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A B S T R A C T

In this paper, the impact on lifetime estimation of an offshore wind turbine by introducing a stochastic model for
the availability is investigated. Offshore bottom-fixed wind turbines typically have an average downtime of
4–10% due to e.g. grid- or mechanical failures including a potentially long response time for recovery. During
the non-operational conditions, the fatigue damage in the foundation is accumulating significantly faster.
Designing the wind farm based on a conservative downtime fraction will lead to design conservatism with
respect to the foundation, which will be quantified in this paper using a structural reliability analysis.

1. Introduction

The overall costs of an offshore wind farm is highly dependent on
the substructure designed to keep the turbine in place or floating in a
safe and reliable manner during the operational lifetime. To date, the
simplistic monopile foundation has proven to be the most cost efficient
solution in water depths up to at least 40 m. In the present work, an
extra large monopile foundation supporting a 10MW wind turbine is
chosen as the basis for the dynamic system for which the long term
structural fatigue is to be evaluated.

When moving the wind energy industry offshore to larger water
depths and further away from the mainland, additional considerations
must be made with respect to environmental loading from waves,
currents and tides [1]. Comparing to an onshore turbine, the load si-
tuation for which the design criteria are to be met, is much more
complex. Depending on the desired accuracy of the structural response
and reliability estimations, the environmental loading parameters can
be extended to a large number of dimensions. If design conservatism
can be reduced by including extra loading parameters and stochastic
descriptions, methods should be readily available for spending com-
putational efforts to improve the system knowledge and decrease
modelling uncertainties. A general method involving efficient use of
idle computing resources rather than a case-optimised method is used
for the present long-term analyses.

Fatigue life estimation of offshore wind turbines requires simula-
tions of the response due to combined external loads according to de-
sign load case (DLC) 1.2 in [1]. Other load cases may also contribute to

the overall fatigue damage, but DLC 1.2 is expected to be the main
contributor. For an offshore wind turbine, this means to simulate with a
sufficient amount of external conditions to represent the expected fa-
tigue damage during the operational lifetime (see e.g. [2]). Due to
many types of external parameters (wind, wave height, wave direction,
current etc.) a full fatigue limit state (FLS) analysis may become com-
putationally demanding. As a result, there has been an effort to develop
simplified methods for quick load analysis in the frequency domain
[3–5]. In addition, efforts has been made to reduce the number of load
cases and total simulation length while maintaining the accuracy [6,7].

The present work uses a high dimensional joint distribution fitted to
data from a likely site of a future offshore wind farm in the central
North Sea. Environmental parameters include wind, wind-generated
sea (wind sea), swell and tide as well as their respective directional
statistics. Further, the distribution is used for generating short-term sea
states in a long-term analysis of the turbine in question by means of
Gibbs sampling and cluster computing. Removing the need for binning
the data and finding the probability of occurrence for each sea state are
some of the advantages when using a direct sampling from the joint
distribution. It is also of great interest to obtain an estimation of the
estimated fatigue error incorporated in the structural reliability, which
only can be obtained by an analysis in the entire variable domain.
Furthermore, there is no need to discretise the domain where the load
effects are unknown as these will be accounted for automatically if the
number of samples are sufficiently large. For instance, if the tidal
parameters do not contribute to the response, the result is a faster
convergence of the load effects. Finally, when the convergence criteria
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of the investigated response is met, sensitivity factors and response
characteristics for the fatigue damage with respect to input parameters
are estimated using the probabilistic analysis tool PROBAN [8].

The availability of an offshore wind turbine (OWT) is a measure of
the ratio between the duration for which the turbine is unable to pro-
duce energy and the total time for possible power production. While
parked, the dynamic characteristics changes significantly. For bottom-
fixed OWTs the damping level is dramatically reduced, resulting in an
increased fatigue damage accumulation [9]. Unless data on the actual
downtime fraction is available, the availability is taken as 90 or 100%,
whichever is most conservative [1]. The purpose of this paper is to
reduce the potential design conservatism related to the availability
parameter by means of probabilistic analysis.

The paper is built up as follows; first, the design basis including the
environmental- and numerical model is presented. Second, the simu-
lation procedures and sub-populations required to perform long-term
reliability analyses are discussed. Finally, the reliability analysis is
performed, with an investigation of the most dominating parameters
and the impact of availability on the failure probability.

2. Offshore site and environmental model

Hindcast data for description of the wind and wave environment is
provided by the Norwegian Meteorological Institute and the NORA10
database [10] for the location shown in Fig. 1. The data contains in-
formation about the wind speed, wind direction and significant wave
height, peak period, and direction for both wind sea and swell. The data
is valid for periods of 3 h durations and some of the available para-
meters are listed in Table 1 with corresponding probability distribu-
tions.

The complete environmental joint distribution is modelled as:

=f f f f· · HX X Xe w s t (1)

where the wind sea variables are gathered in:

= V H TX [ , Θ , , , Θ ]w v S
w

P
w

w
r (2)

where descriptions can be found in Table 1, and
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for swell. The variable dependencies are described with:
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for swell. The distribution types are given in Table 1 and chosen based
on a previous study [11] where the von Mises distribution was found
very useful for modelling directions. Furthermore, is was found that a 3-
parameter Weibull distribution was necessary in order to model the
wave heights accurately. A normal distribution truncated at ± 90∘

proved suitable for modelling the relative wind-wave direction for
wind-generated sea.

3. Numerical wind turbine model

The numerical model is a bottom-fixed monopile-mounted turbine
with tower and rotor-nacelle assembly (RNA) as described in [12]. To
obtain a realistic natural period, the tower thickness is increased with
20% [13]. The final dimensions of the monopile and transition piece
can be found in Fig. 2. The resulting first fore-aft and side-side natural

Fig. 1. Planned (green) and possible (yellow) offshore wind farms at Dogger
Bank with location for hindcast data (red). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Marginal distribution types and description of environmental parameters.

Parameter Distribution Description Unit

V v 3-p Weibull Wind speed at 100m [m/s]
Θv θv von Mises mix Wind direction at 100m [deg]
HS

w hw 3-p Weibull Significant wave height for wind sea [m]

TP
w tw Lognormal Peak period for wind sea spectrum [s]

Θw
r θw Trunc. normal Relative wind-wave direction [deg]

HS
s hs 3-p Weibull Significant wave height for swell [m]

TP
s ts Lognormal Peak period for swell spectrum [s]

Θs θs von Mises mix Swell direction [deg]
Ht H Normal mix Water level [m]

Fig. 2. Numerical model. Diameter is varying from 5.4m in the top to 9.0 m at
the bottom. Thickness varies between 38 and 150mm.
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periods are approximately 4.4 s, while the periods related to the second
vibrational model are about 0.9 s in both directions. Consequently, the
system is stiff, but still subjected to significant dynamic response from
both wind and waves. The model has been validated in previous work,
see e.g. [14]. The controller is an extended version of [15] with the
possibility of increasing the fore-aft aerodynamic damping and avoid
rotational speeds coinciding with the natural periods of the system. For
integration in time-domain and calculation of aerodynamic loads, the
finite-element method code USFOS/vpOne is used [16,17], while the
hydrodynamic loads are calculated by an external routine and imported
to the FEM code on an equivalent wave kinematics grid for load cal-
culation with the Morison equation. The method has been used as
verified in previous studies (see [18–20]). The turbulent wind field is
created with TurbSim [21] using the Kaimal spectrum and a turbulence
intensity of 10%. For a parked/idling turbine, the blades are pitched to
82 degrees relative to the rotor plane, inducing only a slow rotation of
the rotor.

4. Sub-populations

Due to several different states related to the turbine operation and
downtime, an offshore wind turbine have sub-populations of sig-
nificantly different response characteristics. Four different sub-popu-
lations are suggested, which are presented in Fig. 3 and defined as:

1. Operational turbine within operational wind speed limits
2. Parked turbine due to general unavailability independent of wind

speed
3. Parked turbine due to wind exceeding the operational wind speed

limit (25m/s)
4. Parked turbine due to wind below the lower operational wind speed

(4m/s)

The fractions pi satisfies ∑ =p α( ) 1i i for a given level of availability
α∈ [0, 1]. Thus, the total fatigue damage can be found as:

∑=D p D
i

i i
(6)

Since the availability parameter α is independent of the response
statistics from Monte Carlo simulations (MCS), it can be modelled as a
random variable in the reliability analysis. Typically, the downtime of
an offshore wind turbine is 4–10% [22,23] due to some failure, as-
sumed to be uncorrelated with the environment. Hence, a probabilistic
model of the availability using the beta distribution is introduced;

�∼α μ σ[ , ]α α . The beta distribution is often used in modelling of the
availability and corresponding costs in electrical systems [24] when
both the failure rate and downtime are exponentially distributed [25].
Several distributions for component reliability are presented in e.g.

[26] for wind turbine applications, one of which is the beta distribution.
It is seen that the beta distribution is very flexible for modelling of
failure rates compared to the Weibull, exponential and normal dis-
tributions. Hence, the beta distribution is chosen for the present work
and examples of the stochastic modelling of α is shown in Fig. 4. Here,
the uncertainty related to the choice of availability distribution is ne-
glected. To underline the importance of modelling the availability, an
example is shown in Table 2 for the individual populations considering
the long-term fatigue damage at mudline for the presented model. The
fatigue contribution coefficient (FCC) is defined as:

=
∑

p E D
p E D

FCC
· [ ]

· [ ]i
i i

j j j (7)

and the example show that the FCC is significantly larger than the
probability of occurrence for the unavailable population, p2, meaning
that a small variation in α may be amplified in the structural reliability
analysis. As a consequence, durations where the turbine is parked will
have a damage accumulation rate of almost four times that of a parked
turbine, on average. The results throughout this paper are focusing on
sub-populations 1 and 2 due to the domination over sub-populations 3
and 4 in fatigue damage contributions.

Fig. 3. Sub-populations, with fractions as functions of the wind speed marginal
cumulative distribution FV and an availability parameter α.

Fig. 4. Example beta-distributions for the availability parameter α, with
= =E α μ[ ] 0.93. σ denotes the standard deviation in the beta-distribution.

Table 2
Population fractions and fatigue contribution coefficients (FCC) for =α 0.93.

Population pi [%] FCCi [%]

1 89.6 76.0
2 7.0 21.0
3 0.1 2.6
4 3.3 0.4

Table 3
Stochastic variables for probabilistic analysis of fatigue damage. Note that an
expected stress correction factor XS of 1.5 is introduced to account for e.g.
thickness variation, ovality and girth welds in the foundation [28].

Variable Distribution Expected value Standard deviation

α Beta μα σα
Δ Lognormal 1 0.3
s0 Fixed 52.63 –
m1 Fixed 3 –
m2 Fixed 5 –
logK1 Normal 12.164 0.2
logK2 Normal 16.106 0.2
XS Lognormal 1.5 0.1
XL Lognormal 1.0 0.1
XD Normal 1.0 σD
tref Fixed 0.025 –
k Fixed 0.2 –
ν1 Normal 0.755 0.020
ν2 Normal 0.262 0.005
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5. Fatigue damage estimation

The fatigue damage for the long-term stochastic environmental
variables contained in x and the short-term random variables in ϵ, e.g.
wave and wind component phases and amplitudes, is given as:

� �∑= − + −
∈

ϵd s
K

s s s
K

s sx( , ) ( ) ( )
ϵs

m m

s x( , ) 1
0

2
0

1 2

(8)

where = t t X Xs Δσ ( / )k
S Lref is the rainflow-counted [27] stress ranges

for a single stationary time-domain simulation with a duration of Tsim
seconds, corrected for local plate thickness (t), stress uncertainty (XS)
and load model uncertainty (XL). Furthermore, � is the Heaviside
function, s0 is the stress limit, the m’s and K’s are material parameters,
and tref and k are constants to account for the plate thickness t. For
probabilistic analysis, uncertainty in the SN-curve is accounted for by
introducing a mean and variance on log K1,2 [28]. The short-term
variability can be overcome by M repeated simulations with different
seeds, i.e. uncorrelated sampling of ϵ for a given x. Some other aspects
of reducing the short-term variability are discussed in [29] with a
probability-based approach, and in [30] with emphasis on simulation
length. The 1-year fatigue damage for the variables in x is found with:

∑=
=

ϵd
M T

dx x( ) 365·24·3600
·

· ( , )
i

M

i
sim 1 (9)

With reference to Eq. (9), industry standards [31] recommend that ei-
ther =M 6 and =T 600sim s, or =M 1 and =T 3600sim s to predict suffi-
ciently accurate short-term results. In this work, focus is on evaluating
the long-term fatigue, which can be expressed as an integral over the
dimensions in x:

∫=
−∞

∞
D d f dx x x( )· ( )X (10)

which evaluated using N Monte Carlo simulations is simply the ar-
ithmetic mean:

∑=
=

D
N

d x1 ( )
i

N

i
mcs

1 (11)

To limit the scope of this paper, no importance sampling or other means
of variance reduction techniques are used for the long-term fatigue
estimate, and d(x) will be evaluated according to Eq. (9) with =M 1
and =T 600sim .

6. Reliability analysis

In this study, the foundation fatigue is the only considered con-
tribution to the structural reliability. Then, the failure probability for n
years of operation is:

∑= ⎡

⎣
⎢ ≤ ⎤

⎦
⎥p P n p DΔf

i
i i

(12)

where Δ∼ Logn[1.0, 0.32] (as suggested in [32]) is accounting for the
uncertainty in the Palmgren–Miner summation of the rainflow-counted
stress cycles, and Di is the 1-year fatigue damage for sub-population i for
a given structural component. It is important that the Miner sum un-
certainty (Δ) is applied to the sum of all contributing populations.
Finding the failure probability in each sub-population and then the
union of failure in all populations would be non-conservative. The
failure probability expressed as:

= ≤p P g[ 0]f (13)

where = − ∑g n p DΔ ,i i can be evaluated by e.g. FORM/SORM

Fig. 5. A two-parameter Weibull distribution (solid line) is fitted to the simulated/empirical data (crosses) using two fitting point at − = −F1 10σΔ
2 and −10 4.

Fig. 6. Contributions to fatigue damage from sub-populations.

Fig. 7. Convergence of fatigue in dimensioning location at mudline as function of simulation hours. De is the expected fatigue damage.
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analysis [33] or Monte Carlo simulations. The reliability index denoted
β is frequently used in this paper, which is a measure of the shortest
distance to the failure surface. For the FORM analysis, the reliability
index β is:

≈ − −β pΦ ( )fFORM
1

(14)

6.1. Uncertainty from SN-curve

If the uncertainty in the SN-curve is to be accounted for, the relia-
bility is traditionally performed with the Weibull-distributed long-term
stress range as a basis for the fatigue damage [32,34]. The fatigue da-
mage from a Weibull distributed stress range; Δσ∼Weibull[a, b],
yields the closed-form solution [35]:

= ⎧
⎨⎩

⎡
⎣

+ ⎤
⎦

+ ⎡
⎣

+ ⎤
⎦

⎫
⎬⎭

( )
( )

D ν T X

γ

Γ 1 ,

1 ,

i i D
a X X t t

K
m
b

s
a

b

a X X t t
K

m
b

s
a

b

[ ( / ) ]

[ ( / ) ]

i S L k m

i i

i

i S L k m

i i

i

ref 1

1
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ref 2

2
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(15)

for sub-population i, where Γ[ · , · ] and γ[ · , · ] are the upper in-
complete gamma functions and incomplete gamma functions, respec-
tively. Furthermore, XD is the fatigue uncertainty related to number of
MCS, T is one year in seconds and ν is the sub-population dependent
mean stress cycle rate found from simulations. An overview of the
stochastic and deterministic parameters used in the reliability analysis
is given in Table 3. The SN-curve used is the curve denoted D in [28] for
steel in seawater with cathodic protection. The variance on the material
parameters log K1 and logK2 are suggested in [28]. Furthermore, the
standard deviation on the stress uncertainty XS and load model un-
certainty XL is chosen as 0.1, partly based on [36,37].

Although the response characteristics in the present case do not
yield a perfectly Weibull distributed stress range. In Fig. 5, example
Weibull fits are shown. A 2-parameter Weibull distribution is fitted to
the distribution tail using two fitting points in the upper range of the
data. The fatigue damage error using the fitted Weibull stress range and
direct evaluation of the Palmgren–Miner was found to be less than 5%
in all cases. For fatigue calculations, it is important that the stress range
representation is correct for the stress ranges that contribute the most to
the total fatigue damage. As indicated in Fig. 6, the fatigue damage
derived from approximately Δσ>10 [MPa] or log Δσ>2.3 is dom-
inating, meaning that the Weibull fit should be accurate in this range.
Hence, it is assumed that the 2-parameter Weibull with tail weighting is
sufficient in all present cases to satisfy this requirement. Also, the ad-
vantage with 2-parameter Weibull is the closed-form solution to the
Palmgren-Miner summation as presented in Eq. (15).

7. Results

In this section, the convergence of fatigue damage, foundation re-
liability and the impact of the availability model on the structural re-
liability is presented. The fatigue damage and failure probabilities are
given at the most critical circumferential location in the foundation at
sea-bed level.

7.1. Fatigue damage convergence

For each sub-population, simulations are performed until a user-
specified convergence criteria is met as illustrated in Fig. 7. When a
satisfying confidence interval is obtained, a probabilistic model of the
stress range can be established as described above. By assuming a
normally distributed XD to account for uncertainty in fatigue damage
related to the number of MCS, the following relation is found:

≈ −σ N4.62D
0.63

1 (16a)

≈ −σ N3.17D
0.49

2 (16b)

Note that the convergence in sub-population 1 is faster than in sub-
population 2, due to slightly smaller response variability. For the pre-
sented results, no uncertainty related to fatigue damage convergence is
accounted for, meaning that N→∞ and =σ 0D for both sub-popula-
tions. Furthermore, as seen in Fig. 6, accumulated fatigue in the foun-
dation is dominated by low-amplitude stress ranges in both sub-

Fig. 8. Failure probability for system(g), sub-population 1 (g1) and sub-popu-
lation 2 (g2). Subscript F represents FORM calculation, S denotes SORM, and M
is MCS. The failure probability is for =μ 0.94α and =σ 0.04α .

Fig. 9. Cumulative failure probability for =n 25 years normalised with −10 ,4 for
the beta-distributed availability with variation in mean (μα) and standard de-
viation (σα). In blue: P[α<0.90]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Increased reliability index β for different stochastic models of α.

Fig. 11. Increased lifetime in years compared to deterministic =α 0.90. Blue
lines for P[α<0.90]∈ [0.05, 0.1, 0.2]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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populations. In practice, only the high-cycle part of the SN-curve with
=m 5 is utilised.

7.2. Combined failure probability

With reference to Fig. 8 it is found that all three methods give si-
milar results, although the SORM method is slightly closer to the MCS
solution than FORM. The total failure probability is significantly higher
than the direct summation of the failure probabilities in sub-popula-
tions 1 and 2 due to a large number of shared stochastic variables re-
lated to the SN-curve, Miner sum and other uncertainties.

7.3. Impact on reliability and lifetime estimate

In Fig. 9, results from a parameter study of the beta-distributed
availability are presented. Using common practice, there is no un-
certainty in the availability and a characteristic value of 0.9 is used [1].
This corresponds to a beta-distribution with mean value of 0.9 and zero
standard deviation. The figure shows how the estimated failure prob-
ability changes with different availability distributions. For instance,
the accumulated failure probability can be reduced from −5·10 4 with the
deterministic model to −3.6·10 4 if a mean value of 0.94 and standard
deviation of 0.04 are used. With this availability model, we can read
from Fig. 9 that there is a 10% probability that the availability is less
than 0.9. It can be interpreted as if 10% of the turbines in a farm will
have an availability of 0.9 or less. With a deterministic model, it is
assumed that every single turbine has an availability of 0.9. The results
show that a deterministic availability model is likely to yield pessimistic
lifetime estimates.

In Fig. 10, the temporal evolution of the reliability index β is shown
for several models for the beta-distributed availability. The additional
lifetime is then calculated based on the difference between time before
down-crossing of =β 3.1lim - the reliability index corresponding to a
cumulative failure probability of −10 ,3 and the lifetime using determi-
nistic availability. Fig. 11 shows the additional lifetime compared to
90% deterministic availability as a function of the stochastic avail-
ability model. Isoquants for P[α<0.90] indicate combinations of μα
and σα which have the same probability of superseding 90% avail-
ability. For instance, choosing a stochastic model of the availability
with a mean of 94% and 10% probability of being below 90%
( < =P α[ 0.90] 0.1]), an additional 2.3 years of expected lifetime is
obtained. For comparison, a similar study using a deterministic avail-
ability of 85% is shown in Fig. 12. By investigating the isoquant for

< =P α[ 0.85] 0.1 and comparing with Fig. 11, it is clear that there is a
slight benefit using the stochastic modelling for lower values of the
deterministic availability.

8. Conclusion

The framework presented in this paper allows for the availability of

an offshore wind turbine to be modelled as a stochastic variable, and
thus reducing the failure probability and increasing the operational
lifetime. An increase of approximately 10% in operational lifetime is
proven for the present case if a deterministic availability of 90% is
replaced with a beta-distributed availability model using expected
availability of 94% and a standard deviation of 4%. In other words, the
duration of assumed lost power production using a deterministic
availability of 90% can almost be reclaimed by performing a reliability
analysis, depending on the distribution of α.

As wind turbines in the same wind farm will most likely experience
different downtime portions, the presented approach is useful for pre-
venting unintentional design conservatism. Also, having fatigue re-
sponse models for the different sub-populations may prove useful for
estimates of remaining useful lifetime when using the actual availability
from monitoring of the turbines.
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