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On the Design and Implementation of a Rotary Crane Controller

Thomas Gustafsson
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This paper deals with the feedback control of a rotary
crane. The goal is to design a control system that
assists the operator to move the cargo without oscilla-
tions and correctly align the cargo at the final position.
This is accomplished with a weakly coupled pair of
state feedback controllers with a nonlinear compensa-
tor. The controller has been implemented and tested on
a real crane.
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1. Introduction

Rotary cranes are widely used as deck cranes on
cargo vessels, usually manually operated by local har-
bor operators with different skill levels. Therefore, it
is desirable to facilitate the crane operation for rea-
sons of economy and safety of the operation. A com-
plete automation of these types of cranes is difficult as
it would require information on where to load and
unload the cargo, a task that is usually performed by
the operator. In [1,2] such an approach is taken where
initial and terminal conditions are given and an opti-
mal controller is used to make the transfer. Our
approach is to keep the operator but let him control
the motion of the cargo instead of controlling the
crane motors. This can be realized by a linear feed-
back changing the dynamics in order to assist the
operator.

It is a well-known fact that global non linear tech-
niques can be used to deal with the problem of con-
trolling nonlinear systems [3-5], this is especially true
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if the dynamics can be described by Euler-
Lagrangian equations of motion, thus the rotary
crane is a good candidate for global nonlinear con-
trol, these techniques are not used in this paper but it
would certainly be valuable to compare the achiev-
able performance with the performance of the con-
troller presented in this paper.

The paper is organized as follows. In Section 2 we
establish a dynamic model for a rotary crane with a
point mass suspended with a wire. The section is logi-
cally divided into five parts. In the first part, the gen-
eral case, there are no restrictions on the movements
of the suspension point. In the second part treating
the rotary crane case it is more natural to use the two
crane angles 6 and v defined in Fig. 2 (later) as inputs.
In the third part efforts are made to reduce the model
complexity. Then the steady state behavior is dis-
cussed. In Section 3 the control design is outlined
and Section 4 deals with leaning cranes. In Section 5
an implementation of the controller is tested on a real
crane.

2. Dynamic Model

We consider the rotary crane shown in Fig. 1, where
the boom angle «y is controlled by a wire which is
wound around a drum. The body of the crane can
be rotated about the z-axis by a rotation motor. The
pivot of the boom does not necessarily coincide with
the origin. To make it simple we regard the crane as a
rigid body, and the load as a point mass. Further, we
neglect frictional torques in the mechanism. The most
crucial assumption is to neglect the dynamic influence
of the load on the crane. This can be justified by a
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Fig. 1. Notations for a rotary crane, defining the angles # and ~,
the boom length L and the pivot offset b.

stiff crane machinery, which is the case for the cranes
considered in this paper. For a leaning crane, it is,
however, necessary to take into account how the load
is influencing the crane.

The result of these assumptions is that the process
can be described with three models, one each for the
boom and rotation dynamics and one model for a
two-dimensional pendulum driven by a three-dimen-
sional acceleration defined in the suspension point.

2.1. General Case

In an inertial frame where x, = {x,,)1,z} are the
coordinates of the suspension point and x, =
{Xms¥m,Zm} are the coordinates of the load, define
the angle 3 as a positive rotation around the X-axis
and « as a positive rotation around the Y-axis. The
notation is used to emphasize that the second rota-
tion, as illustrated in Fig. 2, is in the new frame
defined by the first rotation. Such a set of rotation

(xp¥p2) 2

(%0 ¥ 2}

Fig. 2. Notations for a rotary crane. The left part shows the boom,
defining the angles 6 and ~, the boom length L, the length of the
wire A and the pivot offset 5. The right part shows the load and the
suspension point defining the load swing angles & and 5. The
coordinate axes without index is the inertial system. The crane-
fixed system has index ‘c’.
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angles is called Euler angles [6] and gives the follow-
ing expression for the coordinates of the load

—sina
cos asin 3
—cos acos

Xm = Xt + A Sx+A2 (1)

where ) is the length of the suspension wire. Using a
and 3 as generalized coordinates we can use Euler—
Lagrange equations [7] to establish a dynamic model.
The kinetic and potential energies are

T=%m(x2m +A+2) (2)
U =mgz, (3)

where m is the mass of the load. With the Lagrangian
as L =T — U we use Lagrange’s equations

d /oL oL
ai(a5) 5= &

where ¢; stands for the generalized coordinates o and
B. A detailed derivation of the dynamics is found in
[8] where (4) is solved for & and 3 to give a coupled
pair of second order differential equations

Aé = ¥ cosa — (g+ %) sinacos B — 2\&
+ jysinasin 8 — A3 sin acos o (5a)
Acosaff = —j,cos B — (g+Z)sing
—2\Bcosa + 2)afsin a (5b)

2.2. Rotary Crane Case

Since we are considering a rotary crane the natural
choice of inputs are the crane rotation angle  and the
crane boom angle . From Fig. 2 we can derive that

Xy = —(b+ Lcos~)sind
» = (b+ Lcos~y)cos
zy = Lsiny (6)

In order to achieve decoupling we define a crane-fixed
frame, indicated in Fig. 2 by X and °Y, that rotates
with the crane such that the crane boom always coin-
cides with the “Y-axis. The relation between a point in
the inertial frame x and the crane-fixed frame % is
then by definition

cosf —sinfd 0 %
x=| sinf cosf O |%=.R% )
0 0 1

Define the new Euler angles o, and S,, in the crane-
fixed system such that the coordinate of the load is
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—sin ay

qu=°X1+A( cos ay sin 3, )Q%+AQ\,

— COS @y, COS fBy
(8)

Inserting the last parts of (1) and (8) in the relation
between coordinates in the inertial and crane-fixed
system defined in (7) gives

Xt + A = cR(qXI. + Ady) = xi + RAQ, ©)

which simplifies to 2 = (R(},.

Now using Xy, = Xt +RAQ, when solving the
Euler-Lagrange equations (2)—(4) gives the following
equations of motion expressed in the crane-fixed load
swing angles

Ady, =
— gsinay cos B, — 2Ady, — MG sin ay, cos a,
+ Lsin o, sin(y — 8,) 4°
— (2Xsin B, + 2AB, cos*ay, cos B,) 0
+ 2L40cos o, siny
+ (Acos o, cos?f, — (b + Lcos~y)
sin3,) #*sina,
— Lsinay, cos(y — 3,)

— (Asin B, + (b + Lcosy)cosay,) 6 (10a)

A,@v cosay, =
— gsin B, + 2Aéy B, sin
+ Lcos(y— B,) ¥* — 2\B, cos a,
+ 2(A\éy cos a, + Asinay) G cos B,
+ (Acosay sin 8, + b+ Lcos7y) 6> cos B,
+ Lsin(y — 8,) 4+ Asina cos 8, 6
(10b)

The derivation of the equations above is with advan-
tage performed with a symbol manipulation program.

2.3. Steady State

The steady state solution of the nonlinear model (10)
is obtained by inserting the solution &, =0 from
(10a) into (10b) giving
0 = —gsin B, + (Asin B, + b+ Lcos~)#* cos 3,
(11
This can be rewritten as a quartic equation in
s 2 sin B,

P8+ (F—1)(s+x)7>=0 (12)
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where @ = w?/6* and x = (b + Lcos~)/A. The expli-
cit solution of (12) is rather voluminous and we con-
fine ourselves to merely stating that 3, can be
approximated by

b+Lcos’yéz

e )

sin 3, ~

3. Control Design

The objective of this section is to design a servo con-
troller that facilitates, not automates, the use of a
rotary crane. This distinction is very important to
make, since the operator remains as an integrated
and commanding part in our approach.

The operator is responsible for the overhead strat-
egy, where to load and where to unload. He should
also take necessary actions to operate the control
levers to move the crane, and the load, into appro-
priate positions. Moving the load is the difficult part
since it calls for a high degree of skill and concentra-
tion to avoid unnecessary time delays due to oscilla-
tion of the crane load.

The idea with a facilitating servo is to remove the
tricky dynamics and let the angular rate of the load be
directly proportional to the angles of the control
levers. This is unfortunately not possible due to lim-
itations in the crane machinery. But it should be pos-
sible to let the load behave as a well damped linear
system.

This obviously leads to a need for mental adapta-
tion by the operator. He should now ignore the move-
ments of the crane and concentrate on the load. In a
study by Schmidtbauer and Roénnbéck [9] it is, how-
ever, shown that well-damped process dynamics, in
contrast to undamped dynamics, reduce both the
learning time and the cycle time even for an untrained
operator.

A reason to use a rate servo controller instead of a
position controller is that it is important to have a
simple man—machine interface. Rotary cranes used on
ships are usually operated by local dock workers. It is
thus not possible in practice to train an operator on a
crane with complex or different man—-machine inter-
face.

3.1. Linear Design

Before considering a full-blown controller, let us step
back and start by considering the linearized versions
of the equations of motion for a pendulum in a crane-
fixed frame (10)
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&y = —way, — L0 (14a)
By = —w*B, + Lg¥ (14b)
where
w? & g/
f b+ Lcosy
A
1= 2221 (15)

Thus we simplify the controller design as we can
decompose the controller into two parts and treat
them separately. One purpose with this is to show
that it is necessary to take the cross-coupling into
consideration.

We also need linear models of the crane. If we
ignore or assume that we can compensate time
delay and nonlinearities in the actuators, then we
can model them as linear first order systems (see [8]).

é — kg(ug Eci 9) (16&)
¥ = by (1 = 4) (16b)

where uy and u,, are inputs to the actuators.

Since the linear models of the slewing motion and
the luffing motion have identical structure, and differ
only in the values of the parameters, it is at this stage
only necessary to study one of them. Our choice is to
study the slewing motion.

3.2. Linear Control of the Slewing Motion

Having linear models of both the load and the crane
we can combine them into a fourth order state space
model for the rotational or slewing movement. The
natural choice of state vector is x=
(ay &, 6 6)" which gives the linear state space
description x = Ax + Buy where

0 : 1 0 0 0
_ —W 0 0 Lakg _ —Lakg
A= 0 00 1 B= 0
0 0 0 —k ke
17)

The goal with the controller, as mentioned before in
this section, is to make it easier for the operator to
handle the crane. Originally, in a manual system, the
slewing motion of the crane is controlled by an opera-
tor with a control stick, where the slew rate of the
crane is proportional to the stick angle. The problem
with the manual mode is that the operator has to
compensate for the undamped oscillation modes in
the dynamics of the load. To avoid this, a controller
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can be used to automatically stabilize the pendulum
motion.

Furthermore, to avoid confusion, it is necessary to
redefine the control stick function. Instead of being
proportional to the crane slew rate the control stick
angle should be proportional to the speed or angular
rate of the load orthogonally to the crane arm. This
speed can be calculated by taking the scalar product
between a direction vector orthogonal to the crane
arm and the velocity vector of the load. Then normal-
ize with the radius to get the angular rate. The coor-
dinates of the load in the crane fixed frame are
{°Xm;“Ym} and the direction orthogonal to the crane
arm is {—1,0} which gives angular rate of the load as

me

W) =f——m
X Vexn +yn
where a term 6 is added since the crane fixed frame is

rotating with that rate. The radius can be approxi-
mated with

mz “Ym~b+Lcosy=AL, (19)

Using a small angle approximation and assuming
constant wire length A\ then °x, = —\d, which
together with (17) inserted in (16) gives

(18)

y=0+ L%,d" (20)
The open loop transfer function from the input u, to
the angular rate y of the load is

Y(S) _ kgs _ kgsz
Ug(s)  s(s+kg) (s+ k) (2 + w?)

where Y(s) and Uy(s) are the Laplace transforms of
the angular rate y(¢) and u,, the control signal defined
in (16a).

Now our goal is to design a state space controller

ug = Gv(1) — Kx(¢) (22)

such that the angular rate of the load y(t) as well as
possible tracks the demanded angular rate v(¢). Since
{A,B} forms a controllable pair it is possible to
design a linear state controller, such as (22), and arbi-
trary place the closed loop poles. The open system (21)
has poles in 0, —ky and Ljw. It is reasonable not to
modify the two real poles which originate from the
crane dynamics. The poles on the imaginary axis
must, however, be modified to have negative real
parts. A standard state space pole placement method
[10] can be used and straightforward calculations
show that the control law

21)

Ug = év(r} — kKo, — kS, — k36 (22)
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with the gains

po — _Xwe _w—u
! Ly  kls
T
27 TkeLly | Low?
o=
ki == 24
4 P ( )
gives the closed loop transfer function
Y kgu?
(S) e (25)

Up(s) ~ (s + ko) (52 + 265 + u2)

In Fig. 3 we can see the result of a simulation of the
closed loop system for a typical crane. It shows an
evident coupling between the systems (14a) and (14b)
with oscillations in g, initiated by the rotation, but it
also shows that a linear controller like (23) can be
used to eliminate the oscillations orthogonal to the
crane arm.

In an effort to maintain a good man-machine
interface the next step is to modify (23) to avoid oscil-
lations in j,. The reason for calling it a man—machine
interface is that if the operator initiates a slewing
motion with the control stick then the luffing motion
should be kept to a minimum.

3.3. Linear Control of the Luffing Motion

This is an easier task than controlling the slewing
motion since a change of the luffing angle v does
not affect the slewing angle o,. Both the linearized
dynamics and the objectives of the control are equal
to that of the slewing motion. Thus we can use the
same controller structure as in Section 3.2.

W :
ty = =50y = K\ By — k3B, — K (26)

where we prudently remember the sign difference in
(24) when the controller gains are calculated

T T T l
0 5 10 15 20 25 30 35 40

Fig. 3. Simulation of the linear state space controller (23) with
w, =w=0.738] and £ =1 that among other things shows that
the decoupled models (14a) and (14b) should be coupled.
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2

kﬁ_2£wc wg—w
f ===

Ly kL
W — 28w, wg s
27k, Ly  Lou?
-
w —
ke == (27)

to get the closed loop poles 0, —ky and a double pole
in —w,.

A crucial difference from the slewing controller is
that the crane arm angle v is typically limited to
angles between 15° and 80° and the controller has
to stop before the limits to avoid the oscillations
resulting from a quick stop. In Fig. 4 we can also
note that the system is not critically damped as
expected, probably because the parameter Lj varies
with the crane arm angle ~.

3.4. Simultaneous Control of Slewing and Luffing

Some progress has now been made towards the con-
struction of a linear controller, but as noted in
Section 3.2 it still remains to solve the problem arising
from the coupling between the systems. Notice
in Fig. 3 that a step in the set point for the slew
rate excites an oscillation in §,, furthermore notice
that the load swing angle 3, is biased. All efforts to
eliminate the bias will undoubtedly lead to a system
with constantly decreasing crane arm angle « in the
effort to compensate the load swing angle caused by
the centrifugal force. Consequently we should only
try to eliminate the oscillation allowing the bias to
exist. A straightforward method is to use the station-
ary solution (13) of (10) as an approximation of the
bias and modify (26) to

Uy = v'r_k'?(ﬁv "Ev)_kgﬁ-v _kf"( (28)

where the gains are the same as in (27).
Simulating the same typical crane as in Fig. 3 with
the modified control law (28) together with the slew-

Fig. 4. Simulation of the linear state space controller (26) with
w, =w=0.7381 and £ = 1. The reference value to the controller
v = 0.59max during the first 20 s of the simulation and then set to
Zero.
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ing motion controller (23) shows a pronounced
improvement, not only for 3, but also for a,. In the
latter case it is mainly because the system eventually
reaches a steady state where 3, = 0 which, according
to (10) reduces the coupling. The result of the simula-
tion is displayed in Fig. 5.

A remaining problem with the controller (28) is
conspicuous if we study the variation of v in Fig. 6
from the same simulation as in Fig. 5. Despite the
fact that only the set point for the slew rate has been
changed there is an unwanted steady-state error in the
luffing angle ~.

The reason for this is that the closed loop system
has a pole in the origin and a disturbance not
balanced by a comparable disturbance with opposite
sign will leave a trace in «. Thus one solution to the
problem is to change the pole placement of the luffing
controller such that the closed loop transfer function
from the reference value v, to the crane arm angle v
becomes

PG Pl 9)
Vo(s)  (s+p)(s + ky)(s? + 26wes + w?)
e
5 o

Fig. 5. Simulation of the nonlinear controller (28). The reference
value to the controller v4 = 0.86,,,,, during the first 20 s of the
simulation and then set to zero. Notice that, in contrast to Fig. 3,
there are no overshoots in a,.

Y00

46.0 ]
45.6 ]
45.2
44.8 |
444

0 5 10 15 20 25 30 35 40

Fig. 6. Simulation of the controller (28). The reference value to the
controller vy = 0.80,,,, during the first 20 s of the simulation and
then set to zero. Note that - changes despite the fact that only the
slew rate set point has been changed.
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The control law (28) should then be modified to
Uy =k§v'r_k'?(ﬁv'“5v) _kgﬁv _kf"f—kf'}'
(30)

where for the special case when w, = w

_ %ﬁw(k'r +P)
k? ; k"rLﬁ

K=p

_ _25;3(':‘"’2 — k'r.p)
kg - Lgk.}.w

1
K =p (E_ + 2gﬁw)
Y

The effect of this modification can clearly be seen in
Fig. 7.

The use of a position controller for the luffing
motion also solves the problem mentioned at the
end of Section 3.2, that arises from the limitations
of the crane arm angle . A well-behaved closed
loop system (29) with a damping ratio £ = 1 has no
overshoot in 7, so it is safe to give a set point to (30)
that is close or equal to a limit. To make the closed
loop system behave like a rate controller it is neces-
sary to integrate the rate set point from the command
stick to obtain an appropriate position set point.

4. Leaning Cranes

This section treats the common case when the rotary
crane is mounted on a cargo vessel with an inclina-
tion. The slope of the vessel has two essential effects
on the control system. Principally, the measurement
system must be enhanced to be able to correctly mea-
sure the angles o, and S, even if the ship, and with it
the crane, is leaning. For a while we consider this
enhancement as done and trust the measurements.
In [8] it is shown how to enhance the measurement
system.

The second effect is that the load will influence a
leaning crane with a static torque which can be devas-
tating especially in cranes with hydraulic motors. The

Y

46.4 |
460] A
45.6 |
452 ]
448 |
44.4 |

Fig. 7. Simulation showing the improved decoupling with the posi-
tion controller (30) compared to the rate controller (28). The solid
curve is the same as in Fig. 6. The reference value vy = 0.80,,,,
during the first 20 s of the simulation and then set to zero.
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problem is most pregnant when both the crane and
the load are at rest, since a hydraulic motor may be
stiff towards dynamic loads, but when it comes to
static loads there is always a leak flow in the motor
that causes the motor and consequently the crane to
move. The normal way to solve this in a manually
operated crane is to use a mechanical brake that auto-
matically switches on when the motor is supposed to
be at rest.

Mechanical brakes are, however, unacceptable, or
at least difficult, to use in an automatic system, since
they are slow in action and thus introduce time delays
that can be difficult to handle. Only when loading or
unloading should the brakes be used to increase the
security.

Apparently a modification of the controller is
necessary to avoid sliding cranes. A first step is to
model the disturbance by modifying (16a) to

0 = ko(ug — 6) + 6(2) (31)

where we in a first attempt consider §() as constant.
If this was true then an integrating controller would
solve our problem. But unfortunately it is not true
unless @ is constant, as a strict analysis shows that
8(7) is dependent on # according to

6(t) = pMgr
= uMg(b + Lcos)(sin( cosf
— €08 (; sin  sin §) (32)

where r is the momentum arm. The mass of the load
is denoted by M and the roll and pitch angles defined
in Fig. 8 are denoted by ¢; and (,. Those three quan-
tities are normally unknown. Even the coefficient y is
unknown. For the crane used in our experiments then
|6(2)| < 0.02.

To make the analysis easier we exclude the small
vessel case when a moving crane can change the slope
of the vessel. Then all quantities in (32) except @ are
constant and (32) can be reduced to

6(t) = pycos@ + pysiné (33)

Fig. 8. Definition of roll angle ¢ and pitch angle ¢,. The crane arm
is directed to the stem when 6 = 0°.
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Linearization of (33) around 6, gives

6(t) = py cos By + py sin by
+ (k2 c0s 6 — py sin ) (6 — 6o)
= 60 + ng

Thus if the variation in 6 is sufficiently small then §(¢)
can be considered as a constant disturbance to a
slightly modified system. It may, however, not be
possible to use this linearization since @ is subjected
to large variations. Principally there are two different
solutions:

e With knowledge of §(¢), then feedforward and gain
scheduling can be used to compensate for leaning
cranes.

e Without knowledge of é(r) then the controller, in
some sense, must be robust.

Regardless of the structure of the controller, it can
not be the rate controller (23) since the closed loop
system then has a pole in the origin. The Laplace
transform of @ for the closed loop system controlled
by (23) and with a constant disturbance §(z) is

o(s) = kow? Vo(s) + kgw A(s)

s(s + ko) (5% + 2bwes + w?) (33)

A constant disturbance § will thus make the angle 6
drift away.

Redesigning (23) to a position controller similar to
the one previously designed for the luffing motion
gives an immediate improvement. The difference is
displayed in Fig. 9. An important difference is that
the position controller is slower than the rate control-
ler. This is clearly noticeable sitting in the operator’s
cabin. The position controller feels viscous compared
to the rate controller. Although the difference in time
is small this viscous feeling leads an experienced
operator to believe that the automatic controller is
slow and inferior. The reason is of course the extra
pole that is introduced with the position controller.

012 0 [rad/s)

0.08 |
004}

0.00

Fig. 9. Comparison of the slew rate § between a rate controller
(dashed curve) and a position controller (solid curve). The crane
is leaning ¢, = —5°. The rate controller gives a steady-state error
causing the crane to glide away.
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To improve the speed, this new pole can, however, be
canceled by a set point filter

up = k3 (v + pv) — ki, — k§éy — k50 — k36
(36)

where v is the set point and p is the pole to cancel, the
difference can be seen in Fig. 10. The same improve-
ment in speed can also be made for the luffing con-
troller by extending (30) with a set point filter.

Note that it is not necessary to base the control
design on the dynamics for a leaning crane. The linear
model (14), augmented with a term describing the
centrifugal force, gives adequate precision provided
that the slope angles of the crane are small and that
the ratio between 6 and w is sufficiently small.

In an effort to increase the quality of the man—
machine interface we observe that the horizontal dis-
tance “y,, from a vertical axis, that coincides with the
rotational axis of the crane at the rotary joint, to a
load without oscillations can be calculated as

*Ym = (b+ Lcos?y) — ¢, Lsinvy (37)

where ¢, = (;sinf + ¢, cos . Obviously the distance
changes even if the crane arm angle v is kept con-
stant.

We stated in the previous section that if the opera-
tor only intends to rotate the crane, then it shall only
rotate. We have, however, already made some excep-
tions from that rule as it is otherwise impossible to
successfully eliminate the oscillations of the load.

The rule can also be interpreted as that the distance
“Vm, defined above, should be kept constant during a
rotation. From (37) we conclude that the only way to
accomplish this is to change v with feedforward. Let
7 be the set point due the operator. Then the set
point to the controller ~, is calculated from the equal-
ity

(b+ Lcos~y,) = (b+ Lcos~y,) — ¢, Lsiny,
(38)

0.12 9 [rad/s]

0.08 |

Fig. 10. Comparison of the slew rate f between a rate controller
(dashed curve) and a position controller with set point filter (solid
curve). The crane is leaning 5°. The rate controller gives a steady-
state error causing the crane to glide away.
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where the left part is the distance that the operator
wants. Solving (38) gives the new set point

cos ¥ + Cﬂy]f C-z,r + sin’ I

1+¢
+ ¢, siny, (39)

Cos 7Y, = R COS 7Y,

To get the best tracking one should use the set point
for slew angle 6, as in Fig. 11, to calculate ¢, when
making the correction of the set point for the crane
arm angle ~.

An additional feature with this procedure is that
the suspension point will always follow a circular
path when pure rotation is demanded thus decreasing
the influence on the pendulum dynamics that a lean-
ing crane has.

5. Full Scale Experiments

Experiments have been performed on a hydraulically
powered rotary crane of type G-2 manufactured by
AB Hégglund & Soner. The crane was mounted on
their special test platform that made it possible to
lean the crane. All results presented in this chapter
come from experiments made when the crane was
leaning with ¢, = —5° and ¢, = 0°. See definition of
the leaning angles in Fig. 8.

Some other features of the G-2 crane used in the
experiments are:

arm length L = 27.085m

maximal slewing speed O, =8 °/s
maximal luffing speed Yo =2 °/s
maximal hoisting speed A\, = 0.5 m/s
length of wire A = 18§ m

initial arm angle v = 50°

initial slew angle 6 = 0°

1—
vg 5 8, Ug
p+ & pos. servo
Uy o Ye Uy

—ip+ 5 (39) —= pos. servo

Fig. 11. The complete controller with feedforward from the slew
angle command signal to the luffing angle set point. v, and v, are
the command signals from the control sticks that serve as angular
rate references. They are modified with a filter to position set points
6 and 7. The control outputs are u, and u,.
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e hoisting capacity 40 metric tonnes.
e weight of load M = 8 metric tonnes

The reason for using a rather upright arm was to have
a wire length comparable to the lengths that are com-
mon in a real situation where the crane is mounted on
a high pillar.

The hydraulic system of the crane was supplemen-
ted with electrical valves to allow remote control of
the motors. Shaft encoders were used to measure both
the slew angle @ and the arm angle . A mechanical
sensor was used to measure the load swing angles o,
and f,. There was no easy way to measure the wire
length, but the crane has a construction that keeps the
load at a constant height with varying arm angles. If
the wire length is known for one arm angle, then it is
easy to calculate the actual wire length, provided
there is no hoisting.

A predecessor of RegSim [11] was used to imple-
ment an extended Kalman filter and the control law
described in Section 3 along with a complete set of
simulation models. The advantage of using the same
implementation of the controller in simulation and in
control of the real process was considerable, since the
sources of obnoxious behavior could easily be traced
down by comparing the simulation with the real
world appearance.

T T T T

0 20 40 60 80

Fig. 12. Control experiment with the slewing motion controller.
The solid curve is the load swing angle a,, the dashed curve is
the command signal v, and the dotted curve is the slew rate 6.

Fig. 13. Control experiment with the crane arm controller. The
solid curve is the load swing angle f3,, the dashed curve is the
command signal v, and the dotted curve is the crane arm angular
rate .

T. Gustafsson
5.1. Control Experiments

Early experiments showed that the time delays in the
motor drives were of such a magnitude that they
could not be ignored in the control design. But with
the Kalman filter as a base a prediction was made of
all state variables used in the controller and no mod-
ification to the controller was necessary beyond that.
The controller was implemented in two subsystems
with different sampling periods. In the fastest system
with a sampling period of 4 ms necessary measure-
ments and digital filtering were made. The observer
and the controller had a sampling period of 0.2 s.

Unfortunately there are very few appropriate
experiment results that are saved. Most of the experi-
ments results that are saved were made mainly to
verify the function of the measurement and observer
system since it turned out that this was the weak point
in the system. The problems we had were mainly due
to the low resolution in the 8-bit A/D-converters that
we were using.

A direct comparison of the angular rate 6 in Figs 10
and 12 reveals, among other things, that the real
crane has a higher acceleration than the simulated
crane. We can, however, from Figs 12-14 see that
the overall behaviour is still the same. A typical tran-
sition, from a steady state without oscillations, starts
with a short acceleration phase of the crane. The load
is almost at rest during this phase. Thus the load
swing angle originates mainly from movement of
the crane. In the next phase the angular rate of the
crane is decreased until the load gains momentum
and reaches the same speed as the crane. Then the
crane accelerates to the desired oscillation free speed.

-8

Fig. 14. Control experiment with both controllers. The solid and
dashed curves show the load swing angles a, and ,.The dotted
curve is the command signal 1y and the dot-dashed curve shows the
slew rate #. The oscillations in 3, mainly originate from the wire-
hook system.
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6. Conclusions

In this paper we have discussed a method to design
linear gain scheduled controllers for both the slew
and luffing motion of a rotary crane. It is shown
that the coupling between the slew and luffing motion
can be eliminated with a nonlinear feedforward term.
Further it is shown that the case with a leaning crane
can be handled with a different choice of parameters
in the controller.

The results given above have been confirmed in
practice and a slightly different controller has been
commercialized and is sold under the name ‘Swing
Defeater’.
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