
  
Abstract— Banks are collecting unprecedentedly large amount 

of data about their customers from difference sources, 
considering their cyber, physical, social activities. The focus of 
this paper is to study the problem of information sharing and 
lower the communication overhead among different nodes for a 
specific data mining approach in distributed big data 
architectures. This problem can be abstracted as how to 
efficiently search under a specific cluster node topology. This 
paper proposes a new design rule for topologies including 1) low 
coordination number, 2) high packing density, and 3) having a 3D 
structure. According to this rule, a Rhombic Dodecahedron 
topology is proposed. A distributed banking big data mining 
framework based on the proposed topology is implemented. The 
experiments based on multi-optimization benchmark functions 
show the excellent searching ability of the proposed topology; and 
a banking customer feature reduction prototype has been 
implemented to showcase the practicality of the data mining 
framework. 
 

Index Terms— Financial Big Data; Cyber-Physical-Social 
Systems; Swarm Optimization; Rhombic Dodecahedron 
 

I. INTRODUCTION 
INANCIAL organizations like banks are moving quickly 

towards more human-centric financial services for their 
customers. Therefore, these organizations are collecting 

unprecedentedly large amount of data about their customers 
from difference sources, considering their cyber, physical, 
social activities. Big data capabilities [1] are gradually 
becoming the core competitiveness of banks. An important 
precondition for realizing the value of big data is to be able to 
reveal the truth and find valuable patterns and insights from 
these vast amounts of data about their customers [2]. It is 
difficult to accomplish this by relying solely on the experience 
and wisdom of experts. It requires a variety of data mining 
techniques [3]. For example, Citibank established a big data 
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analysis platform for its retail business. This approach has 
greatly increased the capability to analyze and process data 
and has significantly influenced Citibank’s transforming and 
upgrading [4]. HSBC uses the data mining tool to find the 
cross selling and "roll" sales [5]. 

The technologies that currently have been involved in big 
data systems [6] include massively parallel processing (MPP) 
databases [7], data mining [8], distributed file systems [9], 
distributed databases [10], cloud computing platforms [11][12] 
and scalable storage systems [13]. Due to massive data volume 
and various data dimensions, distributed computing platforms 
are expected to be used [14]. For example, MapReduce [15] is 
a well-established distributed platform, on top of which data 
mining algorithms can be effectively executed. However, one 
of the critical performance bottlenecks lies in optimizing the 
search procedure in the large scale solution searching space, 
especially in banking big data framework. Most of current 
studies mainly concentrate on the performance improvement 
brought by computing devices.  

Therefore, the focus of this paper is to investigate 
information sharing and the communication overhead 
reduction among different nodes for a specific data mining 
approach in distributed big data platforms. The solution to this 
problem can be redirected to the effective searching under a 
proper topology of searching particles in swarm optimization 
[16]. The topological structure of the cluster nodes can be 
thought as a deep social network. The local neighborhood 
could affect the behavior of each mining nodes and control the 
whole cluster's exploration (divergence) versus exploitation 
(convergence) tendencies. With the relationship of nodes, the 
searching ability of clusters is essentially affected by the 
communication capacity of topologies.  

In this paper, we propose using Rhombic Dodecahedron 
topology in swarm optimization to improve the searching 
efficiency in banking big data mining on top of distributed 
platforms. The contributions of the paper can be summarized 
as follows: 

1) We propose new design rules for selecting topologies 
with consideration of the following metrics: the coordination 
number, the packing density, and the 2D/3D structure. We find 
the good topology should have the low coordination number, 
high packing density and 3D structure.  

2) We propose Rhombic Dodecahedron topology in swarm 
optimization. The Rhombic Dodecahedron topology can fulfill 
the above design rules. In particular, compared with existing 
topologies, the proposed Rhombic Dodecahedron has lower 
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coordination number, higher packing density and higher 
chance to reach global optimum due to the usage of 3D 
structure. 

3) We have implemented a prototype of banking big data 
framework based on the proposed Rhombic Dodecahedron 
topology, data mining algorithms and distributed computing 
platforms. In particular, we propose MapReduce Searching 
Algorithm based on sphere packing topology (essentially 
based on Rhombic Dodecahedron). Extensive experiment 
results verify the effectiveness of the framework. 

The rest of the paper is structured as follows, Section II 
presents a typical banking big data mining framework and 
related work. Section III reviews the concept of bond energy 
on the topology, presents a new design rule for topologies, and 
presents a Rhombic Dodecahedron topology with its searching 
ability evaluated. Section IV uses the proposed topology to 
design a banking big data mining framework. Section V 
present 1) the experiments evaluating the searching ability of 
the proposed topology based on multi-optimization benchmark 
functions; and 2) a banking customer feature engineering 
prototype to showcase the practicality of the data mining 
framework based on the proposed topology. Finally, we draw 
our conclusions in Section VI. 

II. BANKING BIG DATA FRAMEWORK AND RELATED WORK 
In this section, we first introduce the typical banking big 

data framework in Section II-A. We then present related work 
on banking data mining in Section II-B and topologies in 
swarm optimization in Section II-C. 

A. Banking Big Data Framework 
A typical banking big data framework consists of a data 

access layer, a data exchange layer, a data service layer and a 
data application layer, as shown in Fig 1. In particular, the data 
access layer collects internal and external data which has then 
been submitted to the data exchange layer for the further 
preprocessing, consequently being saved at the data service 
layer. It is worth mentioning that the data service layer is 
composed of MPP databases, transactional databases, the 
Hadoop platform [21] and Spark platform [22][23] to 
implement data storage and offer service interfaces. 
Specifically, the transactional database mainly deals with 
online business data and adapts to a large number of business 
scenarios, in which business data requires frequent operations 
such as add, delete and modify. 

The MPP databases serving as a back-end database engine 
mainly for high-value-density structured data processing can 
adapt to business scenarios such as batch data processing and 
data query and analytics. The Hadoop platform is mainly 
responsible for low-value-density data processing, such as data 
collection from the Internet. The Hadoop platform can 
exchange data with transactional databases and MPP databases 
through high-speed data exchange channels. The Hadoop 
platform is always used to conduct the distributed data mining 
tasks.  

  
Fig. 1. Banking Big Data Mining Framework  

The data service interface bus offers standard service 
interfaces internally and externally. It includes batch data 
services, real-time data services, data view services, mobile 
analysis services, and self-service analysis. The data service 
interface bus allows the application layer to invoke the data 
mining application of the data service layer. On the basis of 
the hybrid architecture, the data service interface provides the 
enterprise-level data applications for banks and enhances data 
value. In addition, it also supports the external data application 
layer via implementing customer management, business 
analysis, risk management and regulatory reporting.  

B. Banking Data Mining 
Data mining as an information processing technology is to 

extract, transform, analyze and model the data in the database 
to obtain information that is beneficial to decision-making. 
Banks have many ways to mine big data [24]. The most 
common data mining methods can be categorized as follows: 
1. Taxonomy. Banks classify data into different definite 
categories according to the characteristics of them, and use 
them to analyze customer classification, customer attributes 
and customer satisfaction. 

2. Regression analysis method [25]. This method includes the 
trend characteristics of data series, the prediction of data series 
and the correlation between data. According to the regression 
analysis, the banks can forecast sales trends and develop the 
targeted promotions by analyzing customer needs and product 
life cycle. 

3. Clustering analysis [26]. According to the similarity 
banking data samples, we can put the data samples in the same 
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category if they are close to each other. Clustering analysis can 
be applied to classify customer groups, analyze customer 
background, predict customer purchase trends and conduct 
market segmentation. 

4. Association rules [27]. Through mining corporate customer 
data, we can identify the existing relationships, analyze the 
key factors affecting the effectiveness of marketing, and 
provide product positioning price, risk assessment and fraud 
prediction in the customer relationship management system. 

Data mining methods typically are involved with feature 
analysis, deviation analysis and swarm intelligence algorithms 
[28]. In addition, banking data mining is typically based on 
data warehouse and on-line analysis processing. Banding data 
mining methods are also running on top of the Hadoop 
platform or other large-scale data processing platforms (as 
shown in Fig 1). It uses data mining techniques combined with 
multiple statistical analysis methods [29] to clean, convert and 
load, etc. Moreover, Spark is also used for real-time data 
mining [30][31].  

The data processing method discovers the relationships and 
trends, and completes tasks such as data analysis, knowledge 
discovery, decision support and financial intelligence. 
Therefore, the banking data mining execution process has four 
stages: 

1. Business understanding stage, in which the needs of the 
business department should be fully understood, business 
problems and pain points should be translated into specific 
business requirements. This stage requires a large number of 
interviews with business stakeholders, and professional 
consultants are required to guide business stakeholders to 
express their own ideas.  

2. Data understanding stage, in which banking data should 
be explored to obtain the manifestations of data and the real 
hidden issues behind business issues with specific business 
issues should be analyzed. 

3. Data modeling stage, in which sampling is generally used 
to divide data set in to the model training set and test set. The 
training set is used for mining modeling, and the test set is 
used to test the effectiveness of the model.  

4. Model evaluation stage, in which the performance of the 
model should be evaluated based on the three important 
indicators: accuracy, coverage, and degree of improvement.  

C. Topologies of Swarm Optimization 
In recent works, many topologies (such as All, Ring, Four 

clusters, Pyramid, and Square) are discussed [16][17]. The 
Von Neumann Structure or Square topology is recommended 
for its good searching ability. However they are just plain 
lattice and 2D packing, formed by arranging the spheres in a 
grid, but not close-packing. Its 2D structure makes it hard to 
find the global optimum when the nodes are searching the 
local optimum in a different direction. For ‘All’ topology with 
all vertexes connected to every other, its coordination number 
is too big to let the nodes explore the new space, leading to the 
phenomenon of nodes being easily trapped. This topology is 
currently used in many Hadoop clusters [18][19]. ‘Ring’ 
topology is constructed by connecting every vertex to two 

others. Its coordination number is too small to exploit the local 
space efficiently.  

Therefore a properly-designed topological structure can 
make cluster suitably balanced for both exploitation (i.e., 
convergence) and exploration (i.e., divergence). 

III. RHOMBIC DODECAHEDRON 
The focus of banking big data mining lies in the searching 

capability of the distributed computing platforms (e.g., 
Hadoop). The searching capability essentially comes from the 
information transmission capabilities of the topology among 
nodes. To this end, this section will analyze the topology 
information transmission capabilities from the perspective of 
crystallology and propose a topological structure suitable for 
banking big data mining clusters. 

A.  Design rules of good topologies 
This paper proposes the novel design rules inspired from the 

concept of bond energy in the crystallology. Given the 
searching space, the information communications among 
nodes can be characterized by the bond link. In the 
crystallology, the bond energy is the decisive factor for the 
exploitation versus exploration tendencies. Although the direct 
bond energy could not be easily computed in the crystallology, 
the coordination number and packing density can implicitly 
reflect the strength of bond energy. The coordination number 
usually decides the energy to break the bond consequently 
charging the exploration; packing density affects the 
exploitation by influencing the searching efficiency in local 
space. Sometimes, the fitness value imitates the external 
energy to break the bond link or reconstruct the bond link. 
Higher fitness can break the link in the crystals and make the 
search direction redirect to the new space. We give the 
detailed description on these metrics as follows. 

1. Coordination Number 
In ionic crystal, the lattice energy is usually used to 

represent the strength of bonds in these ionic compounds. In 
other words, the larger lattice energy will make a more stable 
ionic crystal. The message transferred from one sphere (i.e., 
the swarm particle) to another is influenced by the ionic bond. 
The essence of the ionic bond is the electrostatic force between 
positive and negative ions. If the two ions can be viewed as 
spheres, then we can conclude that the higher of electric 
quantity results in the smaller space of two nuclear and the 
stronger electrostatic interaction will make the stronger ionic 
bond. Then the ionic crystal turns out to be a more stable 
structure according to the Coulomb's law: 

2
1 2 /F q q r∝ ⋅  

where q1 and q2 are point charges, and r is the separation 
distance.  

One important factor that reflects this bond energy is the 
coordination number, which is the number of a central atom’s 
nearest neighbors [32][33][34]. The radius ratio of the ions can 
affect the coordination number consequently influencing the 
stability of structures as in [35]. Since / 0.414r r+ − > , the 
coordination number is greater than 4, leading to a stable 



crystal; while / 0.414r r+ − < , the coordination number becomes 
4, resulting in an unstable crystal. As 

+r  continuously grows 
larger, it can get 12 coordinators; on the contrary if +r grows 
smaller, it only contains 3 coordinators. 

2. Sphere Packing and Close-packing Density 
In geometry, a sphere packing is an arrangement of 

non-overlapping spheres within a containing space. The 
considered spheres are usually in the identical size and can 
have the similar nature like nodes in distributed platforms. In 
particular, the close-packing is a dense arrangement of the 
equal sphere. Hexagonal close packing and cubic close 
packing are known to be the densest packing of equal spheres 
[36]. Every third layer overlying one another arrangement 
gives the cubic close packing (also called face-centered cubic) 
and spheres in alternating layers overlying one another gives 
the hexagonal close packing [37]. The packing density of these 
two packing arrangements equals to /(3 2) 0.74048π ≈  since 
sliding one sheet of spheres cannot affect the volume that they 
occupy. 

3. The New Design Rule 
Summing up the above analysis, we then have the novel 

design rules to guarantee the communication capacity: 
topologies should have the proper bond energy, such as the 
low coordination number, the high packing density and 3D 
structure. 

Regarding the coordination number, nodes coordinated with 
low neighbors have the flexibility to break the corresponding 
links to search the new space. The coordination number 4 
could make the crystal unstable and then may have a good 
exploration. The smaller coordination number may make the 
crystal be fragile while the larger of this number yields the 
inflexibility. 

With respect to the packing density, it can be used to 
represent the probability of finding the global optimum. In a 
2D structure, it is hard to explore the global optimum space 
when the whole topology tends to the upper area and the lower 
area is blind to it. On the contrary, nodes in a 3D structure still 
have the chance to explore the global optimum in the same 
condition. It can break the link of the lower plane to attract the 
whole topology toward the new space as illustrated in Fig. 2. 

Therefore, the proper bond energy (i.e., the low 
coordination number, the high packing density and the 3D 
structure) can make topologies have the better communication 
capacity. It always influences the timestamp to break the bond 
link in a specified topology. 

Local Optimum

Global Optimum
    

Local Optimum

Global Optimum
 

Fig. 2. Nodes of 2D and 3D Structure Flying Toward Local Optimum 

B. Rhombic Dodecahedron Topology 
We next describe the proposed Rhombic Dodecahedron 
topology. 
1. Features of Rhombic Dodecahedron topology 

Using the above design rules, the paper proposes the 
Rhombic Dodecahedron topology in swarm optimization. In 
particular, Rhombic Dodecahedron topology consists of 
twelve congruent rhombuses, 24 edges and 14 vertices. There 
are two types of vertices: one is made of 4 rhombic acute 
angles and the other is made of 3 rhombic obtuse angles. The 
latter is an intersection of 3 rhombuses. The same type of 
vertexes is impossible to appear on one edge. Fourteen 
vertices of the Rhombic Dodecahedron are joined by 12 
rhombuses as shown in the Fig. 3. The long diagonal of each 
face is exactly 2  times the length of the short diagonal, so 
that the acute angles on each face measures approximately 
70.53°. 

  
Fig. 3. Rhombic Dodecahedron Topology 

This cumulated structure satisfies close packing [38] in the 
3D space with 74.05% packing density that makes the full use 
of space to reach the maximum space utilization. Rhombic 
dodecahedron can fill the space seamlessly with copies of it, 
gluing faces together as shown in Fig. 4. And the average 
coordination number is 3.43 close to 4. Therefore, this 
topology satisfies the design rules.  

2. Comparisons among different topologies 
The square topology with Von Neumann structure is solely 

a plane lattice with 2D packing and is formed by arranging the 
spheres in a grid. But it is not close-packing in the 2D space 
since 2D close packing means one sphere surrounded with 6 
spheres in the plane (i.e., the hexagonal lattice). Fig. 4 shows 
the square lattice and the hexagonal lattice 

     
Fig. 4. the square lattice and the hexagonal lattice in 2D 

The unit cell of the square lattice contains four 1/4-spheres, 
then the area is  

2
cellunit  in the spheresA rπ= ; 

Meanwhile, the area of the unit cell is 
2

cellunit 4rA = ; 

Then, the packing density is 



7854.04/ == πη . 

The area of the unit cell of the hexagonal lattice is  
2

cellunit 36)]3)(2(*2/1[6A rrr == ; 

The unit cell contains six 1/3-spheres and one midpoint 
sphere, then the area is 

2
sphere in unit cell (6*1/3 1)*A rπ= + ; 

and the packing density is 

/ 2 3 0.9069η π= = . 

Therefore, in 2D circumstance, the packing density of 
square topology is lower than Rhombic Dodecahedron. 
Moreover, square cannot have the 3D view in searching.  

We will then discuss the situation that the global optimum is 
outside topology. The ability to handle this situation can 
indirectly reflect the design rules as the proper bond energy 
can also charge the timestamp to break the bond link to 
explore the new space. If one node of Rhombic Dodecahedron 
tends to fly to the global area, it will transfer its message to the 
other three nodes by two runs. Then all nodes can determine 
whether to break the link or not. Now, the energy to break the 
link is judged by all these four nodes. After the link breaks, the 
newly passed message would spread to another 11 nodes by 
the central sphere. In this way, the whole Rhombic 
Dodecahedron topology will gradually move to the new space. 
Notice that Rhombic Dodecahedron has rhombus-searching 
features and needs 4 decision-makers and 2-run delays to 
break one atomic link to explore the new space. Hence, the 
structure is by nature a little sluggish, but makes the local 
space search effective 

In the square topology, each node is exactly equal to the 
sphere. Then if one node tends to fly toward the global 
optimum, it should firstly inform four neighbors in one run. 
Then the neighbors break the link together to let the node 
explore the new space. The square also needs 5 
decision-makers and 1-run delay to break four atomic links to 
explore the new space. This topology has quick respondence 
toward new space with enough decision makers while 
breaking too many links also results in instability. 

In summary, the 2D structure limits the communication 
capacity of square topology. Additionally, for ‘All’ topology 
one node needs 𝑁 (i.e., the number of nodes) decision-makers 
to break 𝑁 links to explore the new space, so it makes this 
topology hard to explore the new space. In the banking big 
data mining task, the structure has the significant time 
consumption. Moreover, the ‘Ring’ topology easily breaks the 
links for demanding only two decision-makers to break only 
two links, consequently the weak exploitation arising. 

As discussed above, the 3D structure of Rhombic 
Dodecahedron is superior to other topologies in big data 
mining framework. To verify this conclusion, this paper 
compares the Square topologies and Rhombic Dodecahedron 
topologies in multi-optimization problems. For comparison 
purpose, we define two-type topologies by the population size: 

16-Square、 20-Square and 1-Rhombic Dodecahedron are 
“Single Topologies”; 24-Square and 2-Rhombic 
Dodecahedron are “Complex Topologies” as shown Fig. 5. 

    
Fig. 5. Square-16, Square-20, Square-24, Rhombic Dodecahedron and 
2-Rhombic Dodecahedron 

There are three parameters that can be used to evaluate the 
searching ability of these topologies. Table I lists these three 
statistics (i.e., the average distance, the diameter, the 
distribution sequence). The first parameter represents the 
average number of iterations to broadcast throughout the entire 
topology, and the second diameter shows the maximum 
iterations. The third parameter can measure the delay in the 
information spreading through the topology. Note that the first 
value of the distribution sequence is the average degree of the 
graph; it can be regarded as an average coordination number. 

TABLE I.  GRAPH STATISTICS OF THE TOPOLOGIES 

Topology Average 
Distance 

Diameter Distribution Sequence 

Square-16 2.13 4 <4, 6, 4, 1> 
Square-20 2.32 4 <4, 7, 6, 2> 
Square-24 2.61 5 <4, 7, 7, 4, 1> 
Rhombic 
Dodecahedron 

2.15 4 <3.43, 5.14, 3.43, 1> 

2-Rhombic 
Dodecahedron 

2.77 6 <3.67, 6.67, 6.33, 4.33, 
1.67, 0.33> 

As shown in Table I, we can find that in Rhombic 
Dodecahedron based topologies, the average number of 
reachable nodes via directly traversing (i.e., the average 
coordination number) is lower than the square-based 
topologies, but the middle traversing process influences more 
neighbors; this makes Rhombic Dodecahedron a little sluggish 
while it uses enough decision-making nodes to break the key 
link to explore the new space. This result also verifies the 
properties of Rhombic Dodecahedron. 

IV. A PROTOTYPE OF BIG DATA MINING FRAMEWORK 
This section uses the Rhombic Dodecahedron topology to 

establish a logical relationship in the Hadoop cluster at the 
data service layer of the bank big data framework (as shown in 
Fig. 6, corresponding to the data service layer in Fig. 1). We 
then propose a data mining algorithm for MapReduce 
components based on the proposed prototype. 



 

 
Fig. 6. Hadoop based Banking Big Data Mining Framwork 

Fig. 6 shows the Hadoop data mining platform in the big 
data framework. For the bank's internal structured data, CDC, 
Flume, and the Sqoop [39] technologies are used to collect 
customer transaction information from core system log 
information in real time, including transaction information 
such as transaction channels, transaction amounts and 
counterparties. The information cached in Kafka message 
middleware is then loaded into the big data processing engine 
and finally stored in the MPP database using the data 
warehouse cleaning process. The external unstructured data 
[40] is processed by the Spark stream calculation engine. The 
customer tag system is built and stored in the MPP database. 
Hadoop data mining platform extracts data from MPP and 
conducts mining based on business models to form customer 
marketing and risk management [41]. 

Hadoop data mining platform consists of TaskTracker and 
JobTracker clusters as shown in Fig. 7. 
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Fig. 7. Hadoop Cluster based on Sphere Packing Topology 

TaskTracker is a Hadoop computing process running on the 
DataNode of the Hadoop cluster. The main task of 
TaskTracker is to run the actual computation tasks assigned by 
the JobTracker, such as running Map and Reduce functions. 
When the TaskTracker receives a task assigned by the 
JobTracker, each map and reduced task is run in a separated 
JVM process. The TaskTracker will send heartbeat messages 
to the JobTracker during the running of the task. The heartbeat 
message also contains information such as the number of 
currently free slots. The role of the JobTracker process is to 
run and monitor MapReduce jobs. NameNode will initially 
initialize the logic relationship of the TaskTracker nodes, i.e., 
a Rhombic Dodecahedron topology.  
 Regarding the solving process of the data mining search 
problem, the solution of each Reduce function is sent to the 
logically connected TaskTracker nodes by the JobTracker 
when each iteration task is completed. Algorithm 1 gives the 
details on MapReduce Searching procedure based on sphere 
packing topology. 

Algorithm 1: MapReduce Searching Procedure based on 
Sphere Packing Topology 
Input: Job, logic topology  
Output: Global Optimal Solutions, Job 
1. Client in data application layer call for data mining job. JobTracker 

receives Job request; 
2. The JobTracker requests the list of nodes by NameNode, retrieves the 

sphere packing topology. 
3. Initialize each node's local optimal solution data set Si; 
4. The JobTracker determines the execution plan of the Job. It calculates the 

number of tasks for Map and Reduce functions that execute the job. 

According to the logic topology, the  ∪j jS   is allocated to the logically 
connected nodes; 

5. JobTracker submits all tasks to each TaskTracker node. The TaskTracker 
will periodically send a heartbeat to the JobTracker. If the heartbeat is not 
received within a certain period of time, the JobTracker will consider the 
TaskTracker node as failed. The JobTracker will then redistribute the task 
on this node to other nodes to reconstruct the topology; 

6. Each TaskTracker internally uses ∪j jS   to perform data mining calculations 
(Map function), and then through compute optimal search results Ri of node 
i (Reduce function) among the local topology based on the sphere packing 
topolgoy; 

7. Once all the tasks have been executed, the JobTracker will update the status 
of the job in the current round. If a certain number of tasks fail to execute, 
the job will be marked as failed; 

8. JobTracker calculates the optimal solution G of all nodes, if the threshold is 
satisfied, step 9 is performed, otherwise Si = Ri, step 4 is performed; 

9. JobTracker sends optimal solution G and runs status of Job to Client. 

V. EVALUATION 
We conduct extensive experiments to evaluate the 

performance of the proposed approach. In particular, we divide 
the experiments into two groups: the first group is to evaluate 
the topologies with optimization problems via Particle Swarm 
Optimization (PSO); the second group is to evaluate the 
performance of the proposed sphere packing topology on top 
of big data framework. 

A. Topologies Performances on Some Optimization Problems 

1. Three dependent variables comparisons 
Three dependent variables were used to test the 

performance of the specified topologies of the PSO [16]. The 
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first dependent variable is the standardized performance for 
the speed of finding the best part of a locally optimal region. 
The second dependent variable is the median number of 
iterations required to reach a criterion to indicate the speed. 
The third dependent measure gives the proportion of successes 
that meet the criteria within 10,000 iterations. The tested 
function and five kinds of algorithm types in this part are 
defined in the paper. Tables II, III and IV show the results of 
three parameters. In particular, the best results of each 
algorithm are highlighted in bold. In order to briefly address 
the results, we mark the algorithm ‘Canon’ as ‘C’, ‘FIPS’ as 
‘FI’, ‘wFIPS’ as ‘wFI’, ‘wdFIPS’ as ‘wdFI’, ‘Self’ as ‘S’, 
‘wSelf’ as ‘wS’, ‘Canonasym’ as ‘C-asym’, ‘FIPSasym’ as 
‘FI-asym’, and ‘wFIPSasym’ as ‘wFI-asym’. 

TABLE II.  STANDARDIZED PERFORMANCES OF THE TOPOLOGIES AND 
ALGORITHMS 

	 (1) (2) (3) (4) (5) 
C -0.5574	 -0.5786	 -0.5631	 -0.4273	 -0.5263	
FI -0.5112	 -0.5120	 -0.4171	 -0.4177	 -0.4008	
wFI -0.5116	 -0.5523	 -0.5234	 -0.4625	 -0.5712	
wdFI -0.3856	 -0.7173	 -0.5583	 -0.5706	 -0.5819	
S -0.4716	 -0.4797	 -0.3980	 -0.6243	 -0.5984	
wS -0.4166	 -0.6010	 -0.5727	 -0.6849	 -1.0167	
C-asym -0.5886	 -0.4863	 -0.5535	 -0.6355	 -0.6147	
FI-asym -0.4558	 -0.4843	 -0.6671	 -0.5607	 -0.6257	
wFI-asym -0.5016	 -0.5787	 -0.5223	 -0.4052	 -0.4942	

(1)- Square-16 

(2)- Square-20 
(3)- Square-24 
(4)- Rhombic Dodecahedron 
(5)- 2-Rhombic Dodecahedron 

The single topologies find the fitness peaks quicker than the 
complex topologies because of small structures. Table II 
shows that Rhombic Dodecahedron shows very good 
performance when using FIPS、Self、wSelf、Canonasym and 
wFIPSasym among all compared algorithms. This result 
implies that Rhombic Dodecahedron topology is suitable to 
get on a fitness peak. 

TABLE III.  MEDIAN NUMBER OF ITERATIONS TO CRITERIA 

	 (1)	 (2)	 (3) (4)	 (5)	
C 542.83 489.33 567.50 566 515 
FI 321.50 301.00 368.83 408.33 430.17 
wFI 309.67 281.83 326.17 379.33 361.67 
wdFI 328.33 305.67 366.67 419.67 404.33 
S 336.50 307.83 366.33 429.83 445 
wS 424.67 461.50 824.33 1317.33 1395.83 
C-asym ∞ ∞ ∞ ∞ ∞ 
FI-asym ∞ 547.83 528.00 627.67 546.67 
wFI-asym ∞ 461.00 421.83 428.00 425.67 

(1)- Square-16 
(2)- Square-20 

(3)- Square-24 
 (4)- Rhombic Dodecahedron 
 (5)- 2-Rhombic Dodecahedron 

As shown in Table III, we observe that Square-based 
topologies are rather fast, and Rhombic Dodecahedron based 
topologies are slower because of having to search one more 
dimension but not crucial. As analyzed in Section IV, 
Rhombic Dodecahedron is able to find a good point on a local 
optimum within a limited time. 

TABLE IV.  PROPORTION OF EXPERIMENTS REACHING CRITERIA 

	 (1) (2) (3) (4) (5) 
C 94.17	 96.25	 95.83	 95.42	 97.92	
FI 95.83	 99.17	 99.17	 97.50	 100	
wFI 97.08	 97.92	 98.75	 97.92	 99.68	
wdFI 99.58	 99.58	 99.58	 98.33	 99.58	
S 97.92	 97.92	 100	 98.33	 99.58	
wS 98.75	 100.0	 99.17	 97.50	 95.67	
C-asym 76.67	 83.33	 84.17	 76.25	 83.75	
FI-asym 82.08	 92.50	 97.92	 94.17	 98.33	
wFI-asym 84.17	 92.50	 96.25	 92.08	 98.33	

(1)- Square-16 
(2)- Square-20 
(3)- Square-24 

(4)- Rhombic Dodecahedron 
(5)- 2-Rhombic Dodecahedron 

Table IV shows that 2-Rhombic Dodecahedron finds the 
global optimum with the higher proportion than other 
topologies. In particular, for those difficult asymmetric 
searching tasks, Rhombic Dodecahedron based model is good 
at solving them with strong searching ability. Therefore, 
Rhombic Dodecahedron gets better solutions than Square with 
only little longer searching time. 

2. Detailed comparisons between Square and Rhombic 
Dodecahedron 

We then give more detailed comparisons between these two 
types of topologies in the fully informed model. Tested 
functions details could be found in [42]. Table V shows the 
major details of the tested functions and the Table VI gives the 
average results in 40 runs in these functions. 

TABLE V.  BENCHMARK FUNCTIONS, WHERE N IS THE DIMENSION OF THE 
FUNCTION, FMIN IS THE MINIMUM VALUE OF THE FUNCTION AND nRS ⊆  

No. Name N S fmin 
1 Sphere Model	 30	 [-100,100]n	 0	
2 Schwefel’s Problem 2.22	 30	 [-10,10]n	 0	
3 Schwefel’s Problem 1.2	 30	 [-100,100]n	 0	
4 Schwefel’s Problem 2.21	 30	 [-100,100]n	 0	
5 Generalized Rosenbrock’s 

Function	
30	 [-30,30]n	 0	

6 Step Function	 30	 [-100,-100]n	 0	
7 Quartic Function i.e. 

Noise	
30	 [-1.28,1.28]n	 0	

8 Generalized Rastrigin’s 
Function	

30	 [-5.12,5.12]n	 0	

9 Ackley’s Function	 30	 [-32,32]n	 0	
10 Generalized Griewank 

Function	
30	 [-600,600]n	 0	

11 Generalized Penalized 
Functions	

30	 [-50,50]n	 0	

12 Generalized Penalized 
Functions	

30	 [-50,50]n	 0	

13 Shekel’s Foxholes 
Function	

2	 [-65.536,65,536]n	 1	

14 Kowalik’s Function	 4	 [-5,5]n	 0.0003075	
15 Six-Hump Camel-Back 

Function	
2	 [-5,5]n	 -1.0316285	

16 Branin Function	 2	 [-5,10]× [0,15]	 0.398	
17 Goldstein-Price Function	 2	 [-2,2]n	 3	
18 Hartman’s Family	 3	 [0,1]n	 3.86	
19 Hartman’s Family	 6	 [0,1]n	 -3.32	
20 Shekel’s Family	 4	 [0,10]n	 -10	
21 Shekel’s Family	 4	 [0,10]n	 -10	
22 Shekel’s Family	 4	 [0,10]n	 -10	



TABLE VI.  RESULTS ON TEST FUNCTIONS 

No. (1) (2) (3) (4) (5) (6) 
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.019040 0.000000 0.000000 0.000000 0.000000 0.000000 
3 0.000026 0.070089 0.006347 0.026043 0.001593 0.003675 
4 0.023242 7.185275 3.879214 5.505371 0.686878 0.012820 
5 29.08267 35.84351 38.95277 32.71579 34.36853 28.08084 
6 38.77500 1.450000 0.675000 0.600000 0.125000 0.050000 
7 0.015168 0.035187 0.017541 0.037777 0.009584 0.006362 
8 77.33296 23.10791 16.11833 21.73983 12.86362 12.31764 
9 4.338334 0.168574 0.000000 0.104322 0.000000 0.000000 
10 0.126343 0.004974 0.002402 0.004053 0.001355 0.001296 
11 0.462860 0.038874 0.015550 0.015550 0.005182 0.002591 
12 0.515549 0.134939 0.003570 0.041584 0.089936 0.000274 
13 1.220578 3.236172 2.203886 1.468004 1.022854 0.998003 
14 0.000603 0.000713 0.000674 0.000805 0.000810 0.000826 
15 -1.03162 -1.03162 -1.03162 -1.031628 -1.03162 -1.031628 
16 0.397887 0.397888 0.397887 0.397887 0.397887 0.397887 
17 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 
18 -3.86278 -3.86278 -3.86278 -3.862782 -3.86278 -3.862782 
19 -3.15700 -3.20985 -3.20697 -3.211554 -3.21057 -3.211272 
20 -4.95820 -6.13099 -7.59478 -6.110486 -7.87306 -7.487201 
21 -6.48784 -9.27994 -10.0441 -9.968637 -10.2116 -10.23596 

22 -6.23700 -9.97293 -10.3335 -10.00982 -10.3336 -10.34477 
(1)- Canon 

(2)- Square-16 
(3)- Square-20 
(4)- Rhombic Dodecahedron 

(5)- Square-24 
(6)- 2-Rhombic Dodecahedron 

In Single Topologies, compared with Canon, Square-20 and 
Square-16, Rhombic Dodecahedron PSO has the lowest 
average values in function 1, 2, 6, 16, 17, 18 and 19. 
Compared with Square-16, this topology yields the closer 
results with minimum results in function 1-6, 8-13, 15-19 and 
21-22, only except for Function 7, 14 and 20. In complex 
topologies, 2-Rhombic Dodecahedron could find better results 
than Square-24 in most functions. Fig. 8 and Fig. 9 show the 
graphs of the comparisons based on the average normalized 
results. In normalized situation, where “Performance” in the 
vertical axis means the lower value means better performance. 
 

 

 
Fig. 8. Performance comparisons of single topologies 



 
Fig. 9. Performance comparisons of complex topologies  
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Fig. 8 shows that functions 7 and 14 of the Rhombic 
Dodecahedron PSO are in the highest level. However, from 
the raw results, the average results are very close to the 
minimum results. We also find that Square-20 has the lower 
line, which shows that the number of nodes influences the 
searching ability distinctly. However, when compared with 
Square-16 and Rhombic Dodecahedron only, the latter line 
is lower than the former line. Although the number of 
Square-16 is larger, the searching ability is poorer than that 
of the Rhombic Dodecahedron. 

As shown in Fig. 9, 2-Rhombic Dodecahedron is slightly 
weaker in function 3, 14 and 20. In other functions, it is 
close to the optimized results and better than Square-24.  

Based on the above discussions, we can conclude that the 
Rhombic Dodecahedron topology has the strong searching 
ability and yields the good fitness peak. If the number of 
nodes is not a considerably influencing factor and the task is 
focused on the ability, Rhombic Dodecahedron topology is 
preferred. When the number of nodes also matters (in 
complex topologies), 2-Rhombic Dodecahedron is 
recommended. In banking big data framework, the nodes of 
the Hadoop platform are quite huge, so 2-Rhombic can be 
widely used to improve the performance. Therefore, the 
proposed topology is suitable for the banking Hadoop 
cluster. 

B. Banking Customer Information Feature Reduction 
Bank customer segmentation has far-reaching 

significance for business marketing. Customer information 
has the characteristics of large amount of data, high 
dimensionality, and frequent changing requirements. 
Therefore, a fast attribute reduction algorithm needs to be 
introduced to meet the rapid extraction of key attributes and 
then build it. Using the rough set [43] can maintain the 
semantic characteristics of the customer data itself, so this 
section will build a rough set based feature selection search 
test based on the proposed sphere packing topology on big 
data mining model. 

The testing data set selects customer information in a 
bank’s enterprise customer information factory. The 
conditional attributes are fetched by customer portrait tags 
through experience knowledge. This data set consists of 71 
attributes such as customer age, gender, education, marital 
status, industry, position, hobbies and interests, income 
attributes, living status, car status, aging, activity, loyalty, 
possession of card products, wage inefficient reserving, 
large-value idle customers, individual loan risk, post-loan 
inspection, financial risk, fund risk, etc. Customer value 
level is selected as the decision attributes. Customers whose 
total bank income is greater than 0 can be divided into three 
levels, the top 20% of the revenue are defined as 
“high-value customers”; the 20% to 80% of revenues are 
defined as "medium value customers"; the latter 20% of 
profit ranking are defined as "low value customers". 

In the bank test environment, 3,000,000 desensitized 
customer data samples were selected, PSO was used as a 
search algorithm [44], and the evaluation function was based 
on [45]. Besides, the feature selection experimental 
parameters of the proposed algorithm are defined as: 
S: (key, value) (particle index, particle state: including 
adjacent nodes, position coordinates, velocity, position value, 
personal optimal position, individual optimal value) 

R: (key, value) (optimal particle index, optimal particle state: 
including adjacent nodes, position coordinates, velocity, 
position value, personal optimal position, personal optimal 
value) 

The minimum set of reductions calculated through the 
Hadoop cluster is shown in Table VII. 

TABLE VII.  THE MINIMUM SET OF REDUCTIONS 

No.	 Attributes 
1 Customer Age 
2 Education 
3 Industry 
4 Position 
5 Income 
6 Cross-sell Score 
7 Financial Term Preferences 
8 Debit Card Spending Preferences 
9 Credit Card Spending Preferences 
10 Loan Potential Customer 
11 Credit Card Potential Customer 
12 Debit Card Potential Customer 
13 Forex Potential Customer 
14 Credit Card High Frequency Transactions 
15 Loyalty 
16 Investment Preferences 
 
From this result, we observe that the attributes of the risk 

warning class and the customer retention class in the 
condition attribute are reduced because of the customer 
value marketing used as a decision attribute. These key 
attributes of customer can be used as a customer 
recommendation and other systems [46][47], and effectively 
solve the problem of excessive calculation cost caused by 
too many attributes of the marketing system. 

VI. CONCLUSIONS 
To process the large number of attributes and large 

amounts of data in banking systems, the distributed strategy 
for big data mining architectures is necessary. The bond 
energy, featured by the low coordination number, the high 
packing density and the 3D structure, is introduced to 
evaluate the exploration and exploitation of cluster nodes in 
banking big data framework. We propose novel design rules 
for topologies in particle optimization. It bases on exploiting 
the local searching space efficiently and exploring a new 
space when needed. Based on these rules, this paper presents 
a Rhombic Dodecahedron topology for cluster nodes to take 
the exploration and exploitation into account 
simultaneously. The Rhombic Dodecahedron topology 
satisfies 3D-close packing structure and has low average 
coordination number. The experimental results showed that 
the Rhombic Dodecahedron topology has better 
performance in finding fitness peak and global optimum. A 
complete prototype of big data mining framework of 
Rhombic Dodecahedron topology is implemented with a 
detailed MapReduce searching procedure. Finally, a feature 
reduction search experiment based on big data mining 
framework is tested, and the computed minimum reduct 
proves the practicality of the framework.  
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