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ABSTRACT
Modern industrial robotic systems are highly interconnected. They operate in a
distributed environment and communicate with sensors, computer vision systems,
mechatronic devices, and computational components. On the fundamental level,
communication and coordination between all parties in such distributed system
are characterized by discrete event behavior. The latter is largely attributed to the
specifics of communication over the network, which, in terms, facilitates asynchronous
programming and explicit event handling. In addition, on the conceptual level, events
are an important building block for realizing reactivity and coordination. Event-
driven architecture hasmanifested its effectiveness for building loosely-coupled systems
based on publish-subscribe middleware, either general-purpose or robotic-oriented.
Despite all the advances in middleware, industrial robots remain difficult to program
in context of distributed systems, to a large extent due to the limitation of the
native robot platforms. This paper proposes an architecture for flexible event-based
control of industrial robots based on the Adept V+ platform. The architecture is
based on the robot controller providing a TCP/IP server and a collection of robot
skills, and a high-level control module deployed to a dedicated computing device. The
control module possesses bidirectional communication with the robot controller and
publish/subscribe messaging with external systems. It is programmed in asynchronous
style using pyadept, a Python library based on Python coroutines, AsyncIO event loop
and ZeroMQmiddleware. The proposed solution facilitates integration of Adept robots
into distributed environments and building more flexible robotic solutions with event-
based logic.

Subjects Autonomous Systems, Computer Networks and Communications, Computer Vision,
Robotics, Software Engineering
Keywords Robotics, Adept, Coroutines, AsyncIO, ZeroMQ, Robot architecture, Computer
vision, Communication protocols, Concurrency, System composability

INTRODUCTION
Robots are always associated with high level of complexity, which is usually considered
with respect to the task being performed. Because modern robotic systems operate in a
networked environment, the additional complexity is caused by the nature of interaction
and coordination with sensors, vision systems, various mechatronic equipment, and
computational components, such as servers and cloud services. As Kortenkamp & Simmons
(2008)note, ‘‘robot systems need to interact asynchronously, in real time, with an uncertain,
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often dynamic, environment. In addition, many robot systems need to respond at varying
temporal scopes—from millisecond feedback control to minutes, or hours, for complex
tasks’’. This is the reason why robotic architecture becomes increasingly important.

To tackle the challenges associated with communication and coordination complexity,
a number of robotic middleware solutions has been developed, most notably, the Robot
Operating System (ROS). Most of them support publish—subscribe messaging style, where
messages are asynchronously delivered from publisher to subscriber nodes.

The primary use of the publish/subscribe mechanisms in systems based on robotics
middleware is delivery of periodic sensor readings. The reason is that in many cases,
especially in the research environment, robots are viewed as continuous systems,
characterized by a set of continuous time-varying signals, sampled at a constant
interval (Dantam et al., 2016). The idea of periodic sampling is central to the classical
approach to digital system control, as it is rooted in the solid theory of periodic
control (Astrom, 2008). Since robotics shares its intellectual tradition with control
engineering, periodic sampling became a dominant strategy for real-time sensing in robotic
systems. Although the periodic approach works well for traditional point-to-point control
systems, in the distributed environment one faces such challenges as latency, jitter in packet
delivery, and lost packets. In addition, with introduction of more resource-constrained
devices, the cost of communication increases, and it becomes of critical interest to base
the control system on reactivity only to events of particular importance (Miskowicz, 2015).
In addition to events derived from continuous signals (e.g., based on a signal threshold),
numerous classes of sporadic discrete events constitute an important abstraction for
modeling behaviors in cyber-physical systems.

The discrete event behavior is apparent in situations when a system is convenient
to model as possessing discrete state space (e.g., {IDLE, BUSY, DOWN }), when a
system automates discrete parts manufacturing, when human iteration is involved
(e.g., button press at an arbitrary time), when an unpredictable disturbance requires a
system’s component restart, and many others. For a number of automated components
(e.g., robots, feeders etc.) cooperating, events constitute an important abstraction that
ensures synchronization of the components’ operation. In addition to the inherent
discrete event nature of many processes where industrial robots are involved, latency,
attributed to any communication system, calls for event-driven and asynchronous design
of computational modules that involve networking.

From the engineering perspective, it is beneficial to be able to compose a robot control
program from modular well-defined components, rather than coding up everything from
scratch in a monolithic fashion (Onori & Oliveira, 2010). One approach is to specify
sequences of operations to form serial, parallel, or arbitrary order sequences (Lennartson
et al., 2010). This paper makes use of the coroutine abstraction to define composable
communication-heavy tasks with event-based logic. The main idea is to treat the robot
and external nodes (such as vision systems) as services, and coordinate communication
with them from a high-level control node. The logic of the latter is composed from a set
of Python AsyncIO coroutines based on domain-specific abstractions. The benefit of this
approach is that one is able to realize much more complex coordination scenarios, where
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the burden of error-prone communication is lifted from the native yet restricted robot
controller platform to a higher-level AsyncIO-driven application. This paper applies the
described line of thinking as a custom solution for the Adept V+ robot platform. Although
the described solution is platform-specific, the paper aims at establishing a common design
paradigm for multitude of industrial robots.

At the core of the proposed robot control architecture lies two-sided communication:
(1) TCP/IP connection between the robot controller and the control node, and (2)
publish–subscribe communication with the external nodes. The architecture facilitates
specification of event-driven communication logic and internal asynchronous runtime. As
a result, it becomes easier, more flexible, and less error-prone to program industrial robots
and integrate them into distributed environments. The implementation of the system is
done based on AsyncIO Python abstractions and ZeroMQ middleware. The architecture
is validated by a proof-of-concept implementation of a robotic system with vision sensing,
where a robot, a set of GigE Vision cameras, and a set of computing nodes are connected
in a VLAN-based network configuration.

The paper is structured as follows. First, the background on approaches to robot
programming, implementation and semantics of events in computational systems, and
event-driven middleware is presented. Further, the principles and architecture of the
proposed system are described. An application use case that validates the ideas of this paper
is then introduced and analyzed. The proposed solutions are discussed and compared to
similar systems. The paper concludes with outlining the further development directions.

BACKGROUND
Approaches to programming industrial robots
Industrial robots are supplied as end-products with carefully engineered hardware and
software components. As robots are essentially programmable devices, an important part
of the system is the robot controller with the associated computational capabilities and
programming interface. An Adept robot controller runs V+ (Adept Technology, Inc., 2014),
a real-time multi-tasking operating system. It controls robot motion, input/output, task
management, and other necessary operations. V+ is also the name of a programming
language for the Adept platform. Other robot platforms are based on similar operating
systems, e.g., KUKA.SystemSoftware and ABB RobotWare.

When developing a robot control program, the most straightforward way to go is
programming all the logic to be run by the robot controller. The availability of various I/O
interfaces, such as digital signals, DeviceNet, Ethernet, and RS-232, allows to communicate
with external systems when needed. In such an arrangement, the native robot controller has
the master role. To program an Adept robot controller, one requires a client programming
environment (such as Adept ACE, Adept DeskTop), that runs on a Windows-based
programming station. V+ codebase is comprised of subroutines called programs that are
gathered in modules. An individual program can be associated with an operating system
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Figure 1 Classical robot programming setup in context of the Adept platform.
Full-size DOI: 10.7717/peerjcs.207/fig-1

task, which in turn can be run concurrently with other tasks. Figure 1 shows this kind of
configuration, with task 1 being associated with the V+ program highlighted yellow.

The configuration where the robot has the master role offers good timing properties,
but makes the control logic rather rigid and monolithic. Specifically, it becomes difficult
to operate such robot as a part of a system with a large number of distributed components.
When more flexibility is required, an alternative solution is a client/server configuration,
where the robot controller runs a TCP/IP server, and accepts commands from a client
on a general-purpose platform (e.g., x86-64- or ARM-based computer running Linux).
The client can be more flexibly programmed, and normally constitutes a part of a larger
distributed architecture, for example, as a ROS node or other computational component.
The defined set of commands, may include various motion tasks, as well as coarse-grained
tasks, pre-defined as V+ programs in the robot controller. One of the challenges in this
latter case is to define a suitable wire protocol and ensure that commands to the robot
controller are read and processed correctly, given the stream nature of the TCP protocol.

Events in computational systems
One distinguishes between time-driven and event-driven systems. In the former case,
everything is modeled with respect to a clock with a given frequency. For example, a
continuous signal is sampled at a constant time interval. Such systems are a subject of
study in classical control. Conversely, event-driven paradigm presumes that a system is
characterized by a discrete state space, and events can occur at any time instant. An event in
this case constitutes any instantaneous occurrence that causes transition from one system
state to another (Cassandras & Lafortune, 2008).

The behavior of industrial automation systems is to a large extent event-driven. It
manifests itself in both the nature of the applications and in the inherent properties
of digital communication systems, specifically the latency. To deal with the latter, the
operating system provides the abstraction of I/O events. An I/O event is associated with a
particular resource becoming ready, e.g., data has arrived from the network and is ready
for non-blocking access. On *nix platforms with POSIX system call API, mechanisms
for monitoring I/O events comprise I/O multiplexing (select/poll), signal-driven I/O,
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the Linux-specific epoll, and BSD-specific kqueue (Kerrisk, 2010). Windows features the
IOCP threading model for concurrent handling of asynchronous I/O.

To tackle system design when waiting for a network operation to complete, the event-
driven programming paradigm is employed, which directly harnesses I/O events. As shown
in algorithm 1 (adapted from the event-driven server example by Rhodes & Goerzen
(2010)), an event driven system component is comprised of (1) a continuous event loop,
(2) a polling source p (such as one of the I/Omonitoring system calls with a set ofmonitored
file descriptors), (3) a set of possible events on every loop iteration (events), and (4) data
containers for accumulation of request and response data (Din, Dout ).

Algorithm 1 Event-driven component

1: function EventLoop(p)
2: Initialize S F Set of monitored connections
3: Initialize Din F Dictionary of input bytes per connection
4: Initialize Dout F Dictionary of output bytes per connection
5: while true do
6: events← poll(p) F Set of events available for processing at this time
7: for e ∈ events do
8: if e= New connection c is available then
9: Add c to S
10: else if e= Connection c got closed then
11: Remove c from S
12: Remove Din[c] and Dout [c]
13: else if e= Data available for reading at connection c then
14: Read from c to Din[c]
15: if Din[c] contains a complete request then
16: Dout [c] ← Process bytes in Din[c]
17: end if
18: else if e= Connection c is available for writing then
19: Write to c some bytes from Dout [c]
20: Dout [c] ← Unsent bytes in Dout [c]
21: end if
22: end for
23: end while
24: end function

Implementing such loops directly is error-prone. Therefore, a number of event-driven
networking frameworks exist for different programming languages. They encapsulate the
low-level system calls and provide object-oriented interface based on such design patterns
as Reactor and Proactor (Buschmann, Henney & Schmidt, 2007). Such patterns realize the
Inversion of Control (IoC) principle, where application-specific callbacks are registered,
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and later called by the framework on occurrence of the respective events. Examples of such
frameworks are Boost Asio and ACE for C++, and AsyncIO and Twisted for Python.

AsyncIO (Python Software Foundation, 2019) is a part of Python standard library,
introduced in Python 3.4, which provides a standardized way for implementing event loops
with sets of concurrent non-blocking coroutines. A coroutine constitutes an executable
object that represent a particular application-specific task. An important feature of a
coroutine is that it can pause its execution and yield control to the event loop. As a result,
one achieves cooperative multitasking, where a set of coroutines get suspended and resumed
as different events occur and conditions get satisfied. Such programming style gives the
most evident advantage in realizing scalable event-driven servers. In addition, as further
shown in this paper, several communication-heavy tasks can be composed together in a
well-defined way when implemented as AsyncIO-based coroutines.

Another use case of explicit utilization of events is asynchronous programming. A
functions call can be either synchronous, which blocks until the function completes, or
asynchronous, which returns immediately. The results of an asynchronous function call
shall be processed as a part of other operation once they become ready. A completion event
in this case can be captured and processed in a way similar to algorithm 1. As a polling
source, a blocking queue can be used, with one execution thread putting a event object
in it, and the other thread (running the polling loop) getting an event object from the
queue when one is ready. When using future objects, the polling source constitutes a set
of futures, which are monitored in a way similar to polling file descriptors in algorithm 1.
Although futures and queues are typically used to realize thread-based concurrency, their
counterparts exist also in AsyncIO.

Similarly to synchronous vs asynchronous function calls, when dealing with networking,
one can realize two communication styles: request/reply, which is logically synchronous,
and publish/subscribe, which decouples operations of sending/publishing a message and
its receiving on the subscriber’s side. The publish–subscribe messaging in the backbone of
event-driven middleware, which is presented in the following subsection.

Event-based middleware
As the contemporary robotic systems are necessarily distributed, an important component
is robotic middleware, which provides a unified set of communication and input/output
capabilities.

The transport layer functionality (TCP and UDP protocols) on POSIX-based operation
systems can be implemented via the C-based socket API, as well as by utilizing various
object-oriented network frameworks (Komu et al., 2012). The ‘‘native’’ connection-oriented
communication (using a pair of TCP/IP sockets) is a straightforward and low-overhead
means of exchanging data between two networked nodes. It, however, presumes temporal
dependency, i.e., requirement for the components to be available at the same time, along
with address knowledge and agreement on data representation. In contrast, messaging
middleware allows to decouple the communicating components by introducing message
queuing, built-in address resolution (e.g., via handling logical addresses such as topic
names), and usage of a common data serialization format (Magnoni, 2015). An important
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feature of a middleware is the provision of the publish/subscribe and other messaging
patterns, which allows to design a distributed system in an event-driven fashion.

The defining components of a particular middleware solution are the communication
protocol (transport-level TCP and UDP, wire-level AMQP, ZeroMQ/ZMTP, MQTT), the
communication styles (request/reply, publish/subscribe), and the data serializationmethod
(typically based on an interface definition language like Protobuf or Apache Thrift). Many
middleware solutions are based on a central broker, e.g., ActiveMQ and RabbitMQ. The
additional hop through the broker adds a constant value to the communication latency
(Dworak et al., 2012), which is not desirable for time-sensitive applications such as robotics.
ZeroMQ is an example of broker-less middleware, in which the message queuing logic runs
locally within each communicating component (ZeroMQ, 2008).

Several state-of-the art middleware solutions has been evaluated at CERN (Dworak et
al., 2011) to find the most suitable candidate for realizing the upgraded CERN Controls
Middleware, a system responsible formanaging communication with amultitude of sensors
and actuators at the organization’s accelerator complex. Similarly to the specifics of the
robotics context, for CERN engineers it was important to achieve low latency, as well as low
memory and resource usage. In addition, it was preferable to possess a solution without
message brokers, central servers, or additional daemons. As a result of the performance
study with different communication scenarios (Dworak et al., 2012), ZeroMQ was chosen
as the most suitable technology. Specifically good results were shown with respect to system
scalability (latency was kept relatively constant regardless the number of clients added) due
to its automatic buffering capability.

Robot Operating System (ROS) is the most widely used middleware that is specifically
designed for building distributed robotic systems. It supports request/reply remote
procedure calls via services, and publish/subscribe communication via topics. Messages
in ROS are serialized with the built-in serialization mechanism. A ROS system requires a
central master server, responsible for name resolution. On the transport layer, both TCP
and UDP are supported via standard sockets. In its current form, ROS is tightly coupled
with Ubuntu as the runtime platform.

To preserve the philosophy of ROS and most of working code, yet adapt it to the
production environment, the ROS2 initiative has started (Gerkey, 2018), introducing
cross-platform support (including for small embedded platforms) and built-in real-time
control capabilities. Data Distribution Service (DDS) is used as a communication backbone
in ROS2. DDS is a data-oriented middleware standard with several industrial-grade
implementations, which provides various transport configurations suitable for real-time
control (e.g., deadline and fault-tolerance) (Maruyama, Kato & Azumi, 2016).

ROS is perhaps the most widely used robotic middleware, although not the only one.
The development of the iCub humanoid platform has spinned-off YARP, which is based
on ACE for communication and Thrift for typed data serialization. YARP supports the
publish/subscribe messaging paradigm and different buffering policies, such as FIFO and
Oldest Packet Drop (ODP) (Natale et al., 2016).

The low-level operating system capabilities are directly utilized by the ach interprocess
communication library (Dantam et al., 2015; Dantam et al., 2016), designed specifically
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for real-time transmission of periodically sampled sensor signals in a robotic system. The
goal of the library is to guarantee processing of the latest sample with a minimum latency.
Contrary to traditional robotic middleware solutions, ach is implemented as a Linux kernel
module.

Robotic middleware solutions such as ROS, YARP, and ach are rooted in the research
environment, and often used with complex prototypes such as humanoid robots, AGVs,
and various custom-built robotic systems. When it comes to industrial robots, specifically
older models, their support is rather limited, even in the context of the popular ROS
platform. Support for the latter is being added by the participants of the ROS-Industrial
consortium, and, for some new robot models, ROS support comes built-in out of the box.
In general, however, there is a long way to go. The Adept platform, for instance, does not
have a maintained ROS driver.

The pilot implementation of the robot control solution proposed in this paper uses
ZeroMQ as the middleware for publish–subscribe communication. In addition to being
highly lightweight, efficient, and cross-platform, ZeroMQ natively supports the AsyncIO
event loop.

SYSTEM ARCHITECTURE
This section presents the architecture for industrial robot control that facilitates integration
of the robots into distributed systems with publish–subscribe communication and building
flexible solutions with event-based logic. First, the general principle of the architecture,
along with a step-by-step example of communication between the robot controller and the
high-level control node is presented. Further, a more detailed description of the proposed
wire protocol is described, followed by an overview of the developed software abstractions
based on AsyncIO and ZeroMQ.

Components and general principles
The proposed system for control of an industrial robot is based on two principal
networked components: (1) RobotServer, a TCP/IP server realized on the robot
controller, and (2) MasterControlNode, a high-level control node running on a dedicated
computer, perfoming computations aimed at establishing the desired control logic, and
communicating with both the RobotServer and other networked components (Fig. 2).
RobotServer is associated with the defined set of actions, dubbed skills. They are
implemented as procedures in the robot controller’s programming language, each
accepting its own set of parameters. To make the robot perform a specific skill, the
MasterControlNode sends the corresponding ASCII byte string over the TCP socket
connecting it with the RobotServer. A correctly formatted byte string that correspond
to the available skill is referred to as a command message, and it is always delimited
with ‘‘\r\n’’. A more formalized description of the communication protocol between
MasterControlNode and RobotServer is presented in the following subsection.

As an example, consider a robot operation of motion towards a specified pose in the
world coordinate frame. To perform it, MasterControlNode sends a byte string such as
the following:

Semeniuta and Falkman (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.207 8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.207


MasterControlNodeRobotServer
TCP server TCP async writer

TCP async reader

ZeroMQ publisher

ZeroMQ subscriber

skill1skill1skilli

coroutinej

AsyncIO event loop

Server/executor 
task

Direct robot control

Figure 2 Structure of the proposed robot control system.
Full-size DOI: 10.7717/peerjcs.207/fig-2

eae86869:move_to : -80.000 , -481.000 ,112.500 ,180.000 ,90.000 ,180.000\r\nee861124:break
\r\n

The above byte string is comprised of two messages, corresponding to skills move_to
and break, each defined as a V+ program. The former accepts six real-valued arguments
(in this case, x, y, z, yaw, pitch, roll), while the latter is invoked without arguments. It
is a common pattern to combine a motion command with breaking, as this ensures that
several subsequent motions are not interpolated, and the robot’s end effector reaches the
specified pose.

The first 8 bytes of each message correspond to a unique ID, generated by the
MasterControlNode. It is obtained as the first 8 bytes of anUUID generated by the Python’s
uuid.uuid4 function. The remaining components, separated by a colon, constitute the
name of the skill and the list of parameters.

RobotServer operates as a task in the robot controller that realizes a TCP server. After a
complete message is read from the TCP stream, it is mapped to the specific skill, which gets
executed, with the start and completion timestamps being recorded. After the completion,
an acknowledging message of the following form is sent back to MasterControlNode:
eae86869:done :2492.516 ,2492.539:480.014 , -0.038 ,709.975 ,0.000 ,179.995 ,0.004\r\n

The parts of the acknowledging message, separated by colons, constitute the associated
command message ID, execution status, starting and completion timestamps separated by
a comma, and current robot pose separated by commas. The timestamps are measured
in seconds with millisecond precision, and the pose parameters correspond to translation
vector components x, y, z, expressed inmillimeters, and rotation angles (yaw, pitch, roll)
expressed in degrees.

MasterControlNode monitors the arrival of responses from RobotServer, and, for
the current operation, once all of the IDs that characterize this operation have been
acknowledged, the operation is marked as completed.
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In addition to communication with the RobotServer via TCP, the MasterControlNode
participates in a distributed publish/subscribe network. All the communication primitives
are implemented on top of Python’s AsyncIO event loop.

Communication protocol
MasterControlNode and RobotServer communicate with a TCP-based protocol
described in this subsection.

When MasterControlNode (the client) gets connected to RobotServer (the server), a
communication session is established. It stays active until one of the endpoints (normally the
client) closes the connection. Both endpoints send each other streams of bytes, where every
byte is semantically regarded as the corresponding ASCII-encoded character. Sequence
‘‘\r\n’’ has a role of delimiter string, which separates two consecutive messages.
delimiter ::= "\r\n"

The primary workflow in the proposed architecture is that the client sends commands
to the server, the latter execute those commands, and sends the response back. As such,
messages sent from the client to the server are referred to as command messages. A command
message represent a string that can be mapped to a predefined V+ program (skill).
Currently, four classes of command messages are defined, responsible namely for (1)
motion, (2) braking, (3) air triggering, and (4) setting the speed of the subsequent motion:
command_message ::= motion_msg | break_msg | air_msg | speed_msg

Motion messages map to motion skills, which constitute V+ programs having 6 real-
valued arguments (representing either poses or joint vectors). Formally, a motion message,
along with its components, is defined as follows:
motion_msg ::= motion_command_name ":" location delimiter
motion_command_name ::= "move_to" | "move_joints" |

"move_rel_world" | "move_rel_joints" | "move_rel_tool"
location ::= real "," real "," real "," real "," real "," real
real ::= digit+ "." fractional;
fractional ::= digit digit digit
digit ::= [0-9]

Semantics of the motion skills is the following:

• move_to:x,y,z,yaw,pitch,roll moves the robot’s tool center point to the specified
pose, expressed in the world coordinate frame. Here x,y,z represent a translation vector
expressed in millimeters, and yaw,pitch,roll represent a vector of rotation angles
expressed in degrees.
• move_rel_world:x,y,z,yaw,pitch,roll performs movement relative to the current
pose expressed in the world coordinate frame: given the current pose wξnow , move to the
pose wξnow

⊕
ξ , where ξ is embodied in the pose parameters x,y,z,roll,pitch,yaw.

• move_rel_tool:x,y,z,yaw,pitch,roll performs movement relative to the current
pose t ξnow expressed in the tool coordinate frame (t ξnow

⊕
ξ).

• move_joints:j1,j2,j3,j4,j5,j6 move robot to the specific joints configuration.
• move_rel_joints:j1,j2,j3,j4,j5,j6 performs relative joint movement by
displacing each joint in the amounts specified by j1,j2,j3,j4,j5,j6.
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In addition to motion_msg, other command messages are responsible for the following:
break_msg signalizes the robot that two subsequent motions with break in between
shall not be interpolated; air_msg is used to control vacuum valves attached to the tool;
speed_msg specifies a speed factor for the subsequent motion command.
speed_msg ::= "set_speed" ":" (digit | digit digit | digit digit digit)

// speed factor range: 0-100
air_msg ::= (’enable_air ’ | ’disable_air ’) delimiter
break_msg ::= "break" delimiter

One or more commands constitute a command chain.
command_message_chain ::= command_message+

By the nature of the TCP protocol, the bytes are communicated between endpoints
in a streaming fashion: the correct order of bytes is guaranteed, but a sent message may
not be delivered as an atomic entity, and may arrive in pieces. That’s why, on both
the MasterControlNode’s and RobotServer’s side, buffering of the incoming bytes is
performed.

Software abstractions
The pilot implementation of the proposed architecture is released as the pyadept Python
library (Semeniuta, 2018b), together with the associated V+ code as the AdeptServer project
(Semeniuta, 2018a), both licensed under the 3-clause BSD license. The intended workflow
is based on treating the robot controller as a service. The first stage is to enable high
power for the robot and start the AdeptServer’s server V+ program as a task on the robot
controller. After this, a Python program based on pyadept can be launched and used for
the high-level system coordination.

Robot commands (as specified in the ‘‘Communication protocol’’), are defined as classes
in the pyadept.rcommands module. They construct immutable instances providing the
functionality of correct generation of the corresponding byte strings. All robot command
classes realize the get_messages method, returning a tuple of byte strings, each finalized
with the delimiter sequence "\r\n".

The pyadept.rprotocolmodule consists of classes, functions and coroutines realizing
the logic behind two-sided communication of a MasterControlNode, as well as tools
for data capture during system operation. The two central classes of this module are
RobotClient and ProtobufCommunicator, realizing AsyncIO-based communication
with the RobotServer and the external systems respectively:

• RobotClient provides coroutine methods connect (establishing the connection
with the server), as well as cmdexec and cmdexec_joined (providing execution
of commands). The two latter methods accept one on more instances of robot
commands and initiate communication with the RobotServer using AsyncIO’s
StreamWriter/StreamReader pair. Several commands supplied to cmdexec are
handled one-by-one: each command’s messages are sent to the server, and the
corresponding responses are awaited before proceeding to the next command.
Conversely, cmdexec_joined combines messages from the supplied commands into a
single sequence, and sends all of them in one run.
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• ProtobufCommunicator uses AsyncIO-compatible ZeroMQ primitives to announce a
Protobuf-based request event and wait for the corresponding Protobuf-based response
in the context of a publish/subscribe system.

APPLICATION USE CASE
Problem context
The functionality of the proposed system is demonstrated on a robotic application of
handling a small part for a detailed vision-based quality inspection. Drawing from the
previous work on picking and inspection of small automotive components (Semeniuta,
Dransfeld & Falkman, 2016), the described setup is aimed at moving the part from the pick
pose ξpick to the inspection-start pose ξis in front of a Prosilica GC1020C camera with a
35 mm Fujinon HF35HA-1B lens, with the subsequent sequence of tool rotations while
keeping the part in focus of the camera. On each rotation increment, an image from the
camera is requested by the MasterControlNode.

The primary operation, described in the previous paragraph, is performed after the
initial calibration phase, which includes determination of the inspection-start pose ξis.
Since the chosen camera setup is aimed at close-range imaging of small parts, it is rather
sensitive to the depth at which the manipulated part is being held. That’s why, in order to
determine the focus plane, a calibration tool is moved first to the approach pose ξappr , and
eventually aligned with the focus plane by a series of small linear motion increments with
vision feedback. A robot in poses ξappr and ξis is shown in Fig. 3.

System components
To realize the described task and demonstrate composability of the MasterControlNode/
RobotServer pair with components providing vision services, the system shown in Fig. 4 is
considered. In addition to the robot-related components, it includes an FxIS-based image
acquisition service ImAcqService (Semeniuta & Falkman, 2018), and ImProcNode –a
computational component responsible for image processing. The ImProcNode component
is realized with EPypes primitives (Semeniuta & Falkman, 2019), i.e., the logic of the image
processing routine is specified as a directed acyclic bipartite graph of computational
procedures as data tokens.
The vision-related components (ImAcqService and ImProcNode) are composed via

thread-based concurrency, with asynchronous communication being performed via
blocking queues. ImAcqService performs continuous image acquisition from one or more
GigE Vision cameras while keeping a circular buffer of a number of recent images. On
arrival of a vision request event, the buffer is queried to retrieve the most closely associated
in time image. The latter undergoes processing in the ImProcNode, with the result being
published.

More complex systems bearing the same architecture can be comprised of larger number
of nodes. The subset of components shown as a part of the gray-shaded region constitutes
the system with publish–subscribe communication. The green double-sided arrow shows
the TCP-based communication between MasterControlNode and RobotServer.
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Figure 3 Robot in the approach pose ξappr (A) and the sought inspection-start pose ξis(B).
Full-size DOI: 10.7717/peerjcs.207/fig-3
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Figure 4 Event-driven communication in a robotic cell.
Full-size DOI: 10.7717/peerjcs.207/fig-4
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Figure 5 Network configuration.
Full-size DOI: 10.7717/peerjcs.207/fig-5

Network topology design
The laboratory setup used in this paper constitutes a distributed system (Fig. 5) consisting
of a robot controller (ROB, Adept V+), three GigE Vision-based industrial cameras (C1,
C2, C3), and three computational nodes: a computer performing image acquisition and
running computer vision routines (VIS, Ubuntu), a robot programming station running
Adept DeskTop (ADT, Windows), and a Raspberry Pi single-board computer running the
master control node (MCN, Debian).
The above components are joined into two IP networks: (1) the Robot Network, and

(2) the Vision Network. Both of them are realized with a single managed network switch
(Netgear GS108Ev3) supporting the IEEE 802.1Q protocol for virtual LANs. The MCN
component is configured with two virtual network adapters and connected to the tagged
port on the switch. MCN thus belongs to both networks.

With regards to the components shown in Fig. 4, they are deployed as follows. ROB
hosts the RobotServer, while MCN hosts the MasterControlNode. The vision-related
components (ImAcqService and ImProcNode) run on the same physical machine
(VIS). This is motivated by the substantial cost of image transmission over the network.
ImAcqService performs acquisition from C1, C2, C3. C1 is the camera with the 35 mm
focal length lens employed for close-range measurement, and it is used to perform the
experiment described further.

Vision system for sharpness measurement
In order to realize robot movement with visual feedback on how focused the tool plate
is, the following system is employed. A simple planar calibration object is attached to the
robot’s tool plate (Fig. 6). The object constitutes a series of rectangles of different sizes
enclosed one inside the other. A rectangle’s border is a thin black line. The motivation is
that when the object is out of focus, the thin lines become blurred. By devising a method
that systematically measures sharpness of the object, it can be possible to provide the
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Figure 6 Calibration object on the robot’s tool plate.
Full-size DOI: 10.7717/peerjcs.207/fig-6

necessary feedback to MasterControlNode. The white background makes the object easily
segmentable.

The developed algorithm for sharpness measurement is visualized as an EPypes
computational graph in Fig. 7. Here, ellipses represent data tokens, and rectangles represent
processing functions. The shaded tokens are the pre-defined configuration values.

The original image (image) is supplied in the grayscale format. First, it undergoes
thresholding operation (highlight_light) to highlight the light regions on the image,
including the white background of the calibration object. The thresholded binary image
(thresholded_light) is eroded to remove the influence of the black lines in well-focused
images (erosion). Further, connected components are identified (find_ccomp). The
goal is to segment the connected component belonging to the calibration object. To do
that, a filter based on width-to-height ratio range and minimal region area is applied
(identify_object_region). The selected region of interest is cropped (crop_roi) from
the original image, and is used as an input to the Sobel operator, applied in the x direction
(sobel_x). From the middle, in terms of y axis, of resulting gradient image sobelx_im,
a horizontal line profile profile_sx is extracted (h_profile_sobelx). As a measure of
sharpness (measure_sharpness), the standard deviation of this profile is used: the more
the original image is in focus, the greater variability between dark and bright pixels in the
calibration region.

Figure 8 demonstrates the intermediate results (sobelx_im and profile_sx tokens) of
the sharpness measurement routine for images with different positioning of the calibration
object. Poses labeled {1,2,...,5} are ranged in decreasing distance to the camera. Pose 3
results in the sharpest image, which is reflected in the highest volatility of profile_sx.

For another sequence of 20 pose increments, where the robot arm was gradually moved
from the approach pose closer to the cameras, the value of the sharpness token is
visualized in Fig. 9. The red vertical line correspond to the image with maximal sharpness
(as perceived by a person). It is clearly seen that the sharpness curve, measured with the
proposed algorithm, reliably corresponds to human perception.
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Figure 7 Computational graph of the sharpness measurement algorithm.
Full-size DOI: 10.7717/peerjcs.207/fig-7

Coroutines
The logic of the focus plane calibration is realized with a set of coroutines. The first two
can be regarded as ‘‘helper’’ coroutines. The init_move coroutine performs the initial set
of motions: retract to the home pose ξhome , and then transition to the approach pose ξappr :

async def init_move(rc):
return await rc.cmdexec(

rcommands.MoveJoints ([0, -90, 180, 0, 90, 0]), # "home" joint
configuration

rcommands.MoveRelJoints ([-90, 60, 30, -90, 0, 0]),
rcommands.MoveRelTool ([40, -25, 185, 0, 0, 0]),
rcommands.MoveRelJoints ([0, 0, 0, 0, 0, 1.5])

)

The parameter rc of the coroutine supplies reference to the instance of RobotClient. As
can be seen from the code, init_move consists of only one await call to the rc.cmdexec
coroutine method, with the first command corresponding to the motion towards ξhome ,
and the latter three commands corresponding to the motion ξhome→ ξappr .

Semeniuta and Falkman (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.207 16/28

https://peerj.com
https://doi.org/10.7717/peerjcs.207/fig-7
http://dx.doi.org/10.7717/peerj-cs.207


Figure 8 Visualization of sharpness measurement intermediate results for images with different posi-
tioning of the calibration object.

Full-size DOI: 10.7717/peerjcs.207/fig-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Image index

0

100

Sh
ar

pn
es

s

Figure 9 Sharpness measurement on a sequence of images after consecutive robot motions.
Full-size DOI: 10.7717/peerjcs.207/fig-9
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The second coroutine, move_tool_z, combines sending the setting speed command
and the commands for tool motion in the z direction:
async def move_tool_z(rc, appr_speed , delta_z):

return await rc.cmdexec_joined(
rcommands.SetSpeed(appr_speed),
rcommands.MoveToolZ(delta_z)

)

Note that for the increment towards the focus plane, two commands are supplied to
the cmdexec_joined coroutine method of the instance of RobotClient. The SetSpeed
command produces a single message, while MoveToolZ produces two messages (one for
motion and one for break). By supplying them to cmdexec_joined, all three messages will
be sent to the RobotServer conceptually at the same time.

The primary coroutine, ufloop, realizes the overall logic of approaching the focus
plane with vision feedback. In addition to rc, it accepts pbcomm, an instance of
ProtobufCommunicator, as well as the parameter for approach vector increment (delta_z,
mm) . The source code of ufloop is presented below:
async def ufloop(rc, pbcomm , delta_z , appr_speed):

await rc.connect ()
await init_move(rc)

sharpness = []
while True:

pb_req = create_vision_request ()

await pbcomm.send(pb_req)
pb_resp = await pbcomm.recv()

resp_attrs = get_attributes_dict(pb_resp.attributes.entries)
s = resp_attrs[’sharpness ’]
sharpness.append(s)

# Break the loop when sharpness increases
if len(sharpness) > 1 and (sharpness [-1] < sharpness [-2]):

break

await move_tool_z(rc, appr_speed , delta_z)

await move_tool_z(rc, appr_speed , -delta_z) # retract back

return sharpness

First, a TCP connection to RobotServer is established and the initial motion commands
are executed. Following that, a series of vision requests are announced using pbcomm.
A response obtained as a result of each request contains, amongst others, a real-valued
attributewith sharpnessmeasurement from the vision pipeline. A list of thesemeasurements
ismaintained, and a new value is compared to the previous one. It is expected that sharpness
should rise as the robot arm approaches the focus plane. If the new value is smaller than the
last, it is an indication that the focus plane has been passed. The robot tool should move
one delta_z backwards and the loop should be completed. The final pose of the robot
arm can be recorded as ξis.
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Figure 10 Vision (orange) and robot (blue) requests during the approach phase of the ufloop corou-
tine.

Full-size DOI: 10.7717/peerjcs.207/fig-10

Coroutines are scheduled to be executed by an event loop. In a simplified form,
this includes instantiation of the event loop, the coroutine object (ufloop_coro), and
scheduling the latter in the event loop:
loop = asyncio.get_event_loop ()
ufloop_coro = ufloop(rc, pscomm , delta_z)
loop.run_until_complete(ufloop_coro)

Time measurements
A MasterControlNode with logic defined with ufloop has been deployed to MCN and run
together with an Adept Viper s850 robot and the network configuration described in the
‘‘Network topology design.’’ The vision pipeline from the ‘‘Vision system for sharpness
measurement’’ is deployed to the VIS node.

To study the timing properties of such AsyncIO-based logic, the approach phase is of
interest (implemented as an infinite loop in ufloop with the sharpness-based termination
condition). Figure 10 shows two iterations in the approach phase. Vision (orange) and
robot (blue) requests are shown in a way similar to a Gantt chart: a horizontal bar starts
at a time instant when the request is sent and ends when the response is received. All time
instants are measured in terms of MCN’s AsyncIO clock.

Each iteration i in the approach phase is comprised with a request to the vision system,
followed by sending two commands (embodied in the three messages) to the RobotServer.
The event-driven nature of the AsyncIO-based implementation is clearly seen for the case
of sending the three messages for each robot motion increment. The bytes of the messages
are sent asynchronously, and the responses tagged with the same IDs are received as fast
as they arrive. RobotServer executes the set_speed and move_rel_tool skills quickly,
sending the corresponding responses back to MasterControlNode. Invocation of break
blocks until the physical motion has completed.

For each iteration i, let t (vreq) and t (vresp) correspond to the timestamps of sending the
vision request and receiving the vision response respectively (shown as the start and the end
of the orange bars in Fig. 10). Similarly, let t (rreq)ss , t (rreq)mrt , and t (rreq)b denote timestamps of
requests to the RobotServer corresponding to the set_speed, move_rel_tool, and break
messages (in Fig. 10, these are shown as starts of the respective blue bars). Notification
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Figure 11 Distribution of travel times of robot motion increments.
Full-size DOI: 10.7717/peerjcs.207/fig-11

about the completed motion is received at t (rresp)b (corresponding to the end of the blue bar
for the break command).

Travel time of a robot motion increment τr is measured as a difference between the
duration of waiting on the client side and the duration of the operation on the server side.
More concretely, it is defined as follows:

τr = (t (rresp)b − t (rreq)ss )− (t (rstart )b − t (rstart )ss ) (1)

where t (rstart )b and t (rstart )ss denote the starting timestamps (measurement in the robot
controller’s clock) corresponding to the break and set_speed skills respectively.

Figure 11 shows a histogram of τr measurements derived from an experiment with
32 runs of ufloop program (35 runs, three of which resulted in corrupted data). The
appr_speed was varied among the values of {5, 25, 50, 75, 100}. The delta_z parameter
was varied among {1.5, 2.0, 2.5}. It can be seen that τr has Gaussian distribution with mean
of 5.219 ms and standard deviation of 0.964 ms.

The switching durations between robot and vision requests include the time τ (r→v)
i

elapsed between the end of robot requests and start of the vision request, and the time
τ
(v→r)
i elapsed between the end of the vision request and start of the first robot request
(set_speed):

τ
(r→v)
i = t (vreq)i − t (rresp)b,i−1 (2)

τ
(v→r)
i = t (rreq)ss,i − t

(vresp)
i . (3)

Here i and i−1 represent the current and the previous sets of requests, each starting
with the vision request, followed by the three robot requests (refer to Fig. 10 and the source
code of ufloop for clarification).

Given the same experiment, the histograms representing distributions of τ (r→v)
i and

τ
(v→r)
i are presented in Fig. 12, with the vertical lines representing the respective minimal
and maximal values. The distribution of these characteristics is heavy tailed, with most of
the occurrences being around 1 ms.

Durations between the events of starting consecutive send operations for each robot
motion increment, i.e., τ (ss→mrt ) for set_speed→ move_rel_tool and τ (mrt→b) for
move_rel_tool→ break, are defined as follows:

τ (ss→mrt )
= t (rreq)mrt − t

(rreq)
ss (4)
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Figure 12 Distributions of switching durations: (A) between a robot request and a vision request; (B)
between a vision request and a robot request.

Full-size DOI: 10.7717/peerjcs.207/fig-12
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Figure 13 Distributions of durations between starting consecutive send operations to RobotServer:
(A) set_speed→ move_rel_tool; (B) move_rel_tool→ break.

Full-size DOI: 10.7717/peerjcs.207/fig-13

τ (mrt→b)
= t (rreq)b − t (rreq)mrt . (5)

The distributions of these durations are visualized in Fig. 13. One can notice similarities
with distributions of robot/vision switching durations in Fig. 12, although the range of
observed measurements tends to be smaller (with most of occurrences being around
0.2 ms).

The similarity of the distributions of various switching durations visualized in Figs. 13
and 12 reveals the temporal properties introduced by the AsyncIO-based design. Such
distributions can naturally be modeled with log-normal PDFs, which in turn could be
useful for formalized reasoning about timing uncertainty of the developed applications.

Composition of coroutines
The code of the ufloop coroutine looks simple and clear, despite the built-in
communication and asynchronous logic. One can argue, however, that the sequential
nature of this particular example could be exploited with more traditional blocking I/O
primitives. One argument in favor of coroutines is the resulting more efficient runtime,
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as shown in Fig. 10. Another advantage is the one of composability: several coroutines
can be composed together in a well-defined way and treated as a collection of concurrent
‘‘lightweight threads’’. For example, a particular event of interest can be continuously
monitored by the dedicated coroutine, say listener_coro. It can be scheduled together
with ufloop_coro as follows:
loop.run_until_complete(

asyncio.gather(
ufloop_coro ,
listener_coro

)
)

The same composition logic can be applied to any number of concurrent coroutines. As
synchronization mechanisms, one can use the AsyncIO-native Event, Queue, Condition,
and others. Concrete use cases of multiple coroutines composition will be investigated in
the further work.

DISCUSSION
Similar work
Establishing flexible interfaces to industrial robot controllers is a widely practiced
endeavour, specifically in research environments. Such projects are motivated by the
constrained capabilities of the proprietary robot platforms, in particular when it comes to
sensors integration, multi-robot synchronization, connectivity with external systems, and
utilization of methods and tools frommodern software engineering in the robotics domain
(Angerer, Hoffmann & Schierl, 2013). Depending on the intended application and the
available robots platforms’ capabilities, the developed interfaces offer either fine-grained
real-time control, or coarse-grained control with soft real-time properties.

Sophistication of the available robot interfaces vary depending on the original robot
platform capabilities and the degree of involvement of the respective robot vendors in the
development process.

A great deal of flexible robot interfaces development has been done with KUKA robots.
Research around KUKA Lightweight Robot (iiwa) resulted in a fast real-time interface
based on UDP and ability to access the controller’s motion kernel in a highly fine-grained
manner (e.g., supplying custom trajectories and realization of custom cyclic control modes,
such as impedance control), having cyclic time frame of 1 to 100 ms (Schreiber, Stemmer
& Bischoff, 2010).

Traditional KUKA robots can be supplied with the vendor-provided
Kuka.RobotSensorInterface (RSI) and Kuka.Ethernet KRL XML packages, which require
additional investments. The user are nevertheless required to create custom communication
solutions integrated into existing robot controller code. An example of such approach is
an RSI-based configuration for adaptive robot-based fabrication integrating a CAD system
and a 3D sensor (Sharif, Agrawal & Sweet, 2017).

An alternative approach for the traditional KUKA robots is based on application of
KUKAVARPROXY, a Windows binary that can be deployed to the Windows-side of the
robot controller and thus providing access to global variables using the CrossCom interface
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(Eriksen, 2017). JOpenShowVar (Sanfilippo et al., 2015) is a Java-based client to KUKA
robot controllers via an existing KUKAVARPROXY. It uses TCP/IP to communicate with
KUKAVARPROXY, and is hence constrained by soft real-time tasks.

ROS interface for COMAU robots providing position and velocity controller is described
by Stefano et al. (2014). The available control modalities include additional and absolute
position control, additional current control, trajectory management and modification
of pre-planned trajectory. The interface, which is implemented as a multithreaded
solution, requires an external PC with real-time Linux. The resulting UPD-based real-time
communication with the robot controller is characterized by the time frame of 2 ms.

A comparison of three custom interfaces for direct joint control of NACHI, KUKA, and
Universal Robots (UR) is done by Lind, Schrimpf & Ulleberg (2010). Communication with
NACHI and UR is based on UDP (with cyclic time frames of 10 ms and 8 ms respectively),
while with KUKA –on TCP-based RSI (having the time frame of 12 ms).

Comparing with the abovementioned robot interfaces, pyadept/AdeptServer in its
current form stands in the category of coarse-grained soft real-time solutions, and bears
most similarity with KUKAVARPROXY and JOpenShowVar. In contrast to the latter, the
proposed architecture provides a greater decoupling of higher-level logic with native robot
controller logic. When it comes to the Adept robot platform, the proposed solution is the
first publicly available flexible interface. Earlier attempts were made around the year 2012
with establishing of a ROS interface for Adept robots (Willow Garage, 2012). However, the
limited initial functionality has not been further developed since 2013 (ROS Industrial,
2013). Another novelty of the proposed solution is utilization of AsyncIO coroutines for
specification of communication-heavy robot logic.

Lessons learned
The presented solutions for flexible coarse-grained control of Adept robots resulted
from the ongoing work on integrating an Adept Viper s850 robot with distributed vision
systems based on GigE Vision. The Python codebase evolved together with V+ codebase
to form pyadept and AdeptServer respectively. The choice of AsyncIO coroutines enabled
specification of composable logic with well-defined coordination of multiple connections.

The choice of Python for implementation of the high-level part of the robot interface
may seem questionable, as the real-time guarantees cannot be provided. However, for
the purpose of coarse-grained control with communication over TCP/IP, such choice is
acceptable. The current version of the system is designed to provide reasonable timing
characteristics and assure logically correct robot behavior and flexible interaction with
external systems. The latter aspect motivated the application of Python coroutines to allow
specification of complex tasks based on composition.

During development of the presented solutions, the biggest hurdle was associated
with implementation and debugging of V+ logic. As the V+ language is designed for
implementing robotic tasks directly in the robot controller, it suits well for use cases
with repeatable pre-defined motions. At the same time, V+ debugging capabilities are
extremely limited for non-trivial tasks. One of these is communication with external
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systems. Networking capabilities are built-in in V+, although implementation of specific
clients and servers is error-prone.

Big advantage of the proposed architecture is that the robot controller is treated as
a service: once the server task is launched, the central application logic is driven by the
Python-based MasterControlNode. This comes in hand particularly during interactive
development: more complex robot scenarios can be realized in a high-level programming
language quickly, with a rich set of communication capabilities.

It is clear that the proposed architecture cannot beat a dedicated V+ program in
terms of execution speed. For one thing, the communication overhead exists per each
command. Secondly, because the RobotServer maps the incoming ASCII byte strings to
the available skills (realized as V+ programs) and executes the latter with the CALLS call
(a V+ instruction allowing to call a subroutine identified by its string-based name and a
sequence of arguments), the operation is by definition slower than if V+ programs would
be called natively. On the other hand, the proposed architecture targets applications with
discrete event behavior, where no fine-grained control is required, and the overall sequential
logic of the operation and communication capabilities are of a greater importance.

As mentioned before, the most challenging part of development of the presented
solutions lies in ensuring that V+ code in AdeptServer works correctly and reliably. As
such, the forthcoming research and development efforts shall be focused on improvement
of the V+ functionality.

SUMMARY AND FURTHER WORK
This paper has presented an industrial robot control architecture for the Adept V+
platform that aims at maximizing flexibility of system development. The latter is achieved
by explicitly incorporating event-based logic in the master control node and use of
AsyncIO as the underlying platform. By creating modular logic blocks as coroutines, one
achieves well-defined composability and sophisticated networking capabilities. On the
robot controller side, a native V+ server and a collection of robot skills are realized. As
such, in the proposed architecture, the robot controller is treated as a service, with all
the core logic being implemented on a higher level and with extensible communication
capabilities.

In its current form, pyadept, the library incorporating the ideas described in this paper,
can be used on any platform supporting the latest versions of Python (3.6 and onwards)
and TCP/IP connectivity. When used together with the RobotServer code, pyadept allows
to prototype robotic applications that communicate with other distributed components
via TCP/IP or ZeroMQ. It can also be extended with additional networking modalities,
due to the use of the polymorphic AsyncIO’s reader/writer interface.

The presented solutions were validated on an application combining robot motion with
vision feedback. Experiments based on this application revealed timing properties of data
transmission and AsyncIO-driven task coordination.

When compared with the established robotic frameworks, in its current form, pyadept
is platform-specific and rather high-level. The goal, however, is not to develop yet another

Semeniuta and Falkman (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.207 24/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.207


robotic middleware, but to test-drive the ideas of using asynchronous coroutines and
event-driven logic in building robotic systems in distributed environments. The most
natural future strategy is to adapt both the Python code in pyadept and V+ code in
AdeptServer to be used with ROS2. The latter natively supports Python 3, so the available
codebase serve as a framework for coroutine-based ROS2 node design. The V+ code
can form the basis for Adept robots support in ROS2. Before proceeding with ROS2
integration, it is beneficial to quantitatively compare performance of a more complicated
robotic application as implemented based on ROS/ROS2 primitives vs pyadept.

In future iterations of the proposed architecture, it is of interest to investigate more
high-performance approaches, such as binarymessage formats and high-frequency periodic
UDP-based communication.

List of abbreviations

ACE (Adept ACE) Automation Control Environment
ACE (C++ toolkit) The ADAPTIVE Communication Environment
AVG Automated guided vehicle
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
ARM a processor architecture
ASCII American Standard Code for Information Interchange
BSD Berlekey Software Distribution
CAD Computer-Aided Design
CERN The European Organization for Nuclear Research
FIFO First in, first out
FxIS Flexible Image Service
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
IOCP Input/output completion ports
IP Internet Protocol
IoC Inversion of Control
KRL KUKA Robot Language
LAN Local Area Network
MQTT Message Queuing Telemetry Transport
ODP Oldest packet drop
PDF Probability density function
RSI Robot Sensor Interface
TCP Transmission Control Protocol
UDP User Datagram Protocol
VLAN Virtual Local Area Network
YARP Yet Another Robot Platform
ZMTP ZeroMQ Message Transport Protocol
ROS Robot Operating System
XML eXtensible Markup Language
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