, a stall). In effect, this
is the problem described in observation 3.7, where it was noted that a pro-
cess with a deadline should not require synchronization with a process that
might be subject to a delay constraint.

However, this is only a limitation when direct synchronization between
real-time tasks is actually required. More often than not, the purpose of the
synchronous communication is communication, and not synchronization.
Direct synchronization between real-time tasks is then easily avoided by
letting the tasks communicate through an intermediate, non-real-time task.
When using the client–server model for communication, this is equivalent
with requiring that no real-time task may act as a server.

6.1.1 Related Work and Motivation

A schedulability analysis with support for synchronous communication in
Ada was developed by Burns and Wellings [26], by the use of an abstraction
called a session. In this model, tasks may only communicate synchronously
with other tasks in the same session, and all tasks within the same session
are required to have the same release time.

An analysis for systems designed using uml-rt is given in Saksena and
Karvelas [89]. The system model is based on capsules, events and actions.
Capsules are encapsulated objects with their own thread of execution, which
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communicate either by raising asynchronous events that triggers actions in
other capsules, or by performing synchronous calls to other capsules. An
event may also be from an external source or from a timer, thus allowing
both periodic and sporadic tasks. The schedulability analysis yields upper
bounds on the duration from an external event to the completion of each ac-
tion triggered directly or indirectly by the event. Synchronization is always
between capsules, and not between real-time tasks, which guarantees that
no task requires synchronization with a task that has not yet been released.

In contrast to the session model of Burns and Wellings, the model in
this chapter allows synchronous communication between tasks of different
periods, but the communication must happen indirectly through a non-real-
time server. The model does not allow the explicit synchronization possible
with the session model.

Unlike the uml-rt-model of Saksena and Karvelas, servers will be al-
lowed to execute code not part of a call from a client. However, the model
in this chapter has no direct equivalent to the uml-rt asynchronous event,
although this can be partially mitigated by asynchronously triggering the
release of a sporadic task. The uml-rt-model also supports overlapping
task instances, which this model does not.

However, as the uml-rt-model lacks support for edf, inheritance and
active execution by servers, it is unsuitable for analyzing a large set of
systems that use synchronous communication, including systems that use
the language primitives developed in chapter 3. A new analysis technique
is therefore required.

6.1.2 Outline

The system and program models are defined in section 6.2. Also given are
some constraints on communication that are required to ensure freedom
from stalls and deadlocks.

Section 6.3 defines two alternative synchronization protocols: one inher-
itance protocol and one ceiling protocol based on the srp. The inheritance
protocol is the simplest in design and implementation, but the ceiling pro-
tocol has better performance.

The main schedulability analysis is given in section 6.4. A definition of
demand is given, and blocking terms are developed for the two synchroniza-
tion protocols. Then the analysis for a complete system is developed. If the
scheduler is based on fixed priorities, then rta is used; if the scheduler is
based on edf then the pdc is used.

Section 6.5 shows examples of uses of the schedulability analysis. The
first is an example of applying the analysis to protected objects and the
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pip; it is shown that the blocking term derived in this paper improves on
the term derived by existing methods. The second example is the use of
deferred server calls, ie, server calls that delay computation generated by
the call until after the call. This is a pattern that is hard to express when
not using a process-oriented client–server paradigm. It is demonstrated that
there exists systems that can only be scheduled when tasks communicate
using deferred server calls, and not if using a protected object; this shows
that synchronous communication can in some cases improve schedulability.

6.2 System Model

This section will introduce the system model used in this chapter. Although
the client–server framework is flexible, there are certain rules for communi-
cation that must be followed for the analysis to work. The systems them-
selves are described using a simple language where statements either take
up some processing time or make calls to servers, and this part of the model
is introduced next. Finally, some extra notation is given that is necessary
in order to analyze the systems.

It is assumed that systems consist of a fixed number of real-time tasks
and servers. Real-time tasks are assumed to have constrained deadlines.
Servers, on the other hand, cannot have associated timing requirements,
and must always be ready either to execute or to communicate. An ideal
platform model will also be assumed, with no overhead and no cost of pre-
emption.

6.2.1 Constraints on Communication

Communication must satisfy four rules, the first three which comply with the
criteria for deadlock-free client–server systems stated by theorem 3.1 [78,
105]:

Rule 6.1: A client that has sent a request to a server must always be ready
to accept the reply from that server.

Rule 6.2: Between accepting a request from a client and the corresponding
reply, a server may not accept requests from other clients, but may act as a
client to other servers.

Rule 6.3: The client–server relation graph must be acyclic.

Rule 6.1 is stricter than its equivalent in theorem 3.1, which only requires
that the client does not communicate with other servers during an ongoing
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server call. Rule 6.1 also implies that each task may hold at most one server
at a time, although this server may again hold one sub-server, and so on.

Rule 6.4: No real-time task may act as a server.

This rule ensures that no task is blocked waiting for a job that has
not yet been released, thus avoiding the problems of stalls caused by direct
synchronization between real-time tasks (observation 3.7). It also prevents
servers from having their own deadline constraints, which according to ob-
servation 3.6 would hinder the development of a synchronization protocol.

6.2.2 Program Model

The program model consists of a simple language where each basic statement
either takes up some processor time, or makes a call to a server.

A server may include code for initialization or cleanup or post-processing
after a previous call. Such code needs to be executed before the server is
ready to accept a new call, but is not executed as part of such a call. When
a server is executing this kind of code, it is said to be in the request phase.
While a server is handling an accepted a call, it is said to be in the reply
phase.

Formally, the program model is as follows:

A statement is an element of the set I, and is either of the following opera-
tions:

i ∈ I ⇐⇒ i = Exec r where r ∈ R+
∨ i = Call S . c where S ∈ S, c ∈ ΣS (6.1)

where S is the set of server tasks and ΣS is the signature of server S
(see below).

An Exec r statement is an abstract statement that requires r amount
of processing time to complete. It is fully preemptible; if executing for
some time r′ < r, the remaining computation can be modeled as

Exec (r − r′)

The Call-statement is a synchronous call to a server, and will not
complete until the server has completed the associated reply phase.

A block is a sequence of statements. Angle brackets are used to describe
such a sequence, eg, 〈Exec 10,Call S . c〉. An empty block is denoted
〈〉; concatenation of two blocks b1 and b2 (execute b2 after b1) is written
b1
� b2.

119



Analysis of Client-Server Structures

A real-time task A is modeled by its relative deadline DA, its period TA,
and, under fps, a priority PA. In addition, each task has a defined
set of job blocks IA. Each job of the task executes one block, which
for modeling purposes is assumed to be chosen non-deterministically.
The set of real-time tasks TRT is a subset of the set of tasks: TRT ⊆ T.

An accept S . c represents the call of type c to server S . Each accept has a
set of code blocks IS . c that handle a server call of that type. For each
accepted call, one non-deterministically chosen block is executed. The
full set of accepts for a server S (the signature of S ) is denoted ΣS .
For completeness, the signature of a real-time task is defined to be the
empty set.

A server task S has a set of request phase blocks IS , one of which must be
executed before each accepted call, and a set of accepts ΣS . The set
of server tasks S is a subset of the set of tasks: S ⊆ T.

6.2.3 Program Examples

Two examples of using the program model will be given; the first is an
example of a server written in Ada, the second of a real-time task written
in Toc.

Example 6.2.1 (Modeling a Server)
Let A be the server described by the Ada pseudo-code in listing 6.1. Let
Cp be the wcet of evaluating the expression ‘pred’, and C1, . . . ,C6 be the
wcet of the statements S1,...,S6, all of which are assumed not to contain
further communications.

When accepting a call of type Call a, the server executes a simple block
S2, so

IA. a =
{〈Exec C2〉}

When accepting a Call b, the handing depends on the value of pred, so the
set IA. b has two different blocks:

IA. b =
{〈Exec C3,Call B. a〉,
〈Exec C5〉}

The signature ΣS of S is the set of accepts:

ΣA =
{
(a, IA. a), (b, IA. b)

}
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Listing 6.1: Ada Server Pseudo-code for Example 6.2.1

1 task body Server A is
2 begin
3 S1 (...);
4 loop
5 select
6 accept Call a (...) do
7 S2 (...);
8 end Call a;
9 Server C.Call a(...)

10 or
11 when pred =>
12 accept Call b (...) do
13 S3 (...);
14 Server B.Call a(...);
15 end Call b;
16 S4 (...);
17 or
18 when not pred =>
19 accept Call b (...) do
20 S5 (...);
21 end Call b;
22 end select;
23 S6 (...);
24 end Server A;

Listing 6.2: Toc Task Pseudo-code for Example 6.2.2

1 PROC Task.B(...)
2 WHILE TRUE
3 TIME 100 MSEC
4 TIME 20 MSEC
5 SEQ
6 P1(...)
7 server.S.call.a.request ! ...
8 server.S.call.a.reply ? ...
9 P2(...)

10 IF
11 pred(...)
12 server.S.call.b ! ...
13 TRUE
14 P3(...)
15 :
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Before the first call, S5 must be executed and pred must be evaluated.
The code to execute between subsequent calls depends on the last call.
The common component is S6 and the re-evaluation of pred, but with an
additional S4 or a call to Server C. These alternatives constitute the request
phase blocks of the server:

IA =
{〈Exec C1,Exec Cp〉,
〈Call C. a,Exec C6,Exec Cp〉,
〈Exec C4,Exec C6,Exec Cp〉,
〈Exec C6,Exec Cp〉}

The complete server is modeled by the pair (IA,ΣA).

Example 6.2.2 (Modeling a Real-time Task)
Let B be the real-time task described by the Toc pseudo-code in listing 6.2.
Let Cp be the wcet of evaluating pred(), and C1, . . . ,C3 be the wcet of
the statements P1(),...,P3(), which contain no communications.

Task B contains two execution paths that vary in their communications.
If b1 is the sequence of instructions called if pred() evaluates to TRUE, and
b2 the corresponding sequence for FALSE, then

b1 = 〈Exec C1,Call S . a,Exec C2,Exec Cp,Call S . b〉
b2 = 〈Exec C1,Call S . a,Exec C2,Exec Cp,Exec C3〉

The job blocks of B are the set of these alternatives:

IB =
{
b1, b2

}
Moreover, from the TIME constructs one can see that TB = 100 and DB = 20.
The complete task is modeled by the triple (IB,TB,DB).

6.2.4 Notation

Some extra notation will be introduced to work with the above model.
First, because the client–server call graph is acyclic (rule 6.3), it is pos-

sible to create a strict, partial order of tasks so that A has a lower rank than
B, written A < B, if task B makes a call to A, or makes a call to a task that
makes a call to A, or so on.

Definition 6.1 (Task Rank)
Task A has a lower rank than B, denoted A < B, if

∃a ∈ ΣA : Call A. a ∈
(⋃

IB ∪
⋃
b∈ΣB

IB. b
)

(6.2)
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or if

∃C ∈ T : A < C ∧C < A (6.3)

To define synchronization protocols and develop the analysis it is also
necessary to describe the current run-time state of the system. If task A is
currently executing the statement i, this will be written

A : : i (6.4)

A task holds a server when its call to that server must be completed for
another task to use the server. A task can hold a server either directly or
indirectly, through another server:

Definition 6.2 (Holding a Server)
A task A is said to hold a server S , written S ∈ holds A, if and only if there
exists servers S 1, S 2, . . . , S N such that

A : : Call S 1. c1

∧ S 1 : : Call S 2. c2

∧ S 2 : : Call S 3. c3

...

∧ S N : : Call S . c
∧ S : : i

(6.5)

and all servers S 1, S 2, . . . , S N , S are executing in their reply phases, handling
the call of the preceding task.

Trivially, we have

S ∈ holds A =⇒ S < A (6.6)

However, it is possible that S < A without ever having S ∈ holds A, for
example if S < B < A, but where B never calls S in the context of handling
a call from A.

6.3 Synchronization Protocols

This section will define two synchronization protocol: An inheritance-based
protocol and a ceiling-based protocol.

A consequence of rule 6.1 is that if a real-time task is blocked, all neces-
sary code to unblock it will be in servers, and not in other real-time tasks.
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The synchronization protocols therefore only need to change the effective
scheduling priorities of server tasks.

The analysis will support both fps and edf. Both fps and edf are
priority driven schedulers, so the base priority of a real-time task will be
constant during each job. Servers may be given a background base priority
or a “very long deadline”, so that they may execute on their own when no
real-time tasks are ready. The synchronization protocols will assign higher
priorities to servers when they are needed by other tasks.

The minimum requirement for a synchronization protocol is that if task
A is blocked waiting for a task B, then the protocol must ensure that π(B) ≥
π(A) (observation 3.5). Here, this condition can be expressed as

A : : Call B. b =⇒ π(B) ≥ π(A) (6.7)

The minimum protocol which enforces this condition is an inheritance pro-
tocol, defined as follows:

Definition 6.3 (Client-server inheritance protocol)
When using the client-server inheritance protocol (csip), the effective pri-
ority π(S ) of a server S is given by

π(S ) = max
X∈T, c ∈ΣS

{
π(X) : X : : Call S . c

}
(6.8)

that is, the effective priority of S is the maximum priority of any task with
an active or pending server call to S .

Ceiling protocols, such as the srp, are not as straight-forward to adapt
to a client–server framework. In its standard form, the srp states that the
preemption level of a resource should be set to the highest level of any task
that uses that resource, whenever the resource is in use. However, in a
client–server framework, a task may have to wait for a server that is not in
use by another task, a situation not covered by the srp. A solution is to
use both inheritance and ceiling, with inheritance working as with the csip,
but where each server also has a preemption level that is raised while the
server executes a reply-phase:

Definition 6.4 (Client-server ceiling protocol)
The effective priority of a server when using the client-server ceiling protocol
(cscp) is given by

π(S ) = max
X∈T, c ∈ΣS

{
π(X) : X : : Call S . c

}
(6.9)
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The preemption level of a server when using the cscp is given by

π̂(S ) =

⎧⎪⎪⎨⎪⎪⎩
⌈̂
π(S )

⌉
when ∃B ∈ T : S ∈ holds B

π̂min otherwise
(6.10)

where π̂min is some preemption level lower than that of any task, and
⌈̂
π(S )

⌉
is given by ⌈̂

π(S )
⌉
= max

X∈T
{̂
π(X) : S < X

}
(6.11)

As with the srp, a task is not allowed to start a new job unless its
preemption level is higher than the preemption level of all servers. For a
server with its own background priority, starting to execute a request-phase
without having inherited the priority of a client counts as starting a new
job.

The cscp is similar to another hybrid inheritance–ceiling protocol de-
veloped by Saksena and Karvelas [89] for uml-rt.

6.4 Schedulability Analysis

In traditional schedulability analysis, the computation of a task, C, is defined
as the wcet of a job of that task. In client–server systems, part of the
computation required by a real-time task will be local to servers that it
uses, and not only to the real-time task itself, so the C is not as easily
defined. Instead, the demand of a task will be defined as the worst-case
execution time of one job given that it is not blocked nor preempted. This
will include the wcet of a task’s local code, but also the wcet of server
calls made by the task.

The first thing that will be discussed in this chapter is how to actually
define the wcet of a server call. This will then be used to compute the
demand of a task. Preemption is then discussed. At first, preemption in
client–server systems may seem to be difficult to analyze, because tasks can
also be delayed indirectly by preempting servers that they are waiting for.
However, it will be shown that as with traditional analysis, the worst-case
delay due to being preempted is the sum of the demands of preempting
tasks.

After that, worst-case blocking is computed for each of the two synchro-
nization protocols. Finally, all of this is combined into full schedulability
analyses, first for systems that use fixed priority scheduling, and then for
systems that use edf.

125



Analysis of Client-Server Structures

6.4.1 Execution Time of a Server Call

Consider some situation where

T : : Call S . c (6.12)

Both of the synchronization protocols defined in section 6.3 will ensure that
π(S ) ≥ π(T ), so that no task with priority lower than π(T ) will preempt S .
Ignoring preemptions from higher priority tasks for now, the execution time
of the call has these three components:

1. If S has already accepted a call from another task: The time it takes
for S to complete that call.

2. The time it takes for S to become ready for another server call.

3. The time it takes for S to process the server call from T .

Component 1 represents blocking in the traditional sense, because T needs
to wait while the server executes code on behalf of a lower priority task.

Component 2 and 3 represent the execution time of the request and reply
phase, respectively. An upper bound to component 2 is called the worst-case
request time and is denoted QS , while an upper bound on component 3 is
called the worst-case reply time and is denoted PS . c.

In the request and reply phases T is also blocked waiting for the server.
However, the server now executes code that is necessary for the completion
of T . In contrast to the first component, these components need to be
executed once per server call independently of whether the server is initially
held by another task. It is therefore convenient to define the demand of the
server call as the sum QS + PS . c, and only consider the first component as
blocking.

It is also clear that the execution time of component 1 will never exceed
the worst-case reply time of the blocking call:

Observation 6.1. The maximum blocking caused by a lower priority task
executing Call S . c is PS . c.

This is because in order to cause blocking, a server must be held by a lower
priority task, which means that it must have begun the reply phase of the
call from that task. If the server was not held, then it would have accepted
the call of the higher priority task instead.
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6.4.2 Demand

The demand of a task, server call, block or statement are all denoted by the
function D(·); the argument can be used to deduce which function is meant.

The demand of an Exec statement is the amount of computation in that
statement. For a server call the demand is defined to be the sum of the
worst-case request and reply times:

D(i) =

⎧⎪⎪⎨⎪⎪⎩r when i = Exec r
QS + PS . c when i = Call S . c

(6.13)

The demand of a block b is the sum of demands of the statements in b:

D(b) =

⎧⎪⎪⎨⎪⎪⎩0 when b = 〈〉
D(i) +D(b′) when b = 〈i〉� b′

(6.14)

The demand of a real-time task A can then be defined as the maximum
demand of the job blocks of A:

D(A) = max
b∈IA

{D(b)
}

(6.15)

This definition of the demand of a task will replace the traditional notion of
a task’s worst-case execution time, as it is the worst-case execution time of
a real-time task that is not preempted nor blocked. The worst-case request
and reply times will be defined similarly:

QS = max
b∈IS

{D(b)
}

(6.16)

PS . c = max
b∈IS . c

{D(b)
}

(6.17)

For convenience, the maximum worst-case reply time of any calls to a server
will be given its own notation:

P̂S = max
c∈ΣS

PS . c (6.18)

Because servers may contain calls to sub-servers, these definitions are recur-
sive over the set of servers. However, as long as the client–server relation
graph is acyclic (rule 6.3) the recursion is guaranteed to terminate.

6.4.3 Preemption

When using mutual exclusion synchronization, a task that is preempted by
a higher priority task with wcet C will be delayed by at most C. When
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the preempting task has completed, then the preempted task may continue
from its previous state of execution.

In a client–server system the effects of preemption are more subtle. If
the preempting task uses a server that the preempted task is waiting for
but is not yet holding, then more computation may remain in the request
phase after control returns to the preempted task, than it did at the time
of the preemption. It may therefore initially seem that the delay caused by
preemption may be greater than the demand of the preempting task.

However, as no computation is added to the total demand because of
preemptions, the sum of demands of the preempted and preempting tasks
will not change. Therefore, if a job of task L is preempted by some set of
higher priority tasks X, the total demand in the window between release to
completion of L can be no greater than

D(L) +
∑
X∈X

D(X) (6.19)

assuming that there is no blocking by tasks with lower priority than L. An
example will illustrate this:

Example 6.4.1
Let L and H be real-time tasks so that L ≺ H, and let S be a server. The
tasks have the following program models:

IS =
{〈Exec 3〉}

IS . c =
{〈Exec 2〉}

IL =
{〈Exec 2,Call S . c,Exec 2

}
IH =

{〈Exec 2,Call S . c,Exec 1
}

so that D(L) = 9 and D(H) = 8. Examples of three different scenarios in
which H preempts L will be discussed:

Scenario 1: Let L be released at t = 0 and H at t = 1, as is illustrated in
fig. 6.1a. In this case, L has not yet begun its server call at the time of
preemption. H preempts L and executes one job. To do this, H needs
to execute its local computation, which totals 3 time units, plus the
server call. The server requires at most 3 time units to get ready, plus
2 for the call itself. The response time of H is therefore its demand of
8.

Task L requires 4 time units for its local computation, and like H, 3+2

units are required for the server call itself. The delay caused by the
interference from H is 8. Adding up, the response time of L becomes
17.

128



Schedulability Analysis

(a)

(b)

(c)

(d)

Figure 6.1: Example 6.4.1: Task preemption and server access. H preempts L when
(a) server is at beginning of request phase
(b) server is in the middle of request phase
(c) server is in the middle of reply phase (cscp)
(d) server is in the middle of reply phase (csip).
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Scenario 2: Say instead that S was in the middle of its request phase when
H preempted L, and that Δ out of QS had already been executed
(fig. 6.1b). The remaining request phase execution time for H is then
at most QS −Δ. H saves Δ of execution time compared to case 1, and
its response time decreases accordingly.

When H completes, S is left at the beginning of the request phase.
L therefore has to wait for a full new request phase before the call is
accepted, adding Δ more execution time to the server call compared
to case 1. Nevertheless, it suffers correspondingly less delay from
interference, and its response time remains the same.

Scenario 3: Now consider the case where H is released while S is in its reply
phase, serving L. Say that S has B units of computation remaining
in its reply phase. If using the cscp, H will not be able to start until
S has completed its reply phase, the start of H being delayed B time
units due to blocking (fig. 6.1c). If using the csip, this delay instead
occurs when H attempts to call S (fig. 6.1d). In either case, the server
will first complete the server call from L with the priority of H before
H is allowed to progress, causing H to be blocked for B time units,
increasing its response time.

The job of L completes at the same time in all scenarios. This is because
the total computational demand from the release to completion of L is un-
changed: It is the sum of the computation local to L and H, plus one request
and reply phase for each call to S .

6.4.4 Blocking under the Ceiling Protocol

As discussed in section 6.4.1, the blocking caused by a lower priority task
holding a server is at most equal to the server’s worst-case reply time. To
perform schedulability analysis one must also know which server, or servers,
that cause the maximum blocking when held.

These worst-case blocking terms will now be developed, for both the
cscp and the csip. The blocking terms will be defined with preemption
levels so that they can be used directly with both edf and fps based anal-
ysis.

Definition 6.5 (Blocking term Bπ)
LetW be any window in time in which there is always a real-time task with
preemption level higher than or equal to π ready to execute. The blocking
term Bπ is defined as an upper bound to the amount of execution time in
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W performed by servers held by tasks with a preemption level lower than
π.

With the cscp, only one lower level task can block a continuous set of
higher level tasks:

Lemma 6.1 (cscp). The blocking term when using the cscp is bounded by

Bπ ≤ max P̂S (6.20)

where S ∈ S satisfies

π̂(A) < π ≤ ⌈̂
π(S )

⌉ ∧ S < A (6.21)

for some A ∈ T.
Proof. The blocking term is defined as the amount of execution time re-
quired by servers held by tasks with lower levels than π. When using the
cscp, if a server S held by some lower level task A executes in W it can
only be because its level has been raised to π or higher; necessary conditions
for this to happen are given by eq. (6.21).

After A acquired S , no task C with π̂(C) ≤ �̂π(S )� would be allowed to
preempt it or any servers that it might use. By transitivity this includes all
tasks C′ with π̂(C′) ≤ π. Therefore, at any point in time there can only be
one task A that satisfies eq. (6.21). S is therefore never blocked, and will
execute for at most P̂S time before its ceiling is dropped. This yields

Bπ ≤ P̂S (6.22)

After A has finished its server call, no lower level tasks hold any servers
used by tasks that execute in the window, so after this, no higher level tasks
will be blocked. The highest value for Bπ is found by maximizing eq. (6.22)
while satisfying eq. (6.21). This results in lemma 6.1. �

6.4.5 Blocking under the Inheritance Protocol

With the csip it is possible for several low level tasks to hold servers that
block higher level tasks. However, in this section it will be shown that
because all server accesses are strictly nested, a safe assumption is for each
task to hold only one server, as long as this server is chosen to be the one
with the greatest worst-case reply time. The wcet required to free this
server must then include the time needed to free other servers that the
same low level task may hold.
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Lemma 6.2. Let W be a window in time in which there is always a real-
time task with preemption level higher than or equal to π ready to execute.
Let X be a task with π̂(X) < π and let Bπ,X be the maximum amount of work
executed by servers held by X in W. Then

Bπ,X ≤ max
S∈S

P̂S (6.23)

where S is the set of servers held by X that are also used by any of the higher
level tasks.

Proof. Let the state of X and the servers held by X be

X : : Call S 1. c1

∧ S 1 : : Call S 2. c2

∧ S 2 : : Call S 3. c3

...

∧ S N : : i

(6.24)

so that holds X = {S 1, S 2, . . . , S N}, and S N does not hold any servers. Let bi

denote the remaining block of computation required to complete the reply
phase of S i that is local to S i.

The only reason why a server held by X is executed in the window is
because a higher priority task also requires it. Higher priority tasks may
call servers held by X in any order. Lemma 6.2 only describes execution
time by servers held by X; so transitive blocking by further lower priority
tasks is by definition not included.

Let S h be the highest ranking server in S. Completing the call to S h

directly when there is no transitive blocking requires
∑N

k=h D(bk) of execution.
This must by definition by less than the worst-case reply time of S h, which
by definition must be less than the greatest worst-case reply time of any
server in S:

N∑
k=h

D(bk) ≤ PS h. ch ≤ max
S∈S

P̂S (6.25)

A stronger version of the lemma will now be proved, namely that

Bπ,X ≤
N∑

k=h

D(bk) (6.26)
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Proof by induction. As a basis, say S a is the first server call that needs to
be completed. This requires a worst-case execution time of

N∑
k=a

D(bk) (6.27)

by servers held by X. Equation (6.26) therefore holds for a first server call
by a higher level task. After this, a is the highest ranking task that a higher
level task has required, and X now holds the servers {S 1, . . . , S a−1}.

For the inductive step, say after some such calls that S a is the highest
ranking server for which the call has already been completed. X then holds
servers {S 1, . . . , S a−1}, and, assuming eq. (6.26), completing the previous calls
have taken a maximum time of

∑N
k=a D(bk).

Say the next server to be completed is S b. If S b has a lower rank, ie,
S b < S a, which implies b > a, then S b must already have been completed in
previous calls. If S b has a higher rank, ie, b < a, then it takes

a−1∑
k=b

D(bk) (6.28)

to complete, because servers from S a to S N have already completed their
reply phases. In total, completing this call to S b plus all previous server
calls take at most

a−1∑
k=b

D(bk) +

N∑
k=a

D(bk) =

N∑
k=b

D(bk) (6.29)

so eq. (6.26) holds. As eq. (6.26) holds for the first server call, and, given
that it holds for a series of server calls it also holds for the next; by induction
the equation must hold for all sequences of server calls from higher priority
tasks.

This proves eq. (6.26). It can be seen from eq. (6.25) that this is a
stronger version of the lemma, so the lemma must also hold. �

Lemma 6.3 (csip). The blocking term when using the csip is bounded by

Bπ ≤ max
f : T′�S

∑
X∈ dom f

Cπ(X, f (X)) (6.30)

where f : T′� S is a partial, injective function1 from tasks to servers, dom f
1Partial implies that f may not be defined for all tasks. Injective implies that no two

tasks are mapped to the same server.
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is the domain of f and Cπ(X, S ) is given by

Cπ(X, S ) =

⎧⎪⎪⎨⎪⎪⎩P̂S if ∃T : π̂(X) < π ≤ π̂(T ) ∧ S < T ∧ S < X
0 otherwise

(6.31)

Informally, Cπ(X, S ) is the maximum time server S may block a task with
level higher than π because it is held by the lower level task X.

Proof. Consider the blocking term Bπ as defined in definition 6.5. If a server
held by a task with lower level than π executes in the window, it must be
because the server is required by a task with a level higher than or equal to
π. It may be called directly by such a task, or it may be required indirectly,
in order to complete an ongoing call a server required by the task. For a
server S held by a lower level task X to execute in the window, the following
points must therefore hold:

1. X must be lower level: π̂(X) < π.

2. S must be held by X, which implies S < X.

3. S must be used by some task T with a level higher than or equal
to π, or by a server used by T , both which implies S < T for some
T : π̂(T ) ≥ π.

Only if all of the above points hold may S be a server held by a lower level
task X that will execute in W. According to lemma 6.2, if X satisfies the
first criterion, and S is a set of servers that satisfy the second and third
criteria, then these servers will execute at most maxS∈S P̂S in W.

Say each lower level task X is assigned an arbitrary, but mutually exclu-
sive set of servers SX. Let C′

π(X,SX) denote the execution in W of servers
in SX held by X, only if X is a lower level task, and only for servers that it
is possible that X may hold. Then

C′
π(X,SX) ≤ max

S∈SX

⎧⎪⎪⎨⎪⎪⎩P̂S if ∃T : π̂(X) < π ≤ π̂(T ) ∧ S < T ∧ S < X
0 otherwise

(6.32)

this can be rewritten as

C′
π(X,SX) ≤ max

S∈SX
Cπ(X, S ) (6.33)

where

Cπ(X, S ) ≤
⎧⎪⎪⎨⎪⎪⎩P̂S if ∃T : π̂(X) < π ≤ π̂(T ) ∧ S < T ∧ S < X

0 otherwise
(6.34)
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Worst-case blocking is achieved when each lower level task X is assigned a
set SX that maximizes the sum of execution of servers held by lower level
tasks in W. If this maximum is denoted Bπ, then

Bπ ≤ max
g : T�{S}

∑
X∈T

max
S∈g(X)

Cπ(X, S ) (6.35)

where g is a function from tasks to sets of servers so that

∀A, B ∈ T : A � B =⇒ g(A) ∩ g(B) = Ø (6.36)

Because only one server from each set contributes to the blocking value, the
maximum value can always be achieved by assigning only one server to each
task. This yields

Bπ ≤ max
f : T′�S

∑
X∈ dom f

Cπ(X, f (X)) (6.37)

where f : T′� S means that

∀A, B ∈ T : A � B =⇒ f (A) � f (B) (6.38)

and that f is not necessarily defined for all tasks. This proves the lemma. �

Immediately it may seem to be difficult to actually find the maximal
assignment function f so that the worst-case blocking can be found. Fortu-
nately, eq. (6.37) has the form of a linear sum assignment problem, which
is solvable by for example the Hungarian Algorithm. The worst-case com-
plexity is O(|T|3). For details and algorithms see for example Burkard and
Çela [25].

6.4.6 Fixed Priority Scheduling and Response-Time Analysis

The above blocking term computations can be used to create a rta-based
schedulability test for synchronous client–server systems. Within a task’s
worst-case response time R, it must complete its own execution and wait for
a sufficient number of instances of higher priority tasks. It must also wait
for blocking lower priority tasks to complete calls to shared servers:

Theorem 6.4. In a synchronous client–server system with a fixed priority
scheduler, the worst-case response-time of a real-time task A satisfies

RA = B π̂(A) +D(A) +
∑

X∈T : PX>PA

⌈
RA

TX

⌉
D(X) (6.39)

where B π̂(A) is the worst-case blocking term given by either lemma 6.1 or
lemma 6.3, depending on the synchronization protocol.
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Proof. During the window between the release of a job of A, and its latest
completion, RA, the only tasks that will get to execute are A and higher
priority tasks, and servers required by A or by higher priority tasks.

Equation (6.39) is the sum of the demands of these tasks, divided into
three terms:

1. The first term is blocking. The time interval from the release to worst-
case response time of A is a window in time W where there is always
a task with preemption level equal to or higher than π̂(A) ready to
execute, so lemmas 6.1 and 6.3 applies to W. B π̂(A) is then the worst-
case execution time by servers held by lower priority tasks inW. Note
that priorities are equal to preemption levels under fps.

2. A itself requires at most D(A) of demand.

3. Each higher priority task X : PX > PA has at most
⌈

RA
TX

⌉
jobs that

overlap with the execution of A. Each such job has a demand of D(X).
The sum of all these demands for all higher priority tasks yield the
last term in eq. (6.39).

No other task will execute until A has completed, and will therefore not
affect the response-time of A. �

Theorem 6.4 have the same form as Theorem 5.5, which is used for
rta of systems that use mutual exclusion synchronization. When having
computed blocking terms and demands, the same methods that can be used
for solving the standard rta equation, can also be used for eq. (6.39).

6.4.7 Earliest Deadline First

The schedulability test for synchronous client–server systems scheduled un-
der edf is based on the pdc.

Theorem 6.5. A synchronous client–server system scheduled with edf is
schedulable if

∀l ∈ R+ : dbf(l) + B π̂(l) ≤ l (6.40)

where B π̂(l) is the blocking term for the preemption level equivalent to a
relative deadline of l, given by either lemma 6.1 or lemma 6.3 depending on
the synchronization protocol, and dbf(l) is the demand-bound function:

dbf(t) =
∑
X∈T

(
1 +

⌊
t − DX

TX

⌋)
D(X) (6.41)
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Proof. Proof by contradiction. Assume that eq. (6.40) holds, but that there
is a first deadline miss at time dm by job x. Let W be the window [t0, dm],
where t0 is chosen as early as possible, but so that there is always a task
with deadline earlier than dm ready to execute in W.

The tasks that get to execute within W are therefore only the real-time
tasks with deadline withinW or servers required by those tasks. The worst-
case cumulative demand by these real-time tasks, ignoring blocking, is no
greater than dbf(l) by definition of the demand function.

A task that causes blocking must have started its execution before t0 in
order to hold a server. Also, its absolute deadline must be after the window,
otherwise its execution should have been part of W. Consequently, its
relative deadline must be greater than l. Under edf, preemption levels are
ordered by relative deadlines, soW satisfies the requirement for lemmas 6.1
and 6.3 of a window where there is always a task with preemption level
higher than or equal to π̂(l) ready to execute. Therefore, the term B π̂(l) is
an upper bound to the time servers held by tasks with deadline outside the
window will execute during the window.

The total required demand duringW for jobs that have deadlines earlier
than or equal to dx is therefore no greater than

dbf(l) + B π̂(l) (6.42)

This value must be greater than the window length, otherwise x would not
have missed its deadline, as was the initial premise. If eq. (6.40) holds, then
no such window can exist and the system cannot be unschedulable. �

6.5 Application Examples

Two examples of using the analysis will be demonstrated. First, it will
be shown how the inheritance blocking term in lemma 6.3 can be applied
to protected objects, and that it yields a lower worst-case blocking than
existing methods for inheritance. Second, it will be shown how computa-
tion in server calls can be deferred, a transformation that may sometimes
increase schedulability, and which is difficult to accomplish without using
synchronous communication.

6.5.1 Applying the Inheritance Blocking Term to Protected Objects

Protected objects can always be implemented using synchronous client–
server communication [73]. Here, a protected object will be modeled as a
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Table 6.1: Improved Inheritance Blocking Term. Table shows worst case blocking
of high priority task caused by lower priority task L holding resource r.

Resource r

Task X r1 r2 r3 r4 r5 r6

A 9 8 10 0 6 5
B 9 0 10 7 0 0
C 0 3 0 0 0 3
D 1 1 1 1 1 1

server with a worst-case reply-time equal to the critical section length of the
protected object, and a worst-case request time of 0.

Existing methods for computing the blocking term in systems using the
pip do this by summing up the worst-case critical section length of all re-
sources (eq. (5.14)). The blocking term presented in this paper is more
complex, and instead tries to find the worst-case assignment of lower prior-
ity tasks to resources (lemma 6.3). This sometimes yields a lower bound on
worst-case blocking. An example will be given:

Example 6.5.1
A system consists of tasks A, B,C,D and H, and six protected-object type
resources r1, r2, . . . , r6. The system is scheduled using fps, with H as the
highest priority task. The maximum blocking of H due to sharing resource
r with each lower priority task is given in table 6.1. A zero indicates that
the resource is not shared with the corresponding task.

Using the traditional method for computing worst-case blocking, which
sums up the worst-case critical section length of all resources, results in
a blocking term of BH = 45. However, this erroneously assumes that all
resources can be held at the same time with their worst-case critical sections.
When critical sections are strictly nested, which is the case with protected
objects, this is too pessimistic.

An improved BH is found with lemma 6.3. The maximization problem
is equivalent to selecting one cell from each row in table 6.1 without using
the same column twice, while maximizing the sum of these cells. Using an
appropriate algorithm one gets the following maximal assignment: r1 ← B,
r2 ← D, r3 ← A, r6 ← C, which results in A blocking of BH = 23. Note that
the maximum blocking with a ceiling protocol would be even lower, with
BH = 10.
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Listing 6.3: Data Structure Server with Immediate Write

loop
select

accept Read (Key : in Key Type; An Item : out Data Type) do
−− Read item from data structure

end Read;
or

accept Write (Key : in Key Type; An Item : in Data Type) do
−− Write item to data structure

end Write;
end select;

end loop;

6.5.2 Deferred Server Calls

One benefit of using synchronous, client–server based communication is that
in some cases, blocking can be reduced by deferring computation in a server
call to the request phase of the succeeding call. Part of a server call can be
deferred whenever its result is not needed for computing the return value of
the call.

The effect of deferring computation in a call to server S is that work
required by that call is moved from the reply-phase to the request-phase
preceding the next call. This will decrease the reply-time of that call, which
may or may not decrease the worst-case reply time of the server. Moreover,
it may increase the server’s worst-case request-time, though not necessarily
by the same amount. For a real-time task A that uses S , the part of the
demand D(A) that is derived from a call to S is a function of QS + PS . c for
each call c made to S . However, blocking by A of higher level tasks is a
function of P̂S only, and thus a decrease in P̂S at the cost of an increase in
QS may decrease the blocking experienced by higher priority tasks that are
also using S , making them easier to schedule. The effect is illustrated in the
following example:

Example 6.5.2
A fixed-priority system consists of two implicit deadline real-time tasks, A
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Listing 6.4: Data Structure Server with Deferred Write

loop
select

accept Read (Key : in Key Type; Data : out Data Type) do
−− Read item from data structure

end Read;
or

accept Write (Key : in Key Type; Data : in Data Type) do
To Be Written Key = Key;
To Be Written Data = Data;

end Write;
end select;
if Non Null(To Be Written Key) then

−− Write item to data structure
end if;

end loop;

and B, with the following properties:

PA > PB

TA = DA = 20

TB = DB = 50 (6.43)

IA = IB =
{〈Exec 1, Call S . r, Exec 1〉,

〈Exec 1, Call S .w, Exec 1〉}

Tasks A and B are identical, except for their periods, and both use a server
S that holds a shared data structure. S has two operations, a quick read
operation (S . r) with a wcet of 1, and a slow write operation (S .w) with a
wcet of 10. As expressed by eq. (6.43), each job of A and B uses either one
of these operations, but never both in the same instance.

Let the server be implemented so that both the read and write opera-
tions are part of the calls (ie, non-deferred) as illustrated in listing 6.3. An
idealized model of this server is

IS = {〈〉} QS = 0

IS . r = {〈Exec 1〉} PS . r = 1

IS .w = {〈Exec 10〉} PS .w = 10
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Using theorem 6.4, the response time of A can be computed as

D(A) = 12

B π̂(A) = PS .w = 10

RA = D(A) + B π̂(A) = 22

This is clearly infeasible as DA = 20.
Notice that task A may have to execute the heavy S .w operation twice

in a single instance, one for itself and one if it preempts B’s own write
operation at an early stage. It is possible to relieve A of this extra write
operation, by deferring it and executing the bulk of it after the entry call.
An implementation with a deferred write is illustrated in listing 6.4. Now:

IS = {〈〉, 〈Exec 10〉} QS = 10

IS . r = {〈Exec 1〉} PS . r = 1

IS .w = {〈〉} PS .w = 0

Notice how the sum QS + P̂S has increased, but that the worst-case reply-
time has decreased. The response time of A can now be computed again:

D(A) = 13

B π̂(A) = PS . r = 1

RA = D(A) + B π̂(A) = 14

This is less than DA, so A will not miss deadlines. The response time of B
is given by

D(B) = 13

RA = D(B) +

⌈
RB

TA

⌉
D(A) = 13 +

⌈RB

20

⌉
13

which has a least fixed point in RB = 39. As both A and B have acceptable
response-times, the system is now schedulable. A similar effect would be
much more difficult achieve if tasks communicate using protected objects
or other type of shared-memory based synchronization, because computa-
tion cannot be moved out of a critical section while maintaining mutual
exclusion.

6.6 Discussion

To allow for analysis of synchronously communicating systems, it must be
ensured that no tasks will require synchronization with tasks that have not
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yet been released. In Burns and Wellings [26] this was accomplished by
restricting synchronous communication to task instances with simultaneous
release. In Saksena and Karvelas [89] it was done by decoupling real-time
tasks (the external events) from the tasks performing the synchronization
(the capsules). In this chapter, the same was achieved by requiring tasks
to communicate in a client–server fashion, while prohibiting real-time tasks
from acting as servers.

To be amendable to the analysis of this chapter, the client–server com-
munications must satisfy several rules. In addition to the rule preventing
real-time tasks from acting as servers, other rules help guarantee the absence
of deadlocks.

Rule 6.1, which prohibits any computation on the client-side between
the request to a server and the corresponding reply, was added merely to
simplify the analysis. To guarantee the absence of deadlocks it would be
sufficient to deny communication on the client-side. The justification for
this rule is that it is implicitly followed by Ada programs, where no such
computation can be expressed. It is therefore only a real restriction when
using formalisms that allow more complex communication patterns.

The analysis allows schedulability to be analyzed for systems that use
synchronous communication, without being so restrictive as to remove the
advantages of synchronous communications such as modular composition
and safety. Servers are allowed to execute code when not serving a client,
and are thus much more powerful than a mere synchronous implementa-
tion of a protected object. For the situations where protected objects are
required they can still be used, and modeled during the schedulability anal-
ysis as a server with no request-phase. Moreover, when using protected
objects and the pip, the analysis in this chapter is less pessimistic than ex-
isting methods and is therefore an improvement to these methods even for
systems that only use protected objects for communication.

It was shown that the schedulability of a system may sometimes be im-
proved by deferring computation generated by a server call until after the
call, an optimization which is difficult to achieve when using mutual ex-
clusion based communication. This is because the client–server framework
separates the notion of mutual exclusion—data local to a server—from the
notion of a critical section—code that causes blocking, in this case the reply
phase. For some systems this transformation improves schedulability, but
for others it may reduce it. It is not currently known when the transforma-
tion helps, and when it does not, and this would be an interesting topic for
further study.

The analysis only applies to uniprocessor systems. One reason for this is
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that existing multiprocessor synchronization protocols have a basic premise
of short critical sections, an assumption which does not hold in a client–
server based system. Another reason is that multiprocessor analysis typi-
cally prohibits jlp, and thus limits the parallelism of process-oriented sys-
tems. This is not an issue in uniprocessor systems because each process is
serialized during execution, so that enabling jlp does not affect schedulabil-
ity. No complete analysis of synchronously communicating multiprocessor
systems is given in this thesis, but the next chapters will begin this work by
developing support for jlp.
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Chapter 7

Modeling Job-Level Parallelism

He gave her cat food

Anon

A notable feature of process-oriented systems is the use of parallelism as
a means for program organization. To accommodate this, jobs in process-
oriented real-time systems should be allowed to have a free parallel structure,
that is, an arbitrary combination of sequential and parallel parts. Moreover,
to increase efficiency on multiprocessor platforms, each job should also be
allowed to execute on multiple processors simultaneously. This, however, is
not widely supported by existing analyses.

This chapter introduces an abstract process model for describing the
computational requirements of real-time jobs with such a parallel structure.
The model abstracts away any notion of what a process actually does, leav-
ing only its parallel structure and the computation time required to complete
each part of that structure. This kind of abstract process will be called a
computation time process (ctp).

7.1 Introduction

The ctps may be used to analyze real-time systems with job-level par-
allelism (jlp) and malleable jobs; ie, systems where each real-time job is
allowed to execute simultaneously on multiple processors, and where the
number of processors assigned to each job may change during the execution
of the job.

The model considers just the SEQ/PAR structure for parallelism: pro-
cesses are explicitly specified to execute in parallel or in sequence, and a
parallel process does not terminate until all the sub-processes terminate.
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The sub-processes themselves may also have a SEQ/PAR-structure. This is
the structure of parallelism used in occam and its derivatives.

Although simple channel communications can be modeled by using se-
quence restrictions to form synchronization points, ctps cannot be used to
model communication in general, and it is therefore not possible to derive
a ctp from a general program written in for example Toc. Ctps should
instead be considered building blocks that can be used as a basis for a
complete timing analysis.

The model will assume discrete time, and a work-conserving intra-job
scheduler, ie, an intra-job scheduler that does not keep processors idle while
there is computation that may be executed.

Here, each ctp is analyzed in isolation. Still, it will always be assumed
that the process is executing in some environment where processors are
shared with other tasks. Some of these tasks will affect the number of
processors available to the process under consideration, so the number of
available processors will be considered time varying and non-deterministic.
To allow schedulability analysis of a complete system one would need to
analyze how different ctps interact when executed on the same platform.
The results from this chapter are necessary as a first step towards such an
analysis.

7.1.1 Outline

The structure of this chapter is as follows: The ctp model is defined in
section 7.2. Two partial orders over ctps are defined in section 7.3. These
orders give a precise definition to what it means for a process to be an upper
bound of another with respect to worst-case computation time, and what it
means for a process to be easier to schedule than another.

In section 7.4 it is demonstrated that some ctps exhibit counterintuitive
behavior, and that this behavior may occur in all systems where an arbitrary
SEQ/PAR-structure is allowed. For instance, even if schedulability analysis
of a system finds that all tasks meet their deadlines, this may no longer be
true if a task executes less than its expected amount of computation. In
section 7.5 a subset of well-behaved ctps is identified that never exhibit this
kind of behavior.

7.2 Computation Time Processes

This section will define the ctp model.
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7.2.1 Definitions

The set of ctps will be denoted P. A process P ∈ P may be one of the
primitive processes 0 or 1, or a combination of two other processes using
either the sequence operator “; ”, or the parallel operator “

∣∣∣∣∣∣”:
P ∈ P ⇐⇒ P = 1

∨P = 0
∨P = Q ; R Q,R ∈ P (7.1)

∨P = Q
∣∣∣∣∣∣ R Q,R ∈ P

The zero process 0 denotes a process which requires no work. It will never
consume cpu, and any process following in sequence after 0 may start
immediately.

The unit process 1 denotes a process which requires one unit of computa-
tion. The value of one unit of computation with respect to real time
represents the minimum quantification of time for the system.

The sequence process P ; Q, where P,Q ∈ P, denotes a process of two sub-
processes where one has to terminate execution before the other can
begin. It satisfies the following basic laws:

0 ; P = P (left-identity)

P ; 0 = P (right-identity)

(P ; Q) ; R = P ; (Q ; R) (associativity)

The parallel process P
∣∣∣∣∣∣ Q, where P,Q ∈ P, represents two processes that may

execute concurrently. It satisfies the following basic laws:

0
∣∣∣∣∣∣ P = P (identity element)

P
∣∣∣∣∣∣ Q = Q

∣∣∣∣∣∣ P (commutativity)

(P
∣∣∣∣∣∣ Q)

∣∣∣∣∣∣ R = P
∣∣∣∣∣∣(Q ∣∣∣∣∣∣ R) (associativity)

7.2.2 Measures on Computation Time Processes

An important property of any computation time process is its total amount
of computation. This will be described as a function C : P→ N, defined by

C(1) = 1

C(0) = 0 (7.2)

C(P ; Q) = C(P) + C(Q)

C(P
∣∣∣∣∣∣ Q) = C(P) + C(Q)
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For a process P, if the number of processors available to P is always greater
or equal to the number of processors P can use, then it will be the longest
sequence in P that determines its execution time. The length of a process,
L : P→ N, describes this time:

L(1) = 1

L(0) = 0 (7.3)

L(P ; Q) = L(P) +L(Q)

L(P
∣∣∣∣∣∣ Q) = max

{L(P),L(Q)
}

The length of a process is thus the minimum execution time of the process.
Note that neither of the above definitions (of C and L) includes time for

computational overheads in managing the parallel processes. These could
be accounted for by adding a sequence of unit processes before and after
the parallel composition, but are not addressed here for simplicity.

Another important property is the immediate height of the process,
H : P → N, defined as the number of parallel branches that are ready to
be executed:

H(1) = 1

H(0) = 0

H(P ; Q) =

⎧⎪⎪⎨⎪⎪⎩H(P) if P � 0
H(Q) if P = 0

(7.4)

H(P
∣∣∣∣∣∣ Q) = H(P) +H(Q)

The height of a process is therefore the maximum number of processors the
process can utilize for the first step of its computation. This information is
needed when scheduling a process to the number of processors available for
that first step.

7.2.3 Computing a Single Step

Time is modeled as discrete, so processes are executed in unit time steps.
After each execution step, the resulting process is a function of the original
process and the number of processors assigned to it for that step. If a pro-
cess consists of multiple parallel branches and there are too few processors
available to execute them all, then the scheduler must choose a subset of
branches to execute. Thus, if nothing is known about the details of the
scheduler itself, the result of an execution step may be considered non-
deterministic. The only detail of the scheduler that will be assumed is that
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it is work-conserving, meaning that it does not keep any processors idle if
there is ready work to be done.

The function step : P × N → {P} takes a process P and a number of
processors m and returns the set of all possible processes that can result
from executing a single step of P with m processors. An explicit formulation
of the step function can be written as

step(1,m) =

⎧⎪⎪⎨⎪⎪⎩
{
1
}

if m = 0{
0
}

if m ≥ 1

step(0,m) =
{
0
}

step((P ; Q),m) =

⎧⎪⎪⎨⎪⎪⎩
{
(P′ ; Q) : P′ ∈ step(P,m)

}
if P � 0

step(Q,m) if P = 0
(7.5)

step((P
∣∣∣∣∣∣ Q),m) =

{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(P,mP),Q′ ∈ step(Q,mQ),

mP ∈ [0,H(P)],

mQ ∈ [0,H(Q)],

mP + mQ = min
{H(P) +H(Q),m

}}

where the last equation states that a scheduler can distribute the available
processors to the parallel branches P and Q in several ways, as long as the
amount of execution performed by the step is the maximum possible when
limited by the number of parallel branches and by the number of available
processors.

If the resulting set from a step of a process has only one member, then
the execution of the process was deterministic; if the resulting set has more
than one member, then the result of execution depends on choices made by
the scheduler. Two examples of using the step-function are given below:

Example 7.2.1
Let a process P be given by

P = 1
∣∣∣∣∣∣ 1

In this case,H(P) = 2, because for its first step, P may utilize two processors.
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Say 3 processors are available for P for its first step, ie, m = 3. Then,

step((1
∣∣∣∣∣∣ 1), 3) =

{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(1,mP),Q′ ∈ step(1,mQ),

mP ∈ [0, 1],mQ ∈ [0, 1],mP + mQ = min
{
2, 3

}}
=

{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(1, 1),Q′ ∈ step(1, 1)
}

=
{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ {
0
}
,Q′ ∈ {

0
}}

=
{
0
∣∣∣∣∣∣ 0

}
=

{
0
}

which means that P will complete all its computation after one time step if
3 processors are available for it to use (P would also have completed if given
2 processors).

Example 7.2.2
Let a process P be given by

P = 1
∣∣∣∣∣∣(1 ; 1)

Say P is given one processor, ie, m = 1. Then,

step((1
∣∣∣∣∣∣(1 ; 1)), 1) =

{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(1,mP),Q′ ∈ step((1 ; 1),mQ),

mP ∈ [0, 1],mQ ∈ [0, 1],mP + mQ = min
{
2, 1

}}
which means that either mP = 1,mQ = 0 or mP = 0,mQ = 1. Taking the
union of both alternatives results in

=
{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(1, 1),Q′ ∈ step((1 ; 1), 0)
}

⋃{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ step(1, 0),Q′ ∈ step((1 ; 1), 1)
}

=
{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ {
0
}
,Q′ ∈ {

1 ; 1
}}

⋃{
(P′

∣∣∣∣∣∣ Q′) : P′ ∈ {
1
}
,Q′ ∈ {

1
}}

=
{
0
∣∣∣∣∣∣(1 ; 1)

}⋃{
1
∣∣∣∣∣∣ 1

}
=

{
(1 ; 1), (1

∣∣∣∣∣∣ 1)
}

The result set has more than one element. Therefore, the result of the first
step of P is not deterministic, but depends on which branch is assigned the
one available processor.
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7.2.4 Schedules

A schedule is a sequence of the number of processors available to be assigned
at consecutive points in time, modeled as a finite sequence of non-negative
integers. The set of all schedules is denoted S. Bracket notation will be
used for sequences, eg, 〈1, 2, 3〉 for 1 followed by 2 followed by 3; and 〈〉 for
the empty sequence. The concatenation of two sequences is written s1

� s2,
eg,

〈1, 2, 3〉�〈4, 5, 6〉 = 〈1, 2, 3, 4, 5, 6〉
The results of executing a process P on a schedule s will be expressed by
the operator ⊗ : P × S→ {P}, defined by

P⊗〈〉 = {P}
P⊗ (〈m〉� s

)
=

⋃
P′∈step(P,m)

P′ ⊗ s (7.6)

A process P will complete on schedule s if it is guaranteed to complete, ie,

P⊗ s = {0} (7.7)

This is distinct from may complete, as in

0 ∈ P⊗ s (7.8)

Example 7.2.3
Let P be a process, defined by

P = (1 ; 1)
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1 (7.9)

Looking at P, one can see that there are three possible 1-processes that
can be executed at the first step. This is equivalent with the fact that
H(P) = 3. Also, no matter how many processors that are given to P it will
never complete in less than two steps due to the sequence process in the left
branch. This is equivalent with L(P) = 2. The total number of 1-processes
in P is four, so C(P) = 4.

Consider the schedule s = 〈2, 3〉, meaning that P is given two processors
for its first step, and three processors for its second step. Will P complete?
Beginning with step(P, 2), we get

step(P, 2) =
{
(1 ; 1), (1

∣∣∣∣∣∣ 1)
}

For each process P′ of the resulting set, we apply step(P′, 3):

step((1 ; 1), 3) = {1}
step((1

∣∣∣∣∣∣ 1), 3) = {0}
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Therefore,

P⊗ s = {0, 1}
so P may or may not complete on the schedule.

7.3 Partial Orders on ctps

In order to analyze ctps, some means of comparing processes must be in-
troduced. In this section, two partial orders will be defined that allow
comparison between processes with respect to different properties. The first
is the upper bound order, which relates to worst-case execution time. A
process Q is said to be an upper bound of P if P has the same structure
as Q, but with possibly some of the computation removed. The second is
the schedulability order, relating to the ease of scheduling a process. A pro-
cess P is said to be easier to schedule than Q, if Q always completing on a
schedule implies that P will also always complete.

7.3.1 Upper Bound Order (�)
Execution time estimates are upper bounds, so there is always the chance
that an execution of a program turns out to require less computation than
a ctp based on execution time analysis of the program. If a process P
represents such a possible execution of a process Q, then Q is said to be an
upper bound for P. This will be written P�Q.

Definition 7.1 (�)
Q is an upper bound of P, written P�Q if P can be derived from Q by
replacing any number of unit processes in Q with the zero process.

It follows per definition that

0� 1
P′ ; Q′ � P ; Q if P′ � P ∧ Q′ �Q

P′
∣∣∣∣∣∣ Q′ � P

∣∣∣∣∣∣ Q if P′ � P ∧ Q′ �Q

The upper bound relation satisfies all properties of a partial order:

P� P (reflexive)

P�Q ∧ Q� P =⇒ P = Q (anti-symmetric)

P�Q ∧ Q�R =⇒ P�R (transitive)
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The relation is not a total order, in that there exist pairs of processes where
neither is an upper bound of the other, for example 1 ; 1 and 1

∣∣∣∣∣∣ 1. An
important property is that executing a process can be seen as a special case
of removing computation:

∀P ∈ P : ∀s ∈ S : (P′ ∈ P⊗ s =⇒ P′ � P) (7.10)

7.3.2 Schedulability Order (≤)
The schedulability order relates two processes P and Q in such a way that if
one process is guaranteed to complete on a schedule, then the other is also
guaranteed to complete on that schedule.

Definition 7.2 (≤)
A process P is easier to schedule than a process Q, written P ≤ Q, if for all
schedules s,

Q⊗ s = {0} =⇒ P⊗ s = {0} (7.11)

This order is essentially an order of worst-case execution time, as it
relates the worst-case completion of P to the worst-case completion of Q.
If P ≤ Q, and Q is known to complete on some schedule, then Q can be
replaced with P, and P will also complete on that schedule. Trivially,

0 ≤ 1

because 0 is guaranteed to complete on any schedule. The ≤-relation also
satisfies all properties of a partial order:

P ≤ P (reflexive)

P ≤ Q ∧ Q ≤ P =⇒ P = Q (anti-symmetric)

P ≤ Q ∧ Q ≤ R =⇒ P ≤ R (transitive)

Like the �-relation, the ≤-relation is also not a total order. For example, if

P = 1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1 s1 = 〈3〉
Q = 1 ; 1 s2 = 〈1, 1〉

Then P and Q are incomparable with respect to schedulability. P will always
complete for s1 but never for s2, while Q will always complete for s2 but
never for s1.

Unlike the �-relation, the ≤-relation does not in general distribute over
“; ” and “

∣∣∣∣∣∣”, but it does distribute for the right element of a sequence, as
maintained by the following lemma:
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Lemma 7.1. For all processes P and Q, and all processes Q′ where Q′ ≤ Q,

P ; Q′ ≤ P ; Q (7.12)

Proof. Proof by contradiction. Assuming that eq. (7.12) does not hold, then
there must exist a schedule s so that (P ; Q)⊗ s = {0} and (P ; Q′)⊗ s � {0}.
For all executions of P ; Q on this schedule there exists some prefix of s so
that

s = sP
� sQ.

Q ∈ (P ; Q)⊗ sP

As P ; Q will always complete on s it follows that Q⊗ sQ = {0}. However Q′ ≤
Q implies Q′ ⊗ sq = {0}, so P ; Q′ must also always complete, contradicting
the assumption that P ; Q′ did not complete on the schedule. �

7.4 Ill-Behaved Processes

Say a process Q has been derived from execution time analysis of some
program. Because the wcet analysis always yields worst-case timings, an
actual instance of the program does not necessarily behave like Q, but is
only guaranteed to behave like some process P for which Q is an upper
bound. Consider the following implication:

P�Q
?
=⇒ P ≤ Q (7.13)

If the above statement was true, then an execution of the program would
always have behaved like Q or like some process easier to schedule than
Q: If Q was schedulable, then the program would always be schedulable.
However, and somewhat surprisingly, the above statement does generally not
hold. A special case of this, which may seem even more counterintuitive, is
illustrated by the following observation:

Observation 7.1. There exist processes P and Q, and a schedule s so that

(P ∈ Q⊗ s) ∧ (P � Q) (7.14)

that is, there may be situations where Q is unable to complete on a schedule
if and only if it has completed some execution prior to beginning on the
schedule.
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Example 7.4.1
An example will be given. Let P, Q and s be defined by

Q =
(
1 ; (1

∣∣∣∣∣∣ 1)
) ∣∣∣∣∣∣ (

1 ; (1
∣∣∣∣∣∣ 1)

)
P =

(
1 ; (1

∣∣∣∣∣∣ 1)
) ∣∣∣∣∣∣ (

1
∣∣∣∣∣∣ 1

)
(7.15)

s = 〈1〉
By choosing to execute the right parallel branch of Q, one can see that
P ∈ Q⊗ s. To show P � Q it is sufficient to find a schedule for which Q is
guaranteed to complete, but P is not. Let u be the schedule defined by

u = 〈2, 4〉
By computing Q⊗ u one finds that Q is guaranteed to complete on u:((

1 ; (1
∣∣∣∣∣∣ 1)

) ∣∣∣∣∣∣ (
1 ; (1

∣∣∣∣∣∣ 1)
))⊗〈2〉 = {1 ∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1
∣∣∣∣∣∣ 1}

(1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1
∣∣∣∣∣∣ 1)⊗〈4〉 = {0}

By computing P⊗ u one finds that P is not guaranteed to complete on u.
The first step yields((

1 ; (1
∣∣∣∣∣∣ 1)

) ∣∣∣∣∣∣ (
1
∣∣∣∣∣∣ 1

))⊗〈2〉 = {(
1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1
)
,

(
1 ; (1

∣∣∣∣∣∣ 1)
)}

Computing the second step for each of these results yields

(1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ 1)⊗〈4〉 = {0}(
1 ; (1

∣∣∣∣∣∣ 1)
)⊗〈4〉 = {1 ∣∣∣∣∣∣ 1}

As Q will complete on u, but P may or may not, P � Q.

Corollary 7.2. There exist processes Q ∈ P and schedules u, v ∈ S, where
∀i : ui ≤ vi, and where

(Q⊗ u = {0}) ∧ (Q⊗ v � {0}) (7.16)

Proof. This can be shown setting u = 〈0, 2, 4〉 and v = 〈1, 2, 4〉 and using P
and Q from example 7.4.1. Then, Q⊗〈0〉 = {Q} and Q⊗〈1〉 = {P}. The rest of
the schedule is 〈2, 4〉, for which Q will always complete, but P may not. �

Corollary 7.3. There exist processes P and Q so that

P�Q ∧ P � Q (7.17)
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Proof. Executing a process will always result in a new process for which the
original is an upper bound (see eq. (7.10)). The processes in example 7.4.1
therefore satisfies P�Q, and P � Q. �

For a process P�Q not to complete when Q is guaranteed to complete, it
is necessary that the scheduler at some point makes a “wrong” decision. An
argument may therefore be made that the counterintuitive behavior of pro-
cesses is in some part due to the scheduler; and moreover, that this behavior
can be eliminated by attempting to make a better scheduling algorithm. The
following observation illustrates the futility of such an attempt.

Observation 7.2. There exists some process Q and schedule s so that the
set Q⊗ s has no least element in the schedulability order.

Example 7.4.2
An example will be given. Consider the schedule s = 〈1, 3〉 and the process
Q defined by

Q =
(
1 ; (1

∣∣∣∣∣∣ 1)
) ∣∣∣∣∣∣ (

1 ; 1 ; 1
)

The first step of computation results in the following two processes:

Q⊗〈1〉 =
{(

1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ (1 ; 1 ; 1)
)
,(

1 ; (1
∣∣∣∣∣∣ 1)

) ∣∣∣∣∣∣ (
1 ; 1

)}
Computing the second step for each of these processes yields(

1
∣∣∣∣∣∣ 1

∣∣∣∣∣∣ (1 ; 1 ; 1)
)
⊗〈3〉 = {1 ; 1}((

1 ; (1
∣∣∣∣∣∣ 1)

) ∣∣∣∣∣∣ (
1 ; 1

))⊗〈3〉 = {1 ∣∣∣∣∣∣ 1
∣∣∣∣∣∣ 1}

so
Q⊗ s =

{
(1 ; 1), (1

∣∣∣∣∣∣ 1
∣∣∣∣∣∣ 1)

}
(7.18)

The two resulting processes are incomparable with respect to schedulability,
so Q⊗ s has no least element.

Observation 7.2 implies that there is generally no “correct choice” for
a scheduler; whether or not a scheduling choice leads to the completion of
a process may depend on the future schedule. The future schedule again
depends on the behavior of other tasks in the system, and is generally not
predictable. For example, take the processes in eq. (7.18). If the rest of
the schedule is 〈1, 1〉, then the first result will complete the process, but not
the second. If a future schedule is 〈3〉, then the second result completes the
process, but not the first.
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7.5 Well-behaved Processes

In the previous section it was demonstrated that there exist processes which
are harder to schedule if computation is removed from them. Such a process
should be avoided when analyzing schedulability, because for real programs,
only upper bounds on computation may be determined in advance. How-
ever, some processes do not exhibit this kind of behavior. These processes
will be referred to as well-behaved, and will be the main topic of this section.

Definition 7.3 (Well-behaved)
A computation time process Q is well-behaved if and only if

∀P ∈ P : (P�Q =⇒ P ≤ Q) (7.19)

Whether or not a process Q is well-behaved can be determined by exhaus-
tive examination of all schedules in which Q is guaranteed to complete, and
checking these schedules against all processes P�Q for which Q is an up-
per bound. However, such a test has at least exponential complexity with
respect to C(Q), making it infeasible for most practical purposes. Instead,
one may try to find general classes of processes where good behavior is
guaranteed by the process structure.

7.5.1 Classes of Well-Behaved Processes

Some simple processes are quickly found to be well-behaved:

Lemma 7.4. The zero process (0) and the unit process (1) are well-behaved.

Proof. The only process for which 0 is an upper bound is 0 itself, so it
follows that 0 is well-behaved. The process 1 will complete on any schedule
with at least one non-zero element. The only processes for which 1 is an
upper bound is 0 and 1. Both will complete on any non-zero schedule, so it
follows that 1 is well-behaved. �

Theorem 7.5. Let P be a process with the following structure:

P = P1 ; P2 ; P3 ; ... ; Pn

If the processes Pi|i=1...n are well-behaved, then P is well-behaved.

Proof. Note that it is sufficient to prove that P1 ; P2 is well-behaved. If that
is true, then

P = (P1 ; P2) ; P3 ; ... ; Pn (7.20)
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will be a sequence of well-behaved processes for which the first element,
(P1 ; P2), is well-behaved. The same proof can then be used to show that
((P1 ; P2) ; P3) is well-behaved, and so on.

Let s ∈ S be any schedule for which (P1 ; P2)⊗ s = {0}. Let s1 be the
shortest prefix of s for which P1 ⊗ s1 = {0} and let s2 be the suffix of s so
that s = s1

� s2. It follows that P2 ⊗ s2 = {0}, otherwise it would be possible
to execute (P1 ; P2) on s without it completing. Let P′

1
and P′

2
be processes

so that P′
1
� P1 and P′

2
� P2. Because P1 is well-behaved, P′

1
⊗ s1 = {0}.

P′
1
must complete for s1, but it may also complete earlier, leaving some

rest of the schedule srest. It remains to show that all processes P′
2
must

complete within the schedule srest
� s2. As was noted in eq. (7.10), execution

of a process must lead to a process for which the original is an upper bound.
Therefore, for all srest,

∀P′′2 ∈ P′2 ⊗ srest : P′′2 � P′2 � P2

The remaining schedule is s2. It was already shown that P2 ⊗ s2 = {0}. As
P2 is well behaved, and P′′

2
� P2, then P′′

2
will also always complete on s2.

This shows that P′
1

; P′
2
≤ P1 ; P2, so P1 ; P2 is well-behaved. �

In general, P
∣∣∣∣∣∣ Q is not well-behaved, even if P and Q are well-behaved.

For example, the Q given in eq. (7.15) is not well-behaved even though both
of the parallel branches are well-behaved. A special case where a parallel
process is indeed well-behaved is given below:

Theorem 7.6. If Q ∈ P has the following structure

Q = (1 ; 1 ; ... ; 1)
∣∣∣∣∣∣ (1 ; 1 ; ... ; 1)

∣∣∣∣∣∣ ... (7.21)

then Q is well-behaved.

Proof. First note that all processes for which Q is an upper bound has the
same structure as Q.

Let Q = Q1

∣∣∣∣∣∣ Q2

∣∣∣∣∣∣ ...QN so that the Qi processes are sequences of 1s. If
some P satisfies P�Q, then P must be equal to Q with some 1s removed,
so P can be written as P = P1

∣∣∣∣∣∣ P2

∣∣∣∣∣∣ ...PN , in such a way that

∀i ∈ [1,N] : L(Pi) ≤ L(Qi) (7.22)

We also have C(P) ≤ C(Q) and H(P) ≤ H(Q). Let m be the first element in
a schedule. If

m ≤ H(P) ∨ m ≥ H(Q)
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then every choice that the scheduler can make for P it can also make for
Q. For all choices of P, a corresponding choice can be made for Q so that
eq. (7.22) is still satisfied. If

H(P) ≤ m ≤ H(Q)

then the scheduler may choose to execute additional branches for Q. How-
ever, these branches must already be of zero length for P, so for all results
for P, a corresponding result for Q can be found that satisfies eq. (7.22).
This can be repeated for each element in the schedule.

This shows that for all schedules s, and all processes P′ ∈ P⊗ s there
exists some process Q′ ∈ Q⊗ s so that C(P′) ≤ C(Q′). A consequence is that
we cannot have Q⊗ s = {0} when P⊗ s � {0}. Therefore,

Q⊗ s = {0} =⇒ P⊗ s = {0}

P is easier to schedule than Q, which implies that Q is well-behaved. �

7.5.2 Safe Upper Bound

If schedulability analysis is to be performed on some ill-behaved process P,
then the analysis will not be sustainable. To make the analysis sustainable,
it would be better to replace P with some well-behaved process Q that is
harder to schedule than all processes P′ � P, and then analyze Q instead.
Such a Q will be referred to as a safe upper bound.

Definition 7.4 (Safe Upper Bound)
A process Q is a safe upper bound for a process P if

∀P′ � P : P′ ≤ Q (7.23)

The existence of a safe upper bound is guaranteed by the following lemma:

Lemma 7.7. For all P ∈ P, if Q is a sequence of 1s with length C(P), then
Q is a safe upper bound for P.

Proof. Q will complete for all schedules that have at least C(P) non-zero el-
ements. P will also complete for all these schedules, so P ≤ Q. Furthermore,
all processes P′ that satisfy P′ � P will also complete for this schedule, so Q
is a safe upper bound. �

A process P can be replaced by a safe upper bound to make temporal
analysis of P sustainable. However, the analysis will no longer be exact, as
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the safe upper bound may be harder to schedule than P. For example, the
choice of safe upper bound used in lemma 7.7 suppresses all parallelism of
a process, which could make the analysis unnecessarily pessimistic. Some-
times, other safe upper bounds exist that maintain some of this parallelism
and thus lead to less pessimistic results:

Example 7.5.1
Take the ill-behaved process Q given below:

Q =
(
1 ; (1

∣∣∣∣∣∣ 1)
) ∣∣∣∣∣∣ (

1 ; (1
∣∣∣∣∣∣ 1)

)
Let QS be defined by

QS = 1 ; 1 ; 1 ; 1 ; 1 ; 1

According to lemma 7.7, QS is a safe upper bound for Q. Let QP be defined
by

QP = (1
∣∣∣∣∣∣ 1) ; (1

∣∣∣∣∣∣ 1) ; (1
∣∣∣∣∣∣ 1) (7.24)

QP will complete on some schedule s if and only if s = b1
� b2

� b3 where
each bi|i=1..3 is either 〈1, 1〉 or 〈2〉, or similar schedules with strictly larger
elements. For example, QP will complete on 〈2, 1, 1, 2〉, but not on 〈1, 2, 1, 2〉.
It can be found by systematic examination that Q will complete on all these
schedules, and that all Q′ �Q also will complete on these schedules. We
know from theorem 7.5 that Q is well-behaved. It follows that QP is also a
safe upper bound of Q. Moreover, as QP ≤ QS there are no schedules for
which QS will complete and QP will not. QP is therefore a better choice of
safe upper bound.

For a process P, the best choice of safe upper bound would be the least
element in the set of safe upper bounds with respect to schedulability:

Q� = min≤
{
Q ∈ P : ∀P′ � P : P′ ≤ Q

}
(7.25)

At this point no method for finding the best safe upper bound is known, or
if a best safe upper bound generally exists.

7.6 Discussion

This chapter introduced the computation time process model as a tool for
temporal analysis of non-communicating programs with an arbitrary parallel
structure. The simplicity of dealing only with time, rather than with time
and computation, allows the temporal properties of simple processes to be
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examined in isolation more easily than would be possible with general timed
process algebras such as Timed csp [86]. Moreover, the ctpmodel explicitly
models timing of programs on multiprocessor systems, not timing of abstract
processes in general.

Somewhat counter-intuitively it was shown that a worst-case estimate
of execution time does not in general represent a worst-case scenario with
respect to schedulability; there exist processes that are unable to complete
on schedule only if requiring less than their wcet. The existence of these
ill-behaved processes has important implications for temporal analysis of
programs with an arbitrary SEQ/PAR-structure, because it implies that
exact schedulability analysis will in general not be sustainable.

In practical systems there are several ways to alleviate the problem
caused by ill-behaved processes. One way is to avoid them altogether, and
require that all jobs to be analyzed have one of the parallel structures guar-
anteed not to be ill-behaved. Another way is to perform the analysis using
safe upper bounds, although this would require the development of a method
for systematically deriving good, safe upper bounds.

Finally, it is also possible to avoid these problems by using a non-work-
conserving scheduler. The most straightforward way would be to require
that each parallel branch always use up its maximum execution time, by
spending any remaining cpu cycles doing nothing. However, this solution
has multiple disadvantages, including worse average performance and in-
creased power consumption, and is also likely to add a fair bit of overhead
to the intra-job scheduler.

In the next chapter, an analysis is developed under the assumption that
the intra-job scheduler is reasonably fair, and not undefined, as in this chap-
ter. This does not eliminate the existence of ill-behaved processes, but it
allows a simple method of finding sustainable upper bounds on execution
times even for processes that are ill-behaved.
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Chapter 8

Analysis of Job-Level Parallelism with a Fair
Intra-job Scheduler

Hospitals Sued by 7 Foot Doctors

Newspaper headline

This chapter presents a framework for analyzing complete systems with
malleable jobs of an arbitrary parallel structure. However, unlike in chap-
ter 7, where the intra-job scheduler was undefined, the analysis in this chap-
ter requires the intra-job scheduler to be reasonably fair: It must always dis-
tribute the processors available to a job evenly amongst the parallel branches
of a job.

8.1 Introduction

The fair intra-job scheduler allows the progress of a job to be represented
by a scalar and its parallel structure to be modeled as a function. To-
gether with the assumption of continuous time, this enables the use of real-
valued mathematical analysis, making it significantly easier to reason on
the schedulability of complete systems. However, as both real-valued time
and the fair scheduler are idealizations that are not perfectly realizable, this
change introduces errors that the analysis must explicitly take into account.

It is demonstrated that even under a fast intra-job scheduler, jobs requir-
ing their worst-case execution times do not necessarily constitute a worst-
case scenario with respect to schedulability. This implies that exact schedu-
lability analysis for this framework cannot be sustainable.

Upper bounds on interference and demand are developed for the new
model. The resulting framework is used to construct a pessimistic, but
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sustainable schedulability test for systems scheduled with edf. The edf

test has poor worst-case performance, but does allow schedulability analysis
for a class of systems for which no other analysis currently exists.

8.1.1 Outline

Section 8.2 describes the job model and the intra-job scheduling model. Sec-
tion 8.3 discusses schedulability, wcets and sustainability of schedulability
analysis for the tasking model of this chapter. Section 8.4 derives a sufficient
condition for when a job meets its deadline, based on the interference from
other jobs and an upper bound on the skew (unfairness) of the intra-job
scheduler. An upper bound on the interference to a job as a function of the
demand of higher priority jobs is also derived, as well as an upper bound on
the demand of a job for a given window in time. In section 8.5 these bounds
are combined to construct a schedulability analysis for systems scheduled
with edf.

8.2 System Model

The idea behind the fair intra-job scheduler is to allow all branches of a
job to progress at the same speed, so that the progress of a job can be
represented by a single value v, which will be called the virtual time. The
parallel structure of a job can then be represented by a function c(v), which
will be called the computation function of the job.

8.2.1 Basic Assumptions

Jobs will be assumed to have a SEQ/PAR-structure. It will be assumed
that there is no other synchronization within a job, apart from the implicit
synchronization imposed by the sequence operator. The pseudo-statement
“Exec(d)” will denote some computation that requires d units of serial ex-
ecution. Two jobs will be said to have the same structure iff they can be
written so that they only differ in the values of their Exec statements.

The edf analysis will require constrained deadlines, ie, DA ≤ TA for
all tasks. Furthermore, an ideal system model will be assumed, with no
jitter and no cost of preemptions. It will also be assumed that jobs are
independent.
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8.2.2 Computation Functions and Virtual Time

The fast intra-job scheduler allows the SEQ/PAR-structure of a job to be
represented by an abstract function which is called the computation function
of the job:

Definition 8.1 (Computation Function)
The computation function c(v) of a job denotes the maximum number of
processors that the job can utilize at virtual time v for that job.

The computation function of a job is equivalent to the number of processors
used by a job as a function of time, if the job is always given as many
processors as it can utilize.

For c(v) to be a valid computation function there must exist a L so that

c(v) > 0 when 0 ≤ v ≤ L
c(v) = 0 otherwise

(8.1)

The parameter L is the minimum completion time, or length, of the job,
and is the time required for a job to complete if it is always given as many
processors as it can utilize. The total computational requirement of a job,
C, can then be defined as a function of c(v):

C =
∫ ∞

0

c(v) dv =
∫ L

0

c(v) dv (8.2)

Example 8.2.1
Let a, b and c denote the jobs given in listings 8.1 to 8.3, respectively.
These jobs have the computation functions shown in figs. 8.1a to 8.1c. Their
minimum completion times are La = 2, Lb = 2 and Lc = 3, and their total
computation is Ca = 6, Cb = 5 and Cc = 6.

Definition 8.2 (Virtual Time)
The virtual time of a job is denoted v(t) and is the amount of time required
to reach the current point of execution if the job is always given as many
processors as it can utilize. v(t) is described by the following equations:

v(r) = 0

d

dt
v(t) = min

{
s(t)

c(v(t))
, 1

}
(8.3)

where r is the release time of the job, and s(t) is the schedule, ie, the number
of processors available for the job at time t.
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Listings 8.1 to 8.3: Structure of Jobs a, b and c in Example 8.2.1

−− a
PAR
SEQ
Exec(1)
PAR
Exec(1)
Exec(1)

SEQ
Exec(1)
PAR
Exec(1)
Exec(1)

:

−− b
PAR
SEQ
Exec(1)
PAR
Exec(1)
Exec(1)

Exec(1)
Exec(1)

:

−− c
PAR
Exec(3)
SEQ
Exec(1)
PAR
Exec(1)
Exec(1)

:

(a) (b) (c)

Figure 8.1: Computation functions of (a) job in listing 8.1, (b) job in listing 8.2,
(c) job in listing 8.3.
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For completeness, we also define d
dt v(t) = 0 when c(v(t)) = 0, ie, the job

is defined to have zero progress before it begins and after it completes.

The execution of a job is complete when v(t) = L, since there is no more
remaining computation. Virtual time follows real-time whenever a task is
allowed as many processors as it can utilize, and slows down when fewer
processors are available.

For all t, v(t) is continuous and monotonically increasing.

8.2.3 Skew

The fair intra-job scheduler is an idealization that is not perfectly realizable
in a real system. If the scheduler allows some branches to advance more
rapidly than others then this will be called skew.

When the intra-job scheduler is perfectly fair, a job that is given some
cpu will always decrease its remaining minimum completion time, but when
the scheduler is skewed this is no longer the case. For example, if the
scheduler does not execute the longest branch of the job, then the remaining
minimum completion time will stay the same.

The skew is assumed to be bounded by a number σ, such that for any
window of length l, one branch of a job is allowed to execute at most l · σ
more than any other branch. This means that for a job a that meets its
deadline, skew in the intra-job scheduler will contribute at most σ · Da to
the completion time of a.

8.2.4 Reducing Computation Functions

The computation function of a job is independent of the number of proces-
sors in the system (m), and only depends on the structure and execution
times of the parallel branches of the job. However, no job will ever be given
more than m processors simultaneously, and to simplify some of the later
analysis it is convenient that c(v) ≤ m for all v. A reduced computation func-
tion is a function where c(v) ≤ m for all v, and which behaves equivalently
with the original function in systems of m processors.

A reduced computation function can be interpreted as the number of
processors used by the job as a function of time since the release of the job,
given that there are no other jobs in the system. As long as computation
functions are reduced, virtual time will follow real time when there is no
interference from other jobs.
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A computation function c(v) can be reduced to m processors by comput-
ing

c(m)(t) = min
{
c(v(t)),m

}
(8.4)

using eq. (8.3) with s(t) = m. Informally, a reduced computation function
is found by limiting all sections of the function where c(t) > m to m, and
extending them by a factor of c(t)/m, conserving the total amount of com-
putation in the section.

8.3 Sustainability

When analyzing schedulability of systems that allow arbitrary structured
jlp, certain scheduling analysis concepts must be redefined in order to dis-
cuss sustainability. Consider the following questions: If one compares two
alternative jobs a and b, with identical releases and deadlines, what does it
mean that

1. the computation required by b is an upper bound to the computation
required by a,

2. a is easier to schedule than b,

3. b has a higher demand than a, and thus may cause more interference
to lower priority jobs.

For systems without jlp, these statements are all equivalent to Ca ≤ Cb.
In the last chapter it was shown that answers to questions 1 and 2 might

vary independently for jobs when the intra-job scheduler was undefined.
Question 3 was not discussed. In this section it will be shown that all these
questions are independent under a fair intra-job scheduler.

8.3.1 Definitions

First, consider the concept of upper bounds on computation.

Definition 8.3 (Upper Bound on Computation)
For a job b, if there exists a job a that has the same structure as b, but with
a less or equal amount of computation, then b is said to be an upper bound
of a. This is written a� b.

Computation times derived from wcet analysis of actual programs are
worst-case estimates. Therefore, in an actual execution of a job, any or
all of the branches in the job may require less than their expected execution
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time. A consequence is that even if execution time analysis of a job b leads
to a computation function of cb(v), the only thing known about an actual
execution of b is that it will behave as if having the computation function
ca(v) of some job a for which b is an upper bound.

Second, consider what it means for a job to be easier to schedule than
another.

Definition 8.4 (Easier to schedule)
For two jobs a and b, a is easier to schedule than b, if and only if for all
schedules

∀t : va(t) = La =⇒ vb(t) = Lb (8.5)

In other words, a is easier to schedule than b, if b meeting its deadline
in some schedule implies that a will also meet its deadline given the same
schedule.

Third, consider the demand of a job.

Definition 8.5 (Demand)
The demand of a job a in a window [t0, t1] is denoted Da(t0, t1) and is given
by

Da(t0, t1) =

∫ v(t1)

v(t0)

ca(v′) dv′ (8.6)

The demand of a job is the total amount of execution performed by the
job in the given window, and is dependent on the schedule.

8.3.2 Non-Sustainability of Exact Analysis

The fair intra-job scheduler does not eliminate the temporal anomalies de-
scribed in chapter 7, where a job would complete on a given schedule if
executing its full worst-case computation, but may no longer complete if
executing less:

Example 8.3.1
Let a and b be the jobs in listings 8.1 and 8.2, respectively. Because b has
the same structure as a, but with less computation, then b� a.

Let the jobs both be given the schedule depicted in fig. 8.2c. Virtual
time when executing the two jobs is shown in figs. 8.2a and 8.2b. Job a
completes at t = 2. Although a is an upper bound of b, b does not complete
until t ≈ 2.33. If ca(v) was a wcet estimate of cb(v), and the deadline
was 2, then the job would meet its deadline if executing its full worst-case
computation, but may miss its deadline if executing less.
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(a) (b) (c)

Figure 8.2: Schedule and virtual times for Example 8.3.1. (a) shows virtual time
for job a; (b) for job b. (c) shows schedule for both jobs.

(a) (b) (c)

Figure 8.3: ca(v), cb(v) and cless(v) for Example 8.3.2

A similar anomaly may occur due to interference to a low priority job
from a high priority job. This is illustrated in the following observation:

Observation 8.1. Lower priority jobs may miss their deadlines if and only
if a higher priority job executes less than its expected worst-case computa-
tion.

This may happen because, even if b� a, there may still exist values of
v for which ca(v) < cb(v). See for example the jobs in listings 8.1 and 8.2
and the computation functions in figs. 8.1a and 8.1b. A complete example
is given below:

Example 8.3.2
A system consists of two jobs a and b, released simultaneously on 4 proces-
sors, with da = 2.5 and db = 4. ca(v) is given in fig. 8.3a. cb(v) is given in
fig. 8.3b and will represent a wcet estimate of b. A computation function
requiring less than worst-case computation, cless(v), is depicted in fig. 8.3c,
and will represent the behavior of an actual execution of b.
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(a) (b)

Figure 8.4: Virtual times for Example 8.3.2

Job b is given a higher priority than job a; this is necessary for b to meet
its deadline given its worst-case computation. For b there are no higher
priority jobs, and b always completes at or before its deadline of t = 4.

Job a suffers interference from b. If b executes its upper bound, then
the virtual time of a progresses as shown in fig. 8.4a, and a completes at
t = 2.5, meeting its deadline.

If b executes cless(t) instead, then the virtual time of a progresses as
shown in fig. 8.4b. Job a suffers a more interference, and does not complete
until t = 3, missing its deadline.

Observation 8.1 implies that exact schedulability analysis cannot be sus-
tainable for the tasking model in this chapter: The system in example 8.3.2
is in fact schedulable when jobs execute their wcet, so an exact schedula-
bility analysis must deem the system schedulable. On the other hand, the
system is in fact not schedulable in some cases where jobs execute less, so
a sustainable analysis cannot deem the system schedulable. It is also worth
noting that observation 8.1 pertains to a wide range of job schedulers; noth-
ing is assumed except for the existence of two jobs with a fixed relative
priority.

8.4 Upper Bounds on Interference and Demand

A low priority job may suffer interference from higher priority jobs. In this
section, an upper bound on interference will be derived as a function of the
total demand of higher priority jobs. Then, an upper bound on the demand
of a job will be given for windows that end with the deadline of the job.
It will be shown that these upper bounds are also valid if jobs execute less
than their upper bounds on computation.
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8.4.1 Upper Bound on Interference

Definition 8.6 (Interference)
The interference to a job a in some window [t0, t] is denoted δa(t0, t) and is
defined as the difference between change in real and virtual time:

δa(t0, t) = (t − t0) − (va(t) − va(t0)) (8.7)

Say a job a completes at time e. The components that contribute to the
value of e are:

1. The release time ra,

2. the length La of its reduced computation function,

3. the delay caused by interference from other tasks, δ(ra, e), and

4. the skew from the intra job scheduler, which is at most σ · (e − ra).

All of these components increase monotonically with e, so a sufficient con-
dition for job a to meet its deadline is that e ≤ da:

ra + La + δa(ra, da) + σ · (da − ra) ≤ da (8.8)

Rearranging the terms yields

δa(ra, da) ≤ (1 − σ) · Da − La (8.9)

which is an upper bound to the amount of interference tolerated.
If one assumes that the computation function of a job is reduced to the

number of cpus, then interference is only caused by the execution of higher
priority jobs. The amount of interference from these jobs depends on both
their total amount of demand and on the structure of this demand. It also
depends on the structure of the job being delayed. However, when using
the fair intra-job scheduler there exists an upper bound on this interference
that only depends on the total magnitude of demand from higher priority
jobs:

Lemma 8.1. Let x be a low priority job. Let m be the total number of
processors, and w(t) be the number of processors used by higher priority jobs
at time t. Assume that x can never utilize more than m processors and let
δ(t0, t) be the total interference in the window [t0, t]. Then

d

dt
δ(t0, t) ≤ 1

m
w(t) (8.10)
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Proof. Differentiating the definition of interference (eq. (8.7)) with respect
to the upper bound t yields

d

dt
δ(t0, t) = 1 − d

dt
v(t) (8.11)

where v(t) is the virtual time of x. Inserting the definition of virtual time
(eq. (8.3)) yields

d

dt
δ(t0, t) = 1 − min

{
s(t)

c(v(t))
, 1

}
(8.12)

The number of processors available is the total number of processors minus
the number of processors used by higher priority jobs:

s(t) = m − w(t) (8.13)

Assume first that w(t) > 0 and that no processors are idle at time t. Then,

d

dt
δ(t0, t) = 1 − m − w(t)

c(v(t))
(8.14)

Dividing by w(t) results in

d

dt
δ(t0, t) · 1

w(t)
=

c(v(t)) − m + w(t)
c(v(t)) w(t)

(8.15)

In order to find the maximum value for the right-hand side with respect to
w(t), one can differentiate:

d

dw(t)
c(v(t)) − m + w(t)

c(v(t)) w(t)
=

m − c(v(t))
c(v(t)) w(t)2

(8.16)

The derivative is positive, unless c(v(t)) = m, in which case the derivative
is zero. Inserting w(t) = m (the maximum value of w) or c(v(t)) = m into
eq. (8.15), yields the same maximum right hand side of 1/m. Therefore

d

dt
δ(t0, t) · 1

w(t)
≤ 1

m
(8.17)

Reorganization then proves the lemma for w(t) > 0 and no idle processors.
For the remaining cases one immediately gets d

dt v(t) = 1, and therefore, from
eq. (8.11)

d

dt
δ(t0, t) = 0 (8.18)

which proves the lemma for w(t) = 0 or when processors are idle at t. �
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Theorem 8.2. Let δ(t0, t1) be the interference to a job caused by higher
priority jobs in some window [t0, t1]. Let w(t) be the number of processors
used by higher priority jobs at time t. Let W be the total demand of the
higher priority jobs in the window:

W =
∫ t1

t0
w(t) dt (8.19)

Then

δ(t0, t1) ≤ W
m
. (8.20)

Proof. Integrating both sides of eq. (8.10) over the interval results in the
inequality

∫ t1

t0

d

dt
δ(t0, t) dt ≤

∫ t1

t0

1

m
w(t) dt (8.21)

which can be simplified as follows

∫ t1

t0

d

dt
δ(t0, t) dt ≤ 1

m

∫ t1

t0
w(t) dt

δ(t0, t1) − δ(t0, t0) ≤ 1

m
W (8.22)

δ(t0, t1) ≤ W
m

proving the theorem. �

8.4.2 Upper Bound on Demand

The bound in theorem 8.2 is useful for schedulability analysis, because it is
independent of the structures of both the delayed and the interfering jobs,
and only depends on the total amount of demand from the higher priority
jobs. It is also sustainable with respect to decrease in computation, in the
sense that any decrease in computation from the higher priority jobs will
result in a reduction in worst-case delay.

In order to obtain a sustainable analysis for the whole system, a sustain-
able demand bound for higher priority jobs must also be found. Unfortu-
nately, it is not feasible to derive tight and sustainable demand bounds for
general windows in time based on the computation function of a job alone.
This is illustrated by the following example:
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Listings 8.4 to 8.6: Jobs a, b and c in Example 8.4.1

−− a
PAR
SEQ
Exec(1)
PAR
Exec(1)
Exec(1)
Exec(1)

SEQ
PAR
Exec(1)
Exec(1)
Exec(1)

Exec(1)
:

−− b
PAR
Exec(1)
Exec(1)
Exec(1)
SEQ
PAR
Exec(1)
Exec(1)
Exec(1)

Exec(1)

:

−− c
PAR
Exec(2)
Exec(2)
Exec(2)
Exec(2)

:

Example 8.4.1
Consider the jobs a, b and c, depicted in listings 8.4 to 8.6, and the maximum
demand of those jobs in the window [0, 1]. Job a is an upper bound of job b.
Consider the demand in schedules where the jobs are given many processors,
eg, s(t) = 10. The demands in [0, 1] are

Da(0, 1) = 4

Db(0, 1) = 6

Here, the demand of the upper bound is lower. Now consider the job c. Its
computation function is identical to ca(v), but for all c′ � c,

Dc′(0, 1) ≤ 4

so that removing computation from c will never yield a higher demand in
[0, 1] than c itself.

For more exaggerated job structures, the increase in demand caused by
reduction in computation could be even higher. The computation function
alone does not contain enough information to distinguish between jobs where
executing less may lead to increase in demand, from jobs where it may not.
However, this situation changes if one only considers windows where the
ends coincide with the completion of the job.

Lemma 8.3. If a is an upper bound of b, then for all v0,∫ Lb

v0

cb(v) dv ≤
∫ La

v0

ca(v) dv (8.23)
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Proof. First, note that Lb ≤ La, and that cb(v) = 0 when vb(t) > Lb, so the
upper limit of the right hand side integral can be set to La:∫ La

v0

cb(v) dv ≤
∫ La

v0

ca(v) dv (8.24)

Beginning with the upper bound job a, say the value of an Exec statement
is reduced by Δ, and that this part of the Exec statement contributed to
ca(v) from virtual times vx to vx + Δ. This removes Δ units of computation,
but also means that the rest of the Exec statement, and computation in
sequence to it, becomes ready to execute Δ virtual time units earlier. The
computation in sequence is thus shifted towards lower values of v. Because
the upper bounds of the integral coincides with the end of the job, there is
no computation that can shift into the integral, and thus its value cannot
increase.

By definition, when a is an upper bound of b, b can be obtained from a by
reducing the values of Exec statements. Each such reduction will preserve
the inequality, so for all b for which a is an upper bound, the lemma will
hold. �

Theorem 8.4. Let a be a job with deadline at da. Let Dub(t0, da) be an
upper bound on the demand in the window [t0, da] for job a if a executes
a computation function for which ca(v) is an upper bound. Then, for all
schedules where a meets its deadline, and all t0 ≤ da,

Dub(t0, da) ≤
∫ La

La−(da−t0)

ca(v) dv (8.25)

Proof. The demand from a in a fixed window ending with a deadline of a
obtains its maximum when a begins to execute as late as possible. If a meets
its deadline, a may begin executing no later than t = da − La, in which case
it must execute with d

dt ca(v) = 1. This gives a virtual time for t ≤ da of

va(t) = max
{
0, t0 − (da − La)

}
= max

{
0, La − (da − t0)

}
(8.26)

The definition of demand (eq. (8.6)) yields

Dub(t0, da) ≤
∫ La

max{0, La−(da−t0)}
ca(v) dv (8.27)

For negative values of v, ca(v) = 0 by definition, so the max function can be
removed:

Dub(t0, da) ≤
∫ La

La−(da−t0)

ca(v) dv (8.28)
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Finally, using lemma 8.3 it can be seen that this bound also holds even if a
executes less than its upper bound ca(v). �

8.5 Schedulability Analysis for edf

In this section, the framework from the previous sections will be used to
demonstrate a sustainable schedulability analysis for systems using edf.

The strategy is as follows: For each task, an upper bound on demand
is found during any window ending with a deadline for the task, using
theorem 8.4. This bound also holds when tasks execute less than their
upper bound on computation.

With edf, for a job a, only jobs with deadlines earlier than da may
interfere with a. Using this property, an upper bound on the total demand
from other tasks that may interfere with a is also found. Finally, theorem 8.2
is used to limit the interference caused by this demand. If the interference
is sufficiently small then a will meet its deadline.

When analyzing tasks instead of jobs, it helps to extend computation
functions so that they become periodic:

Definition 8.7
The T -period extension of a computation function c(v) is denoted c�(v,T )

and is given by

c�(v,T ) = c
(
v − ⌊

v/T
⌋
T
)

(8.29)

Lemma 8.5. The demand W from a task X in a window of length l from
jobs with deadlines within the window, satisfies

W ≤
∫ LX

LX−l
c�X(v,TX) dv (8.30)

where cX(v) is an upper bound to the computation functions of all jobs of X.

Proof. Using a strategy from Bertogna and Cirinei [15], the jobs from task X
that may execute within a window are divided into three categories: (1) jobs
with release and deadline within the window, which contributes at most a
full CX of demand, (2) a maximum of one job with deadline outside the
window, which by definition of W does not contribute to demand, and (3) a
maximum of one job with release outside the window, which contributes up
to CX of demand, depending on the window alignment. An illustration is
given in fig. 8.5a, with one job from each category.

177



Analysis of jlp with a Fair Intra-job Scheduler

(a)

(b)

Figure 8.5: Alignment under edf. (a) shows non-worst-case alignment, where last
job in window contributes nothing to demand. (b) shows worst-case alignment.

A job with deadline outside of the window does not contribute to the
demand, so the demand can never decrease by shifting the alignment of the
task forward until a job deadline coincides with the end of the window. The
demand from a job released outside the window is maximized by assuming
that it executes as late as possible, completing execution at its deadline.
Note that this assumption has no effect on the demand from jobs completely
within the window. An upper bound on demand can therefore be found
when the deadline of a job aligns with the end of the interval, with all
earlier jobs released as late as possible. An illustration of the worst-case is
given in fig. 8.5b.

A demand bound is then found by taking the sum of the contributions.
Say the window is (t0, t1). Let the first job be denoted x, and the first job
deadline d. The worst-case demand then satisfies

W ≤ Dx(t0, d) +

⌊
l

TX

⌋
CX (8.31)

Using theorem 8.4, one may write

W ≤
∫ LX

LX−(d−t0)

cX(v) dv +
⌊

l
TX

⌋
CX (8.32)

Replacing cX(v) with its TX-period extension does not change the integral
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as long as 0 ≤ v ≤ Tx:

W ≤
∫ LX

LX−(d−t0)

c�X(v,TX) dv +
⌊

l
TX

⌋
CX (8.33)

Increasing the upper bound of the integral by TX increases the value of the
integral by CX. Increasing the upper bound by TX · ⌊l/TX

⌋
therefore cancels

the second term entirely. As

TX ·
⌊

l
TX

⌋
= t1 − d (8.34)

this yields

W ≤
∫ Lx+(t1−d)

Lx−(d−t0)

c�x (v,Tx) dv (8.35)

Because c�x is periodic with period Tx, if both limits of the integral is shifted
by Tx this will not affect the value of the integral. As t1 − d is divisible by
Tx, this results in

W ≤
∫ LX

LX−(d−t0)−(t1−d)

c�X(v,TX) dv

≤
∫ LX

LX+t0−t1
c�X(v,TX) dv

Finally, inserting L = t1 − t0 results in eq. (8.30). �

Theorem 8.6. When using an edf job scheduler, and the fair intra-job
scheduler, a task A is schedulable if

1

m

∑
X∈T : X�A

∫ LX

LX−DA

c�X(v,TX) dv ≤ DA(1 − σ) − LA (8.36)

where LA is length of the longest reduced computation function of any job
of A, cX(v) is an upper bound to the computation functions of all jobs of a
task X and σ is the maximum skew caused by the intra-job scheduler. This
schedulability test is sustainable with respect to a decrease in computation.

Proof. A single job of A executes for a window of DA. Jobs from other tasks
must have deadlines within this window to have higher priority than the job
from A. Using lemma 8.5, the sum of demand from higher priority jobs of
other tasks is found to satisfy

Wall ≤
∑

X∈T : X�A

∫ LX

LX−DA

c�X(v,TX) dv (8.37)
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According to theorem 8.2 this causes a maximum interference of Wall/m.
Inserting this into the condition for a job to meet its deadline, eq. (8.9),
yields

1

m

∑
X∈T : X�A

∫ LX

LX−DA

c�X(v,TX) dv ≤ DA(1 − σ) − LA (8.38)

Both the upper bound on demand and the upper bound on interference hold
when jobs execute less than their worst-case computations. The schedula-
bility test is therefore sustainable. �

The above schedulability test has poor worst-case performance:

Observation 8.2. It is possible to construct an implicit-deadline task set
so that the schedulability test in theorem 8.6 has worst-case utilization arbi-
trarily close to 0.

This will be demonstrated in the following example:

Example 8.5.1
A system contains two tasks, A and B, with relative deadlines equal to
periods. Assume no skew (σ = 0). Let

TB = λ · TA

cA(v) =

⎧⎪⎪⎨⎪⎪⎩1 if 0 ≤ v ≤ ε
0 otherwise

cB(v) =

⎧⎪⎪⎨⎪⎪⎩m if 0 ≤ v ≤ TA

0 otherwise

for some λ > 1, ε > 0. That is, there is a short task A that requires a small
amount of computation on one cpu, and a longer task B that requires all
cpus for an interval identical to the period of A.

According to the test, A is schedulable if

1

m

∫ LB

LB−DA

c�B(v,TB) dv ≤ DA − Lx

which yields
1

m

∫ TA

0

c�B(v,TB) dv ≤ TA − ε
Evaluating the integral results in TA · m. Simplifying yields

ε ≤ 0
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Therefore, if ε > 0 then A will not pass the schedulability test. The utiliza-
tion of the system is

U =
ε

TA
+

m TA

λTA
=
ε

TA
+

m
λ

The utilization can be brought arbitrary close to zero by letting ε ≈ 0 and
λ→ ∞.

8.6 Discussion

The edf schedulability test of theorem 8.6 has a worst-case utilization ar-
bitrarily close to 0. This bound is derived from one particular task set, and
requires an infinitely long task period. It should be noted that this limit is
caused by pessimism in the test; the task set used in the example is actu-
ally schedulable. The task model in this chapter is a superset of traditional
multiprocessor edf, which has an actual worst-case utilization arbitrarily
close to 1.

The pessimism of the edf test has several causes. Theorem 8.2 is pes-
simistic in that it assumes that demand from higher priority jobs align in
the worst possible way. For example, if there is one low and one high pri-
ority job each requiring one processor, and m ≥ 2, then demand from the
high priority job will not cause interference. However, theorem 8.2 yields an
interference bound of W/m. Theorem 8.4 is not pessimistic, as it is possible
for a job to yield the demand given in the theorem. The main source of
pessimism is the edf test itself, which assumes that all higher priority jobs
start as late as possible and finish at the same deadline. It should be possi-
ble to use theorems 8.2 and 8.4 to construct less pessimistic tests, perhaps
by using iterated response-time analysis, as done in Bertogna and Cirinei
[15].

The schedulability test is based on several assumptions, which to vari-
ous degrees are sources of error: (1) Tasks are independent, (2) no cost of
preemptions, (3) fair scheduler, with error bounded by skew variable, and
(4) the system uses continuous time.

The first assumption severely limits the usefulness of the analysis for
practical systems, but does not affect the validity of the analysis for systems
where tasks actually are independent.

The second assumption is a source of error. Preemption causes jitter,
and causes jobs to slow down because of cache misses etc. This should be
taken into account. If an upper bound on the number of preemptions can be
determined in advance, and an upper bound on the cost of each preemption
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can also be found, then the analysis can be modified to accommodate this
cost.

The third assumption requires that a maximum value of skew can be
found for the intra-job scheduler, so that worst-case skew grows linearly
with time. This is an assumption that is not likely to hold for short windows
of time, because it again would require an infinitely fast scheduler. There
probably exist better models for skew. However, in this chapter total skew
is only computed for windows from the release to the deadline for a job,
which should of sufficient length to minimize the errors of the skew model
itself.

The continuous time assumption is primarily required to prove the in-
terference bound in theorem 8.2. It should be possible to incorporate the
errors of this assumption as part of the errors caused by skew.

Another point to consider is whether to allow job-level parallelism at all.
It is always possible to suppress jlp by serializing all jobs. If the resulting
increase in response times is acceptable and does not cause deadlines to
be missed, then this serialization can make task sets schedulable that are
not schedulable when jlp is enabled. This is also discussed in Lakshmanan
et al. [66], where job-level parallelism is suppressed for all jobs where it is
not required for the job to meet its deadline.

Schedulability analysis of process-oriented systems on multiple proces-
sors is primarily limited by the lack of analysis techniques for synchronous
communication: Whereas synchronous communication is required in all
practical process-oriented systems, jlp is only required when there are par-
allel jobs that will miss deadlines when serialized. Still, real-time multipro-
cessor systems become increasingly common, and as the number of process-
ing cores goes up, having to serialize each job will become an ever greater
disadvantage. Moreover, when the typical problem of programming a mul-
tiprocessor system is to make computation more parallel, it is unfortunate
if process-oriented systems, which are already parallel, must suppress this
parallelism to be analyzable.
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Closing Remarks
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Chapter 9

Conclusions and Future Work

In computer science, a closure is a
function together with a referencing
environment for the non-local variables
of that function

Wikipedia

The work on this thesis began as an interest in how timing requirements
could be lifted to higher levels of abstraction, so to better integrate the
computational and temporal aspects of programming real-time systems.
Process-oriented programming was quickly selected as a suitable concur-
rency paradigm to use as basis, because it gives implementation of concur-
rency the high quality that it was hoped to achieve for implementation of
temporal constraints. Later came the realization that process-oriented sys-
tems were poorly supported by schedulability analysis, which lead to the
second part of the thesis.

9.1 Conclusions

In chapter 3, existing primitives for implementing temporal constraints were
evaluated with respect to program quality. It was found that in general, us-
ing primitives at a low level of abstraction leads to low quality programs.
The use of primitives that explicitly set scheduling priorities was strongly
discouraged. Moreover, it was argued that a real-time language targeting
reactive systems should have primitives that explicitly references relative
times, as converting relative times from a specification into absolute times
incurs a complexity which obfuscates the programmer’s intention and re-
duces readability.
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The time-construct was then introduced, which sets an equal minimum
and maximum response time constraint for a block of code, and it was
demonstrated that this construct can be used to implement a wide range of
temporal constraints in a readable and intuitive manner.

One conclusion was that a process subject to a deadline constraint should
not communicate synchronously with a process that may be subject to a
delay constraint. Raising events and triggering sporadic tasks fall under the
former category, while event handlers and the tasks themselves fall under
the latter. Triggering mechanisms should therefore not be synchronous.

A new programming language, Toc, was designed in chapter 4, and a
compiler and run-time system were implemented. Toc is based on occam,
but replaces all occam primitives that handle timing with the primitives
suggested in chapter 3. Toc also has a radically different execution model,
and uses an integrated earliest deadline first (edf) scheduler, rather than
the non-real-time scheduling model employed by occam.

When programming a real-time system one may allow background tasks,
ie, processes that are never considered urgent, and which therefore should
yield to any task with a specified deadline. The alternative is not to allow
these tasks, so that all functionality of the system must be under the respon-
sibility of a deadline constraint in order to be executed. This is the stance
taken by the Toc scheduler. This strategy, called lazy scheduling, forces
the programmer to become aware of all the timing requirements present in
a system, as code with no requirement will not be executed, even if the
system is not doing anything else. The upside of this is that it becomes
easier to spot missing or incorrectly assigned deadlines, errors that would
otherwise only be revealed when the system load is high. The downside is
that enforcing lazy scheduling may require the introduction of artificial or
obscure deadlines.

Part II discussed schedulability analysis of process-oriented systems.
These have two properties that are incompatible with traditional schedula-
bility analysis, (1) they use synchronous communication, and (2) they have
complex parallel structures. The latter is only relevant for multiprocessor
systems.

A new method for analyzing schedulability of systems using synchronous
communication was developed in chapter 6. The analysis was based on orga-
nizing communication according to a client-server pattern, while preventing
real-time tasks from acting as servers. Some restrictions on communication
were added in order to guarantee the absence of deadlocks; the resulting
analysis was not much more complicated than existing equivalents for shared
memory based systems.
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Two application examples were shown and discussed. In one example,
the analysis was applied to a system using the priority inheritance protocol
(pip) and mutual exclusion synchronization in the form of protected objects,
and it was demonstrated that the new analysis may yield less pessimistic
bounds than the traditional analysis technique. In the other example it
was shown that the schedulability of a system can sometimes be improved
by deferring computation generated by a server call until after the call,
an optimization which is difficult to achieve in a system that uses mutual
exclusion based communication.

Chapter 7 described a mathematical model for reasoning on programs
with complex parallel structures. The model can be used as a tool for
analyzing non-communicating real-time jobs. Several instances of counter-
intuitive behavior were demonstrated to be inherent in real-time systems
where processes are allowed such a complex structure. For example, a pro-
cess may be guaranteed to complete on schedule, if and only if computation
is not removed from the process.

Chapter 8 introduced a framework for analyzing complete systems of
such processes, if the systems use an intra-job scheduler that is reasonably
fair. The notion of upper bounds on computation was discussed for these
systems, and it was demonstrated that even under the fair scheduler, jobs
executing the upper bound does not necessarily represent a worst-case sce-
nario.

An upper bound of interference as a function of demand from higher
priority jobs was derived, as well as an upper bound on demand from a job
for windows that end with a deadline for the job. These bounds were used to
construct an edf schedulability test. This test is fairly simple, and has poor
worst-case performance, but allows analysis for a class of systems for which
no existing analysis methods currently apply. Moreover, it is believed that
the interference and demand bounds can be used to create schedulability
tests with better performance.

9.2 Future Work

Phd work is also subject to temporal constraints. With no attempt at
making a complete list, here are some possible topics for future work:

1. To try the time-construct in a language that uses entry-type syn-
chronous communication between processes. This structure is conve-
nient both for schedulability analysis and for guaranteeing the absence
of deadlock, and would also solve the dilemma of the default extended
rendezvous described in section 4.4.6.
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2. To explore the use of light-weight processes in real-time systems, and
the balance between responsiveness required by real-time constraints,
and the low overhead that can be achieved when using non-preemptive
scheduling.

3. To improve the Toc compiler in various ways, such as implementing an
analytical usage checker to replace the existing one (which is based on
simulation), and to add warnings for code that will never be executed
due to excessive laziness.

4. To analyze schedulability of process-oriented client–server systems on
multiprocessors. This will require new synchronization protocols, as
existing multiprocessor protocols assume short critical sections, which
are not realistic in process-oriented systems.

5. To identify necessary or sufficient conditions for when deferring com-
putation in a server call may improve the schedulability of a system.

6. To extend the computation time process (ctp) model to handle com-
munication, and to handle multiple jobs, so that schedulability anal-
ysis can be performed that is independent of the intra-job scheduler.

7. To investigate further the notion of safe upper bounds on ctps, per-
haps to find out whether there exists a unique, best safe upper bound
for every ctp, or to develop an algorithm that finds these bounds.

8. To improve the edf schedulability test for systems of malleable jobs
when using the fair intra-job scheduler, eg, by using iteration.

Concluding Remarks

Process-oriented systems lend themselves more easily to formal verification,
scale better, and are arguably easier to write correctly. It is therefore un-
fortunate that the paradigm is not widely used in real-time systems. The
reasons for this include the lack of suitable primitives for implementing real-
time constraints, as well as the lack of well-known schedulability analysis
techniques. The results from this thesis may help to form a basis for more
widespread use of process-oriented programming in real-time systems.
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Appendix A

Toc Language Specification in bnf

This chapter describes the syntax and lexical structure of Toc. Parts of
this text is auto-generated by bnfc [81] based on a Backus–Naur form (bnf)
language description that is also used to generate the code for the parser.

The Lexical Structure of Toc

This section describes the literals, keywords, symbols and comments avail-
able in Toc.

Literals

Integer literals 〈Int 〉 are nonempty sequences of digits. Double-precision
float literals 〈Double 〉have the structure indicated by the regular expression

〈digit 〉+ ’.’ 〈digit 〉+ (
(’e’ | ’E’) ’-’? 〈digit 〉+ )

?

that is, two sequences of digits separated by a decimal point, optionally
followed by an unsigned or negative exponent. String literals 〈String 〉 have
the form "x", where x is any sequence of any characters except " unless
preceded by \. Character literals 〈Char 〉 have the form ’c’, where c is any
single character.

Identifiers come in three classes: upper-case identifiers, lower-case iden-
tifiers and capitalized identifiers. Capitalized identifiers are used for proce-
dures to simplify parsing; that they are required should be considered as a
limitation of the compiler. The 〈UpperIdent 〉, 〈LowerIdent 〉and 〈CapIdent 〉
identifier literals are recognized by the following regular expressions, respec-
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Table A.1: Reserved Keywords in Toc

ALT AND BITAND BITOR BOOL

BYTESIN CASE CHAN CLEAR DATA

DAY ELSE EVENT EXTERN FALSE

FROM FUNCTION HANDLE HOUR IF

INT IS MIN MSEC NOT

NSEC OR PAR PRINT PROC

PROTOCOL RAISE REAL RECORD REM

SEC SEQ SIZE SKIP STOP

TIME TIMEOUT TIMESPEC TRUE USEC

VAL VALOF WHILE

Table A.2: Symbols in Toc

:= ( ) = & ? ! ; ,
: [ ] <> < < <= >= ><
<< >> + − * / ∼

tively:

〈upper 〉 (〈upper 〉 | 〈lower 〉 | 〈digit 〉 | ’_’ | ’.’)∗
〈lower 〉 (〈lower 〉 | 〈lower 〉 | 〈digit 〉 | ’_’ | ’.’)∗

〈upper 〉 〈lower 〉 (〈upper 〉 | 〈lower 〉 | 〈digit 〉 | ’_’ | ’.’)∗
Reserved Words and Symbols

The set of reserved words is the set of terminals appearing in the gram-
mar. Those reserved words that consist of non-letter characters are called
symbols, and they are treated in a different way from those that are sim-
ilar to identifiers (eg, they are allowed to be adjacent). The lexer follows
the usual rules for lexing, including longest match and spacing conventions.
The reserved keywords and symbols of Toc are listed in tables A.1 and A.2,
respectively.

Comments

Toc allows single-line comments, which begin with −−.
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Layout Resolution

After lexing, but before parsing, the symbol list undergoes layout resolution.
A line-break after , (comma), FOR, FROM, or IS is ignored; otherwise,
after each line-break, the indentation of the next symbol is compared to
the indentation of the first symbol on the previous line. If the indentation
is greater, a {-token is inserted. If the indentation is equal, then a $ is
inserted. If the indentation is less, then a suitable number of } are inserted,
to close all opening braces since indentation exceeded the level of the new
line.

The Syntactic Structure of Toc in Bnf

This section lists the syntax of Toc in bnf. Non-terminals are enclosed be-
tween 〈 and 〉. The symbols ::= (production), | (union) and ε (empty rule)
belong to the bnf notation. The symbols {, $ and } are tokens inserted
during layout resolution. All other symbols are terminals.

〈AnyIdent 〉 ::= 〈LowerIdent 〉
| 〈UpperIdent 〉
| 〈CapIdent 〉

〈Program 〉 ::= 〈ListDecl 〉

〈Block 〉 ::= {〈ListStmt 〉 }

〈Stmt 〉 ::= 〈ListTermDecl 〉 〈Proc 〉

〈ListStmt 〉 ::= 〈Stmt 〉
| 〈Stmt 〉 $ 〈ListStmt 〉
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〈Proc 〉 ::= 〈Alt 〉
| 〈ListNonEmptyExp 〉 := 〈ListNonEmptyExp 〉
| 〈CapIdent 〉 ( 〈ListExpr 〉 )
| 〈Comm 〉
| RAISE 〈Expr 〉
| CLEAR 〈Expr 〉
| 〈Handle 〉
| 〈CaseBlock 〉
| 〈IfChoice 〉
| PAR 〈LowerIdent 〉= 〈Expr 〉 FOR 〈Expr 〉 〈Block 〉
| SEQ 〈LowerIdent 〉= 〈Expr 〉 FOR 〈Expr 〉 〈Block 〉
| SEQ 〈Block 〉
| PAR 〈Block 〉
| PRINT 〈ListExpr 〉
| SKIP

| STOP

| TIME 〈Expr 〉 〈Block 〉
| WHILE 〈Expr 〉 〈Block 〉

〈Alt 〉 ::= ALT { 〈ListAltStmt 〉 }
| ALT 〈LowerIdent 〉= 〈Expr 〉 FOR 〈Expr 〉 {〈AltStmt 〉 }

〈AltStmt 〉 ::= 〈ListTermDecl 〉 〈Alt 〉
| 〈ListTermDecl 〉 〈Guard 〉

〈ListAltStmt 〉 ::= 〈AltStmt 〉
| 〈AltStmt 〉 $ 〈ListAltStmt 〉

〈Guard 〉 ::= 〈Expr 〉 & 〈Comm 〉
| 〈Comm 〉
| 〈Expr 〉 & SKIP 〈Block 〉

〈Input 〉 ::= ?

| ??

〈Output 〉 ::= !

| !!

〈Comm 〉 ::= 〈Expr 〉 〈Output 〉 〈ListCommExpr 〉
| 〈Expr 〉 〈Output 〉 〈ListCommExpr 〉 〈Block 〉
| 〈Expr 〉 〈Input 〉 〈ListCommExpr 〉
| 〈Expr 〉 〈Input 〉 〈ListCommExpr 〉 〈Block 〉
| 〈Expr 〉 〈Input 〉 CASE { 〈ListCommCaseExpr 〉 }

〈CommExpr 〉 ::= 〈Expr 〉

〈ListCommExpr 〉
::= 〈CommExpr 〉
| 〈CommExpr 〉 ; 〈ListCommExpr 〉

〈CommCaseExpr 〉
::= 〈ListCommExpr 〉 〈Block 〉
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〈ListCommCaseExpr 〉
::= 〈CommCaseExpr 〉
| 〈CommCaseExpr 〉 $ 〈ListCommCaseExpr 〉

〈Handle 〉 ::= HANDLE { 〈HandleStmt 〉 〈TimeoutStmt 〉 }
| HANDLE 〈HandleStmt 〉

〈HandleStmt 〉 ::= 〈Expr 〉 〈Block 〉

〈TimeoutStmt 〉 ::= $ TIMEOUT 〈Expr 〉 〈Block 〉
| ε

〈CaseBlock 〉 ::= CASE 〈Expr 〉 { 〈ListCaseAlt 〉 }

〈CaseAlt 〉 ::= 〈ListNonEmptyExp 〉 〈Block 〉
| ELSE 〈Block 〉

〈ListCaseAlt 〉 ::= 〈CaseAlt 〉
| 〈CaseAlt 〉 $ 〈ListCaseAlt 〉

〈NonEmptyExp 〉
::= 〈Expr 〉

〈ListNonEmptyExp 〉
::= 〈NonEmptyExp 〉
| 〈NonEmptyExp 〉 , 〈ListNonEmptyExp 〉

〈IfChoice 〉 ::= IF { 〈ListIfStmt 〉 }
| IF 〈LowerIdent 〉= 〈Expr 〉 FOR 〈Expr 〉 { 〈IfStmt 〉 }

〈IfStmt 〉 ::= 〈IfChoice 〉
| 〈Expr 〉 〈Block 〉

〈ListIfStmt 〉 ::= 〈IfStmt 〉
| 〈IfStmt 〉 $ 〈ListIfStmt 〉

〈TimeUnit 〉 ::= DAY

| HOUR

| MIN

| SEC

| MSEC

| USEC

| NSEC

〈ValOf 〉 ::= 〈ListTermDecl 〉 VALOF
{ 〈Stmt 〉 $ RESULT 〈ListNonEmptyExp 〉 }

〈ProtocolDecl 〉 ::= PROTOCOL 〈AnyIdent 〉 〈ProtoDef 〉

〈ProtoDef 〉 ::= IS 〈ListSeqType 〉
| { CASE { 〈ListProtoCase 〉 } } $

〈SeqType 〉 ::= 〈VarType 〉
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〈ListSeqType 〉 ::= 〈SeqType 〉
| 〈SeqType 〉 ; 〈ListSeqType 〉

〈ProtoCase 〉 ::= 〈LowerIdent 〉
| 〈LowerIdent 〉 ; 〈ListSeqType 〉

〈ListProtoCase 〉 ::= 〈ProtoCase 〉
| 〈ProtoCase 〉 $ 〈ListProtoCase 〉

〈DataType 〉 ::= DATA TYPE 〈AnyIdent 〉 〈DataDef 〉
〈DataDef 〉 ::= IS 〈VarType 〉

| { RECORD { 〈ListDecl 〉 } } $

〈Function 〉 ::= 〈ListVarType 〉 FUNCTION
〈AnyIdent 〉 ( 〈ListParam 〉 ) 〈FuncDef 〉

〈EFunction 〉 ::= 〈VarType 〉 FUNCTION 〈AnyIdent 〉 ( 〈ListParam 〉 )
〈FuncDef 〉 ::= { 〈ValOf 〉 } $

| IS 〈ListNonEmptyExp 〉
〈Procedure 〉 ::= PROC 〈AnyIdent 〉 ( 〈ListParam 〉 ) 〈Block 〉 $
〈Param 〉 ::= 〈VarType 〉 〈DeclId 〉

| 〈DeclId 〉
〈ListParam 〉 ::= ε

| 〈Param 〉
| 〈Param 〉 , 〈ListParam 〉

〈Decl 〉 ::= 〈VarType 〉 〈ListDeclId 〉 :
| 〈DataType 〉 :
| 〈ProtocolDecl 〉 :
| 〈Function 〉 :
| EXTERN 〈EFunction 〉 :
| 〈Procedure 〉 :

〈ListDecl 〉 ::= ε
| 〈Decl 〉
| 〈Decl 〉 $ 〈ListDecl 〉

〈TermDecl 〉 ::= 〈Decl 〉
〈ListTermDecl 〉 ::= ε

| 〈TermDecl 〉 $ 〈ListTermDecl 〉
〈Qualifier 〉 ::= VAL

| ε

〈Channel 〉 ::= ε
| CHAN 〈ListArrayStmt 〉

〈VarType 〉 ::= 〈Qualifier 〉 〈Channel 〉 〈Primitive 〉 〈ListArrayStmt 〉
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〈ListVarType 〉 ::= 〈VarType 〉
| 〈VarType 〉 , 〈ListVarType 〉

〈Primitive 〉 ::= BYTE

| BOOL

| INT

| REAL

| TIMESPEC

| EVENT

| 〈UpperIdent 〉
〈ArrayStmt 〉 ::= [ 〈Expr 〉 ]

| [ ]

〈ListArrayStmt 〉 ::= ε
| 〈ArrayStmt 〉 〈ListArrayStmt 〉

〈DeclId 〉 ::= 〈LowerIdent 〉 〈ChanDir 〉 〈Abbrev 〉
〈ListDeclId 〉 ::= 〈DeclId 〉

| 〈DeclId 〉 , 〈ListDeclId 〉
〈ChanDir 〉 ::= ε

| ?

| !

〈Abbrev 〉 ::= ε
| IS 〈Expr 〉

〈PosConst 〉 ::= 〈TokInteger 〉
| 〈TokDouble 〉
| 〈TokString 〉
| TRUE

| FALSE

| 〈TokChar 〉
〈Const 〉 ::= 〈Integer 〉

| 〈Double 〉
| 〈String 〉
| 〈Char 〉
| 〈ListConst 〉

〈ListConst 〉 ::= ε
| 〈Const 〉
| 〈Const 〉 , 〈ListConst 〉

〈IntConst 〉 ::= 〈Integer 〉 〈Integer 〉 〈Const 〉
〈Expr2 〉 ::= 〈Expr2 〉 OR 〈Expr3 〉

| 〈Expr3 〉
〈Expr3 〉 ::= 〈Expr3 〉 AND 〈Expr4 〉

| 〈Expr4 〉
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〈Expr4 〉 ::= 〈Expr4 〉= 〈Expr5 〉
| 〈Expr4 〉<> 〈Expr5 〉
| 〈Expr5 〉

〈Expr5 〉 ::= 〈Expr5 〉< 〈Expr6 〉
| 〈Expr5 〉> 〈Expr6 〉
| 〈Expr5 〉<= 〈Expr6 〉
| 〈Expr5 〉>= 〈Expr6 〉
| 〈Expr6 〉

〈Expr6 〉 ::= 〈Expr6 〉 BITOR 〈Expr7 〉
| 〈Expr7 〉

〈Expr7 〉 ::= 〈Expr7 〉>< 〈Expr8 〉
| 〈Expr8 〉

〈Expr8 〉 ::= 〈Expr8 〉 BITAND 〈Expr9 〉
| 〈Expr9 〉

〈Expr9 〉 ::= 〈Expr9 〉<< 〈Expr10 〉
| 〈Expr9 〉>> 〈Expr10 〉
| 〈Expr10 〉

〈Expr10 〉 ::= 〈Expr10 〉+ 〈Expr11 〉
| 〈Expr10 〉 − 〈Expr11 〉
| 〈Expr11 〉

〈Expr11 〉 ::= 〈Expr11 〉 〈TimeUnit 〉
| 〈Expr11 〉 * 〈Expr12 〉
| 〈Expr11 〉 / 〈Expr12 〉
| 〈Expr11 〉 REM 〈Expr12 〉
| 〈Expr12 〉

〈Expr13 〉 ::= − 〈Expr12 〉
| + 〈Expr12 〉
| NOT 〈Expr12 〉
| ∼ 〈Expr12 〉
| SIZE 〈Expr13 〉
| BYTESIN 〈Expr13 〉
| BYTESIN 〈VarType 〉
| 〈Expr14 〉

〈Expr14 〉 ::= 〈LowerIdent 〉 ( 〈ListExpr 〉 )
| 〈Expr14 〉 [ 〈Expr 〉 ]
| 〈Expr15 〉

〈Expr15 〉 ::= 〈PosConst 〉
| NOW

| 〈LowerIdent 〉
| 〈ExprList 〉
| ( 〈Expr 〉 )

〈Expr 〉 ::= 〈Expr1 〉

198



〈Expr1 〉 ::= 〈Expr2 〉

〈Expr12 〉 ::= 〈Expr13 〉
〈ListExpr 〉 ::= ε

| 〈Expr 〉
| 〈Expr 〉 , 〈ListExpr 〉

〈ExprList 〉 ::= [ 〈ListExpr 〉 ]
| [ 〈Expr 〉 FROM 〈Expr 〉 ]
| [ 〈Expr 〉 FROM 〈Expr 〉 FOR 〈Expr 〉 ]
| [ 〈Expr 〉 FOR 〈Expr 〉 ]
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Appendix B

Complete Listing of Elevator Control Code

This section lists the complete code for the elevator example discussed in sec-
tion 4.6.

Listing B.1: Elevator Example: Complete Listing
−− ∗∗∗ CONSTANTS AND DATA TYPES ∗∗∗−−{{{
DATA TYPE FLOOR IS INT:
DATA TYPE DIR IS INT:
VAL INT floors IS 4:
VAL INT dirs IS 3:
VAL DIR dir.up IS 0:
VAL DIR dir.down IS 1:
VAL DIR dir.none IS 2:

PROTOCOL NULL
CASE
null

:
−−}}}
−− ∗∗∗ ELEVATOR INTERFACE ∗∗∗−−{{{
PROTOCOL INTERFACE.BUTTON
CASE
call ; FLOOR ; DIR
goto ; FLOOR

:

PROTOCOL INTERFACE.BUTTON.LIGHT
CASE
call ; FLOOR ; DIR ; BOOL
goto ; FLOOR ; BOOL

:

−− ∗∗∗ IO MODULE ∗∗∗−−{{{
PROTOCOL IO.INPUT
CASE
call ; FLOOR ; DIR
goto ; FLOOR
sensor ; FLOOR
obstruction ; BOOL
panic.button
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:

PROTOCOL IO.OUTPUT
CASE
goto.light ; FLOOR ; BOOL
call.light ; FLOOR ; DIR ; BOOL
floor.indicator ; FLOOR
door.light ; BOOL
panic.light ; BOOL
motor.speed ; INT

:

EXTERN INT FUNCTION comedi open(VAL BYTE[] filename):
EXTERN INT FUNCTION comedi dio config(VAL INT handle, VAL INT subdevice, VAL INT channel,

VAL INT direction):
EXTERN INT FUNCTION comedi dio write(VAL INT handle, VAL INT subdevice, VAL INT channel,

VAL BOOL bit):
EXTERN INT FUNCTION comedi dio read(VAL INT handle, VAL INT subdevice, VAL INT channel,

BOOL bit):
EXTERN INT FUNCTION comedi data write(VAL INT handle, VAL INT subdevice, VAL INT channel,

VAL INT range, VAL INT ref, VAL INT data):
EXTERN INT FUNCTION comedi data read(VAL INT handle, VAL INT subdevice, VAL INT channel,

VAL INT range, VAL INT ref, INT data):
EXTERN INT FUNCTION abs(VAL INT x):

PROC Io.Set.Bit(VAL INT handle, channel, VAL BOOL value)
INT dummy:
dummy := comedi dio write(handle, channel >> 8, channel BITAND 255, value)

:
PROC Io.Read.Bit(VAL INT handle, channel, BOOL bit)
INT dummy:
dummy := comedi dio read(handle, channel >> 8, channel BITAND 255, bit)

:
PROC Io.Write.Analog(VAL INT handle, VAL INT channel, VAL INT value)
INT dummy:
VAL INT ground IS 0:
dummy := comedi data write(handle, channel >> 8, channel BITAND 255, 0, ground, value)

:

PROC Io.Read.Analog(VAL INT handle, VAL INT channel, INT value)
INT dummy:
VAL INT ground IS 0:
SEQ
value := 0
dummy := comedi data write(handle, channel >> 8, channel BITAND 255, 0, ground, value)

:

−− ∗∗∗ IO PORTS ∗∗∗ −−{{{
VAL INT port.port4 IS 3:
VAL INT port.obstruction IS (768+23):
VAL INT port.panic IS (768+22):
VAL INT port.goto1 IS (768+21):
VAL INT port.goto2 IS (768+20):
VAL INT port.goto3 IS (768+19):
VAL INT port.goto4 IS (768+18):
VAL INT port.call.up1 IS (768+17):
VAL INT port.call.up2 IS (768+16):
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VAL INT port.port1 IS 2:
VAL INT port.call.down2 IS (512+0):
VAL INT port.call.up3 IS (512+1):
VAL INT port.call.down3 IS (512+2):
VAL INT port.call.down4 IS (512+3):
VAL INT port.sensor1 IS (512+4):
VAL INT port.sensor2 IS (512+5):
VAL INT port.sensor3 IS (512+6):
VAL INT port.sensor4 IS (512+7):

VAL INT port.port3 IS 3:
VAL INT port.motordir IS (768+15):
VAL INT port.panic.light IS (768+14):
VAL INT port.light.goto1 IS (768+13):
VAL INT port.light.goto2 IS (768+12):
VAL INT port.light.goto3 IS (768+11):
VAL INT port.light.goto4 IS (768+10):
VAL INT port.light.up1 IS (768+9):
VAL INT port.light.up2 IS (768+8):

VAL INT port.port2 IS 3:
VAL INT port.light.down2 IS (768+7):
VAL INT port.light.up3 IS (768+6):
VAL INT port.light.down3 IS (768+5):
VAL INT port.light.down4 IS (768+4):
VAL INT port.door.open IS (768+3):
VAL INT port.floor.ind2 IS (768+1):
VAL INT port.floor.ind1 IS (768+0):

VAL INT port.port0 IS 1:
VAL INT port.motor IS (256+0):

−−}}}
PROC Io.Init(INT handle)
INT status:
SEQ
handle := comedi open(”/dev/comedi0”)
VAL INT comedi.input IS 0:
VAL INT comedi.output IS 1:
IF
handle = 0
SKIP

TRUE
SEQ i = 0 FOR 8
SEQ
status := status BITOR comedi dio config(handle, port.port1, i, comedi.input)
status := status BITOR comedi dio config(handle, port.port2, i, comedi.output)
status := status BITOR comedi dio config(handle, port.port3, i+8, comedi.output)
status := status BITOR comedi dio config(handle, port.port4, i+16, comedi.input)

IF
handle = 0 OR status = −1
SEQ
PRINT ”unable to open initialize hardware”
STOP

TRUE
PRINT ”hardware initialized”
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:

PROC Io.Output(VAL INT handle, CHAN IO.OUTPUT output)
VAL INT [floors] port.light.goto IS [port.light.goto1, port.light.goto2, port.light.goto3, port.light.goto4]:
VAL INT [floors] port.light.down IS [−1, port.light.down2, port.light.down3, port.light.down4]:
VAL INT [floors] port.light.up IS [port.light.up1, port.light.up2, port.light.up3, −1]:
BOOL previous.motor.dir:
WHILE TRUE
INT floor:
BOOL setting:
INT speed:
DIR dir:
output ?? CASE
goto.light ; floor ; setting
Io.Set.Bit(handle, port.light.goto[floor], setting)

call.light ; floor ; dir ; setting
IF
dir = dir.down
Io.Set.Bit(handle, port.light.down[floor], setting)

TRUE
Io.Set.Bit(handle, port.light.up[floor], setting)

floor.indicator ; floor
SEQ
Io.Set.Bit(handle, port.floor.ind1, floor / 2 = 1)
Io.Set.Bit(handle, port.floor.ind2, floor REM 2 = 1)

door.light ; setting
Io.Set.Bit(handle, port.door.open, setting)

panic.light ; setting
Io.Set.Bit(handle, port.panic.light, setting)

motor.speed ; speed
IF
speed = 0
SEQ
Io.Set.Bit(handle, port.motordir, NOT previous.motor.dir)
TIME 5 MSEC −− breaking duration
SKIP

Io.Write.Analog(handle, port.motor, 0)
TRUE
SEQ
previous.motor.dir := speed < 0
Io.Set.Bit(handle, port.motordir, previous.motor.dir)
Io.Write.Analog(handle, port.motor, 2048+abs(speed))

:

PROC Io.Input(VAL INT handle, CHAN IO.INPUT input)
BOOL [floors] call.down.state:
BOOL [floors] call.up.state:
BOOL [floors] goto.state:
BOOL [floors] sensor.state:
VAL INT [floors] port.call.down IS [−1, port.call.down2, port.call.down3, port.call.down4]:
VAL INT [floors] port.call.up IS [port.call.up1, port.call.up2, port.call.up3, −1]:
VAL INT [floors] port.goto IS [port.goto1, port.goto2, port.goto3, port.goto4]:
VAL INT [floors] port.sensor IS [port.sensor1, port.sensor2, port.sensor3, port.sensor4]:
BOOL obstruction.state:
BOOL panic.state:
WHILE TRUE
TIME 20 MSEC −− Polling interval
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BOOL bit:
SEQ
SEQ i = 1 FOR floors−1
SEQ
Io.Read.Bit(handle, port.call.down[i], bit)
IF
bit AND (NOT call.down.state[i])
input ! call ; i ; dir.down

TRUE
SKIP

call.down.state[i] := bit
SEQ i = 0 FOR floors−1
SEQ
Io.Read.Bit(handle, port.call.up[i], bit)
IF
bit AND (NOT call.up.state[i])
input ! call ; i ; dir.up

TRUE
SKIP

call.up.state[i] := bit
SEQ i = 0 FOR floors
SEQ
Io.Read.Bit(handle, port.goto[i], bit)
IF
bit AND (NOT goto.state[i])
input ! goto ; i

TRUE
SKIP

goto.state[i] := bit
SEQ i = 0 FOR floors
SEQ
Io.Read.Bit(handle, port.sensor[i], bit)
IF
bit AND (NOT sensor.state[i])
input ! sensor ; i

TRUE
SKIP

sensor.state[i] := bit
SEQ
Io.Read.Bit(handle, port.panic, bit)
IF
bit AND (NOT panic.state)
input ! panic.button

TRUE
SKIP

panic.state := bit
SEQ
Io.Read.Bit(handle, port.obstruction, bit)
IF
NOT bit = obstruction.state
input ! obstruction ; bit

TRUE
SKIP

obstruction.state := bit
:

PROC Io.Clear(VAL INT handle)
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VAL INT [15] dig.ports IS [port.light.goto1, port.light.goto2, port.light.goto3, port.light.goto4,
port.light.down2, port.light.down3, port.light.down4, port.light.up1,
port.light.up2, port.light.up3, port.floor.ind1, port.floor.ind2, port.motordir, port.panic.light,
port.door.open]:

SEQ i = 0 FOR SIZE dig.ports
Io.Set.Bit(handle, dig.ports[i], FALSE)

:

PROC Io(CHAN IO.OUTPUT output, CHAN IO.INPUT input)
INT handle:
SEQ
TIME 10 MSEC −− initialization
SEQ
Io.Init(handle)
Io.Clear(handle)

PAR
Io.Output(handle, output)
Io.Input(handle, input)

:
−−}}}
−− ∗∗∗ IO SIGNAL DEMUX ∗∗∗−−{{{
PROTOCOL DEMUX.BUTTON
CASE
call ; FLOOR ; DIR
goto ; FLOOR

:

PROTOCOL DEMUX.BUTTON.LIGHT
CASE
call ; FLOOR ; DIR ; BOOL
goto ; FLOOR ; BOOL

:

INT FUNCTION get.speed(VAL DIR dir)
INT speed:
VALOF
IF
dir = dir.up
speed := 500

dir = dir.down
speed := −500

TRUE
speed := 0

RESULT speed
:

PROC Demux.Input(CHAN IO.INPUT input, CHAN DEMUX.BUTTON button,
CHAN FLOOR sensor, CHAN BOOL obstruction, EVENT panic)

WHILE TRUE
ALT
FLOOR f:
DIR d:
BOOL b:
input ?? CASE
call ; f ; d
button ! call ; f ; d

goto ; f
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button ! goto ; f
panic.button
RAISE panic

sensor ; f
sensor ! f

obstruction ; b
obstruction ! b

:

PROC Demux.Output(CHAN IO.OUTPUT output, CHAN DEMUX.BUTTON.LIGHT button.light,
CHAN FLOOR indicator, CHAN BOOL door.light, panic.light, CHAN DIR motor)

WHILE TRUE
FLOOR f:
BOOL b:
DIR d:
ALT
button.light ?? CASE
call ; f ; d ; b
output ! call.light ; f ; d ; b

goto ; f ; b
output ! goto.light ; f ; b

indicator ?? f
output ! floor.indicator ; f

door.light ?? b
output ! door.light ; b

panic.light ?? b
output ! panic.light ; b

motor ?? d
output ! motor.speed ; get.speed(d)

:

PROC Demux(CHAN DEMUX.BUTTON button,
CHAN FLOOR sensor, CHAN BOOL obstruction, EVENT panic,
CHAN DEMUX.BUTTON.LIGHT button.light, CHAN FLOOR indicator,
CHAN BOOL door.light, panic.light, CHAN DIR motor)

CHAN IO.INPUT input:
CHAN IO.OUTPUT output:
PAR
Io(output, input)
Demux.Input(input, button, sensor, obstruction, panic)
Demux.Output(output, button.light, indicator, door.light, panic.light, motor)

:

−−}}}
−− ∗∗∗ INIT AND PANIC FILTER ∗∗∗−−{{{
PROC Filter.Input(CHAN DEMUX.BUTTON button.in, CHAN FLOOR sensor.in,

CHAN BOOL obstruction.in, CHAN BOOL panic.in, CHAN INTERFACE.BUTTON button.out,
CHAN FLOOR sensor.out, CHAN BOOL obstruction.out, EVENT no.panic)

BOOL panic:
BOOL obstruction.off:
WHILE TRUE
FLOOR f:
DIR d:
ALT
NOT panic & button.in ?? CASE
call ; f ; d
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button.out ! call ; f ; d
goto ; f
button.out ! goto ; f

panic & button.in ?? CASE
call ; f ; d
SKIP

goto ; f
RAISE no.panic

sensor.in ?? f
sensor.out ! f

BOOL b:
obstruction.in ?? b
IF
NOT panic
obstruction.out ! b

NOT b
obstruction.off := TRUE

TRUE
SKIP

panic.in ?? panic
IF
NOT panic AND obstruction.off
SEQ
obstruction.out ! FALSE
obstruction.off := FALSE

TRUE
SKIP

:

PROC Filter.Output(CHAN DEMUX.BUTTON.LIGHT button.light.out, CHAN FLOOR indicator.out,
CHAN BOOL door.light.out, CHAN DIR motor.out, CHAN BOOL panic.in,
CHAN INTERFACE.BUTTON.LIGHT button.light.in, CHAN FLOOR indicator.in,
CHAN BOOL door.light.in, CHAN DIR motor.in, EVENT no.panic)

BOOL panic:
DIR last.motor:
SEQ
last.motor := dir.none
WHILE TRUE
ALT
panic.in ?? panic
IF
panic = FALSE
motor.out ! last.motor

TRUE
motor.out ! dir.none

FLOOR f:
DIR d:
BOOL v:
button.light.in ? CASE
call ; f ; d ; v
button.light.out ! call ; f ; d ; v

goto ; f ; v
button.light.out ! goto ; f ; v

FLOOR f:
indicator.in ? f
indicator.out ! f

BOOL v:

208



door.light.in ? v
door.light.out ! v

motor.in ? last.motor
IF
NOT panic
motor.out ! last.motor

TRUE
SKIP

:

PROC Update.Panic(BOOL panic.state, VAL BOOL new.state, CHAN [] BOOL panic.signal,
CHAN BOOL panic.light, CHAN NULL clear.queue)

IF
NOT panic.state = new.state
SEQ
IF
new.state = TRUE
clear.queue ! null

TRUE
SKIP

panic.state := new.state
SEQ i = 0 FOR SIZE panic.signal
panic.signal ! new.state

panic.light ! new.state
:

PROC Filter.Panic(EVENT panic.event, no.panic.event, CHAN [] BOOL panic.signal,
CHAN BOOL panic.light, CHAN NULL clear.queue)

CHAN NULL do.panic.signal, dont.panic.signal:
BOOL panic.state:
PAR
WHILE TRUE
HANDLE panic.event
TIME 10 MSEC −− panic event
SEQ
do.panic.signal ! null

WHILE TRUE
HANDLE no.panic.event
TIME 1 SEC −− end−of−panic event
SEQ
dont.panic.signal ! null

WHILE TRUE
ALT
do.panic.signal ?? CASE
null
Update.Panic(panic.state, TRUE, panic.signal, panic.light, clear.queue)

dont.panic.signal ?? CASE
null
Update.Panic(panic.state, FALSE, panic.signal, panic.light, clear.queue)

:

PROC Filter(CHAN INTERFACE.BUTTON button, CHAN FLOOR sensor,
CHAN BOOL obstruction, CHAN INTERFACE.BUTTON.LIGHT button.light, CHAN FLOOR indic
CHAN BOOL door.light, CHAN DIR motor, CHAN NULL clear.queue)

CHAN DEMUX.BUTTON demux.button:
CHAN FLOOR demux.sensor:
CHAN BOOL demux.obstruction:
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CHAN BOOL demux.door.light:
CHAN DEMUX.BUTTON.LIGHT demux.button.light:
CHAN FLOOR demux.indicator:
CHAN BOOL demux.panic.light:
CHAN DIR demux.motor:
CHAN [2] BOOL panic.signal:
EVENT demux.panic:
EVENT no.panic:
PAR
Filter.Panic(demux.panic, no.panic, panic.signal, demux.panic.light, clear.queue)
Filter.Input(demux.button, demux.sensor, demux.obstruction, panic.signal[0],

button, sensor, obstruction, no.panic)
Filter.Output(demux.button.light, demux.indicator, demux.door.light,

demux.motor, panic.signal[1], button.light, indicator, door.light, motor, no.panic)
Demux(demux.button, demux.sensor, demux.obstruction, demux.panic,

demux.button.light, demux.indicator, demux.door.light,
demux.panic.light, demux.motor)

:
−−}}}
−−}}}
−− ∗∗∗ QUEUE ∗∗∗−−{{{
PROTOCOL QUEUE.REQUEST
CASE
what.now ; FLOOR ; DIR

:

PROTOCOL QUEUE.REPLY
CASE
move ; DIR
sleep
open

:

INT FUNCTION queue.index(VAL FLOOR f, VAL DIR d)
INT rv:
VALOF
IF
d = dir.down
rv := f

d = dir.up
rv := f + floors

TRUE
rv := 2 ∗ f + floors

RESULT rv
:

PROC Clear.Queue(BOOL [] queue, CHAN INTERFACE.BUTTON.LIGHT light)
SEQ f = 0 FOR floors
SEQ
queue[queue.index(f, dir.down)] := FALSE
queue[queue.index(f, dir.up)] := FALSE
queue[queue.index(f, dir.none)] := FALSE
light ! call ; f ; dir.down ; FALSE
light ! call ; f ; dir.up ; FALSE
light ! goto ; f ; FALSE

:
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PROC Remove.Queued(BOOL [] queue, CHAN INTERFACE.BUTTON.LIGHT light,
FLOOR floor, DIR dir)

SEQ
queue[queue.index(floor, dir)] := FALSE
queue[queue.index(floor, dir.none)] := FALSE
light ! call ; floor ; dir ; FALSE
light ! goto ; floor ; FALSE

:

PROC Raise.Wake.Up(EVENT wake.up, BOOL sleeping)
IF
sleeping
SEQ
RAISE wake.up
sleeping := FALSE

TRUE
SKIP

:

BOOL FUNCTION anybody.above(VAL BOOL [] queue, VAL FLOOR floor)
BOOL rv:
VALOF
IF
IF i = floor+1 FOR floors−floor−1
IF d = 0 FOR dirs
queue[queue.index(i, d)]
rv := TRUE

TRUE
rv := FALSE

RESULT rv

:

BOOL FUNCTION anybody.below(VAL BOOL [] queue, VAL FLOOR floor)
BOOL rv:
VALOF
IF
IF i = 0 FOR floor
IF d = 0 FOR dirs
queue[queue.index(i, d)]
rv := TRUE

TRUE
rv := FALSE

RESULT rv

:

BOOL FUNCTION anybody.here(VAL BOOL [] queue, VAL FLOOR floor, VAL DIR dir)
VALOF
SKIP
RESULT queue[queue.index(floor, dir)] OR queue[queue.index(floor,dir.none)]

:

PROC What.to.do(CHAN QUEUE.REPLY reply, CHAN INTERFACE.BUTTON.LIGHT light,
BOOL [] queue, FLOOR floor, DIR dir, BOOL sleeping)

IF
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anybody.here(queue, floor, dir)
SEQ
Remove.Queued(queue, light, floor, dir)
reply ! open

dir = dir.up AND anybody.above(queue, floor)
SEQ
reply ! move ; dir.up

dir = dir.down AND anybody.below(queue, floor)
SEQ
reply ! move ; dir.down

−− NOTE: for completeness only: should never happen
anybody.below(queue, floor)
SEQ
reply ! move ; dir.down

anybody.above(queue, floor)
SEQ
reply ! move ; dir.up

TRUE
SEQ
sleeping := TRUE
reply ! sleep

:

PROC Queue(EVENT wake.up, CHAN INTERFACE.BUTTON button,
CHAN INTERFACE.BUTTON.LIGHT button.light, CHAN QUEUE.REQUEST request,
CHAN QUEUE.REPLY reply, CHAN NULL clear.queue, same.floor.button)

BOOL [3∗floors] queue:
FLOOR current.floor:
DIR current.dir:
BOOL sleeping:
WHILE TRUE
ALT
FLOOR f:
DIR d:
button ?? CASE
call ; f ; d
SEQ
button.light ! call ; f ; d ; TRUE
queue[queue.index(f, d)] := TRUE
Raise.Wake.Up(wake.up, sleeping)

goto ; f
IF
f = current.floor AND current.dir = dir.none
SEQ
same.floor.button ! null

TRUE
SEQ
button.light ! goto ; f ; TRUE
queue[queue.index(f, dir.none)] := TRUE
Raise.Wake.Up(wake.up, sleeping)

request ? CASE
what.now ; current.floor ; current.dir
SKIP
SEQ
What.to.do(reply, button.light, queue, current.floor, current.dir, sleeping)

clear.queue ?? CASE
null
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Clear.Queue(queue, button.light)
:

−−}}}
−− ∗∗∗ MOVER ∗∗∗−−{{{
PROC Mover.Idle(EVENT wake.up, open.door, CHAN QUEUE.REQUEST request,

CHAN QUEUE.REPLY reply, CHAN FLOOR floor, CHAN DIR motor, BOOL idle)
HANDLE wake.up
TIME 1 SEC −− wake up from idle
FLOOR f:
DIR d:
SEQ
floor ? f
request ! what.now ; f ; dir.none
reply ? CASE
move ; d
SEQ
motor ! d
idle := FALSE

sleep
SKIP

open
RAISE open.door

:

PROC Mover.Moving(EVENT sensor, open.door, CHAN QUEUE.REQUEST request,
CHAN QUEUE.REPLY reply, CHAN FLOOR floor, CHAN DIR motor, BOOL idle)

HANDLE sensor
TIME 100 MSEC −− floor sensor event
FLOOR f:
DIR d:
SEQ
floor ? f
request ! what.now ; f ; dir.none
reply ? CASE
move ; d
SEQ
motor ! d

sleep
SEQ
motor ! dir.none
idle := TRUE

open
SEQ
motor ! dir.none
RAISE open.door

:

PROC Mover.Floor.Server(EVENT sensor.event, CHAN FLOOR sensor, floor, indicator)
FLOOR f:
WHILE TRUE
ALT
floor ! f
SKIP

sensor ?? f
SEQ
indicator ! f
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RAISE sensor.event
:

PROC Mover(CHAN QUEUE.REQUEST queue.request, CHAN QUEUE.REPLY queue.reply,
EVENT wake.up, open.door, CHAN FLOOR sensor, indicator, CHAN DIR motor)

BOOL idle:
EVENT sensor.event:
CHAN FLOOR floor:
SEQ
TIME 10 MSEC
motor ! dir.up

PAR
Mover.Floor.Server(sensor.event, sensor, floor, indicator)
WHILE TRUE
IF
idle
Mover.Idle(wake.up, open.door, queue.request, queue.reply, floor, motor, idle)

TRUE
Mover.Moving(sensor.event, open.door, queue.request, queue.reply, floor, motor, idle)

:

−−}}}
−− ∗∗∗ DOOR ∗∗∗−−{{{
PROC If.Watch.Raise.Obstructed.Clear.Watch(EVENT obstructed, BOOL watch)
IF
watch
SEQ
RAISE obstructed
watch := FALSE

TRUE
SKIP

:

PROC Door.Obstruction.Server(EVENT obstructed, CHAN BOOL obstruction,
CHAN BOOL obstruction.watch, CHAN NULL same.floor.button)

BOOL watch:
BOOL obs:
WHILE TRUE
ALT
same.floor.button ?? CASE
null
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

obstruction ?? obs
IF
obs
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

TRUE
SKIP

obstruction.watch ?? watch
IF
obs
If.Watch.Raise.Obstructed.Clear.Watch(obstructed, watch)

TRUE
SKIP

:
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PROC Door.Door(EVENT open.door, wake.up, obstructed, CHAN BOOL obstruction.watch, door.light)
WHILE TRUE
HANDLE open.door
BOOL close:
SEQ
TIME 1 SEC −− opening the door
SEQ
door.light ! TRUE
obstruction.watch ! TRUE

WHILE NOT close
HANDLE
obstructed −− obstruction event
TIME 10 MSEC
obstruction.watch ! TRUE

TIMEOUT 10 SEC −− keeping the door open
TIME 1 SEC −− closing the door
SEQ
close := TRUE
obstruction.watch ! FALSE
door.light ! FALSE
RAISE wake.up

:

PROC Door(EVENT open.door, wake.up, CHAN BOOL obstruction, CHAN BOOL door.light,
CHAN NULL same.floor.button)

CHAN BOOL obstruction.watch:
EVENT obstructed:
PAR
Door.Obstruction.Server(obstructed, obstruction, obstruction.watch, same.floor.button)
Door.Door(open.door, wake.up, obstructed, obstruction.watch, door.light)

:

−−}}}
PROC Main()−−{{{
CHAN INTERFACE.BUTTON button:
CHAN FLOOR sensor, indicator:
CHAN BOOL obstruction:
CHAN INTERFACE.BUTTON.LIGHT button.light:
CHAN BOOL door.light:
CHAN DIR motor:
CHAN NULL clear.queue, same.floor.button:
CHAN QUEUE.REQUEST queue.request:
CHAN QUEUE.REPLY queue.reply:
EVENT open.door, wake.up:
PAR
Filter(button, sensor, obstruction, button.light, indicator, door.light, motor, clear.queue)
Queue(wake.up, button, button.light, queue.request, queue.reply, clear.queue, same.floor.button)
Door(open.door, wake.up, obstruction, door.light, same.floor.button)
Mover(queue.request, queue.reply, wake.up, open.door, sensor, indicator, motor)

:
−−}}}
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Appendix C

Nomenclature for Schedulability Analysis Part

This chapter lists variable names and notation used in the schedulability analysis
part of this thesis.

Properties of Tasks and Jobs:

A, B,C, . . . Used to denote tasks.

TA Period of A, or minimum inter-arrival time (mit) if A is a sporadic
task.

PA Static priority of A under fixed priority scheduling (fps).

DA Relative deadline of A.

RA Worst-case response time of A.

CA Worst-case execution time (wcet) of one job of A.

UA Utilization of A, or CA/TA.

π̂(A) Preemption level of A.

λA Density of A, or CA/DA.

A : : i Task A is currently executing statement i.

a, b, c, . . . Used to denote jobs.

da Absolute deadline of a.

ra Release time of a.

π(a) Current (effective) scheduling priority of a.
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Properties of the System:

m Number of processors in system.

T Set of tasks in the system.

|T| Number of tasks in the system.

Usum The utilization of a system, or
∑

X∈TCX/TX.

λsum The density of a system, or
∑

X∈TCX/DX.

Servers and Shared Resources

S Set of resources shared under mutual exclusion, or set of servers.

shared(A, B) Set of resources shared between tasks A and B.

holds A Set of servers currently held by task A.

D(·) Demand of statement, block or task.⌈̂
π(S )

⌉
Preemption level ceiling of S .

Bπ Maximum blocking caused by tasks with preemption level less
than π on tasks with a level higher than or equal to π.

Client–Server System Model of Chapter 6

Exec r Abstract statement requiring r units of fully preemptible cpu.

Call S . c Abstract statement performing call of type c to server S .

I Set of all statements.

IS Request phase blocks for server S .

IS . c Reply phase blocks for call c to server S .

ΣS Signature of server S , ie, set of call types accepted by S .

QS Worst-case request time of S , ie, longest time it takes to accept a
call, given that it is not currently held by another task.

PS . c Worst-case reply time of call c to server S , ie, longest time it takes
to complete a call from the time it is accepted.

P̂S Worst-case reply time of any call to server S .
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The Computation Time Process Model of Chapter 7

P Set of computation time processs (ctps).

S Set of schedules.

1 Process requiring one unit of non-preemptible cpu before
terminating.

0 Process requiring no cpu before terminating.

P ; Q P and Q in sequence.

P
∣∣∣∣∣∣ Q P and Q interleaved.

C(P) Total amount of computation in P.

L(P) Length of P, ie, minimum response time.

H(P) Immediate height of P, ie, the number of processors that P can
utilize for its first step.

P�Q Q is an upper bound of P.

P ≤ Q P is easier to schedule than P.

step(P,m) The set of possible outcomes of executing a single step for P with
m processors.

P⊗ s The set of possible outcomes of executing P on schedule s.

The Computation Function Model of Chapter 8

σ Upper bound on skew (unfairness) of the intra-job scheduler.

v The virtual time of a job.

L The minimum completion time of a job.

c(v) A computation function.

c�(v,T ) The T -period extension of c(v).

ca(v)� cb(c) Computation function cb(v) is an upper bound to ca(v).

Da(t0, t1) Demand of job a in the window [t0, t1].

δa(t0, t1) Interference to job a in the window [t0, t1].

w(t) The number of processors in use by higher priority jobs at time t.

Sequence Notation

〈a, b, c〉 a followed by b, followed by c.

〈〉 Empty sequence

s� t Concatenation of sequences s and t.
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Appendix D

Acronyms

bnf Backus–Naur form.
bsp bulk synchronous parallelism.
cpu central processing unit.
cscp client-server ceiling protocol.
csip client-server inheritance protocol.
csp communicating sequential processes.
ctp computation time process.
dmpo deadline-monotonic priority ordering.
dps Distributed Programming System.
edf earliest deadline first.
edf-h edf-hybrid.
fps fixed priority scheduling.
jlp job-level parallelism.
ll Liu-Layland.
mit minimum inter-arrival time.
mpcp multiprocessor pcp.
msrp multiprocessor srp.
oop object-oriented programming.
os operating system.
pcp priority ceiling protocol.
pdc processor demand criterion.
pearl Process and Experiment Automation Real-time

Language.
pfair proportional-fair.
pip priority inheritance protocol.
posix Portable Operating System Interface for Unix.
p-pcp parallel pcp.
qpa quick processor-demand analysis.
rmpo rate-monotonic priority ordering.
rta response-time analysis.
rtc Real-Time c.
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Acronyms

rtsj Real-time Specification for Java.
srp stack resource policy.
wcet worst-case execution time.
wysiwyg what-you-see-is-what-you-get.
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Appendix E

Glossary

absolute deadline
The clock time when a process must have finished its computation. 17, 103

aliasing
Simultaneously referring to the same variable by different names, eg, by
having separate pointers to the same memory address. 17, 54

aperiodic task
A task that is released at irregular intervals, usually as a response to some
event. 28

arbitrary deadline
A task set has arbitrary deadlines, if the deadline of a task may be less than,
equal to, or greater than its period. 41, 105

atomic
An operation is atomic if it either completes or does nothing. 38

background task
A task that is not given real-time constraints, and is instead only intended to
be executed when no real-time tasks are ready. A lazy scheduler effectively
prevents the use of background tasks. 52, 61, 62

base time
The base time of a time-construct is the absolute time which is considered
its release, and from which its absolute deadline and termination time is
computed. 39, 58, 64

binary semaphore
A semaphore with a 0–1 counter. Excess signals are discarded. 36, 60, 226

blocked process
A process that is unable to proceed until progress is made by another process.
18, 225, 227, 228
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clock–delay race
The problem of using clock time to compute a relative delay: By the time
the relative delay function is called, the computed value of the delay will
have been invalidated by the passage of time. 34, 35

cohesion
The degree of which different modules corresponds to different functional
responsibilities. 10, 79

computation function
Under a fair intra-job scheduler; the number of processors that a job can
utilize as a function of its virtual time. 164, 219

concurrent
A system is concurrent if it has multiple threads of execution executing si-
multaneously. 2

constrained deadline
A task set has constrained deadlines, if no task has a relative deadline greater
than its period. 26, 105, 110, 118, 164

coupling
The degree of which the correctness of a module relies on details of the
implementation of other modules. 10, 79

critical section
A section of code using some resource, which should not be preempted by
other tasks referring to the same resource. 14

deferred server call
A server call is deferred if it delays computation generated by the call until
after the call has completed. 117, 138

demand
The demand of a task in a window is the amount of computation required
by that task in the window. 224

demand-bound function
The maximum sum of task demands in any window as a function of window
length. 105, 136

density
The density of task X is denoted λX, and is defined as CX/DX. 103

Dhall’s effect
The existence of multiprocessor systems that are unschedulable under earliest
deadline first (edf), even if their utilization is close to 1. 108

discovery
In Toc, the process of evaluating control structures to look for TIME con-
structs that can be reached without executing primitive processes. 63

224



Glossary

drift
A periodic task experiences drift, if its effective period is greater than its
intended period due to execution time overheads. 34, 41, 226

during process
The process to execute during an extended rendezvous. 54, 67, 74, 225

exact schedulability test
A test that provides sufficient and necessary conditions for schedulability.
103

extended rendezvous
A type of rendezvous where an extra process, the during-process, is executed
after the communicating processes have rendezvoused, but before they are
released. 67, 225

fail-fast
A system which fails upon detecting a condition that may later lead to failure.
61

fair scheduler
A scheduler is fair if it distributes processors equally to all processes, even
when considering arbitrary small windows in time. A completely fair sched-
uler is an idealization that is not fully realizable in practice. 5, 102

global scheduling
In a multiprocessor system using global scheduling, tasks may migrate be-
tween processors. 108

handle–timeout
A language primitive for waiting on an event, or timing out after a maximum
waiting time has elapsed. 36, 37, 51, 58, 93

implicit deadline
A task set has implicit deadlines, if all tasks have a relative deadline equal
to its period. 26, 32, 78, 101, 104, 105

independent tasks
Tasks are independent if no task may be blocked by another. 104

intra-job scheduler
The scheduler that assigns processors given to a job to the parallel branches
of that job. 4, 102, 146

jitter
Variation in response times. 22, 27

job
An instance of a task. 103, 217, 227

laziness hypothesis
That any part of a real-time system that cannot be given a meaningful dead-
line for its completion can be omitted entirely (hypothesis 4.1). 52, 57
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lazy scheduler
A scheduler is lazy if it does not execute processes without an associated
deadline, even if the system is otherwise idle. 52, 60, 223

local drift
A periodic task experiences local drift if it experiences drift, but the magni-
tude of drift does not accumulate over time. 34, 36

malleable
A parallel job is malleable if it may use a dynamic number of processors.
112, 145

moldable
A parallel job is moldable, if it uses a fixed number of processors, the number
of which is decided run-time by the scheduler. 112

monitor
A set of shared variables together with a set of functions that can operate
safely on those variables. 14, 15, 227

multiprocessor anomaly
A common name for the observation that jobs arriving at maximum rate does
not constitute a worst-case scenario for schedulability on a multiprocessor
system. 109

mutex
A mechanism for ensuring mutual exclusive access to a resource, such as a
binary semaphore. 14, 226

mutual exclusion synchronization
The sharing of resources between processes by using mutexes. 101, 115

np-hard
A problem that cannot be solved in polynomial time (ie, quickly), but where
a suggested solution can be verified in polynomial time. 108

object-oriented programming
A programming paradigm where data is encapsulated and bundled together
with methods that operate on the data. 16

occam
An imperative, process-oriented programming language. 229

partial order
An ordering of objects that is not a total order, ie, some pairs of objects may
not be comparable. 122

partitioned scheduling
A multiprocessor system where each task is permanently assigned to one
processor. 108

period
The mit of jobs from a task. 103
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periodic task
A task is that is released at regular intervals. 103

pessimistic
A test that provides only sufficient conditions for schedulability; ie, it may
in some cases reject systems that are in fact schedulable. 103

preemption level
A total order of tasks with respect preemption: A task with higher pre-
emption level may or may not preempt a lower level task; but a lower level
preemption task will never preempt a higher level task. 19, 32, 103, 124

primitive process
A type of process in occam that will never contain a sub-process. For exam-
ple, an assignment is a primitive process, but a conditional is not. 53

priority driven scheduler
A real-time scheduler that assigns fixed priorities to jobs, but not necessarily
to tasks. This class of schedulers include both fps and edf. 17, 103, 108,
123

priority inheritance
A synchronization protocol that ensures that each process has at least as
high priority as any process that is blocked waiting for it. 31

priority inversion
A situation where a high priority task is blocked waiting for lower priority
tasks due to resource sharing. 18, 44, 64, 106, 229

process-oriented programming
A programming paradigm derived from communicating sequential processes
(csp), based on synchronous communication between self-contained parallel
processes. 2, 16

protected object
The Ada version of the monitor. 14, 15

race condition
A concurrency error where program correctness depends unexpectedly on the
particular interleaving of concurrent threads. 14, 15

reactive system
A real-time system that has no reference to absolute clock times in its spec-
ification. 22, 23, 33

real-time system
A system is real-time if failure to meet timing requirements is considered an
error. 1

real-time task
A top-level process in a real-time system with its own associated timing
requirements. 52, 102, 225–227
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Glossary

relative deadline
The time between some computation is allowed to begin execution, and the
time when it must have completed. 17, 103

rendezvous
A synchronization point between a set of processes, where all must have
arrived at the rendezvous point before any process is released. 15, 225

reply phase
A server is in its reply phase if it is currently serving a client. 119

request phase
A server is in its request phase if it is not yet ready to serve clients. The
request phase may for example contain initialization code, or cleanup or
post-processing of a previous call. 119

response
An action by a module or system detectable by its environment. In this
thesis, for imperative programs: the completion of a designated statement
or block. 23–26, 35

response time
The response-time is the time from release to completion of a task or job.
39, 105, 217

rigid
A parallel job is rigid, if it always uses the same, fixed number of processors.
112

safety
A program component is safe if it only has explicit failure modes. 10

schedulability analysis
To analyze a complete system executing on a given computing platform in
order to determine whether it satisfies its temporal constraints. 23, 26, 101

scheduling overload
A situation where the capacity of the system is insufficient to complete all
processes within their deadlines. 19, 39, 61

semaphore
A task locking mechanism. The semaphore contains a counter and two oper-
ations: “wait” and “signal”. Signaling increments the counter; waiting decre-
ments the counter; any task attempting to decrement the counter when it is
zero will be blocked until a signal. 14, 36, 59, 223

slack
The difference between relative deadline and computation, ie, the maximum
time a job can be denied execution before it will miss its deadline. 109

sporadic task
An aperiodic task with a minimum inter-release time. 26, 28, 37, 103
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Glossary

stall
A process has stalled if it is waiting for a process that is not ready to execute
due to a delay constraint. 45, 59, 79, 116, 117, 119

stimulus
An event or trigger requiring a response. In this thesis, for imperative pro-
grams: something that enables the execution of a statement or block. 23–26,
35

suspend–resume
A low-level concurrency mechanism with two methods: suspend() to block
execution of a task and a resume() to continue it. Suspend–resume is con-
sidered harmful, and have been removed from several concurrency libraries,
including Java’s. 36, 46, 59

sustainable schedulability test
A schedulability test is sustainable if systems deemed to be schedulable will
remain schedulable when reducing their computation or relaxing their tem-
poral constraints. 103, 159

synchronization protocol
A protocol used to control accesses to resources in order to avoid priority
inversions and improve schedulability. 101, 103, 106, 227

task
A top-level process. 102, 115, 217

temporal constraint
A temporal constraint, or timing requirement, is a part of the specification
of a real-time system that refers to time. 23, 25, 26, 30, 229

temporal scope
A block of statements with associated temporal constraints. 24, 25, 33, 39

time-construct
A language primitive that specifies an equal minimum and maximum execu-
tion time constraint to a block of code. 39, 41, 42, 45–49, 51, 52, 58, 64, 185,
187, 223

Toc
Short for TIME/occam; an experimental programming language based on
occam developed and implemented as part of this thesis. 4, 51

total order
An ordering of objects so that for any pair of objects, one object is—in some
sense—less than or equal to the other. 19, 152, 226, 227

Transputer
An early microprocessor capable of parallel execution, intended to be used
in clusters. 16
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Glossary

usage rule
Rules in occam that prevent aliasing and illegal sharing of a variable between
parallel processes. 54, 69

utilization
The utilization of task X is denoted UX, and is defined as CX/TX. 103, 224

virtual time
Under a fair intra-job scheduler; the virtual time represents the progress of
a job, measured by how long it will take for the job to reach its current state
if always getting as many processors as it can utilize. 164, 219

work-conserving scheduler
A scheduler that never leaves a processor idle if the system contains jobs that
are ready to execute. 4, 146, 148

worst-case reply time
The maximum amount of time required by server S from accepting a call of
type S . c to the corresponding reply. 126

worst-case request time
The maximum amount of time required by a server before accepting some
pending request, given that it is not serving other clients at the time. 126
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