
Eurobot NTNU 2012
Treasure Island

Are Halvorsen
Sindre Røkenes Myren
Andreas Hopland Sperre

Master of Science in Engineering Cybernetics

Supervisor: Sverre Hendseth, ITK
Co-supervisor: Snorre Aunet, IET

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

Project description

An autonomous robot to compete in Eurobot Open 2012 shall be designed and built.

Assignment Given: 1st of February 2012

Supervisor: Sverre Hensedth
Deparment of Engineering Cybernetics
Co-supervisor: Snorre Aunet
Deparment of Engineering Electronics

Preface

This paper presents the work performed by Sindre Myren and Andreas Sperre, from department
of Engineering Cybernetics, and Are Halvorsen from department of Electronics and Telecom-
municationsat NTNU. The work has been done as a group, and should weight equally.

We would like to thanks our sponsors, Kongsberg Defence and Aerospace ASA, SINTEF and
the department of Engineering Cybernetics at NTNU, for the financial support. Without it we
would never have had the chance to build a robot and travel to La Ferté-Bernard in France to
compete in Eurobot 2012. We would also like to thank our supervisors Sverre Hendseth and
Snorre Aunet for their support and letting us work freely with a practical project.

Further we would like to thank Stefano Bertelli at the department of Engineering Cybernetics
for helping us with the financial support and various organizational tasks. We would also like to
thank the various workshop employees at NTNU for the advice they have given us. Especially
the mechanical workshop at the department of Engineering Cybernetics for producing and giv-
ing feedback on all the necessary mechanical components for the robot and the engineers at the
Department of Electronics and Telecommunications for helping us with soldering of surface
mount packages with their fancy soldering machines.

We would like to thank Elisabeth Kjellmo Nicolaysen for taking the time to paint our robot, it
gave our robot a special look that was noticed and praised during the competition in France.

Last, but not least, we would like to thank Steffen Johnsen, Kristian Klausen, Adam Leon
Kleppe, Lars Espen Nordhus, John Magne Røe and Leif-Julian Øvrelid. These students were
involved in the project through the course Experts in Team at NTNU. All their hard work and
vital contribution to the robot design resulted in a robust and easily maintainable robot.

Sindre Myren

____________________ ____________________
Are Halvorsen Andreas Sperre

III

Abstract

Eurobot is an annual competition for autonomous robots. Typically two teams compete against
each other for 90 seconds on a 2×3m playing area. The main goal is to collect as many points as
possible. There are several matches to determine which robot is the best. The rules are different
every year. An autonomous robot for this year’s competition was designed and built.

The rules for Eurobot 2012 were studied and a design concept was created. In order to imple-
ment the design a series of technical pieces of work was carried out. The tasks involved several
fields of study including engineering cybernetics, electrical engineering, computer science and
mechanical engineering.

A laser-tower positioning system from 2010 was further developed and improved. In addition
the robots drive wheels hall-sensors were used to compensate for the robots movement. An
extended Kalman filter was created to transform these measurements into a position and orien-
tation estimate. Two PID regulators were used to maneuver the robot, one regulator controlling
the rotation, the other translation.

A circuit board following the EPIC-plus standard with several efficient power supplies, a micro
controller and a circuit board stack was designed, produced and tested. This circuit board
was driven by a lithium battery and acted as a power supply for-, and took care of low level
interaction with, all motors, servos and actuators on the robot. Firmware was implemented on
the circuit board that provided an interface to control all hardware via CAN-bus to a tablet PC.

To implement strategic choices, algorithms and artificial intelligence, an elaborate software
system was created. The high-level programing was done in Go, a new and exciting program-
ing language from Google. A featured Debug-GUI that presented real-time information and
allowed for robot interaction was provided. A strong focus on design and a test driven develop-
ment, resulted in robust and stable software.

A mechanical design of the robot was created in collaboration with a group of students through
the course TTK4850 “Experts in team” at NTNU.

This work lead to a complete robot with a clean implementation hosting advanced technical
solutions. The final software allowed strategies to be reprogrammed before each match, and
the physical robot was easily maintainable. The positioning system can move the robot to any
coordinate on the playing area. In the Eurobot 2012 competition, the robot won three out of five
matches and ended at 23rd place out of 43 international teams.

V

Sammendrag

Eurobot er en årlig konkurranse for autonome roboter, der to lag konkurrerer mot hverandre
på et 2 × 3m spillebrett i 90 sekunder. Robotenes mål er å samle så mange poeng som mulig
gjennom flere kamper. Reglene er forskjellige fra år til år. En autonom robot er blitt designet
og bygget for årets konkurranse.

Reglene for Eurobot 2012 ble studert, og et designkonsept utredet. For å implementere de-
signet måtte en rekke tekniske aspekter utforskes. Oppgaven involverte flere fagfelt, blant annet
teknisk kybernetikk, elektronikk, informatikk og maskinteknikk.

Lasertårn-posisjoneringssystemet fra 2010 ble videreutviklet og forbedret. I tillegg ble hall-
sensorene på robotens drivhjul brukt til å estimere robotens bevegelse. Et extended Kalman filter
ble designet og implementert for å overføre disse målingene til et posisjon- og rettningsestimat.
Deretter ble to PID-regulatorer lagd for å kjøre roboten. En av regulator styrer rotasjon og den
andre translasjonen.

Et kretskort med flere effektive strømforsyninger, en mikrokontroller og en kretskort-stack som
følger EPIC-plus standard ble designet, produsert og testet. Denne kretsen ble drevet av et
litiumbatteri, og fungerte som kommunikasjons-hub samt strømforsyning for alle motorer, ser-
voer og aktuatorer på roboten. Disse enhetene ble styrt fra en tablett-PC over en CAN-bus.

Et programvaresystem ble opprettet for å implementere strategiske valg, algoritmer og kunstig
intelligens på tabletten. Go, et nytt og spennende programmeringsspråk fra Google, ble brukt
for å implementere denne logikken. Et grafisk brukergrensesnitt, som presenterer informasjon
om roboten i sanntid, ble lagd for å lette feilsøking samt styre roboten. Et sterkt fokus på design
og “test drevet utvikling”, resulterte i en robust og sikker programvare.

I samarbeid med en gruppe elever fra TTK4850 “Eksperter i Team”, ble et mekaniskdesign
utrettet. Dette mekaniske arbeidet gav en robotplattform som var lett å jobbe med og teste på.

Resultatet ble en komplett, fungerende robot, med gode mekaniske løsninger for å støtte opp om
avansert elektronikk. Det utviklede styresystemet tillater hurtig re-programmering av strategier,
selv like før en kamp. Posisjoneringssystemet kan nå frakte roboten til et hvilket som helst
koordinat på spillebrett. Roboten vant tre av fem kamper i Eurobot 2012 noe som resulterte i en
23. plass utav 43 internasjonale lag.

VII

VIII

Contents

I Introduction 1

1 Introduction to Eurobot 3
1.1 What is Eurobot? . 3
1.2 Eurobot-NTNU . 3
1.3 Disposition of the report . 4

2 Management of Eurobot-NTNU 7
2.1 Organization management . 7
2.2 Sponsors . 7
2.3 Promotional work . 8
2.4 Creation of test equipment . 8

3 Eurobot 2012 rules 9
3.1 Persistent rules . 11
3.2 Playing area layout . 11
3.3 Game objectives . 12
3.4 Matches . 13
3.5 Robot design constraints . 13
3.6 Safety constraints . 13
3.7 Homologation . 14

II Robot Design 15

4 Deciding on a strategy 17
4.1 Strategic goals . 18
4.2 Available concepts . 18
4.3 Decision . 18
4.4 Results . 21

5 Defining a propulsion and navigation system 23
5.1 Requirements . 23
5.2 Previous solutions . 24
5.3 Decision . 25

IX

6 Deciding on a positioning system 27
6.1 Requirements . 27
6.2 Alternatives . 27
6.3 Decision . 29
6.4 Discussion . 29

7 Defining the electrical platform 31
7.1 Requirements . 31
7.2 Previous systems . 32
7.3 Decision . 33
7.4 Discussion . 34

8 Deciding on a programming language 35
8.1 Requirements . 35
8.2 Alternatives . 35
8.3 Decision . 36
8.4 Discussion . 37

9 Deciding on an operating system 39
9.1 Requirements . 39
9.2 Previous operating systems . 39
9.3 Decision . 41
9.4 Discussion . 42

10 Defining the software modules 43
10.1 Suggested concepts . 43
10.2 Available software . 44
10.3 Defining the modules . 45
10.4 Communication patterns . 46
10.5 Module requirements . 47

11 Designing the complete system 51
11.1 Currently existing systems . 52
11.2 Components . 52
11.3 Component placement . 52
11.4 Physical design . 53
11.5 Finished robot . 53

III Implementation and Improvements 55

12 Positioning system improvements 57
12.1 Background theory . 58
12.2 Calibration . 59
12.3 Choosing an algorithm . 60
12.4 Developing a system model . 61

X

12.5 Tuning . 65
12.6 Opponent detection . 67
12.7 Result and discussion . 69

13 Producing the power card 71
13.1 Background theory . 72
13.2 Power source . 74
13.3 Power card . 75
13.4 Extension modules . 77
13.5 Power card firmware . 79
13.6 Switch mode power supply test . 80
13.7 Results . 83
13.8 Discussion . 85

14 Software implementation 87
14.1 Algorithms and data structures . 88
14.2 An introduction to Go . 88
14.3 Choice of Linux distribution . 93
14.4 Software overview . 94
14.5 Go libraries . 96
14.6 The hardware abstraction layers . 101
14.7 The robot’s main program . 105
14.8 The Debug GUI . 114
14.9 Software testing . 116
14.10 Results . 119
14.11 Discussion . 122

IV End Result 125

15 Results 127
15.1 The complete robot . 128
15.2 Competition . 128
15.3 Position and location . 128
15.4 Power card . 129
15.5 Software . 130

16 Discussion 131
16.1 Mechanical problems . 131
16.2 Positioning issues . 132
16.3 Power card . 133
16.4 Using Go . 134
16.5 Distribution of human resources . 135

17 Conclusion 137

XI

18 Future work 139
18.1 Power card . 139
18.2 Position system . 139
18.3 Software . 140

V Appendix 145

A Positioning system 147
A.1 Laser-tower accuracy . 148
A.2 Laser-tower distribution . 149

B Mechanics 151

C Electronics 153
C.1 Enemy beacon . 155
C.2 Power card . 157
C.3 PC/104 mechanical specification . 169
C.4 Motor controller breakout board . 173
C.5 Top card . 175
C.6 Top card template . 179
C.7 Switchmode tests . 183

D Software 187
D.1 Independent software projects . 187
D.2 Dispatcher source code . 188
D.3 Software line count . 189
D.4 Benchmark script . 190

E Competition log 191
E.1 Series 1 . 191
E.2 Series 2 . 192
E.3 Series 3 . 192
E.4 Series 4 . 193
E.5 Series 5 . 193

F Poster 195

G Digital attachments 197

XII

Part I

Introduction

1

Chapter 1

Introduction to Eurobot

This report covers design and implementation of an autonomous robot for use in the competition
Eurobot. In order to build an autonomous robot a wide variety of disciplines from several
fields of study is required, including but not limited to: electronics, engineering cybernetics,
mechanical engineering and computer science.

1.1 What is Eurobot?

Eurobot [15] is an international, annual competition for autonomous robots. It started in 1994
as a national competition in France. In 1998 it became an international competition with nine
teams from five countries. In the beginning the competition was known as “Eurobot Open”, but
it was shortened to “Eurobot”. The competition focuses on fair play and sharing of knowledge,
as can be seen by this quote from their homepage.

“Eurobot values fair play, solidarity, technical knowledge, sharing and creativity,
both through techniques and project management more than competition. The con-
test aims at interesting the largest public to robotics and at encouraging the group
practice of science by youth. Eurobot and its national qualifications are intended to
take place in a friendly and sporting spirit.”

Over the years the competition has accumulated quite a few rules. And it is now fairly standard-
ized that two autonomous robots competes for 90 seconds on a 3x2 meter playing area.

1.2 Eurobot-NTNU

Eurobot-NTNU is a Eurobot team from the Norwegian University of Science and Technology.
The team consists mostly of students writing master-thesis or pre-master project at the univer-
sity. As such, each year the team is reconstructed with new people.

3

CHAPTER 1. INTRODUCTION TO EUROBOT

The name Eurobot-NTNU reflects on the organization, while each team usually goes under the
name “Legend of Norway”. The only exception is from 2009, when they were known as “Lost
Vikings”.

The team first competed in the 2000, and has since taken part every year. The best result was
a 4th place in 2009. But the team has since taken a hit, with two years without making the
qualifications.

Table 1.1 shows “Legend of Norway’s” historical accomplishments. Note that the number of
teams is counted after the national finals, limiting it to max three teams per nation.

Year Location Theme №Teams №Nations NTNU’s result
1998 France Football 9 5 -
1999 France Castles 8 5 -
2000 France Fun Fair 12 7 8.
2001 France Space Odyssey 19 12 13.
2002 France Flying Billiards 27 17 17.
2003 France Heads or Tails 32 19 16.
2004 France Coconut Rugby 41 21 21.
2005 Switzerland Bowling 50 22 11.
2006 Italy Golf 55 23 44.
2007 France Recycling 50 27 25.
2008 Germany Mission to mars 39 24 31.
2009 France Temples of Atlantis 43 26 4.
2010 Switzerland Feed the world 46 23 DNQ
2011 Russia Chess’Up! 41 23 DNQ
2012 France Treasure island 43 17 23.

Table 1.1: List of themes and results

1.3 Disposition of the report

Part I Introduction starts out by explaining what Eurobot is, and what NTNU’s role has been
in the competition. Chapter 2 outlines work that is not directly related to the robot, but is
necessary to succeed as a team. Then this year’s Eurobot rules are explained in chapter 3.

Part II Robot Design, starts out with discussion of strategic decisions regarding how the robot
should collect points and behave on the playing area. This leads to a series of design choices
regarding propulsion systems, positioning, electronics, programming languages and mechanical
design. These design choices lead to a complete robot design that is presented in chapter 11.
The systems and methods chosen in part II had to be designed and implemented specifically for
the competition.

Part III Implementation and Improvements, dwells into three major technical systems de-
signed for the competition. The positioning system, the electronics system referred to as a
power card and the software implementation. This work has produced a lot of digital material

4

1.3. DISPOSITION OF THE REPORT

including source code and design files for mechanical and electrical parts. These can all be
found as digital attachments to the report, consult appendix G for more information.

Part IV End Result of the report outlines results for the robot as a whole and discusses them.
Each section in part II and III has their own results and discussions. After the discussion, a
principal conclusion is given. At the end, suggested future work on the individual modules is
presented.

5

CHAPTER 1. INTRODUCTION TO EUROBOT

6

Chapter 2

Management of Eurobot-NTNU

To get the robot described in this article built, a lot of practical work needed to be done. Some of
the work may not be very academically relevant or scientifically documented, but nonetheless a
considerable amount of time has been spent on it. As such, the most time consuming practical
work is listed here.

2.1 Organization management

The control of the nonprofit organization “Eurobot-NTNU” and all of its assets have been trans-
ferred to this year’s master students. This includes online banking, web servers, equipment and
previous works by Eurobot-NTNU. A budget has been made, and all financial transfers have
been accounted for.

A team of six students attending the course TTK4850 “Eksperter i Team - Byggelandsbyen”
(EiT) assisted in the development of the robot [26]. The team has been of great support by far
outweighing the time spent managing them. The team’s main assignment has been to come up
with design concepts regarding how the robot should behave and make the actual mechanical
design of the robot.

2.2 Sponsors

Like all larger projects funds are needed to build things. This is especially true for Eurobot
teams as they also have to cover the cost of travel to the competition and living expenses during
the competition. A good amount of time has been spent on finding sponsors and figuring out
what to do if we didn’t find any.

7

CHAPTER 2. MANAGEMENT OF EUROBOT-NTNU

2.3 Promotional work

Eurobot demands that each attending team has to create and print a promotional poster for the
robot they built. The poster can be found in appendix F.

The robot and playing area is also used to promote the department of Cybernetics Engineering.
The project is shown off during technological events in the local community, to young minds
that may become students at NTNU as well as people from the industry attending seminars.

2.4 Creation of test equipment

A physical version of this year’s playing area as seen in figure 2.1 was created for testing of
robot. The playing area was an integral part of testing the system before the competition. The
specifications for the playing area can be seen in figure 3.1.

Figure 2.1: Test table

8

Chapter 3

Eurobot 2012 rules

This chapter will give a brief introduction to the Eurobot 2012 “Treasure Island” rules [52]. The
complete set of rules as defined by Planet-Science can be found as a digital attachment to the
report, refer to appendix G.

9

CHAPTER 3. EUROBOT 2012 RULES

Figure 3.1: Playing area top-view

10

3.1. PERSISTENT RULES

3.1 Persistent rules

As mentioned in section 1.1 Eurobot has a number of returning “De facto” rules. Each year
the rules are based on the previous year’s rules, but with a new theme and new objectives. For
instance, table dimensions and safety regulations are typical recurring regulations only under-
going minor changes.

As such this year, just as previous years, a match is 90 seconds long and consists of two au-
tonomous robots competing to collecting the most points. Or rather, this year there are two
teams, but up to four robots, as each team are allowed to use a small and a big robot. One team
is known as the red team and the other is the violet team, named after the color their starting
area.

3.2 Playing area layout

This year’s playing area is show in figure 3.1. It is based on the theme “Treasure Island” and
as such the blue represents a sea, the green a jungle and the yellow a beach. The violet and red
squares on the corners are the starting areas, sometimes referred to as the captain’s quarters. In
addition to the starting area each team have a ship, a map and two bottles.

A team’s ship consists of its starting area and the bordering brown region. The brown region
is split into two regions, under the lid in the corner is the ships hold, and the rest is called the
loading deck.

The map is painted on the wall seen in figure 3.3. Two pieces of removable fabric covers the
map, on for each team. Each piece of fabric is attached to the map by small pieces of Velcro at
each corner.

Each bottle consists of one big push-button. When completely pressed a flag pops out like in
figure 3.2c. Both teams have a black line leading from the starting area leading to their closest
bottle.

(a) The map revealed (b) Bottle start configuration (c) Pushed button

Figure 3.2: Points of interest

In the middle of the playing area there are two brown totem poles. Each totem pole has three
levels. The top and bottom level holds four coins each, while the middle one holds two gold

11

CHAPTER 3. EUROBOT 2012 RULES

bars as shown in figure 3.3.

Figure 3.3: The two totem poles, filled with coins and gold bars

In addition to the 4 gold bars and 16 coins in the totem poles, 3 Gold bars and 22 coins are
placed as shown in figure 3.1, giving a total of 7 gold bars and 38 coins placed on the playing
area each match. Four of the coins are painted black, these coins does not award any points.
The position of all the coins is known, but the black coins are placed randomly each match.

3.3 Game objectives

The main objective of the game is to gain more points than your opponent. However in the
qualifying rounds it is also important to score as many points as possible, as this will increase
your ranking. When the final rounds begin it is all or nothing, one loss and you’re out.

Points are awarded accordingly:

• 1 point for every white coin completely inside of the players ship

• 3 points for every gold bar completely inside of the players ship

• 5 points for each button of the players bottles completely pushed in

• 10 points for reviling the players map

• 10 points for victory, 5 for draw, 2 for losing, 0 in case of disqualification

In general it is not illegal to steal or remove points from the opponent. If you choose to do so
extra care must be taken not to unnecessary block the opponent. Also, while each team may
collect as many coins and gold bars in it ship as it likes, the captain’s quarters only holds a
maximum of 5 points. In return, it is illegal to steal from the captain’s quarters.

It is also important to note the “Fair-play” rule, for instance it is illegal to purposely block the
other robot, except in front of your own ship. Penalties will be given for colliding with the
enemy, unfair play or destroying elements of the playing field.

12

3.4. MATCHES

3.4 Matches

Initially, there are five rounds of matches where two and two teams compete against each other.
Every team accumulates point through these matches by collecting points on the playing area
and get bonus points for winning a match by scoring the most points.

After the fifth round the 16 teams with the most accumulated points are transferred to a cup
style competition, the playoffs. Here teams are paired up, the winning team advances in the
competition while the losing team is out.

3.5 Robot design constraints

Each team may have up to two robots of different maximum dimensions. The biggest robot
must have a starting perimeter under 1200mm, and a deployed perimeter below 1600mm. The
smaller robot must be less than 800mm at start up, and 1000mm deployed. Both robots must fit
inside the starting area square at the same time.

To avoid cheating, the robot must be started through a 500mm long starting cord, and after the
match the robots must automatically shut down leaving its actuators limp. The robot must have
an obstacle avoidance system, so as to not crash into the other robots. To help simplify this
system, any robot cannot be hollow or use colors similar to the ones on the playing area.

3.5.1 Beacon location system

Each team is allowed to have a beacon location system [52, p. 24]. The playing area has six
beacon supports, three per team, as shown in figure 3.4a In addition each team may put a
beacon on the opponent’s robots, as shown in figure 3.4b. All the beacons have to be 80x80x80
millimeters except for the fixed beacons, placed around the playing area, which can be twice as
high. Every beacon support has Velcro hooks on them, for quick attachment.

3.6 Safety constraints

In general the robots must conform to national and European laws and specifications. If any
device or system is considered potentially dangerous, it will be rejected. For instance there may
not be any dangerous protruding sharp parts. There also has to be an emergency stop button
located at the top of the robot, this button has to cut the voltage to any actuators/motors on the
robot.

13

CHAPTER 3. EUROBOT 2012 RULES

(a) Beacon placement (b) Vertical placement

Figure 3.4: Beacon positioning

3.6.1 Lasers and lights

Lasers used must conform to “EN 60825-1:2007”, and be of class 1 or 1M [52, p. 22]. Lasers
not projected outside of the playing area may be of class 2 or 2M. High power light sources are
allowed even though they may be dangerous for the human eye. Though the general rule “no
dangerous parts” still applies.

3.6.2 Energy Source

The Eurobot 2012 rules state that all kinds of energy sources are allowed, unless they involve
combustion/pyrotechnic process [52, p. 19]. The voltage inside the robot has to be “low voltage”
and may never exceed 48V, unless inside a sealed unmodified commercial product. There are
also some new special rules regarding safety of lithium batteries, they have to be contained in
fireproofs bag at all times and battery chargers have to be shown during homologation.

All pressure air systems must comply with “Conseil Général des Mines” from 1943. They must
not exceed 4 bars, and pressure ∗ volume may not exceed 80 bar.liter.

3.7 Homologation

Before any team can play matches it has to pass homologation. A series of tests will be per-
formed by the judges on the robot, they check that the robot conforms to the rules and that it is
able to score points in a match. During the homologation match the judges will place a dummy
robot on the playing field to test that the real robot won’t crash into it.

14

Part II

Robot Design

15

Chapter 4

Deciding on a strategy

Playing area for Eurobot 2012

The main goal for the Eurobot competition is to score points. In chapter 3 it was explained that
the first matches would be organized as series, whereas the finals would be organized as a cup.
The main task to solve for Eurobot 2012 is therefore twofold:

1. In the series, score as many points as possible in 90 seconds

2. In the finals, score more points than the opponent in 90 seconds

17

CHAPTER 4. DECIDING ON A STRATEGY

4.1 Strategic goals

In 2010 and 2011, Eurobot NTNU was not able to pass the homologation test. This year it was
therefore considered more important to be able to compete than it was to score a lot of points.
With this in mind, the following goals for the strategy were constructed:

1. Allow the robot to homologate

2. Be simplistic

3. Score safe points

4. Allow reuse of components and concepts from previous robots

4.2 Available concepts

Since the task to solve is new each year, one cannot simply base the strategy on previous year’s
solutions. There is therefore a certain need for innovation when coming up with the main
strategy. It would however still be wise to form a strategy that allows reuse of components and
concepts from previous years.

When it comes to the robot’s intelligence, the EiT group developed an artificial intelligence
implementation, using utility theory. The robot’s actions would be grouped into tasks, and all
tasks would be given an initial utility. The utilities could be recalculated in-game. When a task
is completed, its utility should simply be set to zero. The robot should then choose from a pool
of tasks, and perform the task that had the highest utility.

As an alternative to using a utility based artificial intelligence, a more static solution could be
chosen.

4.3 Decision

It was the EiT group who decided the main strategy for how the robot should collect its points
[26]. However, most of the specific tactics were decided by the master students.

4.3.1 The main strategy

As mentioned in chapter 3, it is allowed to have two robots. However, as we were a rather small
team, it was decided to focus on creating just one robot.

18

4.3. DECISION

It was decided that the robot should be hollow, and that it should have two doors or arms in the
front that could be opened and closed. These arms should be able to push coins down from the
top and bottom levels of the totem poles. Coins could then be pushed in front of the robot, or
inside the hollow center. On each side of the robot, there should also be a wing with a pushing
mechanism in the back. These wings could be used to catch gold bars from the middle level of
the totem poles during a drive-by action.

As mentioned in chapter 3, the fabric covering the map is worth five points, if collected. The
fabric was specified to be a piece of textile attached to a skew board with Velcro in each corner.
However the particulars around the task as a hole were very poorly specified. E.g. the exact
fabric used and the size of the corner hooks was not specified. It was therefore decided not to
implement any tactics or physical devices for collecting these five points.

4.3.2 Game tactics

Artificial intelligence

It was decided that a set of pre-defined tasks would be coded, and that each of these tasks would
have a defined starting position. Example tasks are drive-by totem, back into button, push coins
to deck. What remain to clarify is how these tasks should be connected, and how the robot
should choose what task to perform.

The utility based artificial intelligence implementation by the EiT group had some obvious
problems. First of all, it would be hard to set the utilities in an intelligent matter. For instance,
the utility would vary based on time left, previous performed tasks, the robot’s position, the
opponent’s position, and possibly other factors. More importantly, the utility approach makes it
hard to predict what order the tasks are performed, and thus hard to test. A more static solution,
where the order of which the tasks are performed is known, would be easier to test. The artificial
intelligence developed by the EiT group was thus discarded.

It was decided to instead place the tasks inside a decision tree, as illustrated in figure 4.1. At
certain positions in the tree, the robot should do choices. In the figure, a triangle marks the
location of these decisions. To decide which task to do next, the programmer should be able
to check the remaining time, the position of the opponent robots, or any other accessible data.
This way of implementing the tactics, allows a small finite number of possible routes for the
robot to follow. Each variant of the tree could be tested and tuned. The robot might still do
intelligent choices, but rather than a general utility algorithm, it would be preprogrammed.

Obstacle avoidance

There are two types of obstacles that need to be avoided on the playing area. The first type is
static objects, like the totem poles, the walls, etc. The second type is other robots. Being able
to stop in case the opponent robot gets in the way is part of the homologation test. In addition,

19

CHAPTER 4. DECIDING ON A STRATEGY

E

A
B

C D

1 Goldbar to deck
2 Bottle close
CHOICE (
 A and B is free: 3,
 A free OR 2x oponents: 4,
 else: 3',
)
3 Bottle far
4 Close totem from black line, top
5 Thief
CHOICE (C and D is free: 6, else: 6')
6 Park in Captain's Quarters
END

3' Line up for totems, bottom-center
CHOICE (D and E is free: 4', else : 5')
4' Far totem from bottom-center
5' Close totem from bottom-center
6' Park on deck
END

1

2
4

4'

4

6

6'

6 || 6'

3
Passive Tactic

5

3 || 4 || 3'

A*

A*

A*

5' 4' || 5'

A*
3'

Go forward
Go backwards
Tactical decision

Decision area

A* Use pathfinding

(a) Passive

1 Fly to bottom-center
 CHOICE 2 || 3 (Area)
2 Far totem from bottom-center
3 Close totem from bottom-center
4 Bottle close
 CHOICE 5 || 5' (time left)
5' Bottle far
 END
5 Fly to top-center
 CHOICE 6 || 7 (Area, time left)
6 Far totem from top-center
7 Far totem from bottom-center
 END

4

4

1

3 2

4

67

5'

2||3

5

6||7?

?

Offensive Tactic

(b) Offensive

Figure 4.1: Plan for two different game tactics

a penalty will be given if the robot crashes into the opponent during a match.

To avoid crashing into static objects at the playing area, a pathfinder algorithm can be used.
This algorithm should be used to travel between the tasks mentioned in section 4.3.2. Within
each task, the use of the pathfinder algorithm should not be necessary.

It was decided that this year’s robot would have an opponent avoidance system similar to the
one used in 2009 [28, p. 76]. If the opponent gets within the watch area shown in figure 4.2,
it should slow down. If the opponent is detected inside the stop area, the robot should go to a
complete halt. For the rest of this section, we will refer to this position as the halted position.

If the time frame allows it, a routine to get out of the halted position could be implemented.
Given that such a routine is implemented, our robot also needs to figure out what to do next.
This is a somewhat complex task, and difficult to test for every location on the playing area that

20

4.4. RESULTS

Robot

Stop area

Slow-down area

Figure 4.2: Areas for opponent avoidance

such a situation might occur.

It can also be discussed whether backing out is always the right strategic choice. For instance, if
the opponent has a way to back out of the halted position, the best action for our robot to perform
would be nothing. That way our robot can continue to do it’s task as soon as the opponent has
moved away.

Also, a better strategy than having to back out from the halted position, might be to not get in
the halted position in the first place. It was therefore decided that the implementation of this
routine should be of low priority.

4.4 Results

It was decided that only one robot should be built. It should be a hollow robot with two arms
and two wings that allowed it to collect gold bars and coins from the totem poles. It should be
able to move in curves, and it should use a decision tree to make tactical choices. To avoid static
objects on the playing area, a pathfinder algorithm should be implemented.

21

CHAPTER 4. DECIDING ON A STRATEGY

22

Chapter 5

Defining a propulsion and navigation
system

Figure 5.1: Maxon EC 45 flat

To fulfill the strategic requirements from chapter 4 a way of moving around the playing area
was needed. This chapter will perform the necessary study of previous robots to conclude what
propulsion system to use.

5.1 Requirements

The strategic goals from section 4.1 was re-tailored for the propulsion system, the result can be
seen here:

• Be simple, robust and tested

• Use existing modules

• Run both forwards and backwards (reverse)

23

CHAPTER 5. DEFINING A PROPULSION AND NAVIGATION SYSTEM

5.2 Previous solutions

The articles and datasheets from Eurobot-NTNU were studied to figure out what had previously
been done. In addition some other interesting solutions were studied.

1998 Four wheels

In 1998 the robot “Marvin” had 4 wheels and was an articulated vehicle [58, p. 35]. Marvin
could be controlled by controlling the pivoting point. The robot used a target seeking algorithm
to navigate.

2004 Two wheels

In 2004 a two wheel drive system with two supporting ballpoint wheels was used [14, p. 16].
To control the robot an advanced Line of sight (LOS) algorithm was used [34, p. 17].

New mechanics but the same system was reused in 2005, but with a slightly more advanced
regulator.

2006 Belt drive

In 2006 a tank-like belt drive system was used. The robot still used a LOS algorithm, something
that worked well except for some over steering [16, p. 77].

2007 Two wheels

In 2007 and 2008 they switch back to a two wheel drive system. The LOS algorithm was still
in use, now with two PID-regulators on top controlling the rotation and translation [37, p. 33].

This time the drive wheels were placed towards the front of the robot. In 2009 they moved the
drive wheels back to the center of the robot [28, p. 50]. The LOS algorithm was thrown away,
characterized as overly complicated, designed for boats prone to drifting [28, p. 128]. Instead,
two PID-regulators were used. One to control the heading and one to control the translation.

In 2010 they changed to a new motor controller and new smaller motors [56, p. 39]. The new
brushless DC motor, Maxon EC-45 Flat, can be seen in figure 5.1.

In 2011 the electronics module was changed to two Maxon EPOS2 24/2 motor controllers [38,
p. 33]. The two PID-regulators from 2009 were re-implemented with only minor differences
[55, p. 30]. The robot would turn first, then drive in a straight line, stop rotate and repeat.

24

5.3. DECISION

Other options

Other solution previously discussed includes Omni and Mecanum -wheels [30, p. 16].

5.3 Decision

5.3.1 Hardware

To be able to have a simple robot that works, and to allow reuse of previous year’s hardware, it
was decided that the robot’s propulsion should be based on a two wheel drive system. The drive
axis should be placed as close to the middle as possible, and the wheels as far out as possible.

The current hardware, EC-45 flat motors and EPOS2 controllers, seems to be stable and working
[54, p. 37]. Thus there’s no need to change the hardware. For optimal functionality each motor
controllers requires 24V and up to 2 ampere continuous [33, 32, p. 1,p. 11].

On the software side, given that Linux is used as the operating system, a C interface to control
the motors over a CANopen bus exists. Though, it should not be hard to port the software to
another operating system or even a micro controller [54, p. 20].

5.3.2 Regulator

The new positioning algorithm, based on two PID-regulators was deemed significantly simpler
than the previously used LOS based algorithm. It was also considered to be sufficient to move
the robot properly about on the playing area. Therefor it was decided to use the two PID-
regulators, one rotation and for translation. To be as fast and agile as possible the robot should
be able to drive in curves.

Considering how the existing implementation has to be adapted into the new software ecosystem
discussed in chapter 8, and how two PID-regulators aren’t that hard to implement. It was found
most important to reuse the principle rather than the implementation.

25

CHAPTER 5. DEFINING A PROPULSION AND NAVIGATION SYSTEM

26

Chapter 6

Deciding on a positioning system

Thorough the existence of Eurobot-NTNU a number of positioning systems have existed. Since
the lineage of positioning systems is not linear, there exist a number of deprecated systems one
might continue development on. This section will conduct the necessary survey to perform a
decision of witch system to continue development on.

6.1 Requirements

A list of requirements needed to meet our regulators needs was constructed. Then a global
coordinate system was defined for the output. The system had origin in the red teams corner,
x-axis along the long edge and y-axis along the short edge.

• Output x, y, θ in global coordinates

• Smooth, predictable and repeatable output

• Update rate above 10Hz

• Robust and noise tolerant hardware

6.2 Alternatives

The articles and datasheets of previous positioning systems were studied. Any commercial
available “Indoor Positioning Systems” was not considered.

27

CHAPTER 6. DECIDING ON A POSITIONING SYSTEM

1998 - Encoders and stereo computer vision

The robot from 1998 used stereo computer vision in addition to velocity and turning sensors to
estimate the position [58].

2002 - Ultrasound

In 2002 a beacon system tailored to the Eurobot rules was constructed [2]. The system used
ultrasound to measure the distance to three fixed beacons.

In 2003 gyros and encoders were added to the existing ultrasound positioning system [13]. To
join all the acquired data a Kalman filter was used.

2005 - Laser angel meter

In 2005 a new beacon positioning system was constructed. The old system was characterized
as: too complex, proven to interference from opponents positioning systems and not observable
without a gyroscope [59, p. 33].

The new system had a laser and laser-detector on the robot. The beacons acted as a simple
reflector, reflecting the laser beam. The system did not measure the distance to the beacons,
only the angle.

To get a quick update rate they used encoders that were decoupled from the drive system. The
decoupling was done to ensure that the no-slip assumption held true. The angular measurements
and the encoder readings were integrated through a Kalman filter.

2006 - IR angel meter

The laser beacon system was switched with a infrared beacon system [16]. Now all the fixed
beacons emit modulated infrared light. The robot beacon rotates, demodulates and registers the
angle at which it was hit.

In 2007 the system was reused, but the Kalman filter was switched with a Particle filter [30].
This allows the use of non-linear sensor data, like a color sensor under the robot.

In 2008 a new infrared angle meter was designed. The new meter still used the Particle filter for
data joining [37].

28

6.3. DECISION

2009 - Laser tower and encoders

Improved encoders [29] and a new laser/ultrasound/infrared beacon system was used [28]. In
2009 only used the encoder system for position, the beacons system was only used to detect the
enemy.

In 2010 the beacons were reused, but a new robot tower was developed. The tower have two
parallel laser rotating with constant speed, doing up to nine rotations per minute measuring both
distance and angle [31, p. 89].

6.3 Decision

To conclude there have been three kinds of position systems in use, relative, absolute and a
combination of the two. None of the absolute position systems fulfills the fast-update-rate
requirement. Moreover relative position systems are proven to drift and require a known start
position. A combination of the two seems best but has not been in use since 2008. How to do
this data joining is an implementation detail left for chapter 12.3.

For quick-updating sensor it was decided not to use separate encoders, but instead only relay
on the motors built in hall-sensors. This decision goes against previous advises [59, p. 33], but
was due to the need for new hardware as pointed out in [29, p. 31]. Any new encoders would
need to fulfill the “ Robust hardware” requirement, something that has been proven harder than
expected [28, 37, p. 130,p. 17]

Due to the robust hardware, fast update rate and already up and running hardware, it was decided
to continue using the laser tower from 2010 for absolute positioning. The towers would need
updates as explained in [31, p. 93], a task performed in chapter 12. This module would also
allow us to track the opponent robot, something that’s necessary for the mandatory obstacle
avoidance system.

6.4 Discussion

It should be noted that not all of the position systems studied were in working order. However
their methods and principles remains and there is still lots to learn from their faults and errors.
Commercial available “Indoor Positioning Systems”, and their working should also have been
studied. And given time the hall-sensors should be switched with free-running encoders.

29

CHAPTER 6. DECIDING ON A POSITIONING SYSTEM

30

Chapter 7

Defining the electrical platform

There have been several solutions in the area of electronics in Eurobot. It is important to choose
an electronics platform that is easy to use and allows further development of robot applications
as the rules change every year. This includes where the main logic for the robot is implemented,
how low level interaction with motors/buttons/actuators is done and how everything is powered.

7.1 Requirements

The electronics has to support two main aspects: High level implementation of algorithms/s-
trategic choices; and low level management of actuators, digital/analog I/O, propulsion motors
and power.

7.1.1 Embedded system

A list of requirements was set up for the embedded system based on the required components
for the robot and some requirements from the rules.

• Support the laser positioning system selected in chapter 6
• Support the motor controllers selected in chapter 5
• Control of four servos to control arms and wing as described in chapter 4.3.1
• Support a start cord and an emergency stop button as defined in the rules.

It is also desirable to keep the system simplistic as defined in chapter 4.1. For the embedded
system this includes easy maintainability, easy assembly, few wires and standardized connec-
tors.

31

CHAPTER 7. DEFINING THE ELECTRICAL PLATFORM

7.2 Previous systems

Every team from Eurobot NTNU has used a computer as the main processing unit, with an
embedded system for low level functionality. Before 2009 a common power supply was used
to power all the electronics in the robot, from 2009 to 2011 each embedded module took care
of its own power conversion. The robot has been powered by various batteries including lead
and lithium types, it was not possible to find detailed information about all of them.

2000-2003

Before 2004 a NOVA-600 x86-motherboard with an integrated processor was used as the main
processing unit for the robot. A Barco GC800 micro controller development kit was used
for hardware interaction [13]. Each extra Printed circuit board (PCB) communicated with the
NOVA-600 motherboard through serial link.

2004-2006

In 2004 the same motherboard was used, but with a PC/104 stack with an I/O card and a motor
controller card [14]. The I/O card did not have enough functionality and an extra custom micro
controller PCBs was created. This system was used up to and including 2006 [35, 16]. The
system was discontinued because the motherboard broke down during the 2006 competition.

2007-2008

In 2007 the NOVA-600 motherboard was exchanged with an x86 mini-ITX motherboard with
an Intel Core2Duo processor to increase processing power [27]. This motherboard did not have
any direct I/O support and all communication with each extra PCBs were implemented with a
USB to CAN-bus adapter.

2009-2011

In 2009 an Acer Aspire one 11.6" laptop was used and most PCBs were made as modules and
fitted into a modified 2U rack with passive backplane cards [28]. Each PCB was a standalone
module that required a CAN-bus connection and a connection to the battery. The PCB 2U
rack was used up to 2011, but the main processing unit was changed back to the mini-ITX
motherboard in 2010 and 2011 [56, 38].

32

7.3. DECISION

2011

An embedded system based on the EPIC [41] standard from the PC/104 consortium was pro-
posed as a pre master project [22]. It contains power supplies for common voltages, a micro
controller and a stack following the physical specification of the PC/104-plus standard. Expan-
sion of functionality can be done by creating new PCBs for the stack.

7.3 Decision

7.3.1 The main processing unit

The first main electronics design question was “where should the main processing power be?”.
Two solutions were considered; either a single embedded system that implements the high level
and low level functionality or a commercial computer that implements the high level function-
ality with a smaller embedded system to implement the low level functionality. The choice fell
on the latter as it supports several operating systems and programming languages and allows
programming/debugging directly on the robot. In 2009 it was concluded that a small laptop
computer saves physical size, removes the need for a dedicated power supply and reduces the
amount of extra gadgets like an external screen, keyboard, mouse and hard drive [29].

To ensure compatibility with several operating systems and programming languages an x86-
architecture was desired as opposed to a ARM architecture. To keep the physical size to a
minimum tablet computers were looked at, the choice fell on a HP Slate 2 as it was the only
tablet computer available with an x86-architecture at the time.

7.3.2 The embedded system

In 2004 they tried to make the electronics more compact by integrating a PC/104 stack in the
computer. However all the electronics couldn’t be moved to the stack as some functionality
wasn’t available as PC/104 modules.

The rack solution from 2009 is very modular and allows for easy expansion of functionality
as extra modules are standalone entities. It also implements a standardized interface to create
new modules, however there are some problems inherited by this solution. Since each module
requires a CAN-bus and a power connection a lot of wires are connected close to each other, in
case of wire failure it may be hard to pin-point where the fault lies. As each module implements
its own power supply they take up a considerable amount of space in the rack and possibly
decreased the power efficiency of the system if a bad power supply is implemented.

The EPIC based system proposed in 2011 provides modularity through expansion with PC/104-
sized circuit boards. Each module in the stack has CAN-bus communication and a range of
voltages available through a circuit board stack. Because of this the number of wires needed for

33

CHAPTER 7. DEFINING THE ELECTRICAL PLATFORM

a new module is limited to external components like motors/servos etc.

It was decided to continue development of the EPIC system proposed in 2011. This system is
compact as it has one relatively small circuit board, it is customizable because of the stack and
all wires are connected at a central point.

7.4 Discussion

There are commercial embedded computers available with PC/104 systems. We had already
decided that we wanted to use a tablet computer because it allows for easy debugging and
is an enclosed system with no or few wires. This fact combined with some points from the
standard renders a commercial PC/104 system unfit. Standard voltages in the PC/104 standard
are +3.3V , ±5.0V and ±12.0V , further the standard states that "A worst case module could use
up to 39W of power" [42]. This is a small amount of power when dealing with motors/actuators
and implies that an external power supply has to be built or bought. This also implies that
all motors/actuators have to be connected to both a PC/104 module for control signals and a
power supply for bulk power. Furthermore there is no guarantee that there are PC/104 modules
available that does the kind of control needed in a robot for the Eurobot competition.

The main upside of using a commercial embedded computer is that a lot of time can be saved
in the hardware development process. In our case we still need to design a power supply,
which takes us back to a solution with several cards spread around the robot with a lot of
interconnecting wires.

34

Chapter 8

Deciding on a programming language

A programming language to implement the strategies mentioned in chapter 4 must be chosen.
Using a language that has been used in Eurobot before, would allow heavy reuse of pre-defined
software modules. Using a new language, would allow more innovation.

Each programming languages has their own advantages and shortcomings, so the choice would
be of great importance for the general software design.

8.1 Requirements

The language should run well on the HP Slate 2 tablet. It should be a high-level language,
containing good constructs for concurrency and concurrent communication.

8.2 Alternatives

C++ and POSIX

C++ and POSIX has been used by Eurobot NTNU from 2004 - 2010 1. Some of the previous
reports are unclear on whether software has been reused or re-implemented. At least it is known
that in 2007 a very modular system with support for POSIX messages queues was developed.
The implementation was evaluated to be good, but complex.

1POSIX was used in: 2004[14], 2005[35], 2006[16], 2007[27], 2009[28] and 2010[56]

35

CHAPTER 8. DECIDING ON A PROGRAMMING LANGUAGE

Matlab/Simulink auto-generated C code

In 2005, auto-generated C code from Matlab/Simulink code was used [35]. The auto-generated
code has been used in combination with manually written C++ and C. The report of 20xx claims
that the generated code is hard to interface. When it was finally interfaced, it worked well.

Labview

Labview is a system-design software-environment that provides a drag-and-drop approach to
programming [39, p. 5 - 31]. Dataflow is achieved by connecting function-blocks with wires. A
system for Eurobot based on Labview was developed and used for Eurobot in 2011. The main
report claims that this system worked well [38, p. 53]. However, other sources also claims that
the solution lack modularity and limits the programmer significantly [54].

Go

Go is a quite new programming language from Google. Go has built-in concurrency support
and good constructs for communication. The real-time capabilities of Go was evaluated in [36].
It was found to have good constructs for concurrent programming and error handling, but the
scheduler and garbage collector implementation made it unsuitable for hard real-time. It was
recommended used or tested in academic environments. It has not been used for Eurobot before.

8.3 Decision

This year’s team was experienced with writing code and preferred writing rather than visual
programming. It was pointed out that the previous Labview system was not very modular. It
was also pointed out that generated C code from Matlab/Simulink was hard to interface. While
the later statement might have changed with later versions of Matlab/Simulink, it was decided
not to use Matlab/Simulink generated code unless it proved absolutely necessary.

For the high-level programming, it was decided to try the new Go programming language,
and see how it compared to previous solutions. The POSIX Queue communication system
implemented in previous years should be possible to replace with built-in Go structures. Also,
as explained in more detail in chapter 10, it was desirable to use the new Linux CAN kernel
module. The reuse of the CAN communication structures from previous years C++ solution,
was therefore neither necessary nor desirable.

The drivers for servos, motors, and other devices connected to the robot’s computer by a CAN-
bus, could theoretically have been written directly in Go. However, this would lock any further
development, both software and hardware to Go. Most languages make it easy to write wrappers
for C code, whilst wrapping other languages like Go or C++ is not that easy [8].

36

8.4. DISCUSSION

To make the device drivers for the robot as portable as possible, it was decided that all drivers
should compile to normal C libraries. This should provide drivers that can be easily wrapped in
Go. Well written C drivers can also be ported to run on different architectures, e.g. microcon-
trollers.

8.4 Discussion

The most interesting point in the decision, is the choice to use Go for high level programming.
This will require most of the software to be written from scratch. It will be interesting to see
how this language compares to the C++ POSIX Message Queue system from previous years.

37

CHAPTER 8. DECIDING ON A PROGRAMMING LANGUAGE

38

Chapter 9

Deciding on an operating system

Last year, Windows was used as an operating system (OS) for the Eurobot NTNUs robot [38].
Should it continue to be used as an OS this year, or should it be replaced?

To find the best suitable OS for this year’s robot, previous years solutions should be evaluated.
The OS must be able to run the programming languages that was chosen in chapter 8, and it
must run well on the main processing unit selected in chapter 7.

9.1 Requirements

The following requirements were constructed:

1. Run well on the HP Slate 2

2. Make CAN-bus communication easy

3. Be a good environment for running Go and C code

4. Have a sufficient degree of stability and robustness

5. Allow a good environment for software development

6. Be familiar to the developers

9.2 Previous operating systems

VxWorks was used as an operating system for Eurobot Open in 2001 and 2002 [2]. In 2003,
Windows, Linux and VxWorks were evaluated as possible operating systems for Eurobot 2004

39

CHAPTER 9. DECIDING ON AN OPERATING SYSTEM

[13]. For 2004 - 2010, different flavors of Linux have been used 1. Windows was used as an
operating system in 2000, 2003 and 2011 2.

VxWorks

VxWorks is a proprietary, real-time operating system (RTOS). One of the key features is a
multitasking kernel with preemptive and round-robin scheduling and fast interrupts response
[62]. The RTOS is said to be tuned for both performance and determinism, and it has a small
and configurable memory footprint. The community size seems to be small compared to Linux
and Windows, but a simple Google search reveals that it does exist. Compilers and development
tools can be bought from Wind River Inc.

Though CAN is obviously possible on VxWorks, there does not seem to be one single standard-
ized CAN API available.

In 2003 it was concluded that the robot did not need the real-time functionality that VxWorks
provided. Good device support and a good development environment was considered more
important [13, p. 24].

Linux

Linux is an open source operating system with built-in support for a wide range on devices. It
runs on a large collection of different processor architectures. There are many different distri-
butions available that are based on the Linux kernel [11]. Most Linux distributions has good
language support, low system requirements compared to Windows, and provides a powerful
terminal. Distributions can often be downloaded directly from the internet free of charge.

Development tools, libraries and compilers can be acquired with ease, and for free. The commu-
nity is quite large, which again makes it easier for the software developers to find much needed
information. The degree of stability and robustness can vary from distribution to distribution,
though the Linux kernel itself is considered to be quite stable [24].

Newer versions of the Linux kernel provide the SocketCAN kernel module, contributed by Volk-
swagen Research [54, 47]. SocketCAN provides an API that enables CAN communication over
a standard BSD socket interface. The Linux version of the module is often just referred to as
the Linux CAN kernel module.

When Linux was first reccomended for use in Eurobot, it was considered the best option due
too its relatively low system requirements and good support for USB devices [13].

1Linux was used in 2004 [14], 2005 [35], 2006 [16], 2007 [27], 2008 [37], 2009 [28] and 2010 [56]
2Windows was used in 2000, 2003 [13, p. 23] and Eurobot 2011 [56, p. 10]

40

9.3. DECISION

Windows

Windows is one of the most widely used operating system for desktop computers. The system
requirements for memory, CPU and storage are considerable higher than they are for most Unix
based operating systems [10]. Still, Windows provides a well-defined set of standard libraries,
and it has a large development community.

Although Microsoft charges for most of their compilers and development tools, there is free
compilers and development tools available. When it comes to CAN communication, Peak Sys-
tem provided a CAN API that could be used [44].

In 2011 it was concluded that the transition to Labview and Windows 7 went without any major
problems [38, p. 53]. As LIDAR support and web-cam support existed in Windows, it was
claimed that the transition saved the team from a lot of time in driver development. However, it
is also stated that that Linux drivers probably did exist [38, p. 53]. The EiT report from the same
year states that windows was chosen over Linux mainly due to the team’s lack of experience
with Linux [55, p. 16].

9.3 Decision

The first requirement for this year’s choice of operating system was that it should run well on
the HP Slate 2. This tablet PC consists of quite new and specialized hardware, like for instance
the touch screen. While it was considered quite likely that both Windows and Linux would run
well on this machine, the team did not considered it as likely that everything would work as well
with VxWorks. As VxWorks was also mainly unfamiliar, not supported by Go, required quite
some financial means, and as we did not need its features, it was excluded as an alternative this
year.

For requirement 2, easy CAN-communication, Linux might prove to be a better alternative than
Windows, as it provides the SocketCAN kernel module. The EPOS2 drivers from chapter 5 also
relies on SocketCAN [54, p. 23].

Both Windows and Linux were considered to meet requirement 3, 4, 5 and 6. However, for a
majority of this year’s master students, Linux was considered a much more familiar develop-
ment environment than Windows. For requirement 3, Go was slightly better supported on Linux
than it was on Windows [18]. All in all Linux seems to be a stable solution, it has sensible sys-
tem requirements, a small enough footprint, and good enough real-time capabilities for our use.
It was therefore decided that the robot for 2012 should run Linux.

41

CHAPTER 9. DECIDING ON AN OPERATING SYSTEM

9.4 Discussion

When it comes to stability, Linux has provided a reliable environment for Eurobot in seven years
in a row. More importantly, it seems to provide a good environment for software development.
However, as the Slate 2 consists of quite new hardware, it’s possible that some components are
not yet well supported by all the major Linux distributions.

42

Chapter 10

Defining the software modules

To be able to implement the software for this year’s robot, a rough overview of what mod-
ules that are needed, must be composed. The design decisions done in chapter 4 - 9 should
give sufficient background for deciding what is needed. In addition to the required modules,
it was desirable to have a simulator and debugging-GUI available. The development of these
extra modules would require some work, but having them available could prove to speed the
development significantly.

In addition to a list off software modules, a rough plan for interaction and communication
patterns are needed. To allow reuse in future years, a clear distinction between task-specific-
and reusable code should be made.

10.1 Suggested concepts

Producer-consumer problem

The producer-consumer problem describes a condition in concurrent programming where you
share data over a bounded buffer. There are two threads or processes in this problem. The first
one is the producer, which task is to put data in the buffer. The second one is the consumer,
which task is to remove data from the buffer. The solution to the problem involves defining
what should happen if the buffer is empty or full, and to avoid race conditions.

The A* pathfinder algorithm

A* is a relative simple and efficient 2D pathfinder algorithm. It has been used in Eurobot before
[29, 38, p. 40,]. More detail about A* is given in chapter 14.

43

CHAPTER 10. DEFINING THE SOFTWARE MODULES

10.2 Available software

C EPOS 2 motor drivers

In the autumn of 2011, a C driver for the Maxon EPOS2 motor controllers was written [54].
These drivers rely on Linux CAN and use a subset of the CAN-Open protocol for its communi-
cation. Implementation of this subset of CAN-Open and wrappers for the Linux CAN module
is included in the driver.

C++ laser tower drivers

C++ drivers, relying on the C++ and POSIX system explained in chapter 8, existed. The CAN
communication did not rely on the Linux CAN module.

C++ statistic filter libraries

An extended Kalman filter library called KFilter was found online [63]. As mentioned in chapter
6, both a Kalman filer and a particle filer has been developed for Eurobot in previous years. No
pre-written Go library for statistic filters was found. It should be noted that even though it is
possible to interface C++ code to Go it is not a straight forward and clean process [8].

Go matrix library

A linear algebra library written in Go was found online [25, 4]. It is called Gomatrix, and
supported many matrix operations. This was the only linear algebra library found that was
written in Go. In addition to this library, it also exist bindings for tools like lapack.

Go pathfinder library

A Go library implementing the A* algorithm was found online [46]. The name of the library
was Gopathfinding. It was written as a self-educational project and had some performance and
implementation issues. The structure of the project was however quite decent. This was the
only Go pathfinder library that could be found.

44

10.3. DEFINING THE MODULES

10.3 Defining the modules

Since the electronics mentioned in chapter 7 relay on CAN for communicating with the com-
puter, a layer for CAN-bus communication is needed. Separate device drivers for each device
should be developed. To avoid duplicating code, the CAN-bus communication part of the drives
should be in a separate module. It is known that the motor drivers use CAN Open, so there will
be one module to implement a subset of CAN Open, and one module to wrap the Linux CAN
API. The later package should be written so that it is possible to use a drop-in replacement when
adapting the drivers for other platforms than Linux.

In the higher level code, there should be a hardware abstraction layer, interfacing all the de-
vice drivers to the rest of the code. Having this interface available, should make it easier to
implement a simulator.

To control the hardware, a separate controller thread should exist. This controller thread should
again receive its orders from an AI thread. These threads should be implemented in separate
modules.

To store the current state of the robot, a module containing structures for this should be devel-
oped.

To avoid confusion about units, a unit library should be developed. The library should provide
mechanisms to prevent physical types and units from being thoughtlessly mixed. E.g. it should
be easy to see whether a variable holds millimeters or meters, or whether it stores a distance or
a velocity.

According to chapter 3 and 4, a safety mechanism to avoid crashing into the opponent must be
implemented. For maximum safety, this functionality should be implemented as its own thread,
totally separate from the AI.

Chapter 4 also states that a pathfinder is desirable. The EiT group suggested that the A* algo-
rithm should be used [26]. This is also an algorithm that has been used in Eurobot before. To
allow reuse in future years, this module should be implemented as a library. Any task-specific
part of the pathfinder should be separated from the library.

Chapter 6 describes the desire to use a combination of relative and absolute positioning. To be
able to combine such data, a statistical filter is needed. In chapter 12 it is argued as to why the
extended Kalman filter was chosen for this job. This filter should be implemented as a general
purpose library. Any task-specific parts should be separated from the library.

Chapter 5 explains the regulators that should be used. Two standard PID regulator must be
created. It can be implemented directly in the task-specific code, and should not need a separate
library.

45

CHAPTER 10. DEFINING THE SOFTWARE MODULES

10.4 Communication patterns

Design proposals for communication patterns between some important software and hardware
modules will be explained here. The implementation will be explained in chapter 14.

10.4.1 Hardware communication

Section 10.3 defines that the desire to have a CAN-bus layer, separate device drivers, a hardware
abstraction layer and a controller thread. In addition, it is known that the motor drivers rely on
Open CAN. Figure10.1 show an illustration of how these different layers should be stacked.

CAN bus

Firmware

CAN API

CAN Open

Go bindings

Hardware interface

Robot model

Robot controller

Robot
software

Robot
drivers

Physical
robot

Linux CAN

Robot drivers

Component Layer

Figure 10.1: Hardware abstraction layer design

When sending data, the robot controller should ask the robot model to perform a hardware
action. The command should propagate down to the hardware interface, which should again
call the right driver functions. The driver function should generate the necessary CAN messages
and send them of to be handled by the Linux kernel. When receiving data, the robot software’s
hardware interface should have routines for regularly polling the device drivers and store the
latest readings for other modules to use.

10.4.2 AI and the controller

To enable easy replacement of the AI thread, the AI and Controller should be designed to have
a producer-consumer layout, with the AI as a producer and the controller as a consumer. This

46

10.5. MODULE REQUIREMENTS

makes the AI and Controller form a producer-consumer problem, which can be easily solved
by the structures for concurrent communication in Go. Being able to replace the AI, should
allow programmers to test different components of the robot, without using the “real” AI. For
instance, a custom “AI” for the debug-GUI could be developed.

10.5 Module requirements

Group Go pkgC lib

C lib / Go pkg Binary

S
ocket C

A
N

C
A

N
 O

pen

M
otor

P
ow

er C
ard

Lasert Tow
er

S
tatistic Filter

P
athfinder

drivers

libraries task-specific

H
ardw

are
A

bstraction

A
I

C
ontroller

R
egulator

D
ebug G

U
I

U
nits P

athfinder

M
odel

S
im

ulator
Robot binary

Figure 10.2: Planed software modules

Now that the modules have been defined, the requirement for each module can be defined.

A summary of all the defined modules is available is available in figure 10.2. The color of each
module shows whether the module should compile to a Go package, C library or a binary.

10.5.1 Libraries

The CAN modules should compile to C libraries only. The device drivers should be written
in C and provide Go wrappers, which would make them compile to both C libraries and Go
packages. All other libraries should be implemented in pure Go.

Units: This library should implement variable types and constants for distance, velocity, angle
and angular velocities. The goal of the module is to make it very clear what the unit is for
any variable that holds one of the four mentioned physical types.

The code should compile to a Go package.

CAN API: This library should define read and write functions for the CAN-bus.

47

CHAPTER 10. DEFINING THE SOFTWARE MODULES

The only CAN backend that need to be supported is the Linux CAN kernel module. It
should however be written in such a way that it is possible to support other CAN back-
ends without changing the interface of the library. In this way, drivers depending on this
library can be ported to run on other platforms, e.g. on microcontrollers, by changing this
one library only.

The source code can be extracted from the C Maxon EPOS 2 drivers written in 2011. The
code should compile to a C library.

CAN Open: This library should build on the CAN bus library, and implement a small subset
of the CAN Open standard.

The source code can be extracted from the C Maxon EPOS 2 drivers written in 2011. The
code should compile to a C library.

Motor driver: This driver should provide a sensible interface for controlling the motors, and
read hall sensor data.

It should rely on the CAN Open library only. The code should be based upon the C
Maxon EPOS2 drives written in 2011. The code should compile to a C library with a Go
wrapper. The wrapper should depend on the units-library to represent physical units.

Laser tower driver: This driver should provide a way to turn the laser tower on and off, as
well as a read function.

The code can partially be based on the existing C++ driver. It should only depend on
the CAN bus library. The code should compile to a C library with a Go wrapper. The
wrapper should depend on the units-library to represent physical units.

Power card driver: This driver should provide functionality to control all robot servos, as well
as any other functions that the power card might provide.

The code must be written from scratch. It should only depend on the CAN bus library.
The code should compile to a C library with a Go wrapper. The wrapper should depend
on the units-library to represent physical units.

Pathfinder: This library should contain a function that will return the shortest non-blocked
path from a start to an end coordinate. The function will need to be provided a 2D map
of blocked and non-blocked areas.

The code should be based on the Gopathfinding library. It should compile to a Go pack-
age.

Extended Kalman filter: The extended Kalman filter library should include a function that
takes the latest actuator thrust values u and measurement values y, run a single step of
the statistical filter algorithm, and return a new estimate x. This library should then be
wrapped by a module that defines the system matrices, and use them to initialize the filter.

As no Kalman filter libraries for Go were found, and since it is hard to wrap C++ code in
Go [8], a new Go package that depend on the Gomatrix library, should be developed.

48

10.5. MODULE REQUIREMENTS

10.5.2 Task-specific

The main task-specific module, called robot in figure 10.2, should compile to a binary, but sub-
modules that compile to Go packages should be allowed. The following sub-modules should be
expected:

Hardware abstraction layer: The hardware abstraction layer should provide “poller-threads”
to read measurement data from the drivers of the three devices: motor, laser tower and
power card. For other modules, it should look like these “poller-threads” are run in a
single thread. A safe shut-down of the main thread is needed so that physical motors
and laser tower can be if the software terminates. Wrapper functions for controlling the
hardware should be provided.

Simulator: The simulator package should provide exactly the same interface as the Hardware
Abstraction Layer, but instead of commanding the hardware, an internal simulator should
be stimulated. This way, it should be transparent to the rest of the code whether the
simulator is used or not.

Model: The model should include a structure that can store the robot state in a sensible way,
and tie the robot to either the hardware abstraction layer, or to the simulator. It should
also include structures to store data about the opponents’ positions.

Filter: The filter module should provide a thread that periodically collects the latest measure-
ment readings from either the hardware abstraction layer or the simulator, runs the Ex-
tended Kalman Filter, and updates the robot’s position and angle in within the Model
module.

AI: The AI module should provide multiple AI versions, were only one version is to be used at
any one time. For other modules, it should look like the AI run as a single thread. Each AI
should use a bonded buffer (i.e. a Go channel) to send commands to the controller. The
internals of the main AI should implement the strategy and tactics explained in chapter 4.
The AI should also use a bounded buffer to read out “Done”-messages from the controller.

Pathfinder: This package should wrap the A* library, and provide a way to convert robot
positions into integers that fit into an A* 2D map of blocked and non-blocked areas. The
path returned from the library, should be converted back to robot-positions.

Controller: The controller should provide a thread that interacts with the hardware based on
commands from the AI. The controller should also be responsible for managing the regu-
lator. For other modules, it should look like the Controller run as a single thread. “Done”-
messages should be sent when a command has been completed.

Regulator: The regulator should provide a function that take in the robots current position and
a destination, and returns reference values for both the velocity and the angular velocity.

Safety: The safety module should provide a thread that periodically checks whether the oppo-
nent is inside our robots slow-down or the stop area, as described in chapter 4.

49

CHAPTER 10. DEFINING THE SOFTWARE MODULES

50

Chapter 11

Designing the complete system

Figure 11.1: Finished Robot

This chapter discusses the final robot design. Just as its components, the complete robot was de-
signed with the strategic goals from chapter 4.1 in mind. These ideals reduce to the mechanical
design goals of: simple construction and easy maintainability.

51

CHAPTER 11. DESIGNING THE COMPLETE SYSTEM

11.1 Currently existing systems

While there are many aluminum sheets from previous years robots laying around, they are all
very task specific. The only Eurobot-NTNU robot still functioning, the one from 2011 [38], was
critical different in regards to: the PC and embedded-system used, and mostly the mechanical
“servo-mechanisms”. Since the Eurobot objectives change from year to year, it is almost never
possible to reuse the mechanical components. Due to this, the strategic goal of re-usability was
removed.

11.2 Components

The mechanical design of the robot has to realize the strategy choices discussed in section 4,
support systems from section 5, 6 and 7, and abide by the rules in section 3. The following
components had to be placed in the robot:

• Propulsion Motors
• Laser Positioning System
• Embedded System
• HP Slate 2 Tablet Computer
• Battery pack
• Wings
• Doors
• Servos for Wings and Doors
• Emergency Stop Button

11.3 Component placement

The laser positioning system has to be placed on top of the robot, preferably as close as pos-
sible to the center of the robot to simplify the positioning. To further simplify navigation and
positioning it was desired to keep the propulsion motors on the same horizontal axis as the laser
tower. To make the robot stable the relatively heavy battery package should be placed as close
to the ground as possible.

The design of the doors and wings is discussed in the EiT report [26, p. 12]. The doors should
be placed in the front of the robot, wings on the sides. The movable axis of the doors and wings
has to be mounted to a servo motor.

Due to rules the emergency stop button has to be placed on top of the robot, easily accessible
from all angles of the robot. The tablet computer should be placed so the screen is visible during
operation for debugging. It is desired to have it high up on the robot to minimize the danger of
an opponent crashing into it.

52

11.4. PHYSICAL DESIGN

Figure 11.2: Exploded View

11.4 Physical design

The introduction to this chapter states the design goal of a robot is that is should be easy to
assemble and disassemble. All the individual mechanical parts of the robot should be easily
replaceable with few tools and in a small amount of time. Every part should be easy to reproduce
in case something breaks.

These criteria and the component placement was created in collaboration with the EiT group,
the mechanical design was done by the EiT group [26, p. 6]. Figure 11.2 shows an exploded
view of the final robot design with all the robots components. Each drawn part of the robot was
produced by the mechanical workshop at the Institute of Cybernetics Engineering at NTNU
according to technical drawings as seen in appendix B.

11.5 Finished robot

The finished robot design was produced and assembled with only two minor modifications.
Both of the changes to the design can be seen in figure 11.1 on page 51.

Two fans were added at the top of the robot. The fans increased the mechanical strength to
the top of the robot and provided cooling for the tablet computer and electronics. The second
modification is that the length of the wings on the side was slightly increased to make it easier
to catch gold bars from the totems.

53

CHAPTER 11. DESIGNING THE COMPLETE SYSTEM

All the mechanical parts, electronics and motors etc. fit straight into the robot. The electronics
lives on its own floor, separated from any dangerous movable parts. The HP Slate 2 is placed
clearly visible on the top of the robot without interfering with the emergency stop and laser-
tower. The laser-tower and drive wheels are all placed on the same axis, while the hollow front
is as big as possible.

To reduce the need for special tools to assembled and disassemble the robot, it was standardized
on ISO M3 screws. All bolts were placed at easily accessible locations. This might seem like a
small feature, but it has saved a countless amount of time.

54

Part III

Implementation and Improvements

55

Chapter 12

Positioning system improvements

(a) Wall-E (b) Fixed beacon front (c) Fixed beacon back (d) Eve

Figure 12.1: The beacon towers

The absolute positions system developed in 2010 had a list of future work needed to get proper
functionality [31, p. 93]. The list is recited here.

1. Calibrate distance and angle measurements

2. Develop an optimal triangulation algorithm

3. Compensate for the robots movements by using encoders

This chapter will cover the work done to fix these points. During this work it was discovered that
the minimum range for enemy detection was not good enough, this problem was also corrected.

57

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

12.1 Background theory

12.1.1 Existing hardware

The positioning system consists of three different kinds of beacon towers, see figure 12.1.
There’s a beacon called “Wall-E”, it is placed on-top of your own robot. A second beacon
called “Eve” or just “E”, is placed on the opponent robot. And finally three fixed beacons “A”,
“B” and “C”, which are placed on the edge of the playing area as shown in figure 12.2.

“Eve”, and the fixed towers, consists of a laser-detector, a timer and a radio module. They
measure the time from the first laser hit to the second and radios the time back to “Wall-E”.
“Wall-E ” spins at a constant rate. Upon receiving a radio message it calculates the distance and
angle using equation 12.2.

When functioning, the complete system outputs the distance and angle to three fixed beacons,
and a opponent robot, about six times a minute.

ω

Competitor 'E'

Robot

Parallel lasers

Beacon 'A'

Beacon 'B'

Beacon 'C'

d

Spread θ

Figure 12.2: Beacon positioning

v = ωR =
d
t

(12.1)

R =
d
ωt

(12.2)

12.1.2 Kalman filter theory

A Kalman filter is a discreet, recursive data processing algorithm [60, 5, p. 92,p. 214]. The
Kalman filter has a number of nice properties including being unbiased and minimum variance.
The Kalman filter makes a number of assumptions about the system:

58

12.2. CALIBRATION

1. The process noise and measurement are white and Gaussian

2. The initial state is Gaussian

3. The system is linear

4. The system is observable

In return it has a number of nice properties:

1. The estimate is unbiased and minimum variance

2. The Kalman filter is the optimal state (linear or nonlinear) estimator

3. The Kalman filter is asymptotically stable

It should be noted that generally these mathematically properties does not apply to nonlinear
versions of the Kalman filter, like the “Discreet linearized Kalman filter” or the “Extended
Kalman filter”.

12.1.3 Particle filter theory

Particle filtering is a sub-optimal filter type that use Sequential Monte Carlo methods (SMC)
[12, 5, p. 7,p. 210]. The filter uses a number of virtual points, or particles, to represent the prob-
ability density. In each sequence, each of these particles are examined and given a weighting
and a survival estimate.

12.2 Calibration

As mentioned in the introduction, and noted in 2011, the hardware needed calibration [38,
p. 25]. The laser-tower was left running at the default rotation speed, about six rotations per
second, and placed on a table together with one fixed beacon. A number of measurements were
carried out. The data can be found in Appendix A.1.

The beacon distance measurements were found to differ from the real world. As seen in figure
12.3 the error grows bigger at longer distances, it can be viewed as a regular non-linear mea-
surement error. This is easy to correct for by running the measurement through the function
f (x) defined in figure 12.3.

59

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
a
l
d

is
ta

n
ce

 [
m

m
]

Measured distance [mm]

Measurements
f(x) = ax²+bx+c

Figure 12.3: Constant measurement error

12.3 Choosing an algorithm

An algorithm to solve the triangulation problem was needed. The historic study performed in
section 6.2 showed three main alternatives previously used.

• A direct arithmetic solution [31, p. 58]

• Using a Kalman filter [35, p. 23]

• Using a Particle filter [30, p. 36]

A direct arithmetic solution was quickly dismissed as complicated and error prone. The system
is over-defined with six measurements/equations and three variables, position and orientation.
The problem with a direct arithmetic solution would be to decide which measurements to trust.

The difference between using Kalman or a Particle filter is much smaller. The Particle filter sup-
ports very un-linear input, like a color sensor under the robot. It should also typically produce
a more optimal result on nonlinear problems than an extended Kalman filter.

The problem of combining range and angular measurements is not linear, see equation 12.8 and
12.14. As such, the Kalman filter cannot be used as is, but a nonlinear version like the extended
Kalman filter can. Parts of the problem at hand remind us of the problem of combining pseudo-
range measurements in GPS. This problem turns out to linearize quite well, and is easily solved
by an extended Kalman filter [60, p. 62].

60

12.4. DEVELOPING A SYSTEM MODEL

In the end an extended Kalman filter was found to be sufficient, and likely simpler to implement
than a Particle filter.

12.4 Developing a system model

ẋ(t) = f (x(t),u(t)) + Γw (12.3)

y(t) = h(x(t)) + v (12.4)

The extended Kalman filter needs a system model on the form given in equation 12.3 and
12.4. From here on we will call equation 12.3 the process-equation, and equation 12.4 the
measurement-equation. The vectors w and v represent respectively the process and measure-
ment noise, they must be white and Gaussian with zero mean.

12.4.1 Simplified process equations

If we at first imagine the robot to be standing still on the table with no actuator thrust, only a
constant position and direction, the process-equation simply becomes:

ẋ(t) = f (x) =
[
0 0 0

] 
x
y
θ

 (12.5)

Since the Kalman filter is a discreet filter, this continuous solution must be made discreet, for
instance by using forward Euler. When doing this we do not surprisingly end up with the
identity matrix.

xk+1 = (I −
∂ f
∂x

)xk + Γw (12.6)
xk+1

yk+1

θk+1

 =


1 0 0
0 1 0
0 0 1

︸ ︷︷ ︸
A


xk

yk

θk

 +


0 0 0
0 0 0
0 0 0

︸ ︷︷ ︸
Γ

w (12.7)

This system is still linear and has no process noise. The noise requirement reduces to the beacon
measurements having a normal distribution around the correct solution. This assumption is
discussed in section 12.5.

61

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

12.4.2 Measurement equations

Distance

First we will study the range measurements available these measurements are described by
equations 12.8, 12.9 and 12.10 [7]. In these equations x and y is the robots coordinate, Ax is the
x-position of beacon tower “A”, and rA is the measured distance. We note that there are two free
variables and three equations, that is the system is over-defined.

rA =

√
(Ax − x)2 + (Ay − y)2 (12.8)

rB =

√
(Bx − x)2 + (By − y)2 (12.9)

rC =

√
(Cx − x)2 + (Cy − y)2 (12.10)

The equations must be transformed into a usable form for the extended Kalman filter. That is
they must be linearized around the last estimated state. We put the equations into a matrix and
use the linearization method explained in [60, p. 62].

y(t) = h(x(t)) + v (12.11)
rA

rB

rC

 =


√

(Ax − xk)2 + (Ay − yk)2 + vA√
(Bx − xk)2 + (By − yk)2 + vB√
(Cx − xk)2 + (Cy − yk)2 + vC

 (12.12)

∂h
∂x

=


xk−Ax√

((Ax−xk)2+(Ay−yk)2)
y−Ay

√
((Ax−xk)2+(Ay−yk)2)

xk−Bx√
((Bx−xk)2+(By−yk)2)

y−By
√

((Bx−xk)2+(By−yk)2)
xk−Cx√

((Cx−xk)2+(Cy−yk)2)
y−Cy

√
((Cx−xk)2+(Cy−yk)2)

︸ ︷︷ ︸
H

(12.13)

Using the process-equation 12.7, measurement-equation 12.12 and the matrix H from 12.13,
we now have a usable model. It assumes a motionless robot, does not use all available data
and fails to produce an attitude1 estimate. But never the less this system was implemented and
tested and it does converge to the correct position.

1The orientation of an aircraft or other vehicle relative to the horizon, direction of motion

62

12.4. DEVELOPING A SYSTEM MODEL

Angle

Given that we know or have estimated the robot’s position (x, y) and direction θ, and that we
know the location of the fixed beacons (Ax,Ay), it is possible to estimate the beacon angles.

atan2(Ay − yk, Ax − xk) − θk (12.14)

atan2(By − yk, Bx − xk) − θk (12.15)

atan2(Cy − yk,Cx − xk) − θk (12.16)

Adding these equations to the measurement-equation y(t), and differentiate them with regards
to x to get the matrix H(x), the system becomes:

y(t) = h(x(t)) + v (12.17)

rA

rB

rC

ωA

ωB

ωC


=



√
(Ax − xk)2 + (Ay − yk)2 + vra√
(Bx − xk)2 + (By − yk)2 + vrb√
(Cx − xk)2 + (Cy − yk)2 + vrc

atan2(Ay − yk, Ax − xk) − θk + vta

atan2(By − yk, Bx − xk) − θk + vtb

atan2(Cy − yk,Cx − xk) − θk + vtc


(12.18)

∂h
∂x

=



xk−Ax√
((Ax−xk)2+(Ay−yk)2)

y−Ay
√

((Ax−xk)2+(Ay−yk)2)
0

xk−Bx√
((Bx−xk)2+(By−yk)2)

y−By
√

((Bx−xk)2+(By−yk)2)
0

xk−Cx√
((Cx−xk)2+(Cy−yk)2)

y−Cy
√

((Cx−xk)2+(Cy−yk)2)
0

yk−Ay

(Ax−xk)2+(Ay−yk)2
Ax−xk

(Ax−xk)2+(Ay−yk)2 −1
yk−By

(Bx−xk)2+(By−yk)2
Bx−xk

(Bx−xk)2+(By−yk)2 −1
yk−Cy

(Cx−xk)2+(Cy−yk)2
Cx−xk

(Cx−xk)2+(Cy−yk)2 −1


(12.19)

In this model the robot’s direction θ is unbounded, that is all values from −∞ to ∞ are accept-
able. On the other hand, all of the measurements all ways fall within the range 〈−π, π] . This
means that the angle θ must be “normalized” to the range 〈−π, π] before comparing it to a mea-
surement. Not only that, but when calculating the measurement-error internal in the Kalman
filter, all angular errors must be “normalized” to 〈−π, π]. That is if we estimate ωB to be 3.13rad,
and the measured ωB is −3.12rad, the error must be under 0.04rad.

This model was implemented and tested, and after the angles and angle-errors where bounded
it works and converges to the correct solution.

12.4.3 Process equations

Now that we have reasonable model for a robot that is standing still, we should give it a sensation
of movement. A way achieve this is to add the actuator thrust as an input to the process equation

63

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

12.20. The actuator thrust u in our system would be the target velocities of the two motors, VL

and VR. Since the target velocities might be quite different to the real velocities, and we already
have a good estimate of the real velocities from the motors hall-sensors, it would probably be
wise to use it.

ẋ(t) = f (x(t),u(t)) + Γw (12.20)

u =

[
VL

VR

]
(12.21)

Equation 12.22 and 12.23 from [21, p. 10] describes how a two wheeled robot moves. If the
equations are transformed from the body coordinate system to the global coordinate system and
made continuous, one gets equation 12.24.

∆xbody =
VL + VR

2R
(12.22)

∆θbody =
VL + VR

2R
(12.23)

ẋ(t)
ẏ(t)
θ̇(t)

 =


VL(t)+VR(t)

2 cos(θ(t))
VL(t)+VR(t)

2 sin(θ(t))
VR(t)−VL(t)

2R

 (12.24)

Deriving and discretizing this equation we get the new process equations for the extended
Kalman filter. The new equation incorporates the velocity estimates from the hall-sensors, with
the last estimated position, to give the new estimated position.

∂ f
∂x

=


1 0 −(VLk+VRk

2 sin(θk))
0 1 (VLk+VRk

2 cos(θk))
0 0 1

 (12.25)


xk+1

yk+1

θk+1

 =


xk + h(VLk+VRk

2 cos(θk))
yk + h(VLk+VRk

2 sin(θk))
θk + h(VRk−VLk

2R)

 (12.26)

12.4.4 Complete System

The goal of this section was to find a system model on the form given in equation 12.3 and
12.4. And to transform those equations in to the equations necessary to implement the extended
Kalman filter.

If one linearizes away the fact that a rotation of the robot will interfere with the measurements,
one can join the process and measurement equations. The system are then given by equation
12.24 and 12.18. Both of the equations have been transformed into the necessary forms to
implement the extended Kalman filter.

64

12.5. TUNING

12.5 Tuning

To get an idea of the variation in the measurements, a number of samples were taken at three
different distances. The data can be found in appendix A.2. The measurements were taken at
approximately 1, 2 and 3 meters distance. A more extensive testing can be found in [31, p. 77].

Figure 12.4 shows a histogram of the measurements taken at 1 meters. While the data only
have 30 samples, it clearly shows a deviation from the normal distribution that is required by
the Kalman filter. Accepting these measurements as white and Gaussian would leave us with
an non-optimal solution. However the measurements aren’t that far off and we have already
given up on a mathematical optimal solution by using the extended Kalman filter. Handling the
measurements like as if they were Gaussian should still produce a result close to the optimal
solution.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 357.9 357.98 358.06 358.14 358.22 358.3

Fr
e
q

u
e
n
cy

Degrees

(a) Angle distribution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1115 1123 1131 1139 1147 1155

Fr
e
q

u
e
n
cy

millimeter

(b) Distance distribution

Figure 12.4: Measurement distribution

The variances of the measurements were calculated and the corresponding normal functions,
with zero mean, were plotted in figure 12.5. As seen in figure 12.5a, the angular measurements
are pretty accurate, with the measurement only getting slightly noisier at shorter distances. On
the other hand, figure 12.5b shows that the distance measurements are fairly noisy and gets
worse at longer distances.

12.5.1 Design matrices

The matrices Q and R are known as weighting or design matrices [60, p. 95]. R is the measure-
ment weighting matrix, it holds the size of the measurements variance and covariance, while Q
is the process weighting matrix.

65

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

 0

 2

 4

 6

 8

 10

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Fr
e
q

u
e
n
cy

Degrees

1000mm mean distance
2000mm mean distance
3000mm mean distance

(a) Angle deviation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-20 -10 0 10 20

Fr
e
q

u
e
n
cy

Millimeter

1000mm mean distance
2000mm mean distance
3000mm mean distance

(b) Distance deviation

Figure 12.5: Measurement deviation

To simplify the system, we make the assumption of zero covariance in the process and mea-
surements, leaving Q and R diagonal. This is clearly a wrong assumption. While the process
is arguably orthogonal, the measurements are clearly all dependent on correct tower rotation
speed. Though as testing will show, it will suffice.

This linearization leaves nine parameters to tune, three process variances x, y and θ, and six
measurement variances rX and ωX.

In the implementation, distance is always measured in millimeters, and rotation in radians. This
unit difference in itself probably leads to a lot of the different variances seen in matrix 12.27.
The equation shows the final matrix parameters found through trial and error. It show x and y
weighted equally and a higher “trust” on the angular estimate. Another way to argue for the
difference seen is to realize that to manipulate the robots x state one might need to change the
robot θ state first. While the reverse is not true, changing θ does never require a movement of x
first, in other words θ is of a higher differential order than x and y.

Q =


10−6 0 0

0 10−6 0
0 0 10−3

 (12.27)

Looking at figure 12.2, where our starting area is to the left and the opponent to the right, it
is easy to conclude that beacon “B” is more likely to temporarily disappear behind the enemy
robot. Thus beacon “B ” should be weighted lower, or have a higher variance than “A” and “C”.
Remember that the angular measurements have a smaller variance than the distance measure-
ments, thus angular measurements should have a lower variance than distance measurements.
Keeping all this in mind, and after some trial and error, the matrix R shown in equation 12.28
was found.

66

12.6. OPPONENT DETECTION

R =



10−2 0 0 0 0 0
0 10−1 0 0 0 0
0 0 10−2 0 0 0
0 0 0 8 ∗ 10−5 0 0
0 0 0 0 5 ∗ 10−4 0
0 0 0 0 0 9 ∗ 10−5


(12.28)

12.6 Opponent detection

Range

Even though the old beacon system is designed to track the opponent robot in a range from
30cm to 300cm [28, p. 43], testing showed the true minimum distance to be about 55cm. Since
the Eurobot rules require an obstacle avoidance system [52, p. 21], it was of great importance to
keep track of the opponent robots at shorter distances. Taken into account the biggest legal op-
ponent robots, a collision would be imminent if the opponent beacon was within 30cm. Leaving
the minimum opponent detection range at 55cm would force the robot to stop 25cm before a
collision would even be possible.

Figure 12.2 shows the vertical position of the opponent beacon on a level above the other bea-
cons. To make the rotating lasers hit the fixed beacons the opponent beacon, a lens spreads the
light 30◦ in the vertical direction. This spreading is not uniform [28, p. 24], and it seems like
not enough light is hits the opponent beacon at short distances.

One way to shorten the dead-zone is to minimize the height differences between the omnidirectional-
mirror and the lasers source, thus minimizing the need for the light to spread. A quick fix to
achieve this would be to turn the opponent-beacon upside down as shown in figure 12.6. Now,
since the distance from the mirror to the light-sensor is calibrated according to the angle of the
incoming light and the angle of the mirror, just flipping it over won’t work. The calculations
done in figure 12.7 shows that ideally the mirror angle should be steeper, but that positioning
the light-sensor close enough it might just work.

30°

θ

15°

4
,6

c
m

30°

Figure 12.6: Minimizing the height difference

67

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

28.39°

43.39°

15°

1
c
m

3,7cm

2
c
m

28.39°

60°
0°

1
c
m

7,4cm

2
c
m

0.5cm

-0.5cm

Figure 12.7: Mirror to light-detector distance calculations

The mirrors were adjusted. The tower was flipped over and then tested. Due to time constrains,
this was done pretty quickly, something that can be seen in figure 12.8. The new configuration
had a range from at-least 20 to 400 centimeters, not stopping before the testing platform hit the
robot. On the other hand, the upside-down tower was far more sensitive to tilting especially at
longer distances. This is probably due to the low sloping angle of the mirror. Another problem
is that the 9V battery, powering the beacon, now lies loose on top of the electronics.

New beacon

Since the new Eurobot rules now allow each team to have two robots, a small and a big one
[52, p. 17]. A new opponent-beacon was constructed with the existing design files [28]. A few
minor changes were made to the design to integrate all the functionality on a single circuit
board, refer to appendix C.1 for the schematics. The new beacon should be exactly equal to the
old opponent-beacon except for identifying itself as “F”. However due to mistakenly assuming
an old omnidirectional-mirror laying around to be equal to the one used in beacon “E”, the
new beacon losses contact at long range. The cross-section of the new beacon’s mirror is not
triangular like the old one, but rather slightly curved.

68

12.7. RESULT AND DISCUSSION

Figure 12.8: The new “upside down” opponent beacon tower

12.7 Result and discussion

The task of calibrating the distance and angle measurements has been performed. A fairly opti-
mal triangulation algorithm has been created and combined with Hall-sensor data. In addition
the opponent beacon detection range has been improved, and an extra opponent beacon has
been made.

The filter has been implemented and found to work on the entire playing area. Its estimate is
slightly skewed, at some places by up to three centimeters, but the output is smooth. In addition,
the implementation behaves very deterministically, producing the same offset from run to run,
making it easily correctable.

The robots orientation turned out to be the hardest parameter to estimate. Transforming the
angular measurement-error to the range 〈−π, π] turned out to be crucial. It is still possible to
throw the orientation estimate off by rotating the robot back and forth with the right frequency.

Sub-centimeter position accuracy is hard to achieve with the system. This is partly due to the
problem of placing the fixed beacons in the right position, and to much noise in the beacon
measurements. A proper study of the systems accuracy should be performed.

69

CHAPTER 12. POSITIONING SYSTEM IMPROVEMENTS

70

Chapter 13

Producing the power card

Figure 13.1: The hardware stack

This chapter describes the embedded system used in the robot. The system is a continuation of
the work described in Robot Power Management [22].

71

CHAPTER 13. PRODUCING THE POWER CARD

13.1 Background theory

13.1.1 Linear power supplies

A linear regulator is a voltage-controlled current source (illustrated by figure 13.2), it forces the
output voltage to a desired level by generating an appropriate current through a load [53].

2

Linear Voltage Regulator Operation
Introduction

Every electronic circuit is designed to operate off of some supply voltage, which is
usually assumed to be constant. A voltage regulator provides this constant DC
output voltage and contains circuitry that continuously holds the output voltage at the
design value regardless of changes in load current or input voltage (this assumes
that the load current and input voltage are within the specified operating range for
the part).

The Basic Linear Regulator

A linear regulator operates by using a voltage-controlled current source to force a
fixed voltage to appear at the regulator output terminal (see Figure 1).

The control circuitry must monitor (sense) the output voltage, and adjust the current
source (as required by the load) to hold the output voltage at the desired value. The
design limit of the current source defines the maximum load current the regulator
can source and still maintain regulation.

The output voltage is controlled using a feedback loop, which requires some type of
compensation to assure loop stability. Most linear regulators have built-in
compensation, and are completely stable without external components. Some
regulators (like Low-Dropout types), do require some external capacitance
connected from the output lead to ground to assure regulator stability.

Another characteristic of any linear regulator is that it requires a finite amount of time
to "correct" the output voltage after a change in load current demand. This "time lag"
defines the characteristic called transient response, which is a measure of how fast
the regulator returns to steady-state conditions after a load change.

VIN
VOUT

RLOAD

I LOAD

Sense/Control
Circuitry

VSense

Voltage-Controlled
Current Source

I(v)

FIGURE 1. LINEAR REGULATOR FUNCTIONAL DIAGRAM

Figure 13.2: Linear Regulator Functional Diagram

The control circuit monitors the output voltage and adjusts the current source to hold the output
voltage at a desired value. It is then evident that the limit of the current source defines the
maximum load current the regulator can provide while still regulating the voltage.

A linear regulators efficiency is almost entirely dependent on the difference between the input
and output voltage, there is also a small power loss due to ground current. Given the property
Iin = IOut it can be shown that Pin

Vin
= Pout

Vout
using ohms law, the efficiency η and power loss is given

by:

η =
Pout

Pin
=

Vout

Vin
(13.1)

Ploss = Pin−Pout = I · ∆U = I(Vin − Vout) (13.2)

The bigger difference between the input and the output voltage, the less power efficient the
regulator becomes.

13.1.2 Switch mode power supplies

Switch mode power supplies exploits the characteristics of inductors together with clever switch-
ing of a MOSFET transistor to convert an input voltage to a desired output voltage. There are
several topologies of switch mode power supplies. The most common types are buck [50], boost
[48] and buck-boost [49], which is a combination of the former types. A buck power stage is
used when the desired output voltage is lower than the input voltage. A boost power stage is
used when the input voltage is lower than the output voltage. If the input voltage is variable and

72

13.1. BACKGROUND THEORY

can be either higher or lower than the output voltage, a buck-boost power stage is used. Simpli-
fied diagrams of the power stages and their output voltages for buck, boost and buck-boost are
shown below; Figure 13.3 and equation 13.5 shows a buck stage, figure 13.4 and equation 13.6
shows a boost stage and figure 13.5 and equation 13.7 shows a buck-boost stage.

All of these power stages use a drive circuit, this circuit implements a Pulse Width Modulated
(PWM) signal. A PWM-signal is a train of square pulses with a predetermined period TS . Every
period can be referred to as a switching cycle. The difference between different cycles is the
amount of time the signal is “high/on”, TON , consequently the time the signal is “low/off” is
called TOFF . The duty cycle D of a PWM-signal is the relation between the on and off time and
is defined as:

D · TS =TON (13.3)

(1 − D) · TS =TOFF (13.4)
Introduction

2 SLVA057

CR1

d s
Q1

g

a c

ia

+
VI

Drive
Circuit

p

RL

L

IL = ic

C

RC

R

VO

Figure 1. Buck Power Stage Schematic

During normal operation of the buck power stage, Q1 is repeatedly switched on
and off with the on and off times governed by the control circuit. This switching
action causes a train of pulses at the junction of Q1, CR1, and L which is filtered
by the L/C output filter to produce a dc output voltage, VO. A more detailed
quantitative analysis is given in the following sections.

Figure 13.3: Simplified Buck Stage

Vo = Vi · D (13.5)

Boost Power Stage Steady-State Analysis

2 SLVA061

a

c p

IL = ic

RC

+
VI

Drive
Circuit

CR1

L

C

R

Q1

VO

ia

s

g

d

RL

Figure 1. Boost Power Stage Schematic

During normal operation of the boost power stage, Q1 is repeatedly switched on
and off with the on and off times governed by the control circuit. This switching
action creates a train of pulses at the junction of Q1, CR1, and L. Although
inductor L is connected to output capacitor C only when CR1 conducts, an
effective L/C output filter is formed. It filters the train of pulses to produce a dc
output voltage, VO. The following sections give a more detailed quantitative
analysis.

2 Boost Power Stage Steady-State Analysis
A power stage can operate in continuous or discontinuous inductor current mode.
In continuous inductor current mode, current flows continuously in the inductor
during the entire switching cycle in steady-state operation. In discontinuous
inductor current mode, inductor current is zero for a portion of the switching cycle.
It starts at zero, reaches a peak value, and returns to zero during each switching
cycle. The two modes are discussed in greater detail later, and design guidelines
are given for the inductor value to maintain a chosen mode of operation as a
function of rated load. It is desirable for a power stage to stay in only one mode
over its expected operating conditions because the power stage frequency
response changes significantly between the two modes of operation.

For this analysis, an n-channel power MOSFET is used, and a positive voltage,
VGS(ON), is applied from the gate to the source terminals of Q1 by the drive circuit
to turn on the MOSFET. The advantages of using an n-channel MOSFET are its
lower RDS(on) (compared to a p-channel MOSFET), and the ease of driving it in
a boost power stage configuration.

Transistor Q1 and diode CR1 are drawn inside a dashed-line box with terminals
labeled a, p, and c. This is explained in the Boost Power Stage Modeling section.

2.1 Boost Steady–State Continuous Conduction Mode Analysis

The following is a description of steady-state operation in continuous conduction
mode. The main result of this section is a derivation of the voltage conversion
relationship for the continuous conduction mode boost power stage. This result
is important because it shows how the output voltage depends on duty cycle and
input voltage, or how, conversely, the duty cycle can be calculated based on input
and output voltages. Steady state implies that the input voltage, output voltage,
output load current, and duty-cycle are fixed and not varying. Capital letters are
generally given to variable names to indicate a steady-state quantity.

Figure 13.4: Simplified Boost Stage

Vo =
Vi

1 − D
(13.6)

The trick to derivate the equation for the output voltages is to look at the current through the
inductor in each of the power stages. The equations for the output voltage holds for continuous
current mode (CCM), this mode implies that the current through the inductor never reaches
zero. However, if the current through the inductor does reach zero the output voltages will be
affected by the load, this is referred to as discontinuous current mode (DCM). To make sure
the power stage stays in CCM the inductor has to be adequately large in terms of Henry, this is
referred to as critical inductance.. The minimum inductor size is dependent on the input voltage
Vi, output voltage VO, output current IO and the period of the PWM-signal, TS . This implies

73

CHAPTER 13. PRODUCING THE POWER CARD
Boost Power Stage Steady-State Analysis

2 SLVA061

a

c p

IL = ic

RC

+
VI

Drive
Circuit

CR1

L

C

R

Q1

VO

ia

s

g

d

RL

Figure 1. Boost Power Stage Schematic

During normal operation of the boost power stage, Q1 is repeatedly switched on
and off with the on and off times governed by the control circuit. This switching
action creates a train of pulses at the junction of Q1, CR1, and L. Although
inductor L is connected to output capacitor C only when CR1 conducts, an
effective L/C output filter is formed. It filters the train of pulses to produce a dc
output voltage, VO. The following sections give a more detailed quantitative
analysis.

2 Boost Power Stage Steady-State Analysis
A power stage can operate in continuous or discontinuous inductor current mode.
In continuous inductor current mode, current flows continuously in the inductor
during the entire switching cycle in steady-state operation. In discontinuous
inductor current mode, inductor current is zero for a portion of the switching cycle.
It starts at zero, reaches a peak value, and returns to zero during each switching
cycle. The two modes are discussed in greater detail later, and design guidelines
are given for the inductor value to maintain a chosen mode of operation as a
function of rated load. It is desirable for a power stage to stay in only one mode
over its expected operating conditions because the power stage frequency
response changes significantly between the two modes of operation.

For this analysis, an n-channel power MOSFET is used, and a positive voltage,
VGS(ON), is applied from the gate to the source terminals of Q1 by the drive circuit
to turn on the MOSFET. The advantages of using an n-channel MOSFET are its
lower RDS(on) (compared to a p-channel MOSFET), and the ease of driving it in
a boost power stage configuration.

Transistor Q1 and diode CR1 are drawn inside a dashed-line box with terminals
labeled a, p, and c. This is explained in the Boost Power Stage Modeling section.

2.1 Boost Steady–State Continuous Conduction Mode Analysis

The following is a description of steady-state operation in continuous conduction
mode. The main result of this section is a derivation of the voltage conversion
relationship for the continuous conduction mode boost power stage. This result
is important because it shows how the output voltage depends on duty cycle and
input voltage, or how, conversely, the duty cycle can be calculated based on input
and output voltages. Steady state implies that the input voltage, output voltage,
output load current, and duty-cycle are fixed and not varying. Capital letters are
generally given to variable names to indicate a steady-state quantity.

Figure 13.5: Simplified Buck-Boost Stage

Vo = −Vi ·
D

1 − D
(13.7)

that a PWM signal with a high frequency means that the inductor can be smaller in terms of
Henry.

13.2 Power source

In light of the rule constraints in section 3.6.2 rechargeable batteries were looked into. Nickel-
cadmium and nickel-hydrogen batteries has an energy density of 40−60Wh/kg and a typical cell
voltage of 1.2V , lithium batteries on the other hand has an energy density of 100 − 250Wh/kg
and a typical cell voltage of 3.6 − 3.7V [6, p. 18].

Lithium batteries were chosen because of the high cell voltage and energy density. Due to the
safety requirements battery packs with a protection module was desired. Traditional lithium ion
cells can catch fire, or even explode if short circuited or improperly charged. Lithium cells from
A123 systems use a different process that does not have these risks.

The choice fell on custom built battery packages with ANR26650M1-B cells from A123 sys-
tems with a protection module from Gylling Teknikk [1][20]. Each cell has a nominal voltage
of 3.3V and a nominal capacity of 2300mAH. It is recommended to keep the absolute minimum
cell voltage at 1.6V , and the maximum voltage at 3.8V . A 12-cell battery pack with two series
of 6-cells in parallel was ordered, this pack provides a nominal voltage of 19.8V and a capacity
of 4600mAH. The protection module provides cell balancing under voltage, over voltage, short
circuit and over current protection and limits the current consumption to 17A. It limits the min-
imum cell voltage at 2.0V and the maximum cell voltage at 3.8V , thus making the battery packs
operation range from 12.0 − 22.8V . The cell data sheet shows that each cell will have a voltage
higher than 2.5V until the cells capacity is almost completely exhausted, this makes the active
range of the battery from 15.0V − 22.8V . It also has to be noted that the voltage is very stable
between 90% − 10% capacity, the can be seen from the cells data sheet [1].

74

13.3. POWER CARD

13.3 Power card

In section 7.1.1 it was decided that the embedded system should support the laser positioning
system described in section 12, EPOS 24/2 motor controllers described in section 5, servos for
arms and wings, a start cord and an emergency stop button required by the rules in section 3.6.

In addition the system was designed with the following primary requirements:

• Reusable.
• Compact design.
• Micro controller as processor
• Standard interface to expand functionality / Modularity.
• Integrated CAN Communication for compatibility with previous Eurobot modules.
• Provide a range of voltages with high current.

And a set of optional requirements for ease of use of the system:

• Battery charger from external DC supply.
• Automatic switching between battery and external DC supply.
• On-board power consumption measurements.
• Ability to turn on/off voltage regulators from the micro controller.
• Few wires.
• Plugs on all wires to/from circuit board (no screw or solder connections).

13.3.1 Major design changes

It was proposed to use two micro controllers, one 32-bit board controller (AT32UC3C0512) to
take care of power management and one 8-bit controller to take care of I/O operations [22]. It
was also proposed to use a CPLD or an FPGA to be able to dynamically remap all i/o pins from
both micro controllers to extension modules.

The same article discusses that a solution with two micro controllers and a CPLD or an FPGA
may be overly complex and may discourage future users to use the circuit board. Thus it was
decided to use a single 8-bit micro controller. An Atmel AT90CAN32 was chosen because
it has hardware support for CAN-bus. This micro controller has been used in earlier Eurobot
modules, and thus firmware drivers for the CAN module can be reused [31, appendix B].

When it was decided to not use an AT32UC3C some changes had to be done to the design.
AT90CAN32 does not have any analog outputs (DACs) and does not have enough ADC inputs
to support the proposed solution for current and voltage monitoring which required 13 ADC
inputs. To enable analog outputs an external DAC with SPI interface was added. For current
and voltage monitoring an INA219 from TI was chosen, the chip does voltage and current
measurements which is readable through an I2C interface.

Figure 13.6 shows a block diagram of the modified and final system design.

75

CHAPTER 13. PRODUCING THE POWER CARD

Battery

External
Supply

Power Switch
&

Battery charger
Switch mode

Power supplies

MCU

24.0V

12.0V

5.0V

3.3V

Emergency off
switch Measurement data

Status signals

misc I/O

PC/104
Stack

CAN-busDB9
Connector

USB

debug
data

DAC

Figure 13.6: System Block Diagram

13.3.2 Battery charger

An on board battery charger was implemented. A charger chip from Linear Technologies was
chosen (LTC4009) as the cell voltage of the battery pack can be programmed with external
components. The chip monitors the battery voltage and regulates the charge current, it also
detects when an appropriate external voltage is connected for charging. It was chosen to charge
the battery when an external voltage of 24.0V or higher is connected to the circuit board.

A power path controller (LTC4416) was chosen to automatically change between the two main
power sources, battery and external DC. When a DC voltage capable of battery charging is
detected, the path controller switches the main power source from the battery to the external
DC source while the battery is charged.

13.3.3 Power supplies

To support a wide variety of electrical components a wide variety of voltages has to be available.
For a robot it is highly likely that actuators of some sort are used, so there also has to be a
reasonable amount of current available. It was decided to create four regulated voltages, 24.0V ,
12.0V , 5.0V and 3.3V , they were specified to be able to deliver 5.0A each.

As the input voltage is always higher than 12.0V , a Buck switch mode regulator chip from
Texas Instruments (TPS5450) was chosen. Since the input voltage may vary from 15.0V to
22.8V from a battery, and a source of 24.0V+ can be connected when charging a battery, the
24.0V regulator had to support input voltages higher and lower than the output. A general

76

13.4. EXTENSION MODULES

switching regulator controller (LM3488) from National Semiconductor was selected and used
to design a buck-boost regulator.

13.3.4 Circuit board stack

To provide expansion of functionality the physical standard of the PC/104-plus stack1. This
standard has a 104 pin ISA connector 2.54mm pitch and a 120 pin PCI connector, 2.00mm
pitch. The ISA connector is used to provide power through the stack, 12 pins for each of the
regulated voltages and 56 pins for ground. The PCI connector is: connected to the CAN-bus,
has some ground pins and almost all of the I/O from the micro controller is connected here. For
a complete list of the pin out and the physical dimensions of the stack refer to appendix C.3.

13.3.5 Circuit board

The schematics and circuit board layout was created using Altium Designer 10, figure 13.7
shows a 3D model of the finished circuit board. The complete schematic is available in appendix
C.2. The three connectors in the upper left corner are the power input and a connector for an
emergency stop button. They are from the Mini-Fit Jr series from Molex. Communication and
programming connectors are located on the right hand side, one DB9-connector for CAN, one
mini-USB for serial link to a computer and a JTAG header for programming and debugging of
the micro controller. The connectors at the top and bottom at the center of the card is the PC/104
stack, these are from the ESQ and ESQT series from Samtec Inc.

As the power supplies can deliver a substantial amount of current it was decided to design a 6-
layer board. The top and bottom layer is used for high current transmission and power ground.
The inner layers are used for small signal routing of control signals, digital buses etc. The two
remaining layers are used as a 3.3V and a ground plane to supply the digital logic on the board.

This circuit board was produced professionally by PCBCART [43] as we did not have any
equipment available to make boards with more than two layers. It also gives several other
advantages like silk screen print, plated holes, solder-mask and an overall better quality than
"home production". All surface mount packages with pads underneath the component were
soldered with professional soldering equipment at NTNU with proper temperature control and
solder paste. The rest of the components were soldered by hand with a regular soldering iron.

13.4 Extension modules

The following cards were created to extend the functionality of the main circuit board. They
both use the PC/104-plus stack. These circuit boards were produced with a circuit board CNC

1Note that there was a design error in spacing between the mounting holes for the PC/104-plus stack, the actual
dimentions can be seen in appendix C.6.

77

CHAPTER 13. PRODUCING THE POWER CARD

Figure 13.7: Circuit Board

located at the institute of Engineering Cybernetics at NTNU. There was produced a couple of
revisions of both cards before the competition. The cards were created with a template design
as shown in appendix C.6.

13.4.1 Motor control card

To support motor controllers a circuit board for the stack was reproduced from a previous design
[54, p. 19]. It was found that the PC/104 headers didn’t fit on the working prototype because the
physical drilling was poorly executed, thus a new card was produced with a CNC. The circuit
board contains two EPOS2/24 motor controllers from Maxon Motors. The motors are driven
by 24.0V from the stack. The motor cards communicates via CAN bus through the stack. The
schematic for the design is available in Appendix C.4.

13.4.2 Eurobot 2012 top card

A card was created with plugs for 4 servos, a connection for a start cord, connectors for two
fans and a connector for the laser tower. No control logic is implemented here, everything is
controlled from the base board. Schematics can be found in Appendix C.5.

78

13.5. POWER CARD FIRMWARE

13.5 Power card firmware

Firmware for the competition was implemented on the power card. It supports control of 5
servos, a start cord and it keeps track of time so the robot can be turned off after n seconds.
Each servo can be turned on/off individually, a position can be set and the speed the servo
moves from one position to another can be manipulated. The position is manipulated by setting
the duty cycle of a 50Hz PWM signal, the duty cycle can be set from 0 to 100%.

Control and configuration of this functionality is done via CAN-bus, the package ID’s conform
to CANopen[54, p. 4] with node id 0x005. The timer package illustrated in figure 13.8 can be
sent to the power card to configure how long the robot should run after the start cord is pulled. It
can run from 0 to 255 seconds, where 0 is run forever. 0 is the initial value if packet is not sent.
When the start cord is pulled the power card sends a package illustrated in figure 13.9 every time
data is updated in the micro controller. The first byte tells if the timer is active, 0 = diabled
1 − 255 = enabled. The second byte tells how long the robot has run for in seconds, 0 − 255
and the third byte tells how long the robot will run before powering down in seconds, 0 − 255.

A package illustrated in figure 13.10 can be sent to the power card to manipulate up to five
servos. The first byte contains a servo ID: 0x0A to 0x0E, the rest of the bytes in the package
will configure this device. The enable byte can be set or cleared to turn power to a servo on/off,
0 = o f f , 1 − 255 = 0n. The third and fourth byte is used to set the servo position, 0 = 0% duty
cycle, 65535 = 100% duty cycle2. The speed the servo moves can be manipulated with the fifth
and sixth bytes. As an example moving the servo from position 400 to 1100 with a speed of 20
would take 1100−400

20 · 20mS = 700mS 3.

CAN_ID=0x200+0x005

Seconds
}

8-bit

Figure 13.8: Timer RX message

CAN_ID=0x180+0x005

Active
}

8-bit

Current time
}

8-bit

Max time
}

8-bit

Figure 13.9: Timer TX message

CAN_ID=0x300+0x005

Servo ID
}

8-bit

Enable
}

8-bit

Servo Position
}

16-bit

Servo Speed
}

16-bit Optional

Figure 13.10: Servo RX message

2The servos in our robot was found to have an active range from 400-1100
3A speed equal to the active duty cycle range will move the servo as fast as the hardware allows it to

79

CHAPTER 13. PRODUCING THE POWER CARD

13.6 Switch mode power supply test

An efficiency test was carried out on the switch mode power supplies. To test the efficiency of
a power supply one looks at the input and output power Pin and Pout. The efficiency is a ratio
between Pin and Pout, and is defined as:

η =
Pout

Pin
(13.8)

The efficiency of a switch mode power supply will vary with input voltage and output current,
the output voltage will also vary some based on these parameters. Tests were therefore carried
out with the input voltage at the batteries max and minimum voltage. During the test input and
output voltage, current and power was logged for different loads from 0A to 3.5A.

Test card

A card for the circuit board stack with separate plugs for GND, 3.3V, 5.0V, 12.0V and 24.0V
was created to do power supply tests, its only function is to give access to the power cards
voltages via 2.0mm banana-plugs.

Test setup

Figure 13.11 shows a block diagram of the test setup. An adjustable power supply is used
to apply maximum and minimum battery voltages to the switch mode power supply that is
tested. Input and output voltage, current and power is measured with the on-board current
measurement chips. To test the efficiency with different loads automatically an electronically
adjustable constant current load is used. A micro controller sets the desired load and requests
input and output measurements, then sends the data to a computer. For small currents a variable
resistor can be used instead of a constant current load, but variable resistors that can dissipate
heat from 125W is expensive and the data logging process can’t be automated.

Constant current load

An adjustable constant current load with a maximum 5.5A drawn has been made with an op-
eration amplifier, one n-channel MOSFET and a 1Ω resistor. The schematic is shown in figure
13.12. When a constant voltage is applied to the positive input of the operation amplifier, in this
case a pulse width modulated signal with a low pass filter. The output of the operation amplifier
adjusts the gate voltage of the MOSFET to keep the negative input equal to the positive input.
This creates a constant voltage equal to the applied voltage across a resistor which will then
draw constant current from a supply.

80

13.6. SWITCH MODE POWER SUPPLY TEST

Adjustable
Power Supply

Switch Mode
Power Supply

Adjustable
Constant

Current Load

MCUComputer

Measured Data

Load AdjustData

Figure 13.11: Efficiency test setup

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize

A3

Date: 06.06.2012 Sheet of
File: C:\Users\..\source_screen.SchDoc Drawn By:

+3

-2
1

8
4

U1A
LF353

1R0
R2

GND

G

S

D

Q1
STP22NF03L

12V0

-12V0

3K3

R1

100nF
C1

GND

VIN

PWM

PIC101

PIC102
COC1

PIQ101

PIQ102

PIQ103

COQ1

PIR101 PIR102
COR1

PIR201

PIR202

COR2

PIU101

PIU102

PIU103

PIU104

PIU108 COU1A

Figure 13.12: Constant Current Load

81

CHAPTER 13. PRODUCING THE POWER CARD

The majority of the power dissipation is in the MOSFET. Say a 24V supply is connected to
the MOSFET and we apply 5V to the positive terminal of the operation amplifier. The voltage
across the MOSFET will then be:

Vds = Vin − VR = 24V − 5V = 19V (13.9)

The current is determined by the resistor value, as R = 1Ω the current will be 5A. This yields
the following power dissipation in the resistor and the mosfet:

PR = VR · I = 5V · 5A = 25W (13.10)

Pmos f et = Vds · I = 19V · 5A = 95W (13.11)

For this design 6 × 5W resistors in parallel is used for the 1Ω resistor so it can withstand 30W.
In the MOSFET the exact number of watts dissipated is not the problem, the main constraint is
the heat caused by the power dissipation. In this design a STP22NF03L in a TO-220 package
is used, this MOSFET has a maximum operation temperature of 175◦C. To withstand lots of
power dissipation a heat sink is required, the heat sink has to absorb enough heat to keep the
MOSFET within it’s operation temperature. When power is dissipated in the MOSFET the
temperature increase is relative to the ambient temperature. Heat sinks are specified in thermal
resistance ◦C/W. Assuming that the package can transfer enough heat to the heat sink a simplified
calculation shows that the heat sink needs the following thermal resistance to keep the MOSFET
below 175◦C if the ambient temperature is 20◦C:

Tmax = Tambient + Trise = Tambient + P ∗ θsink (13.12)

θsink =
Tmax − Tambient

P
=

(175 − 20)◦C
95W

= 1.72◦C/W (13.13)

Test procedure

Firmware on the micro controller located on the power card implements a test procedure that
gets measurements from 0 to 3.5A load. It does 100 measurements on this range in increments
of 35mA. For each step it gets measurement data from the input and the output of the power
supply under test. Each measurement is done 20 times and averaged, and then the results are
sent to a computer via a serial link. Each power supply is tested with different input voltages that
are within the main battery range, 16.0V, 19.5V and 22.8V. Appendix C.7 shows the physical
test setup. In addition to the power card and current load one 6A lab supply was used as power
source, and a second lab supply was used to power the load.

82

13.7. RESULTS

13.7 Results

Figure 13.14, 13.15, 13.16 and 13.17 plots the efficiency of the regulators at different input
voltages. See appendix G for the raw measurement data. During the test of the 24V regulator
the MOSFET short-circuited at 2800mA load, this can be seen in figure 13.17 as the next step
is a 6A load. It was also noted that the efficiency of the 24V regulator is very high. A plot of
the output voltage from all the regulators shown in figure 13.13 reveals that the 24V voltage
regulator does not work, the output is equal to the input.

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500

O
u
tp

u
t

V
o
lt

a
g

e
 [

V
]

Load Current [mA]

3.3V
5.0V

12.0V
24.0V

Figure 13.13: Voltage Stability

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500

E
ffi

ci
e
n
cy

 [
%

]

Load Current [mA]

16.0V IN
19.5V IN
22.8V IN

Figure 13.14: 3.3V Power Supply Efficiency

83

CHAPTER 13. PRODUCING THE POWER CARD

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500

E
ffi

ci
e
n
cy

 [
%

]

Load Current [mA]

16.0V IN
19.5V IN
22.8V IN

Figure 13.15: 5.0V Power Supply Efficiency

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500

E
ffi

ci
e
n
cy

 [
%

]

Load Current [mA]

16.0V IN
19.5V IN
22.8V IN

Figure 13.16: 12.0V Power Supply Efficiency

84

13.8. DISCUSSION

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000

E
ffi

ci
e
n
cy

 [
%

]

Load Current [mA]

16.0V IN

Figure 13.17: 24.0V Power Supply Efficiency

13.8 Discussion

13.8.1 Circuit board stack

The circuit board stack allowed us to create several prototypes for the actual functionality for
the robot without having to re-design/re-solder micro controllers or power supplies. This saves
a considerable amount of time and cost as these are usually expensive parts of an embedded
design, however the connectors required for a PC/104-plus is very expensive. We actively used
engineering samples from Samtec Inc to get these for free. If we did not have access to a circuit
board CNC a PC/104 solution would be very unpractical as it is very time consuming and hard
to drill the 224 required holes by hand.

13.8.2 Battery charger

The battery charger and the power path controller were briefly tested, the battery charger did not
work and there were problems when both the battery and an external DC source were connected.
It was discovered that the chosen power path controller does not support power switching the
way the circuit board was designed. All testing of the battery charger / power path controller
was discontinued as it was not an integral part for the system to work.

85

CHAPTER 13. PRODUCING THE POWER CARD

13.8.3 Switch mode tests

The constant current load was made by available spare parts and a large heat sink was selected
without any calculations. When the efficiency tests are done high power dissipation occurs for
a few minutes as the measurements are done automatically, this implies that the temperature in
the selected heat sink does not have enough time to raise enough to exceed the MOSFETs max
temperature. However, when testing the 24V regulator the temperature rise in the MOSFET
was higher than the thermal resistance between the MOSFET package and the heat sink which
caused it to break down. This could have been solved by using several MOSFETS in parallel
on the heat sink, though it was not considered important to create a new load as enough results
were logged.

More importantly the results show that the 24.0V does not regulate the output voltage correctly,
however the robot has worked with this voltage as source for the propulsion system. This is
because the main energy source, the battery, has a stable voltage between 90% − 10% capacity
as mentioned in section 13.2.

To get better test results the tests should scan the entire load range of the power supplies to see
how they behave close to the maximum load. This was not done due to limits in the prototype
load, specifically a reference voltage of 5V was required to draw 5A trough the load. The micro
controller controlling the tests is driven by 3.3V .

86

Chapter 14

Software implementation

The debugging GUI

Chapter 7 and 9 states that the software should run on a HP Slate 2 tablet on Linux. A choice
of the exact Linux distribution, as well as it’s installation, needed to be carried out.

At the end of chapter 10, a set of software modules and their requirements are listed. These
modules must be implemented.

Chapter 8 states that Go should be used for high-level code, and that C should be used for
low-level code.

87

CHAPTER 14. SOFTWARE IMPLEMENTATION

14.1 Algorithms and data structures

14.1.1 The A* algorithm

A* is an extension of Dijkstra’s shortest path algorithm [51, p. 97]. It finds the shortest path
from a “start-node” to a “goal-node”, beginning at the start-node and expanding from there. All
nodes on the edge of the explored are held in a list called the open set, while all explored nodes
are held in the closed set. To decide which node to visit next, it use a heuristics function f (x),
and selects the node in the open set with the minimum expected distance.

14.1.2 Advanced data structures

Hash table

A hash table support insert, search and delete, all with expected average time of O
(
1
)

[9, p. 221].
A hash table consists of a directly addressable table, or array, and a hash function to map
elements into the array.

Priority queue

A heap structure can be used to implement a min-priority queue [9, p. 138]. The min-priority
queue supports a number of operations including insert and extract-minimum, both in O

(
log n

)
.

A min-priority is a vital component to a dijkstra shortest path implementation [9, p. 598].

14.2 An introduction to Go

This section will give a very brief introduction to the Go Programming language. As the Go
language has much inheritance from the C language, it will be a priority to point out where
the Go language is different from C. A longer introduction to Go can be found in Myren’s pre-
study [36] and on the language’s official web pages [18]. Information about Go in this section
is exclusively gathered from these two cites, though the examples are not.

14.2.1 Basics

Go has a syntax that is similar to C syntax in many ways. One of the largest differences from
C syntax lay in variable and function declarations. Go uses the var keyword for variable decla-
ration, const for constant declarations, and func for function declaration. Semicolons at the end
of each line are not needed.

88

14.2. AN INTRODUCTION TO GO

Listing 14.1: A simple Go program
1 package main
2

3 import (
4 "fmt"
5 "errors"
6)
7

8 func Int32Div(a, b int32) (result int32, err error) {
9 if b == 0 {

10 err = errors.New("Division by Zero")
11 return
12 }
13 result = a/b
14 return
15 }
16

17 func main () {
18 var a, b, c int32
19 var err error
20 defer fmt.Println("Prints when main() returns")
21

22 a = 300
23 b = 10
24 c, err = Int32Div(a, b)
25 if err != nil {
26 fmt.Println(err.Error())
27 return
28 }
29 fmt.Printf("%d/%d ~= %d\n", a, b, c)
30 return
31

32 }

Note that unless otherwise stated, all variables in Go are initialized to a default zero value. E.g.
the default value of an integer would be 0, while the default value of a pointer would be nil.

A neat feature of Go, is that a function can have multiple return values. Also, function calls can
be queued in order to run at a later point in time by using the defer keyword. Defer functions
are run in a FILO order when the function where the defer keyword was used, runs out of scope.

Listing 14.1 shows the full source code of a simple Go program, demonstrating most of the
concepts that just have been explained. The Int32Div function here will return both an integer
and an error. If nothing goes wrong, the error value will be nil.

14.2.2 Strongly typed

The Go language is much more strongly typed than C. Except for a very few exceptions, all
variable casts must be explicit! E.g. an int64 cannot be implicitly casted to an int32 and vice
versa. Even two Go types that have the same underlying type cannot be casted implicitly. The
latter is demonstrated in listing 14.2.

89

CHAPTER 14. SOFTWARE IMPLEMENTATION

Listing 14.2: Type casting
1 type A int64
2 type B int64
3

4 var a A = 42
5 var b B
6

7 // The following will result in a compilation error:
8 b = a
9

10 // The following will work just fie:
11 b = B(a)

14.2.3 Structs

Listing 14.3: A struct with a member function
1 type Abc struct {
2 a, b int32
3 c float64
4 }
5

6 func (t Abc) Float64Sum() float64 {
7 return float64(t.a) + float64(t.b) + c
8 }

Struct are built up in much the same way they are in C, and are defined with the type keyword.
However all Go types, including structs, are allowed to have member functions. Listing 14.3
shows a simple struct with a member function.

14.2.4 Interfaces

Interfaces define a set of functions. Any Go types that implement all these functions, will im-
plicitly implement the interface. An interface with zero functions defined, will be implemented
by all Go types.

As an example of an interface in the standard libraries, we have the io.Writer. It only defines
one function, namely: Write(b []byte)(n int, err error). A pointer to any type that implements
this one function can be passed to any function that expects an io.Writer.

14.2.5 Built-in concurrency

In Go, light-weight threads, often referred to as goroutines, can be started by prefixing a function
call with the go command. These threads will be scheduled by Go’s internal scheduler, who will
multiplex queued goroutines onto a finite number of OS-threads. Listing 14.4 shows, among
some other concepts, how goroutines are started.

90

14.2. AN INTRODUCTION TO GO

14.2.6 Communication constructs

Listing 14.4: Solution to the Producer Consumer problem
1 package main
2

3 import (
4 "fmt"
5 "time"
6 "sync"
7)
8

9 func Producer(c chan<- int, i int) {
10 for {
11 // Send to channel c
12 c <- i
13 }
14 }
15

16 // Runs for 5 seconds
17 func Concumer(c <-chan int) {
18 var i int
19 var timout chan time.Time = time.Tick(5*time.Seconds)
20

21 for {
22 // select switch for receiving from channal c or timeout.
23 select {
24 i = <-c: // <- the value from the channel is stored in i
25 fmt.Print(i)
26 <-timeout; // <- the value from the channel is discarded
27 fmt.Println()
28 return
29 }
30 }
31 }
32

33 func main() {
34 var c chan int = make(chan int, 5)
35 var wg sync.WaitGroup
36

37 go Producer(c, 0)
38 go Producer(c, 1)
39 wg.Add(1)
40 go func() {Concumer(c); wg.Done()}() // <- functions can be defined and executed directly.
41

42 wg.Wait() // <- wait until wg equals 0
43 }

For gorotines to become useful, a way to exchange data without risking race-conditions would
be required. Standard concurrency constructs like Conditional variables, Mutexe and RWMu-
tex are provided by the Go standard library. To be able to wait for goroutines to finish, the
WaitGroup synchronization construct is provided. In addition, there is a more high-level con-
currency construct, called a channel.

The channel is mainly used for message passing between different goroutines. When initialized,
it can be set up to handle any Go type. The channel can in general be described as a bounded
buffer where messages are received by the listener in a FIFO order. Channels are synchronous
if they are initialized with a size of zero and asynchronous otherwise. To be able to listen to
several channels simultaneously, the select keyword can be used. The select keyword can also

91

CHAPTER 14. SOFTWARE IMPLEMENTATION

be used to avoid blocking when trying to either read from an empty channel, or to send to a full
channel.

When declaring a channel, an arrow into the channel (chan<- t) means it is a send-only channel,
an arrow out (<-chan t) means it is a receive-only channel, and mo arrow either (chan t) way
means the channel is bidirectional. Bidirectional channel will be semalessly casted when sent
into a function that takes a directed channel.

Listing 14.4 displays a solution to a producer-consumer problem (see chapter 10). The pro-
gram shows most of the concepts just mentioned regarding concurrency and communication
constructs.

14.2.7 Error handling

In Go, there is a distinction between critical a non-critical errors. Normally, error conditions are
handled with multiple return values, as shown in listing 14.1.

In case of severe errors, a panic can be raised with the panic(s string) function. A panic will end
the current function, run any queued defer function, and then continue down the stack. A panic
can only be recovered if a call to recover() can be found among the queued defer functions in the
given goroutine. If a panic is allowed to propagate all the way down the stack of the goroutine
where it occurred, the entire program will be terminated.

14.2.8 Package testing

Go provides support for automatic testing of packages. Testing is typically preformed through
the use of the go test command line tool. Depending on the flags given, go test runs through
some or all testing and benchmark functions. Testing functions are functions in the package
named “func TestX(*testing.T)”, where X can be any string. The benchmark functions are sim-
ilarly named “func BenchmarkX(*testing.B)”.

14.2.9 The time.Duration type

The Duration type, in the time package, is a type that is implemented to make it easier to handle
time. The underlying type is an int64, where it will store the time in nanoseconds.

Listing 14.5 shows a set of convenience constants and member functions defined for the Du-
ration type. All functions Hours(), Minutes(), etc. are used to extract the stored time value as
a given time unit. The String() functions provides a way to represent the time in a sensible
manner based on the values magnitude.

An example use-case of the convenience constants is shown in listing 14.4, where the time.Tick
function is called with 5*time.Second as an argument.

92

14.3. CHOICE OF LINUX DISTRIBUTION

Listing 14.5: The Duration type
1 // Type declaration
2 type Duration int64
3

4 // Constants
5 const (
6 Nanosecond Duration = 1
7 Microsecond = 1000 * Nanosecond
8 Millisecond = 1000 * Microsecond
9 Second = 1000 * Millisecond

10 Minute = 60 * Second
11 Hour = 60 * Minute
12)
13

14 // Member functions
15 func (d Duration) Hours() float64
16 func (d Duration) Minutes() float64
17 func (d Duration) Nanoseconds() int64
18 func (d Duration) Seconds() float64
19

20 func (d Duration) String() string

14.3 Choice of Linux distribution

In chapter 9, it was decided that Linux should be used on the HP Slate 2. However, the exact
distribution to use, still need to be decided. The requirements for the distribution, is equal to the
OS requirements; it must run well at the HP Slate 2, be stable and robust, familiar, allow CAN
support and provide a good development environment.

The initial plan was to go for one of the big stable Linux distributions. As one of the most
widespread and well known distribution, Ubuntu was initially chosen [11]. However, as Ubuntu
and Debian had some problems with the consistently booting the Slate 2 and its Intel GMA500
graphics card, this choice had to be re-evaluated. After all, a “stable distribution” cannot be
considered stable if it does not properly support the hardware.

It was considered that a more configurable and “cutting edge” distribution would be more likely
to properly support the HP Slate 2 hardware. As alternatives familiar to the team, one could
use either Archlinux or Gentoo. Archlinux is dedicated to keep the implementation clean and
simple and to provide the newest software available [61]. The distribution is highly configurable
and agile, but has a greater risk of breaking on system updates than more tested distributions.
Archlinux was considered stable enough as long as it wasn’t unnecessary updated at critical
times.

Gentoo is a highly configurable and optimized distribution were software packages, in principal,
are only provided in source form [17]. Everything thus needs to be compiled by the user. For
this task, Gentoo provides a combined build system and package manager that makes package
configuration and optimization easy 1. As the resources of the Slate 2 platform are quite limited,
it was decided to not waste too much time on compilation. The team therefore decided to use

1Applies to users with a good understanding of software compilation

93

CHAPTER 14. SOFTWARE IMPLEMENTATION

Archlinux.

14.3.1 Linux configuration

As mentioned in chapter 10, Linux CAN is the kernel module we wanted our software to use
for CAN communication. The default Archlinux kernel is compiled without Linux CAN, so the
kernel had to be recompiled with the can module enabled. Archlinux makes it easy to recompile
the kernel [3]. The kernel was recompiled with support for CAN. In the same go, some modules
that were considered unnecessary were striped away to save compilation time. To support our
CAN USB-device, drivers from Peak also had to be installed. This procedure is explained in
the software’s README file, which is available as a digital attachment, see appendix G.

14.4 Software overview

As Go refers to software modules as packages, this is the term that we will use when we talk
about implemented software modules.

In chapter 10, a set of modules and their requirements were defined. Figure 14.1a and 14.1b
shows an overview of what packages were actually implemented, and how they were organized
in the filesystem hierarchy. The packages are ordered in such a way that any given package in
the figures, only depend on packages to their left. We see that all the general purpose libraries
have been placed inside the eurobot-ntnu.no folder. The task-specific code is organized as sub-
packages of the robot package. The firmware folder contains the software that’s used on the
microcontrollers, and will not be discussed in detail here.

In addition to modules defined in chapter 10, a goroutine dispatcher and a stand-alone C simula-
tor has been added. There are also some additional sub-packages inside the robot package, such
as the logging and config packages. If we compare figure 14.1a and 14.1b with figure 10.2, we
see that the names have been changed from conceptual names to actual package names. It also
seems like the task-specific pathfinder and regulator modules have vanished. What has actually
happened is that the task-specific pathfinder code has been made part of the ai package, and the
regulator has been made part of the ctrl package.

In the following sections there will be a focus on explaining significant implementation details
for the various software packages. Any significant addition or aversion from the design will be
highlighted.

94

14.4. SOFTWARE OVERVIEW

Folder Go pkgC lib

C lib / Go pkg Binary

... ... units socketcan

canopen

m
otor

pow
ercard

lasertow
er

dispatcher

extkalm
an

sim
ulator

astar

...

firmware eurobot-ntnu.no

drivers

src

robot

(a) The entire source tree

Go pkg

Binary

sim
ulator

config

hw

stupid_ai

logging

sim

filter

m
odel

w
eb_ai

forest_ai

ai safety

ctrl

w
eb

robot

(b) Task-specific packages

Figure 14.1: Implemented software packages

95

CHAPTER 14. SOFTWARE IMPLEMENTATION

14.5 Go libraries

14.5.1 The Units library

Listing 14.6: The Velocity type
1 // Type declaration
2 type Velocity float64
3

4 // Constants
5 const (
6 NanometerPerSecond = 1e-6 * MillimeterPerSecond
7 MicrometerPerSecond = 1e-3 * MillimeterPerSecond
8 MillimeterPerSecond Velocity = 1
9 CentimeterPerSecond = 1e1 * MillimeterPerSecond

10 MeterPerSecond = 1e3 * MillimeterPerSecond
11 KilometerPerHour = 1e3 * MeterPerSecond / 60 / 60
12)
13

14 // Member functions
15 func (v Velocity) MillimetersPerSecond() float64
16 func (v Velocity) CentimetersPerSecond() float64
17 func (v Velocity) MetersPerSecond() float64
18 func (v Velocity) KilometersPerSecond() float64
19

20 func (v Velocity) MultiplyWithDuration(t time.Duration) Distance

Listing 14.7: Assorted functions from the Units library
1 // Returns the distance from c1 to c2.
2 func (c1 Coordinate) Distance(c2 Coordinate) Distance
3

4 // Given a polar-axis parallel to the x-axis, this function
5 // returns the angle of the vector going from c1 to c2 in range
6 // -PI to PI.
7 func (c1 Coordinate) Angle(c2 Coordinate) Angle

The implementation of the units-library was heavily inspired by the time.Duration type in the
standard libraries (See section 14.2, page 92). Initially, the types Distance, Velocity, Angle, and
AngularVelocity were defined, all with float64 as the underlying type. Convenience constants
and converter functions similar to those defined for time.Duration, was provided for each of
these types. In what unit each underlying type is stored, should be irrelevant for the user, as
long as the convenience constants are used for initialization, and the converter functions are
used to extract the values. As an example, the constants and converter functions for the Velocity
type is provided in listing 14.6.

On top of the distance type, a Coordinate type has been defined. The underlying type is a struct
containing two Distance objects named X and Y.

To ease some conversion between different types, a set of mathematical/physics operations are
provided. As shown in listing 14.6, the Velocity type provides a MultiplyWithDuration function
that returns a Distance. Likewise, the Distance type provides a DivideWithDuration function
that returns a Velocity. Some more examples are shown in listing 14.7.

96

14.5. GO LIBRARIES

14.5.2 The Dispatcher library

Listing 14.4 on page 91 shows how the WaitGroup type can be used to wait for a goroutine’s
completion. It does not show how to safely terminate a goroutine. The best way to safely
terminate a goroutine would probably be to use a channel. Defer functions can be used to make
sure that shut-down routines and last wishes are carried out. However, when multiple goroutines
that need safe termination are started, some questions arise:

• Should each goroutine have its own termination channel and wait group, or should they
share these constructs?

• How large should the buffer size of this termination channels be?

• What should happen if the buffer is filled?

The task-specific code of this year’s robot required numerous goroutines, many of which was
believed to need a safe termination. To standardize how these goroutines were started, a general-
purpose dispatcher library was developed. It is a small library, less than 40 lines of actual code,
but as it was a desire to write it thread-safe, it took several tries to get it just right. The entire
source code, excluding package tests, can be found in appendix D.1.

To create a goroutine with the dispatcher library, the dispatcher.Interface interface must be
implemented. This interface defines only a single function: Run(termc <-chan bool). Imple-
mentations should periodically check the termc channel, and return if something is received.

When a type implementing this interface is passed to the NewGoroutine(...) function, the Run
function is called in a new goroutine, and a pointer to a Routine instance is returened. The
Routine instance provide two member functions: Terminate() and Wait().

The Wait function blocks until the Run function has safely terminated. It should be possible to
call this function from several goroutines simultaneously without causing race-conditions.

When the Terminate function is called, one of two things occurs:

• If the termc channel is not full, the Terminate function sends a value on the termc channel
and then waits until the Run function has safely terminated.

• If the termc channel is full, the Terminate function waits until the Run function has safely
terminated.

Internally the dispatcher used a Go WaitGroup. If the Run function should terminate before or
during a call to the dispatcher’s Terminate function, the Terminate function will return at once,
since there is nothing to wait for. It should be possible to call the Terminate function from
several goroutines simultaneously without causing race-conditions.

97

CHAPTER 14. SOFTWARE IMPLEMENTATION

Listing 14.8: The ExtKalman struct
1 // Type definition:
2

3 // System equation: v and w are white noise, Q and R are design matrices, P0
4 // and x0 describe the initial system state.
5 //
6 // x(k+1) = f(x,u) + W*w
7 // y(x) = h(x,u) + v
8 //
9 // Q(k) = E[w(k) w(j)^t], where j=k else 0

10 // R(k) = E[v(k) v(j)^t], where j=k else 0
11 type ExtKalmanFilter struct {
12 // System State
13 x matrix.Matrix // State vector
14 mP matrix.Matrix // Error covariance matrix
15

16 // Const system matrices
17 mW matrix.Matrix // Which states are noisy
18 mQ matrix.Matrix // Process noise variance
19 mR matrix.Matrix // Measurement noise variance
20 cWQWt matrix.Matrix // W*Q*W^t
21

22 // Function pointers
23 f func(matrix.Matrix, matrix.Matrix) matrix.Matrix // x = f(x,u)
24 dfdx func(matrix.Matrix, matrix.Matrix) matrix.Matrix // F = df(x,u)/dx
25 h func(matrix.Matrix) matrix.Matrix // y = h(x)
26 dhdx func(matrix.Matrix) matrix.Matrix // H = dh(x)/dx
27

28 // Useful to normalize angle error
29 normalize_ydiff func(matrix.Matrix) matrix.Matrix
30 }
31

32 // Initializers:
33 func Kalman(W, R, Q, x0, P0, A, B, H matrix.Matrix) (k *ExtKalmanFilter)
34 func ExtendedKalman(
35 W, R, Q, x0, P0 matrix.Matrix,
36 f, dfdx func(matrix.Matrix, matrix.Matrix) matrix.Matrix,
37 h, dhdx, normalize_ydiff func(matrix.Matrix) matrix.Matrix) (k *ExtKalmanFilter)
38

39 // Member functions:
40 func (k *ExtKalmanFilter)Step(y, u matrix.Matrix)(x matrix.Matrix)

14.5.3 Extended Kalman filter library

In chapter 10, it was decided that an extended Kalman Filter library should be developed in
Go, based on the Gomatrix project. The Gomatrix library provides linear algebra operations for
both dense and sparse matrices. The implementation is based on the definitions in “Integrated
Satellite and Inertial Navigation Systems” [60, p. 103]. Also, even though code from the KFilter
library could not be used directly, it was useful for testing [63]. This made it relatively simple
to implement the functionality of the extkalman library.

The final implementation uses the ExtKalmanFilter struct for storing the system matrices,
function-pointers and the last known state and variance. This struct and its associated func-
tions are shown in listing 14.8. Please note that Gomatrix has no concept of vectors, as such
vectors are implemented as “uni-column” matrices.

The filter is initialized by calling the ExtendedKalman(..) function, which takes a set of sys-

98

14.5. GO LIBRARIES

tem matrices and function pointers as input. The function pointers are used to implement the
nonlinear behavior and to linearize the nonlinear behavior. When initialized, the filer should be
used by calling Step(...) periodically. This function takes in the latest available measurements
(y) and the actuation (u), and returns the new estimated system state.

Just for good measure, a normal Kalman filter was implemented on top of the extended Kalman
filter. The function Kalman(..) takes a set of system matrices as input, and generates the neces-
sary function pointers to run the Kalman filter as an extended Kalman Filter.

14.5.4 Optimizing the A* library

As described in chapter 10, the a-star implementation “Gopathfinding” was used. It perfomed
the A* search in four direction.

A quick benchmarked was developed that measured the time to find a path from position (0,0)
to (99,99) on a 100x100 map with a wall/obstacle line going from (55,20) to (55,80).

The tool parameters, and environment variables, needed to reproduce the results are preserved
in the script run_bench.bash, found in appendix D.4. The benchmark was run on a HP Slate 2
tablet [40], resulting in 3.08 seconds per calculation on a 100x100 map. This was deemed too
slow for real-time path calculations, and unnecessary so.

Search optimizations

The implementation was profiled to recognize hot spots. The result can be seen in table 14.1.
From the result it was concluded that a lot of time, that was spent managing the closed-set. The
implementation iterates over the closed set on each step to check if the current node has been
visited before. To reduce this overhead a hash table could be used.

The immense slowdown from closed-set problem overshadows any other time consuming parts
in the profiling data. However, studying the code shows that a considerable amount of time is
spent repeatedly finding the minimum node in the open set. Since the open set is stored as an
array, the code has to iterate through the whole list each time to find the minimum node. It
would be better if the open set could be stored as a min-priority queue.

As it was considered useful, and had little effect on performance, the A* library was modified
to search in eight direction instead of four.

Resulting improvements

After switch to using a hash table for the closed set, and a min-priority queue for the open set,
the HP Slate HP Slate 2 used 0.12 seconds per calculation. Complete benchmarks results are
provided in section 14.10.

99

CHAPTER 14. SOFTWARE IMPLEMENTATION

In function Function and callees
Hit count Percent Hit count Percent Function name

244 73.5% 245 73.8% .../gopathfinding.(*Graph).Node
80 24.1% 80 24.1% .../gopathfinding.hasNode
4 1.2% 4 1.2% .../gopathfinding.PathCost
1 0.3% 1 0.3% ReleaseN
1 0.3% 1 0.3% .../gopathfinding.removeNode
1 0.3% 2 0.6% runtime.growslice
1 0.3% 1 0.3% sweep
0 0.0% 246 74.1% .../gopathfinding.(*Graph).adjacentNodes
0 0.0% 331 99.7% .../gopathfinding.Astar
0 0.0% 331 99.7% .../gopathfinding.BenchmarkAstar4Dirs100x100
0 0.0% 1 0.3% growslice1
0 0.0% 1 0.3% makeslice1
0 0.0% 1 0.3% runtime.GC
0 0.0% 1 0.3% runtime.MCache_ReleaseAll
0 0.0% 2 0.6% runtime.gc
0 0.0% 1 0.3% runtime.mal
0 0.0% 1 0.3% runtime.mallocgc
0 0.0% 332 100.0% schedunlock
0 0.0% 1 0.3% stealcache
0 0.0% 332 100.0% testing.(*B).launch
0 0.0% 332 100.0% testing.(*B).runN

Table 14.1: A* profiling result

A* map generation

A map of known static obstacles on the playing area needed to be created. In the implementation
a map is represented as a two dimensional array.

To ease the creation of this map a PNG-image to array converter was created. The converter
reads a black and white image and outputs a map usable to the A* algorithm.

100

14.6. THE HARDWARE ABSTRACTION LAYERS

14.6 The hardware abstraction layers

CAN bus

Firmware

CAN API

CAN Open

Go bindings

Hardware interface

Robot model

Robot controller

Robot
software

Robot
drivers

Physical
robot

Linux CAN

Robot drivers

robot/ctrl

robot/model

robot/hw

eurobot-ntnu.no/drivers/motor
eurobot-ntnu.no/drivers/lasertower
eurobot-ntnu.no/drivers/powercard

eurobot-ntnu.no/drivers/socketcan

eurobot-ntnu.no/firmware/...

eurobot-ntnu.no/drivers/canopen

Component Layer Source code package

Figure 14.2: Implemented hardware abstraction layers

14.6.1 Device drivers

Figure 14.2 show which packages that implements the different hardware abstraction layers.
This section will discuss the implementation of the Robot drivers block.

To allow reuse of the CAN communication code, the two libraries canopen and socketcan was
extracted from the original motor drivers written in 2011 [54]. These libraries can be seen as
the CAN Open and CAN API layers in figure 14.2.

Adapting the motor driver from 2011

The original motor driver used the ppos mode of the Maxon EPOS2 Motor Controllers [54]. In
ppos mode, the drivers had a function where you could ask any of the two robot wheels to drive
a certain distance in a given direction. This function takes the id of the controller commanding
either the left or the right motor. It would send the required CAN messages to ask the controller
to run a certain number of steps in a certain direction. On top of this one function, there were
implemented two functions; one to either drive the robot straight ahead or straight backwards,
and one to rotate the robot a certain number of degrees in a given direction.

Due to the navigational choices from chapter 5, it was necessary to change the drivers to use the
controller’s velocity reference mode. The new drivers export functions that allow the user to set

101

CHAPTER 14. SOFTWARE IMPLEMENTATION

the velocity and angular velocity reference values for the robot. When these functions are used,
the driver will calculate the RPM reference value for each of the two motors, and send this data
to the controllers via CAN.

Driver tests

Most of the drivers supply one or more source files prefixed by “_test.c”. These files would
compile into binaries that could be used to test basic functionality for each device driver indi-
vidually.

Preparation for AVR support

Listing 14.9: Functions exported by the eurobot/socketcan library
1 int socketcan_open(uint16_t filter[], uint16_t filtermask[], uint16_t num_filters);
2 void socketcan_close(int fd);
3 int socketcan_read(int fd, my_can_frame* frame, int timeout);
4 int socketcan_write(int fd, uint16_t id, uint8_t length, Socketcan_t data[]);

Even though the drivers can not yet be compiled to run on an AVR, a structure for compiling
the drivers to this platform has been implemented.

The socketcan library defines only four functions which signature is shown in listing 14.9. To
port any of the robot device drivers to a new platform, these are the only four functions that
need to be implemented.

Inside the socketcan package, there are two different .c files that include a definition for the four
socketcan functions. The file socketcan_linux.c implements the functions by using the Linux
CAN API as a backend. The file socketcan_avr.c currently only holds dummy functions.

A makefile structure was set up, so that all the device drivers could be compiled to a different tar-
get platform by supplying a different make target. By using the command “make install-linux”,
a dynamically linked .so library would be compiled from socketcan_linux.c and installed to one
of lib/linux_amd64/eurobot or lib/linux_386/eurobot, depending on your systems architecture.
By using the command “make install-avr”, a statically linked .a library would be compiled from
socketcan_avr.c and installed to lib/arv/eurobot. The device driver makefiles use the include
statement to avoid redefining the logic for each and every driver.

Go wrappers

The Go wrappers link to the generated Linux .so files, and makes sure not to export C functions
that are written for internal usage only. The Go functions use the Units library for input pa-
rameters and returned measurements. This way, the user of the library does not need to worry

102

14.6. THE HARDWARE ABSTRACTION LAYERS

about what unit scaling or numeric type the C driver operates with. Rather than returning the
integer error codes that are returned by the C drivers, the Go wrappers typically operates with
Go errors. The one exception is the initialization functions. For these functions a panic is raised
if something goes wrong. Read functions are blocking but provide the possibility to specify a
timeout, just like the C functions.

14.6.2 The stand-alone C simulator

To use the stand-alone C simulator, the Virtual CAN Network driver (vcan) should be installed
and a virtual CAN-bus should be set up. Alternativly two computers could be connected by
CAN, one running the simulator and the other the software being tested.

Consider that the different hardware abstraction layers shown in figure 14.2. When the simulator
is used, a message from the robot controller would propagate all the way down to the Linux
CAN kernel module. From there it will be directed onto the virtual CAN-bus, go back up to the
CAN API, and then end up within the C simulator. When the C simulator feels like sending a
message, it will basically go back the same way via the virtual CAN-bus.

The stand-alone C simulator can be used to test the entire software stack, including the C drivers.
It will simulate a single virtual robot, and move it according to detected velocity references. The
simulator is mostly stateless. E.g. initialization messages and stop messages from the drivers
would mostly be discarded. This meant that the simulator and the robot software could be
restarted in an asynchronous pattern during testing.

14.6.3 The robot hardware interface

Listing 14.10: The Hardware interface
1 type Hardware interface {
2 dispatcher.Interface
3 GetMeasurements() Measurements
4 ServoSetPos(id ServoID, pos ServoPos)
5 MotorSetVelocities(movement units.Velocity, rotation units.AngularVelocity)
6 MotorHalt()
7 MotorEnable()
8 }

This section will discuss the bottom layer in the Robot software block in figure 14.2. To simplify
the implementation of a Go simulator, a Go interface that delineated how the robot code could
interact with the hardware, was defined inside the robot/hw package. The code for this interface
is shown in listing 14.10.

We see that the Hardware interface extends dispatcher.Interface. This means that implementa-
tions must provide a Run(termc <-chan bool) function, as explained in section 14.5.2. Typically,
this Run function should run hardware pollers and periodically check the termc channel. When

103

CHAPTER 14. SOFTWARE IMPLEMENTATION

something is received on the termination channel, the function should make sure that all hard-
ware is turned off and then return. When that is done, the function can return.

A struct called Measurements was defined to store the most recent data readings from all device
drivers in one place. How and when these measurements should be updated, are up to the exact
hardware implementation to decide. The Measurements struct looks the same, regardless of
how measurement readings are retrieved in the exact hardware implementation.

The struct that implements the real robot hardware for this year’s robot is called “RealHard-
ware”. It uses defer functions to make sure that all hardware is safely turned off.

14.6.4 The Go simulators

In chapter 10, it was decided that a Go simulator should be implemented. Initially, a simulator
to simulate the main robot was implemented. To better test the AI and Oponeont Avoidance
system, it was considered useful to also be able to simulate at least one oponent robot. Thus
there are two different simulator implementations.

All in all, the hardware interface in the robot/hw package is implemented by the following types:

robot/hw.RealHardware struct: This struct interfaces the actual robot hardware.

robot/sim.SimulatedHardware struct: This struct has it’s own simulator that simulate a sin-
gle robot.

robot/sim.Simulator struct: This struct can simulate both our robot and one opponent. It can
also be used to only simulate the opponent, and to use real hardware for our robot. Behind
the scene, the simulator uses two instances of the robot/model.Robot struct that it connects
to instances of either RealHardware or SimulatedHardware.

robot/model.Robot struct: This struct should be connected to an instance of one of the three
types mentioned above. This struct also implements the Hardware interface. Each time
a function defined in the Hardware interface is called on the Robot struct, it stores some
reference values within the struct, and calls the function with the same name in the con-
nected hardware instance. As will be explained in section 14.7.5, the Robot’s functions
may modify velocity references before they are passed on to the hardware instance.

The Go simulators can be activated upon execution of the robot software by setting a flag, as
described in the README file in the repository (see appendix G). The exact simulator that
is started, and the simulators configuration, will depend on the value of this flag. When the
SimulatedHardware is used, messages from the robot controller will not propagate out of the
robot software block shown in figure 14.2.

104

14.7. THE ROBOT’S MAIN PROGRAM

14.7 The robot’s main program

Listing 14.11: Robot comand line options and default values
1 \$ robot --help
2 Usage of robot:
3 -ai="forest": AI configuration [web|stupid|forest|passive|offensive]
4 -cord=true: Wait on startup cord
5 -laser=true: Whether to initialize and start the laser tower
6 -motor=true: Whether to initalize and start the motors
7 -power=true: Whether to start the power card poller
8 -sim="off": Simulator mode [off|us|enemy|all]
9 -team="auto": Team configuration [auto|blue|red]

10 -web=true: Whether to enable the web server

This year’s robot software compile to a single binary named robot, same as the package name.
The porgram can be started with a series of comandline options, as shown in listing 14.11.
Different AI and simulator configurations can be chosen. For debuging, the initalization of
individual hardware compoents could be left out. If it isn’t specified, the team will be auto-
detected on start-up based on the position of the fixed beacons.

All code inside the robot package or any of it’s sub-packages, can be said to be more or less
task-specific. An explanation of the internals of the robot packages folows.

14.7.1 Communication constructs

As mentioned in section 14.2, the Go programming language provide channels that can be used
for both synchronous and asynchronous communication among threads. Though this is a good
construct for concurrent communication, it is not always the right choice to use it. Some times
more classical synchronization concepts are better suited.

Some requirements for when different constructs should be used, was defined:

Function calls without protection should be used to retrieve data that do not change, and
when sending commands that do not need to be processed by another goroutine. E.g.
it should be used for retrieving configuration and for commanding the hardware.

Function calls relying on an RWMutex2 should be used for variable data when only the latest
data is of interest. E.g. it should be used for accessing the measurements in the robot/hw
package.

Synchronous channels should be used when commanding another goroutine to perform a task.
E.g. the AI should use this construct to command the controller.

Asynchronous channels should be used when notifying another goroutine about an event, or
when it is important that a goroutine does not block. E.g. it should be used when the
controller notifies the AI about a completed command.

105

CHAPTER 14. SOFTWARE IMPLEMENTATION

filter

hw

ctrlaisafety

model

ai

ctrl safety

measurements

robot placement

robot placement
hw

model

goto action

speed k

speed * k

Data delivered via function

Data delivered via channel

action
complete

Data retrived via function

Data retrived from struct

Data passes through

(a) Updating the robot position (b) Setting the robot velocities

Data retrived from goroutine

reading

speed * k

motor driverlasertower
driver

Data flow Software packages

motor driver

Figure 14.3: Data flow in the robot module

Figure 14.3 shows how data typically flow within the robot package. Figure 14.3b show how
data flows when the motor velocity references are changed, but the data would flow through
more or less the same packages if a servo position was to be set.

14.7.2 Robot positioning

The robot positioning code is implemented inside the robot/hw, robot/filer and robot/model pack-
ages. The robot/hw package defines a struct containing the measurements needed to define y in
the Extended Kalman filter. The robot/model package defines a struct Robot, where the current
robot state can be stored in a logical manner.

The robot/filter package defines an instance of the ExtKalmanFiler struct (Se section 14.5.3) that
implements the system equations defined in chapter 12. A goroutine is defined to run the filter
instance’s Step function every 20th millisecond. The updated system states from this function
are stored into instances of the Robot struct.

After each robot position update, a check is made on the time stamp of the opponent beacon
readings. If a new reading has arrived, the position of the corresponding opponent is updated

106

14.7. THE ROBOT’S MAIN PROGRAM

based on the beacon reading and the updated robot position. The calculation does not filter the
beacon reading at all. Finally, the reading’s time stamp is stored, so that the next iteration might
do the same check.

AI RegulatorPathfinder

Step()

Step()

Step()

Controller

GOTO: X, Y

DONE: GOTO

FindPath(X, Y)

SERVOPOS: ID, POS

ModeGoto(X, Y)

Robot

SetVelocities(Vs, Vd)

ServoPos(ID, POS)

SetVelocities(Vs, Vd)

SetVelocities(Vs, Vd)

Step()

Blocked
Running Send on asynchronous channel

Send on synchronous channel

Function call

Listening to channel

Figure 14.4: Communication diagram

14.7.3 Robot control

Figure 14.4 shows how the AI, the controller and the regulator will typically communicate.
Note that since actions like GOTO and SERVOPOS are sent over a synchronous channel, the
AI has to wait for the controller to be ready to receive before it can send on the channel. Since
asynchronous channels are used to deliver the done message to the AI, the controller never have
to wait for the AI.

107

CHAPTER 14. SOFTWARE IMPLEMENTATION

Listing 14.12: Action types
1 const (
2 // Non-regulator actions
3 ACTION_RESET = iota
4 ACTION_SERVOPOS
5 ACTION_WAIT
6

7 // Regulator actions
8 ACTION_PAUSE
9 ACTION_UNPAUSE

10 ACTION_STOP
11 ACTION_GOTO
12 ACTION_GOTOX
13 ACTION_GOTOY
14 ACTION_FACE
15 ACTION_ROTATE
16)

Controller Actions

The file robot/ctrl/actions.go, define a single struct Action. An action can be used to tell the
controller what to do. In listing 14.12, all possible action types are shown. For each of these
action types, an initializer function is provided to encodes data into an Action struct.

Most of the initializers for the regulator actions would require an accuracy to be configured.
E.g. the initializer for the GOTO action, takes X and Y coordinates, and an acceptance radius.

Controller

Listing 14.13: The Controller type
1 // Type declaration
2 type Controller struct {
3 actionc chan *Action // Channel where actions should be received
4 donec chan uint8 // Channel where done commands are sent
5 robot *model.Robot // A Robot instance
6 reg regulator // Regulator instance
7 }
8

9 // Member functions
10 func (c *Controller) GetActionChannel() (chan<- *Action)
11 func (c *Controller) GetDoneChannel() (<-chan uint8)
12 func (c *Controller) Run()

The controller has two important tasks. The first task is to listen for actions on the action chan-
nel. When an action arrives, it either passes the data onto the regulator instance, or commands
the hardware through the Robot instance. The second task is to run the regulator’s Step function
with the current robot position and heading as parameters. The Step function returns reference
velocities that are again used to update the motor references. How often the regulator should
run can be configured. For the most part, a period of 25 microseconds has been used.

108

14.7. THE ROBOT’S MAIN PROGRAM

Under normal conditions, nothing prevents the controller from running the regulator’s Step
function at approximately the right times. However there are at least two conditions that can
lead to either a live-lock or an unacceptable delay:

• Continuous spamming on the action channel might have an effect.

• If the messages are not removed from the done channel, the buffer will be filled. When
this happens the controller goroutine can be blocked, which would prevent the regulator’s
Step function from being issued.

Regulator

Listing 14.14: The Regulator interface
1 // The regulator interface
2 type regulator interface {
3 ModeDisabled()
4 ModeGoto(x, y, done_accuracy units.Distance, reverse bool)
5 ModeRotate(angle, done_accurcay units.Angle)
6 ModeFace(x, y units.Distance, done_accuracy units.Angle, reverse bool)
7 ModeLineX(x units.Distance, heading units.Angle, done_accuracy units.Distance)
8 res/discussion.tex
9 ModeLineY(y units.Distance, heading units.Angle, done_accuracy units.Distance)

10 GetPeriod() time.Duration
11 Step(x, y units.Distance, heading units.Angle) (movement units.Velocity, rotation units.

AngularVelocity, done bool)
12 }

The regulator was designed to be interchangeable and thus a Go interface has been defined (see
listing 14.14). A series of different regulator modes were defined to handle the different possible
actions defined in listing 14.12:

DISABLED: The robot should not move

GOTO: The robot should move to a specified coordinate

LINEX: The robot should drive against a line defined by X = k

LINEY: The robot should drive against a line defined by Y = k

FACE: The robot should rotate to face a specified coordinate

ROTATE: The robot should rotate to reach a specified heading

As decided in chapter 10, the regulator implementation used two separate PID regulators. The
first regulator calculates a velocity reference based on an error distance value. The second
regulator calculates an angular velocity reference based on an error angle value. After the
velocity references have been calculated, a lookup table is used to calculate a punishment for

109

CHAPTER 14. SOFTWARE IMPLEMENTATION

each reference. How the errors and punishments are calculated, depend on the regulator’s mode.
For the GOTO mode, the velocity would be punished if the robot’s heading is wrong and the
angular velocity would be punished if the robot is very close to the goal.

The mode also defines how an action’s accuracy is assessed. E.g. if the regulator is in GOTO
mode, the regulator would report to the controller that it has completed when the robot’s position
is inside an acceptance radius around the destination point. In LINEX or LINEY mode, the
regulator will assess the accuracy to specify the distance from the destination line.

Pathfinder

Task-specific code for wrapping the A* library, was defined inside the robot/ai package. A
scaled pixel map of the playing area was provided. The robot was considered to be one pixel
large, and then all obstacles on the playing area were padded to adjust for the robot’s radius.
Because the robot did not move only in straight lines, it was very hard to predict how close
the robot would end up driving to these obstacles. To lower the risk of crashing into obstacles,
some of the obstacles on the playing area were given additional padding.

Initially, the path returned by the pathfinder would include a number of points that had about
5cm spacing. It was discovered that the robot sometimes oscillated when the pathfinder was
used. Most likely this happened due to the combination of measurement noise and an accep-
tance radius for the A* points that were configure to be too small. Increasing the acceptance
radius would result in the robot being more likely to crash into obstacles on the playing area.
To improve the situation, a smoothing algorithm was implemented. The final version of the
pathfinder thus only returned one point at the end of each straight line.

14.7.4 Artificial intelligence

The Areas interface

Listing 14.15: The Areas interface
1 type Area interface {
2 Holds(p units.Coordinate) bool // is inside
3 Mirror() Area
4 }

A simple interface to represent areas on the playing area was defined inside the robot/ai pack-
age, as shown in listing 14.15. The most essential function is the Hold function that takes a
coordinate, and checks whether the given coordinate is inside or outside the area. As shown
in figure 3.1 on page 10, the playing area is symmetric across the center line between the two
totem poles. The Mirror function returns a copy of the area that is mirrored across this line.

The following areas have been implemented:

110

14.7. THE ROBOT’S MAIN PROGRAM

• Square

• Circle

• Arch (or pie)

• Multiplexed-area

The latest type allows the programmer to define complex shapes by combining several area
instances.

The Task struct

A set of Action instances (see section 14.7.3) can be grouped into tasks. Each task has a start
position, a list of actions, and some other parameters.

The Mirror function returns a copy of the task where all actions are mirrored across the center
line of the playing area. Servo actions are mirrored across the center line of the robot. This way,
tasks only need to be defined for one team. The tasks for the other team can be auto generated.

The AI interface

Listing 14.16: The AI interface
1 type AI interface {
2 dispatcher.Interface
3 // Should return a slice of ctrl.Actions, representing the current plan.
4 GetPlan() []*ctrl.Action
5 // Should return a channel where actions can be suggested, or nil.
6 GetActionChannel() (chan<- *ctrl.Action)
7 }

In chapter 10 it was defined that multiple AI implementations should be allowed. To allow an
interchangeable AI, the Go interface shown in listing 14.16 was defined.

The GetActionChannel function of an AI implementation may return a channel where actions
can be suggested. If the AI implementation is not written to support external suggestions, the
function should return nil instead. The function is part of the interface to allow actions to be
suggested via the Debug GUI.

The GetPlan function should return a list of what actions the AI implementation has planed to
do next. The function is meant to provide the Debug GUI with information that can be presented
to the user.

The AI interface extends the dispatcher Interface. This means that an implementation must pro-
vide a Run function, as explained in section 14.5.2. For an AI implementation to be useful, the

111

CHAPTER 14. SOFTWARE IMPLEMENTATION

Run function should connect to the action and done channels of the global Controller instance.
These channels were explained in section 14.7.3. The importance of keeping the done channel
empty should not be forgotten.

An Implementation of the Run function should also periodically check the termc channel, and
return immediately if something is retrieved. After a termination, the AI should support to be
re-started. Upon a restart the Run function can optionally make a new assessment of which task
to perform. However, none of the current implementations does that.

The Stupid AI

The Stupid AI was implemented to hold a single list of Actions. Whenever AI is notified by an
action’s completion, it sends the next action. This AI was used for testing, and for simulating
an opponent.

The Forest AI

The Forest AI implement a platform for running decision trees, as the one defined in figure
4.1 on page 20. When defining a decision tree, a task is placed within a tree node. The same
task definition can be reused in several tree nodes. Each tree node defines a Next function that
returns the next tree node. A mechanism to mirror each task is given to avoid specifying the
same task for both teams.

When the Next functions are defined, the programmer stands free to make a decision on what to
do next. The decision can be based on many types of available information, especially whether
the opponent is in a given area.

Typically a tree implementation would define a number of sectors on the playing area by using
the Area types. To decide the next node, the Next function would typically check whether a
larger area around where the task is to be performed, is free for opponents. Mechanisms are
provided to make sure that the areas are mirrored to reflect the current robot team configuration.
Multiple trees can and has been defined. It is possible to select what tree to run at start-up by
providing command line options.

The Web AI

The Web AI was designed specifiable for the Debug GUI. It is the only current AI implemen-
tation that defined an action input channel. Generally, it listens for suggestions from the Debug
GUI, and sends them over to the controller when they arrive.

It is called “Web AI” because the Debug GUI is implemented as a web application.

112

14.7. THE ROBOT’S MAIN PROGRAM

14.7.5 Opponent avoidance system

The opponent avoidance system is implemented inside the robot/safety package. It provides it’s
own goroutine that periodically checks if the opponents are getting to close. The areas shown
in figure 4.2 on page 21, is implemented by use of the Area types. The figure shows a stop area,
and a slow-down area. If an opponent is detected within the slow-down area, a variable within
the robot instance is updated based on the opponents proximity. If an opponent is detected
within the stop area, the same variable is set to zero. In figure 14.3, it is shown that this variable
is multiplied with the speed references before they are sent to the hardware interface.

It was mentioned in chapter 4 and 10 that a routine to get out of a dead-lock situation with an
opponent, should be implemented if the time frame allowed it. Unfortunately, such a method
has not been implemented.

113

CHAPTER 14. SOFTWARE IMPLEMENTATION

14.8 The Debug GUI

Figure 14.5: The debugging GUI

14.8.1 Implementation

At the time that this software was written, the Go programming language did not provide any
built-in GUI toolkit. However, the standard Go Library made it incredibly easy to program a
web server [18]. God mechanisms for JSON encoding of Go structs, also made it very easy to
create an API for exposing data to a javascript. A HTML5 canvas[23] was used to implement a
virtual representation of the playing area. The code reside within the robot/web package.

The Debug GUI collects data from all Robot instances and from the AI. It was an important
design decision, that no other robot packages, except for the main robot package, should import
or use the robot/web package.

To avoid compromising the rest of the robot’s stability, the Debug GUI was made fail-safe.
This was done by providing a call to the recover function inside a defer function of the main
goroutine, and by making sure that the web server did not start any additional goroutines. This
way, if a panic occurred anywhere inside the web package, the rest of the robot’s code should
continue to run as if nothing happened.

14.8.2 Features

The following list describes the most essential functionality of the Debug GUI:

114

14.8. THE DEBUG GUI

• Visualize last known position of all detectable robots

• Visualize the AI’s plan of action on the playing area

• Provide a compact table with the most recent measurements and robot positions

• Provide a small window showing the latest log messages

• Allow controlling the robot servos (when the Web AI is used)

• Click-and-drive to any given location on the playing area (when the Web AI is used)

• Provide a debug tab for plotting data

• Allow remote access

In figure 14.5, we see that there are a set of buttons to the right. These control the robot servos
when the Web AI is used. If the mouse is clicked on the playing area when the Web AI is used,
the robot can either drive to the given position, used A* to find the best path, or face the clicked
location, which one of these three tools to use, can be configured to the right. The accuracy of
each operation, and whether to drive forwards or in reverse, can also be configured.

When the robot is started with another AI than Web AI, it is no longer possible to control the
robot from the GUI. The current AI’s plan of action can still be viewed. In figure 14.5, the white
lines and circles show where the robot plans to drive. The circles indicate GOTO actions, while
the vertical and horizontal lines that go across the entire field, indicate LINEX and LINEY
actions (see section 14.7.3).

The blue lines and circles in the same figure, shows the measured angle and distance for each of
the stationary beacons. Bellow the control panel to the right, the raw measurements are shown.
The same table also shows other useful data like the robots current position and the opponent
robots position.

115

CHAPTER 14. SOFTWARE IMPLEMENTATION

14.9 Software testing

The development of the robot was partially test driven. Small test programs were used to test the
device drivers. The Go package testing mechanisms were used to test most of the Go libraries.
The Debug GUI was used for testing the complete system.

A global Makefile structure was provided to enable building the entire software stack, including
most test programs. The go test tool provided mechanisms for running several package tests in
one go.

14.9.1 Driver tests

Small test programs were developed for testing the motor, laser tower and power card drivers.
They enabled the testing of the most essential driver functionality. In addition, the programs
were used for testing and tuning of the physical devices.

The following driver test programs were developed:

Motor test

The test program for the motor driver was used to test the set velocity functions and the ini-
tialization/finalization routines. It only required that the motor card was connected to the CAN
bus. When the test was used with the physical robot, robot movement was prevented by placing
the robot upon a block.

Laser tower test

The laser tower test program tested the read function and the initialization/finalization routines.
Any output from the read function would be printed to the terminal in a human readable format.
The test required the laser tower to be connected to the CAN bus. In addition to testing, the
program was used for tuning the positioning system, as described in chapter 12.5.

Power card test

The test program for the power card driver tested routines for initialization/deinitialization,
timer manipulation, and servo control. It required the entire physical robot to be useful.

116

14.9. SOFTWARE TESTING

14.9.2 Go library tests

As mentioned in section 14.2, Go provides a mechanism for designing so called package tests.
Within a package test, several unit tests3 and benchmarks can be provided. Package tests were
developed for the A*, Units and Dispatcher library. The Extended Kalman Filter was hard to
validate with a standard Go package test structure, and thus provided a separate test program.

Units package test

A large amount of unit tests were developed for the Units package. Still, the test coverage4 is
not a 100%. It was however sufficient for validating most of the library’s functionality. During
development of the library itself, the unit tests were actively used to pin-point bugs.

Dispatcher package test

The Dispatcher package has test coverage of approximately 100%. Still, whether the package
is really thread-safe, is not possible to test by the use of unit tests. For assuring this, a manual
analysis of the source code was performed. In addition, a quick study of the specification and
implementation around the Go channel and WaitGroup construct was performed.

A* package test

The A* package test has a single unit test for testing the map. Some of the unit tests that were
provided in the original Gopathfinding library were removed due to a change of the library’s
interface. All in all, the package test is not sufficient to validate that the library works.

A benchmark was implemented in order to measure the optimizations as described in section
14.5.4.

Extended Kalman Filter test

The Extended Kalman Filter library could not be easily validated by a series unit test. A Go
package test could therefore not be developed. Instead, a small test program containing an
Extended Kalman Filter implementation was provided. To validate the library, the output of
the program was evaluated manually. If the output showed that the system converged against a
hard-coded reference value, the filter worked.

3Unit testing is a method for testing individual units of source code
4A measure of the proportion of a program exercised by a test suite

117

CHAPTER 14. SOFTWARE IMPLEMENTATION

14.9.3 The Debug GUI

The debug GUI was used for testing the complete system, but was also useful for tuning and
validating the functionality of individual components. Some examples of functionality that was
validated or tuned through use of the Debug GUI are provided below:

A* library validation

As the test coverage for the A* library was relatively low, the final version of the A* library was
validated to work by using the debug GUI in combination with the Go simulators.

Opponent avoidance system validation

The opponent avoidance system was initially validated and tested by use of the debug GUI in
combination with the Go simulators. Later on, the system was tuned by using the real robot and
a movable pole where the opponent beacon cold be attached.

Pathfinder tuning

As explained on page 110, the Pathfinder object robot/ai package wraps the A* library. It
provided conversion between types defined in the units library and integer values, as well as the
A* map. Padding of the A* map and modification of the acceptance radius of the returned way
points where the provided options of Pathfinder tuning.

118

14.10. RESULTS

14.10 Results

Listing 14.17: Benchmarks of the original A* library, run #01
1 PASS
2 BenchmarkAstar4Dirs100x100 1 3071948000 ns/op

Listing 14.18: Benchmarks of the original A* library, run #02
1 PASS
2 BenchmarkAstar4Dirs100x100 1 3078446000 ns/op

Listing 14.19: Benchmarks of the optimized A* library, run #01
1 PASS
2 BenchmarkAstar4Dirs100x100 10 118449800 ns/op
3 BenchmarkAstar8Dirs100x100 20 119130000 ns/op

Listing 14.20: Benchmarks of the optimized A* library, run #02
1 PASS
2 BenchmarkAstar4Dirs100x100 10 117770800 ns/op
3 BenchmarkAstar8Dirs100x100 20 118333500 ns/op

14.10.1 Linux distrubution

Archlinux was chosen as the final Linux distribution to use. To get the CAN bus operational,
the kernel had to be recompiled. The operating system has worked well on the HP Slate 2.

14.10.2 Go libraries

As described on section 14.5, a total of four general purpose Go libraries were developed. Much
thanks to the acquired Gomatrix library, the Extended Kalman Filter library required less human
recourses to implement than expected.

Optimization of the A* library

The A* library was based on code from the Gopathfinding library. An optimization of the
original code was performed. Benchmarks results of the original library are shown in listing
14.17 and 14.18, while results for the optimized library is shown in listing 14.19 and 14.20.
The calculated speedup becomes approximately 26x.

Validation and testing

Each library was tested and proved to work separately. For the A*, Dispatcher and Units li-
braries, the Go package test construct was used. While the automated tests for the Dispatcher

119

CHAPTER 14. SOFTWARE IMPLEMENTATION

library ensures that the library works it does not test whether it is thread-safe. A manual eval-
uation of the code suggests that the code is most likely thread-safe. For the Extended Kalman
Filer, a separate test program was written.

The most complete test suites are the ones provided for the Dispatcher and Units libraries.

Are the requirements satisfied?

The implementation of A*, Units and the Extended Kalman Filter, should satisfy the require-
ments defined in chapter 10, and 12. The dispatcher library was not part of the original plan,
and is thus an aversion form the design.

14.10.3 Device drivers

A total of three device drivers and two CAN libraries were developed. The CAN libraries were
extracted from the existing Maxon EPOS2 motor drivers from 2011. These motor drivers were
rewritten to use profile velocity mode rather than position mode.

Platform portability

The CAN API library eurobot-ntnu/drivers/socketcan provides a way to abstract away the oper-
ating system specifics of CAN communication. Even though the current version of the drivers
only support the Linux platform, a Makefile layout was set up to enable compiling the drivers
to several architectures.

Validation and testing

Initially, small test programs were used to test each driver individually. For parameter tuning,
the robot software and the Debug GUI was used.

14.10.4 Hardware abstraction

A series of hardware abstraction layers were successfully developed. The drivers provide four
layers: The CAN API library, the CAN Open library, the C driver and the Go wrapper. The task-
specific code provides some additional layers, though the most interesting one, is the bottom
one.

120

14.10. RESULTS

The hardware interface

A Hardware interface was defined by use of the Go interface type inside the robot/hw package.
This interface delineates how the rest of the robot code can interfere with the hardware, and
enables multiple interchangeable hardware implementations.

Simulators

Two Go simulators were developed by implementing the Hardware interface. They were used
for testing software within the task-specific code, and for developing game tactics. In addition, a
stand-alone C simulator was developed. This simulator was used for testing the entire software
stack, without using the physical robot. All in all, the Go simulators were used much more often
than the C simulator.

14.10.5 Debug GUI

The Debug GUI was developed as a Go web server hosting a single web page. The GUI was
made fail-safe so that a potential crash should not affect the rest of the robot code. It presented
a visual representation of the robot software’s world model, and allowed controlling the robot.
Because the Debug GUI was developed as a web server, it could be accessed from a remote PC.

All in all, the Debug GUI proved very useful for software debugging and tuning. It also allowed
rapid definition of game tactics and strategies.

14.10.6 The robot’s main program

The complete robot software was proven to work well, and to be easy to adapt and configure.
The software contain of several goroutines5. The dispatcher library is used to assure safe shut-
down of important goroutines. E.g. the hardware poller routine should always turn of the motor
and lasertower before it returns. Data flows have been designed to avoid locking goroutines that
have deadlines and to limit the chance of live-locks.

Challenges with the A* algorithm

The combined usage of the A* algorithm and the regulator implementation presented some
challenges. Since the robot could move in curves, it was hard to predict how close the robot
would drive to objects on the playing area. Some objects therefore needed to be heavily padded
when the A* map of the playing area was defined. Whether the robot would run into objects on
the playing area or not, varied based on the robot’s initial position etc.

5Light-weight threads

121

CHAPTER 14. SOFTWARE IMPLEMENTATION

Aversion from the original design

The implemented robot code mostly fulfills the requirements defined in chapter 10, but some
extra sub-packages have been added and a slight reorganization of software packages has been
made. In chapter 4 and 10, it was suggested that a way to get out of a dead-lock position with
an opponent blocking the robot’s way, could be implemented if the time frame allowed it. No
such routine was developed. The main reason for not implementing this feature was that the
time frame did not allow the task to be implemented properly without lowering the priority of
other tasks.

14.10.7 The robot software as a whole

Most of this year’s source code has been written form scratch, and has been proven to work
well. To accurately illustrate the project size, a detailed count of code lines can be found in
appendix D.3.

The software solution is quite robust and well tested. Currently there are no known critical bugs.

14.11 Discussion

Criticism of strategic choices

The combination of an A* algorithm, a robot that can move in curves and a playing area with
many obstacles, might not have been the best of combinations. Since the robot was driving in
curves, the robot didn’t necessarily follow the A* path very accurately. This again made the A*
algorithm risky to use.

A* optimization

The optimization of the A* library was quite good, and hopefully the optimized library can be
of use to other. However, numerous of A* implementations with good performance probably
already exist in other languages. In the game strategic implementations that was used in the
actual competition, A* was almost not used at all. In retrospect, it is easy to conclude that the
human resources used on A* optimization could have been put to better use.

Opponent avoidance

As mentioned in the results, no routine to avoid a dead-lock when an opponent was blocking
our way was implemented. Some of the constructs for implementing this routine were however
already in place. For instance, the fact that the AI could be safely killed and restarted could

122

14.11. DISCUSSION

have been used by the opponent avoidance goroutine to tell the AI to make a new choice. The
main AI could easily be coded to reevaluate its last decision upon restart. The main challenge
was to write a way for the opponent avoidance goroutine to back out of the dead-lock position
in a way that would always be safe.

Too many simulators

Simulators were developed in both C and Go. One can ask if this was really necessary.

The Go simulators were very useful for developing Go software components, especially as they
allowed simulating the opponent. They can thus be justified.

The stand-alone C simulator could be used for testing the entire software stack. In the end,
it wasn’t used very much. Thus with Eurobot 2012 in mind, it was probably not necessary to
develop, However, for future years students, a stand-alone simulator might prove more useful
than one that is tightly integrated with the robot software.

Testing facilities

The amount of time spent on developing unit tests, the two simulators and the Debug GUI,
seems to have paid off. Having the vast amount of testing facilities available that this year’s
solution provides has made debugging become fun and easy. With less time spent on debugging,
more time could be spent on design and development.

Still, a well functioning and tested software stack is not enough to win Eurobot. The software
does however provide a quite decent platform for performing these calibrations.

123

CHAPTER 14. SOFTWARE IMPLEMENTATION

124

Part IV

End Result

125

Chapter 15

Results

(a) Robot front (b) Robot back

(c) Robot Side (d) Robot GUI

Figure 15.1: The finished robot

This chapter will describe the result found when combining the findings from the previous
chapters. The chapter will try to both describe how well the complete robot functioned and
what parts of it that are of most value.

127

CHAPTER 15. RESULTS

15.1 The complete robot

A functioning robot was built and tested. The mechanical system as a whole worked quite well,
and its simple layout and standardized screws made it a joy to work on. The finished robot can
be seen in figure 15.1 and a video is digitally attached, se appendix G.

15.2 Competition

Three game tactics were developed for the final competition in France:

Homologation: A simple tactic to score some very easy points and then stop.

Passive: A tactic that allowed the robot to harvest safe points first, and then do more risky tasks
later on.

Offensive: A tactic that started with risky tasks that potentially allowed scoring a lot of points.

A conceptual illustration of the plan for the original game tactics is available in figure 4.1. Game
tactics were reprogrammed and tuned before each match, so the exact implementation shown in
the figures was never used. The offensive tactic was never used at all. Information about each
match and the exact tactics used, can be found in appendix E.

In the end the robot finished in 23. place [45]. There was a total of 43 teams in the international
competition, where 39 qualified. The robot won 3 of 5 matches, and it always started. However,
in the last match the emergency stop had to be pressed.

15.3 Position and location

The extended Kalman filter, discussed in chapter 12, worked well on its own. Together with the
regulator described in chapter 14.7 they formed the control loop described in figure 16.1. This
complete system was tested by running the robot on the playing area in the lab. The final and
most important test came when running it during the competitions in France.

During the first tests in the lab the robot moved towards the goals slowly. It worked just fine
and reached each goal, but moved with a jerk. Later when the motor-controller acceleration was
tweaked, as discussed in chapter 16.2, it ran quite smoothly.

When approaching a target position the angular error, calculated in the regulator, hit a singu-
larity resulting in the robot violently turning close to the target. This artifact was somewhat
compensated for by punishing the rotation-regulator close to the target.

128

15.4. POWER CARD

The positioning filter was tested for temporary outtakes of beacon towers. It handled the loss of
beacon B for an extended period of time. On the other hand, due to the weighting matrix R, the
loss of tower A or C can become critical within seconds.

In France the positioning worked fine at least four out of five matches. In the final match
the robot crashed into a totem pole. In the second match it cough a totem-pole gold-bar by
executing, a task with the current robot is estimated to require about 1cm accuracy.

15.4 Power card

A circuit board with several power supplies has been created and tested. It provides many
different voltages, a micro controller with digital and analog I/O and a system for expansion of
functionality via a stack following the PC/104 plus mechanical specification.

The 3.3V-, 5.0V- and 12.0V-volt regulators works, they have efficiencies of respectively 80%,
90% and 95%. They have been tested to have stable output voltages when supplied with
input voltages between 16.0V and 22.8V . The 24.0V regulator, battery charger and automatic
switching between power sources do not work. The output voltage of the 24.0V regulator is
slightly lower than the input voltage. The circuitry to switch automatically between power
sources for the circuit board is designed wrong and will not work. The battery charger does not
charge the battery when an appropriate external DC voltage is connected.

Figure 15.2 shows a picture of the power card mounted in the robot. All wires, except the ones
to the battery and the emergency stop button, is connected to expansion cards in the circuit board
stack. This shows that the circuit board stack allows expansion of functionality without extra
wires. Further each motor/servo/fan is connected to the stack with one labeled and directional
connector.

Figure 15.2: Power card mounted in the robot

129

CHAPTER 15. RESULTS

15.5 Software

A software stack for the robot was written by using the Go and C programming languages. The
result for individual software component can be found in chapter 14.10.

The implementation was found to be in compliance with the requirements defined in chapter
14. Some functionality that wasn’t part of the requirements were implemented as well. Multi-
ple AI implementations and simulator configurations were provided. The Debug-GUI enabled
interactive control of the robot during testing. The software could be configured by specifying
different parameters at startup.

The software development process have been partially test driven, and different tools and mech-
anisms have been used for testing. For the device drivers, small test programs for testing essen-
tial functionality was provided. Most of the implemented Go libraries provide so called package
tests that was used to validate that the libraries worked. A 100% test coverage for these libraries
were not provided. Packages inside the main robot program did not provide package tests, but
the debug-GUI and simulator implementations could be used for manual validation.

The software worked in all matches during the competition in France. Even in the field, it
allowed for calibrations to be performed and for game tactics to be re-programed.

130

Chapter 16

Discussion

16.1 Mechanical problems

Mechanical errors

The side “wings” required the robot to position itself extremely close to the totem pole and do a
drive by. This was known in advance. However if the robot positioned itself slightly to far away
it would push the CDs inside the totem pole inwards jamming them. This was not anticipated.
Since the doors are not flexible, and the body is especially not flexible, this ended in the CD
breaking or the robot spinning and crashing. A video of this phenomenon can be found in online
in appendix E.

While the mechanical layout was excellent to work on, the servo-mechanics to manipulate play-
ing element could have been better. The drive by totem action, required to use the wings, needs
a lot of playing area compared other solutions. This takes time and increase the risk of a conflict
with the opponent robot possibly resulting in a deadlock. For example, a solution that drives
straight up to the totem-pole and uses servos to manipulate the CDs and gold bars from there
could be better.

Design alternatives

The rules allow each teams two robots, a small and a big one. A possible hack for a small team
would be to build two small identical robots. If one robot breaks, one would have one in reserve.
If two robot breaks, one would have reserve parts. If one robot deadlocks with the other robot
during a match, the second robot can gain points, and so on.

131

CHAPTER 16. DISCUSSION

16.2 Positioning issues

Design problems found

The main problem with the current position system is the lack of encoders. If the wheels slip,
the position estimate will follow suit. Under normal operation this isn’t much of an issue, but
it will happen for instance during a collision. In addition, due to the material if the robots arms
touch anything solid they won’t give resulting in the robot spinning.

During fine maneuvering, that is anything sub ±2.5cm, a loss of a positioning beacon was
found to be critical, with the result of missing the target. To avoid these problems under fine
maneuvering the robot would wait two seconds to let the position system catch up. A better way
to fix this problem would be to use more mechanical guided picking-mechanisms that tolerate
small positioning errors.

Filter

RegulatorAI

x

u y
x

goal

Motor­ctrl Process Laser­towerx

Figure 16.1: Robot control loop

Figure 16.1 shows that a change from the regulator is immediately reflected by the motors, ex-
cept for the delay presented in the motor-controller. The motor-controller delay can be adjusted
by tweaking the Motor_max_acceleration parameter in the driver from chapter 14.6. When the
robot was configured to have higher acceleration and top speed, the robot ran much quicker
and smoother. However, due to the high currents and the big impact of a possible error, the
parameters were left at a rather conservative level.

Problems outside the lab

The beacon supports used in the actual competition were found to differ slightly from the spec-
ification, and from table to table. Figure 16.2 shows how the supports are mounted differently
on each side of the table, resulting in a slight offset. One can also see that the supports are
adjustable, even though they should remain fixed at 35cm [52, p. 24].

The use of beacon towers as the main positioning method, limits usage to playing areas only.
Whilst a robot using only relative-positioning can be setup and run anywhere. In addition, dur-
ing the competition each beacon is powered by a 9V battery, which must be regularly changed.
These small problems make running the robot outside of the lab a hassle.

132

16.3. POWER CARD

(a) Corner bracket (b) Straight bracket

Figure 16.2: Beacon supports used in the competition

Alternative systems

The regulator used, demanding an always up to date perfect position estimate, left no room for
errors in the Kalman filter. An alternative would be to turn in the right direction, stop, drive
in a straight line then stop, rotate and repeat. This seemingly slower system allows the robot
to drive very fast in straight lines, with a much less sophisticated positioning system. Chapter
5.2 mentioned that this method was used in 2011, but concluded that it was too slow. This
conclusion might have been wrong.

16.3 Power card

Value of results

From the data sheet of the TPS5450 [57], which is used in the 3.3V , 5.0V and 12.0V regulator
design, it can be seen that the expected efficiency of a design is close to 90%. It can also be
seen from the example design in the data sheet that the efficiency of a regulator is higher when
the difference between the input and the output voltage is small. The efficiency of the working
regulators follows these expectations. If the efficiency is compared to linear regulators, which
has been used by previous Eurobot teams from NTNU, this is a great improvement.

Even though the efficiency of the 3.3V and 5.0V is lower than 90% it is still high compared to
a linear regulator. An example where 3.3V is needed with an input voltage of 22.8V reveals an
efficiency of:

η =
Pout

Pin
=

3.3V · I
22.8V · I

= 15% (16.1)

133

CHAPTER 16. DISCUSSION

Design errors

The output voltage of the 24.0V regulator follows the input voltage. The regulator it self does
not work, however it was used in the competition. The only components in the robot that used
this voltage are the motor controllers which has a working range from 9V to 24V . As discussed
in chapter 13.2 the battery package used in the robot has a stable output voltage between 90%
to 10% capacity. This is the reason the power card worked in this particular application, if the
power card is reused in another application which requires 24.0V the regulator has to be fixed.

The power card was also designed with a battery charger and the possibility of running the
robot while charging using automatic switching between energy sources like a laptop computer.
It was discovered that the chip chosen to do the switching between sources does not support
the mode of operation it was designed to use on the power card. The battery charger did not
work during the first few tests either, since the automatic power switching didn’t work sufficient
testing was not done on the battery charger as the power card could work for this application
without charging the battery.

Using the power card

Even though the power card provides efficient regulation of power, the greatest advantage is
gained in form of simple usage and modularity. As mentioned in 13.4 both expansion cards
for motor control and servo control went through a couple of prototypes. These prototypes
could be made without having to design and implement voltage regulators and could be fitted
directly on the robot without any extra wires because of the circuit board stack on the power
card. Since each servo/motor/fan is connected with a single directional and labeled plug it is
relatively fast to assemble/disassemble the electronics without any special tools. This is a good
quality, especially for debugging and repairs in a competition situation where time is a factor.
Because of the circuit board stack and fewer wires this solution also uses less volume in the
robot.

16.4 Using Go

Go provided quite handy concurrency structures that where used in this year’s project. The
support for synchronous and asynchronous message passing and the support for light-weight
threads have proven very useful. Section 14.9 and 14.10 states that Go’s facilities for package
testing has resulted in a robust software solution. The distinction between critical and non-
critical errors in Go have probably also contributed to the software’s robustness.

Chapter 14 states that many software modules was developed from scratch. As Go was used
for a Eurobot-NTNU robot for the first time, very few modules from previous years could be
reused. As the language is also quite young, it was hard to find libraries even for common
algorithms. Thus we had to implement our own libraries for A* and extended Kalman.

134

16.5. DISTRIBUTION OF HUMAN RESOURCES

During the first months of software developments, the Go standard libraries were undergoing
major changes in preparation of the Go version 1 release. One month before the competition,
version 1 was released [19]. With Go version 1 released, Go provides backwards guarantees
compatibility.

With all this extra work one can discuss whether Go was really the right choice. Possibly, more
time could have been used on game tactics and other tasks if the existing C++ framework was
chosen over Go. However, there was a new hardware stack this year so few of the previous
years’ drivers could have been reused.

Chapter 15 cites that the new software has worked well in all the robot’s matches. Considering
that Go has been successfully tested for usage in an autonomous robot, and that the software
has proven to work well, the decision to use Go should be well justified.

16.5 Distribution of human resources

Much time was used to develop a robust solution with many advanced features. Much less time
was spent at developing the actual game tactics. During the competition week in France, it
was discovered that many other teams could get away with much more simplistic robot designs.
Robots driving only on encoder and color sensors, crashing into walls every now and then to
regain orientation, et cetera. One could thus start to wonder whether our robot has been over-
engineered.

With a more simplistic design, more time could have been spent on developing game tactics. In
this way it is possible that a better placement in the competition could have been achieved. On
the other hand, it could also have resulted in a dull robot, less suitable for a master thesis.

135

CHAPTER 16. DISCUSSION

136

Chapter 17

Conclusion

A robot have been designed and built. It has participated in the Eurobot 2012 competition,
winning 3 out of 5 matches. The robot is easily reconfigurable and re-programmable, and can
be run in both autonomous and interactive modes.

Its mechanical design is simple, but thoroughly thought through, making it easy to maintain and
quickly assemble from parts. On the other hand the servo-mechanisms for grabbing and placing
playing-element could more efficient.

A robust power card with a circuit board stack for expansion of functionality has been pro-
duced. The power card provides the expansion modules with several voltages created from
efficient switch mode power supplies and communication through CAN bus. The power card
with expansion modules was used and worked well in the robot. The biggest advantage with the
stack is that it has as few wires as possible with polarized and labeled connectors. This makes
the solution easy to maintain and fast to reassemble in a competition environment. The new
solution has the same modularity as the rack system from 2009, but has fewer wires and takes
up less volume in the robot.

The electronic stack connects to a HP slate 2 tablet PC through a CANopen-bus. The tablet
is detachable, making for trivial parallelization of software and hardware updates. During op-
eration the tablet displays real-time information. The real-time information includes both the
robot and the opponent robots position on the map, all sensor measurements and AI-commands
to execute.

The relatively new programming language Go has been used for the first time as the main
language on a Eurobot-NTNU robot. To achieve this a lot of software modules have been
written from scratch or ported to Go. The new software stack has proven to be both robust and
field-reprogrammable. Constructs in the Go language made the software easy to design and
test. Continued use of Go in Eurobot can thus be recommended.

An extended Kalman filter has been designed to transform the laser-tower and hall-sensor mea-
surements into a position and orientation estimate. The estimates produced are persistent, re-
peatable and with an accuracy comparable to the inherent variance in placing the fixed beacons.

137

CHAPTER 17. CONCLUSION

The filter was used, together with two PID-regulators, to position the robot during the Eurobot
2012 matches.

In conclusion, the robot as a whole works. The fact that it ran consistently during the matches
in France should be enough proof of that. It is extremely agile and dynamic. At a push on
touch-screen map, it will calculate a clear path and follow it to its end.

138

Chapter 18

Future work

18.1 Power card

There are some faults on the power card:

• The 24.0V regulator does not work.
• The battery charger does not work.
• Automatic switching between battery power and external DC does not work.

The 24.0V regulator and the battery charger has not been debugged or tested thoroughly and
it may be possible to debug fix them on the existing circuit board. The automatic switching
between power sources is designed wrong and it can’t be fixed with the parts in the design.

If it’s not possible to fix the faults with the existing PCB and a new one is going to be designed,
it is recommended to:

• Implement the 24.0V regulator as a boost regulator for a simpler design.
• Design a new battery charger / power path control.

If a more compact design is desired a smaller power supply module, with the same output
voltages, can be designed on a PC/104 size circuit board with only the ISA connector to fit on
the bottom of the stack. A second PC/104 plus card can then be designed with a micro controller
with digital/analog I/O.

18.2 Position system

The input to the extended Kalman filter should be changed from the motors hall-sensors to
sensors disconnected from the drive wheel. These sensors could be encoders or optical/lasers.
A study of the performance before and after this change should be made.

139

CHAPTER 18. FUTURE WORK

The beacon towers should get longer battery life and proper power management. The new
opponent beacons should get a custom made mirror calibrated for its use.

A better regulator for robot movement should be constructed. The new regulator should be
capable of easily defining and following paths with minimal error and maximum speed, possibly
using a GUI or recording-function to create paths.

In the event of a non-flat playing area the current hardware would be unusable, as the laser-
beams would not hit anything. It is therefore recommended to base any completely new position
systems on radio rather than laser or ultrasound. A radio system would be resistant to most kinds
of disturbances and conceptual equal to GPS.

18.3 Software

The device drivers can be ported to run on other architectures e.g. AVR or Windows. This can
be done by adding more backends to src/eurobot-ntnu.no/drivers/socketcan.

Work towards expanding the test coverage of the Go libraries should be considered. Developing
towards the open source spin-of projects listed in appendix D.1 is recommended.

In general it is advised that software inside the robot package is used only as a template for
developing new code. If a feature of the robot package is considered highly reusable, the source
code should be extracted to forge a new library.

140

Bibliography

[1] A123 Systems. ANR26650M1. http://www.gylling.no/produkter/batterier/
a123/ANR26650M1_Datasheet_MARCH_2008.pdf. 2012.

[2] Magnus Andersen. “Ultralydbassert posisjoneringssystem.” In: (2002).

[3] Arch Linux Community. Kernels/Compilation/Arch Build System. https : / / wiki .
archlinux.org/index.php/Kernels/Compilation/Arch_Build_System. 2012.

[4] John Asmuth. Gomatrix Github Page. https://github.com/skelterjohn/go.
matrix. 2012.

[5] Robert Grover Brown and Patrick Y.C. Hwang. Introduction to random signals and ap-
plied Kalman filtering - Third edition. 1997.

[6] Dewald De Bruyn. “Power Distribution and Conditioning for a Small Student Satellite.”
In: (2011).

[7] Robert Burtch. CIRCLE-CIRCLE INTERSECTION. www . ferris . edu / faculty /
burtchr/sure215/notes/circle-circle.pdf. 2004.

[8] Stack Overflow Community. Stack Overflow - Use C++ in Go. http://stackoverflow.
com/questions/1713214/how-to-use-c-in-go. 2011.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms - Second edition. 2001.

[10] Microsoft Corporation. Windows 7 system requirements. http://windows.microsoft.
com/en-us/windows7/products/system-requirements. 2012.

[11] DistroWatch. Distrowatch. http://www.distrowatch.com/. 2012.

[12] Arnaud Doucet and Adam M. Johansen. “A Tutorial on Particle Filtering and Smoothing:
Fifteen years later.” In: (2008).

[13] Hans-Christian Egtvedt. “Oppdatering av maskinvare og operativsystem til Eurobot.” In:
(2003).

[14] Hans-Christian Egtvedt. “Eurobot 2004.” In: (2004).

[15] Eurobot, international robotics contest. http://www.eurobot.org/eng/. 2012.

[16] Sondre Garsjø and Halvor Platou. “Eurobot 2006.” In: (2006).

[17] Inc. Gentoo Foundation. Gentoo - About. http://www.gentoo.org/main/en/about.
xml. 2012.

141

http://www.gylling.no/produkter/batterier/a123/ANR26650M1_Datasheet_MARCH_2008.pdf
http://www.gylling.no/produkter/batterier/a123/ANR26650M1_Datasheet_MARCH_2008.pdf
https://wiki.archlinux.org/index.php/Kernels/Compilation/Arch_Build_System
https://wiki.archlinux.org/index.php/Kernels/Compilation/Arch_Build_System
https://github.com/skelterjohn/go.matrix
https://github.com/skelterjohn/go.matrix
www.ferris.edu/faculty/burtchr/sure215/notes/circle-circle.pdf
www.ferris.edu/faculty/burtchr/sure215/notes/circle-circle.pdf
http://stackoverflow.com/questions/1713214/how-to-use-c-in-go
http://stackoverflow.com/questions/1713214/how-to-use-c-in-go
http://windows.microsoft.com/en-us/windows7/products/system-requirements
http://windows.microsoft.com/en-us/windows7/products/system-requirements
http://www.distrowatch.com/
http://www.eurobot.org/eng/
http://www.gentoo.org/main/en/about.xml
http://www.gentoo.org/main/en/about.xml

BIBLIOGRAPHY

[18] Google Inc. The Go Programming Language. http://www.golang.org. 2012.

[19] Google Inc. The Go programming Language Blog - Go version 1 released. http://
blog.golang.org/2012/03/go-version-1-is-released.html. 2012.

[20] Gylling Teknikk. Battery Protection Modules. http://www.gylling.no/produkter/
batterier/protection-module.shtml. 2012.

[21] Kristin Holst Haaland. “Eurobot 2010, Navigasjonssystem.” In: (2010).

[22] Are Halvorsen. “Robot power managment.” In: (2011).

[23] Ian Hickson. HTML Canvas 2D Context, W3C Working Draft 29. http://www.w3.
org/TR/2012/WD-2dcontext-20120329/. 2012.

[24] IBM and SGI. Linux Test Project. http://ltp.sourceforge.net/. 2011.

[25] Sean Ogden John Asmuth. Gomatrix Google Code Page. http://code.google.com/
p/gomatrix/. 2012.

[26] Steffen Johnsen, Kristian Klausen, Adam Leon Kleppe, Lars Espen Nordhus, John Magne
Røe, and Leif Julian Øvrelid. “Fagraport Eurobot - Eksperter I Team: Byggelandsbyen.”
In: (2012).

[27] Gunnar Kjemphol. “Eurobot 2007.” In: (2007).

[28] Christian Wegger Kjølseth and Øysten Wergeland. “Eurobot 2009.” In: (2009).

[29] Christian Wegger Kjølseth and Øysten Wergeland. “Prosjektoppgave - Eurobot 2009.”
In: (2009).

[30] Kristian M. Knausgård and Gunnar Kjemphol. “Prosjektoppgave - Eurobot 2007.” In:
(2006).

[31] Ole Lillevik. “Eurobot 2010, Maskinvare.” In: (2010).

[32] Maxon motor AG. Maxon - EPOS2 24/2 Hardware Reference - Document ID: rel1702.
2010.

[33] Maxon motor AG. Maxon - EC 45 flat Ø45 mm, brushless, 50 Watt - 251601. 2011.

[34] Jonas Aamodt Moræus. “Nonlinear Modeling, Identification and Control of an Underac-
tuated Mobile Robot.” In: (2004).

[35] Jonas Aamodt Moræus and Torstein Valvik. “Eurobot 2005.” In: (2005).

[36] Sindre Røkenes Myren. “RT capabilities of Google Go.” In: (2011).

[37] Odd Eirik Mørkrid and Kristian Ivar Øien. “Eurobot 2008.” In: (2008).

[38] Bjørn-Gunvar Nessjøen. “Eurobot 2011.” In: (2011).

[39] Tor Onsus. Instrumenterings-systemer. NTNU, 2011.

[40] Hewlett Packard. QuickSpecs HP Slate 2 Tablet - Version 8. 2012.

[41] PC/104 Embedded Consortium. EPIC and EPIC Express v3.0. 2008.

[42] PC/104 Embedded Consortium. PC/104-Plus Specification v2.3. 2008.

[43] PCBCART. http://www.pcbcart.com/. 2012.

142

http://www.golang.org
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://blog.golang.org/2012/03/go-version-1-is-released.html
http://www.gylling.no/produkter/batterier/protection-module.shtml
http://www.gylling.no/produkter/batterier/protection-module.shtml
http://www.w3.org/TR/2012/WD-2dcontext-20120329/
http://www.w3.org/TR/2012/WD-2dcontext-20120329/
http://ltp.sourceforge.net/
http://code.google.com/p/gomatrix/
http://code.google.com/p/gomatrix/
http://www.pcbcart.com/

BIBLIOGRAPHY

[44] Peak System. Peak System Home Page. 2012.

[45] Planet Science. Coupe de France - Robotique. http://www.planete-sciences.org/
robot/live/coupe2012/eurobot/. 2012.

[46] Alex Plugaru. Gopathfinding Github Page. https://github.com/humanfromearth/
gopathfinding. 2011.

[47] Readme file for the Controller Area Network Protocol Family (aka Socket CAN). 2005.

[48] Everett Rogers. Understanding Boost Power Stages in Switchmode Power Supplies. http:
//www.ti.com/lit/an/slva061/slva061.pdf. 1999.

[49] Everett Rogers. Understanding Buck-Boost Power Stages in Switchmode Power Supplies.
www.ti.com/lit/an/slva059a/slva059a.pdf. 1999.

[50] Everett Rogers. Understanding Buck Power Stages in Switchmode Power Supplies. http:
//www.ti.com/lit/an/slva057/slva057.pdf. 1999.

[51] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[52] Planete Science. Eurobot 2012 rules. http://www.swisseurobot.ch/images/2012/
e2012_rules_en_final.pdf. 2011.

[53] Chester Simpson. Linear and Switching Voltage Regulator Fundamentals part 1. http:
//www.national.com/assets/en/appnotes/f4.pdf. 2007.

[54] Andreas Hopland Sperre. “Eurobot 2012 - Propulsion and location.” In: (2011).

[55] Andreas Hopland Sperre, Are Halvorsen, Kim Værner Soldal, Geir Josten Lien, Marin
Martinsen, and Øystein H. Holjelm. “Eurobot EiT report 2011.” In: (2011).

[56] Stian Juul Søvik. “Eurobot 2010, Fremdriftssystem.” In: (2010).

[57] Texas Instruments. TPS5450 - 5-A, Wide Input Range, Step-Down SWIFT Converter.
2007.

[58] Åsmund Torja. “Navigation for selvgående kjøretøy.” In: (1998).

[59] Torstein Valvik. “Navigationssytem for Eurobot 2005.” In: (2004).

[60] Bjørnar Vik. Integrated Satellite and Inertial Navigation Systems. 2011.

[61] Judd Vinet and Aaron Griffin. Archlinux - About. http://www.archlinux.org/
about/. 2012.

[62] Wind River. Wind River’s VxWorks. http : / / www . windriver . com / products /
vxworks/. 2012.

[63] Vincent Zalzal. KFilter Sourceforege Page. http://kalman.sourceforge.net/.
2008.

143

http://www.planete-sciences.org/robot/live/coupe2012/eurobot/
http://www.planete-sciences.org/robot/live/coupe2012/eurobot/
https://github.com/humanfromearth/gopathfinding
https://github.com/humanfromearth/gopathfinding
http://www.ti.com/lit/an/slva061/slva061.pdf
http://www.ti.com/lit/an/slva061/slva061.pdf
www.ti.com/lit/an/slva059a/slva059a.pdf
http://www.ti.com/lit/an/slva057/slva057.pdf
http://www.ti.com/lit/an/slva057/slva057.pdf
http://www.swisseurobot.ch/images/2012/e2012_rules_en_final.pdf
http://www.swisseurobot.ch/images/2012/e2012_rules_en_final.pdf
http://www.national.com/assets/en/appnotes/f4.pdf
http://www.national.com/assets/en/appnotes/f4.pdf
http://www.archlinux.org/about/
http://www.archlinux.org/about/
http://www.windriver.com/products/vxworks/
http://www.windriver.com/products/vxworks/
http://kalman.sourceforge.net/

BIBLIOGRAPHY

144

Part V

Appendix

145

Appendix A

Positioning system

147

APPENDIX A. POSITIONING SYSTEM

A.1 Laser-tower accuracy

Real distance [mm] Measured distance [mm]
150 170
200 220
250 270
300 320
350 372
400 422
450 475
500 528
550 580
600 630
650 685
700 740
750 790
800 842
850 893
900 942
950 1002

1000 1055
1050 1105
1100 1160
1150 1203
1200 1270
1250 1320
1300 1380
1350 1420
1400 1490
1450 1535
1500 1598
1550 1645
1600 1700
1650 1750
1700 1805
1750 1875
1800 1920
1850 1980
1900 2040

Real distance [mm] Measured distance [mm]
1950 2100
2000 2155
2050 2200
2100 2250
2150 2320
2200 2375
2250 2435
2300 2480
2350 2550
2400 2600
2450 2655
2500 2710
2550 2770
2600 2830
2650 2895
2700 2970
2750 3000
2800 3070
2850 3110
2900 3175
2950 3240
3000 3300
3050 3360
3100 3400
3150 3477
3200 3540
3250 3590
3300 3665
3350 3680
3400 3730
3450 3820
3500 3900
3550 3950
3600 4005
3650 4080
3700 4140

Table A.1: Distance measurements

148

A.2. LASER-TOWER DISTRIBUTION

A.2 Laser-tower distribution

Dist [mm] Angle [deg] Time [ms]
1122 358.15 1084
1119 358.11 1248
1125 357.96 1412
1129 358.13 1576
1127 358.11 1740
1127 358.22 1904
1133 357.96 2072
1134 357.98 2236
1116 358.18 2400
1143 358.00 2564
1124 358.15 2732
1134 358.09 2896
1142 358.02 3060
1127 357.98 3228
1119 358.04 3392
1119 358.26 3560
1122 358.13 3724
1132 358.02 3892
1131 358.07 4056
1129 358.24 4224
1122 358.13 4388
1142 358.00 4556
1119 358.11 4720
1124 358.18 4888
1121 358.22 5052
1123 358.29 5220
1139 358.02 5384
1150 358.15 5552
1134 358.02 5716
1126 358.07 5884

Table A.2: 1000mm mean

Dist [mm] Angle [deg] Time [ms]
2142 357.14 1084
2138 357.08 1248
2149 357.14 1412
2117 357.39 1576
2128 357.14 1740
2152 357.14 1908
2145 357.10 2072
2135 357.17 2236
2138 357.19 2400
2138 357.14 2568
2145 357.17 2732
2159 357.21 2896
2138 357.19 3064
2142 357.12 3228
2138 357.14 3396
2135 357.23 3560
2139 357.21 3724
2145 357.12 3892
2149 357.21 4056
2159 357.17 4224
2152 357.21 4388
2142 357.10 4556
2142 357.12 4720
2125 357.28 4888
2149 357.12 5056
2160 357.08 5220
2160 357.08 5388
2142 357.17 5552
2135 357.08 5720
2146 357.14 5884

Table A.3: 2000mm mean

Dist [mm] Angle [deg] Time [ms]
3253 357.23 984
3269 357.25 1144
3258 357.21 1308
3291 357.19 1472
3272 357.25 1636
3277 357.10 1804
3250 357.21 1968
3253 357.19 2132
3299 357.21 2296
3263 357.23 2460
3285 357.19 2628
3253 357.23 2792
3247 357.25 2956
3277 357.23 3124
3239 357.23 3288
3271 357.17 3456
3266 357.14 3620
3296 357.12 3788
3266 357.19 3952
3277 357.08 4120
3282 357.21 4284
3282 357.32 4452
3274 357.14 4616
3301 357.08 4784
3274 357.12 4948
3261 357.23 5116
3258 357.21 5280
3280 357.14 5448
3293 357.21 5616
3285 357.23 5780

Table A.4: 3000mm mean

149

APPENDIX A. POSITIONING SYSTEM

150

Appendix B

Mechanics

The next page shows the production drawing of the base plate in this years robot. All of the
mechanical parts on the robot have drawings like these and are available as digital attachments.
Refeer to appendix G for more information.

151

A

(

1

:

1

)

B

(

1

:

1

)

C

(

1

:

1

)

A

B

C

P
R

O
D

U
C

E
D

B

Y

A

N

A

U
T

O
D

E
S

K

E

D
U

C
A

T
I
O

N
A

L

P

R
O

D
U

C
T

P
R

O
D

U
C

E
D

B

Y

A

N

A

U
T

O
D

E
S

K

E

D
U

C
A

T
I
O

N
A

L

P

R
O

D
U

C
T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

1 1

2 2

3 3

4 4

5 5

6 6

A
A

B
B

C
C

D
D

B
u
n
n
p
l
a
t
e
_
E
i
T
_
r
o
b
o
t

2
0
1
2

B
u
n
n
p
l
a
t
e

N
T
N

U

S
t
e
f
f
e
n

J
o
h
n
s
e
n

0
5
.
0
3
.
2
0
1
2

B

D
e
s
i
g
n
e
d

b
y

C
h
e
c
k
e
d

b
y

A
p
p
r
o
v
e
d

b
y

D
a
t
e

1

/

1

E
d
i
t
i
o
n

S
h
e
e
t

D
a
t
e

2
9
0
,
0
0

282,41

1
3
5
,
0
0

120,50

3

0

,

0

0

°

15,50

85,00

2
2
,
4
1

X

4
5
,
0
0
°

3
,
0
0

1
,
0
0

3
2

,

0

0

2

4

,

0

0

M
E
R
K
N

A
D

E
R
:

-

A
l
l
e
,

i
k
k
e

m

e
r
k
e
d
e

v
a
n
l
i
g
e

h
u
l
l
:



4
,

g
j
e
n
n
o
m

g
å
e
n
d
e

-

A
l
l
e

f
o
r
s
e
n
k
e
d
e

h
u
l
l
:



4
,

g
j
e
n
n
o
m

g
å
e
n
d
e





8

X

9
0
,
0
0
°

-

M

a
t
e
r
i
a
l
e
:

A
l
u
m

i
n
i
u
m

(
h
e
l
s
t

i
k
k
e

r
e
n

a
l
u
m

i
n
i
u
m

,

m

e
n

n
o
e

l
i
t
t

s
t
e
r
k
e
r
e
)

5
,
0
0

92,50

145,0060,00

1
1
,
7
5

57,00

1
5
,
0
0

7
,
5
0

13,00 36,00

3
0
,
0
0

30,00

30,00

3
0
,
0
0

6
5
,
0
0

4
5
,
0
0

45,00

36,0013,00

3

0

,

0

0

X

4

5

,

0

0

°

31,00

45,00

5
,
0
0

1
0
,
0
0

1
0
,
0
0

5,0050,00

5

5

,

0

0

°

3
0
,
0
0

55,00

2
9
,
9
0

M

4

X

0

,

7

M

4

X

0

,

7

5
,

0

0

-

3

,

0

0

D

E

E

P




8

,

0

0

X

9

0

,

0

0

°

M

4

X

0

,

7

M

4

X

0

,

7


5

,

0

0

-

3

,

0

0

D

E

E

P





8

,

0

0

X

9

0

,

0

0

°

5
,

0

0

-

3

,

0

0

D

E

E

P




8

,

0

0

X

9

0

,

0

0

°

51,75

2
2
,
4
1

X

4
5
,
0
0
°

Appendix C

Electronics

All the schematics/designs presented in this appendix is available on the attached CD or attached
files where this paper is published, see appendix G.

153

APPENDIX C. ELECTRONICS

154

C.1. ENEMY BEACON

C.1 Enemy beacon

Figure C.1: Enemy Beacon Schematic

155

APPENDIX C. ELECTRONICS

156

C.2. POWER CARD

C.2 Power card

Figure C.2: 3D-model of power card

157

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\to

p_
le

ve
l.S

ch
D

oc
D

ra
w

n
B

y:

D
CI

N

B
A

TT
ER

Y
SY

ST
EM

_P
O

W
ER

PW
R

_I
N

PU
T_

C
N

TR
L

TW
I

U
_p

w
r_

in
pu

t
pw

r_
in

pu
t.S

ch
D

oc

SY
ST

EM
_P

O
W

ER

TW
I

12
V

0_
EN

5V
0_

EN

U
_p

w
r_

3v
3_

5v
0_

12
v0

pw
r_

3v
3_

5v
0_

12
v0

.S
ch

D
oc

D
CI

N

B
A

TT
ER

Y

U
_p

w
r_

in
pu

t_
co

nn
ec

to
rs

pw
r_

in
pu

t_
co

nn
ec

to
rs

.S
ch

D
oc

SY
ST

EM
_P

O
W

ER
TW

I

24
V

0_
D

IS
A

B
LE

U
_P

W
R

_2
4V

PW
R

_2
4V

.S
ch

D
oc

C
A

N

U
SB

U
_o

ut
pu

t_
co

nn
ec

to
rs

ou
tp

ut
_c

on
ne

ct
or

s.S
ch

D
oc

C
A

N

PO
R

TC
SP

I
PW

M
A

D
C

PO
R

TA

TW
I

U
SA

R
T

D
A

C

U
_p

c1
04

_p
lu

s
pc

10
4_

pl
us

.S
ch

D
oc

C
A

N

PO
R

TC SP
I

PW
M

A
D

C
PO

R
TATW

I

U
SA

R
T

D
A

C

PW
R

_I
N

PU
T_

C
N

TR
L

24
V

0_
D

IS
A

B
LE

12
V

0_
EN

5V
0_

EN

U
SB

U
_U

SR
_M

C
U

us
er

_M
C

U
.S

ch
D

oc

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\p

w
r_

3v
3_

5v
0_

12
v0

.S
ch

D
oc

D
ra

w
n

B
y:

V
IN

7

EN
A

5

PH
8

B
O

O
T

1

V
SE

N
SE

4

G
N

D
6

PW
P

0

U
30

3

TP
S5

45
0D

D
A

G
N

D

12
V

0_
IN

T

12
V

0_
EN

IN
PU

T:
 1

5V
5-

 2
1V

6
O

U
TP

U
T:

 1
2V

, 5
A

O
U

TP
U

T:
 3

V
3,

 5
A

V
IN

7

EN
A

5

PH
8

B
O

O
T

1

V
SE

N
SE

4

G
N

D
6

PW
P

0

U
30

9

TP
S5

45
0D

D
A

G
N

D

5V
0_

IN
T

5V
0_

EN

V
IN

7

EN
A

5

PH
8

B
O

O
T

1

V
SE

N
SE

4

G
N

D
6

PW
P

0

U
31

5

TP
S5

45
0D

D
A

G
N

D

3V
3_

IN
T

O
U

TP
U

T:
 5

V
0,

 5
A

IN
PU

T:
 1

5V
5-

 2
1V

6

IN
PU

T:
 1

5V
5

- 2
1V

6

SY
ST

EM
_P

O
W

ER

10
0n

F

C
30

3
50

V
 X

7R

N
.M

.

10
nF

C
30

1

50
V

 X
7R

15
uH

L3
00

X
A

L1
01

0-
15

3M
EB

10
0n

F

C
30

5
50

V
 X

7R

N
.M

.

10
0n

F

C
31

4
50

V
 X

7R
10

nF

C
31

2

50
V

 X
7R

15
uH

L3
01

X
A

L1
01

0-
15

3M
EB

10
0n

F

C
31

6
50

V
 X

7R

N
.M

.

10
0n

F

C
32

7
50

V
 X

7R

N
.M

.

10
0n

F

C
32

6
50

V
 X

7R

N
.M

.
15

uH

L3
02

X
A

L1
01

0-
15

3M
EB

10
K

R
30

6
0.

1%

10
K

R
32

4
0.

1%

10
K

R
34

2
0.

1%

1K
13

R
31

0
0.

5%

3K
16

R
32

9
0.

5%

5K
76

R
34

7
0.

5%

D
30

0
V

12
P1

0-
M

3/
86

A

D
30

1
V

12
P1

0-
M

3/
86

A

D
30

2
V

12
P1

0-
M

3/
86

A

3V
3

5V
0

12
V

0

47
0u

F
C

32
5

47
0u

F
C

31
3

47
0u

F
C

30
2

10
uF

C
30

4

10
uF

C
30

6

10
uF

C
31

5

10
uF

C
31

7 10
uF

C
32

4

10
uF

C
32

8

10
nF

C
32

3

50
V

 X
7R

3V
3_

IN

5V
0_

IN

12
V

0_
IN

12
V

0_
EN

5V
0_

EN

SC
L

SD
A

SD
A

SC
L

TW
I

TW
I

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

1

IN
A

21
9B

10
0n

F

C
30

9
50

V
 X

7R

10
0n

F

C
30

7

50
V

 X
7R

Cut StrapJ3
03

C
ut

 S
tra

p
06

03

Cut StrapJ3
02

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
3

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

0

IN
A

21
9B

10
0n

F

C
30

8
50

V
 X

7R

10
0n

F

C
30

0

50
V

 X
7R

Cut StrapJ3
01

C
ut

 S
tra

p
06

03

Cut StrapJ3
00

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
4

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

4

IN
A

21
9B

10
0n

F

C
31

9
50

V
 X

7R

10
0n

F

C
31

1

50
V

 X
7R

Cut StrapJ3
07

C
ut

 S
tra

p
06

03

Cut StrapJ3
06

C
ut

 S
tra

p
06

03

A
dd

re
ss

 0
x4

6

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

2

IN
A

21
9B

10
0n

F

C
31

8
50

V
 X

7R

10
0n

F

C
31

0

50
V

 X
7R

Cut StrapJ3
05

C
ut

 S
tra

p
06

03

Cut StrapJ3
04

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
5

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

6

IN
A

21
9B

10
0n

F

C
32

9
50

V
 X

7R

10
0n

F

C
32

1

50
V

 X
7R

Cut StrapJ3
11

C
ut

 S
tra

p
06

03

Cut StrapJ3
10

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
8

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
30

5

IN
A

21
9B

10
0n

F

C
32

2
50

V
 X

7R

10
0n

F

C
32

0

50
V

 X
7R

Cut StrapJ3
09

C
ut

 S
tra

p
06

03

Cut StrapJ3
08

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
7

3V
3

G
N

D

SC
L

SD
A

2m
0

R
30

0

2m
0

R
30

1

2m
0

R
30

3

2m
0

R
30

2

2m
0

R
30

4

2m
0

R
30

5

G
N

D

G
N

D
3V

3

3V
3

3V
3

3V
3

3V
3

G
N

D

5V
0_

PH

12
V

0_
PH

3V
3_

PH

10
0K

R
30

7
0.

1%

G
N

D

10
0K

R
30

8
0.

1%

G
N

D

1
2

D
30

5

G
R

EE
N

1
2

D
30

4

G
R

EE
N

1
2

D
30

3

G
R

EE
N

G
N

D

G
N

D

12
0R

R
31

2
0.

1%

27
0R

R
31

1
0.

1%

1K
0

R
30

9
0.

1%

G
N

D

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\p

w
r_

in
pu

t.S
ch

D
oc

D
ra

w
n

B
y:

D
CI

N
3

D
CD

IV
5

CH
R

G
8

A
C

P
7

IC
L

4

SH
D

N
6

IT
H

12

PR
O

G
13

V
FB

10

FB
D

IV
9

B
A

T
11

C
SN

14

C
SP

15

BG
A

TE
16

IN
TV

D
D

17

SW
18

TG
A

TE
19

B
O

O
ST

20

C
LN

1

C
LP

2

G
N

D
21

U
20

0

LT
C

40
09

G
N

D

G
N

D

G
N

D

G
N

D

G

SD
Q

20
1

IR
LM

L6
34

4T
R

PB
F

G

SD
Q

20
2

IR
LM

L6
34

4T
R

PB
F

G
N

D

D
20

1
1N

41
48

W
S

G
N

D

B
A

TT
ER

Y

G
N

D

E1
2

G
N

D
3

E2
4

H
2

5

H
1

1

V
2

7

G
2

6

V
S

8

G
1

10

V
1

9

U
20

1

LT
C

44
16

D
CI

N

G
N

D

B
A

TT
ER

Y

SYSTEM_POWER

G
N

D

G
N

D

G
N

D

G
S

D

Q
20

0

Si
71

45
D

P

G
S

D

Q
20

3
Si

71
45

D
P

A
C

P

A
C

P

A
C

P

G
N

D
G

N
D

G
N

D

CH
R

G

A
C

P

IC
L

SH
D

N H
2

H
1

PW
R

_I
N

PU
T_

C
N

TR
L

H
2

H
1

SH
D

N

IC
L

A
C

P

CH
R

G

PW
R

_I
N

PU
T_

C
N

TR
L

24
V

SY
ST

EM
_P

O
W

ER
_I

N
T

24
V

 -
15

.5
V

10
0n

F

C
20

5
50

V
 X

7R

10
0n

F

C
20

2

50
V

 X
7R

10
0n

F

C
20

3

50
V

 X
7R

15
uH

L2
00

X
A

L1
01

0-
15

3M
EB

10
0n

F

C
21

0
50

V
 X

7R

10
0n

F

C
20

4

50
V

 X
7R

10
0n

F

C
20

7

50
V

 X
7R

10
0n

F

C
20

8
50

V
 X

7R

26
K

7

R
20

9
1%

30
0K

R
20

8
0.

1%

17
K

4

R
21

0
0.

1%

3K
01

R
20

4

0.
5%

3K
01

R
20

7

0.
5%

5K
1

R
20

1
0.

1%

50
0

3 1

2
R

21
1

Tr
im

po
t

25
m

R
20

0

0.
5

W

33
m

R
20

6
0.

5
W

6K
04

R
20

5

0.
1%

10
pF

C
21

1
50

V
 C

0G

D
20

0

V
12

P1
0-

M
3/

86
A

20
K

R
20

2
0.

1%

1K
3

R
20

3
0.

1%

22
uF

C
20

0
50

V
 X

7R

22
uF

C
21

2
50

V
 X

7R

22
uF

C
20

9
50

V
 X

7R

10
0n

F

C
20

1
50

V
 X

7R

10
0n

F

C
20

6

50
V

 X
7R

10
0n

F

C
21

3
50

V
 X

7R

D
CI

V

C
LP

C
LN

TG
A

TE

BG
A

TE

SW

B
O

O
ST

IN
TV

D
D

C
SP

C
SN

D
CI

N

G
2

G
1

FB
D

IV

V
FB

PR
O

G

CH
R

G

IC
L

SH
D

N

IT
H

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
20

2

IN
A

21
9B2m

0

R
21

2
SY

ST
EM

_P
O

W
ER

10
0n

F

C
21

5
50

V
 X

7R

10
0n

F

C
21

4

50
V

 X
7R

Cut StrapJ2
01

C
ut

 S
tra

p
06

03

Cut StrapJ2
00

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
0

G
N

D
G

N
D

3V
3

G
N

D

SC
L

SD
A

SD
A

SC
L

TW
I

TW
I

PW
R

_I
N

COIL

10
0K

R
21

3
0.

1%

3V
3

10
0K

R
21

4
0.

1%

3V
3

10
0K

R
21

5
0.

1%

3V
3

3V
327

0R

R
21

7
0.

1%
27

0R

R
21

6
0.

1%

12

D
20

2
G

R
EE

N

12

D
20

3
G

R
EE

N

G
N

D
G

N
D

A
C

P
CH

R
G

G

SD
Q

20
4

G

SD
Q

20
5

3V
3

G

SD
Q

20
6

3V
3

G
N

D

12

D
20

4
R

ED

27
0R

R
21

8
0.

1%

IC
L

10
0K

R
22

1
0.

1%
10

0K

R
22

2
0.

1%

3V
3

3V
3

G

SD
Q

20
7

3V
3

G
N

D 27
0R

R
21

9
0.

1%

12

D
20

5
G

R
EE

N

H
2

G

SD
Q

20
8

27
0R

R
22

0
0.

1%

1 2

D
20

6
G

R
EE

N

H
1

G
N

D

3V
3

10
0K

R
22

3
0.

1%

3V
3

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\p

w
r_

in
pu

t_
co

nn
ec

to
rs

.S
ch

D
oc

D
ra

w
n

B
y:

B
A

TT
ER

Y

D
CI

N

G
N

D

B
A

TT
ER

Y
_I

N
T

D
CI

N
_I

N
T

G
N

D

1 2 3 4

5 6 7 8

J6
00

1 2

3 4

J6
01

12

34

J6
02

G
N

D

G
N

D

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\P

W
R

_2
4V

.S
ch

D
oc

D
ra

w
n

B
y:

SY
ST

EM
_P

O
W

ER

G

SD
Q

50
0

15
uH

L5
00

X
A

L1
01

0-
15

3M
EB

D
50

0

V
12

P1
0-

M
3/

86
A

D
50

1

V
12

P1
0-

M
3/

86
A

V
IN

1

R
T

9

V
C

C
4

FB
2

SS
10

C
O

M
P

3

U
V

LO
7

G
N

D
6

C
S

8

O
U

T
5

U
50

0

LM
50

22

20
K

R
51

1
0.

1%

1K
1

R
51

7
0.

1%

G
N

D

1n
F

C
51

2
50

V
 X

7R

10
0n

F

C
51

4
50

V
 X

7R

G
N

D

22
0n

F

C
51

5

50
V

 X
7R

2.
7n

F

C
51

8

50
V

 X
7R

56
0R

R
51

4

0.
1%

G
N

D

10
K

R
50

3
0.

1%

G
N

D

33
K

2

R
50

8

0.
1%

G
N

D

G
N

D

G
N

D

1u
F

C
51

1
50

V
 X

7R
10

0u
F

C
50

4
10

0u
F

C
50

5
10

0u
F

C
50

6
10

0u
F

C
50

7
10

0u
F

C
50

8
10

0u
F

C
50

9

10
0u

F

C
51

0
EE

E-
FK

1V
10

1P

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

68
uF

C
50

1
EE

E-
FK

1V
68

0X
P

68
uF

C
50

2

68
uF

C
50

3

10
0n

F

C
50

0
50

V
 X

7R

G
N

D
G

N
D

G
N

D

24
V

0_
IN

24
V

0_
IN

T

10
0R

R
51

0

0.
1%

6K
34

R
50

9

0.
5%

30
m

R
51

2
0.

5
W

1n
F

C
51

3
50

V
 X

7R
1K

18

R
51

3
0.

1%

24
V

0

O
U

T

C
S

FB
C

O
M

P

SSU
V

LOR
T

SC
L

SD
A

SD
A

SC
L

TW
I

TW
I

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
50

1

IN
A

21
9B

10
0n

F

C
51

9
50

V
 X

7R

10
0n

F

C
51

6

50
V

 X
7R

Cut StrapJ5
01

Cut StrapJ5
00

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
1

3V
3

G
N

D

SC
L

SD
A

V
IN

+
1

V
IN

-
2

SD
A

6

SC
L

5

A
0

7

A
1

8

V
s

4

G
N

D
3

U
50

2

IN
A

21
9B

10
0n

F

C
52

0
50

V
 X

7R

10
0n

F

C
51

7

50
V

 X
7R

Cut StrapJ5
03

Cut StrapJ5
02

C
ut

 S
tra

p
06

03

A
dd

re
ss

 =
 0

x4
2

3V
3

G
N

D

SC
L

SD
A

2m
0

R
50

1

2m
0

R
50

2

3V
3

G
N

D
G

N
D

24
V

0_
SW

G
N

D24
V

0_
SN

S+
C

S+

G

SD
Q

50
1

IR
LM

L6
34

4T
R

PB
F

24
V

0_
D

IS
A

B
LE

10
K

R
50

0
0.

1%

3V
3

24
V

0_
D

IS
A

B
LE

G
N

D

1 2

D
50

2
G

R
EE

N

2K
2

R
50

4
0.

1%

G
N

D

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\o

ut
pu

t_
co

nn
ec

to
rs

.S
ch

D
oc

D
ra

w
n

B
y:

V
B

U
S

1

D
-

2

D
+

3

4
4

5
5

SH
LD

0

J9
00

U
SB

-M
IN

I-B

C
A

N
H

C
A

N
L

C
A

N

C
A

N

U
SB

_D
-

U
SB

_D
+

U
SB

_V
B

U
S

1 2 3 4 56 7 8 9

10

J9
01

G
N

D

G
N

D

G
N

D

O
pt

io
na

l +
5V

 @
 p

in
 1

 a
nd

 p
in

 9

G
N

D

C
ut

 S
tra

p
J9

02

C
ut

 S
tra

p
J9

03

5V
0

5V
0

TX
D

30

R
X

D
2

R
TS

32

C
TS

8

D
TR

31

D
SR

6

D
C

D
7

RI
3

C
B

U
S0

22

C
B

U
S1

21

C
B

U
S2

10

C
B

U
S3

11

C
B

U
S4

9

V
C

C
IO

1

V
C

C
19

U
SB

D
M

15

U
SB

D
P

14

R
ES

ET
18

O
SC

I
27

O
SC

O
28

3V
3O

U
T

16

AGND 24

GND 4GND 17GND 20TEST 26

HEAT SINK (GND) 0
U

90
0

FT
23

2R
Q

10
K

R
90

1
0.

1%

4K
7

R
90

0
0.

1%

G
N

D
10

0n
F

C
90

5
50

V
 X

7R

G
N

D

G
N

D

3V
3

10
0n

F

C
90

0
50

V
 X

7R
10

0n
F

C
90

1
50

V
 X

7R X
90

0
12

M
H

z
10

pF

C
90

3

50
V

 C
0G

10
pF

C
90

4

50
V

 C
0G

G
N

D

G
N

D

C
A

Ps
 N

ot
 M

ou
nt

ed
 b

y
de

fa
ul

t

12

D
90

1
G

R
EE

N

12

D
90

0
G

R
EE

N

27
0R

R
90

3
0.

1%
27

0R

R
90

2
0.

1%

3V
3

3V
3

G
N

D
G

N
D

C
O

M

1 3

N
.MJ9

04

C
hi

p
ne

ed
s t

o
be

 c
on

ne
ct

ed
 to

 5
V

0
to

 b
e

re
pr

og
ra

m
m

ed
 fo

r e
xt

er
na

l c
ry

st
al

 o
pe

ra
tio

n
O

nc
e

pr
og

ra
m

m
ed

 fr
om

 a
 P

C
, c

ut
 th

e
st

ra
p

an
d

so
ld

er
 a

 0
 o

hm
 re

sis
to

r b
et

w
ee

n
C

O
M

 a
nd

 3

m
ay

 b
e

ne
ed

ed
 to

 st
ar

t o
sc

ill
at

io
n

4.
4u

F

C
90

2
10

V
 X

5R

G
N

D

TX
LE

D
R

X
LE

D

3V
3O

U
T

U
SB

_D
-

U
SB

_D
+

FT
23

2_
R

ES
ET

O
SC

I
O

SC
O

FF
T2

32
_V

C
C

TX
D

1
R

X
D

1

U
SB

U
SB

R
X

D
1

TX
D

1

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\p

c1
04

_p
lu

s.S
ch

D
oc

D
ra

w
n

B
y:

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

J1
10

0A

PC
 1

04
 P

lu
s J

3
A

1
A

1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

A
31

A
31

A
32

A
32

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

B
31

B
31

B
32

B
32

J1
10

1

PC
 1

04
 J1

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

J1
10

2

PC
10

4
J2

SO
-1

52
4-

03
-0

1-
02

-L

S1
10

0

PC
 1

04
 st

an
do

ff
sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S1
10

1

PC
 1

04
 st

an
do

ff
sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S1
10

2

PC
 1

04
 st

an
do

ff
sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S1
10

3

PC
 1

04
 st

an
do

ff
sc

re
w

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

G
N

D
G

N
D

G
N

D
G

N
D

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

G
N

D
G

N
D

G
N

D
G

N
D

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

C
21

C
21

C
22

C
22

C
23

C
23

C
24

C
24

C
25

C
25

C
26

C
26

C
27

C
27

C
28

C
28

C
29

C
29

C
30

C
30

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

D
21

D
21

D
22

D
22

D
23

D
23

D
24

D
24

D
25

D
25

D
26

D
26

D
27

D
27

D
28

D
28

D
29

D
29

D
30

D
30

J1
10

0B

PC
 1

04
 P

lu
s J

3

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

C
A

N
L

C
A

N
L

C
A

N
H

C
A

N
H

C
A

N
L

C
A

N
H

C
A

N

C
A

N
C

A
N

_L
C

A
N

_H

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PO
R

TC

PO
R

TC

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PO
R

TA

PO
R

TA

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

D
A

C
_A

D
A

C
_B

D
A

C
_C

D
A

C
_D

D
A

C
_A

D
A

C
_B

D
A

C
_C

D
A

C
_D

D
A

C

D
A

C

SS
SC

K
M

O
SI

M
IS

O

SP
I

SP
I

O
C

3A
O

C
3B

O
C

3C
O

C
2A

O
C

1A
O

C
1B

O
C

0A

PW
M

O
C

2A
O

C
1A

O
C

3A
O

C
3B

O
C

3C
PW

M

O
C

0A

SSSC
K

M
O

SI
M

IS
O

SC
L

SD
A

R
X

D
0

TX
D

0

SD
A

SC
L

TW
I

TW
I

TX
D

0
R

X
D

0

U
SA

R
T

U
SA

R
T

O
C

1B
O

C
1A

O
C

1A

O
C

0A
O

C
0A

O
C

1B
O

C
1B

O
C

3C

O
C

3A

O
C

3C

O
C

3A

O
C

2A

O
C

3B

O
C

2A

O
C

3B

SSSC
K

M
O

SI
M

IS
O

SSSC
K

M
O

SI
M

IS
O

D
A

C
_D

D
A

C
_C

D
A

C
_C

D
A

C
_D

D
A

C
_A

D
A

C
_A

D
A

C
_B

D
A

C
_B

R
X

D
0

R
X

D
0

TX
D

0
TX

D
0

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C

A
D

C

A
D

C
0

A
D

C
0

A
D

C
1

A
D

C
1

A
D

C
2

A
D

C
2

A
D

C
3

A
D

C
3

PA
0

PA
0

PA
1

PA
1

PA
2

PA
2

PA
4

PA
4

PA
6

PA
6

PA
3

PA
3

PA
5

PA
5

PA
7

PA
7

PC
7

PC
7

PC
5

PC
5

PC
3

PC
3

PC
1

PC
1

PC
6

PC
6

PC
4

PC
4

PC
2

PC
2

PC
0

PC
0

SD
A

SD
A

SC
L

SC
L

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\u

se
r_

M
C

U
.S

ch
D

oc
D

ra
w

n
B

y:

N
C

1

PE
0

(R
X

D
0

/ P
D

I)
2

PE
1

(T
X

D
0

/ P
D

O
)

3

PE
2

(X
C

K
0

/ A
IN

0)
4

PE
3

(O
C

3A
 /

A
IN

1)
5

PE
4

(O
C

3B
 /

IN
T4

)
6

PE
5

(O
C

3C
 /

IN
T5

)
7

PE
6

(T
3

/ I
N

T6
)

8

PE
7

(IC
P3

 /
IN

T7
)

9

PB
0

(S
S)

10

PB
1

(S
CK

)
11

PB
2

(M
O

SI
)

12

PB
3

(M
IS

O
)

13

PB
4

(O
C

2A
)

14

PB
5

(O
C

1A
)

15

PB
6

(O
C

1B
)

16

PB7 (OC0A / OC1C) 17

PG3 (TOSC2) 18

PG4 (TOSC1) 19

RESET 20

VCC 21

GND 22

XTAL2 23

XTAL1 24

PD0 (SCL / INT0) 25

PD1 (SDA / INT1) 26

PD2 (RXD1 / INT2) 27

PD3 (TXD1 / INT3) 28

PD4 (ICP1) 29

PD5 (TXCAN / XCK1) 30

PD6 (RXCAN / T1) 31

PD7 (T0) 32

(W
R

) P
G

0
33

(R
D

) P
G

1
34

(A
8)

 P
C

0
35

(A
9)

 P
C

1
36

(A
10

) P
C

2
37

(A
11

) P
C

3
38

(A
12

) P
C

4
39

(A
13

) P
C

5
40

(A
14

) P
C

6
41

(A
15

 /
C

LK
O

) P
C

7
42

(A
LE

) P
G

2
43

(A
D

7)
 P

A
7

44
(A

D
6)

 P
A

6
45

(A
D

5)
 P

A
5

46
(A

D
4)

 P
A

4
47

(A
D

3)
 P

A
3

48

(AD2) PA249 (AD1) PA150 (AD0) PA051 VCC52 GND53 (ADC7 / TDI) PF754 (ADC6 / TDO) PF655 (ADC5 / TMS) PF556 (ADC4 / TCK) PF457 (ADC3) PF358 (ADC2) PF259 (ADC1) PF160 (ADC0) PF061 AREF62 GND63 AVCC64

U
12

00
A

T9
0C

A
N

12
8

22
pF

C
12

06
50

V
 C

0G
22

pF

C
12

05
50

V
 C

0GX
12

00

16
M

H
z

C
A

N
_T

X

C
A

N
_R

X

TX
D

1

G
N

D
2

V
C

C
3

R
X

D
4

SH
D

N
5

C
A

N
L

6
C

A
N

H
7

R
S

8
U

12
01

M
A

X
30

51

G
N

D

G
N

D

20
K

R
12

00
0.

1%

G
N

D

10
0n

F

C
12

04
50

V
 X

7R

C
A

N
H

C
A

N
L

R
S

C
A

N
H

C
A

N
L

C
A

N

C
A

N

20
k

oh
m

 fo
r s

le
w

-ra
te

 c
on

tro
l

0
oh

m
 fo

r h
ig

h
sp

ee
d

m
od

e

G
N

D
G

N
D

G
N

D
3V

310
0n

F

C
12

03

50
V

 X
7R

O
C

3A
O

C
3B

O
C

3C

O
C

2A
O

C
1A

O
C

1B

RESET

SCL
SDA
RXD1
TXD1

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PO
R

TC

PO
R

TC

TDI
TDO
TMS
TCK

R
ES

ET

G
N

D

3V
3

G
N

D
1

2
3

4
5

6
7

8
9

10

J1
20

0
TC

K
TD

O

TD
I

TM
S

SS
SC

K
M

O
SI

M
IS

O

SP
I

SS SC
K

M
O

SI
M

IS
O

SP
I

O
C

3A
O

C
3B

O
C

3C

O
C

2A
O

C
1A

O
C

1B
O

C
0A

PW
M

O
C

2A
O

C
1A

O
C

1B

O
C

3A
O

C
3B

O
C

3C

PW
M

L1
20

0

Fe
rr

ite

10
0n

F

C
12

01
50

V
 X

7R

AREF

10
0n

F

C
12

02
50

V
 X

7R
A

V
C

C

G
N

D

3V
3

ADC0
ADC1
ADC2
ADC3

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C

A
D

C

G
N

D
3V

3

10
0n

F

C
12

00

50
V

 X
7R

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PO
R

TA

PO
R

TA

R
X

D
0

TX
D

0

PA0
PA1
PA2

PA
3

PA
4

PA
5

PA
6

PA
7

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

XTAL1
XTAL2

10
K

R
12

01
0.

1%

3V
3

O
C

0A

O
C

0A

SC
L

SD
A

R
X

D
1

TX
D

1

SD
A

SC
L

TW
I

TW
I

TX
D

0
R

X
D

0

U
SA

R
T

U
SA

R
T

SS SC
K

M
O

SI
M

IS
O

D
A

C
_S

Y
N

C

V
ou

tA
1

V
ou

tB
2

V
ou

tC
4

V
ou

tD
5

SY
N

C
6

SC
LK

7

D
IN

8

V
D

D
9

V
re

fIN
/V

re
fO

U
T

10

G
N

D
3

U
12

02
A

D
56

64
R

10
0n

F

C
12

07
50

V
 X

7R

3V
3

G
N

D

D
A

C
_A

D
A

C
_B

D
A

C
_C

D
A

C
_D

D
A

C
_A

D
A

C
_B

D
A

C
_C

D
A

C
_D

D
A

C

D
A

C

10
uF

C
12

08
10

V
 X

7R

L1
20

1

Fe
rr

ite

3V
3

10
0n

F

C
12

09
50

V
 X

7R

G
N

D

24
V

0_
D

IS
A

B
LE

12
V

0_
EN

5V
0_

EN

CH
R

G

A
C

P

IC
L

SH
D

N H
2

H
1

PW
R

_I
N

PU
T_

C
N

TR
L

H
2

H
1

SH
D

N

IC
L

A
C

P

CH
R

G

PW
R

_I
N

PU
T_

C
N

TR
L

A
C

P

CH
R

G

SHDN
ICL

H2

H1

10
0K

R
12

02
0.

1%
10

0K

R
12

03
0.

1%

3V
3

D
A

C
_R

EF

TX
D

1
R

X
D

1

U
SB

U
SB

CAN_TX
CAN_RX

COM

1
3

N.M

J1
20

1

3V
3

5V
0

C
ut

 S
tra

p J1
20

2
C

ut
 S

tra
p

06
03

10
0K

R
12

04
0.

1%

G
N

D

co
m

pa
bi

lit
y

w
ith

 5
V

0
M

C
P2

55
1

re
m

em
be

r t
o

di
vi

de
 C

A
N

_R
X

 d
ow

n
if

5V
0

C
A

N
 d

ev
ic

e
is

us
ed

C
A

N
_V

C
C

C
R

X
_I

N
T

Designator Quantity MPN Manufacturer Value Description Digikey

C200, C209, C212 3 C2220C226M5R2C Kemet 22uF
CAP CER KPS 22UF 50V
X7R 2220 399-5817-1-ND

C201, C202, C203, C204,
C205, C206, C207, C208,
C210, C213, C214, C215,
C300, C303, C305, C307,
C308, C309, C310, C311,
C314, C316, C318, C319,
C320, C321, C322, C326,
C327, C329, C500, C514,
C516, C517, C519, C520,
C900, C901, C905, C1200,
C1201, C1202, C1203,
C1204, C1207, C1209 46 06035C104JAT2A AVX 100nF

CAP CER 0.1UF 50V 5%
X7R 0603 478-5778-1-ND

C211, C903, C904 3 C1608C0G1H100C TDK Corporation 10pF
CAP CER 10PF 50V C0G
0603 445-5048-1-ND

C301, C312, C323 3 C0603C103J5RACTU Kemet 10nF
CAP CER 10nF 50V 5% X7R
0603 399-1092-1-ND

C302, C313, C325 3 EEV-FK1C471P Panasonic 470uF
CAP ALUM 470UF 16V 20%
SMD PCE3402CT-ND

C304, C306, C315, C317,
C324, C328 6 C5750X5R1H106M TDK 10uF

CAP CER 10UF 50V X5R
20% 2220 445-3498-1-ND

C501, C502, C503 3 EEE-FK1V680XP Panasonic 68uF
CAP ALUM 68UF 35V 20%
SMD PCE3844CT-ND

C504, C505, C506, C507,
C508, C509, C510 7 EEE-FK1V101P Panasonic 100uF

CAP ALUM 100UF 35V 20%
SMD PCE3835CT-ND

C511 1 UMK212B7105KG-T Taiyo Yuden 1uF
CAP CER 1.0UF 50V X7R
10% 0805 587-2910-1-ND

C512, C513 2 GRM188R71H102KA01D Murata 1nF
CAP CER 1nF 50V 10% X7R
0603 490-1494-1-ND

C515 1 GCM188R71H224KA64D Murata 220nF
CAP CER .22UF 50V X7R
0603 490-5402-1-ND

C518 1 GRM188R71H272KA01D Murata 2.7nF
CAP CER 2.7nF 50V 10%
X7R 0603 490-1502-1-ND

C902 1 C1608X5R1A475K/ 0.50 TDK Corporation 4.4uF
CAP CER 4.7UF 10V 10%
X5R 0603 445-7482-1-ND

C1205, C1206 2 C1608C0G1H220F TDK Corporation 22pF
CAP CER 22pF 50V C0G 1%
0603 445-5366-1-ND

C1208 1 C2012X7R1A106K TDK Corporation 10uF
CAP CER 10UF 10V 10%
X7R 0805 445-6857-1-ND

D200, D300, D301, D302,
D500, D501 6 V12P10-M3/ 86A

Vishay/ General
Semiconductor

DIODE SCHOTTKY 12A
100V SMPC V12P10-M3/ 86AGICT-ND

D201 1 1N4148WS Fairchild Semiconductor
DIODE 75V 150MA
SOD323F 1N4148WSFSCT-ND

D202, D203, D205, D206,
D303, D304, D305, D502,
D900, D901 10 APT1608SGC Kingbright

LED 1.6X0.8MM 568NM
GRN CLR SMD 754-1121-1-ND

D204 1 APT1608EC Kingbright
LED 1.6X0.8MM 625NM
RED CLR SMD 754-1117-1-ND

J600 1 39-29-3086 Molex
CONN HEADER 8POS
4.2MM VERT TIN WM3846-ND

J601, J602 2 39-28-1043 Molex
CONN HEADER 4POS
4.2MM VERT TIN WM3801-ND

J900 1 897-43-005-00-100001 Mill-Max Manufacturing Corp.
CONN RECEPT MINI-USB
TYPE B SMT ED90341CT-ND

J901 1 190-009-163R001 Norcomp Inc
CONN DB9 MALE R/A
SOLDER SMD 190-09MA-ND

J1100 1 ESQT-130-03-G-Q-368 Samtec Non Stack Through

J1101 1 ESQ-132-12-G-D Samtec Non Stack Through

J1102 1 ESQ-120-12-G-D Samtec Non Stack Through

J1200 1 TSM-105-01-L-DV-P Samtec Inc
CONN HEADER 10POS
.100" SMT GOLD TSM-105-01-L-DV-P-ND

L200, L300, L301, L302,
L500 5 XAL1010-153MEB Coilcraft 15uH

INDUCTOR POWER 15UH
13.8A SMD 732-1224-1-ND

L1200, L1201 2 FBMH1608HM102-T Taiyo Yuden
FERRITE BEAD 1000 OHM
0603 587-1739-1-ND

Q200, Q203 2 SI7145DP-T1-GE3 Vishay
MOSFET P-CH D-S 30V 8-
SOIC SI7145DP-T1-GE3CT-ND

Q201, Q202, Q208, Q501 4 IRLML6344TRPBF International Rectifier
MOSFET N-CH 30V 5A
SOT23 IRLML6344TRPBFCT-ND

Q204, Q205, Q206, Q207 4 BSS84-7-F Diodes Inc
MOSFET P-CH 50V 130MA
SOT23-3 BSS84-FDICT-ND

Q500 1 RJK0332DPB-01#J0
Renesas Electronics
America

MOSFET N-CH 30V 35A
LFPAK RJK0332DPB-01#J0CT-ND

R200 1 WSLP0805R0250FEB Vishay/ Dale 25m
RES .025 OHM 1/ 2W 1%
0805 SMD WSLPB-.025CT-ND

R201 1 PAT0603E1781BST1 Vishay 5K1
RES 5.1K OHM 1/ 10W .1%
0603 SMD RG1608P-512-B-T5

R202, R511, R1200 3 RG1608P-203-B-T5 Susumu 20K
RES 20.0K OHM 1/ 10W
.1% 0603 SMD RG16P20.0KBCT-ND

R203 1 RG1608P-132-B-T5 Susumu 1K3
RES 1.3K OHM 1/ 10W .1%
0603 SMD RG16P1.3KBCT-ND

R204, R207 2 RR0816P-3011-D-47H Susumu 3K01
RES 3.01K OHM 1/ 16W
.5% 0603 SMD RR08P3.01KDCT-ND

R205 1 RG1608P-6041-B-T5 Susumu 6K04
RES 6.04K OHM 1/ 10W
.1% 0603 SMD RG16P6.04KBCT-ND

R206 1 WSLP0805R0330FEB Vishay/ Dale 33m
RES .033 OHM 1/ 2W 1%
0805 SMD WSLPB-.033CT-ND

R208 1 RG1608P-304-B-T5 Susumu 300K
RES 300K OHM 1/ 10W .1%
0603 SMD RG16P300KBCT-ND

R209 1 MCR03EZPFX2672 Rohm Semiconductor 26K7
RES 26.7K OHM 1/ 10W 1%
0603 SMD RHM26.7KHCT-ND

R210 1 RG1608P-1742-B-T5 Susumu 17K4
RES 17.4K OHM 1/ 10W
.1% 0603 SMD RG16P17.4KBCT-ND

R211 1 PVG3A501C01R00
Murata Electronics North
America 500

TRIMMER 500 OHM 0.25W
SMD 490-2654-1-ND

R212, R300, R301, R302,
R303, R304, R305, R501,
R502 9 CSNL1206FT2L00

Panasonic, Stackpole
Electronics Inc 2m0

RES .002OHM 1W 1% 1206
SMD CSNL1206FT2L00CT-ND

R213, R214, R215, R221,
R222, R223, R307, R308,
R1202, R1203 10 RG1608P-104-B-T5 Susumu 100K

RES 100K OHM 1/ 10W .1%
0603 SMD RG16P100KBCT-ND

R216, R217, R218, R219,
R220, R311, R902, R903 8 RG1608P-271-B-T5 Susumu 270R

RES 270 OHM 1/ 10W .1%
0603 SMD RG16P270BCT-ND

R306, R324, R342, R500,
R503, R901, R1201 7 RG1608P-103-B-T5 Susumu 10K

RES 10.0K OHM 1/ 10W
.1% 0603 SMD RG16P10.0KBCT-ND

R309 1 RG1608P-102-B-T5 Susumu 1K0
RES 1.0K OHM 1/ 10W .1%
0603 SMD RG16P1.0KBCT-ND

R310 1 RR0816P-1131-D-06H Susumu 1K13
RES 1.13K OHM 1/ 16W
.5% 0603 SMD RR08P1.13KDCT-ND

R312 1 RG1608P-121-B-T5 Susumu 120R
RES 120 OHM 1/ 10W .1%
0603 SMD RG16P120BCT-ND

R329 1 RR0816P-3161-D-49H Susumu 3K16
RES 3.16K OHM 1/ 16W
.5% 0603 SMD RR08P3.16KDCT-ND

R347 1 RR0816P-5761-D-74H Susumu 5K76
RES 5.76K OHM 1/ 16W
.5% 0603 SMD RR08P5.76KDCT-ND

R504 1 RG1608P-222-B-T5 Susumu 2K2
RES 2.2K OHM 1/ 10W .1%
0603 SMD RG16P2.2KBCT-ND

R508 1 RG1608P-3322-B-T5 Susumu 33K2
RES 33.2K OHM 1/ 10W
.1% 0603 SMD RG16P33.2KBCT-ND

R509 1 RR0816P-6341-D-78H Susumu 6K34
RES 6.34K OHM 1/ 16W
.5% 0603 SMD RR08P6.34KDCT-ND

R510 1 RG1608P-101-B-T5 Susumu 100R
RES 100 OHM 1/ 10W .1%
0603 SMD RG16P100BCT-ND

R512 1 WSLP0805R0330FEB CSRN2010FK30L0 30m
RES .03 OHM 1W 1% 2010
SMD CSRN2010FK30L0CT-ND

R513 1 RG1608P-1181-B-T5 Vishay 1K18
RES 1.18K OHM 1/ 10W
.1% 0603 SMD RG16P1.18KBCT-ND

R514 1 RG1608P-561-B-T5 Susumu 560R
RES 560 OHM 1/ 10W .1%
0603 SMD RG16P560BCT-ND

R517 1 RG1608P-112-B-T5 Susumu 1K1
RES 1.1K OHM 1/ 10W .1%
0603 SMD RG16P1.1KBCT-ND

R900 1 RG1608P-472-B-T5 Susumu 4K7
RES 4.7K OHM 1/ 10W .1%
0603 SMD RG16P4.7KBCT-ND

S1100, S1101, S1102,
S1103 4 SO-1524-03-01-02-L Samtec 15.24mm

U200 1 LTC4009CUF#PBF Linear Technology
IC CHARGER BATTERY
MC 20-QFN LTC4009CUF#PBF-ND

U201 1 LTC4416EMS#PBF Linear Technology
IC CTLR POWERPATH 10-
MSOP LTC4416EMS#PBF-ND

U202, U300, U301, U302,
U304, U305, U306, U501,
U502 9 INA219BIDCNT Texas Instruments

IC MONITOR PWR/CURR
BID SOT-23-8 296-27898-1-ND

U303, U309, U315 3 TPS5450DDA Texas Instruments IC BUCK ADJ 5A 8SO 296-21715-5-ND

U500 1 LM5022MM/ NOPB National Semiconductor
IC BOOST/ SEPIC SYNC 1A
10MSOP LM5022MMCT-ND

U900 1 FT232RQ-REEL FTDI
IC USB FS SERIAL UART
32-QFN 768-1008-1-ND

U1200 1 AT90CAN128-16AU Atmel
IC MCU AVR FLASH 128K
64-TQFP AT90CAN128-16AU-ND

U1201 1 MAX3051ESA+ Maxim Integrated Products
IC TXRX CAN 1MBPS 8-
SOIC MAX3051ESA+-ND

U1202 1 AD5664RBRMZ-3 Analoge Devices Inc
IC DAC NANO 16BIT 1.25V
10-MSOP AD5664RBRMZ-3-ND

X900 1 7B-12.000MAAJ-T TXC CORPORATION
CRYSTAL 12.000 MHZ
18PF SMD 887-1099-1-ND

X1200 1 7B-16.000MAAJ-T TXC CORPORATION CRYSTAL 16.000 MHZ 18PF SMD887-1104-1-ND

APPENDIX C. ELECTRONICS

168

C.3. PC/104 MECHANICAL SPECIFICATION

C.3 PC/104 mechanical specification

PC/104-Plus Specification Version 2.3 — Page A-2

Figure 6: PC/104-Plus Module Dimensions

Dimensions are in inches / (millim eters)

Figure C.3: PC/104-Plus

169

APPENDIX C. ELECTRONICS

J1/P1
Pin Row A Row B
1 3.3V 3.3V
2 3.3V 3.3V
3 3.3V 3.3V
4 3.3V 3.3V
5 3.3V 3.3V
6 3.3V 3.3V

J2/P2 7 GND GND
Pin Row D Row C 8 GND GND
1 GND GND 9 5.0V 5.0V
2 GND GND 10 5.0V 5.0V
3 GND GND 11 5.0V 5.0V
4 GND GND 12 5.0V 5.0V
5 GND GND 13 5.0V 5.0V
6 GND GND 14 5.0V 5.0V
7 GND GND 15 GND GND
8 GND GND 16 GND GND
9 GND GND 17 GND GND

10 GND GND 18 GND GND
11 GND GND 19 12.0V 12.0V
12 GND GND 20 12.0V 12.0V
13 GND GND 21 12.0V 12.0V
14 GND GND 22 12.0V 12.0V
15 GND GND 23 12.0V 12.0V
16 GND GND 24 12.0V 12.0V
17 GND GND 25 GND GND
18 GND GND 26 GND GND
19 GND GND 27 24.0V 24.0V
20 GND GND 28 24.0V 24.0V

29 24.0V 24.0V
30 24.0V 24.0V
31 24.0V 24.0V
32 24.0V 24.0V

Table C.1: ISA Connector Pin Definitions

170

C.3. PC/104 MECHANICAL SPECIFICATION

J3/P3
Pin A B C D
1 CAN_L CAN_L CAN_H CAN_H
2 OC0A OC0A MISO MISO
3 OC1B OC1B MOSI MOSI
4 OC1A OC1A SCK SCK
5 OC2A OC2A SS SS
6 OC3C OC3C DAC_D DAC_D
7 OC3B OC3B DAC_C DAC_C
8 OC3A OC3A DAC_B DAC_B
9 GND GND GND GND
10 NC NC DAC_A DAC_A
11 RXD0 RXD0 TXD0 TXD0
12 ADC1 ADC1 ADC0 ADC0
13 ADC3 ADC3 ADC2 ADC2
14 PA1 PA1 PA0 PA0
15 PA3 PA3 PA2 PA2
16 PA5 PA5 PA4 PA4
17 PA7 PA7 PA6 PA6
18 PC6 PC6 PC7 PC7
19 PC4 PC4 PC5 PC5
20 PC2 PC2 PC3 PC3
21 PC0 PC0 PC1 PC1
22 SCL SCL SDA SDA
23 GND GND GND GND
24 NC NC NC NC
25 NC NC NC NC
26 NC NC NC NC
27 NC NC NC NC
28 NC NC NC NC
29 NC NC NC NC
30 NC NC NC NC

Table C.2: PCI Connector Pin Definitions

171

APPENDIX C. ELECTRONICS

172

C.4. MOTOR CONTROLLER BREAKOUT BOARD

C.4 Motor controller breakout board

CA
N_

H
CA

N_
L

CA
N_

H
CA

N_
L

CA
N_

L

CA
N_

H

CA
N_

H
C1

CA
N_

Gn
d

C3
CA

N_
L

C2

CA
N_

Sh
iel

d
C4

Mo
tor

_W
ind

ing
_1

M4
Mo

tor
_W

ind
ing

_2
M8

D_
Gn

d1
P1

D_
Gn

d2
P2

Di
gIN

6
P3

Di
gIN

5
P4

Di
gIN

4
P5

Di
gIN

3
P6

Di
gIN

2
P7

Di
gIN

1
P8

+V
_o

ut
P9

Di
gO

UT
4

P1
0

Di
gO

UT
3

P1
1

Vc
c

P1
2

Po
we

r_G
nd

P1
3

A_
Gn

d
P1

4
An

IN
2

P1
5

AI
n1

P1
6

Ha
ll_

Se
ns

or_
3

M1

Ha
ll_

Se
ns

or_
2

M2

Mo
tor

_W
ind

ing
_3

M3
V_

Ha
ll (

5V
)

M5
Ha

ll_
Se

ns
or_

1
M6

Gn
d

M7

U1 EP
OS

 24
/2

C1 10
0n

F

1 6 2 7 3 8 4 9 5

J6 CO
NN

-D
9M

R2 1k
1

1 2

D2 LE
D

CA
N_

H
C1

CA
N_

Gn
d

C3
CA

N_
L

C2

CA
N_

Sh
iel

d
C4

Mo
tor

_W
ind

ing
_1

M4
Mo

tor
_W

ind
ing

_2
M8

D_
Gn

d1
P1

D_
Gn

d2
P2

Di
gIN

6
P3

Di
gIN

5
P4

Di
gIN

4
P5

Di
gIN

3
P6

Di
gIN

2
P7

Di
gIN

1
P8

+V
_o

ut
P9

Di
gO

UT
4

P1
0

Di
gO

UT
3

P1
1

Vc
c

P1
2

Po
we

r_G
nd

P1
3

A_
Gn

d
P1

4
An

IN
2

P1
5

AI
n1

P1
6

Ha
ll_

Se
ns

or_
3

M1

Ha
ll_

Se
ns

or_
2

M2

Mo
tor

_W
ind

ing
_3

M3
V_

Ha
ll (

5V
)

M5
Ha

ll_
Se

ns
or_

1
M6

Gn
d

M7

U2 EP
OS

 24
/2

12
J5 SI

L-1
56

-02

12

D1 DI
OD

E

C2 10
0n

F

C3 47
uF

R1 12
0

1
2

J7 CO
NN

-JM
P

24
V

24
V

12
V

12
V

5V
5V

3V
3

3V
3

Gn
d

GN
D

J3 IS
A_

CO
NN

Ha
ll_

Se
ns

or_
1

1
Ha

ll_
Se

ns
or_

2
2

V_
Ha

ll
3

Mo
tor

_w
ind

ing
_3

4
Ha

ll_
Se

ns
or_

3
5

Gn
d

6
Mo

tor
_W

ind
ing

_1
7

Mo
tor

_W
ind

ing
_2

8

J1 MO
TO

R_
CO

NN

Ha
ll_

Se
ns

or_
1

1
Ha

ll_
Se

ns
or_

2
2

V_
Ha

ll
3

Mo
tor

_w
ind

ing
_3

4
Ha

ll_
Se

ns
or_

3
5

Gn
d

6
Mo

tor
_W

ind
ing

_1
7

Mo
tor

_W
ind

ing
_2

8

J2 MO
TO

R_
CO

NN

CA
N_

H
CH

CA
N_

L
CL

GN
D

GN
D

J4 PC
I_C

ON
N

Figure C.4: Schematics

173

APPENDIX C. ELECTRONICS

M
O

TO
R

C
O

N
TR

O
LL

ER
EU

R
O

B
O

T
2

0
1

2

A
N

D
R

EA
S

 H
.

S
P

ER
R

E

2
4

V
 D

C

CAN

Figure C.5: Layout

174

C.5. TOP CARD

C.5 Top card

Figure C.6: 3D-model of top card

175

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\to

pc
ar

d.
Sc

hD
oc

D
ra

w
n

B
y:

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

J2
A

PC
 1

04
 P

lu
s J

3

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

A
31

A
31

A
32

A
32

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

B
31

B
31

B
32

B
32

J3 PC
 1

04
 J1

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

J1 PC
10

4
J2

SO
-1

52
4-

03
-0

1-
02

-L

S1 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S3 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S2 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S4 PC
 1

04
 st

an
do

ff
 sc

re
w

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

G
N

D
G

N
D

G
N

D
G

N
D

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

G
N

D
G

N
D

G
N

D
G

N
D

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

C
21

C
21

C
22

C
22

C
23

C
23

C
24

C
24

C
25

C
25

C
26

C
26

C
27

C
27

C
28

C
28

C
29

C
29

C
30

C
30

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

D
21

D
21

D
22

D
22

D
23

D
23

D
24

D
24

D
25

D
25

D
26

D
26

D
27

D
27

D
28

D
28

D
29

D
29

D
30

D
30

J2
B

PC
 1

04
 P

lu
s J

3

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

C
A

N
L

C
A

N
L

C
A

N
H

C
A

N
H

D
A

C
_D

O
C

1A
O

C
1A

O
C

0A
O

C
0A

O
C

1B
O

C
1B

O
C

3C

O
C

3A

O
C

3C

O
C

3A

O
C

2A

O
C

3B

O
C

2A

O
C

3B

SSSC
K

M
O

SI
M

IS
O

SSSC
K

M
O

SI
M

IS
O

D
A

C
_C

D
A

C
_C

D
A

C
_D

D
A

C
_A

D
A

C
_A

D
A

C
_B

D
A

C
_B

R
X

D
0

R
X

D
0

TX
D

0
TX

D
0

A
D

C
0

A
D

C
0

A
D

C
1

A
D

C
1

A
D

C
2

A
D

C
2

A
D

C
3

A
D

C
3

PA
0

PA
0

PA
1

PA
1

PA
2

PA
2

PA
4

PA
4

PA
6

PA
6

PA
3

PA
3

PA
5

PA
5

PA
7

PA
7

PC
7

PC
7

PC
5

PC
5

PC
3

PC
3

PC
1

PC
1

PC
6

PC
6

PC
4

PC
4

PC
2

PC
2

PC
0

PC
0

SD
A

SD
A

SC
L

SC
L

G
N

D

O
C

3C

O
C

3A

O
C

3B
C

A
N

L
C

A
N

H

12
V

0
G

N
D

1
2

D
1

G
R

EE
N

1
2

D
2

G
R

EE
N

1
2

D
3

G
R

EE
N

1
2

D
4

G
R

EE
N

1
2

D
5

G
R

EE
N

1
2

D
6

G
R

EE
N

1
2

D
7

G
R

EE
N

1
2

D
8

G
R

EE
N

1KR
12

1KR
11

1KR
10

1KR
9

1KR
8

1KR
7

1KR
6

1KR
5

3V
3

PC
1

PC
0

PC
3

PC
2

PC
5

PC
4

PC
6

PC
7

5V
0

PA
0

1KR
14

G
N

D

1
2

3
4

5
6

J4

12
V

0
G

N
D

G
N

D

G
N

D
12

V
0

12
V

0
123

J8

123

J9

O
C

1A

5V
0

SE
R

V
O

_A
_V

C
C

1KR
2

3V
3

10
0

R
1

1 2

3 4

J6

0RR
3

1 2

3 4

J5

St
ar

t c
ab

le
 p

lu
g

LE
D

s

L
as

er
 T

ow
er

 P
lu

g

FA
N

 P
lu

gs

G
N

D

5V
0

SE
R

V
O

_B
_V

C
C

1KR
4

3V
3

10
0

R
13

1 2

3 4

J7

G
N

D

5V
0

SE
R

V
O

_C
_V

C
C

3V
3

1 2

3 4

J1
0

G
N

D

5V
0

SE
R

V
O

_D
_V

C
C

3V
3

1 2

3 4

J1
1

1KR
15

10
0

R
16

1KR
17

10
0

R
18

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

G

S

D

Q
1

G

S

D

Q
2

G

S

D

Q
3

G

S

D

Q
4

PA
7

PA
5

PA
3

PA
1

P
I
D
1
0
1

P
I
D
1
0
2

CO
D1

P
I
D
2
0
1

P
I
D
2
0
2

CO
D2

P
I
D
3
0
1

P
I
D
3
0
2

CO
D3

P
I
D
4
0
1

P
I
D
4
0
2

CO
D4

P
I
D
5
0
1

P
I
D
5
0
2

CO
D5

P
I
D
6
0
1

P
I
D
6
0
2

CO
D6

P
I
D
7
0
1

P
I
D
7
0
2

CO
D7

P
I
D
8
0
1

P
I
D
8
0
2

CO
D8

P
I
J
1
0
C
1

P
I
J
1
0
C
2

P
I
J
1
0
C
3

P
I
J
1
0
C
4

PI
J1
0C
5

P
I
J
1
0
C
6

P
I
J
1
0
C
7

P
I
J
1
0
C
8

P
I
J
1
0
C
9

PI
J1

0C
10

PI
J1

0C
11

PI
J1

0C
12

PI
J1

0C
13

PI
J1

0C
14

PI
J1

0C
15

PI
J1

0C
16

PI
J1

0C
17

PI
J1

0C
18

PI
J1

0C
19

PI
J1

0C
20

P
I
J
1
0
D
1

P
I
J
1
0
D
2

P
I
J
1
0
D
3

P
I
J
1
0
D
4

PI
J1
0D
5

P
I
J
1
0
D
6

P
I
J
1
0
D
7

P
I
J
1
0
D
8

P
I
J
1
0
D
9

PI
J1

0D
10

PI
J1

0D
11

PI
J1

0D
12

PI
J1

0D
13

PI
J1

0D
14

PI
J1

0D
15

PI
J1

0D
16

PI
J1

0D
17

PI
J1

0D
18

PI
J1

0D
19

PI
J1

0D
20

COJ
1

P
I
J
2
0
A
1

P
I
J
2
0
A
2

P
I
J
2
0
A
3

P
I
J
2
0
A
4

PI
J2
0A
5

P
I
J
2
0
A
6

P
I
J
2
0
A
7

P
I
J
2
0
A
8

P
I
J
2
0
A
9

PI
J2

0A
10

PI
J2

0A
11

PI
J2

0A
12

PI
J2

0A
13

PI
J2

0A
14

PI
J2

0A
15

PI
J2

0A
16

PI
J2

0A
17

PI
J2

0A
18

PI
J2

0A
19

PI
J2

0A
20

PI
J2

0A
21

PI
J2

0A
22

PI
J2

0A
23

PI
J2

0A
24

PI
J2

0A
25

PI
J2

0A
26

PI
J2

0A
27

PI
J2

0A
28

PI
J2

0A
29

PI
J2

0A
30

P
I
J
2
0
B
1

P
I
J
2
0
B
2

P
I
J
2
0
B
3

P
I
J
2
0
B
4

PI
J2

0B
5

P
I
J
2
0
B
6

P
I
J
2
0
B
7

P
I
J
2
0
B
8

P
I
J
2
0
B
9

PI
J2

0B
10

PI
J2

0B
11

PI
J2

0B
12

PI
J2

0B
13

PI
J2

0B
14

PI
J2

0B
15

PI
J2

0B
16

PI
J2

0B
17

PI
J2

0B
18

PI
J2

0B
19

PI
J2

0B
20

PI
J2

0B
21

PI
J2

0B
22

PI
J2

0B
23

PI
J2

0B
24

PI
J2

0B
25

PI
J2

0B
26

PI
J2

0B
27

PI
J2

0B
28

PI
J2

0B
29

PI
J2

0B
30

CO
J2
A

P
I
J
2
0
C
1

P
I
J
2
0
C
2

P
I
J
2
0
C
3

P
I
J
2
0
C
4

PI
J2
0C
5

P
I
J
2
0
C
6

P
I
J
2
0
C
7

P
I
J
2
0
C
8

P
I
J
2
0
C
9

PI
J2

0C
10

PI
J2

0C
11

PI
J2

0C
12

PI
J2

0C
13

PI
J2

0C
14

PI
J2

0C
15

PI
J2

0C
16

PI
J2

0C
17

PI
J2

0C
18

PI
J2

0C
19

PI
J2

0C
20

PI
J2

0C
21

PI
J2

0C
22

PI
J2

0C
23

PI
J2

0C
24

PI
J2

0C
25

PI
J2

0C
26

PI
J2

0C
27

PI
J2

0C
28

PI
J2

0C
29

PI
J2

0C
30

P
I
J
2
0
D
1

P
I
J
2
0
D
2

P
I
J
2
0
D
3

P
I
J
2
0
D
4

PI
J2

0D
5

P
I
J
2
0
D
6

P
I
J
2
0
D
7

P
I
J
2
0
D
8

P
I
J
2
0
D
9

PI
J2

0D
10

PI
J2

0D
11

PI
J2

0D
12

PI
J2

0D
13

PI
J2

0D
14

PI
J2

0D
15

PI
J2

0D
16

PI
J2

0D
17

PI
J2

0D
18

PI
J2

0D
19

PI
J2

0D
20

PI
J2

0D
21

PI
J2

0D
22

PI
J2

0D
23

PI
J2

0D
24

PI
J2

0D
25

PI
J2

0D
26

PI
J2

0D
27

PI
J2

0D
28

PI
J2

0D
29

PI
J2

0D
30

CO
J2
B

PI
J3
0A
1

PI
J3
0A
2

P
I
J
3
0
A
3

P
I
J
3
0
A
4

P
I
J
3
0
A
5

PI
J3
0A
6

PI
J3
0A
7

P
I
J
3
0
A
8

P
I
J
3
0
A
9

PI
J3

0A
10

PI
J3

0A
11

PI
J3

0A
12

PI
J3

0A
13

PI
J3

0A
14

PI
J3

0A
15

PI
J3

0A
16

PI
J3

0A
17

PI
J3

0A
18

PI
J3

0A
19

PI
J3

0A
20

PI
J3

0A
21

PI
J3

0A
22

PI
J3

0A
23

PI
J3

0A
24

PI
J3

0A
25

PI
J3

0A
26

PI
J3

0A
27

PI
J3

0A
28

PI
J3

0A
29

PI
J3

0A
30

PI
J3

0A
31

PI
J3

0A
32

PI
J3
0B
1

PI
J3
0B
2

P
I
J
3
0
B
3

P
I
J
3
0
B
4

P
I
J
3
0
B
5

PI
J3
0B
6

PI
J3
0B
7

P
I
J
3
0
B
8

P
I
J
3
0
B
9

PI
J3

0B
10

PI
J3

0B
11

PI
J3

0B
12

PI
J3

0B
13

PI
J3

0B
14

PI
J3

0B
15

PI
J3

0B
16

PI
J3

0B
17

PI
J3

0B
18

PI
J3

0B
19

PI
J3

0B
20

PI
J3

0B
21

PI
J3

0B
22

PI
J3

0B
23

PI
J3

0B
24

PI
J3

0B
25

PI
J3

0B
26

PI
J3

0B
27

PI
J3

0B
28

PI
J3

0B
29

PI
J3

0B
30

PI
J3

0B
31

PI
J3

0B
32

COJ
3

P
I
J
4
0
1

P
I
J
4
0
2

P
I
J
4
0
3

P
I
J
4
0
4

P
I
J
4
0
5

P
I
J
4
0
6

COJ
4

P
I
J
5
0
1

P
I
J
5
0
2

P
I
J
5
0
3

P
I
J
5
0
4 COJ

5

P
I
J
6
0
1

P
I
J
6
0
2

P
I
J
6
0
3

P
I
J
6
0
4 COJ

6

P
I
J
7
0
1

P
I
J
7
0
2

P
I
J
7
0
3

P
I
J
7
0
4 COJ

7

P
I
J
8
0
1

P
I
J
8
0
2

P
I
J
8
0
3

COJ
8

P
I
J
9
0
1

P
I
J
9
0
2

P
I
J
9
0
3

COJ
9

PI
J1
00
1

P
I
J
1
0
0
2

PI
J1
00
3

P
I
J
1
0
0
4 COJ

10

PI
J1
10
1

P
I
J
1
1
0
2

PI
J1
10
3

P
I
J
1
1
0
4 COJ

11

PIQ101

PI
Q1

02
PI

Q1
03

CO
Q1

PIQ201

PI
Q2

02
PI

Q2
03

CO
Q2

PIQ301

PI
Q3

02
PI

Q3
03

CO
Q3

PIQ401

PI
Q4

02
PI

Q4
03

CO
Q4

PI
R1

01
PI

R1
02

COR
1

PIR201 PIR202

COR
2

PIR301PIR302
CO
R3

PIR401 PIR402

COR
4

PI
R5

01
PI

R5
02

COR
5

PI
R6

01
PI

R6
02

COR
6

PI
R7

01
PI

R7
02

COR
7

PI
R8

01
PI

R8
02

COR
8

PI
R9

01
PI

R9
02

COR
9

PI
R1

00
1

PI
R1
00
2

CO
R1
0

PI
R1

10
1

PI
R1
10
2

CO
R1
1

PI
R1

20
1

PI
R1
20
2

CO
R1
2

PI
R1
30
1

PI
R1
30
2

CO
R1
3

PIR1401 PIR1402

CO
R1
4

PIR1501 PIR1502

CO
R1
5

PI
R1
60
1

PI
R1
60
2

CO
R1
6

PIR1701 PIR1702

CO
R1
7

PI
R1
80
1

PI
R1
80
2

CO
R1
8

COS
1

COS
2

COS
3

COS
4

PAD1
01

PAD1
02

CO
D1

PAD2
01

PAD2
02

CO
D2

PAD3
01

PAD3
02

CO
D3

PAD4
01

PAD4
02

CO
D4

PAD5
01

PAD5
02

CO
D5

PAD6
01

PAD6
02

CO
D6

PAD7
01

PAD7
02

CO
D7

PAD8
01

PAD8
02

CO
D8

PAJ10D
20

PAJ10D
19

PAJ10D
18

PAJ10D
17

PAJ10D
16

PAJ10D
15

PAJ10D
14

PAJ10D
13

PAJ10D
12

PAJ10D
11

PAJ10D
10

PAJ10
D9

PAJ10
D8

PAJ10
D7

PAJ10
D6

PAJ10
D5

PAJ10
D4

PAJ10
D3

PAJ10
D2

PAJ10
D1

PAJ10C
20

PAJ10C
19

PAJ10C
18

PAJ10C
17

PAJ10C
16

PAJ10C
15

PAJ10C
14

PAJ10C
13

PAJ10C
12

PAJ10C
11

PAJ10C
10

PAJ10
C9

PAJ10
C8

PAJ10
C7

PAJ10
C6

PAJ10
C5

PAJ10
C4

PAJ10
C3

PAJ10
C2

PAJ10
C1

CO
J1

PAJ20D3
0

PAJ20D2
9

PAJ20D2
8

PAJ20D2
7

PAJ20D2
6

PAJ20D2
5

PAJ20D2
4

PAJ20D2
3

PAJ20D2
2

PAJ20D2
1

PAJ20D2
0

PAJ20D1
9

PAJ20D1
8

PAJ20D1
7

PAJ20D1
6

PAJ20D1
5

PAJ20D1
4

PAJ20D1
3

PAJ20D1
2

PAJ20D
11

PAJ20D1
0

PAJ20D
9

PAJ20D
8

PAJ20D
7

PAJ20D
6

PAJ20D
5

PAJ20D
4

PAJ20D
3

PAJ20D
2

PAJ20D
1

PAJ20C
30

PAJ20C
29

PAJ20C
28

PAJ20C
27

PAJ20C
26

PAJ20C
25

PAJ20C
24

PAJ20C
23

PAJ20C
22

PAJ20C
21

PAJ20C
20

PAJ20C
19

PAJ20C
18

PAJ20C
17

PAJ20C
16

PAJ20C
15

PAJ20C
14

PAJ20C
13

PAJ20C
12

PAJ20
C11

PAJ20C
10

PAJ20
C9

PAJ20
C8

PAJ20
C7

PAJ20
C6

PAJ20
C5

PAJ20
C4

PAJ20
C3

PAJ20
C2

PAJ20
C1

PAJ20B
30

PAJ20B
29

PAJ20B
28

PAJ20B
27

PAJ20B
26

PAJ20B
25

PAJ20B
24

PAJ20B
23

PAJ20B
22

PAJ20B
21

PAJ20B
20

PAJ20B
19

PAJ20B
18

PAJ20B
17

PAJ20B
16

PAJ20B
15

PAJ20B
14

PAJ20B
13

PAJ20B
12

PAJ20
B11

PAJ20B
10

PAJ20
B9

PAJ20
B8

PAJ20
B7

PAJ20
B6

PAJ20
B5

PAJ20
B4

PAJ20
B3

PAJ20
B2

PAJ20
B1

PAJ20A3
0

PAJ20A2
9

PAJ20A2
8

PAJ20A2
7

PAJ20A2
6

PAJ20A2
5

PAJ20A2
4

PAJ20A2
3

PAJ20A2
2

PAJ20A2
1

PAJ20A2
0

PAJ20A1
9

PAJ20A1
8

PAJ20A1
7

PAJ20A1
6

PAJ20A1
5

PAJ20A1
4

PAJ20A1
3

PAJ20A1
2

PAJ20A
11

PAJ20A1
0

PAJ20A
9

PAJ20A
8

PAJ20A
7

PAJ20A
6

PAJ20A
5

PAJ20A
4

PAJ20A
3

PAJ20A
2

PAJ20A
1

CO
J2

PAJ30B
32

PAJ30B
31

PAJ30B
30

PAJ30B
29

PAJ30B
28

PAJ30B
27

PAJ30B
26

PAJ30B
25

PAJ30B
24

PAJ30B
23

PAJ30B
22

PAJ30B
21

PAJ30B
20

PAJ30B
19

PAJ30B
18

PAJ30B
17

PAJ30B
16

PAJ30B
15

PAJ30B
14

PAJ30B
13

PAJ30B
12

PAJ30B
11

PAJ30B
10

PAJ30
B9

PAJ30
B8

PAJ30
B7

PAJ30
B6

PAJ30
B5

PAJ30
B4

PAJ30
B3

PAJ30
B2

PAJ30
B1

PAJ30A
32

PAJ30A
31

PAJ30A
30

PAJ30A
29

PAJ30A
28

PAJ30A
27

PAJ30A
26

PAJ30A
25

PAJ30A
24

PAJ30A
23

PAJ30A
22

PAJ30A
21

PAJ30A
20

PAJ30A
19

PAJ30A
18

PAJ30A
17

PAJ30A
16

PAJ30A
15

PAJ30A
14

PAJ30A
13

PAJ30A
12

PAJ30A
11

PAJ30A
10

PAJ30
A9

PAJ30
A8

PAJ30
A7

PAJ30
A6

PAJ30
A5

PAJ30
A4

PAJ30
A3

PAJ30
A2

PAJ30
A1

CO
J3

PAJ4
05

PAJ4
06

PAJ4
03

PAJ4
01

PAJ4
02

PAJ4
04

CO
J4

PAJ
500

PAJ5
01

PAJ5
02

PAJ5
04

PAJ5
03

CO
J5

PAJ6
01

PAJ6
02

PAJ6
03

PAJ6
04

PAJ6
00

CO
J6

PAJ7
00

PAJ7
01

PAJ7
02

PAJ7
04

PAJ7
03

CO
J7

PA
J8
03

PA
J8
02

PA
J8
01

CO
J8

PA
J9
03

PA
J9
02

PA
J9
01

CO
J9

PAJ1
000

PAJ1
001

PAJ1
002

PAJ1
004

PAJ1
003

CO
J1

0

PAJ1
100

PAJ1
101

PAJ1
102

PAJ1
104

PAJ1
103

CO
J1
1

PAQ1
01

PAQ1
02

PAQ
103

CO
Q1

PAQ2
01

PAQ2
02

PAQ
203

CO
Q2

PAQ
301

PAQ
302

PAQ
303

CO
Q3

PAQ
401

PAQ
402

PAQ
403

CO
Q4

PAR1
02

PAR1
01COR

1

PAR
202

PAR
201

CO
R2

PAR30
2

PAR30
1

CO
R3

PAR
402

PAR
401

CO
R4

PAR5
01

PAR5
02

CO
R5

PAR6
01

PAR6
02

CO
R6

PAR7
01

PAR7
02

CO
R7

PAR8
01

PAR8
02

CO
R8

PAR9
01

PAR9
02

CO
R9

PAR10
01

PAR10
02

CO
R1

0

PAR11
01

PAR11
02

CO
R1
1

PAR12
01

PAR12
02

CO
R1

2

PAR13
02

PAR13
01COR

13

PAR1
402

PAR1
401CO

R1
4

PAR1
502

PAR1
501

CO
R1

5

PAR16
02

PAR16
01COR

16

PAR1
702

PAR
170

1
CO

R1
7

PAR18
02

PAR18
01COR

18

COS
1

CO
S2

CO
S3

CO
S4

Designator Quantity MPN Manufacturer Value Description Digikey

D1, D2, D3, D4, D5, D6, D7,
D8 8 APT1608SGC Kingbright

LED 1.6X0.8MM 568NM
GRN CLR SMD 754-1121-1-ND

J1 1 ESQ-120-12-G-D Samtec Non Stack Through

J2 1 ESQT-130-03-G-Q-368 Samtec Non Stack Through

J3 1 ESQ-132-12-G-D Samtec Non Stack Through

J4 1 Generic 100mil pin-header

J5, J6, J7, J10, J11 5 39-29-1040 Molex
CONN HEADER 4POS
4.2MM VERT TIN

J8, J9 2
Generic RA 100mil pin-
header

Q1, Q2, Q3, Q4 4 IRLML6402TRPBF
INTERNATIONAL
RECTIFIER

MOSFET P-CH -20V -3.7A
SOT23-3

R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11, R12,
R13, R14, R15, R16, R17,
R18 18 0R, 1K, 100 Generic resistor

S1, S2, S3, S4 4 SO-1524-03-01-02-L Samtec 15.24mm

C.6. TOP CARD TEMPLATE

C.6 Top card template

179

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
3

D
at

e:
28

.0
5.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\to

pc
ar

d.
Sc

hD
oc

D
ra

w
n

B
y:

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

J2
A

PC
 1

04
 P

lu
s J

3

A
1

A
1

A
2

A
2

A
3

A
3

A
4

A
4

A
5

A
5

A
6

A
6

A
7

A
7

A
8

A
8

A
9

A
9

A
10

A
10

A
11

A
11

A
12

A
12

A
13

A
13

A
14

A
14

A
15

A
15

A
16

A
16

A
17

A
17

A
18

A
18

A
19

A
19

A
20

A
20

A
21

A
21

A
22

A
22

A
23

A
23

A
24

A
24

A
25

A
25

A
26

A
26

A
27

A
27

A
28

A
28

A
29

A
29

A
30

A
30

A
31

A
31

A
32

A
32

B
1

B
1

B
2

B
2

B
3

B
3

B
4

B
4

B
5

B
5

B
6

B
6

B
7

B
7

B
8

B
8

B
9

B
9

B
10

B
10

B
11

B
11

B
12

B
12

B
13

B
13

B
14

B
14

B
15

B
15

B
16

B
16

B
17

B
17

B
18

B
18

B
19

B
19

B
20

B
20

B
21

B
21

B
22

B
22

B
23

B
23

B
24

B
24

B
25

B
25

B
26

B
26

B
27

B
27

B
28

B
28

B
29

B
29

B
30

B
30

B
31

B
31

B
32

B
32

J3 PC
 1

04
 J1

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

J1 PC
10

4
J2

SO
-1

52
4-

03
-0

1-
02

-L

S1 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S3 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S2 PC
 1

04
 st

an
do

ff
 sc

re
w

SO
-1

52
4-

03
-0

1-
02

-L

S4 PC
 1

04
 st

an
do

ff
 sc

re
w

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

3V
3

G
N

D
G

N
D

G
N

D
G

N
D

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

5V
0

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

12
V

0
12

V
0

G
N

D
G

N
D

G
N

D
G

N
D

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

24
V

0
24

V
0

C
1

C
1

C
2

C
2

C
3

C
3

C
4

C
4

C
5

C
5

C
6

C
6

C
7

C
7

C
8

C
8

C
9

C
9

C
10

C
10

C
11

C
11

C
12

C
12

C
13

C
13

C
14

C
14

C
15

C
15

C
16

C
16

C
17

C
17

C
18

C
18

C
19

C
19

C
20

C
20

C
21

C
21

C
22

C
22

C
23

C
23

C
24

C
24

C
25

C
25

C
26

C
26

C
27

C
27

C
28

C
28

C
29

C
29

C
30

C
30

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

D
8

D
8

D
9

D
9

D
10

D
10

D
11

D
11

D
12

D
12

D
13

D
13

D
14

D
14

D
15

D
15

D
16

D
16

D
17

D
17

D
18

D
18

D
19

D
19

D
20

D
20

D
21

D
21

D
22

D
22

D
23

D
23

D
24

D
24

D
25

D
25

D
26

D
26

D
27

D
27

D
28

D
28

D
29

D
29

D
30

D
30

J2
B

PC
 1

04
 P

lu
s J

3

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

C
A

N
L

C
A

N
L

C
A

N
H

C
A

N
H

D
A

C
_D

O
C

1A
O

C
1A

O
C

0A
O

C
0A

O
C

1B
O

C
1B

O
C

3C

O
C

3A

O
C

3C

O
C

3A

O
C

2A

O
C

3B

O
C

2A

O
C

3B

SSSC
K

M
O

SI
M

IS
O

SSSC
K

M
O

SI
M

IS
O

D
A

C
_C

D
A

C
_C

D
A

C
_D

D
A

C
_A

D
A

C
_A

D
A

C
_B

D
A

C
_B

R
X

D
0

R
X

D
0

TX
D

0
TX

D
0

A
D

C
0

A
D

C
0

A
D

C
1

A
D

C
1

A
D

C
2

A
D

C
2

A
D

C
3

A
D

C
3

PA
0

PA
0

PA
1

PA
1

PA
2

PA
2

PA
4

PA
4

PA
6

PA
6

PA
3

PA
3

PA
5

PA
5

PA
7

PA
7

PC
7

PC
7

PC
5

PC
5

PC
3

PC
3

PC
1

PC
1

PC
6

PC
6

PC
4

PC
4

PC
2

PC
2

PC
0

PC
0

SD
A

SD
A

SC
L

SC
L

P
I
J
1
0
C
1

P
I
J
1
0
C
2

P
I
J
1
0
C
3

P
I
J
1
0
C
4

PI
J1
0C
5

P
I
J
1
0
C
6

P
I
J
1
0
C
7

P
I
J
1
0
C
8

P
I
J
1
0
C
9

PI
J1

0C
10

PI
J1

0C
11

PI
J1

0C
12

PI
J1

0C
13

PI
J1

0C
14

PI
J1

0C
15

PI
J1

0C
16

PI
J1

0C
17

PI
J1

0C
18

PI
J1

0C
19

PI
J1

0C
20

P
I
J
1
0
D
1

P
I
J
1
0
D
2

P
I
J
1
0
D
3

P
I
J
1
0
D
4

PI
J1
0D
5

P
I
J
1
0
D
6

P
I
J
1
0
D
7

P
I
J
1
0
D
8

P
I
J
1
0
D
9

PI
J1

0D
10

PI
J1

0D
11

PI
J1

0D
12

PI
J1

0D
13

PI
J1

0D
14

PI
J1

0D
15

PI
J1

0D
16

PI
J1

0D
17

PI
J1

0D
18

PI
J1

0D
19

PI
J1

0D
20

COJ
1

P
I
J
2
0
A
1

P
I
J
2
0
A
2

P
I
J
2
0
A
3

P
I
J
2
0
A
4

PI
J2
0A
5

P
I
J
2
0
A
6

P
I
J
2
0
A
7

P
I
J
2
0
A
8

P
I
J
2
0
A
9

PI
J2

0A
10

PI
J2

0A
11

PI
J2

0A
12

PI
J2

0A
13

PI
J2

0A
14

PI
J2

0A
15

PI
J2

0A
16

PI
J2

0A
17

PI
J2

0A
18

PI
J2

0A
19

PI
J2

0A
20

PI
J2

0A
21

PI
J2

0A
22

PI
J2

0A
23

PI
J2

0A
24

PI
J2

0A
25

PI
J2

0A
26

PI
J2

0A
27

PI
J2

0A
28

PI
J2

0A
29

PI
J2

0A
30

P
I
J
2
0
B
1

P
I
J
2
0
B
2

P
I
J
2
0
B
3

P
I
J
2
0
B
4

PI
J2

0B
5

P
I
J
2
0
B
6

P
I
J
2
0
B
7

P
I
J
2
0
B
8

P
I
J
2
0
B
9

PI
J2

0B
10

PI
J2

0B
11

PI
J2

0B
12

PI
J2

0B
13

PI
J2

0B
14

PI
J2

0B
15

PI
J2

0B
16

PI
J2

0B
17

PI
J2

0B
18

PI
J2

0B
19

PI
J2

0B
20

PI
J2

0B
21

PI
J2

0B
22

PI
J2

0B
23

PI
J2

0B
24

PI
J2

0B
25

PI
J2

0B
26

PI
J2

0B
27

PI
J2

0B
28

PI
J2

0B
29

PI
J2

0B
30

CO
J2
A

P
I
J
2
0
C
1

P
I
J
2
0
C
2

P
I
J
2
0
C
3

P
I
J
2
0
C
4

PI
J2
0C
5

P
I
J
2
0
C
6

P
I
J
2
0
C
7

P
I
J
2
0
C
8

P
I
J
2
0
C
9

PI
J2

0C
10

PI
J2

0C
11

PI
J2

0C
12

PI
J2

0C
13

PI
J2

0C
14

PI
J2

0C
15

PI
J2

0C
16

PI
J2

0C
17

PI
J2

0C
18

PI
J2

0C
19

PI
J2

0C
20

PI
J2

0C
21

PI
J2

0C
22

PI
J2

0C
23

PI
J2

0C
24

PI
J2

0C
25

PI
J2

0C
26

PI
J2

0C
27

PI
J2

0C
28

PI
J2

0C
29

PI
J2

0C
30

P
I
J
2
0
D
1

P
I
J
2
0
D
2

P
I
J
2
0
D
3

P
I
J
2
0
D
4

PI
J2

0D
5

P
I
J
2
0
D
6

P
I
J
2
0
D
7

P
I
J
2
0
D
8

P
I
J
2
0
D
9

PI
J2

0D
10

PI
J2

0D
11

PI
J2

0D
12

PI
J2

0D
13

PI
J2

0D
14

PI
J2

0D
15

PI
J2

0D
16

PI
J2

0D
17

PI
J2

0D
18

PI
J2

0D
19

PI
J2

0D
20

PI
J2

0D
21

PI
J2

0D
22

PI
J2

0D
23

PI
J2

0D
24

PI
J2

0D
25

PI
J2

0D
26

PI
J2

0D
27

PI
J2

0D
28

PI
J2

0D
29

PI
J2

0D
30

CO
J2
B

PI
J3
0A
1

PI
J3
0A
2

P
I
J
3
0
A
3

P
I
J
3
0
A
4

P
I
J
3
0
A
5

PI
J3
0A
6

PI
J3
0A
7

P
I
J
3
0
A
8

P
I
J
3
0
A
9

PI
J3

0A
10

PI
J3

0A
11

PI
J3

0A
12

PI
J3

0A
13

PI
J3

0A
14

PI
J3

0A
15

PI
J3

0A
16

PI
J3

0A
17

PI
J3

0A
18

PI
J3

0A
19

PI
J3

0A
20

PI
J3

0A
21

PI
J3

0A
22

PI
J3

0A
23

PI
J3

0A
24

PI
J3

0A
25

PI
J3

0A
26

PI
J3

0A
27

PI
J3

0A
28

PI
J3

0A
29

PI
J3

0A
30

PI
J3

0A
31

PI
J3

0A
32

PI
J3
0B
1

PI
J3
0B
2

P
I
J
3
0
B
3

P
I
J
3
0
B
4

P
I
J
3
0
B
5

PI
J3
0B
6

PI
J3
0B
7

P
I
J
3
0
B
8

P
I
J
3
0
B
9

PI
J3

0B
10

PI
J3

0B
11

PI
J3

0B
12

PI
J3

0B
13

PI
J3

0B
14

PI
J3

0B
15

PI
J3

0B
16

PI
J3

0B
17

PI
J3

0B
18

PI
J3

0B
19

PI
J3

0B
20

PI
J3

0B
21

PI
J3

0B
22

PI
J3

0B
23

PI
J3

0B
24

PI
J3

0B
25

PI
J3

0B
26

PI
J3

0B
27

PI
J3

0B
28

PI
J3

0B
29

PI
J3

0B
30

PI
J3

0B
31

PI
J3

0B
32

COJ
3

COS
1

COS
2

COS
3

COS
4

- - - - - - -

3V
3

3V
3

G
N

D

G
N

D

G
N

D
5V

0

G
N

D
5V

0
-

G
N

D
G

N
D

P
A

1
G

N
D

G
N

D
P

A
3

P
A

5
P

A
7

P
C

6
G

N
D

12
V

0
P

C
4

G
N

D
12

V
0

P
C

2
P

C
0

S
C

L
G

N
D

G
N

D
12

V
0

-
G

N
D

12
V

0
- - - -

G
N

D
24

V
0

-
G

N
D

24
V

0
-

24
V

0

24
V

0

3V
3

3V
3

3V
3

C
A

N
L

3V
3

O
C

0A
O

C
1B

O
C

1A
O

C
2A

G
N

D

G
N

D
5V

0

5V
0

G
N

D

O
C

3C
O

C
3B

O
C

3A

G
N

D

G
N

D
5V

0

5V
0

A
D

C
3

A
D

C
1

R
X

D
0

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D
12

V
0

G
N

D
12

V
0

G
N

D

G
N

D
G

N
D

G
N

D

24
V

0

24
V

0

M
IS

O
M

O
S

I
S

C
K

D
A

C
D

D
A

C
C

D
A

C
B

T X
D

0
A

D
C

0

P
A

2
P

A
4

P
C

5
P

C
3

P
C

1

G
N

D

S
S

C
A

N
H

G
N

D
D

A
C

A

A
D

C
2

P
A

0

P
A

6
P

C
7

S
D

A

J3

S4

S3

J1S
2

S1

J2

85
,7

2m
m

PC104 J2

97
,2

3m
m

73,66mm

73,66mm

90,17mm

PAJ10C1 PAJ10C2 PAJ10C3 PAJ10C4 PAJ10C5 PAJ10C6 PAJ10C7 PAJ10C8 PAJ10C9 PAJ10C10 PAJ10C11 PAJ10C12 PAJ10C13 PAJ10C14 PAJ10C15 PAJ10C16 PAJ10C17 PAJ10C18 PAJ10C19 PAJ10C20

PAJ10D1 PAJ10D2 PAJ10D3 PAJ10D4 PAJ10D5 PAJ10D6 PAJ10D7 PAJ10D8 PAJ10D9 PAJ10D10 PAJ10D11 PAJ10D12 PAJ10D13 PAJ10D14 PAJ10D15 PAJ10D16 PAJ10D17 PAJ10D18 PAJ10D19 PAJ10D20
COJ1

PAJ20A1 PAJ20A2 PAJ20A3 PAJ20A4 PAJ20A5 PAJ20A6 PAJ20A7 PAJ20A8 PAJ20A9 PAJ20A10 PAJ20A11 PAJ20A12 PAJ20A13 PAJ20A14 PAJ20A15 PAJ20A16 PAJ20A17 PAJ20A18 PAJ20A19 PAJ20A20 PAJ20A21 PAJ20A22 PAJ20A23 PAJ20A24 PAJ20A25 PAJ20A26 PAJ20A27 PAJ20A28 PAJ20A29 PAJ20A30

PAJ20B1 PAJ20B2 PAJ20B3 PAJ20B4 PAJ20B5 PAJ20B6 PAJ20B7 PAJ20B8 PAJ20B9 PAJ20B10 PAJ20B11 PAJ20B12 PAJ20B13 PAJ20B14 PAJ20B15 PAJ20B16 PAJ20B17 PAJ20B18 PAJ20B19 PAJ20B20 PAJ20B21 PAJ20B22 PAJ20B23 PAJ20B24 PAJ20B25 PAJ20B26 PAJ20B27 PAJ20B28 PAJ20B29 PAJ20B30
PAJ20C1 PAJ20C2 PAJ20C3 PAJ20C4 PAJ20C5 PAJ20C6 PAJ20C7 PAJ20C8 PAJ20C9 PAJ20C10 PAJ20C11 PAJ20C12 PAJ20C13 PAJ20C14 PAJ20C15 PAJ20C16 PAJ20C17 PAJ20C18 PAJ20C19 PAJ20C20 PAJ20C21 PAJ20C22 PAJ20C23 PAJ20C24 PAJ20C25 PAJ20C26 PAJ20C27 PAJ20C28 PAJ20C29 PAJ20C30

PAJ20D1 PAJ20D2 PAJ20D3 PAJ20D4 PAJ20D5 PAJ20D6 PAJ20D7 PAJ20D8 PAJ20D9 PAJ20D10 PAJ20D11 PAJ20D12 PAJ20D13 PAJ20D14 PAJ20D15 PAJ20D16 PAJ20D17 PAJ20D18 PAJ20D19 PAJ20D20 PAJ20D21 PAJ20D22 PAJ20D23 PAJ20D24 PAJ20D25 PAJ20D26 PAJ20D27 PAJ20D28 PAJ20D29 PAJ20D30

COJ2

PAJ30A1 PAJ30A2 PAJ30A3 PAJ30A4 PAJ30A5 PAJ30A6 PAJ30A7 PAJ30A8 PAJ30A9 PAJ30A10 PAJ30A11 PAJ30A12 PAJ30A13 PAJ30A14 PAJ30A15 PAJ30A16 PAJ30A17 PAJ30A18 PAJ30A19 PAJ30A20 PAJ30A21 PAJ30A22 PAJ30A23 PAJ30A24 PAJ30A25 PAJ30A26 PAJ30A27 PAJ30A28 PAJ30A29 PAJ30A30 PAJ30A31 PAJ30A32

PAJ30B1 PAJ30B2 PAJ30B3 PAJ30B4 PAJ30B5 PAJ30B6 PAJ30B7 PAJ30B8 PAJ30B9 PAJ30B10 PAJ30B11 PAJ30B12 PAJ30B13 PAJ30B14 PAJ30B15 PAJ30B16 PAJ30B17 PAJ30B18 PAJ30B19 PAJ30B20 PAJ30B21 PAJ30B22 PAJ30B23 PAJ30B24 PAJ30B25 PAJ30B26 PAJ30B27 PAJ30B28 PAJ30B29 PAJ30B30 PAJ30B31 PAJ30B32
COJ3

COS1

COS2

COS3

COS4

APPENDIX C. ELECTRONICS

182

C.7. SWITCHMODE TESTS

C.7 Switchmode tests

Figure C.7 shows a picture of the setup used during the power card tests, next is the schematics
for the electronic load.

Figure C.7: Test Setup

183

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
3

D
at

e:
04

.0
6.

20
12

Sh
ee

t
 o

f
Fi

le
:

C
:\U

se
rs

\..
\s

ou
rc

e.
Sc

hD
oc

D
ra

w
n

B
y:

+
3

-
2

1

8 4

U
1A

4R
7

R
2

4R
7

R
3

4R
7

R
4

4R
7

R
5

4R
7

R
6

4R
7

R
7

G
N

D

G

SD
Q

1

12
V

0

-1
2V

0

3K
3

R
1

10
0n

F
C

1

G
N

D

G
N

D
G

N
D

V
IN

G
N

D
G

N
D

-1
2V

0
12

V
0

PW
M

FE
ED

B
A

C
K

1 2

3 4

J2

1 2

3 4

J1 R
EF

G
A

TE
123

J3

G
N

D

PIC101 PIC102
CO
C1

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

P
I
J
1
0
4 COJ

1

P
I
J
2
0
1

P
I
J
2
0
2

P
I
J
2
0
3

P
I
J
2
0
4 COJ

2

P
I
J
3
0
1

P
I
J
3
0
2

P
I
J
3
0
3

COJ
3

PI
Q1

01

PIQ102 PIQ103

CO
Q1

PI
R1

01
PI

R1
02

CO
R1

PIR201 PIR202CO
R2

PIR301 PIR302CO
R3

PIR401 PIR402CO
R4

PIR501 PIR502

COR
5

PIR601 PIR602CO
R6

PIR701 PIR702CO
R7

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

PIU104PIU108
CO
U1
A

Designator Quantity MPN Manufacturer Value Description Digikey

D1, D2, D3, D4, D5, D6, D7,
D8 8 APT1608SGC Kingbright

LED 1.6X0.8MM 568NM
GRN CLR SMD 754-1121-1-ND

J1 1 ESQ-120-12-G-D Samtec Non Stack Through

J2 1 ESQT-130-03-G-Q-368 Samtec Non Stack Through

J3 1 ESQ-132-12-G-D Samtec Non Stack Through

J4 1 Generic 100mil pin-header

J5, J6, J7, J10, J11 5 39-29-1040 Molex
CONN HEADER 4POS
4.2MM VERT TIN

J8, J9 2
Generic RA 100mil pin-
header

Q1, Q2, Q3, Q4 4 IRLML6402TRPBF
INTERNATIONAL
RECTIFIER

MOSFET P-CH -20V -3.7A
SOT23-3

R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11, R12,
R13, R14, R15, R16, R17,
R18 18 0R, 1K, 100 Generic resistor

S1, S2, S3, S4 4 SO-1524-03-01-02-L Samtec 15.24mm

APPENDIX C. ELECTRONICS

186

Appendix D

Software

D.1 Independent software projects

Some source where extracted from the Eurobot repository, and released as independent Open
Source projects. The idea was that the development of this projects should be able to continue
separate from the Eurobot project. This is most relevant for future students.

Extended Kalman Filter Library: extkalman
https://github.com/sperre/extkalman

A* Library: astar
https://github.com/sperre/astar

Library to handle metric units: units
https://github.com/smyrman/units

Goroutine dispatcher: rungo
https://github.com/smyrman/rungo

Tool to create virtual Go environments: goenv
https://github.com/smyrman/goenv

187

APPENDIX D. SOFTWARE

D.2 Dispatcher source code

Listing D.1: eurobot-ntnu.no/dispatcher/dispatcher.go
1 package dispatcher
2 import (
3 "sync"
4)
5

6 // Implementations of this interface should periodically check the termc
7 // channel and return if there is something on the it.
8 type Interface interface {
9 Run(termc <-chan bool)

10 }
11

12

13 type Routine struct {
14 wg sync.WaitGroup
15 termc chan bool
16 I Interface
17

18 }
19

20 // Call I.Run() in a new goroutine, and return a dispatcher object that can be
21 // used to wait for it’s completion, or to ask for it’s termination.
22 func NewGoroutine(I Interface) *Routine {
23 d := new(Routine)
24 d.termc = make(chan bool, 1)
25 d. I = I
26 d.wg.Add(1)
27 go d.run()
28 return d
29 }
30

31 func (d *Routine) run() {
32 defer d.wg.Done()
33 d.I.Run(d.termc)
34 }
35

36 // If the termc channel of the Interface is not full, signal it. Block until
37 // the routine has ended. This call should be considered thread-safe. If the
38 // routine has already ended, this function returns at once.
39 func (d *Routine) Terminate() {
40 select {
41 default: // the termc channel is full
42 case d.termc <- false: // termination signal sent
43 }
44 d.wg.Wait()
45 }
46

47 // Block until the routine has ended.
48 func (d *Routine) Wait() {
49 d.wg.Wait()
50 }

188

D.3. SOFTWARE LINE COUNT

D.3 Software line count

The following listings show a cloc count of the robot, simulator and ntnu-eurobot.ntnu folders:

Listing D.2: All packages
1 http://cloc.sourceforge.net v 1.56 T=3.0 s (37.3 files/s, 3398.0 lines/s)
2 ---
3 Language files blank comment code
4 ---
5 Go 56 963 633 4567
6 C 21 426 163 1348
7 Javascript 4 102 120 570
8 C/C++ Header 18 188 192 367
9 HTML 4 24 0 161

10 CSS 1 24 0 153
11 make 6 46 28 72
12 Python 2 14 11 22
13 ---
14 SUM: 112 1787 1147 7260
15 ---

Listing D.3: Task-specific code (the robot and simulator package)
1 http://cloc.sourceforge.net v 1.56 T=1.0 s (55.0 files/s, 6197.0 lines/s)
2 ---
3 Language files blank comment code
4 ---
5 Go 37 668 424 3492
6 Javascript 4 102 120 570
7 C 4 77 37 229
8 HTML 4 24 0 161
9 CSS 1 24 0 153

10 C/C++ Header 4 17 0 43
11 make 1 23 9 24
12 ---
13 SUM: 55 935 590 4672
14 ---

Listing D.4: Libraries and drivers (the eurobot-ntnu.no folder)
1 http://cloc.sourceforge.net v 1.56 T=2.0 s (28.5 files/s, 1998.5 lines/s)
2 ---
3 Language files blank comment code
4 ---
5 C 17 349 126 1119
6 Go 19 295 209 1075
7 C/C++ Header 14 171 192 324
8 make 5 23 19 48
9 Python 2 14 11 22

10 ---
11 SUM: 57 852 557 2588
12 ---

189

APPENDIX D. SOFTWARE

D.4 Benchmark script

Listing D.5: run_bench.bash
1 #!/bin/bash
2 DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
3 source $DIR/gopath/sourceme.bash
4

5 # Test for $1:
6 if [["$1" == ""]]; then
7 echo "Usage:"
8 echo " $0 RESULTNAME"
9 exit

10 fi
11

12 # Define resultsdir
13 RDIR="$DIR/results.$1"
14 mkdir -p "$RDIR" || exit
15 cd "$RDIR" || exit
16

17 # Compile:
18 go test github.com/sperre/astar -c
19 go test github.com/humanfromearth/gopathfinding -c
20

21 # Create CPU profiles:
22 ./astar.test -test.cpuprofile=astar.bench-Astar4-100x100.pprof -test.run=none -test.bench=Astar4
23 ./gopathfinding.test -test.cpuprofile=gopathfinding.bench-Astar4-100x100.pprof -test.run=none -test.

bench=Astar4
24

25 # Create profiling reports:
26 go tool pprof -text astar.test astar.bench-Astar4-100x100.pprof > astar.bench-Astar4-100x100.txt
27 go tool pprof -pdf astar.test astar.bench-Astar4-100x100.pprof > astar.bench-Astar4-100x100.pdf
28 go tool pprof -text gopathfinding.test gopathfinding.bench-Astar4-100x100.pprof > gopathfinding.bench-

Astar4-100x100.txt
29 go tool pprof -pdf gopathfinding.test gopathfinding.bench-Astar4-100x100.pprof > gopathfinding.bench-

Astar4-100x100.pdf
30

31 # Run benchmarks:
32 ./astar.test -test.run=none -test.bench="Astar(4|8)" > astar.bench.out
33 ./gopathfinding.test -test.run=none -test.bench="Astar(4|8)" > gopathfinding.bench.out
34

35 # Print
36 echo "####################"
37 echo "Human from earth:"
38 cat gopathfinding.bench.out
39 cat gopathfinding.bench-Astar4-100x100.txt
40

41 echo "####################"
42 echo " Eurobot−NTNU:"
43 cat astar.bench.out
44 cat astar.bench-Astar4-100x100.txt

190

Appendix E

Competition log

This appendix provides a log from each of the five matches played in La Ferté-Bernard, France
2012. Note that our robot is referred to as Loke, which is the name the NTNU-Eurobot robot
was given this year. Videos of some of the matches are available on http://insomnia.ed.
ntnu.no/eurobot2012/videos.

In addition, there is a possibility that multiple-camera productions of each match can be re-
trieved from the Eurobot organization http://www.planete-sciences.org/robot/live/
coupe2012/eurobot/.

E.1 Series 1

Opponent team: Robot Racing Team
Opponent robots: 1 robot
Game tactic: Homologation
Video available: No
Software version: Git tag: N/A

Git commit: unknown
Game log: 1. Loke drives out from starting area

2. Loke pushes gold bar to the ships deck
3. Loke pushes button for close bottle
4. All tasks completed, robot halted
5. Opponent robot halted due to some bug

Results: 19 points, victory
Opponent results: 4 points
Notes: The team was called while taking a field trip into town. We had to meet up for the match

on a very short notice, and ended up running the “homologation” game tactics by mistake.

191

http://insomnia.ed.ntnu.no/eurobot2012/videos
http://insomnia.ed.ntnu.no/eurobot2012/videos
http://www.planete-sciences.org/robot/live/coupe2012/eurobot/
http://www.planete-sciences.org/robot/live/coupe2012/eurobot/

APPENDIX E. COMPETITION LOG

E.2 Series 2

Opponent team: Robo2BME
Opponent robots: 1 robot
Game tactic: Passive
Video available: No
Software version: Git tag: eurobot12-round2

Git commit: 4dfa9ed73c831c98a0f00b1917d21b4b6a6d270d
Game log: 1. Loke drives out of the starting area

2. Loke pushes gold bar to the ships deck
3. Loke pushes the button of the close bottle
4. Loke heads for the center of the field in order to drive-by the closest totem pole
5. Loke drives by totem pole and pushes points to the ships deck
6. Loke drives against the center of the field in order to drive-by the closest totem pole
from the other side
7. Loke drive-by the totem pole and manages to catch the gold bar with it’s right wing
8. Before Loke gets a chance to drop of the points: Time’s up!

Results: 25 points, victory
Opponent results: 12 point
Notes: The opponent robot froze

E.3 Series 3

Opponent team: Greenbirds
Opponent robots: 1 robot
Game tactic: Passive
Video available: Yes
Software version: Git tag: N/A

Git commit: unknown
Game log: 1. Loke drives out of the starting area

2. Loke pushes the button of the close bottle
3. Loke heads for the center of the field in order to drive-by the closest totem pole
4. The opponent block Loke’s path
5. The opponent backs out
6. Loke drives by totem pole and pushes points to the ships deck
7. Loke drives against the center of the field in order to drive-by the closest totem pole
from the other side
8. Time’s up!

Results: 16 points, loss
Opponent results: 26 points
Notes: The passive game tactics have been altered to not push the gold bar to the ships deck as the

first task.
The opponent robot drives much faster then us. We could probably adjust the driver to
increase Loke’s acceleration and max speed.

192

E.4. SERIES 4

E.4 Series 4

Opponent team: Ben Dover
Opponent robots: 1 robot
Game tactic: Passive
Video available: Yes
Software version: Git tag: eurobot12-round4

Git commit: 6314313bec73ce13753bead6384c4a41f5aac38e
Game log: 1. Loke drives out of the starting area

2. Loke pushes the button of the close bottle
3. Loke heads for the center of the field in order to drive-by the closest totem pole
4. The opponent block Loke’s path
5. Deadlock

Results: 15 points, victory
Opponent results: 2 points
Notes: Loke’s speed has been increased by approximately 2x compared to series 3.

The deadlock could have been prevented if the “opponent avoidance” routine had been
more intelligent, or if the area that was supposed to be free for Loke to chose the totem
pole task had been defined larger in the passive tree.

E.5 Series 5

Opponent team: UNICT-TEAM
Opponent robots: 2 robots
Game tactic: Passive
Video available: Yes
Software version: Git tag: eurobot12-round5

Git commit: dd144914c673b838a819accb559e94e447eef339
Game log: 1. Loke drives out of the starting area

2. Loke altered course and crashed into the nearest totem pole
3. Are asks the referee to push the emergency button

Results: 0 points, forfeit
Opponent results: 51 points
Notes: Before the match, all three beacon supports where measured to be approximately 0.5cm −

1cm to tall. The beacon support closest the robot was also not completely level. The screws
where tightened to much to allow adjustment. From studying the video, it seems like the
robot gets confused about it’s heading - possible a bad measurement is received.

193

APPENDIX E. COMPETITION LOG

194

Appendix F

Poster

195

Legend of Norway
EUROBOT 2012

LA FERTÉ BERNARD, FRANCE

TREASURE ISLAND

Tablet

Positioning
Two rotating parallel lasers
and radio communication is
used to discover the angle
and distance of beacons.
An extended kalman filter
joins this with data from the
motors' hallsensors.

An HP Slate 2, running
Arch Linux, commands the
hardware over a CANopen
bus. The main software is
written in Go, drivers are
written in C.

Hardware stack
A “PC104-pluss” stack
consiting of: A custom
power-supply, capable of
delivering 24V/12V/ 5V/3V3
@ 5A; a motor controller
card; breakout-board.

Wings

Doors

The wings are used to
collect gold bars from the
totem poles. They are
controlled by an Atmel
ATmega-90CAN micro-
controller.

The doors are used to
collect dublons. They are
controlled by an Atmel
ATmega-90CAN micro-
controller.

Loke; Hardcore Trickster

Cybernetics

Appendix G

Digital attachments

The following files can be found ad digital attachments to this report. There is either a CD with
the report, or the files can be downloaded from DAIM 1 where this report is published.

The digital attachments include all source code for the robot, all design files for produced elec-
tronics and production drawing for the mechanical parts.

• e2012_rules_en_final.pdf
• HP_slate2.pdf
• poster.pdf
• video.webm
• git repository

eurobot-master
• hardware design

battery
bordkort
current measure
current source
Enemy
eurobot2012_topcard
lasertower_power
library
robot_motherboard
servo
start
stop_enkel
topcard_template

• mechanical design

1url: http://daim.idi.ntnu.no

197

	Title Page
	I Introduction
	Introduction to Eurobot
	What is Eurobot?
	Eurobot-NTNU
	Disposition of the report

	Management of Eurobot-NTNU
	Organization management
	Sponsors
	Promotional work
	Creation of test equipment

	Eurobot 2012 rules
	Persistent rules
	Playing area layout
	Game objectives
	Matches
	Robot design constraints
	Safety constraints
	Homologation

	II Robot Design
	Deciding on a strategy
	Strategic goals
	Available concepts
	Decision
	Results

	Defining a propulsion and navigation system
	Requirements
	Previous solutions
	Decision

	Deciding on a positioning system
	Requirements
	Alternatives
	Decision
	Discussion

	Defining the electrical platform
	Requirements
	Previous systems
	Decision
	Discussion

	Deciding on a programming language
	Requirements
	Alternatives
	Decision
	Discussion

	Deciding on an operating system
	Requirements
	Previous operating systems
	Decision
	Discussion

	Defining the software modules
	Suggested concepts
	Available software
	Defining the modules
	Communication patterns
	Module requirements

	Designing the complete system
	Currently existing systems
	Components
	Component placement
	Physical design
	Finished robot

	III Implementation and Improvements
	Positioning system improvements
	Background theory
	Calibration
	Choosing an algorithm
	Developing a system model
	Tuning
	Opponent detection
	Result and discussion

	Producing the power card
	Background theory
	Power source
	Power card
	Extension modules
	Power card firmware
	Switch mode power supply test
	Results
	Discussion

	Software implementation
	Algorithms and data structures
	An introduction to Go
	Choice of Linux distribution
	Software overview
	Go libraries
	The hardware abstraction layers
	The robot's main program
	The Debug GUI
	Software testing
	Results
	Discussion

	IV End Result
	Results
	The complete robot
	Competition
	Position and location
	Power card
	Software

	Discussion
	Mechanical problems
	Positioning issues
	Power card
	Using Go
	Distribution of human resources

	Conclusion
	Future work
	Power card
	Position system
	Software

	V Appendix
	Positioning system
	Laser-tower accuracy
	Laser-tower distribution

	Mechanics
	Electronics
	Enemy beacon
	Power card
	PC/104 mechanical specification
	Motor controller breakout board
	Top card
	Top card template
	Switchmode tests

	Software
	Independent software projects
	Dispatcher source code
	Software line count
	Benchmark script

	Competition log
	Series 1
	Series 2
	Series 3
	Series 4
	Series 5

	Poster
	Digital attachments

