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Abstract

In reservoir management, production optimization is
performed using gradient-based algorithms that com-
monly rely on an adjoint formulation to efficiently
compute control gradients. Often, however, economic
constraints are implicitly embedded within the op-
timization procedure through well performance lim-
its enforced at each reservoir simulation time-step.
These limits effectively restrict the operational capa-
bilities of the wells, e.g., they stop or shut down pro-
duction depending on a predetermined profitability
threshold for the well. Various studies indicate that
the accuracy of the gradient and, by consequence,
the performance of the optimization algorithm, suf-
fer from this type of heuristic constraint enforcement.

In this paper, an analytical framework is developed
to study the effects of enforcing simulator-based eco-
nomic constraints when performing gradient-based
production optimization that relies on derivatives ob-
tained through an adjoint formulation. The frame-
work attributes the loss in control gradient sensitiv-
ity to non-differentiable unscheduled changes in the
well model equations. The discontinuous nature of
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these changes leads to inconsistencies within the ad-
joint gradient formulation. These inconsistencies, in
turn, reduce gradient quality and subsequently de-
crease algorithmic performance.

Based on the developed framework, we devise an
efficient simulator-based mode of constraint enforce-
ment that yields gradients with fewer consistency er-
rors. In this implementation, the well model equa-
tions that violate constraints are removed from the
governing system right after the violation occurs and
are not reinserted until the next well status update.
The constraint enforcement modes are further cou-
pled with a strategy that improves the selection of
initial controls for subsequent iterations of the opti-
mization procedure. After a given simulation, the re-
sulting combination of open and shut-in periods gen-
erates a status update schedule, or shut-in history.
The shut-in history of the current optimal solution
is saved and used in subsequent optimization itera-
tions to make the status update a part of the opti-
mal solution. The novel simulation-based constraint
implementation, with and without shut-in history, is
applied to two production optimization cases where,
for a large set of initial guesses, and different model
realizations, it retains and improves the performance
of the search procedure compared to when using com-
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mon modes of economic constraint enforcement dur-
ing production optimization.

1 Introduction

Optimization procedures based on mathematical pro-
gramming techniques serve as important decision-
support tools to select optimal petroleum field devel-
opment concepts and reservoir management strate-
gies. In reservoir management, decision-making
workflows rely on gradient-based production opti-
mization procedures to find improved production
strategies, e.g., optimal well control configurations
that increase recovery from waterflooding. Com-
monly, these procedures depend on reservoir simu-
lations to measure cost function performance, and
on an adjoint formulation to efficiently compute cost
function derivatives with respect to well controls.

However, the production optimization procedure is
often additionally loaded with sets of heuristic con-
straints used to represent the project’s economic in-
terface [9]. These rules are imposed to meet neces-
sary field development profitability criteria and are
commonly enforced during reservoir simulation. Of-
ten, these rules are implemented as well and field
production thresholds based on economic parameters
enforced at each simulation time-step. Thus, since
reservoir simulations are an integral part of gradient-
based production optimization, and this type of eco-
nomic constraints are commonly embedded within
these simulations, there is a need for an analytical
framework that studies the effects of enforcing these
constraints on the overall optimization procedure in
general, and on the computation of adjoint-based gra-
dients, in particular. Furthermore, such a frame-
work will help develop specialized strategies to main-
tain adjoint-gradient accuracy in spite of the heuris-
tic enforcement of simulation-based constraints, and
thus to mitigate likely decreases in algorithmic per-
formance.

From an operational point of view, the enforce-
ment of economic constraints during reservoir simu-
lation serves as an additional control tool to stimulate
production and mimic real field changes to produc-
tion settings. These constraints are commonly en-

forced within the time step domain of the reservoir
simulator, independent of the production optimiza-
tion procedure, where well control types, e.g., bot-
tom hole pressure (BHP) and/or phase rates, are fre-
quently used as variables defined over significantly
larger control periods. The main function of eco-
nomic constraint enforcement is to react to uneco-
nomic production scenarios by performing real-time,
i.e., in time step scale, adjustments to the wells. For
example, in the case of waterflooding, operating con-
ditions at which production is unprofitable can be
determined, and accordingly, a lower limit for the oil
production rate, or an upper limit on the water cut
(fraction of water in the total liquid production) can
be enforced based on these settings. For either limit,
a standard type of enforcement is to shut the well re-
actively once the profitability setting is violated dur-
ing forward simulation.

Similarly, commingled production is often man-
aged by an analog set of rules that operates on either
groups of wells, on the entire field, or both. These
field and group constraints come in addition to the
constraints operating individually on each well. This
work, however, only deals with simulator-based con-
straints that operate on individual wells, and that
enforce restrictions based on economic performance,
though the analysis may be extended to include field
constraints, and other types of performance mea-
sures, in future work.

1.1 Economic constraints in adjoint-
based production optimization

Adjoint-based gradients have become an indispens-
able tool for closed-loop reservoir management [19],
integrated field development problems [1], multiob-
jective analysis [13], robust production optimization
[4], and for many other multi-phase flow optimiza-
tion problems (see review in [10]). Adjoint gradients
provide fast, inexpensive, yet accurate linear approxi-
mations of the objective function and non-linear con-
straints. These linear approximations are used by
non-linear programming algorithms such as sequen-
tial quadratic programming (SQP) [8] or methods of
moving asymptotes (MMA) [20] to build non-linear
approximations that ensure a fast convergence to a
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local optimal solution. In the context of production
optimization, the SQP and MMA algorithms were
first applied in [19] and [2], respectively.

In reference to gradient-based methods, few stud-
ies have addressed the impact that simulator-based
constraints have on the optimization process. In
[4], robust long-term optimization results obtained
using reactive control were compared to results ob-
tained using constraints handled within a dedicated
gradient-projection trust-region method. The reac-
tive control strategy in that work entails the enforce-
ment of simulator-based constraints. However, the
strategy presented is performed in a standalone man-
ner, i.e., not within, nor coupled to, an optimization
procedure. In [4], the authors demonstrated that
a gradient-based production optimization procedure
outperformed the reactive control strategy. Further-
more, the work in [12] presented results supporting
the claim that production optimization using BHP
controls with rate constraints implemented at the
simulator level, yields higher final solution values,
than a formal production optimization setup where
rate constraints are handled by an SQP algorithm.

The applicability of simulator-based constraints
when performing gradient-based production opti-
mization has been assessed at depth in [5] and [14].
These papers underline the difficulties that arise dur-
ing gradient-based optimization when a particular
well is shut-in, or when it changes its control type,
in the middle of a control period due to the violation
of a constraint. They report a decrease in perfor-
mance and attribute it to a loss in sensitivity. The
authors claim that sensitivity is lost when the gra-
dient term corresponding to a particular time-step
vanishes due to the effects of the constraint viola-
tion. The sensitivity loss, in turn, limits the capac-
ity of the optimization algorithm to change the cor-
responding control variable. The authors propose a
couple of strategies for implementing simulator-based
constraints to remedy the loss in sensitivity. In [5],
the production optimization uses rate control tar-
gets. This allows the authors to implement a proce-
dure that avoids shutting-in the wells completely, but
rather keeps them running at an insignificantly small
rate to avoid losing sensitivity. In [14], a proactive
gradient-based method is proposed which treats the

constrained quantities as controllable parameters. In
this approach, the optimization procedure involves
progressively activating constraints, with each new
constraint resulting in a significant improvement in
the objective.

In this paper, we argue that the missing gradient
terms and subsequent loss of sensitivity are funda-
mentally related to non-differentiable changes in the
simulator’s flow equations. Thus, the subsequent de-
crease in performance is mainly attributed to the
non-differentiable unscheduled changes in the well
model equations that occur when simulator-based
constraints are enforced. These discontinuities intro-
duce inconsistencies in the adjoint formulation which
in turn yields inaccurate gradients that reduce the
performance of the optimization algorithm. In this
work we develop an analytical framework to assess
both the validity and performance of the adjoint-
gradient formulation when used for gradient-based
production optimization with economic constraints.
The framework is used to describe typical ways of
enforcing these type of constraints, and to derive
an additional, more efficient, mode of enforcement.
Two cases are used to compare typical and the novel
mode of constraint enforcement during production
optimization. Results from this comparison study
demonstrate a significant improvement in the conver-
gence of the optimization procedure for a large set of
initial guesses and geological realizations.

This paper is organized as follows. Section 2 lays
the theoretical background for this work by pre-
senting the general production optimization prob-
lem as well as the adjoint-based gradient formula-
tion. In section 3, we conduct a rigorous analysis of
the adjoint-based gradient formulation in which we
take into account the non-differentiable changes in
the well model equations. Section 4 discusses the con-
ventional ways economic constraints are implemented
within reservoir simulation, while section 5 presents
a novel way of dealing with this type of constraints
when performing production optimization. Finally,
we substantiate the conclusions derived in the theo-
retical part by conducting numerical experiments on
two production optimization cases presented in sec-
tion 6. The results of the optimizations are presented
and discussed in section 7, while section 8 presents
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some conclusions and recommendations.

2 Background

This section introduces the general production op-
timization problem and lays the theoretical back-
ground for the analysis of the adjoint-based gradient
formulation to be performed in the following section.
It discusses the importance of continuous differen-
tiability of the objective function when performing
gradient-based optimization, and presents the steps
involved in the derivation of the adjoint system and
gradient. In this and the following sections, we refer
to the common presentation of the adjoint formula-
tion in the petroleum literature [3, 19] as the standard
adjoint formulation.

2.1 General production optimization
problem

The production optimization problem is given as

find maximum of J(x,u), (1a)

subject to greserv(x,u) = 0, (1b)

gwells(x,u) = 0, (1c)

x0 given, (1d)

u ∈ D. (1e)

Here x are the variables determining the state of the
system discretized both in space and time, while x0
defines the part of the vector x which corresponds

to the initial state x0
def
= x|t=0. The vector u des-

ignates the model parameters used as optimization
variables, while D is a feasibility region of those vari-
ables. greserv(x,u) and gwells(x,u) are, respectively,
the discretized in space and time reservoir and well
governing equations for the unknown state variables
x. To be precise, in (1c), we only include equations
that are implicit with respect to the well unknowns.
Thus, any well equation that can be written in ex-
plicit form is satisfied by simple elimination. For ex-

ample, in the case of a well BHP control, we have

greserv(x, pBHP) = 0

gwells
def
= pBHP − ptarget

BHP = 0
︸ ︷︷ ︸

⇓

greserv(x, ptarget
BHP ) = 0.

(2)

The objective function J(x,u) is the net present
value (NPV) given as

J(x,u)
def
=

N∑

n=1

(
nw∑

i=1

np∑

p=1

Cp,i(tn) qp,i(x,u)

)
∆tn,

(3)

where tn is discretized time steps with time step sizes
∆tn = tn − tn−1. Cp,i and qp,i denote, respectively,
the discounted price and the production/injection
phase flow rate of phase p in the i-th well. nw refers to
the total number of wells while np is the total number
of phases present in the system.

In the form (1a), the objective function depends
on both the state variables x and the optimization
variables u. Furthermore, the optimization problem
in (1) includes the various equality constraints given
in (1b) and (1c). The number of equality constraints
is the same as the number of state variables.

Typically, due to a large total number of variables,
it is not practical to have the optimization algorithm
solve a problem that includes both state and con-
trol variables. A significant advantage of the adjoint
method is that it uses the equality constraints in (1b)
to calculate the variation of the objective function
solely with respect to the well controls u. Thus, the
adjoint formulation acts in the capacity of the depen-
dence x = x(u).

2.2 Objective function differentiabil-
ity and adjoint-gradient formula-
tion

Continuous differentiability of the objective function
is essential for the performance of the operating non-
linear programming algorithm. This statement is
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illustrated with the following simplified argument.
The mathematical theory of gradients relies heav-
ily on the Riesz representation theorem [18]. This
theorem implies that if an objective function J(u) is
Fréchet-differentiable with respect to the optimiza-
tion parameters u, then there exists a unique vector
∇J , called the gradient of J , so that

lim
ε→0

J(u + εu′)− J(u)

ε
= 〈∇J,u′〉 (4)

is valid for all admissible perturbations u′. If J is not
continuously differentiable, then ∇J may not exist or
is non-unique. In both cases, the objective function
approximations based on ∇J are inexact, which in
turn reduces the performance of the operating non-
linear programming method.

In the derivation of the adjoint gradients, we follow
the standard procedure of formulating an augmented
Lagrangian functional L and then deriving the first
optimality conditions based on this functional [15].
For the optimization problem (1), the Lagrangian L
has the form

L
def
= J + λT greserv(x,u) + µT gwells(x,u). (5)

Here λ and µ are the vectors of Lagrange multipli-
ers with size equal to the number of state equations.
By construction, L has the same critical points as J .
Therefore, the local optima of J are the same as the
local optima of L, located either at a critical point,
or on the boundary of the feasibility region D. By
definition, the critical point is a vector containing the
elements {λ, µ,x,u} for which the partial derivatives
of L with respect to λ, µ, x and u, are zero, i.e.,

∂L

∂λ
= 0 ⇒ (1b), (6a)

∂L

∂µ
= 0 ⇒ (1c), (6b)

∂L

∂x
= 0 ⇒ ∂

∂x

( N∑

n=1

nw∑

i=1

np∑

p=1

Cp,i(tn) qp,i∆tn

+ λT greserv + µT gwells

)
= 0,

(6c)

∂L

∂u
= 0 ⇒ ∂

∂u

( N∑

n=1

nw∑

i=1

np∑

p=1

Cp,i(tn) qp,i∆tn

+ λT greserv + µT gwells

)
= 0.

(6d)

As indicated here, (6a) and (6b) are the governing
equations satisfied with a state variable solution x
and prescribed u. We next we consider equations
(6c) and (6d) to derive the standard formulation of
the adjoint system.

2.3 Standard adjoint formulation

Suppose that qp,i, greserv and gwells are continuously
differentiable with respect to x and u. The equations
(6c) and (6d) can be reformulated in the following
simplified form

N∑

n=1

nw∑

i=1

np∑

p=1

Cp,i(tn)
∂qp,i
∂x

∆tn

+ λT
∂greserv

∂x
+ µT

∂gwells

∂x
= 0, (7a)

N∑

n=1

nw∑

i=1

np∑

p=1

Cp,i(tn)
∂qp,i
∂u

∆tn

+ λT
∂greserv

∂u
+ µT

∂gwells

∂u
= 0. (7b)

The equations in (7a) constitute a system that can
be solved to obtain the unknown multipliers λ and µ.
The solution of this system yields what are called ad-
joint variables. The equations in (7b) are not solved

5



directly since these equations define a critical point
with no guarantee of optimality. Instead, we derive
the adjoint-based gradient for the equation (4) by us-
ing the left-hand-side of (7b) as follows

∇J def
=

N∑

n=1

nw∑

i=1

np∑

p=1

Cp,i(tn)
∂qp,i
∂u

∆tn

+ λT
∂greserv

∂u
+ µT

∂gwells

∂u
. (8)

Further details regarding the derivation of the
adjoint-based gradient can be found in [19].

The next section carries out a rigorous mathemat-
ical treatment of the discontinuities imposed on the
adjoint system when enforcing simulation-based eco-
nomic constraints. The aim of this analysis is to in-
vestigate the mechanism and conditions under which
non-differentiable changes, both within production
outputs qp,i and/or model equations greserv and gwells

in (8), can render the derived adjoint-based gradient
inconsistent with respect to the underlying optimiza-
tion problem.

3 Theoretical analysis of
simulator-based constraint
enforcement

We first consider the general case in which the ex-
pressions qp,i, greserv, and gwells undergo discontinu-
ous changes in time. Because the partial derivatives
in (7) and (8) are applied to a system already dis-
cretized in time, the perturbations of x and u, which
trigger qp,i, greserv and gwells to change form, are not
taken into account in either of these expressions. This
is a major reason for why the standard adjoint formu-
lation is inconsistent whenever discontinuous changes
occur in the model equations

To study the effects of these inconsistencies we con-
sider a continuous-in-time (non-discretized) adjoint
formulation [3]. This approach, commonly referred
to as optimize-then-discretize, is less frequently used
for gradient-based production optimization since the
discretize-then-optimize approach is often much sim-
pler to implement within a reservoir simulator. A de-

tailed comparison of continuous-in-time and discrete-
in-time adjoint formulations is performed in [12]. In
that paper, the authors demonstrate that the ad-
joint equations resulting from the discretization of
a continuous-in-time formulation coincide with those
of the discrete-in-time formulation for all time steps
except the last one. This result enables us to apply
the continuous-in-time form in the following analysis,
though, in accordance with the result, we restrain
the formulation to the time interval 0 6 t 6 T ,

where T
def
= tN−1. The continuous-in-time form is

preferred because it allows us to use differential cal-
culus to study the effects of enforcing the economic
constraints on the adjoint system.

3.1 Derivation of continuous-in-time
adjoint formulation

To be clear, here and in the next section, we em-
ploy the convention that greserv, gwells, λ, µ, x are
all discrete-in-space functions, which means they are
defined for all t such that 0 6 t 6 T . The continuous-
in-time form of (6c) and (6d) is

∂

∂x

(∫ T

0

nw∑

i=1

np∑

p=1

Cp,i(t) qp,i

+ λT greserv + µT gwells dt
)

= 0, (9a)

∂

∂u

(∫ T

0

nw∑

i=1

np∑

p=1

Cp,i(t) qp,i

+ λT greserv + µT gwells dt
)

= 0. (9b)

In [3, 12], the authors apply the Leibniz integral
rule to move the partial derivative operator inside the
integral sign. However, since the integrand terms in
(9a) and (9b) are not necessarily continuous and con-
tinuously differentiable for all t, x, and u, we cannot
rely on this rule for our general problem. Instead, to
perform the interchange between the differentiation
and integration operators, in this work we rely on a
set of theorems that offer less restrictive conditions
than those imposed by the Leibniz integral rule.

Two particular theorems are relevant for the treat-
ment of (9a) and (9b). The first theorem [17] provides
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a sufficient (though not necessary) condition for the
operator interchange while using a relaxed require-
ment of continuity for all t:

Theorem 1 Let f(x, t) be a real-valued
function defined on X × R, where X is an
open interval in R, and assume that for each
fixed x ∈ X,

(i) t 7→ f(x, t) is integrable,

(ii) ∂f/∂x exists for almost all t,

(iii) there exists an integrable function
g, independent of x, such that
∣∣∣∣
∂

∂x
f(x, t)

∣∣∣∣ 6 g(t) for almost all t and for all x ∈ X.

Then

∂

∂x

∫

R

f(x, t) dt =

∫

R

∂

∂x
f(x, t) dt.

The second theorem (proved in [21]) provides nec-
essary and sufficient conditions that do not require
the continuity of f for all x and u. The theorem uses
the generalized absolutely continuous function in the
restricted sense (ACG) definition for f . This defi-
nition is applicable to the functions with piecewise
continuous integrands in (9a) and (9b).

Theorem 2 Let f(x, t) : X ×R 7→ R. Sup-
pose that f(x, t) is ACG on X for almost all
t in R. Then

∂

∂x

∫

R

f(x, t) dt =

∫

R

∂

∂x
f(x, t) dt

for almost all t in R, if and only if

x2∫

x1

∫

R

∂

∂x
f(x, t) dt dx =

∫

R

x2∫

x1

∂

∂x
f(x, t) dx dt

(10)

for all [x1, x2] ∈ X.

In the following section we use theorems 1 and 2 to
properly take into account the discontinuities within
the adjoint derivation.

3.2 Adjoint formulation subject to
discontinuity

In this work we argue that changes in time funda-
mentally alter the modeling equations as well as the
production profiles in the adjoint gradient expres-
sion. These changes manifest themselves as discon-
tinuities in the integrand terms λT greserv, µT gwells,
or qp,i, respectively. Discontinuities within the in-
tegrand terms appear when the forward simulation
reaches either a particular constant point in time
t = τ , or when a prescribed condition c(x,u) < 0
is violated. In the following we analyze the occur-
rence of these discontinuities within the derivation of
the adjoint gradient.

To simplify the analysis, we represent either of
these integrand terms using the generic symbol f .
We start by describing the simple type of discontinu-
ity that occurs when the simulation reaches a point
t = τ (e.g., the start of a new control period). The
expression of f resulting from this type of disconti-
nuity is written as follows

f(x,u)
def
=

{
f1(x,u) t < τ,
f2(x,u) t > τ,

(11)

where f1 and f2 are continuously differentiable func-
tions of x and u. It can easily be verified that the
conditions of Theorem 1 are satisfied for this type
of discontinuity. Thus, the standard adjoint formu-
lation can be applied to this case. Furthermore, by
extension, the standard formulation can be applied
when having a countable number of discontinuities
of this type (each defined using a different time con-
stant τ), which is the result of the piecewise linear
parametrization commonly used for production opti-
mization problems.

We now consider the case when a discontinuity in
f is triggered by the violation of a condition of type
c(x,u) < 0. In this case, we use Theorem 2 to derive
the necessary and sufficient conditions to perform the
required operator interchange in equations (9a) and
(9b). Theorem 2 offers less stringent requirements
than those imposed by Theorem 1 allows us to treat
the expressions and their derivatives as generalized
functions. We define the time at which a constraint
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violation occurs using the Dirac delta function δ(·) as

τ(x,u) =

∫ T

0

δ
(
c(x,u)

)
t dt. (12)

The f that results once a violation c(x,u) < 0 occurs,
is given as

f(x,u)
def
=

{
f1(x,u) t < τ(x,u),
f2(x,u) t > τ(x,u),

(13)

where again f1 and f2 are continuously differentiable
with respect to x and u. For the sake of compact-
ness, we rewrite (13) using the Heaviside step func-
tion H(·). Finally, we take the derivative with respect
to x to obtain

∂f

∂x
=

∂

∂x

(
f1 +H

(
t− τ

) (
f2 − f1

))
. (14)

Substituting (14) into the right-hand side of (10)
(Theorem 2) and applying the fundamental theorem
of calculus yields

T∫

0

x2∫

x1

∂f

∂x
dx dt =

T∫

0

[
f1 +H

(
t− τ

)(
f2 − f1

)]x2

x1

dt,

(15)

while substituting (14) into the left-hand side of (10)
and applying the chain rule gives

x2∫

x1

T∫

0

∂f

∂x
dt dx =

x2∫

x1

T∫

0

∂f1
∂x

+H
(
t− τ

) ∂(f2 − f1)

∂x

− δ
(
t− τ

) ∂τ(x,u)

∂x

(
f2 − f1

)
dt dx. (16)

Since f1 and f2 are differentiable, the first two expres-
sions in the right-hand side of (16) can be simplified
by interchanging the integrals with respect to t and

x as follows

x2∫

x1

T∫

0

∂f1
∂x

+H
(
t− τ

) ∂(f2 − f1)

∂x
dt dx =

x2∫

x1

τ(x,u)∫

0

∂f1
∂x

dt dx +

x2∫

x1

T∫

τ(x,u)

∂f2
∂x

dt dx =

T∫

0

χ(t,u)∫

x1

∂f1
∂x

dx dt+

T∫

0

x2∫

χ(t,u)

∂f2
∂x

dx dt =

T∫

0

[
f1 +H

(
t− τ

) (
f2 − f1

)]x2

x1

dt, (17)

where χ(t,u) is the inverse function of τ(x,u) with
respect to x, i.e., τ(χ(t,u),u) ≡ t. Whereas the third
term on the right-hand side of (16) is reduced to

x2∫

x1

T∫

0

δ
(
t− τ

) ∂τ(x,u)

∂x

(
f2 − f1

)
dt dx =

x2∫

x1

(
∂τ(x,u)

∂x

(
f2 − f1

))∣∣∣∣
t=τ(x,u)

dx. (18)

After comparing (15) and (17) we conclude that
(15) and (16) can be equal to each other only if (18)
vanishes. Therefore, a crucial claim is that the nec-
essary and sufficient condition (10) from Theorem 2
holds when either

∂τ

∂x
= 0 or f2 = f1. (19)

This statement remains valid in the presence of a
countable number of discontinuities of the same type.
Moreover, the same analysis holds for the derivatives
with respect to u.

3.3 Application of theorems to
discrete-in-time reservoir sys-
tem

Hereafter, without loss of generality, we consider
greserv, gwells, λ, µ, and x to be discrete-in-space and
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discrete-in-time functions. If the first option of (19)
is satisfied, i.e., if τ is independent of both x and u,
then the situation is equal to case analyzed earlier
using Theorem 1. On the other hand, if c depends on
either or both x and u, then one can find an interval
[x1, x2] and a perturbation x′ such that

∂τ(x,u)

∂x

def
= lim

ε→0

τ(x + εx′,u)− τ(x,u)

ε
(20)

is non-zero for x ∈ [x1, x2].
We now consider the second option of (19). At

this point, a brief comment is necessary regarding
the nature of the integrand terms qp,i, λ

Tgreserv, and
µTgwells: The reservoir governing equations greserv

are based on conservation principles, and are, both
by construction and in a physical sense, continuous
with respect to x and u. Wells, on the other hand,
may undergo changes in time which can fundamen-
tally modify both their modeling equations gwells and
their production profiles qp,i. The result is that equa-
tions (15) and (16) can always be set equal to each
other, and thus the necessary condition (10) can be
met for λTgreserv, but not for qp,i or µTgwells.

Thus, focusing on the qp,i and µTgwells terms, be-
low we list two conclusions for the validity of the
standard adjoint formulation when discontinuities are
imposed during gradient computation. These conclu-
sions vary depending on whether the discontinuities
are predetermined, as is the case for the common con-
stant piecewise-linear well control parametrization,
or whether the discontinuities stem from economic
constraint enforcement. (This is a non-exhaustive list
since discontinuities stemming from other sources,
e.g., other types of constraints, may also influence
the adjoint system, but this type of situations are
beyond the scope of this analysis.)

Conclusion 1. If the well equations gwells are mod-
ified by a discontinuous change at a predetermined
time, then Theorem 1 allows us to interchange the
differentiation and integration operators in (9a) and
(9b). In this case the standard adjoint formulation is
valid when computing the gradient.

Conclusion 2. If the discontinuity in the well
equations gwells is precipitated by the violation of

the well performance constraint c(x,u) < 0, then,
according to Theorem 2, the operator interchange
cannot be applied. In this case the standard adjoint
formulation is inconsistent due to errors occurring
when taking the partial derivatives of both qp,i and
gwells.

Having an analytic framework with sufficient gen-
erality to both support Conclusion 1 and 2 is an im-
portant contribution from this work. This allows us
to describe both the type of control changes that
occur within the default control configuration for
production optimization, consisting of predetermined
control changes, as well as the additional changes
that occur whenever simulator-based constraints are
violated. As mentioned, it is often the case that
this latter type of economic well performance limits
are implemented within simulators during production
optimization. Finally, using this framework we can
assess the validity and performance of the adjoint-
gradient formulation under these various control and
constraint scenarios.

In the next section, the analytical framework is
used to describe common modes of economic con-
straint enforcement and their consequences. There-
after, the framework is used to derive an additional
mode of enforcement with the goal of maintaining
adjoint-gradient accuracy in spite of the discontinu-
ities created by well performance limits.

4 Conventional modes of eco-
nomic constraint enforce-
ment

First we provide several definitions necessary to de-
scribe changes in well model equations during simu-
lation. We then categorize the various types of con-
trol changes as being either scheduled and unsched-
uled changes. These distinctions will be useful to de-
scribe both traditional and new constraint-handling
approaches, as well as to present optimization cases
and analyze results, in subsequent sections. The de-
scription of traditional modes of economic constraint
enforcement is provided at the end of this section,
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while the new constraint-handling approach is de-
scribed in the next section.

4.1 Definitions to describe well con-
trol changes and patterns

We continue to use the terminology developed previ-
ously, e.g., the terms gwells,1 and gwells,2, to describe
several examples of well model changes that often
occur during a typical reservoir simulation whenever
these constraints are active. We divide the domain
of possible changes into two categories: scheduled and
unscheduled changes.

Scheduled changes. This category consists of
changes conditioned only to time, e.g., control
updates predetermined by a production sched-
ule. In reservoir simulation, scheduled updates
cause the well equation to change in four possible
combinations:

1. in the case of rate type of control before and after
the control update, the well equation changes
from

gwells,1
def
= q·,i−qtarget,1

·,i to gwells,2
def
= q·,i−qtarget,2

·,i ;

2. in the case of rate type of control before and BHP
type of control after the control update, the well
equation changes from

gwells,1
def
= q·,i − qtarget,1

·,i

to non-existing well equation gwells,2;

3. in the case of BHP type of control changing to
rate type of control, the well equation before the
change, gwells,1, is non-existing, and after the up-
date becomes

gwells,2
def
= q·,i − qtarget,2

·,i ;

4. finally, for completeness, in the case of a BHP
controlled well remaining in BHP type of con-
trol mode after the update, the change is be-
tween two non-existing well equations gwells,1

and gwells,2.

For any of these scheduled changes, the time τ is con-
stant, and the standard adjoint formulation is valid
according to Conclusion 1.

Unscheduled changes. This category consists of
changes triggered when the setting of the default,
i.e., the currently active, well control type violates
a specified constraint. The triggering of unscheduled
changes may stem from various types of constraint
enforcement. One such type, for example, is the en-
forcement of an upper or lower bound that limits the
value of an associated control type, e.g., (target)-rate
bounds when the well is controlled by BHP setting,
and vice-versa. Other triggers of such changes may
be an economic limit on production, or even the con-
dition that a producer (injector) must have positive
(negative) well rates during simulation.

Well control vs. well status updates. Finally,
we distinguish between two categories of well model
updates: a well control update and a well status up-
date. Well control updates occur at predetermined
intervals called control steps or periods, i.e., they are
scheduled events during simulation. The well set-
tings prescribed at these updates correspond to the
well control optimization variables u. Well status up-
dates, on the other hand, occur both at each control
step, and in addition, may occur at any time step
during simulation. For example, an unscheduled well
status update occurs (and is stored) at the time step
an economic limit is enforced.

Thus defined, well control and well status updates
are two categories that are non-exclusive, in that well
control updates are a subset of well status updates.
These categories will be useful to explain the results
from the new economic constraint enforcement algo-
rithm introduced below. Also, they will later be use-
ful to describe additional strategies that use shut-in
history to improve the performance of the optimiza-
tion procedure. Next, we describe two conventional
approaches for how to enforce unscheduled changes.
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4.2 Traditional modes of economic
constraint enforcement

In production optimization, economic constraints
may be implemented as non-linear constraints within
the optimization algorithm itself (indirect enforce-
ment); or as simple checks at each simulation time-
step that test whether the constraints are honored or
not (direct enforcement). These two ways of enforc-
ing constraints are discussed below.

Indirect enforcement. In this type of enforce-
ment, the simulation itself is performed without eco-
nomic limits. However, the defined economic limits
are imposed as non-linear constraints within the op-
timization algorithm which requires the constraints
to be honored for all well control values. Details re-
garding this particular type of enforcement and the
procedure of its implementation can be found in [23].

Direct enforcement In this type of enforcement,
the simulation includes an automatic shut-in algo-
rithm mimicking the workover action of the reactive
control. Below, we distinguish two modes of this al-
gorithm implemented in commercial reservoir simula-
tors [6] referred by the commonly used nomenclature
“SHUT” and “STOP”. It should be noted that in this
discussion we only have BHP as the active well con-
trol, and that no associated (target) rate constraints
are specified. Cases involving rate control as the ac-
tive control type will be treated in further work by
the authors.

STOP. In this mode, the well is connected to
the reservoir throughout the entire simulation.
While solving (1b) and (1c), the relevant well
production profiles, c(x,u), are verified for vio-
lation of the economic limits at each time step.

In fact, this control mode corresponds to the
reactive control strategy, i.e., once a violation
is detected on a well, the governing equation
for that well is replaced by a shut-in well
equation. The shut-in equation is implemented,
for example, by setting the total fluid volume
rate equal to zero (making gwell,2 non-trivial).

Under this mode of enforcement, the stan-
dard adjoint formulation is non-valid due to
errors when taking the partial derivatives of
both the qp,i and gwells terms (see Conclusion 2).

SHUT. Similar to the previous mode, in this
mode the well is checked at each time step
and the well is shut-in once a violation occurs.
However, in this mode, the shut-in procedure
is accompanied by totally removing the well
equation from the reservoir system until the
simulation finishes. Thus, for the remaining
of the simulation, after the control update is
implemented, gwell,2 is non-existent, i.e., there
is no governing equation for the well. Moreover,
gwell,1 is also non-existent since the well is
originally controlled by BHP (see the problem
definition in (1) and the associated derivation
in (2)). Obviously, non-existing gwells are not
taken into account in (11)–(18). Thus, whenever
gwells is removed from the system, whether the
standard adjoint formulation is consistent or
not, depends only on the partial derivatives of
qp,i.

Based on this discussion, the SHUT mode, when
compared to the STOP mode, is shown to contain
less errors that lead to inconsistencies in the standard
adjoint formulation. However, the SHUT mode lacks
the capacity of the reactive control to reopen the well
if the economic constraints are satisfied at later sim-
ulation times. This observation leads us to develop
a novel mode of constraint enforcement which com-
bines the advantages of the two conventional modes.

5 HALT - a novel mode of con-
straint enforcement

The nomenclature “HALT”, and its associated algo-
rithm, refer to a new, direct, mode of enforcement
proposed in this paper. This mode operates similarly
to SHUT, except that the isolation of the well from
the reservoir does not last until the simulation ends,
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but only for a small period of time. The actual dura-
tion of the shut-in period depends on when the next
well model update occurs. Below we describe the con-
cept of the shut-in pattern which determines all well
model updates during simulation. Furthermore, we
use the concept of the shut-in pattern to provide a
detailed description of the HALT algorithm.

5.1 Shut-in pattern

The number and timing of well model updates is de-
fined by the update schedule of the well. This sched-
ule is determined before simulation, and it is either
set from the default well configuration, or from well
status updates that have been stored from a preced-
ing simulation run. In this work, we refer to the col-
lection of all well status updates during a simulation
as the shut-in pattern for that simulation. Mathemat-
ically, the shut-in pattern is defined with two sets of
values: {θ1, . . .}, which represent the timing of the
updates, and {π1, . . .}, which are the status of the
wells after the updates. With the definition of a shut-
in pattern, we can offer a concise description of the
HALT mode of enforcement: In the HALT mode, the
shut-in period lasts until the first subsequent point in
the shut-in pattern. Algorithm 1 describes the man-
ner in which the shut-in pattern is built and modified
during simulation. It also shows in exact terms how
the HALT mode differs from the SHUT mode.

Here we discuss two ways the HALT method
serves as an efficient approach to deal with wells
when performing production optimization subject to
simulator-based economic constraints. First, once
economic constraints are enforced, the well model
equations are removed from the system of equations,
thus eliminating error terms in the adjoint gradi-
ent calculation (as explained by Conclusion 2). This
helps preserve gradient accuracy even though wells
are shut-in at arbitrary points within control updates,
and maintaining gradient quality assures algorithm
performance is not diminished. Second, using the
HALT approach in combination with the active use
of a current best shut-in pattern (properly defined be-
low) we can further mitigate the effects of economic
constraint violation by taking into account solution
history. Though well status updates originate from

Algorithm 1 Simulation in SHUT and HALT modes

t← 0
while t < T do
for each well do
if well status = shut then

remove associated gwells from (1c)
else

include associated gwells into (1c)
end if

end for
calculate x(t+ ∆t) solution of (1b), (1c)
for each open well do
if c(x(t+ ∆t),u) > 0 then

find k such that θk−1 < t+ ∆t 6 θk
{θk, θk+1, θk+2, . . .} ← {t+∆t, θk, θk+1, . . .}
if HALT then
{πk, πk+1, πk+2, . . .} ← {shut,
open, πk+1, . . .}

else if SHUT then
{πk, πk+1, πk+2, . . .} ← {shut, shut,
shut, . . .}

end if
end if

end for
t← t+ ∆t

end while

shut-ins caused by previous constraint enforcement,
these status update points are also used by HALT to
check whether a shut-in well may be reactivated. By
having HALT verify wells at any subsequent status
update point, we are, in effect, adding extra possi-
ble reactivation points in time spans where wells are
likely to have been shut-in. This yields improved so-
lutions by constantly reactivating wells within critical
time periods. In the following we describe how shut-
in history can be used to improve the convergence of
the optimization algorithm.

5.2 Production optimization using
shut-in history

In the following, we define two strategies for choosing
initial control schedules to enhance the optimization
process when using the HALT and SHUT constraint
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enforcement modes.

Algorithm 2 Optimization with direct enforcement

{θ1, . . .} ← well control update timing
repeat
{π1, . . .} ← default well configuration
simulate with direct enforcement (e.g., Algo-
rithm 1)
calculate the objective function
calculate the adjoint gradient
perform an optimization iteration of SQP

until termination criteria are satisfied to given tol-
erances

Algorithm 3 Optimization with shut-in history

{θ1, . . .} ← well control update timing
best shut-in pattern ← default well configuration
repeat
{π1, . . .} ← best shut-in pattern
simulate in HALT or SHUT mode (Algo-
rithm 1)
calculate the objective function
if current best then

best shut-in pattern ← {π1, . . .}
end if
calculate the adjoint gradient
perform an optimization iteration of SQP

until termination criteria are satisfied to given tol-
erances

During production optimization, multiple reservoir
simulations are run sequentially while searching for
optimal well controls. In the sequence of simulations
launched by the optimization process, the resulting
shut-in pattern from one simulation can be used as
the initial control schedule in the next simulation.
Algorithm 2 shows the common way of performing
production optimization with direct constraint en-
forcement. In this configuration, the shut-in pattern
is not preserved from one iteration to another.

In this work, we propose an alternative algorithm
(Algorithm 3) that takes explicit advantage of the
known shut-in pattern history. This algorithm is
hereby defined as the shut-in history strategy. The

goal of this strategy is to use the current best shut-in
pattern to improve the performance of the next iter-
ation of the optimization procedure. As previously
mentioned, the default configuration for well control
optimization entails a set of piecewise constant-in-
time intervals defined over the production horizon.
When we use the shut-in history strategy, we add to
the default control updates the stored unscheduled
well status updates from the best shut-in pattern so
far. This means that when the shut-in history strat-
egy is enabled, the status of a well may be updated
at any subinterval of the control updates.

This superposition of control points lets the control
vector operate within a solution space with additional
degrees of freedom (ultimately determined by the to-
tal number of time steps). The thinking behind this
strategy is that the shut-in pattern contributes with a
heuristic expansion of the default control space based
on previous “good” solutions (i.e., solutions that sat-
isfy the imposed constraints), and that this will con-
tribute positively to the overall search performance
of the optimization algorithm.

We thus define the two strategies for choosing ini-
tial control schedules:

Without shut-in history. Each simulation in
the optimization sequence is performed using the
default shut-in pattern, i.e., the default control
configuration consisting of control updates only
(see Algorithm 2).

With the shut-in history. Each simulation in
the sequence is performed with the shut-in pat-
tern which so far yields the best objective func-
tion value (see Algorithm 3).

In the following section, the different control modes
in combination with these strategies are tested for
two cases.

6 Case studies

We perform experimental studies on two production
cases. The first case is a well-known waterflooding
model with synthetic geology and simplified physical
properties. This model was first introduced in [22],
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and has on several occasions been used to benchmark
optimization algorithms [11]. The second case is the
Brugge benchmark field designed for the SPE Applied
Technology Workshop held in Brugge in June 2008.
The description of the field as well as complete results
of the workshop are summarized in [16].

Production optimization is performed on both
cases while enforcing two types of economic con-
straints. The first constraint restricts production
wells from above with respect to their water cut us-
ing a limit of 95% (i.e., a workover is activated if the
water cut of a producer reaches this limit). Similarly,
injector wells are constrained from below with respect
to their rate with a limit of 6.28× 10−3 bbl/day in the
first case, and a more realistic limit of 62.8 bbl/day
in the second case. Choosing a small lower bound of
the injection rate in the first case allows us to concen-
trate on the errors introduced by the economic limits
of the producers. These constraints are summarized
in Table 1. In both studies, the NPV is computed
using water production and injection costs equal to
3 $/bbl, while the oil price is set to 50 $/bbl. The
discount rate is 10%. Reservoir model configurations
for the two study cases, as well as simulation and op-
timization parameters for the experimental runs, are
given below.

Table 1: Economic constraints for case 1 and 2.

Value Description

95% Water cut limit (Case 1 and 2)
6.28× 10−3 bbl/day Injector rate limit (Case 1)
62.8 bbl/day Injector rate limit (Case 2)

6.1 Case study 1

The reservoir for the first case has dimensions 60 ×
60 × 7, and includes eight vertical water injection
wells and four vertical producers completed through
all seven layers. This model is supplied with hundred
and one realizations of the permeability of which one
is designated as true. In this study, we employ the
“true” permeability which is shown in Figure 1 and
the randomly selected realizations 18, 40 and 69.

permeability (mD)

82 1811 3540 5270 7000
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Figure 1: Model permeability in x- and y-directions

The base case, which is also the default initial guess
for the optimization, uses BHP control for both pro-
ducers and injectors, without any constraints on the
associated rates. However, economic constraints do
apply for both types of wells (see above). All produc-
ers are set with an initial BHP of 259 bars, while all
injectors start with a BHP of 261 bars. The physi-
cal properties of both fluid and rock for this case are
summarized in Table 2. For the optimization of case
study 1, we apply a piecewise-linear constant produc-
tion setup consisting of ten control steps of 180 days
each.

Table 2: Parameter values for case model 1.

Value Description

20% porosity
10−5 1/bar rock compressibility
10−5 1/bar fluid compressibility
1000 kg/m3 fluid density
1 cP fluid viscosity
0.1 initial water saturation
0 rel. perm. endpoints
2 rel. perm. exponents
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6.2 Case study 2

In the second test case, we use the original dead-oil
model and geometry of realization #73 of the stock
of the Brugge reservoir model. This realization in-
cludes the original corner point grid structure, dis-
tribution of active grid blocks, depths and volumes;
NTG, porosity and permeability distribution; as well
as initial pressures and saturations. The grid is shown
in Figure 2. Case study 2 applies the same 30 stan-
dard wells: 10 injectors and 20 producers, as the
original base case. Also for initial well controls, we
use the original base case values. Further details re-
garding the Brugge model can be found in [16]. The
production optimization uses twenty-one piecewise-
linear constant controls with steps of 180 days each.

6.3 Simulation and optimization pa-
rameters

For simulation, we use the Automatic Differentiation
General Purpose Research Simulator (AD-GPRS).
This simulator is built on top of the Automatic Dif-
ferentiation Expression Templates Library in [24, 25].
Since ADGPRS uses adaptive time stepping, the op-
timization algorithm may meet some inconsistencies
if different time stepping schemes are applied for the
various runs performed during optimization [23]. To
mitigate this bias, the discrete-in-time NPV is evalu-
ated using the ten-point composite Gaussian quadra-
ture formula instead of the commonly used rectan-
gular rule. Further details of this procedure can be
found in [23].

We use a non-linear programming algorithm based
on the SQP method implemented by the Sparse Non-
linear OPTimizer library (SNOPT) [7]. For both
cases, the optimization process is set to terminate
once the Karush–Kuhn–Tucker conditions are satis-
fied to a given tolerance [8]. The SNOPT parameters
and termination criteria used for this case are given
in Table 3.

Notice that despite its strengths, the SQP algo-
rithm is a local search algorithm. Therefore, to avoid
the bias of possibly getting caught in a poor local so-
lution, in this paper, we perform multiple production
optimization runs that each start from different ini-

Table 3: SNOPT configuration.

Value Description

10−7 major feasibility tolerance
10−4 major optimality tolerance
10−7 minor feasibility tolerance
200 major iteration limit
20 major step limit
20 minor iterations limit

tial guesses. Details on how these initial guesses are
chosen are provided in Section 7.5.

In Sections 7.1-7.4, we use case study 1 with the
“true” permeability to test the performance of the
suggested modes of enforcement. Furthermore, in
section 7.5, we demonstrate the robustness of the
methodology by optimizing over case study 2 and
multiple realizations from case study 1.

7 Results

7.1 Results for case study 1

Figure 3 shows the optimal control updates (ten
control steps) using BHP as initial control and the
HALT, SHUT, STOP and constrained optimization
modes of constraint handling. Notice the wells are
primarily active during the first five control steps
(i.e., up to 900 days). After the fifth control step, the
majority of the wells reach their economic limit which
signals the end of the economic life of the reservoir.
Before this, all solution profiles, except the SHUT
mode (Figures 3b,e), show a significant departure
from the initial guess, indicating a considerable ex-
ploration of the range defined by the economic limits.
On the other hand, as shown in Figure 3, when op-
timizing using the SHUT control mode, the optimal
solution remains close to the initial controls, which
for this case correspond to relatively low initial rates.
For this reason, a majority of the wells the optimal
solution obtained from the SHUT control mode, are
not shut-in. The dissimilarities between the different
solutions in terms of well status (open, stopped or
shut) can be explored by comparing the distribution
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Figure 3: Optimal solutions of well BHP controls for the modes HALT (a,d), SHUT (b,e), STOP (c),
constrained optimization (f) and strategies with shut-in history (a,b), and without shut-in history (d,e).

16



of well statuses in Figure 4.

Figure 4 presents the simulation time intervals
when the wells have status as either open (white),
stopped (gray) or shut (black). The distribution of
statuses is consistent with the definition of modes. In
the case of the HALT mode (Figures 4a,d), the shut-
in (black) intervals are predominant. Recall that in
this mode, the wells are reactivated and verified for
violation of the economic limits at every well sta-
tus update (included predetermined control updates),
which means verification is also guided by the cur-
rently implemented shut-in pattern history. To reit-
erate, at the verification time step, if the production
performance satisfies the economic limit (e.g., the wa-
ter cut), then the well is reopened; otherwise, the well
is shut for all subsequent time steps until a new ver-
ification is performed at the next well status update.
In Figures 4a,d, the verification time steps appear as
either gray or white stripes occurring at each status
update. The SHUT mode, on the other hand, lacks
the capacity to reopen the well. Therefore, the so-
lutions from the SHUT mode given in Figures 4b,e
show only wells that go from open to shut, and that
stay shut for the remaining simulation time.

Though the resulting shut-in patterns with and
without shut-in history are somewhat similar within
the same modes, they yield significantly different ob-
jective function values, as shown in Figure 5. Figure 5
shows the convergence of the NPV as a function of the
number of objective function evaluations for the dif-
ferent modes of enforcement, with and without shut-
in history. The optimal NPV values for each of these
runs are given in Table 4.

To simplify further analysis, we define two NPV
threshold values based on the curves in Figure 5.
Each threshold value corresponds to a major bifurca-
tion between two or more curves. The first threshold
point, ÑPVecon ' $162MM, is the bifurcation point
where the curves for the SHUT mode with and with-
out shut-in history, and the curve for constrained op-
timization, each progress along different paths. The

second threshold point, ÑPVstop ' $174MM, corre-
sponds to the bifurcation point where the curves for
the HALT mode with and without shut-in history,
and the curve corresponding to STOP, separate after

having progressed along similar paths for a certain
number of function evaluations.

The rate of convergence for all NPV curves before

ÑPVecon is similar for all modes of enforcement, ex-
cept for the STOP mode (blue curve in Figure 5).
Recall that, when in STOP mode, the testing for
whether the economic constraint is satisfied or not,
occurs at each time step while solving (1b) and (1c).
Thus, the verification process in STOP is itself part of
the search for a viable solution of the non-linear reser-
voir system. The difference with the other modes is
that in STOP, the limits are enforced at an earlier
point in the solution procedure, compared to, for ex-
ample, the SHUT and HALT modes, where the veri-
fication process occurs only after the end of the veri-
fication time steps. This observation is confirmed by
comparing the results in Figures 4a,c,d, i.e., where
we observe that, in general, the stopped statuses of
the wells occur earlier in Figure 4c compared to when
the shut statuses occur in Figures 4a,d.

Table 4: Optimal results.

NPV, $MM Description

185.269 HALT with shut-in history
181.578 HALT without shut-in history
177.047 STOP
175.299 constrained optimization
166.208 SHUT with shut-in history
162.095 SHUT without shut-in history

For the solutions with NPV greater than ÑPVecon,
the economic limit violations are already frequent
enough to affect the rate of convergence towards the
optimal solution. More specifically, it is clear that the
search direction in the optimization variable space is
less affected by the economic limits in the HALT and
STOP modes than in the other modes. The worst
effect of the economic limits is observed in the case
of the SHUT mode, which has a restrictive policy
of shutting-in the wells completely until simulation
finishes. The result of this constraint-handling tech-
nique on the control space is directly related to the
argument made in section 5.2 about how the intro-
duction of additional control points serves as a heuris-
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Figure 4: Status of the wells in the optimal solutions for four enforcement modes: HALT (a,d), SHUT
(b,e), STOP (c), constrained optimization (f) and two shut-in strategies: with shut-in history (a,b), without
shut-in history (d,e). The white, gray and black designates respectively the open, stopped and shut well
status.
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Figure 5: Convergence of the NPV with respect to
the number of objective function evaluations.

tic way to refine the solution space. In an opposite
manner, by shutting-in wells indiscriminately with
respect to objective function topology, and leaving
them shut for the remainder of the simulation, the
SHUT mode is effectively reducing the solution space
in a way that, because it is not guided by derivative
information of any sort, it is likely to reduce conver-
gence ability and possibly close-off optimal solution
areas for the optimization algorithm. These conclu-
sions are supported by the results depicted in Figure
3b,e; where an apparent fettered search leads to con-
trol values that do not depart significantly from the
values given in the initial guess.

In the next four sections, we discuss different as-
pects and implications regarding the optimization re-
sults presented so far. First, we analyze how the
open/stopped/shut status of the well affects the con-
vergence of the optimization procedure. Next, we dis-
cuss whether actively using the well shut-in history
is beneficial for the production optimization process.
We then compare the direct enforcement strategies
against the strategy of constrained optimization. Fi-
nally, we study the sensitivity of the results with re-
spect to different initial guesses.

7.2 Comparison of direct modes of en-
forcement

For STOP and HALT modes, the convergence
of the optimization procedure is similar until the

NPV reaches ÑPVstop. However, after reaching

the ÑPVstop threshold, the STOP mode ceases
to improve. We claim that this is related to the
fact that the number of errors that lead to the
inconsistency of the standard adjoint formulation is
higher in the STOP mode than in the HALT mode
(see explanation in Section 4.2), and not to the usage
of the well shut-in history. This claim is supported
by examining the results from the HALT and STOP
modes that are independent of the shut-in history.
Recall that in both the HALT without shut-in
history, and the STOP modes, the history of well
shut-ins is not retained between separate function
evaluations. Examining the results from these two

modes, we see that, beyond the ÑPVstop threshold,
the HALT without shut-in history maintains a high
rate of convergence compared to STOP, and that it
finishes with a better optimal solution (see Table
4). This points to the importance of maintaining
gradient accuracy to retain convergence competence.

Finally, we mention that the overall optimization
runtime depends not only on the number of function
evaluations but also on the runtime of the simulations
needed to perform those function evaluations. Using
as reference the runtime of a simulation without di-
rect enforcement, T , a simulation using HALT has an
average runtime equal to 0.85 T ; while a simulation
using SHUT takes on average 0.6 T ; and a simula-
tion using STOP takes on average 1.2 T . The STOP
mode algorithm is, therefore, the most expensive in
terms of runtime. This result is supported by the
fact that in the STOP mode algorithm the simulator
solves additional well equations.

7.3 Role of the shut-in pattern during
optimization

Recall that the typical SQP algorithm is set to termi-
nate as soon as one of two criteria is satisfied: either
the norm of the gradient falls below a given toler-
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ance, or a maximum number of iterations is reached.
Also, note that when computing the gradient norm,
we exclude the controls that have reached the bound-
ary of the feasibility region. Using the gradient-based
criterion assumes that the gradient is sufficiently ac-
curate which may not be the case here. For this rea-
son, in addition to the two criteria mentioned above,
we also terminate the SQP when the update step of
the optimization variables reaches the order of ma-
chine epsilon. Which of the criteria mentioned here
that is activated depends in large part on the type of
constraint enforcement being implemented. Next, we
discuss the role of these criteria in the termination of
the different runs in case study 1.

When optimizing the controls of wells subject to
possible shut-ins, the gradient-based SQP algorithm
may underperform when trying to meet the gradient-
based convergence criterion. Because the SQP algo-
rithm acts on the well controls only, it has no di-
rect influence on the well statuses. A consequence is
that the algorithm can get caught up in an extended
sequence of sub-optimal solutions (resulting from un-
planned shut-ins) in which the gradient norm is above
the specified tolerance. This happens when all can-
didate control updates produce shut-in patterns that
yield lower NPV values than the current one. The
occurrence of shut-ins may thus hinder the algorithm
from reaching the tolerance of the gradient-based ter-
mination criterion, and thus end up generating un-
necessary function evaluations. Such termination can
be observed in Figure 5 in the convergence plots of
the HALT (dashed red) and SHUT (dashed green)
modes. In these plots, the monotonically increasing
part ends with a flat line indicating several minor it-
erations with sub-optimal shut-in patterns. Thus, in
terms of convergence properties, taking into account
the shut-in history seems to counteract premature
convergence caused by discrepancies between the al-
gorithm update and the actual controls imposed dur-
ing simulation. As seen in Figure 5, the strategies
that save the optimal shut-in pattern and reapply it
in subsequent iterations, i.e., SHUT and HALT, both
with shut-in history, continue to improve the optimal
solution. Interestingly, this result can be seen in light
of the argument made at the end of section 5.2 that
discusses how additional, reused, control points can

improve algorithmic performance.

7.4 Economic limits enforced by con-
strained optimization

The comparison between the results obtained when
using constrained optimization (constraints enforced
at algorithm level) against the results obtained when
using the STOP and HALT modes of enforcement,
expands the conclusions presented in [12] regarding
the constraints used as a control type compared to
constraints imposed by economic limits. In addition,
we want to mention that this indirect type of enforce-
ment is less accurate than the direct ones because the
non-linear constraints implemented at the algorithm
level are only an approximation of the economic lim-
its. In fact, the economic limits are approximated
twice before being supplied to the non-linear pro-
gramming solver. They are first approximated when
we use the previously run simulation to estimate the
relevant performance profile of the well. Then, a sec-
ond approximation step occurs when we supply SQP
with only the first order derivatives of these perfor-
mance profiles with respect to the well controls. Uti-
lizing only linearized constraints is a limitation of the
SQP algorithm.

7.5 Sensitivity analysis

In this section we study the robustness of these results
with respect to the initial guess and the geometrical
complexity of the model.

First we optimize case study 1 with twenty random
initial guesses obtained by perturbing the base case
with a 5% Gaussian noise. In Figure 6 we show three
plots, each corresponding to a different realization.
Each plot shows the NPV function evolution corre-
sponding to the best (solid line) and the worst (dash-
dot line) optimization run from among the twenty
initial guesses considered. For each pair of runs, we
compare the HALT with shut-in history (red) against
the STOP (blue) mode. The results confirm that the
HALT-based algorithm outperforms the STOP-based
one over a wide range of initial guesses. A large varia-
tion between the best and worst solutions underlines
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Figure 6: Convergence of the NPV with respect to the
number of objective function evaluations for the best
(solid) and worst (dash-dot) runs from a set of twenty
optimization runs launched with different (random)
initial guesses. Each optimization is run once with
the HALT with shut-in history (red) and then with
the STOP (blue) enforcement mode. Each plot cor-
responds to a different realization of permeability.

the high multimodality of the production optimiza-
tion problem. Because the SQP algorithm is of a
local search type, it cannot address the multimodal-
ity as efficiently as a global-local hybrid algorithm
can. In the future extension of this study, the authors
will investigate the performance of hybrid algorithms
for production optimization problems with economic
limits.

The second sensitivity result is obtained by per-
forming the above analysis to case study 2. Here we
run ten optimization runs with various initial guesses.
Nine of those guesses are generated by perturbing the
base case with a 5% Gaussian noise and the tenth
guess is assigned with producers/injectors set to the
lower/upper bounds of the BHP controls (a “full-
blast” configuration).

Figure 7 illustrates the convergence of the best
(solid line) and the worst (dash-dot line) optimiza-
tion runs. The red and blue colors correspond to
HALT with shut-in history and STOP modes, re-
spectively. The best function evolution curve (solid
line in Figure 7) is obtained when using the tenth
initial guess, i.e., the full-blast configuration for pro-
ducers/injectors. Although the optimal NPVs vary
over a wide range, the HALT mode clearly outper-
forms the STOP mode. The difference between the
two modes is evident when comparing the well BHP
controls and well status as shown in Figures 8 and 9.
In these figures we notice that the injectors remain
open for a longer time in the HALT mode than in
the STOP mode. This behavior is similar to the one
observed in case study 1 and commented in detail in
Section 7.1.

8 Conclusions

The main inference in this work is that a non-valid
standard adjoint formulation will yield inaccurate
gradients, and that this, in turn, will reduce the
performance of a gradient-based algorithm for pro-
duction optimization. The standard adjoint formu-
lation is subject to inconsistencies whenever discon-
tinuities are introduced within the simulator’s well
model equations due to the enforcement of economic
constraints.
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Figure 7: NPV convergence curve with respect to
the number of objective function evaluations for case
study 2. The best (solid) and worst (dash-dot) opti-
mization runs from among ten random initial guesses
are shown. For each initial guess, an optimization run
using the HALT with shut-in history (red) and STOP
(blue) enforcement modes has been performed.

This type of constraints are commonly enforced
within the reservoir simulator when performing
gradient-based production optimization. For this
reason, in this work, we devise an improved im-
plementation of the simulator-based constraints for
which the adjoint gradients have fewer consistency
errors. In this new implementation, the well model
equations that violate the constraints are removed
from the governing system right after the occurrence
of the violation and not reinserted until the next
well status update. The shut-in periods for these
wells last just long enough so as to mitigate the
resulting non-differentiability and loss in consistency
of the standard adjoint formulation, though without
inducing a major loss in the sensitivity of the gradi-
ent. Further analysis requires a broad quantitative
comparison of the effects of lost sensitivity versus
loss of consistency, and is the subject of ongoing
work.

Numerical experiments show that the implementa-
tion of economic limit enforcement introduced in this
paper outperforms commonly used implementations.
In this respect, results from the test cases confirm

that the proposed implementation speeds up conver-
gence and improves the final optimal solution. Fi-
nally, a supplementary strategy that takes into ac-
count shut-in history is presented and tested. To
further improve convergence, this strategy stores the
shut-in pattern corresponding to the best simulation
run so far, and applies it as initial control configura-
tion in subsequent iterations of the optimization al-
gorithm. Other possible applications of the strategy
are noticed, e.g., the determination of the economic
life time of the reservoir, but are deferred to future
work by the authors.
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