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Abstract 

The industry engaged in prostheses production is dominated by companies that 

offer products using their own propriety standards. This results in either impossible 

or significantly impeded cooperation between modules from different manufacturers 

within one device. Looking for solutions to this problem in 2005 engineers started 

working on standardization of communication interface. Outcome of the University of 

New Brunswick (UNB) Hand Project, founded by Atlantic Innovation Fund (AIF), is 

still improved interface Prosthetic Device Communication Protocol for internal 

communication of prosthesis hand modules. 

This paper has been devoted to the matter of design and implementation of the 

lower layers of PDCP on AVR Platform, hugely popular in systems of prostheses. An 

important aspect was to maximize software portability between different models of 

AVR family microcontrollers and as far as possible between microcontrollers from 

different manufactures. Software should be well documented and understandable for 

engineers enabling further development. 

Hardware layer used in this project was based on AT90USB1287 Atmel 

microcontroller, external CAN controller MCP2515 and CAN transceiver MCP2551 

(both manufactured by Microchip). A part of the project was to design Printed Circuit 

Board giving a visualization of the software portability. 

The software was designed in close cooperation with the student responsible for 

the higher layers of the interface, therefore corresponding interface had to be 

designed. Lower layers of PDCP are based on interrupt generated by the CAN 

controller chip. Thanks to this solution maximum capacity was ensured while 

providing CPU time for upper layers of interface and application-specific tasks. 
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Streszczenie (Abstract in Polish) 

Gałąź przemysłu zajmująca się produkcją protez jest zdominowana przez firmy, 

które w oferowanych produktach stosują własne, prawnie zastrzeżone, standardy. 

Wskutek tego, współpraca modułów różnych producentów w obrębie jednej protezy 

często jest niemożliwa lub znacząco utrudniona. Szukając rozwiązań tego problemu 

inżynierowie w 2005 roku rozpoczęli prace nad standaryzacją interfejsu 

komunikacyjnego. Owocem projektu AIF UNB Hand Project (Atlantic Innovation Fund 

University of New Brunswick) koordynowanego przez wspomniany uniwersytet 

w Kanadzie jest wciąż udoskonalany interfejs PDCP (z ang. Prosthetic Device 

Communication Protocol), służący komunikacji modułów wewnętrznych protez ręki.  

Niniejsza praca została poświęcona projektowi i implementacji niższych warstw 

w/w protokołu w oparciu o kontrolery firmy Atmel cieszące się dużą popularnością 

w układach protez. Ważnym aspektem była maksymalizacja przenośności kodu 

między różnymi modelami mikrokontrolerów z rodziny AVR i na ile to możliwe 

między mikrokontrolerami różnych producentów. Opracowane oprogramowanie 

powinno zostać szczegółowo udokumentowane aby umożliwić dalszy rozwój 

interfejsu.  

Wykorzystywana w projekcie warstwa sprzętowa została oparta na 

mikrokontrolerze AT90USB1287 firmy Atmel, układzie kontrolera magistrali CAN 

MCP2515 oraz kontrolera warstwy fizycznej oznaczonego symbolem MCP2551, 

których producentem jest firma Microchip. Częścią projektu było wykonanie płytki 

drukowanej, za pomocą której zaprezentowana została przenośność 

oprogramowania, dzięki zastosowaniu innego mikrokontrolera. 

Oprogramowanie zostało zaprojektowane w ścisłej współpracy z innym 

studentem (Andreasem Nordalem) odpowiedzialnym za wyższą warstwę interfejsu, 

w oparciu o przerwania generowane przez układ kontrolera CAN. Dzięki takiemu 

rozwiązaniu została uzyskana maksymalna przepustowość interfejsu przy 

maksymalizacji czasu pracy procesora dla wyższych warstw interfejsu oraz aplikacji 

specyficznych dla poszczególnych modułów systemu.  
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1 Introduction 

The best way to experience how important in human life are hands is to ask 

physically challenged people a question about comfort of their life. Only a few parts of 

human body are as complex and important as our hands. Handling everyday tasks is 

feasible thanks to splendid interplay of the nervous system, tendons, over 20 bones, 

muscles and joints. Despite technological progress recreation of hand functions is still 

a great challenge, both medical and mechanical, electronic and control. 

One of the most important aspect that this master project concerns is prostheses 

modularity and communication between its modules. Many previous and current 

designs of the commercial arm prostheses do not support the modular approach, 

which can influence degree of adaptation to user’s needs and disability. Frequently 

whole device consists of 2 modules: the integrated palm and EMG electrode module. 

The division in case of any part failure leads to the necessity of whole module 

replacement. Therefore over years researchers have still been trying to customize the 

prosthesis to user’s needs by developing the idea of modularity. Some of past project 

are worth noticing. 

 

The background for many subsequent solutions was SVEN hand project developed 

during the 1970s in Sweden. Apart from a mechanical aspect the most significant 

contribution was control system, which used EMG recordings from six electrodes 

located on the residual limb while the patient performed basic hand movements like 

finger flexion or wrist extension. EMG signals could then be used to control the 

prosthesis by pattern-recognition technique implemented in analog EMG processor 

system. Another solution was Edinburgh Arm System that introduced a new 
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mechanical solution, but also was controlled with conventional analog electronic 

controllers. 

A name that is often mentioned in discussion about upper-limb prostheses is Otto 

Bock. In 2000 the group of 2 people (R. Obermaisser, A. Kanitsar) together with  

O. Bock presented implementation of TTP protocol for master-slave application, 

which could be treated as a basis for the modular system.  

Time-Triggered Architecture (TTP) is a real-time protocol using Time-Division 

Multiple Access (TDMA) scheme to provide collision-free transmission. Data 

communication is organized in TDMA rounds, which layout is defined a priori and 

known to all nodes in the system.  Every round is divided into time slots associated 

with individual system nodes that are obliged to send frames in every round. A few 

rounds (usually with different messages inside) are combined into one cluster cycle, 

which is repeated over time. Data protection is provided by CRC sum. To proper 

operation system needs clock synchronization, which is done by each node by 

measuring the difference between known expected and observed arrival time of a 

correct message to compute the difference between sender`s and receiver`s clocks. 

This information about time shift is indispensible to keep node clock in synchrony 

with time frame in cluster. Previously mentioned authors have attempted to 

implement this protocol to the system consisting of one master and up to 7 slave 

devices, which was first industrial application of TTP/A. To fulfill time restrictions 

required by motor control some more sophisticated designs of rounds and cluster 

had to be performed. That project proved that TTP/A protocol is suitable for time-

critical industrial applications providing efficient data transmission and error 

handling. More details about the aforementioned implementation can be found in the 

literature [2]. 
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Another important step in upper-limb prosthetics was “Totally Modular Prosthetics 

Arm with high Workability” (ToMPAW) consortium founded by the European Union in 

2007. The major concern in the provision of each limb prosthesis is to design and 

produce a solution that is most appropriate to the user needs. Such properties as level 

of losses, the strength and the needs and abilities of the user must be taken into 

account. All these factors complicates prosthesis design and makes prosthesis as 

individual as its wearer. Therefore, to simplify this process, modular approach should 

be adopted, which involves necessity of interchangeability and interoperability 

between modules provided by commercial suppliers. With the development of 

microprocessor-based controllers researchers received tool that enabled selecting 

suitable control strategy and enabling fast, secure and easy way to test it on patients. 

ToMPAW consortium addressed all these problems presented above. 

The result of that project was total arm system providing function separation 

(modularity) and simplified way of upgrades and modifications. The distributed 

system ensured that single failure did not stop the whole device. Moreover, the 

system could be assembled from the set of standardized components (both from the 

electronic and mechanical points of view), which was undoubtedly an advantage. The 

design of control system took into account reliability and modularity, which was 

made by a decreasing amount of interconnections (Fieldbus has built-in network 

communication support and data protection mechanism). The design of ToMPAW 

system enables simple adding of additional joints and functional units with decreased 

amount of changes in the system. 

 

As can be easily noticed, the development in prosthetics technology goes in the 

direction of increased modularity, number of motors and controlled joints, which 

involves more sophisticated control algorithms and communication requirements. To 

meet these expectations researchers more often think about standardization and first 

results of this process are already visible. 

Under the name of consortium, which has long sought to standardize prosthetic 

control system, the Standard Control Interface for Prosthetics (SCIP), Yves Losier from 



Chapter 1 Introduction 

 

4 

University of New Brunswick, Canada, has posted a draft of CAN-based standard  

for AIF UNB Hand Project. After some time the designed interface has gained a name: 

Prosthetics Device Communication Protocol (PDCP). To date (as far as it is known to 

author of this thesis) only one implementation on PIC (Microchip) controller platform 

was performed. The designed draft protocol is based on CAN messages transmission. 

This standard, established for automotive communication, increases modularity 

possibilities of prosthesis with protection mechanism against data corruption and 

simple electronic structure. It should be noted that with development of prosthetics 

more and more sophisticated prostheses are available for researchers. The effective 

control of joints within the device is both clinical goal as well as the challenging 

research, because of an increasing number of physical connections and data flow. The 

designed interface should therefore facilitate this process providing fast, reliable and 

simple transmission medium. 

Researchers do hope that manufacturer or researcher group will in the future benefit 

from published standard and related API or source code to ensure compatibility with 

any arm joint, hand or intrinsic hand joint. 
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2 Low-level protocols 

There are numerous commercial off-the-shelf low-level protocols providing basic 

mechanisms for transmission and robustness. Designing completely new protocol 

from scratch could not make sense when existing protocols are proven and give good 

results in many industrial applications. Instead of that a complete protocol for 

prostheses could be built on top of one of technologies like I2C, CAN or ZigBee. 

However, some features specified below should be achieved. 

Reduced wiring – simpler connections and less interference into external 

environment, also reduced production cost and failure rate; 

Availability – immediate availability of hardware and software components. 

Standardized interface should be made out of components widely available 

on the market; 

Reduced risk – technology proven in many previous applications. It reduces 

probable problems at start-up; 

Reduced complexity – only higher-level functionality should be included in 

protocol specification. The majority of hardware issues could be acquired 

by low-level protocol software. 

High capacity of the system – prostheses systems desire dense data exchange, 

which should be provided firstly by low-level protocol, secondly by 

software basing on that.  
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The comparison of the mentioned technologies was presented in Table 1. 

Table 1 Comparison of commercial low-level protocols 

Property CAN I2C ZigBee 

Differential 
transmission 

YES NO NO 

Wiring 1-2 wires 2 wires wireless 

Bit rate 0-1 Mbps 0-3.4 Mbps 20-250 kbps 

Range 40 m Not defined 10-70 m 

Power 
consumption 

10 mA 
(transmission) 

Extremely low 
To 30 mA 

(transmission) 

Required external 
components 

Transceiver chip None Transceiver chip 

 

From above interesting conclusions can be drawn. Every technology provides 

advantages. Some of them like wireless communication seem to be very good from 

prosthesis point of view. However, it follows slower data transmission and higher 

sensitivity to interference from other devices. The tendency to wiring reducing leads 

to focusing on CAN bus, which provides differential transmission using only two 

wires and relatively high bit rate. A range aspect in case of prosthesis does not play a 

significant role because of rather small distances between communication nodes. 

There is no doubt that I2C protocol wins in the category of required external 

components. Almost every microcontroller provides support for this protocol, 

decreasing cost of production and size of electronic circuits. 

Taking into account all above factors for the purpose of the PDCP CAN interface was 

chosen. 
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3 CAN interface 

Controller Area Network (CAN) was designed by Robert Bosch in the mid-1980s 

for automotive applications as a response to the increasing need for more reliable, 

safe and fuel-efficient automobiles while decreasing complexity and wiring weights. 

CAN protocol gained widespread popularity in many areas of industry like medical 

engineering, automotive electronics, engine control units, sensors or mobiles 

machines. 

 

3.1 Physical layer 

Physical layer of CAN interface was presented in Fig. 1. 

 

Fig. 1 CAN interface - physical layer 

CAN standard uses differential transmission on 2 wires (signed CAN+ and CAN-). 

Additionally, all interface in the bus should have the same ground potential therefore 

at least ground line (GND) should be also provided. Moreover, noise immunity is 

achieved by maintaining impedance on the bus with low-value resistors 120 Ω at each 

end of the bus. 

NODE
1

NODE
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NODE
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CAN-
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To reduce susceptibility to interference and minimize RF emission CAN bus wires 

should be carried in twisted pair wires – this aspect might be very important for 

reliable prosthesis operation in a noisy environment (mobile phones, computers and 

all other electric and electronic equipment). 

 

3.2 Data frame 

CAN protocol is a message-based protocol. Every node in the system receives 

every message and compares arbitration field with node identifier, filters and mask 

determines if message should be discarded or kept to be processed. CAN is often 

described as CSMA/CD protocol. Carrier Sense Multiple Access means that every node 

within the system must monitor the system bus for periods of no activity before 

trying to send any message. Moreover, multiple access means that every node on the 

bus has the same opportunity of message transfer in case of bus non-activity. 

Structure of CAN Message Data Frame was presented in Table 2. 

Table 2 CAN Message Data Frame 

SOF 
Arbitration 

Field 
Control 

Field 
Data Field CRC Field Ack Field EOF 

1b 12b or 32b 6b 0-8B 16b 2b 7b 

Data frame consists of fields that provide information about transferred message and 

enable correct arbitration. Start of Frame marks the beginning of data frame by single 

dominant bit. Next time slot is Arbitration Field consisting of 12 or 32 bits depending 

on whether Standard or Extended Frames (Standard or Extended Identifier Field) are 

being utilized (for purpose of this project only Standard Frames are used). The value 

of arbitration field defines the priority of the message. Arbitration in CAN protocol 

uses logic bit 0 as a dominant bit state that wins over recessive bit state. This implies 

the lower the value in the Message Identifier, the higher the priority of the message. In 

case of arbitration node trying to transmit message with lower priority it is forced to 

wait for the next period of no activity on the bus. Thanks to this solution risk of data 

loss is significantly reduced. Next time slot takes Control Field that contains 
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knowledge about the size of Data Field (from 0 up to 8 bytes). The CRC Field consists 

of a 15-bit CRC field and delimiter. This field is used by the recipient to determine if 

transmission errors have occurred. The Acknowledge Field is utilized to indicate 

correctness of message reception – the recipient after correct message reception puts 

a dominant bit on the bus in ACK slot time. End of Frame is marked with 7 recessive 

bits. 

 

3.3 Layer model 

CAN is a serial communication protocol that implements most of the lower two 

layers of ISO Open Systems Interconnection (OSI) Network Layering Reference Model 

was presented in Table 3 and Table 4.  

Table 3 ISO OSI model 

Layer Description 

Application (7) Network process for application 

Presentation (6) Data representation, encryption and decryption 

Session (5) Interhost communication 

Transport (4) Reliability, flow control 

Network (3) Logical addressing 

Data link (2) Physical addressing 

Physical (1) Electrical and physical specification 

This model gives the prescription of characterizing and standardizing the 

functions of communication systems in terms of abstraction layers. Functionalities, 

which play a similar role in the system, are grouped together into logical layers. 

Particular layers serve one another being responsible for individual tasks within the 

system in the order of abstraction.  
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Table 4 CAN specification in relation to ISO OSI model (literature[6]) 

Layer Detailed description 

Data link Logical Link Control (LLC):  

 Acceptance Filtering; 

 Overload Notification; 

 Recovery Management; 

Medium Access Control (MAC):  

 Data Encapsulation/Decapsulation; 

 Frame Coding (Stuffing/Destuffing); 

 Error Detection; 

 Serialization/Deserialization; 

Physical Physical Signaling (PLC) 

 Bit Encoding/Decoding 

 Bit Timing/Synchronization 

Physical Medium Attachment (PMA) 

 Driver/Receiver Characteristics 

Medium Dependant Interface (MDI) 

 Connectors 

To optimize the communication protocol on multiple media and increase 

possibilities of adaptation to certain conditions BOSCH company did not specified the 

CAN protocol in a very strict way. International Standard Organization with Society of 

Automotive Engineers has defined protocols based on CAN containing specified 

features which should be fulfilled like: differential signal transmission and speed of 

transmission (up to 1Mbps). Moreover, issues of coding and timing bound with 

synchronization were included there. All of them are related to the physical layer of 

the OSI model. The CAN specification also contains issues associated with 

serialization, error detection, frame coding and data capsulation which are definitely 

related to the data link layer of ISO/OSI model. Message filtering was also described 

within the CAN specification. The rest of the layers of the ISO/OSI model are left to be 

implemented by the software designer – this might include distribution of node id`s, 

determination of messages structure and/or providing error handling routines.
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4 Prosthetic Device Communication 
Protocol 

The aim of this chapter is to give some overview of Prosthetics Device 

Communication Protocol features that is based on CAN bus described in the previous 

section. Firstly, some specification of identifier field were presented. Secondly, 

message exchange system with functions description were outlined. 

 

4.1 Identifier field 

One of the most significant elements of the CAN message frame from the PDCP 

point of view are the identifier field together with the data field. Message addressing 

and prioritization is executed thanks to Standard Identifier Field that for the purpose 

of this protocol was divided into 3 subsections. A short description was presented in 

Fig. 2. 

 

Fig. 2 Division of Arbitration Field for PDCP 
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Message Priority Field – these 2 bits of Standard Identifier Field are used to 

assign a priority to an outgoing message. The lower value, the higher 

priority message has (0 = High Priority, 1 = Normal Priority and 2 = Low 

Priority). The last value (3) is used by the device while attempting to bind 

itself to the bus. While more than one device is trying to send message at 

the same time, arbitration logic will give the bus access to device with 

higher priority. In case of the same priority level, the message arbitration 

will decide about control basing on field described below; 

Message Mode Field – this field determines a source of message and takes the 

value of 1, when message originates from Bus Arbitrator (Bus Arbitrator 

Message Mode) or 0, when from some other device (Standard Message 

Mode). The result is the fact that in case of attempt of simultaneous 

transmissions of two or more messages (with identical Message Priority 

Fields) arbitration logic will give bus control to device with lower value of 

Message Mode Field, so to the message with Standard Message Mode. In case 

of the same priority level and message mode value decision about bus 

control is made basing on node identifier value; 

Node Identifier Field – the value of this field depends on the Message Mode 

Field value. If bus arbitrator is going to send a message, then this field is 

assigned the NodeId of intended recipient. Otherwise, if the sender is  

a normal device, then this field is assigned with NodeId of the transmitting 

device. 

It is worth noticing that the capacity of the system reaches value of 255. Node ID 

value 0 was reserved for broadcast messages within entire bus system. Message 

filtering is done using masks and filters available to control by internal registers of 

CAN controller. Therefore, different nodes within one system may work as arbitrators 

and receive all messages, while others are specified to accept only messages 

addressed to themselves.  
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4.2 Protocol functions 

Message transmission implemented in the designed Prosthetic Device 

Communication Protocol is based on request-response message exchange model. The 

system module, which sends a message, expects to receive a response unless this 

functionality does not expect a response to be returned (Device Beacon function). 

PDCP contains 15 function code (with 4 deprecated) so far and code left for future 

system commands and module-specific commands. Table with function codes was 

presented in Table 5. 

Table 5 List of function codes of PDCP (* - deprecated functions) 

Function 
Code 

Function Code Description Sender Recipient 
ISO/OSI 

layer 

0x01 Bind Device Request Device Bus Arb 3,4 

0x02 Get Device Info (*) Bus Arb Device * 

0x03 Get Device Parameter Bus Arb Device 3 

0x04 Set Device Parameter Bus Arb Device 3 

0x05 IntGetDeviceParameter (*) Device Bus Arb * 

0x06 IntSetDeviceParameter (*) Device Bus Arb * 

0x07 SetNodeId (*) Bus Arb Device * 

0x08 Suspend Device Bus Arb Device 6,7 

0x09 Release Device Bus Arb Device 6,7 

0x0A Device Beacon Dev or Arb Arb or Dev 5 or 3/4 

0x0B Reset Device Bus Arb Device 2,3,4,6,7 

0x0C Configure Get Bulk Data Transfer Bus Arb Device 3,4 

0x0D Configure Set Bulk Data Transfer Bus Arb Device 3,4 

0x0E Bulk Data Transfer 
Device or 
Arbitrator 

Arbitrator 
or Device 

3 

0x0F Update Data Channel Device Bus Arb 3 
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For better understanding of request-response model, some details of one function 

code were presented in Table 6. For this purpose Bind Device Request function was 

chosen. 

Table 6 Parameters of Bind Device Request function code 

Parameter Value 

Function code 0x01 

Response function 
code 

0x81 

Description 

Function is sent just after power-on or reset. The bus arbitrator 

respond consists of available NodeId that has not been allocated 

to another device within the system. The device is successfully 

bound with the system if NodeId used by the device and received 

NodeId are identical. Otherwise, the device is obliged to send new 

Bind Device Request using received NodeId. 

Sender Any device 

Recipient Bus Arbitrator 

Data bytes (request) 7 

Data bytes (response) 8 

In Table 7 and Table 8 the structure of CAN messages data field for Bind Device 

Request was presented. 

Table 7 Request message format (data field) - Bind Device Request function 

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 

0x01 Device Vendor ID Device Product ID 
Device Serial 

Number 
(empty) 

 

Table 8 Response message format (data field) - Bind Device Request function 

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 

0x81 NodeId Device Vendor ID Device Product ID 
Device Serial 

Number 
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In Table 9 and Table 10 one example of binding message transfer was presented. 

More details and explanation were placed below tables. 

Table 9 Bind Device Request - example 

Standard Identifier Field 

Priority Message Mode Node ID DLC 

3 0 6 7 

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 

0x01 0x03 0x00 0xA9 0x00 0x17 0x00 - 

Table 10 Bind Device Request response - example 

Standard Identifier Field 

Priority Message Mode Node ID DLC 

1 0 1 8 

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7 

0x81 0x06 0x03 0x00 0xA9 0x00 0x17 0x00 

To illustrate mechanism of message exchange between 2 modules of prosthetic 

system Bind Device Request function has been chosen. As can be easily noticed, 

response code for every code function is logical sum of function code and value 0x80. 

In case of binding request function, data field consists of device vendor id, device 

product id and device serial number. Inside of the identifier and beside of priority and 

message mode, one of the most important part is NodeId (in this example bold value 

0x06). If this NodeId is not assigned to any other device within the system, the bus 

arbitrator in response message sends back this particular value of NodeID (in this 

case 0x06). Otherwise, arbitrator sends back another NodeId and the procedure has 

to be repeated. It is worth noting that this functionality may be assigned both to link 

and transport layer of the ISO/OSI model because it concerns matters of logical 

addressing and flow control as well. 
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The last column of the table presenting description of the functions contains the 

attempt to assign particular functionalities into layers of the ISO/OSI model. So far 

there has been little discussion about it, probably because of the early stage of 

development and first software implementations of designed interface. Such division 

might help in protocol standardization in the future. 

Protocol functions implement mainly 3 and 4 layer of ISO/OSI model, network and 

transport layer accordingly. While determining function attributes, an emphasis was 

placed on feature distribution in ISO/OSI model.  However, one has to realize that it is 

often quite hard, if not impossible, to give strict information which functionalities 

should be assigned to which model layer. Functions, which are not related to setting 

parameters within a system node (Get Device Parameter or Set Device Parameter, 

Update Data Channel), may be assigned to third layer of ISO/OSI model (link layer). 

The functions that are responsible for more than setting or getting some parameters 

but also trigger some logical connection between nodes were assigned both to the 

link layer and the transport layer. This applies mainly to Bind Device Request 

described in the previous section that establishes the connection between system 

nodes and enables bus configuration. Device Beacon is the function that provides 

control over nodes in the system by checking their connection to the system. If the 

node does not send Beacon messages to Arbitrator in specified time intervals, might 

be reset. There has been a big discussion to which layer this function should be 

assigned. One, which seems to be accurate, is the session layer (interhost 

communication, session managing between applications, which may be understood as 

session maintaining between one node and other system nodes). From another point 

of view this functionality could be ascribed to link and especially the transport layer, 

as e.g. Bind Device Request, because of flow control mechanism maintaining features. 

Very similar problem refers to functions responsible for device suspending and 

releasing. Depending on whole application and interface layout, this function may 

concern higher or lower layers of ISO/OSI model. Reset Device function, which follows 

from the idea of reset, was assigned both to the data link layer (while reset also CAN 

controller should be reset) and higher model layers – software reconfiguration. 
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5 PDCP interface layout 

This section begins with the description of the Prosthetics Device Communication 

Protocol division into two parts carried out parallel with another student. Next, the 

broadest subsection is devoted to software layout of the low level part of the 

interface, which is the main topic of this work. Finally, hardware aspects and design 

of PCB board have been outlined. 

 

5.1 HAL – HLL interface 

The PDCP implementation was divided into 2 parts called as follows: 

 HLL – High Level Interface 

 HAL – Hardware Abstraction Layer 

Acronyms mentioned above are consequently used in the next part of this 

dissertation. 

High Level Layer contains implementation of binding and interface functions 

without any consideration about hardware issues. As mentioned above, this software 

was designed by Andreas Nordal [master thesis on Design, Implementation and 

Testing of High-Level Layers of PDCP for AVR, under publication], but interface 

between HLL and HAL was carried out with strong cooperation between two 

designers of the PDCP for AVR implementation. 
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The interface between HLL and HAL consists of following data structures and 

functions: 

struct can_msg – contains following fields: identifier, number of data bytes of 

message frame and data bytes; 

#define CONFIG_BUS_MODE – pre-processor directive defining node type 

(ARBITRATOR or DEVICE); 

void hal_set_mask ( uint8_t id ) – sets mask configuration of CAN controller 

providing message reception conditions; 

void hal_set_filter ( uint8_t id ) – sets filter configuration of CAN controller 

providing message reception conditions; 

void hal_msg_poll () – retries fetching an incoming message left in CAN 

controller in case of no memory to assign message to pointer for HLL; 

struct can_msg* hll_msg_alloc() – reserves unused memory for incoming CAN 

message. Pointer to can_msg structure should be returned to caller (HAL); 

void hll_msg_commit ( struct can_msg* msg ) – invokes HLL`s processing of 

CAN message referenced by msg pointer, function called by HAL after 

message reception; 

struct can_msg* hll_msg_get() – looks for messages to send in HLL and if 

found, return can_msg structure to caller. Otherwise, returns NULL; 

void hll_msg_free ( struct can_msg* msg ) – marks the memory used for CAN 

message as unused, additionally after message sending checks whether any 

message is waiting for reception from CAN controller. 

As can be easily noticed, some name convention was used. Explanation was 

presented in chapter 5.2.11 Name convention. Function usage was described precisely 

in chapters treating about message sending and receiving 5.2.6 Messages sending and 

5.2.7 Messages receiving, respectively.  
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5.2 Software layout 

This chapter precisely describes design and implementation of the Hardware 

Abstraction Layer pointing out information about factors influencing modularity, 

portability capabilities between microcontrollers from AVR family and as far as 

possible between microcontrollers from different microcontroller vendors. Firstly, an 

introduction and hardware resources used in the project have been described. 

Secondly, aspects of message sending and receiving have been outlined. Then, other 

functionalities implemented within the HAL have been described and at the end, the 

project file and code structure have been presented. 

 

5.2.1 Hardware architecture 

In Fig. 3 NIMRON board, used for protocol implementation, was presented. 

 

Fig. 3 NIMRON board layout 
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Printed Circuit Board from Fig. 3 was designed by Ole Johnny Borgersen and 

Marius Lind Volstad as USB Multifunction Board – NIMRON. Now it is used in 

programming courses by students of Cybernetic Engineering at NTNU. Thanks to 

many external peripherals it is very useful providing platform for code startup and 

programming learning. From PDCP point of view hardware listed below and placed 

on the board is essential. 

Microcontroller: AT90USB1287 – High Performance, Low-Power AVR 8-bit 

Microcontroller with 128kB of ISP Flash and USB controller; 

CAN controller: MCP2515 (Microchip) – Stand-Alone CAN controller with SPI 

Interface; 

CAN transmitter: MCP2551 (Microchip) – High-Speed CAN transceiver. 

 

Undoubted benefit of using this particular board was almost complete platform 

for code testing. Using wires connection firstly between microcontroller and CAN 

transceiver and secondly between 2 nodes could be easily reached. Board is also 

equipped in RS232 junction, which may be used in communication with PC. However, 

increasingly smaller amount of computers is equipped with this interface. USB gains 

in popularity since a couple of years. For more comfortable usage (without a need of 

binding CAN controller with microcontroller, debugging diodes or other chips with 

single wires) and further interface development new hardware platform was 

proposed in chapter 5.3 New hardware platform. 

More information about NIMRON board can be found in literature[10] or in the 

Internet1.  

                                                        
1http://www.nimron.no/P1000/ 
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5.2.2 Programming language and software platform 

Microcontroller programming in case of AVR processors may be done using 

different programming languages like: Assembler, Bascom or C. Definitely the most 

efficient is low-level Assembler. However, complex application desires expanded code 

structure, which implies rather big code volume. Therefore, one of the most user-

friendly and common programming language for this purpose is C. Implementation of 

the PDCP was programmed using that C language.  

 

One of the most common software platforms for programming of AVR 

microcontrollers are Eclipse and AVR Studio. Because Eclipse does not contain build-

in plug for AVR, some additional one has to be installed. For this reason, AVR Studio 

4.0 dedicated to AVR controllers has been chosen.  

Moreover, in the software development AVR LIBc2 library has been used. It provides  

a high quality C library for use with GCC compiler on AVR microcontrollers, while 

licensing under so-called modified Berkeley license compatible for example with GPL. 

That, thanks to code structure described in the next subchapters, allowed to avoid 

tedious process of coding of input-output port addresses or other essential low 

hardware issues while maintaining high level of portability between microcontrollers 

from the same and similar families. 

  

                                                        
2 Source: http://www.nongnu.org/avr-libc/ 



Chapter 5 PDCP interface layout 

 

22 

5.2.3 CAN controller – initialization 

MCP2515 stand-alone CAN bus controller implements standard CAN2.0B with 

transmission speed up to 1Mb/s. Communication with host is executed through  

4-wires SPI interface with speed up to 10Mb/s. Mechanism of message reception 

bases on two acceptance masks and six acceptance filters that are used to filter out 

unwanted messages, reducing microcontroller overhead.  

 

Fig. 4 MCP2515 simplified block diagram 

The diagram presented in Fig. 4 shows elements of CAN controller mediating in 

the mechanism of data transfer. Before any CAN message transmission, initialization 

has to be performed. This process concerns setting mentioned flags and masks 

depending on whether node is supposed to a DEVICE or an ARBITRATOR.  

The controller contains also registers responsible for the bit rate. Because the CAN 

protocol uses Non Return to Zero coding, which does not encode a clock within the 

data stream, therefore the clock of receiver node has to be synchronized to the 

transmitter`s clock.  

An experiment showed that with default speed of transmission all registers 

associated with bit timing can have default (unchanged) value. However, 

with increased speed of transmission (up to 1Mbps) CAN bus stops operating or 
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operation is dependent of inexplicable plexus case. In a word, the system becomes 

unpredictable, which is undesired.  

The second aspect is the possibility of different clock frequencies of individual nodes, 

which should not damage the system. Therefore, following a documentation of 

MCP2515[8]: “the bit rate has to be adjusted by appropriately setting the baud rate 

prescaler and number of time quanta in each segment”.  

Because of technological barriers or oscillator mismatch phase shifts may occur 

during transmission. To prevent transmission errors each CAN controller within  

a system must be able to synchronize to the relevant signal edge of the incoming 

message.  

Taking into account all above factors, to provide the best performance registers 

containing relevant data for bit timing and synchronization should be well adjusted to 

each other. For this purpose CAN bus timing calculator available in the Internet3 has 

been used. The highest speed together with high level of reliability was achieved at 

speed of 1 Mb/s and SPI transmission at the level of 4MHz (literature does not 

recommend speed faster than 0.25 * frequency of microcontroller operation because 

of the risk of instability). 

  

                                                        
3http://www.kvaser.com/en/support/bit-timing-calculator.html 
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5.2.4 Microcontroller resources 

The Hardware Abstraction Layer should provide quick and reliable data 

transmission between upper software layers and hardware while minimum use of 

microcontroller operation time and its resources. The latter might be needed for 

other purpose of either the PDCP or application not necessarily known right now, but 

may be used in the future. Moreover, simpler microcontrollers contain poorer 

peripheral resources, however protocol operation together with even simple 

application should still be possible. 

The designed HAL benefits from the following microcontroller resources: 

1 external interrupt – event indication from the external CAN controller; 

2 external interrupts – playing role of software interrupts for message sending 

and receiving; 

SPI interface – for communication between microcontroller and CAN 

controller; 

USART interface –for debugging purposes. 

All other resources have been left for the upper layers of the PDCP protocol and 

application designer. 

 

5.2.5 Overall system structure 

In Fig. 5 overall software design of the Hardware Abstraction Layer was depicted 

on UML sequence diagram. All diagrams concerning code structure in this paper were 

generated in Visual Paradigm for UML. For readability only main calling between 

interrupts and functions were presented. The procedure of sending and receiving 

(including references between the HLL and the HAL) was described in details in next 

chapters. 
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The HAL beside microcontroller and CAN controller initialization provides 

mechanism of message sending and receiving and error indicating in the form of 

message structure which is readable from level of the HLL or the application. 

 

Fig. 5 Overall HAL program structure – UML diagram 
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5.2.6 Messages sending 

The procedure of messages transfer from the HAL point of view is closely related 

to upper layers of interface (HLL). The CAN controller (MCP2515) exchanges data 

with microcontroller using SPI interface. Choice of implementation of the PDCP using 

AVR microcontroller without built-in CAN controller has its advantages. One of them 

is the fact that some information about bus capacity and speed of transmission for 

system with external CAN controller may be obtained. Any medium between two 

electronic circuits slows down speed of transmission of overall system. Firstly, 

because some computations indispensible for proper communication between 

circuits has to be performed and secondly, because of data exchange between 

controller and microcontroller which is definitely more time-consuming than 

updating internal registers.  

Such information can be useful because even taking into account miniaturization and 

integrated peripherals in many simple prosthesis modules some very simple and 

cheap microcontrollers will be used.  

On the other hand, the proposed software structure should be very simple for 

adaptation to microcontrollers with internal CAN controller, much simpler than in the 

opposite direction. Also time needed for computation and preparing data to 

transmission (indirectly also overall transmission time) between modules should be 

shortened. 

To illustrate the mechanism of messages sending UML diagram was presented in 

Fig. 6. 
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Fig. 6 Sending procedure - UML diagram 

As follows from Fig. 6 sending has to be initiated by the High Level Layer by 

calling a function: hal_msg_take() which calls function triggerSoftwareInterrupt() with 

an argument TRIGGER_SENDING. As the name suggests, this function implemented 

inside of the HAL software is responsible for triggering software interrupt. 

After triggering software interrupt, a pointer to the message is received from HLL by 

one of designed methods called hll_msg_get(). Afterwards, depending on which 

transmitting buffer is ready (which should be done by CAN controller before 

transmission by triggering external interrupt and setting appropriate flag), the 

software calls sendCanMsg(). This function is responsible for decoding message 

structure and sending all essential parameters like the message id, the number of 

transmitted data bytes and data bytes itself to the CAN controller. After that software 

should clear flags of empty transmitting buffers. For better memory usage 

hll_msg_free() function should be called with the pointer as the argument to mark 

memory containing CAN message as unused. 

Mentioned hll_msg_free() function should also check whether any message is ready to 

reception and, if necessary, use declared pointer to this purpose (more details about 

this aspect may be found in the chapter concerning message receiving). 

The mechanism of messages sending is relatively less important in priority than 

receiving. Node can wait with sending messages without significant losses, while 
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receiving should be handled as soon as possible in order not to overflow receiving 

buffers. Therefore, interrupt handling message sending should have lower priority 

than interrupt of message reception. In case of only one interrupt devoted to the 

whole transmission mechanism priority will be the same, of course. 

 

The whole mechanism of the Hardware Abstraction Layer is event-triggered and 

uses external interrupts both for communication with CAN controller (event 

indication) and also for triggering software interrupts by changing one of 

microcontroller pins. In this way, the triggered interrupt has a priority of one of 

external interrupts – lower only from reset interrupt, which might be desired in case 

of important message transmission. This mechanism has been used instead of Pin 

Change Interrupt (delivered by microcontroller AT90USB1287) because simpler 

microcontrollers do not support such interrupts. Electronic circuits market review 

showed that typical amount of external interrupts supported by AVR 

microcontrollers reaches 2 in case of small ones, and 8 in case of bigger ones. Taking 

into account the designed interface uses one external interrupt for CAN controller 

and 2 interrupts for sending and receiving, code may be simply adopted to only two 

external interrupt (one for controller and one for interface). 
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5.2.7 Messages receiving 

Procedure of message receiving was presented in Fig. 7. 

 

Fig. 7 Message reception mechanism (UML diagram) 
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Message receiving is triggered by the CAN controller whenever the valid message 

is received. External interrupt handler checks the source of interrupt and sets 

appropriate flags (full receiving buffer flag, in case of received message). Just after 

that suitable software interrupt is triggered by calling function 

triggerSoftwareInterrupt(TRIGGER_RECEIVING). Basing on the saved number of full 

receiving bufferreceiveCanMsg() function with appropriate parameters is called. The 

mentioned function calls hll_msg_alloc() which allocates memory for received 

message in the HLL. If allocation is not succeeded (internal stack is full), the message 

is left in the controller with remaining receiving the flag set. Also, the flag of interrupt 

inside of controller is not cleared (which preserves against message overwrite) – 

edge triggered interrupt allows to go out of interrupt routine, process some other 

data, release memory for waiting message(s) and retry message reading. This is 

executed thanks to the mechanism of sending – function hll_msg_free() called from 

sending routing should check, whether any messages are ready to fetch from 

controller. 

If allocation has been succeeded, program executes the block of transmissions with 

CAN controller to read message id, number of data length and data itself and assigns 

them to pointer reached from allocation. Afterwards, interrupt flag clearing is 

executed by calling a function clearInterruptFlag() with an appropriate flag of 

interrupt inside of the internal flag register CANINTF. Then the pointer is committed 

to the HLL by calling a function hll_msg_commit() and the receiving mechanism in the 

HAL is completed. Message is then processed inside of the HLL. 

 

5.2.8 Additional functionalities 

The designed software contains additional functionalities, which either provide 

resources handling, increase code portability or help in software debugging while 

startup at different AVR platform or further software development. The implemented 

functions were shortly described in the next part. 
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EEPROM handling - nodes of prosthesis system contain much information 

about their vendor, serial number, transmission channels and other 

relevant parameters. Some of them are used only during program operation 

and there is no need to keep them in memory. However, some of them have 

to be saved in the non-volatile memory either external or internal one. 

Because the used microcontroller is equipped with internal EEPROM (2kB) 

functions for EEPROM handling have been implemented. For some 

microcontrollers internal memory might not be big enough and external 

memory is needed – in this case good solution could be memory with SPI 

interface (SPI transmitting function is implemented for communication  

with the CAN controller). Functions for EEPROM handling are: 

void writeEEPROM (uint8_t address, uint8_t data)  

uint8_t readEEPROM (uint8_t address)  

Error handling – although message sending in MCP2515 is retried up to 255 

times, sometimes transmission errors may occur. Application working with 

the PDCP should be informed that error(s)happened, therefore error 

structure was implemented. Every error indicated by interrupt from 

controller increments the value of specified elements of this structure. The 

application can read the whole error structure by calling function: 

checkTransmissionErrors(struct errorStr*). 

USART debugging – inside of the HAL USART handling was included, which 

occurred a very useful tool while debugging because it enabled printing text 

messages in the form of strings on serial port. In conjunction with designed 

PCB board (which uses simple USB port and integrated circuit FT232RL 

emulating RS232 port) and serial terminal program installed in the 

computer, application designer is able to print both text and variable values 

on the screen. The latter is possible thanks to itoa() or sprintf() function 

provided by stdlib library of AVRLIBc. Function for string printing is:  

printUsart(uint8_t*).  
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5.2.9 File structure 

Project implementation was physically divided into several files, which structure 

was presented in Fig. 8. 

 

Fig. 8 Files structure 

The Hardware Abstraction Layer software was separated into 3 groups of files: 

Hardware configuration files: uCmaskFile.h, MCP2515control.h 

uCmaskFile.h – contains preprocessor directives which are used to mask 

AVR LIBc library.  

Example:  #define EXT_INT_PCIFR PCIFR 

At a glance, such solution might seem to be useless. However, 

microcontroller exchange desires only replacement of its header file and 

refreshing hardware configuration directives (located in config.h) without 

a need to touch “sensible software body”, which (without knowledge how 

the interface is designed or simply by accident) could be real danger for 

interface operation.  

This solution increases portability of designed software by the decreased 

number of changes in the software in case of hardware exchange. 
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MCP2515control.h – contains library for MCP2515 CAN controller. 

All essential register addresses and enumerated types facilitating 

controller handling have been contained. 

 

Interface implementation (HAL):  

irqHandlers.c, irqHandlers.h, functions.c, functions.h 

The above files contain external and software interrupt handlers and 

function declarations responsible for providing the mechanism of message 

sending and receiving by communication with CAN controller. All software 

responsible for microcontroller input-output port initialization, 

peripherals configuration and handling may be found within functions.c 

file. Within irqHandlers.c interrupt routines were defined together with 

functions responsible for message transmission. 

 

Software configuration file:  

config.h 

This file contains all software configuration code for setting bus mode for 

particular node, enabling debugging modes or defining important 

parameters of the HLL. 

It should be strongly emphasized that content of this file should be kept 

under control every time software is compiled and uploaded to 

microcontroller. Its content is shared between both the HAL and the HLL of 

the designed PDCP. 
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5.2.10 Code structure 

To show modularity and portability capabilities code structure is shortly 

described. Firstly, the designed software has been divided into the blocks of functions 

which enable simple redesign in case of hardware change. Adjusting software to 

hardware change thanks to structural approach is relatively easy and not time-

consuming. To handle the lowest hardware issues (like port or SPI peripherals 

initialization), the specified functions are implemented and only these ones have to be 

redesigned in case of hardware exchange. That division provides also transparency of 

lower layers in the relation to upper layers of the PDCP protocol and application 

designer. Definitely, it is desirable that designers of all layers above the HAL do not 

have to and cannot directly handle hardware issues. Function blocks have been 

presented below. 

Microcontroller hardware – block of functions responsible for microcontroller 

hardware initialization. It consists of following implemented functions: 

void initIntPorts(void) – the function responsible for initialization of ports 

responsible for external interrupt triggering; 

void initSPIPorts(void) – the function responsible for initialization of SPI 

ports; 

void initIO_appDesigner(void) – the empty function left for the application 

designer for I/O ports initialization; 

void initIOPort (void) – the calling functions: void initIO_appDesigner(void), 

initSPIPorts() and initIntPorts(); 

void initInterrupts_appDesigner(void) – the empty function left for the 

application designer for interrupt initialization (timers, external 

interrupts or others); 

void initInterrupts(void) –the function setting HAL interrupts and calling 

initInterrupts_appDesigner () function; 
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SPI_INIT_STATUS initSpi(void) –the function initializing SPI interface of 

microcontroller. 

CAN controller communication – the block of methods that specify 

communication with external CAN controller: 

CAN_INIT_STATUS initCan ( void ) – the function responsible for CAN 

initialization; 

uint8_t mcp2515TransmitData ( uint8_t mode, uint8_t reg, uint8_t val, uint8_t 

setClearFlag ) – the function is responsible for transmitting data to 

specified register within CAN controller. As arguments it takes 

controller mode of operation, register, value and information about flag 

clearing or setting (only Bit Change Mode); 

void clearMCP2515InterruptFlag ( uint8_t reg, uint8_t flag ) – the function 

that is used for clearing flag after external interrupt from CAN 

controller. The arguments are register address and flag (bit) to clear. 

 

Interface communication – this block contains function used in interrupt 

handlers for message sending and receiving: 

void receiveCanMsg (uint8_t regRec ) – the function that fetches received 

message from register pointed by regRec CAN controller and assign 

value to pointer to can_msg struct which is committed to HLL; 

void sendCanMsg ( struct can_msg* msgToSend, uint8_t regToSend )–the 

function that sends message (pointed by pointer msgToSend) to 

register pointed by regToSend. 
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Other functions 

void forceReset ( void ) – the function that triggers software reset; 

void wdtDisable() – the function that disables watchdog timer; 

void wdtEnable(uint8_t time) – the function that is responsible for watchdog 

initialization. 

Two functions implemented in the “Microcontroller hardware” block have been 

left empty for application designer. This allows to avoid problems coming from 

probable insufficient knowledge about interface. The application designer does not 

need to know where some additional hardware initialization should be done so as not 

to damage the PDCP. Instead, he/she is advised to fill blank functions, which are 

called in places in the code proper and safe for the interface. This solution should 

reduce the risk of unintentional errors. 

 

The important aspect has been code documentation. One of the most popular and 

common program supporting generation of documentation is Doxygen. It is  

a standard that specifies style of code comments, on which generator builds ready-to-

use .html files. The performed documentation both the HAL and the HLL of the PDCP 

is available on the CD attached to this dissertation  
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5.2.11 Name convention 

In the agreement with the student responsible for the High Protocol Layer of the 

PDCP name convention has been used. The short description was outlined below. 

CONFIG_xxx 

Both the HAL and the HLL contain part of software 

dedicated to special functionalities, which either are used 

only for debugging or for some configuration. To facilitate 

the use of the software compilation and running of the 

part of the code can be manually enables or disabled by 

changing #define preprocessor directives. 

All the directives which are related to bus device mode or 

define debugging modes begin with the prefix CONFIG_. 

Examples: CONFIG_BUS_MODE – ARBITRATOR/DEVICE  

HW_xxx 

Taking into account the above introduction, the lower 

layers of interface, in contrast to the upper layers, contain 

low level hardware initialization. To improve portability 

all ports relevant for proper operation of HAL are signed 

with HW_ prefix.  

These directives should be absolutely refreshed after the 

microcontroller exchange. 

Example: 

HW_MISO_MCP2515 – port MISO for SPI transmission 

with CAN controller. 

The second aspect that should be described concerns name convention within 

interface between the HAL and the HLL of the PDCP.  Naming, described in next part, 

was established. 
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hll_x_y_z 

The functions, implemented in the upper layers of the 

PDCP, are called from lower layers (HAL) and have prefix 

hll. Individual names are separated by “_”. 

These functions are responsible for memory allocation 

and messages handling. 

Example: 

hll_msg_alloc() – the function responsible for memory 

allocation 

hal_x_y_z 

The functions that are implemented in the lower layers of 

the PDCP and are called from upper layers (HLL) have 

prefix hal. The individual names are separated by “_”. 

These functions are responsible for module mask and 

filter setting and message polling. 

Example: 

hal_set_mask() – the function responsible for module CAN 

receiving configuration 

 

Within Hardware Abstraction Layer of the PDCP CamelCase convention is used. It 

is the practice of writing compound words, in which elements are joined together 

without a space or underscore (“_”)character.  
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5.3 New hardware platform 

Although the main idea of this project was the PDCP software implementation, 

there is no other way to check portability than to try to implement code on different 

microcontroller. Another reason for the new hardware design is a lack of AVR PCB 

board projects dedicated to this particular interface. Board used during this 

implementation described in chapter 5.2.1 Hardware architecture was very 

comfortable solution especially at the project beginning, but necessity of continuous 

wiring exchange was irritating.  Taking into account above factors, a block diagram of 

the new design was presented in Fig. 9. 

 

Fig. 9 Designed PCB board - block diagram 

Electronic circuits on the board are supplied with voltage from USB junction that 

is converted to 3.3 V by Low Dropout voltage regulator – it is the most common and 

sensible solution to have stable voltage supply from USB port with relatively the 

lowest power loss. The board contains also external supply possibilities without using 

USB by external junction (max. 5V). 
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Microcontroller benefits from USB and using FTDI circuit (which converts USB port 

for UART)it is able to communicate directly with computer using installed terminal 

program – there is no need of using RS-232 junction. 

As mentioned before, the software has been enriched with functions handling USART 

communication, so debugging process while components (e.g. microcontroller) 

exchange should be much simplified. 

The board is equipped also with CAN controller and CAN transceiver (the same IC as 

hardware given to project). Analog-Digital Converter is very important from 

prosthesis point of view, therefore together with other interface ports (like SPI, I2C) 

have own junctions on the board. This solution simplifies connection of electrodes or 

other sensors or actuators into the microcontroller and enables testing not only 

interface itself, but almost the whole prosthesis system.  

 

Fig. 10 Printed Circuit Board layout 

In Fig. 10 layout of PCB board was presented. The double-sided board has a shape 

of rectangle (88 x 45 mm) with USB-A connector which allows direct communication 

with PC. On the connector side comfortable mild notches are placed. The board 

contains also 2 buttons (one for reset, one for other purposes defined by the 

programmer), JTAG junction. I/O ports, especially analog-to-digital converter and 

interfaces like SPI and I2C are situated at the edge of board enabling simple 

connection. The designed platform is dedicated for further development of the 

standardized protocol for prosthesis. 



Chapter 5 PDCP interface layout 

 

41 

 

Fig. 11 New hardware design - after assembling 

Assembled card described in the previous part was presented in Fig. 11. 

One can ask question, why new hardware design was proposed? Comparing 

proposed new hardware together with NIMRON board undoubted advantage of the 

new design is simplicity of connections on the board and avoidance of additional 

wires desired for PDCP start-up. Board contains UART – USB converter and USB plug 

which facilitate software development. Moreover, board was equipped with external 

pins of the most essential interfaces and ports from prosthetic point of view, like ADC 

or I2C. Thanks to this solution external components may be very easily connected to 

the board and tested. On NIMRON board not all needed ports were delivered in form 

of external pins. Additionally, amount of wires used for simple testing complicates 

comfortable usage. 

NIMRON board is great base for code start-up. New designed hardware gives 

possibility of node assembling with reduced number of external wiring and simplicity 

of connections.  
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6 Testing 

6.1 Introduction 

One of the most important part of this dissertation is the discussion of testing 

results. Content of this chapter treats about code testing of the designed HAL and 

interface between the HAL and the HLL. 

As it was mentioned before implementation of the PDCP was divided into two 

parts, what definitely improved modularity and portability. However, this solution 

influenced also testing complexity at start-up, because part of codes designed by 

different programmers are threatened with negative interference, what was the case 

within this project and was described in the next parts. 

 

The Hardware Abstraction Layer, which is described in this thesis, is to some 

extent independent from the HLL, therefore testing only the HAL was definitely easier 

than the HLL alone. The HAL was tested under following terms: 

Assuring maximization of code portability and modularity – code structure 

should maximize portability and decrease amount of changes in case of 

hardware exchange; 

Providing mechanism of message sending and reception – the designed HAL 

should provide efficient mechanism of data exchange between software and 

internal registers of CAN controller. This action should be executed in 

tread-off between the least possible usage of hardware resources and 

decreased time of operation; 
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Providing data lossless transmission – designed software should fulfilled 

assumption of lossless transmission between nodes of the system; 

Providing error detection mechanism – because CAN controller, used in the 

project, provides mechanism of error detection information about actual 

bus state should be transferred to the HAL and/or application (because 

architecture of application is not known in this stage of protocol 

development, therefore and/or statement was used). 

Main features pointed above were tested and described in the next parts. 

 

6.2 Code portability – testing 

The only way of testing code portability is a hardware change and objective 

assessment of the effort made to adjust code to this new hardware. For testing code 

portability new hardware design described in 5.3 New hardware platform with 

ATmega128 working as the arbitrator and one NIMRON card, working as the device, 

were used.  

At the beginning, basing on configuration files (uCmaskFile.h and config.h) code 

was adjusted to differences between microcontrollers (AT90USB1287 and 

ATmega128). This process was not so trivial as expected, although both 

microcontrollers were from the same AVR 8-bit family. Names of many registers or 

even initialization of particular hardware resources differed slightly, what resulted in 

a couple of hours spent for finding these differences. After software error elimination 

many problems with hardware were encountered, which probably disabled proper 

operation of the device. Tedious process of looking for nonconductive vias, checking 

termination resistance at the nodes, physical connections between CAN transceivers 

or transmission between chips on the board using oscilloscope didn`t help in finding 

reasons of wrong transmission between arbitrator and device - message was not 

delivered to the device, what was indicated by errors of transmission from CAN 

controller.   
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Aspects of code portability were presented in the chapter 5.2.10 Code structure, 

because it is directly related to the way of coding, specifying functions and code 

structures. However, after portability testing a few aspects, inadvisable in term of 

portability, should be emphasized. These features were listed below. 

Data types with not precisely specified size –data types like int should be 

avoided and replaced with types uint8_t or uint16_t. Specified size allows 

microcontroller to interpret data type correctly and avoid problems with 

different meaning of the data type in different microcontrollers; 

Usage of functions specified for particular model or family of 

microcontrollers – code should be as far as possible independent from not 

universal external libraries or implement solutions masking this library to 

increase portability (in case of this project uCmaskFile.h is an example of 

such masking file of libraries delivered with AVRLIBc); 

Not clear code structure – if code is expected to be portable should be well 

structured and documented. Complexity of the project increases time of 

adjusting software to exchanged hardware. 

 

Features impacting portability related to hardware:  

Code part related strictly to hardware implemented within other code – in 

case of any hardware exchange designer is forced to look for every code 

snippets within project responsible for hardware handling. This activity 

should be avoided; 

Unpopular hardware resources or peripherals – software should as far as 

possible use hardware resources (like SPI, timers, small amount of external 

interrupts, efficient usage of built-in EEPROM memory etc.) common for 

almost all microcontrollers from different families and vendors. 
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6.3 Mechanism of message sending and receiving – testing 

The only way for message exchange testing between two nodes is sending  

a message from one node, receiving in another one and checking accordance of data 

fields. This testing is somewhat associated with testing data lossless transmission 

described in chapter 6.4 Data lossless transmission – testing, because message 

exchange mechanism should work reliably. 

CAN transmission may be easily previewed using an oscilloscope . Example of data 

transfer in designed interface between two nodes was presented in Fig. 12 and Fig. 

13. From physically point of view Arbitrator and Device (in the PDCP notation) are 

almost identical. The only difference is hidden in the mask and filter configuration, 

what cannot be observed in electric signal presented below. As it was observed after 

change of Device Id and filter reconfiguration message, arbitration field had to be also 

refreshed, otherwise message transmission stopped working. Therefore it`s 

important for upper layers of the PDCP to bear in mind necessity of filter 

reconfiguration every time NodeId has been changed (for example process of node 

binding to system). 

 

Fig. 12 Single data frame (oscilloscope) 
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Fig. 13 Measurement of the delay between data frames (oscilloscope) 

Using cursors of oscilloscope time and quantitative parameters of CAN bus signal 

were measured. 

CAN bus signal takes differential values 0 up to 1V. Time of transmission of single 

data frame with 8 byte data field takes 95 μs while time distance between frames 

equals 156 μs, what gives bus utilization at the level of 37%. Taking into account the 

test involved only 2 nodes (only one sending) that situation was acceptable. Data 

transmission between microcontroller and CAN controller takes time, which the 

delays come from. From measurements can be concluded that majority of time bus is 

inactive, but for real prosthesis system consisting of many nodes, working 

independently from each other and exchanging messages in various time moment 

through the same bus, utilization should increase. 
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Simplified diagram of testing message transmission between 2 nodes was 

presented in Fig. 14. Photo of simple system under tests was depicted in Fig. 15. 

 

Fig. 14 Test of data exchange mechanism 

 

Fig. 15 System consisting of one Arbitrator and one Device under tests 

From one node (configured as a Device) benchmarking program sends messages 

to second node (configured as an Arbitrator) one after another in while loop. To reach 

the greatest possible accuracy and not introduce undesired delays just after 

indication of empty transmitting register next message is shifted into CAN controller. 

Control over timing is kept by timer overflow interrupt which increments counter  

variable every 100 ms. This accuracy seems to be high enough for estimating average 

time of transfer of certain amount of messages.  

NODE
1

NODE
2

CAN+

CAN-

10000 msgs 10000 msgs?
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6.3.1 Impact of SPI speed on the HAL interface capacity – testing 

AT90USB1287 contains SPI interface which may be configured to operate with 

frequencies dependent of microcontroller frequency with following dividers from /2 

up to /128. From stability point of view, it is advised to use dividers equal or higher 

than /4 (more information can be found in literature[7]). 

To illustrate result of testing UART-USB converter together with Terminal v1.9b4 

was used. In the Fig. 16 screenshot from one the tests was presented. 

 

Fig. 16 Testing output from RS232 terminal 

 

                                                        
4https://sites.google.com/site/terminalbpp/ 
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Short description of benchmarking parameters for testing impact of SPI interface 

between microcontroller and CAN controller on interface capacity was presented in 

Table 11. 

Amount of messages – 10 000 

Size of data field – 8 byte 

SPI speed – variable 

Table 11 Impact of SPI speed on HAL interface capacity 

SPI 
divider 

/64 /32 /16 /8 /4 /2 

Time [s] * * 5.9 4.1 3.1 3.1 

One may read out from Table 12 that with decreased divider shorter time of 

transmission is obtained. With the asterisk (*) two slowest frequencies were signed – 

in the case of nodes working with this particular divider for these two divider values 

testing under stress caused data loss. It was checked that transmission is successful if 

sender operates with slower SPI than receiver. Slower SPI beside higher divider may 

be result of slower microcontroller frequency of operation, what can be imposed by 

lower voltage supply level. This property can be used for nodes which either mostly 

send messages (for example electrodes, but from the other hand electrode nodes are 

going to desire high density of data exchange) or rarely communicate with others 

(e.g. supply node). 

Having measured time of transmission of 10 000 messages short analyze of CAN 

bus usage can be easily made. Taking into account that preferred dividers were equal 

or higher than /4 and frames with 8 bytes data fields were transferred: 

SPI divider: / 4  (CPU frequency – 16 MHz) 

Amount of bits in single message: 108 (together with 8B data field, [Table 2 

CAN Message Data Frame Table 2]) 

Amount of messages: 10 000 
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Generated traffic:     

Time of traffic generation: 3.1 s 

CAN bus speed: 1 Mb/s 

Average measured capacity:  

Bus usage:  

Measured bus usage differs only slightly from the one, measured in 6.3 Mechanism 

of message sending and receiving – testing, what proves correctness of the 

computation. Mentioned level of the bus usage may be considered as low. This is the 

result of many data transfer between microcontroller and CAN controller before 

complete message is shifted into the CAN bus – before any value may be loaded into 

an internal register, special command deciding either writing, reading or bit set mode 

must be sent. In case of bit set mode additional transfer of mask is desired. Taking into 

account that for single CAN message average 20-25 (in the worst case up to 32)  SPI 

transfers have to be carried out, single SPI transmission is time-critical and 

determines time of whole data transfer between nodes. 

6.3.2 Impact of CAN speed for HAL interface capacity – testing 

Second stage of testing was checking the extent to which CAN speed configuration 

influences time of transmission between nodes. Result of testing (with method 

described in chapter 6.3.1) was presented in Table 12. 

Table 12 Impact of CAN speed on HAL interface capacity 

CAN speed 
[kbps] 

250 500 1000 

Time [s] 6.9 4.4 3.1 

As it can be noticed with speed of SPI decreased 4 times in relation to maximum 

speed, time of transfer increases 2.2 times. Definitely for providing high capacity of 

the whole PDCP the highest possible CAN speed should be used. 
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6.3.3 Impact of size of data field on HAL interface capacity – testing 

Important aspect of data transmission is size of the data field of a single message. 

The PDCP protocol specifies functions differing from each other with content, 

therefore usually data field is smaller than 8 bytes. This should influence the time of 

transmission. Result of testing in term of size of the data field was presented in  

Table 13. 

SPI divider: /4 (CPU frequency – 16 MHz) 

CAN bus speed: 1 Mb/s 

Amount of messages: 10 000 

Table 13 Impact of size of data field on time of transmission 

Amount of data 
bytes of data 

field 
8 7 6 5 4 3 2 1 

Time [s] 3.1 3 2.7 2.5 2.3 2.1 1.9 * 

As expected time of transmission depends highly on message content. In case of 

transfer of one data byte benchmarking program was too fast in comparison with 

designed system and caused overflow – messages were sent too fast by while loop 

and not received correctly by the second node. However, this was kind of a stress test. 

In real such situations are not expected. 

6.4 Data lossless transmission – testing 

One of the way of testing of data lossless transmission between 2 nodes of  

a system is sending specified number of data from one node and checking amount of 

correct received messages by second node. The testing method was described in 

chapter 6.3 Mechanism of message sending and receiving – testing. Results presented 

there show, that system works without losses, otherwise time measure wouldn`t be 

possible. In case of any problems with message delivering, CAN controller retries 

sending procedure up to 255 times informing HAL about it by triggering external 

interrupt and refreshing the designed error structure. 
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6.5 HAL – HLL interface testing 

Proper operation of the HAL – HLL interface is based on good cooperation 

between these two separate parts of code. In brief, the HAL takes responsibility for 

hardware resources and communication with CAN chip implementing all 

configuration and data exchange functions, while the HLL deals with message 

handling and data processing for the PDCP. Description in the chapter 5.1 HAL – HLL 

interface and also in chapters 5.2.6 Messages sending and 5.2.7 Messages receiving 

indicates that interface is pretty easy in operation. However, detection of problems 

encountered during tests and described in the next part was really time-consuming. 

The biggest problem, during first stage of combining the HAL and the HLL layer, 

was microcontroller reset. Debugger (which proved to be indispensible device in 

prototype testing and error debugging) indicated that a part of code located before 

while loop of benchmarking program was executed infinitely many times, what 

definitely was a sign of some mistake. First thoughts led to memory stack overflow, 

but it was hard to prove the suspicion. Fortunately, AVR microcontrollers were 

equipped with dedicated interrupt handler (called BADISR) called every time an 

Interrupt Service Routine (ISR) fires with no accompanying ISR handler. Using 

debugger and elimination of particular parts of the code, it managed to find wrong 

function calling order which generated “vicious circle”, stack overflow and 

microcontroller reset. The task of finding the source of described reset was hard, 

because MCU status register (MCUSR) didn`t indicate any unforeseen watchdog reset 

(which was used in software reset forcing), brown-out detection reset or other 

common sources of reset, which firstly were considered. 
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For interface testing similar method to these from previous chapters was used.  

In Fig. 17 output terminal from one the tests was presented. 

 

Fig. 17 HAL-HLL interface testing (terminal output) 
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System consisting of one Arbitrator and one Device was configured to test proper 

operation of designed interface between the HAL and the HLL. To make the test more 

realistic arbitrator was designed to send one message with one byte of the data field 

with value 0x1 (this corresponds to binding request function code). Device node was 

expected to receive message correctly, toggle diode, read data byte and sum it 

logically with value 0x80 (what corresponds to mechanism of response function code 

generation). Afterwards, Device was intended to send message back to Arbitrator, 

which checked received value and compared it with 0x81. Correctness of that 

sequence of data exchange, which involved big part of the HLL mechanism and almost 

all the HAL mechanism, was indicated by result of mentioned comparison. 

The most important stages of data exchange within interface were commented and 

presented in terminal output in Fig. 17. As it was expected procedures of sending and 

receiving successfully cooperate with the HLL mechanism designed by Andreas 

Nordal5. Message received by the Arbitrator was logic sum of data sent and value 

0x80, which firstly indicated proper the HAL operation (filter, id settings etc.) and 

secondly proved proper collaboration of these two layers of interface. Pointers 

(mentioned in Fig. 17) were used to distribute access to memory containing message 

fields between two separate HAL and HLL. As a result of that HAL is deprived of 

buffers sacrificed for messages buffering, which probably would introduce undesired 

delays and increase memory usage. Layers, using pointers, were able to exchange 

data between each other in the most efficient way. 

  

                                                        
5 master thesis on Design, Implementation and Testing of High-Level Layers of PDCP for AVR, under 
publication 
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6.6 Canadian implementation – compliance testing 

To check correctness of designed software, test based on two nodes, NIMRON card 

working as the Arbitrator and Canadian board (presented in Fig. 18) as the Device 

trying to bind itself to the system, was performed. 

 

Fig. 18 Canadian PDCP board 

Hardware implementation, presented above, consists of Microchip microcontroller on 

DIP board and extension board designed by Yves Losier [1] for the use of the PDCP. 

Main purpose of the conducted test was to check whether the HLL worked according 

to assumptions, thus it was not directly related to the low-level layers of the PDCP. 

Before testing compliance of PDCP implementation on AVR and on Canadian 

Microchip node, binding procedure was checked between two NIMRON (AVR) cards. 

Conducted tests showed, that the device (software implemented mainly in the HLL) 

was successfully bound to the arbitrator. However, tests with Canadian 

implementation gave bad results – many bind requests were received, but none of 

them was handled properly by the arbitrator. Nevertheless, communication between 

nodes with different PDCP implementation was provided. Received bind requests 

were visible on terminal, what proved good hardware design, CAN controller 

configuration and finally, mechanism of the data reception. 
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7 Suggested future work 

The designed software (in cooperation with the HLL part of the PDCP) opens wide 

possibilities for further development of communication protocol for prosthetics. 

Some aspects that may indicate some progress directions were listed and described 

below. 

Increasing of interoperability – the main idea of standardization is to enable 

using modules from different vendors within one prosthetic. The question 

that should be asked is: in whose interest is the standardization? There is 

no doubt that people who benefit from prosthetic would support this idea, 

but it is hard to say if producers would be fans of that process (now the 

user is left to replacement parts only of prosthesis producer). However, 

interoperability together with modular approach may give great results. 

Let`s imagine a situation when one module was broken, but the rest of hand 

prosthesis works fine. If prosthesis does not support the modular approach 

and any interoperability is not implemented, the user is forced to exchange 

whole prosthesis module (palm or electrode module) for the new one from 

the same producer. Firstly, this is associated with the increased cost 

(definitely higher than single part of prosthesis module), secondly with  

a strict desire of elements fit.  

If interoperability mechanism along with modularity of prosthesis design 

(both from electronically and mechanically point of view) were 

implemented, a defect of one element would not dictate the need for the 

whole big module exchange. Next, a great advantage could be system 

reconfiguration after one module exchange.  Within the system one special 

module responsible for keeping all configuration data could be designed.  
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In case of some module replacement the bus arbitrator basing on 

configuration data could assign new module to rule played by replaced 

module. Using “this sort of external memory”, even the controller unit 

(arbitrator) could be successfully replaced.  

Following this idea, one example may be outlined: simple prosthesis 

configuration could be used to adjust more sophisticated palm module to 

old control and sensors units, which should make possible simple 

prosthesis movement like palm flexion-extension. Similar situation could 

be presented in the reversed order: sophisticated control and sensor 

modules adjusted to a simple mechanical palm module; 

Software optimization – definitely if possible effort should be done on 

increased speed of protocol operation and higher system capacity. The 

complex system desires dense data exchange, especially from sensors to 

control unit and then from control to actuators unit. As far as possible, the 

speed of data computation and transmission should be increased while 

reliability maintaining; 

Software implementation for another processor families – the software 

could be implemented on more efficient 32-bits AVR microcontrollers or  

processors from ARM family. Moreover, taking into account that prosthesis 

is going to be battery supplied and time of operation is one of the most 

relevant aspects of convenience for the user, all components used in 

prosthesis should meet expectations both of processing- and energy-

efficiency. Always this is a trade-off between them, however time between 

battery recharging or replacement should be overlong as far as possible; 

Miniaturization – from electronic point of view miniaturization of PCB 

components may be desired for nodes operation in terms of size and cost.
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8 Conclusions 

Through this dissertation low-level layers of the Prosthetic Device 

Communication Protocol (PDCP) for AVR platform were designed, implemented and 

tested. Moreover, it was made an attempt of assigning PDCP functions to particular 

layers of ISO/OSI model (Table 5). 

The PDCP implementation was divided into two parallel master projects and two 

layers, which during implementation were called the Hardware Abstraction Layer 

(HAL) and the High Level Layer (HLL). During start-up indispensible devices occurred 

debugger (JTAGICE mkII) and UART – USB converter, that was used to display 

variable values or messages on RS-232 terminal program. It is hard to imagine final 

interface implementation without mentioned devices. 

Design of the HAL was based on external interrupts generated by CAN controller and 

two software interrupts triggering the message exchange. Communication with 

mentioned chip was provided with 4-wired SPI interface. Only these hardware 

resources (three external interrupt pins and SPI) were used to implement the HAL.  

It can be concluded that system is event-based, what certainly decreases 

computational load of microcontroller.  

For providing the highest possible level of portability and modularity of designed the 

HAL several steps have been taken. Firstly, file masking registers and ports, delivered 

by microcontroller header file, was designed. Secondly, code snippets responsible for 

hardware resources were collected into several functions which might be easily 

modified if needed (designer is not forced to browse every project file and look for 

code to refresh). Furthermore, all language and coding structure listed in 6.2 Code 

portability – testing were avoided. Moreover, program structure gave desirable 

hardware transparency for the HLL and application layers.  
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Finally, the least possible amount of hardware resources was used for the HAL 

implementation, what should increase software portability and open wide 

possibilities for application designer.  

To provide cooperation between codes implemented by two different authors the 

HAL – HLL interface basing on callback functions was implemented. Thanks to 

separation between layers related mainly to hardware and these implementing the 

PDCP, in case of necessity of change of one of them (hardware exchange or refreshed 

idea of communication protocol), only adequate layer had to be updated. This 

solution definitely increased software both modularity and portability. 

Results of conducted tests showed, that trial of AVR implementation of the PDCP 

designed by Yves Losier was successful. Although not all functionalities were provided 

and tested by the HLL, but tests both the HAL, interface between these two layers and 

the HAL together with the HLL brought satisfactory results in the area of binding 

(between nodes based on NIMRON boards), which probably in the near future might 

be extended to full PDCP implementation. However, implementation of binding 

procedure and other functions (HLL) delivered by the PDCP were not task of this 

dissertation.  

 

Fig. 19 Handle model - prosthesis designed at NTNU 
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In Fig. 19 example of prosthesis designed at NTNU was presented. Great advantage of 

the PDCP is versatility. It provides communication mechanism between parts of 

prosthesis responsible for different activities like gathering data (EMG sensors), 

control or supply. These parts may be almost identical for many prostheses from 

communication point of view, what makes it universal. Handle model from Fig. 19 is 

only an example of prosthesis which could benefit from designed communication 

protocol.  

It is obvious that designed interface creates possibilities of future development in 

the area of hardware and software. From the hardware point of view several aspects 

like trade-off between power- and energy-efficiency or components limitation and 

miniaturization should be taken into account. Software could be developed to provide 

protocol implementations for other hardware platform and chips to increase range of 

applications. Moreover, as it was mentioned in chapter 7 Suggested future work 

emphasis should be placed on prostheses modularity. 
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10 Attachments 

In this chapter electric schematics, layout of designed PCB and Bill of Materials 

was presented. Files, which these figures were generated from, were recorded and 

attached with CD. 
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10.1 Printed Circuit Board – electric schematic 
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10.2 Printed Circuit Board – layers 

 

Top layer (without polygons) 

 

Bottom layer (without polygons) 

 

Top overlay layer 

 

Bottom overlay layer 
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10.3 Printed Circuit Board – Bill Of Materials (BOM) 

List of materials needed for PCB assembling was presented below. 
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11 Appendix A 

For more convenient HAL handling the most important aspect were listed in 

Appendix A. 

Property Description File 

Bus mode Node mode determination 
(CONFIG_BUS_MODE): BUS_ARBITRATOR or 
BUS_DEVICE 

config.h 

SPI transmission Properties of SPI determined in function 
SPI_INIT_STATUS initSpi(). 

transmission - uint8_t transmitSpi(uint8_t 
data). 

functions.c 

CAN transmission CAN initialization specified in function 
CAN_INIT_STATUS initCan(uint8_t id) 

functions.c 

I/O configuration Function void initIOPort() calls functions:  
void initIOPort_appDesigner(), 
void initSPIPorts() and  
void initINTPorts(). 

functions.c 

Interrupt 
initialization 

All interrupt initialization is executed within 
void initInterrupts().  

Particular attention should be paid to 
settings sources of external interrupt 
(EICRA, EICRB and EICRC registers, 
configuration is not made automatically 
using prefixed CONFIG directives from 
config.h. 

Function initInterrupts_appDesigner() is 
sacrificed for application designer. However, 
queue of function calling causes, that 
initialization improper from the PDCP point of 
view will be overwritten by interface 
initialization. 

functions.c 
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Property Description File 

Software interrupt Software interrupts are based on external 
interrupts. Default configuration of external 
interrupt:  
TRIGGERING: any edge of pin change, 
PORT: specified by INT_SENDING_NUM and 
INT_RECEIVING_NUM defined in config.h. 

functions.c 

irqHandlers.c 

config.h 

CAN controller Default ID: 
Arbitrator – 0x01, Device – 0xFF 

Default mask register settings:  
Arbitrator – 0x00, Device – 0xFF 

Default filter register settings:  
Arbitrator – 0x00, Device – depending on ID 
and 0x00 for broadcast messages (FILTER 2) 

Default transmitting register settings:  
TXB0 – highest priority, TXB1 and TXB2 - 
intermediate 

functions.c 

EEPROM handling EEPROM reading -  
uint8_t readEEPROM (uint8_t address) 

EEPROM writing –  
void writeEEPROM (uint8_t address, uint8_t 
data). 

functions.c 

Watchdog void wdtEnable (uint8_t time) 
void wdtDisable () 

For software reset following function is used: 

void forceReset () – this function uses 
watchdog timer. Program initialization should 
disable manually watchdog timer, otherwise 
reset is supposed to happen. 

functions.c 

Message sending void sendCanMsg ( struct can_msg* msgToSend, 
uint8_t regToSend ) 

Code responsible for sending triggering:  
void hal_msg_poll() 
ISR ( CONFIG_INT_SENDING ). 

irqHandlers.c 

Message receiving void receiveCanMsg (uint8_t regRec ) 

Code responsible for receiving triggering:  
void hal_msg_take(); 
void triggerSoftwareInterrupt (uint8_t port) 
and ISR ( CONFIG_INT_RECEIVING ). 

irqHandlers.c 

functions.c 
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12 Appendix B 

Project was designed, compiled and tested using AVR Studio 4.0 together with 

WinAVR library. Before code uploading it is very important to remember about 

following aspects: 

Correctness of frequency of microcontroller with project configuration 

options: mentioned microcontroller frequency should be set in config.h file, 

while project configuration options for AVR Studio 4.0 are easily available 

in: Project->Configuration Options-> General; 

Setting appropriate microcontroller model inside of AVR Studio (or other 

development environment) – for AVR Studio: Project->Configuration 

Options-> General 

Refreshing microcontroller masking file – file uCmaskFile.h; 

Setting all hardware pins signed with prefix HW_ - in file config.h; 

Setting all configuration data signed with prefix CONFIG_ - in file config.h 

Browsing code in case of problems – designing totally portable code for huge 

diversity of microcontrollers is almost impossible task. Trial of uploading 

code on the new card showed, that even very similar microcontroller 

models differed from each other very slightly, what made code portability 

not easy task. 
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13 Appendix C 

As it was mentioned in the thesis for debugging and testing Terminal 1.9b6 was 

used. For more comfortable usage main features of the program were shortly 

described in the appendix. 

 

                                                        
6 https://sites.google.com/site/terminalbpp/ 
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After each! connection a device to USB port user should ReScan ports (yellow 

“cloud”). Just after that in Com Port section all available ports should be displayed and 

the one which is desired device should be chosen. After a port choosing, the Connect 

button may be pressed and if device is supposed to send messages which should be 

displayed in Receive section. It should be emphasized that designed PDCP software 

was adjusted to default settings of the Terminal program (speed, data bits, parity and 

stop bits). This results in statement, that if software is correctly configured, Terminal 

should display messages both from arbitrator and device node without any special 

additional effort made. 

The program enables also logging, which may be very useful in case of the PDCP. 

To logging process two buttons (marked with blue cloud) were created. For logging 

start StartLog button should be pressed before any transmission from/to device. 

When transfer is completed, StopLog button should be pressed and logging file will be 

saved in localization pointed by the user. 
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CD description 

Short description of CD content has been presented below. 

\code\ - designed software 

\!readme.txt 

\HAL_testing_code\ - directory containing readme file, project files, .hex files 
of arbitrator and device for only HAL testing 

\HAL+HLL\ - directory containing project files, .hex and .elf files ready for 
uploading for testing HAL together with HLL layer basing on BINDING 
operation 

\HAL_testing_code_new_hardware\ - directory containing project files for 
new hardware platform – precise explanation of encountered problems 
in txt files 

\HAL+HLL\documentation\ - Doxygen documentation of the designed 
software  

\documents\ - contains pdf files, documentations 

at90usb1287.pdf 

axonBus.pdf 

canPhysicalLayer.pdf 

Kyberd2007-JPO-The_ToMPAW_Modular_Prosthesis__A_Platform_for.pdf 

mcp2515.pdf 

mcp2551.pdf 

Obermeisser2000-Master Slave App for AxonBus.pdf 

Stavdahl2005-MEC'05 POSTER-A Bus Protocol for Intercomponent 
Communication in Advanced Upper-limb Prostheses.pdf 

Stavdahl2005-MEC'05-A Bus Protocol for Intercomponent Communication in 
Advanced Upper-limb Prostheses.pdf 

P1000_user_guide-3.pdf 
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\pcbDesign\ - PCB projects designed in Altium Designer Winter 2009 

\electric_schematics\ - directory containing electric schematics of designed 
PCB boards in pdf format  

!readme.txt 

\pcb_converter_UART_USB\ – UART-USB converter project 

\pcb_pdcpBoard\ - pdcp board project (ATmega 128, ext CAN controller) 

\pcb_pdcpBoard_at90can128\ - pdcp board project (AT90CA128) 

\pcb_converter_UART_USB_prof\ – UART-USB converter project (with 
overlays) 

\pdcpLibrary\ - library of components used in every following project 

 

\thesis\ - thesis documents 

masterAssignment_AZamojski.pdf  

masterThesis_AZamojski.pdf 
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