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Figure 1: (a) Shell member subjected to the eight force resultants. (b) Typical section in large-scale 
concrete structures.  





Figure 2: (a) Cracking of RC tie. (b) Arbitrary section in an RC tie. (c) The bond behaviour smeared 
to the interface between concrete and steel. (d) Strain profiles over the cover in an infinitesimal slice 
of the RC ties. (e) Strain profiles for the steel and concrete over the crack spacing.  
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Figure 3: (a) RC membrane. (b) RC shell.  



Figure 4: Interrelation of papers 
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crack formation stage
stabilized cracking stage







Figure 5: (a) RL6 section. (b) Comparison of mean crack widths measured for RL6 and crack widths 
predicted by the MTCM



Table 1 – Crack spacing of investigated specimens 



Figure 6 – Development of crack widths for some of the investigated specimens in Table 1.  





Table 2 - Table showing crack widths predicted for test specimen S- 20- 90 from Paper I with 
varying reinforcement configurations 
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This paper theoretically and experimentally investigates the semi-empirical formu-
las recommended by Eurocode 2 (EC2), fib Model Code 2010 (MC2010), and
Eurocode 2 with the German National Annex (DIN) for calculating crack widths in
reinforced concrete. It is shown that the formulas can be derived from the princi-
ples for the idealized behavior of RC ties. However, instead of explicitly solving
the resulting differential equations, the use of simplifications leads to inconsistent
formulas. An experimental study was carried out involving the testing of eight RC
ties to discover the modeling uncertainty of the formulas. It was found that EC2
substantially overestimated the crack widths for the RC ties. MC2010 and DIN
seemed to predict the crack widths better, but gave rather a large number of non-
conservative crack width predictions. These experimental results, combined with
the theoretical study, suggest that a more consistent calculation model should be
formulated by explicitly solving the resulting differential equation.

KEYWORDS

calculation methods, cover, crack widths, experiments, large-scale concrete
structures, modeling uncertainty, RC ties, semi-empirical formulas, tension
stiffening

1 | INTRODUCTION

There are several methods for calculating crack widths, and
a comprehensive summary of them is provided in Borosnyói
and Balász.1 This study focuses on the semi-empirical for-
mulas for calculating crack widths in cases with relatively
large bar diameters and covers, recommended by Eurocode
2 (EC2),2 fib Model Code (MC2010),3 and Eurocode 2 with
the German National Annex (DIN).4

This study is a part of an ongoing research project with
the overall objective of improving crack width calculation
methods for large-scale concrete structures, that is, for large
cross sections and thick concrete members. New revisions of
EC2 and MC2010 are also currently under way, and this
study seeks to contribute by enhancing the crack width

calculation methods currently recommended by these codes.
The main reason for including DIN in this study is that,
unlike EC2 and MC2010, it excludes the cover term in cal-
culating crack distance. The significance of the cover term
has been the subject of major discussion in the development
of the semi-empirical formulas. Some investigators argue
that it should be abandoned,5 while others claim that it
should be dominant.6–8

The aim of this study is to investigate how well the for-
mulas comply with the behavior of RC ties, from both a the-
oretical and an experimental point of view. First, the
idealized behavior of RC ties is discussed, after which the
background theory and the main assumptions used when
deriving the semi-empirical formulas is revisited. Then, an
experimental study of some relatively large RC ties is pre-
sented, which are assumed to be representative of the tensile
zones of large cross sections exposed to bending. Finally,
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the modeling uncertainty and the theoretical background of
the semi-empirical formulas is assessed and investigated.

2 | THE THEORETICAL BACKGROUND
FOR CRACK WIDTH CALCULATIONS OF
RC TIES

2.1 | The idealized behavior of RC ties

For simplicity, the idealized behavior of RC ties is discussed
in terms of axisymmetry and using the concept of slip as in
fib bulletin No. 10.9

2.1.1 | General

Figure 1 depicts an axisymmetric plane in a RC tie exposed
to a tensile force in the steel reinforcement bar ends. The
steel bar is shown elongated more than the embedding con-
crete, and the relative displacement between the materials at
an arbitrary section over the transfer length, Lt, is considered
the slip. The slip consists of two contributions: the relative
displacement at the interface between concrete and steel, si,
and the elastic shear deformation in the concrete section, ss
(see Section 1 in Figure 1). The sum of the two contributions
is the total slip, stot. The slip at the interface between con-
crete and steel is normally caused by the nonlinear behavior
of the bond due to chemical adhesion and the formation of
internal and splitting cracks.10–13 The slip caused by elastic
shear deformation is a consequence of the force applied at
the steel bar end being transmitted to the embedding
concrete.14,15

The slip can be conceptually visualized by considering
the three different sections in Figure 1. Both contributions to
the total slip are present at Section 1 (stot = ss + si). At
Section 2, however, the contribution to the total slip is solely
due to the elastic shear deformation (stot = ss). There is no
slip at Section 3 implying that any deformation in the con-
crete and steel is fully compatible, that is, there is no relative
displacement between the materials. This section also marks
the end of the transfer length, Lt.

2.1.2 | Analytical static model

Treating every aspect of the nonlinear behaviour of bond
can be rather complicated in an analytical static model, and
simplifications are needed. One possible simplification is
conceptually shown in Figure 2 by assuming that the sec-
tions are statically equivalent. Briefly summarized, the sim-
plification involves treating concrete and steel as elastic
materials and lumping all the nonlinearity to the interface
between concrete and steel by applying a proper bond-slip
law. Several authors in the literature5,16–18 have acknowl-
edged this analytical static approach.

2.1.3 | Equilibrium and compatibility

The equilibrium and the compatibility of an arbitrary
section over the transfer length can now be formulated in
accordance with the static model in Figure 2c. This means
that the equilibrium relationships for concrete and steel can
respectively be obtained as:

ð
Ac

dσcdAc = τ sið Þπϕdx, ð1Þ

and

dσsAs = −τ sið Þπϕdx: ð2Þ
Note that an integral is generally necessary in Equa-

tion (1) since a certain strain distribution in the concrete
section is assumed to occur due to the presence of elastic
shear deformation. The strain distribution in the steel
section is assumed constant. Furthermore, the relative dis-
placement at the interface between concrete and steel in
Figure 2c leads to the following compatibility equation for
the derivative of the slip:

si0 xð Þ= dsi
dx

= εsi−εci: ð3Þ

2.1.4 | The slip

Using Equations (1), (2) and (3), and assuming that Hooke's
law of elasticity applies for concrete and steel, that Poisson's

FIGURE 1 Idealized behavior of RC ties and the definition of slip

(a) (b) (c)

FIGURE 2 Statically equivalent sections: (a) “True” behavior of bond
nonlinearity caused by loss of adhesion and formation of internal and
splitting cracks; (b) Bond nonlinearity lumped as spring behavior to the
interface between concrete and steel; (c) Simplified static model assuming
that the bond nonlinearity in the spring can be modeled with a proper bond-
slip law
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ratio can be neglected, and that the strain distribution over
the concrete section does not vary over the transfer length
leads to the following second order ordinary differential
equation for the slip:

d2si
dx2

−χτ sið Þ=0: ð4Þ

where χ is a constant governing the stiffness relationship
between the concrete and steel. To solve Equation (4), the
following boundary conditions can be applied in the crack
formation stage and the stabilized cracking stage
respectively:

si Ltð Þ=0, ð5aÞ
si0 Ltð Þ=0, ð5bÞ

and

si Ltð Þ=0, ð6aÞ
si0 Ltð Þ>0: ð6bÞ

The crack width, crack distance, longitudinal stress, and
strain distribution for the materials can now be obtained by
explicitly solving Equation (4), provided that a proper bond-
slip law is applied and that a certain strain distribution over
the concrete section is assumed beforehand.

2.2 | Semi-empirical formulation

The semi-empirical formulas recommended by EC2,
MC2010, and DIN for calculating the crack width can be
derived by using the same principles as in the idealized
behavior of RC ties previously discussed. However, it will
be shown that simplifications are used instead of explicitly
solving Equation (4) to obtain expressions for the crack
width, crack distance, longitudinal stress, and strain distribu-
tion of the concrete and steel.

2.2.1 | The characteristic crack width

By considering the cracked segment of a RC tie in the stabi-
lized cracking stage (see Figure 3), the following compatibil-
ity equation can be easily derived:

wk = Sr;max εsm−εcmð Þ=2Lt;max εsm−εcmð Þ, ð7Þ

where wk is the characteristic crack width, and (εsm − εcm)
is the difference in longitudinal steel and concrete mean
strains over the maximum crack distance, Sr,max, which is
defined as twice the maximum transfer length, Lt,max.

2.2.2 | Transfer length

The transfer length was originally formulated using the so-
called slip theory and the no-slip theory.15 In the slip theory,
a slip in the interface between concrete and steel is assumed
to occur due to bond failure.19 This means solving Equa-
tion (1) under the assumption that the bond-slip function is
constant (i.e., τ(si) = τbms), that plane sections remain plane,
and that the concrete stresses at the end of the transfer length
do not exceed the mean tensile strength of concrete fctm in
the stabilized cracking stage, which leads to the following
equation for the transfer length:

Ltτ =
1
4
fctm
τbms

ϕ

ρs
, ð8Þ

where ρs = As/Ac, ef is the reinforcement ratio of the RC tie.
In contrast, the no-slip theory assumes that slip does not

occur in the interface between the concrete and steel.20 This
means that any slip is solely due to the presence of elastic
shear deformation in the concrete section, which reduces the
concrete surface stresses and implies that plane sections do
not remain plane as in Section 2 in Figure 1. However, no
mathematical relationships can be derived and a “traditional
engineering rule” is applied instead, with the claim that the
transfer length is proportional to the size of the cover c as in:

(a) (b)

FIGURE 3 Cracked RC tie: (a) Strain distribution in a fully cracked RC Tie; (b) Cracked segment in an RC tie
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Ltα = kαc, ð9Þ
where the constant kα is empirically determined.

In principle, either theory can be used to calculate the
transfer length. However, both theories represent the
reported behavior of RC ties in the literature only to a cer-
tain extent.21–26 This resulted in the pragmatic merger of
the theories to form the following equation for the maxi-
mum transfer length at the time it was formulated14:

Lt,max = Ltα + Ltτ = kαc+
1
4
fctm
τbms

ϕ

ρs
: ð10Þ

It can be shown that EC2 and MC2010 have adopted
this combined concept, however, altering the perception of
the contribution related to the no-slip theory. This
term seems rather related to the fact that the internal
cracks become smaller and eventually close as the
distance increases from the steel bar in cases of large
covers instead of the elastic shear deformations, which nor-
mally are considered negligible.27 DIN, however, has
abandoned the cover term and calculates the maximum
transfer length according to Equation (8), though not

exceeding Ltτ = 1
4

σsϕ
1:8fctm

, which accounts for the fact that the

transfer length varies in the crack formation stage as stated
by.5,17,18

2.2.3 | Mean strains

The mean strains can be derived by assuming a certain longi-
tudinal strain distribution for the concrete and steel in the
RC tie in Figure 3a. Assuming that the mean strains for con-
crete and steel can be expressed by the same integration con-
stant β yields the following mean strain expressions for steel
and concrete respectively:

εsm = εs2−βΔεsr, ð11Þ
and

εcm = βεsr1: ð12Þ
Using that Δεsr = εsr2 − εsr1 and subtracting (12) from

(11) yields the following expression for the difference in
mean strains:

εsm−εcm = εs2−βεsr2, ð13Þ
where εs2 = σs/Es are the steel strains in a crack in the
stabilized cracking stage, εsr2 = σsr/Es are the steel strains
right after a crack has formed in the crack formation
stage, and εsr1 = fctm/Ec are the concrete strains across
the section at cracking. The steel stresses right after a

crack has formed can be expressed as σsr =
fctm
ρs

1 + αeρsð Þ
when considering the behavior of a RC tie in the
crack formation stage, where αe = Es/Ec. Inserting these
relationships in Equation (13) finally yields the expression
for the difference in mean strains in the stabilized cracking
stage as:

εsm−εcm =
σs−β fctm

ρs
1 + αeρsð Þ

Es
: ð14Þ

A similar expression can be derived in the crack for-
mation stage by considering the steel strain distribution
for this cracking stage in Figure 3a. The mean steel
strains can then be expressed as: εsm = εsr2 − βΔεsr.
Using the same procedure as above yields the following
expression for the difference in mean strains in the crack
formation stage:

εsm−εcm =
σsr
Es

1−βð Þ: ð15Þ

EC2, MC2010 and DIN have all adopted Equation (14)
for the stabilized cracking stage. In the crack formation
stage, however, only MC2010 uses Equation (15), while
EC2 and DIN use the following expression instead:

εsm−εcm = 0:6
σs
Es

: ð16Þ

Hence, Equations (15) and (16) yields the lower bound-
ary for the difference in mean strains.

3 | EXPERIMENTAL STUDY

3.1 | Geometry, material properties, and test set-up

The behavior of four square cross sections (400 × 400 mm),
reinforced with eight deformed steel bars, was experimen-
tally investigated. The bar diameter was either 20 or 32 mm,
while the cover was either 40 or 90 mm (see Figure 4). The
RC ties were pulled in tension and had a total length of 3 m,
of which 2 m were assumed to be representative for the
crack pattern due to the anchorage zones at each end. See
Figure 5 for the test set-up.

The concrete quality was B45 MF40, which is a Nor-
wegian concrete typically used for bridges with a water-to-
cement ratio of 0.4. The cement type was Norcem Stan-
dard FA Cement and conforms to the requirements of
CEM II/B-M 42,5R according to NS-EN 197-1:2011.28

The specimens were cured under wet conditions to avoid
drying shrinkage. Table 1 shows the compressive strength,
tensile strength, and Young's modulus after 28 days. The
reinforcement quality was B500NC according to NS
357629 with a yield strength of 500 MPa and Young's
modulus 200,000 MPa. The threaded rods used in the
anchorage zone had a steel quality denoted as 8.8, that is,
with a yield limit of 640 MPa and an ultimate strength of
800 MPa.

An additional set of four parallel RC ties were cast, giv-
ing a total of eight RC ties to be investigated in the experi-
mental study. Two identical RC ties were loaded to different
loading regimes corresponding to either the crack formation
or the stabilized cracking stage. The objective was to study
the internal crack pattern at the two load levels by injecting

TAN ET AL. 1439



epoxy resin in the cracks. These results will be documented
in a subsequent paper, while this paper mainly focuses on
the surface cracks. The RC ties were named X-ϕ-c, where X
represents the loading regime either as the crack formation

(F) or stabilized cracking stage (S), ϕ represents the steel bar
diameter and c represents the cover (see Table 2 and
Figure 4).

The tensile force from the loading rig was transferred
to the RC tie by mounting a 30 mm thick steel plate with
welded ribs onto four M36 rods that were embedded in
the anchorage zone at each end (see Figure 5b). The
anchorage of the steel rods inside the specimen was
strengthened with steel nuts, while stirrups, additional lon-
gitudinal reinforcement, and externally prestressed steel
frames were mounted to prevent anchorage failure. The
load was applied in a deformation-controlled procedure
with a velocity of 0.2–0.4 mm/min. Strain gauges were uti-
lized to monitor eccentricities caused by the self-weight of
the RC ties or geometric deviations before cracking. The
strain measurements showed that these effects were small,
which was confirmed by the fact that cracks were usually
observed to form instantaneously through the whole
section.

3.2 | Measuring technique using image analysis

The development of surface cracks was documented using a
digital single-lens reflex (DSLR) camera with a 50 mm f/2.5
macro lens mounted to a tripod system (see Figure 6a,b). Each
crack formed was measured section-wise over a length of

FIGURE 4 Cross sections of RC ties

FIGURE 5 Test set-up: (a) Test set-up for RC ties; (b) Anchorage zone details

TABLE 1 Material properties of concrete at 28 days

Specimen Date of test Measured fc [MPa] Mean fc [MPa] Measured fct [MPa] Mean fct [MPa] Measured Ec [GPa] Mean Ec [GPa]

1 March 03, 2017 74.1 3.98 27.3

2 March 03, 2017 73.2 74.3 4.03 4.14 27.2 27.4

3 March 03, 2017 75.5 4.41 27.6

1440 TAN ET AL.



40 mm to the level of the reinforcement (see Figure 6c,d,e).
This is in agreement with the recommendations in MC2010,
that is, that the crack width measured at the elevation of the
reinforcement is comparable to the characteristic crack width.
Each section measured was afterwards processed and ana-
lyzed in the open source program Fiji (ImageJ) (2012).30 The
average crack width for each section measured was then
obtained by applying a user-supplied subroutine to the pro-
gram. Only the crack widths along the vertical faces were
documented due to the time consuming measuring technique.
This resulted in up to six section average crack width mea-
surements for each crack formed (see Figure 6d).

One of the main advantages of using this imaging tech-
nique is that the inhomogeneous propagation of formed
cracks could be properly accounted for, for example, cracks
do not form in a straight line and crack widths vary over the
concrete surface (see Figure 6e).

3.3 | Statistical analysis for determining crack widths
and modeling uncertainty

The crack widths that are of primary interest from the experi-
mental study and that are comparable to the characteristic crack
width, wk, are the 95%-fractile of the crack widths measured,
w0.95, for each RC tie. To obtain this value, the statistical method
of Engen et al.31 was used to account for the uncertainty related
to the limited number of section average crack width measure-
ments for each formed crack. Generally, the mean and the vari-
ance of the crack width for a formed crack i with ni
section average crack width measurements can be estimated as:

yi =
1
ni

Xni
j=1

yi, j, ð17Þ

and

S2i =
1

ni−1

Xni
j=1

yi, j−yi
� �2, ð18Þ

where yi,j is the jth section average crack width measurement
of crack i. See Figure 6c,d for practical examples of the
indexing. Furthermore, it can be shown that the mean and
the variance of a group with m formed cracks in a RC tie can
be respectively estimated as:

ytot =
1
ntot

Xm
i=1

niyi, ð19Þ

and

S2tot =

Pm
i=1 ni−1½ �s2i

� �
ntot−1

+

Pm
i=1 niy2i

� �
−ntoty2tot

ntot−1
= s2tot,w + s2tot,b,

ð20Þ
where ntot =

Pm
i=1ni is the total number of section average

crack width measurements in a group with m formed cracks
in a RC tie. It should be noted that S2tot includes both the var-
iation of the crack width within a formed crack, s2tot,w, and

the variation in the crack width between cracks, s2tot,b, in a

RC tie. The standard deviation (SD), Stot, and the coefficient
of variation, Vtot, for a group with m formed cracks can now
be obtained based on the mean, ytot, and variance, S2tot.

Assuming that the crack widths are normally distributed,
a future prediction of the 95%-fractile of the crack width in a
RC tie can be estimated as:

w0:95 = ytot− tα=95%,vstot

ffiffiffiffiffiffiffiffiffiffi
υ+2
υ+1

r
, ð21Þ

TABLE 2 Statistical properties showing the number of total measured crack widths ntot, the mean ytot and the variance stot in a member. s2tot,w=s
2
tot indicates

the contribution of the within-cracks variation to the total variance, while w0.50 and w0.95, respectively, shows the median and 95%-fractile. These values are
obtained by assuming that the crack widths are log-normally distributed

Member P [kN] σs [MPa] ntot ytot stot s2tot,w=s
2
tot w0.50 [mm] w0.95 [mm]

F-20-40 503 200 42 −2.53 0.31 0.77 0.08 0.13

S-20-40 520 207 6 −2.27 0.11 1.00 0.10 0.13

667 265 6 −2.07 0.12 1.00 0.13 0.16

808 321 68 −2.05 0.32 0.61 0.13 0.22

F-32-40 753 117 51 −2.90 0.22 0.71 0.06 0.08

S-32-40 743 115 30 −3.15 0.27 0.65 0.04 0.07

1,012 157 50 −2.91 0.34 0.84 0.05 0.10

F-20-90 585 233 30 −1.93 0.21 0.74 0.15 0.21

S-20-90 574 228 42 −1.99 0.26 0.60 0.14 0.21

736 293 42 −1.64 0.27 0.50 0.19 0.31

1,003 399 54 −1.44 0.31 0.36 0.24 0.40

F-32-90 804 125 41 −2.47 0.37 0.68 0.08 0.16

S-32-90 805 125 36 −2.36 0.34 0.44 0.09 0.17

1,004 156 47 −2.27 0.42 0.27 0.10 0.21

1,201 187 47 −2.11 0.40 0.31 0.12 0.24

1,363 212 45 −1.91 0.34 0.35 0.15 0.27
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where tα = 95 % ,v is the 95%-fractile of the t-distribution with
ν = ntot − 1 degrees of freedom. Based on the estimated
95%-fractile of the crack width, w0.95, the modeling uncer-
tainty, θ, can now be calculated as:

θ=
w0:95

wk
ð22Þ

where wk is the characteristic crack width calculated using
the semi-empirical formulas recommended in EC2,
MC2010, or DIN. The crack width measured, w0.95, can be
obtained by assuming both a normal and log-normal distri-
bution of the crack widths. The difference is small and, in
the following, only the results assuming log-normally dis-
tributed crack widths are presented in accordance with
CEB.32 This means that the natural logarithm of the
section average crack width measurement is assumed nor-
mally distributed, thus replacing yi, j with lnyi, j in Equa-
tions (17) and (18). The modeling uncertainty is assumed to
be log-normally distributed in accordance with the sugges-
tions in the JCSS Probabilistic Model Code.33

4 | EXPERIMENTAL RESULTS

4.1 | The modeling uncertainty

The ratio, s2tot,w=s
2
tot, in Table 2 indicates that the contribu-

tion of the within-cracks variation to the total variance, S2tot,
is significant and justifies the use of Equations (17) to (21).
The ratio of s2tot,w=s

2
tot = 1 in the first two loads steps for S-

20-40 can be explained by the fact that only one crack was
measured. Furthermore, the relatively low ratio, s2tot,w=s

2
tot, in

the last load steps for S-20-90 and S-32-90 can be explained by
the observed variation in crack distances for these members.

The characteristic and measured crack widths at the respec-
tive load steps for the RC ties are given in Table 3. The mean
material properties in Table 1 were used in determining the
characteristic crack widths. Furthermore, the characteristic
crack widths determined in accordance with EC2 and MC2010
were based on using the integration constant β = 0.6 since the
RC ties could be considered to be subject to short-term loading

(a)

(c)

(d) (e)

(b)

FIGURE 6 Measuring crack widths: (a) Set-up for measuring crack widths with DSLR camera section-wise at vertical faces; (b) Set-up for measuring crack
widths with DSLR camera section-wise at top faces; (c) Numbering of the cracks formed; (d) ni measured section crack widths at the level of the
reinforcement for the formed crack i; (e) Cracks were averaged over a length of 40 mm at section j due to the inhomogeneous propagation of cracks
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only, while a factor of β = 0.4 was used for DIN in accor-
dance with the provisions in this Annex. It was assumed that
the effective concrete area was equal to the cross-sectional
area, that is, Ac, ef = Ac. This is reasonable since it was
observed that the RC ties usually seemed to crack through the
whole section. This assumption was tested by pouring water
into the cracks in the top face and observing that it leaked
through the whole of the bottom face for RC tie S-32-40,
which had the smallest crack widths and a low cover.

The modeling uncertainty for the respective formulas is
graphically plotted in Figure 7 and summarized in Table 4,
which shows the mean μθ, the SD σθ, the coefficient of varia-
tion Vθ, and the minimum and maximum values for the model-
ing uncertainty. The number of observations in which the crack
widths measured exceed the crack widths calculated is also
shown, that is, n(θs > 1). In total, 16 values for the crack
widths measured w0.95 were obtained from the experiments
(see Table 2), which gives 16 observations for the modeling
uncertainty. The median w0.5 is also given to elucidate the scat-
ter of the measurements.

The results show that EC2 has the lowest SD and coeffi-
cient of variation, implying that the scatter of the modeling

uncertainty around the mean is lower than with MC2010 and
DIN. However, EC2 consistently predicts crack widths sub-
stantially on the conservative side, which is shown by the
low mean value and the relatively low maximum value for
the modeling uncertainty. In practice, this implies that EC2
consistently predicts crack widths that are on average more
than half the size of the largest crack widths measured (95%-
fractile) in the RC ties. Nevertheless, all of the predicted
crack widths according to EC2 are on the conservative side.

MC2010 and DIN seem to predict the crack widths better
in terms of the mean for the modeling uncertainty. However,
the relatively high SD and coefficient of variation for both
codes yields a larger scatter around the mean than with EC2.
This implies that MC2010 and DIN predict the crack widths
more inconsistently than EC2 and do so occasionally on the
nonconservative side. In fact, MC2010 predicts five and
DIN predicts seven crack widths that are on the nonconserva-
tive side, which are relatively large numbers compared to the
total observations for the modeling uncertainty. This is particu-
larly pronounced for the RC ties with large bar diameters and
covers (see Table 3). It should be mentioned though, that the
reported modeling uncertainties are representative for this

TABLE 3 Load steps and the corresponding crack widths and cracking stages in each member

Load Crack width Cracking stage

Member P [kN] σs [MPa] wk, EC2 wk, MC2010 wk, DIN w0, 95 EC2 MC2010 DIN Observed

F-ϕ20-c40 503 200 0.34 0.25 0.16 0.13 F F F F

S-ϕ20-c40 520 207 0.35 0.25 0.17 0.13 F F F F

667 265 0.45 0.25 0.28 0.16 F F F S

808 321 0.55 0.31 0.36 0.22 F S S S

F-ϕ32-c40 753 117 0.14 0.08 0.08 0.08 F F F F

S-ϕ32-c40 743 115 0.14 0.08 0.08 0.07 F F F S

1,012 157 0.19 0.12 0.11 0.10 F S S S

F-ϕ20-c90 585 233 0.52 0.31 0.22 0.21 F F F F

S-ϕ20-c90 574 228 0.51 0.31 0.21 0.21 F F F F

736 293 0.65 0.31 0.31 0.31 F F F S

1,003 399 0.88 0.59 0.50 0.40 F S S S

F-ϕ32-c90 804 125 0.22 0.11 0.08 0.16 F F F F

S-ϕ32-c90 805 125 0.22 0.11 0.08 0.17 F F F F

1,004 156 0.27 0.15 0.11 0.21 F S S S

1,201 187 0.32 0.21 0.15 0.24 F S S S

1,363 212 0.38 0.26 0.18 0.27 S S S S

FIGURE 7 The modeling uncertainty for EC2, MC2010 and DIN
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experimental series and are not intended to serve as a generali-
zation for the performance of the formulas.

4.2 | Crack distances

Table 5 shows the maximum calculated crack distance and the
maximum measured crack distances for the RC ties in the sta-
bilized cracking stage, which should be comparable according
to the discussions in Section 2.2.2 above. The mean values are
also shown. The table shows that EC2 and MC2010 predict
the maximum crack distances on the conservative side in all
cases, while DIN underestimates the maximum measurements
for S-32-40 and S-32-90. The table also elucidates that the
maximum crack distances are more influenced by the cover
than the bar diameter. The measured values show that the
maximum crack distance increases with increasing cover for a
constant reinforcement ratio. This seems to comply with the
formulas recommended by EC2 and MC2010, which
acknowledge the significance of the cover in calculating the
maximum crack distance. However, the increase in the maxi-
mum crack distance due to the influence of the cover seems to
be dramatically overestimated in EC2, which can be seen from
the contribution of the no-slip term, 2Ltα, to the maximum
crack distance. MC2010 appears to predict the increase better.
Nevertheless, DIN actually gives the best overall agreement
with the measured maximum crack distances.

5 | DISCUSSION

5.1 | Semi-empirical formulas in theory

The composed transfer length in Equation (10) is conceptu-
ally visualized in Figure 8 in accordance to the origin of the
formula, which shows that plane sections remain plane and
that a slip in the interface between concrete and steel occurs
at Section 1 as assumed in the slip theory. Compatibility in
deformation is restored on the right-hand side of Section 2,
which also marks the end of the transfer length according to

the slip theory. The addition of the transfer length according
to the no-slip theory implies a sudden incompatibility in
deformation on the left-hand side of Section 2, which means
that plane sections no longer remain plane due to the pres-
ence of elastic shear deformation. Compatibility is restored
at Section 3, which marks the end of the transfer length
according to the no-slip theory as well as the end of the com-
posed transfer length. In other words, the combined concept
implies that compatibility and incompatibility in deformation
both occur at the same time at Section 2, and that compati-
bility in deformation occurs twice within the same composed
transfer length, at Sections 2 and 3. Although the cover term
in the transfer length formula recommended by EC2 and
MC2010 has a different physical meaning than originally
formulated, does not change the fact that the current formu-
lation is in conflict with the basic principles of solid mechan-
ics and violates the equilibrium for the concrete section in
Equation (1). Moreover, a merging of the slip and the no-slip
theory, two theories based on exactly opposite assumptions,
can be considered inconsistent, ambivalent and controversial
from a statics point of view.

5.2 | Semi-empirical formulas in practice

An important physical factor is how well the semi-empirical
formulas according to EC2, MC2010 and DIN capture the
cracking behavior in the crack formation stage and the stabi-
lized cracking stage. This can be monitored by using Equa-
tions (14), (15) and (16) to indicate the cracking state of the
RC ties at the current load level and then comparing it to the
observed experimental behavior (see Table 3). This shows that
EC2 assumes that the RC ties are in the crack formation stage

TABLE 4 Statistical properties for the modeling uncertainty showing
mean μθ, SD σθ, coefficient of variation Vθ, minimum and maximum
observed values and the number of observations where θ > 1

μθ σθ Vθ Min Max n(θ > 1)

EC2 0.54 0.17 0.32 0.36 0.78 0

MC2010 0.93 0.38 0.40 0.52 1.58 5

DIN 1.17 0.55 0.47 0.58 2.03 7

TABLE 5 Crack distances. Ltα and Ltτ, respectively, indicates the contribution from the no-slip and the slip theory to the maximum transfer length Lt, max,
where the calculated maximum crack distance is given as Sr, max = 2Lt, max. The measured values from the experiments for the maximum crack distance and
the mean crack distance Sr, m are also shown

Load EC2 [mm] MC2010 [mm] DIN [mm] Measured values [mm]

Member P [kN] σs [MPa] 2Ltα 2Ltτ Sr, max 2Ltα 2Ltτ Sr, max Sr, max Sr, max Sr, m

S-20-40 808 321 136 433 569 80 354 434 353 250 163

S-32-40 1,012 157 136 271 407 80 221 301 221 240 178

S-20-90 1,003 399 306 433 739 180 354 534 353 290 217

S-32-90 1,363 212 306 271 577 180 221 401 221 320 266

FIGURE 8 Composed transfer length formulas conceptually visualized
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except for one load step. This applies even to relatively large
steel stresses, such as 321 MPa for S-20-40 and 399 MPa for
S-20-90 in the last load steps. MC2010 and DIN seem to cap-
ture this better than EC2. For MC2010, the better compliance
between the predicted and observed behavior seems to be
related to the fact that the difference in mean strains are explic-
itly derived based on the assumed behavior of the RC ties in
the crack formation stage, as shown in Section 2.2.3. The bet-
ter compliance for DIN seems to be related to the fact that the
tension stiffening factor β = 0.4 seems to fit better than
β = 0.6 in the stabilized cracking stage. Recent studies in the
literature also support the idea of reducing the tension stiffen-
ing factor in the stabilized cracking stage.5,34

The experimental study suggests that the maximum crack
distance is significantly influenced by the cover, which is sup-
ported by another experimental study in the literature.35 More
remarkable is the limited influence of the bar diameter, which
contradicts the beneficial effect of using large bar diameters in
reducing the transfer length according to the slip term in
Equation (10) and as observed in Table 5. Moreover, DIN
does not acknowledge that the crack distance increases with
increasing cover under the assumption that Ac, ef = Ac, which
contradicts the observed behavior of the RC ties in this experi-
mental study. An interesting point, however, is that DIN gives
the best overall agreement with the maximum crack distances
measured. These contradictory observations, combined with
the theoretical study, suggest that the effect of cover and bar
diameter should be implemented more consistently than is
done in the current semi-empirical formulas.

5.3 | Suggestions for improvements

One suggestion for a more consistent calculation model is to
solve Equation (4) explicitly, by applying a proper bond-slip
law that takes into account the bond nonlinearity in RC ties
and by assuming an appropriate strain distribution over the
cover in Equation (1). In this way, the contribution to the total
slip can be consistently accounted for at each section of the
RC tie without violating the equilibrium, which is an effect
the semi-empirical formulas are essentially attempting to
model. Moreover, one of the main advantages of explicitly
solving Equation (4) is that it is not necessary to assume a cer-
tain longitudinal strain distribution for concrete and steel to
obtain the crack widths. Instead, the chosen bond-slip law and
the contribution of the embedding concrete will explicitly
account for the tension stiffening. The challenge is then lim-
ited to determining the bond-slip law properties and the strain
distribution in the concrete, for instance, by conducting physi-
cal and numerical studies. Some of the authors in this paper
are currently working on such improvements.

It should be mentioned though, that these suggestions
lead to more complex crack width calculations that primarily
are intended for large-scale concrete structures, that is, where
the use of large covers and bar diameters is typical. The

simplifications in the semi-empirical formulas, however,
seem adequate in conventional cases.

6 | CONCLUSION

The behavior of RC ties has been investigated from both an
experimental and a theoretical point of view. The aim was to
study the applicability of the semi-empirical formulas
recommended by EC2, MC2010 and DIN in predicting
crack widths for large-scale concrete structures, where large
bar diameters and covers typically are used. The theoretical
study showed that the semi-empirical formulas could be
derived by using the principles of the idealized behavior of
RC ties. However, instead of solving the resulting differen-
tial equation explicitly, simplifications are made, resulting in
semi-empirical formulas that account for the physical behav-
ior of RC ties in a rather inconsistent manner that is also in
conflict with the basic principles of solid mechanics.

The conducted experimental study showed that EC2 con-
sistently predicted crack widths that were substantially on the
conservative side. MC2010 and DIN seemed to predict the
crack widths better, but the relatively large standard deviation
and coefficient of variation for the modeling uncertainty
resulted in a large number of predicted crack widths on the
nonconservative side. This was particularly pronounced
for large bar diameters and covers. The experimental study
also showed that the cover governs the crack distance and
thus the crack widths, which is acknowledged by the semi-
empirical formulas in EC2 and MC2010, yet DIN actually
gave the best agreement with the crack distances measured
even though the cover term is abandoned in this code. The
reported modeling uncertainties are representative for this
experimental series and are not intended to serve as a general-
ization for the performance of the formulas.

These contradictory observations, combined with the
theoretical study, suggest that a more consistent calculation
model should be formulated for large-scale concrete struc-
tures. It is proposed that the influence of cover and tension
stiffening can be addressed more consistently by
(a) selecting a proper bond-slip law, (b) assuming an appro-
priate strain distribution over the concrete cover, and
(c) explicitly solving the differential equations for the slip.
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NOTATIONS

Ac concrete area
Ac,ef effective concrete area
As steel area
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c cover
dx infinitesimal increase x-coordinate
Ec concrete Young's modulus
Es steel Young's modulus
fctm mean tensile strength for concrete
j section in a crack
kα empirical constant in the no-slip theory
Lt transfer length
Lt, max maximum transfer length
Ltα transfer length according to no-slip theory
Ltτ transfer length according to slip theory
ni number of section average crack width measure-

ments for a crack in a RC tie
ntot total number of section average crack width mea-

surements for a group of cracks in a RC tie
m total number of cracks in a RC tie
P applied force in the RC ties
si slip at interface between concrete and steel
ss slip caused by shear deformations in the concrete

section
stot total slip in a section over the transfer length
S2i variance of section average crack width measure-

ments for a crack
S2tot variance of total section average crack width mea-

surements for a group of cracks in a RC tie
Sr, max maximum crack distance
Vθ coefficient of variation for the modeling

uncertainty
w0, 95 95%-fractile of the measured crack widths
wk characteristic crack width
wk, DIN characteristic crack width recommended by DIN
wk, EC2 characteristic crack width recommended by EC2
wk,

MC2010

characteristic crack width recommended by
MC2010

X loading regime for RC ties in either crack forma-
tion stage or stabilized cracking stage

yi, j average crack width measurement for the jth
section in a crack

yi mean of section average crack width measure-
ments for a crack

ytot mean of total section average crack width mea-
surements for a group of cracks in a RC tie

αe modular ratio
β tension stiffening factor
Δεsr difference in steel strains at a crack and at the end

of transfer length in crack formation stage
εci longitudinal concrete strains at interface
εcm longitudinal mean concrete strains
εs2 steel strains at a crack in stabilized cracking stage
εsr1 steel strains at the end of the transfer length in

crack formation stage
εsr2 steel strains in crack in crack formation stage
εsm longitudinal mean steel strains
εsi longitudinal steel strains at interface

μθ mean value for the modeling uncertainty
σc concrete stress
σs steel stress
σsr steel stress at a crack in crack formation stage
σθ SD for the modeling uncertainty
ρs reinforcement ratio
τ bond stress
τbms mean bond stress
φ steel bar diameter
χ stiffness relationship between concrete and steel
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The cracking behaviours of reinforced-concrete (RC) ties are investigated by conducting virtual experiments
using non-linear finite-element analysis. The assumptions in the model are verified by benchmarking the classical
experiments of B. Bresler and V. V. Bertero as conducted in 1968 and P. J. Yannopoulos, conducted in 1989, which
shows good agreement in the comparison of steel strains, development of crack widths and crack spacing.
Furthermore, virtual experiments on four different RC ties show that the size of the cover and not the bar diameter
governs the crack spacing and thus implicitly the crack width. An increase of the bar diameter has a beneficial
effect in reducing the steel stress and the associated steel strains, which in turn reduces the crack width. Finally,
a single bond–slip curve is sufficient in describing the average bond transfer of an arbitrary RC tie.

Notation
Ac area of concrete
As area of steel
c cover
Ec modulus of elasticity of concrete
Es modulus of elasticity of steel
Fc force resultant of concrete
Fcr cracking force of concrete
fc compressive strength of concrete
fct tensile strength of concrete
fy yield strength of steel
Gf tensile fracture energy of concrete
Gfc compressive fracture energy of concrete
L bar length
N applied force at steel bar ends
R radial axis
s slip
s1 slip parameter in bond–slip curve according

to fib Model Code 2010
sr specific distance from the loaded end
ti thickness of interface layer between concrete and steel
wi crack width at the steel bar surface
wo crack width at the specimen surface
x position over the bar length
xcr crack spacing
xi x-coordinate of integration points adjacent

to the steel and outer concrete surface
xr transfer length
α curve parameter in bond–slip curve according

to fib Model Code 2010
Δx half finite-element length
εc strains at outer concrete surface

εci concrete strains at integration points
εct cracking strain concrete
εs strains at steel surface
εsi steel strains at integration points
νc Poisson ratio of concrete
νs Poisson ratio of steel
ρeff reinforcement ratio
σs steel stress
τ1 bond stress parameter in bond–slip curve

according to fib Model Code 2010
τbm;xcr mean bond stress over the crack distance
ϕ bar diameter

Introduction
In deriving an analytical crack width calculation model for
reinforced-concrete (RC) elements, the roles of (a) bond at the
steel–concrete interface and (b) cover become two key par-
ameters (Balázs et al., 2013; CEB, 1985). This paper investi-
gates these two parameters using non-linear finite-element
(FE) analyses (NLFEA), which were validated against classical
experiments. The tensile strength of concrete is a third key par-
ameter. This parameter has been investigated thoroughly in the
research project of CEOS.fr (Barre et al., 2016), in which the
scale effect is accounted for in determining the concrete tensile
strength, and will not be addressed in detail here.

The roles of bond and cover are implemented in the empirical
formulation recommended by the American Concrete Institute
(ACI, 2001) and in the semi-empirical formulation rec-
ommended by Eurocode 2 (CEN, 2004) and fib Model Code
2010 (MC2010) (fib, 2013) in a relatively simplified manner.
The bond and cover terms in the crack spacing formula of
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Eurocode 2 and MC2010 are based on two different mechan-
ical models and are as such in conflict with the basic principles
in statics (Tan et al., 2018). The authors in this paper claim
that a more mechanically consistent crack width calculation
model can be formulated by including the two key parameters
in deriving and solving the second-order differential equation
for the slip. In such an analytical model, the choice of a local
bond–slip curve becomes essential. Although the relevance of
a local bond–slip curve is well understood for pull-out tests
(fib, 2000), this seems not to be the case for RC ties subjected
to pure tension. Although several authors have contributed to
the discussions by conducting experiments on concentric
tension specimens (Dörr, 1978; Jiang et al., 1984; Mirza and
Houde, 1979; Nilson, 1972; Somayaji and Shah, 1981), the
answer to the question of what a local bond–slip model phys-
ically represents in an RC tie subjected to pure tension still
remains unclear. There seems to be a consensus in the litera-
ture (Balázs, 1993; Debernardi and Taliano, 2013, 2016; Russo
and Romano, 1992) in choosing the local bond–slip model
proposed by Eligehausen et al. (1983) and later adopted by
MC2010. The parameters involved, however, were determined
empirically based on pull-out tests in which the confining con-
crete was subjected to compression. The problem thus becomes
related to choosing proper values that are representative in the
case of RC ties subjected to pure tension.

In this study, the authors seek to contribute to a better under-
standing of the cracking behaviour of RC ties with deformed
steel bars subjected to pure tension by conducting virtual
experiments using NLFEA. Such virtual experiments offer the
possibility of monitoring the internal behaviour of the confining
concrete, a convenience that is often limited in physical exper-
iments. First, important assumptions in the FE model are dis-
cussed. Second, the classical experiments of Bresler and Bertero
(1968) and Yannopoulos (1989) are benchmarked to investigate
the validity of the assumptions in the FE model and the crack-
ing behaviour of RC ties. Then, the roles of bar diameter and
cover are investigated and discussed by conducting virtual exper-
iments on four different RC ties. Finally, values for the par-
ameters in the local bond–slip curve recommended by MC2010
(fib, 2013) are proposed. These can be used in an analytical
crack width calculation model after having solved the second-
order differential equation for the slip. The authors in this paper
are currently working on such an approach.

Finite-element model

Main assumptions
Detailed NLFEA of RC ties with small element sizes
(<10 mm) are normally carried out using interface elements
between concrete and steel – for example, as suggested by Lutz
(1970) and conducted by Tammo et al. (2009). This can be
useful to account for effects such as the wedging action
between the bar ribs and the surrounding concrete without
physically modelling the geometry of the bar ribs, as well as

accounting for the effect of slip when adhesion breaks down.
In this study, interface elements are used to allow for separ-
ation but not any slip, meaning that the concrete at the inter-
face is assumed to follow the longitudinal displacement field of
steel completely. This further implies that the bond transfer at
the interface is mechanically maintained, although the con-
crete is separated radially from the steel bar. This assumption
is based on the experimental behaviour of RC ties reported in
the literature, in which there is a general agreement that the
crack width at the steel bar surface is significantly smaller
than that on the concrete surface in the case of deformed steel
bars (Beeby, 2004; Borosnyói and Snóbli, 2010; Broms, 1968;
Husain and Ferguson, 1968; Watstein and Mathey, 1959;
Yannopoulos, 1989). The research of Goto (1971) and Tammo
and Thelandersson (2009) concludes that this occurs due to
the rib interaction between concrete and steel, which causes
the concrete to crack internally, thus allowing it to follow the
longitudinal displacement field of steel at the interface, as
depicted in Figure 1(a).

Note that the assumption of neglecting the crack width at the
steel bar surface allows the use of a relatively simple FE
model, in which shear deformations in the steel concrete inter-
face are prohibited and the explicit modelling of the bar ribs is
avoided. This means that localised bond stresses that would
arise at the bar ribs are smeared over the rebar. This also
implies that effects related to the rib geometry or other bond
conditions – for example, wedging action or slip due to loss of
adhesion – cannot be captured in this FE model. These effects,
however, normally remain limited in RC ties with deformed
steel bars subjected to pure tension (fib, 2000), making the
simple FE model adequate for the purpose of this study.
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Figure 1. (a) Typical deformation configuration of RC ties with
deformed steel bars; (b) FE model
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Axisymmetric model
The NLFEA were carried out using quadratic, axisymmetric,
quadrilateral elements in the FE program ‘Diana’ (Diana FEA
BV, 2016). A linear elastic material model was used for steel,
while a non-linear fracture mechanics material model with
rotating cracks based on a total strains formulation was used
for concrete. The parabolic curve according to Feenstra (1993)
was used for the compressive behaviour, whereas the softening
curve according to Hordijk (1991) was used for the tensile be-
haviour. The Poisson effect was gradually reduced in accord-
ance with the total strains formulation as the cracking damage
progressed, while lateral influences on the compressive behav-
iour were neglected. Geometry, interface layer, loading and
boundary conditions for the FE model are as shown in Figure
1(b). Symmetry allowed for modelling half of the length only.

Loads were monotonically increased in a displacement-
controlled manner using regular Newton–Raphson iterations.
The convergence criteria were force and energy based with the
tolerance value of 0·01 and 0·001, respectively, in accordance
with the Dutch guidelines for NLFEA of concrete structures
(Belletti et al., 2014; Hendriks et al., 2017). The element size
was adjusted to obtain approximately six to ten elements over
the cover and one to three elements over the steel bar radius.

Interface elements between concrete and steel were chosen to
have a thickness of ti ¼ 0�1 mm. A non-linear elasticity model
with non-linear properties in the radial direction and a con-
stant stiffness in the shear direction were chosen to allow for
radial separation only in accordance with the assumptions dis-
cussed in the previous section. The elastic radial and shear
moduli for the interface elements were derived from the
modulus of elasticity for concrete, Ec – that is, respectively, as
Ec/ti and Ec/[2(1 + vc)ti]. The elastic radial modulus was
reduced with a factor of 10−05 when a tensile strain of 0·8fct/Ec

at the interface was reached, in order to simulate the radial
separation in a stable manner.

Validation of FE model

Test set-up
The classical experiments of Bresler and Bertero (1968) and
Yannopoulos (1989) were benchmarked to investigate the
validity of the assumptions in the FE model. The investigated
RC tie named specimen H by Bresler and Bertero (1968) was
152 mm (6 in) in diameter, had a length of 406 mm (16 in)
and was embedded with a deformed steel bar with dia.
28·7 mm (1·13 in) in the centre of the cross-section. The length
of the specimen was chosen as twice the mean crack spacing
obtained from the pilot studies of 1829 mm (72 in) long RC
ties with similar sectional properties. The specimen was axially
cyclic loaded in the steel bar ends in the experiments, and a
notch was cut at the mid-length to induce a primary crack at
this section. Strain gauges were mounted in a sawed-out canal
in the centre of the steel bar to measure the steel strains over

the length. The reduction of the steel bar area due to the
sawed-out canal was accounted for by subtracting an inner
radius of 5·6 mm from the outer radius of the steel bar in the
FE model. This corresponded to the given nominal area of
548 mm2 (0·85 in2) for the steel bar in the experiments.

The six RC ties investigated by Yannopoulos (1989) were
76 mm in diameter, had a length of 100 mm and were
embedded with a deformed steel bar of dia. 16 mm in
the centre of the cross-sections. The length of the specimens
was limited to avoid formation of a new primary crack and
was based on the mean crack spacing obtained from pilot
studies carried out on 800 mm long RC ties with similar
sectional properties. The RC ties were axially and monotoni-
cally loaded at the steel bar ends while measuring the develop-
ment of the crack width.

The material parameters given in the experiments are summar-
ised in Table 1 and were used in validating the FE model.
Material parameters such as the Poisson ratio and the fracture
energy were not given in the experiments and were derived in
accordance with the recommendations in the Dutch guidelines
for NLFEA of concrete structures (Hendriks et al., 2017).

Comparison of steel strains, crack widths
and crack spacing
The comparison of the steel strains obtained from the NLFEA
and the experimental steel strains of Bresler and Bertero (1968)
at four different load levels is shown in Figure 2(a). The two
lowest load levels corresponding to steel stresses of 33 MPa
and 65 MPa give good comparisons of the steel strains, as
expected, since the experimental strains at these load levels are
obtained from the first monotonic load cycle. The experimen-
tal strains at the two higher load levels corresponding to steel
stresses of 195 MPa and 242 MPa, however, are obtained from
the second load cycle. Cyclic loading is known to have a sig-
nificant effect on the deterioration of bond even for the first
repeated loads (Dörr, 1978; fib, 2000), which could explain the
less stiff response of the experimental steel strains in the
second load cycle compared to that obtained from the mono-
tonic loading in the NLFEA. Nevertheless, the comparison of
the steel strains obtained from the NLFEA and the exper-
iments shows in general a good agreement.

A comparison of the development of the crack width with
increasing steel stresses obtained in the experiments of
Yannopoulos (1989) and in the NLFEA is shown in
Figure 2(b). The comparison of the developed crack width
also shows good agreement; however, it is observed that the
NLFEA slightly overestimates the crack width for a given steel
stress.

Separate NLFEA were conducted to investigate whether the
FE model also could predict crack spacing similar to that
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obtained in the pilot studies of Bresler and Bertero (1968) and
Yannopoulos (1989) on longer specimens. The RC tie lengths
were thus increased in the FE model to investigate this. The
strain distribution in Figures 3(a) and 3(b), respectively, shows
that a new crack formed in the NLFEA at a distance of
approximately 200 mm from the loaded end for the long
‘Bresler and Bertero’ specimen and at approximately 80 mm
for the long ‘Yannopoulos’ specimen. This corresponds well to
the mean crack spacing of 203 mm and 90 mm, respectively,
obtained in the experiments of Bresler and Bertero (1968) and
Yannopoulos (1989) on longer specimens.

The good agreement in the comparison of steel strains, crack
widths and crack spacing confirms the validity of the discussed
assumptions, and further shows the ability of the FE model to
simulate the physical behaviour of RC ties realistically.

The physical behaviour of RC ties

General
The physical behaviour of RC ties is now discussed and eluci-
dated using the results from the NLFEA conducted on the
‘Bresler and Bertero’ specimen. Details for the test set-up were

presented in the section entitled ‘Test set-up’. A contour plot
of exaggerated radial displacements at a steel stress, σs �
180 MPa, which is just before a primary crack forms at the
symmetry section, is shown in Figure 4(a). It is noticed that
the concrete is separated radially from the steel bar close to the
loaded end due to the inflicted shear stress at the concrete
inner surface. The radial displacements are counteracted by
the stiffness of the concrete in the hoop direction, causing a
confining pressure to the steel bar. Splitting cracks arise if the
hoop stresses exceed the tensile strength of concrete, as can be
observed in Figure 4(b). Actually, the splitting cracks cause a
build-up of radial and shear stresses close to the loaded end,
before reaching the peaks at approximately the same location
over the bar length, as can be observed in Figure 4(c). Further
propagation of internal splitting cracks as the load increases
causes additional movement of the stress peaks towards the
symmetry section.

It should be mentioned that the maximum radial displace-
ments in the analyses are of the magnitude of 10−2 mm, which
is still small compared to typical rib dimensions. This justifies
the assumption of claiming that the mechanical bond is
maintained although the concrete is separated radially from

Table 1. Material parameters of the RC ties investigated in the experiments of Bresler and Bertero (1968) and Yannopoulos (1989)

Material parameters

Bresler and Bertero (1968) Yannopoulos (1989)

Concrete Steel Concrete Steel

Compressive strength, fc: MPa 40·8 — 43·4 —

Tensile strength, fct: MPa 4·48 — 3·30 —

Yield strength, fy: MPa — 413 — 424
Modulus of elasticity, Ec and Es: MPa 33 165 205 464 32 000 200 000
Poisson ratio, νc and νs 0·15 0·30 0·15 0·30
Tensile fracture energy, Gf ¼

73f0�18c

1000
: N/mm 0·142 — 0·144 —

Compressive fracture energy, Gc = 250Gf: N/mm 35·6 — 36·0 —
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Figure 2. (a) Comparison of steel strains in the experiments of Bresler and Bertero (1968) with steel strains obtained in the NLFEA.
(b) Comparison of crack widths in the experiments of Yannopoulos (1989) with crack widths obtained in the NLFEA
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the steel bar. Finally, these observations suggest that the shear
transfer is dependent on the stiffness of the confining concrete.

Lightly as opposed to heavily loaded members
The interaction of the load level and the specimen length is
significant for the cracking behaviour of RC ties. Russo and
Romano (1992) were the first to introduce the principles of the
comparatively lightly loaded member (CLLM) behaviour and
the comparatively heavily loaded member (CHLM) behaviour,
which are conceptually visualised in Figures 5(a) and 5(b),
respectively. The figures depict the steel and the corresponding
concrete strain distribution of a long specimen with length
L ¼ 500 mm and a short specimen with length L ¼ 200 mm,
exposed to the same loading. To clarify, the arrows in
Figure 5(b) indicate the corresponding concrete surface strains
to the steel strains for the short specimen. The main difference
is that the strains become compatible (εs = εc) at a certain dis-
tance xr from the loaded end and remain constant along the
remaining length in the case of CLLM, whereas in the case of
CHLM the strains remain incompatible (εs > εc) over the entire
specimen length. The point of compatibility xr moves towards
the symmetry section upon increasing the load, and will have
moved completely to the symmetry section (xr =L/2) for a suf-
ficiently large load in the case of CLLM. Upon even further
loading, strains become incompatible at the symmetry section
and a primary crack will only have the possibility to form here
if the concrete strains exceed the cracking strain. The specimen
can then be said to have undergone a smooth transition from
the CLLM behaviour to the CHLM behaviour. If the concrete
strains exceed the cracking strain at any location prior to the
symmetry section – that is, εc(xr)≥ εct, a new primary crack
will instead form here, thus generating a new member length
L= xr = xcr. The new member will then exhibit either a CLLM
behaviour or a CHLM behaviour depending on the load level
and the member length.
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Figure 3. Steel strain distributions obtained from the NLFEA immediately after the formation of a new primary crack for (a) the long
‘Bresler and Bertero’ specimen (L=500 mm) and (b) the long ‘Yannopoulos’ specimen (L=200 mm)
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Figure 4. (a) Contour plot of radial displacements and the
deformation configuration at σs ¼ 180 MPa. (b) Corresponding
plot of internally inclined cracks (straight lines) and splitting cracks
(circles). (c) Corresponding shear and radial stresses. A full-colour
version of this figure can be found on the ICE Virtual Library
(www.icevirtuallibrary.com)
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An analogy of the CLLM and CHLM behaviour can be
drawn to the so-called crack formation stage and stabilised
cracking stage, respectively. However, they are not the same.
This can be explained by the fact that a smooth transition
between the CLLM and the CHLM behaviour is possible,
which is not the case in the concept of the crack formation
stage and stabilised cracking stage.

The influence of bar diameter and cover on
the cracking behaviour of RC ties

Virtual experiments
The bar diameter and cover are essential parameters in calcu-
lating the crack spacing and the crack width in the semi-
empirical formulas recommended by Eurocode 2 (CEN, 2004)
and MC2010 (fib, 2013). Both parameters have been the
subject of major discussions for several decades in developing
the semi-empirical formulas (Base et al., 1966; Beeby, 1979,
2004; Broms, 1968; Caldentey et al., 2013; Ferry-Borges, 1966;
Gergely and Lutz, 1968; Saliger, 1936; Tan et al., 2018). For
this purpose, the FE model established and verified in this
study has been used to conduct virtual experiments on RC ties
to better understand the influence of bar diameter and cover.

The behaviours of four circular specimens, reinforced with one
concentric deformed steel bar, were investigated. The speci-
mens were named ϕ20c40, ϕ20c90, ϕ32c40 and ϕ32c90, indi-
cating that the bar diameter ϕ was either 20 or 32 mm and
that the cover c was either 40 mm or 90 mm. A concrete grade
C35 according to MC2010 (fib, 2013) was chosen for the con-
crete, while a Young’s modulus of Es ¼ 200 000 MPa and a
yield strength of fy ¼ 500 MPa was chosen for the steel. The
Poisson ratio and the fracture energy were derived in accord-
ance with the recommendations in the Dutch guidelines
for NLFEA of concrete structures (Hendriks et al., 2017). The
analysis procedure was to first conduct CLLM studies on
longer specimens (L ¼ 700 mm) to obtain a typical crack

spacing xcr, after which a separate analysis on the cracked
specimen was conducted to include the CHLM behaviour.

The influence of bar diameter

CLLM behaviour
The bond stress distributions for the CLLM behaviour of
ϕ20c40 against ϕ32c40 and ϕ20c90 against ϕ32c90 are com-
pared at the load levels just before a primary crack forms in
Figures 6(a) and 6(b), respectively, with Table 2 showing the
corresponding condition in the specimens. The comparison
shows that the bond stress distributions are influenced greatly
by the bar diameter and differ in general from one another.
It is noticed, however, that the bond stress distributions align
and become negligibly small (τ , 1 MPa) at approximately the
same location over the bar length, indicating the end of the
transfer length and that a primary crack is about to form in
the vicinity. The concrete force resultant at a distance sr from
the loaded end is obtained by integrating the bond stress distri-
bution τ(x) as

1: FcðxcrÞ ¼
ðsr¼xcr

0
τðxÞπϕdx ¼ τbm;xcrπϕxcr

which is limited by the cracking force as

2: Fcr ¼ fctAc

Although the bar diameter influences the bond stress distri-
bution and thus the concrete force resultant in Equation 1,
it does not significantly affect the limit value in Equation 2,
nor does it influence the transfer length as pointed out for
Figures 6(a) and 6(b). This means that a primary crack forms
at approximately the same location over the bar length for
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Figure 5. Strain distribution for the ‘Bresler and Bertero’ specimen at two similar load levels: (a) CLLM behaviour of a long specimen
L ¼ 500 mm; (b) CHLM behaviour of a short specimen L ¼ 200 mm
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specimens having similar cover, irrespective of the bar diameter
size, as also can be observed in Table 2.

CHLM behaviour
The strain distribution for the CHLM behaviour of ϕ20c40
against ϕ32c40 and ϕ20c90 against ϕ32c90 with specimen
lengths similar to the crack spacing in Table 2 is shown in
Figures 7(a) and 7(b), respectively, at two steel stress levels,
while the development of the crack width with steel stresses is
shown in Figures 7(c) and 7(d). It is observed that the bar
diameter influences the strain distribution over the bar length
for a given steel stress. The 20 mm specimens experience more
variation in steel strains than the 32 mm specimens. This can
be explained by the fact that the 32 mm specimens are exposed
to a substantially higher load level than the 20 mm specimens
for a given steel stress. This implies that the confining concrete
for the 32 mm specimens is exposed to more internal cracking
than the 20 mm specimens, which has a significant limiting
effect on the tension stiffening. Less tension stiffening results
in a larger crack width for a given steel stress, as can be
observed in Figures 7(c) and 7(d), which can be explained by
the following. The crack width is obtained by integrating the

difference in steel strains and concrete strains at the specimen
surface over the bar length as

3: w ¼
ðxcr
0

ðεs � εcÞdx

Acknowledging from Figures 7(a) and 7(b) that the concrete
strains are negligible in the case of CHLM behaviour suggests
that the major contribution to the crack width must be the
steel strains. Hence, a larger reduction in steel strains over
the specimen length results in smaller crack width. It should
be mentioned, however, that large bar diameters have a
beneficial effect in reducing the steel stress and the associated
steel strains for a given load level, which in turn reduces the
crack width.

The influence of cover

CLLM behaviour
The bond stress distributions for the CLLM behaviour of
ϕ20c40 against ϕ20c90 and ϕ32c40 against ϕ32c90 are com-
pared in Figures 8(a) and 8(b), respectively, at two different
conditions, one at a similar load level (σs � 50 MPa and σs �
35 MPa) and the other corresponding to the load levels in
Table 2, which is just before a primary crack forms. The com-
parison of the bond stress distributions at the similar load level
shows that they are quite similar, implying that the cover size
does not affect the bond transfer significantly for a given load
level and bar diameter in the case of CLLM behaviour.
However, comparing the bond stress distributions at the load
levels just before a primary crack forms shows that both bond
stresses and transfer lengths increase with increasing load level
and cover, which can be explained mechanically by the follow-
ing. A larger cover increases the cracking force in accordance
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Figure 6. (a) Bond stress distribution for the CLLM behaviour of ϕ20c40 against ϕ32c40 at primary cracking in accordance with the load
levels in Table 2. (b) Bond stress distribution for the CLLM behaviour of ϕ20c90 against ϕ32c90 at primary cracking in accordance with
the load levels in Table 2

Table 2. CLLM behaviour of ϕ20c40 against ϕ32c40 and ϕ20c90
against ϕ32c90 showing the steel stress σs and the corresponding
load level F just before a primary crack forms at a distance
sr from the loaded end, mean bond stress τbm;xcr of the bond
stress distribution over the crack distance xcr, concrete
force resultant at the section where a primary crack forms,
FcðxcrÞ ¼ τbm;xcrπϕxcr, and the cracking force, Fcr = fctAc

RC tie
σs:
MPa F: kN

xcr:
mm

τbm;xcr :
MPa

Fc(xcr):
kN

Fcr:
kN

ϕ20c40 100·3 31·5 105 3·76 24·8 24·2
ϕ32c40 58·1 46·7 109 2·74 30·0 29·0
ϕ20c90 341·1 107·1 260 6·23 101·8 99·8
ϕ32c90 160·6 129·1 272 4·21 115·1 110·7
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with Equation 2. The concrete force resultants, in accordance
with Equation 1, however, remain approximately the same at
the load level just before a primary crack forms in the speci-
men having a smaller cover, as the bond stress distributions

should be quite similar for a given load level. This means that
the concrete force resultant for the specimen having a larger
cover can only increase and approach its cracking force by
increasing the load level. This in turn results in a larger bond
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Figure 7. Strain distributions for (a) ϕ20c40 against ϕ32c40 and (b) ϕ20c90 against ϕ32c90 at steel stresses σs = 250 MPa and
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stress distribution and transfer length, which can also be
observed in Table 2 by comparing mean bond stresses and
crack spacing for specimens having similar bar diameter but
different covers.

CHLM behaviour
The strain distribution for the CHLM behaviour of ϕ20c40
against ϕ20c90 and ϕ32c40 against ϕ32c90 with specimen
lengths similar to the crack spacing in Table 2 is shown in
Figures 9(a) and 9(b), while the development of the crack
width with steel stresses is shown in Figures 9(c) and 9(d). The
specimens ϕ20c90′ and ϕ32c90′ are included to represent the
hypothetical case in which ϕ20c90 and ϕ32c90, respectively,
were supposed to have the same specimen lengths as ϕ20c40
and ϕ32c40. It is noticed that the variation in steel strains and
the development of crack width nearly remains the same for
specimens having similar lengths and bar diameters but differ-
ent covers. This means that it is the specimen length over
which the steel strains are integrated that governs the crack
width and not necessarily the cover itself. Hence, the cover
does not explicitly influence the crack width per se, but con-
tributes implicitly by increasing the crack spacing. Larger
crack spacing simply results in larger crack width, as indicated
in Figures 9(c) and 9(d).

The influence of bar diameter and cover
on the crack spacing
The discussions regarding Figures 6(a) and 6(b) and
Figures 8(a) and 8(b) suggest that the crack spacing is a geo-
metrically dependent parameter, which is mainly governed by
the size of the cover but not the bar diameter. A comparable
conclusion was drawn by Broms (1968), Gergely and Lutz
(1968), Beeby (2004) and Tan et al. (2018), primarily by
discussing the limited influence of ϕ/ρeff on the development
of crack widths observed in several published experiments.
A mechanical explanation of this finding is that the concen-
trated forces inflicted at the steel bar ends at the moment of
cracking, F= εct(EsAs +EcAc)≈ fctAc, should be close for two
specimens having similar cover but different bar diameters
since the concrete area Ac remains almost the same as dis-
cussed earlier, see Table 2. This means that the concentrated
forces inflicted at the steel bar ends should disperse in a
similar fashion over the cover to obtain an even distribution of
the stresses over the cross-section, further implying that the
transfer lengths should also be close. Figure 10(a), which
shows how the concrete force resultants gradually increase
from the loaded end at the load levels corresponding to
Table 2, supports this postulation. Further supporting evidence
can be observed in Figure 10(b), which shows the development
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of the corresponding concrete surface stresses over the respect-
ive transfer lengths.

Although the cover appears to be governing for the crack
spacing in virtual experiments, in physical experiments the bar
diameter could still have a substantial influence. This can
mainly be attributed to the large scatter of the tensile strength
of concrete in real-life structures (Barre et al., 2016). The influ-
ence of the tensile strength will cause a structure to crack more
randomly and not necessarily at the end of the transfer length
during the crack formation. The division of the member length
due to the random cracking will cause an interaction of the
CLLM and CHLM behaviour at which both the cover and the
bar diameter together play significant roles for the further
development of the crack pattern.

Local bond–slip curve

Determining the local bond–slip curves
The slip distributions for the analysed specimens are approxi-
mated by numerically integrating the difference in steel and
concrete strains over the bar lengths using the method of
Riemann sum as

4: sðxÞ ¼
ðL=2
x

ðεs � εcÞdx �
X

i j x�xi�ðL=2Þ
εsi � εcið ÞΔx

where s(x) is the slip at an arbitrary section x; εs is strain at the
steel surface; εc is strain at the outer concrete surface; xi is the
x-coordinate of integration points adjacent to the steel and
outer concrete surface; εsi and εci are, respectively, the steel and
concrete strains at these integrations points; and Δx is half the
FE length.

A 2� 2 integration scheme was applied for the FE.
Furthermore, using the strains adjacent to the outer concrete
surface implies that the slip is composed of two parts: the

relative displacement occurring at the interface between con-
crete and steel due to formation of internally inclined cracks
and shear deformations occurring over the cover. This con-
forms to the definition of slip in accordance with fib bulletin
number 10 (fib, 2000) and Tan et al. (2018). Local bond–slip
curves are finally obtained by extracting the shear stresses in
steel integration points adjacent to the steel bar surface at the
location of the evaluated slip.

The local bond–slip curves
Local bond–slip curves at coordinates x≈ 0, x=L/8, x=L/4,
x=3L/8 and x=L/2 for steel stresses up to 400 MPa have
been extracted from all of the analysed specimens in this study
and plotted in Figure 11. Both CLLM and CHLM behaviour
with specimen lengths corresponding to Figures 6–9 have been
included in the plots. Figure 11 shows that the local bond–slip
curves in general vary with the geometry of the RC tie.
However, there are some significant resemblances. Except for
the post-peak region, which occurs at relatively large steel
stresses, the local bond–slip curves are seen to exhibit quite
similar behaviour independent of the location over the bar
length for a given geometry. The exceptions are the local
bond–slip curves located in the vicinity of the primary crack
(x≈ 0) owing to the combined formation of inclined and
splitting cracks taking place here, as could be observed in
Figure 4(b). This suggests that one local bond–slip curve is
sufficient in describing the mean bond transfer for a certain
RC tie. Moreover, the bond–slip curve includes the effect that
the stiffness reduction of the confining concrete has on
reducing the bond transfer due to internal cracking.

The local bond–slip curve proposed by Eligehausen et al.
(1983) and later adopted by MC2010 (fib, 2013)

5: τ ¼ τ1
s
s1
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over the bar length at cracking
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is plotted with the parameters τ1 ¼ 5�0 MPa, s1 ¼ 0�1 mm and
α=0·35 in Figure 11, while Figure 12 shows all of the bond–
slip curves obtained, plotted together with Equation 5. It is
seen that the chosen parameters for Equation 5 tend to serve
as a mean for all of the bond–slip curves obtained, irrespective

of geometry and location over the bar length. This has
an important practical significance in the sense that only
one bond–slip curve seems to be necessary in describing the
average behaviour of an arbitrary RC tie. Moreover, solving
the second order differential equation for the slip using the
bond–slip curve in Equation 5 yields an analytical model that
is capable of (i) replicating the NLFEA conducted in this
paper and (ii) predicting consistent and conservative crack
spacing and crack width. The latter is an approach the authors
in this paper currently are developing.

Conclusions
Based on the findings in this study, the following conclusions
can be drawn.

& The FE model used to conduct virtual experiments is
based on the assumption that the concrete follows the
longitudinal displacement field of steel at the interface,
which has proven to predict the cracking behaviour of
cylindrical RC ties quite accurately.

& Virtual experiments on four different RC ties show that
the crack spacing can be proven mechanically to be a
geometrically dependent parameter governed by the size
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of the cover, and not the bar diameter. In physical
experiments, however, the bar diameter could still have
a substantial influence. This is due to the large scatter of
the tensile strength, which will greatly influence the crack
spacing and thus the interaction of the CLLM and
CHLM behaviour.

& The cover size does not explicitly increase the crack width
by itself, but contributes implicitly by increasing the crack
spacing that the steel strains are integrated over. Larger
crack spacing simply results in larger crack widths.

& Large bar diameters have a beneficial effect in reducing
the steel stresses and the appurtenant steel strains, which
in turn reduce the crack widths.

& A local bond–slip curve accounts for the effect that the
stiffness reduction of the confining concrete has on the
bond transfer due to internal cracking. Moreover, one
bond–slip curve is sufficient to describe the average bond
behaviour of an RC tie with arbitrary geometry. This has
a practical significance that enables an analytical model
capable of replicating the NLFEA results.
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Abstract:   

The strain profile over the cover in reinforced concrete ties subjected to tension is investigated in this 
paper. This is normally neglected in the crack width calculation methods recommended by Eurocode 2 
and fib Model Code 2010, meaning that it is assumed uniformly distributed over the cover. However, 
this assumption is questionable in the case of large covers. A pragmatic approach of accounting for the 
non-uniform strain profile over the cover in an analytical crack width calculation model can be by using 
the concept of the strain variation parameter , which relates mean concrete strains over the cover to 
concrete strains at the steel bar surface at an arbitrary section over the bar length, . Virtual experiments 
on six cylindrical concentrically reinforced concrete specimens were thus conducted by using nonlinear 
finite element analysis to establish a better understanding of the strain profile over the cover and, if 
possible, to obtain a proper value for . The results show that  more or less remains constant over 
the bar length, except for the region close to the loaded end. This means that assuming a constant value 
for  seems reasonable. The practical significance of this finding is that the non-uniform strain profile 
over the cover can be properly accounted for in deriving and solving the second order differential 
equation for the slip between concrete and steel. This would ultimately yield an analytical crack width 
calculation model that predicts crack widths consistently, also in cases for large covers and bar diameters. 

Keywords:  Crack width, FE-modelling, analytical calculations, strain profile, cover, large-scale 
concrete structures. 

1 Introduction 

The semi-empirical formulas for calculating crack widths recommended by Eurocode 2 (EC2) (CEN 
2004) and fib Model Code 2010 (MC2010) (fib 2013) assumes a constant strain profile over the cover 
(CEB 1985). This implies that plane sections remain plane and that shear deformations over the cover 
are neglected, which contradicts the findings in fib bulletin 10 (2000) and Fantilli et al. (2007). 
Furthermore, the strain profile affects the equilibrium in determining the crack distance (CEOS.fr 2016, 
Tan & al. 2018). How it should be properly accounted for in an analytical crack width calculation model, 
however, is still not clear. The strain profiles over the cover are thus investigated in this paper by 
conducting virtual experiments on circular reinforced concrete (RC) ties concentrically reinforced with 
a steel bar using nonlinear finite element analysis (NLFEA).  

This study is part of a research project that has an overall objective of improving crack width 
calculations specifically for large-scale concrete structures. Such structures are intended to be used at the 
“Ferry-free E39”, which is a coastal highway route along the West coast of Norway that involves several 
fjord crossings being up to several km long. The Norwegian Public Roads Administration guidelines 



N400 (NPRA 2015) for design of bridge structures requires covers up to  in concrete structures 
exposed to marine environment. The semi-empirical formulas recommended by EC2 and MC2010, 
however, have a limited range of applicability and care should be taken when using these in predicting 
crack widths for large-scale concrete structures having large bar diameters and covers (Tan & al. 2018).  

2 Strain distribution over the cover 

The strain profile over the cover affects the equilibrium equations for the concrete in an RC tie (fib 2000) 
and becomes important in deriving and solving the second order differential equation for the slip. In such 
analytical crack width calculation model, elastic material laws are assumed for both concrete and steel, 
while a non-linear bond-slip law normally is used to account for the bond transfer between the materials 
(Balász 1993, Debernardi & Taliano 2016). A typical elastic concrete strain profile at an arbitrary section 
over the RC tie length in Fig. 1(a) is shown in Fig. 1(b). The concrete force resultant at an arbitrary 
section is thus expressed as 
 

 (1) 

 
where  are concrete strains over the concrete area  and  is the Young’s modulus. Note that an 
integral in Eq. (1) is necessary since the concrete strains typically are not uniformly distributed over the 
cover as depicted in Fig. 1(b). The integral in Eq. (1) can be conveniently solved in the ideal case of 
axisymmetry and if the concrete strain distribution over the concrete area is known. In most practical 
situations, however, this is not the case. A pragmatic approach can instead be formulated by assuming a 
relation between the strains at the interface between concrete and steel , and the mean strains  over 
the concrete area  as  
 
 

 (2) 

 
This simplifies the integral in Eq. (1) to  
 

 (3) 
 
Edwards and Picard (1972) were the first to introduce the concept. They claimed that  remained 
constant over the entire RC length, which later became a paramount assumption that made it possible for 
Russo and Romano (1992) to solve the second order differential equation for the slip analytically when 
using a bond-slip law proposed by Eligehausen et al. (1983) and later adopted by MC2010. However, 
this assumption still needs more investigation. Not to mention, what a proper constant value for  would 
be since it seems reasonable that it varies with respect to the geometry of the RC tie.  

3 Finite element model 

NLFEA were carried out in the finite element (FE) program DIANA (DIANA FEA BV, 2016) using 
quadratic, axisymmetric, quadrilateral elements to account for the 3D behaviour of cylindrical RC ties. 
Geometry, boundary conditions and loading for the FE model were as shown in Fig. 1(a), while elastic 
material laws were assumed for both concrete and steel. The Poisson’s ratio was neglected for concrete 



( ), while a bond-slip power law proposed by Noakowski (1978) was used for the interface 
elements between concrete and steel to account for the non-linear bond transfer between the materials. 
This would yield an FE-model that is partially equivalent to the analytical crack width calculation model 
mentioned previously. Partially only, since the FE-model is a full 3D-model, while the analytical model 
can be considered a 1D-model that takes into account the 3D-effects by using a bond-slip model. The 
strain distribution over the cover in the two models though, should be equivalent.  
 

 
Fig. 1. (a) Geometry, boundary conditions and loading in the axisymmetric FE-model. (b) Typical strain 

distribution over the cover at an arbitrary section over the RC tie length. 
 

The parameters in the bond-slip power law were adapted to fit the bond-slip law recommended 
by MC2010, but with adjusted parameters as ,  and  to account 
for the tension behaviour of RC ties. The interface elements were chosen to have thickness , 
with elastic radial and shear stiffness modulus derived from the modulus of elasticity for concrete , 
i.e. respectively as  and .  
The element size was chosen so that 6-10 elements over the concrete cover and 1-3 elements over the 
steel bar radius were obtained. Loads in the steel bar ends were inflicted monotonically in a displacement 
controlled manner using regular Newton-Raphson iterations. The convergence criteria was force and 
energy based with tolerance values respectively as 0.01 and 0.001 in accordance to the Dutch Guidelines 
for NLFEA of Concrete Structures (Belletti & al. 2014, Hendriks & al. 2017).  

4 Comparison with experiments 

4.1 Test set-up 

The classical experiments of Bresler and Bertero (1968) and Yannopoulos (1989) were benchmarked to 
investigate the credibility of the NLFEA. The cylindrical RC tie investigated by Bresler and Bertero 
(1968) was  in diameter, was concentrically reinforced with a  deformed steel bar, 
had a length of  and was cyclic loaded in the steel bar ends. A circumferential notch was cut 
at the mid-length of the specimen to induce cracking. Furthermore, steel strains along the bar length were 
measured by mounting strain gauges in a sawed-out canal at the centre of the embedded steel bar. The 
compressive strength, tensile strength and modulus of elasticity for concrete were respectively reported 



as ,  and , while the yield strength and modulus of elasticity for steel 
respectively were reported as  and .  
 The six cylindrical RC ties investigated by Yannopoulos (1989) were  in diameter, was 
concentrically reinforced with a  deformed steel bar and had a length of . Loads were 
inflicted monotonically at the steel bar ends while measuring the development of the crack widths. The 
length of the specimen was chosen to avoid the formation of a new crack. The compressive strength, 
tensile strength and modulus of elasticity for concrete were respectively reported as ,  
and , while the yield strength and modulus of elasticity for steel were respectively reported 
as  and .  
Only the modulus of elasticity and Poisson’s ratio were used in the NLFEA since elasticity was assumed 
for both concrete and steel. The Poisson’s ratio for steel was not reported in neither experiments, but was 
chosen as 0.30 in both benchmark analyses in accordance with the Dutch Guidelines for NLFEA of 
Concrete structures (Hendriks & al. 2017). The Poisson’s for concrete was neglected as explained earlier.  

4.2 Comparison of steel strains and crack widths 

Steel strains obtained along the steel bar length in the experiments of Bresler and Bertero (1968) and the 
NLFEA are compared at four different load levels in Fig. 2(a). The steel strains corresponding to  
and  are obtained from the first monotonic load cycle in the experiments, while the steel strains 
corresponding to  and  are obtained from the second load cycle in which a primary 
crack has formed at the mid-length. The steel strains in the NLFEA at the two highest load levels are 
thus obtained by modelling half the specimen length only, since a crack cannot form in the FE-model 
due to the assumption of elastic concrete. Nevertheless, the comparison of steel strains show in general 
good agreement.  
 

 
Figure 2. (a) Comparison of steel strains from the experiments of Bresler and Bertero (1968) and the NLFEA. (b) 

Comparison of the development of crack widths with increasing steel stresses from the experiments of 
Yannopoulos (1989) and the NLFEA.  

 
 The development of the crack widths with increasing steel stresses in the experiments of 
Yannopoulos (1989) and in the NLFEA are compared in Fig. 2(b). The resulting crack widths are 
obtained by subtracting the deformation at the outer concrete surface from the deformation at the steel 
bar surface at the specimen ends for a given steel stress. The comparison of the development of crack 
widths with steel stresses also shows good agreement.  
 The comparison of the experimental and NLFEA results shows that the FE-model is capable of 
simulating the behaviour of RC ties realistically, and this in a relatively simplified manner by using 



elastic material laws and a local bond-slip curve proposed by Tan et. al (2018). This means that a study 
of the strain profile over the cover is reasonable by using the same FE-model.  

4.3 Strain profile over the cover  

The strain profile over the cover is now studied by using the results from the NLFEA of the Bresler and 
Bertero (1968) specimen. Figure 3(a) shows the strain profile over the cover at different locations over 
the bar length at the load level just before a crack forms at mid-length. A crack is assumed to form when 
the concrete force resultant becomes 
 

  
(4) 

 
where  is the distance from the loaded end at which a crack forms,  is the bond stress distribution 
at a given load level obtained from the NLFEA,  is the bar diameter size and  is the mean tensile 
strength of concrete. The dashed lines in Figure 3(a) indicate the corresponding mean strains in which 
the respective strain profiles have been averaged over the concrete area. It is observed that the strain 
profiles in general vary at different locations over the bar length.  
 

 
Fig. 3. (a) Strain distribution over the cover at different locations over the bar length at the load level just before a 

crack forms. (b) Comparison of  along the bar length at different load levels.  
 
 Figure 3(b) shows how  in general varies over the bar length at different load levels. It is 
immediately noticed though, that the load level does not influence  significantly.  Furthermore, it is 
observed that  approaches a value of around 0.8 relatively close to the loaded end, especially for the 
load levels close to the load level at which a primary crack forms that in this case is at a steel stress of 

. This implies that  more or less remains constant over the bar length except for the region 
close to the loaded end.  

4.4 Virtual studies of the strain profile over the cover 

The validated FE-model is now used to conduct virtual studies on the strain profile over the cover with 
the purpose of determining a proper value for . Four new specimens named , ,  
and  were investigated in addition to the specimens of Bresler and Bertero (1968) and 
Yannopoulos (1989).  indicates that the bar diameter either is  or , while  indicates that 
the cover either is  or . A modulus of elasticity corresponding to a concrete grade of C35 
according to MC2010 was used for the concrete, while the modulus of elasticity and the Poisson’s ratio 



respectively for steel were chosen as  and . The bond-slip curve for the interface 
elements was chosen similar to the previous.  
 

 
Fig. 4.  for all of the investigated specimens. 

 
 Fig. (4) shows  for the different specimens at the load level just before a crack forms in 
accordance to Eq. (4). It is noticed that  does not really exhibit a unique behaviour depending on the 
geometry of the specimen. In contrary,  appears to approach a similar value relatively close to the 
region at the loaded end. These observations justifies the important finding in Edwards and Picard (1972) 
of claiming that  remains constant along the bar length, irrespective of the geometry of the specimen 
and the load level. Finally, neglecting that the values goes towards zero at the loaded end yields that a 
constant value of  seems reasonable.  

5 Discussions 

Assuming a constant value for  has a practical significance in the sense that a non-uniform strain profile 
can be accounted for without explicitly assuming a certain distribution over the cover (fib 2000), which 
in Fig. 3(a) was observed to vary over the bar length. This is in particular practical for cross sections 
having the combination of large covers and large bar diameters that even may be in several layers or 
bundles, which is quite conventional in large-scale concrete structures. Assuming a strain distribution in 
such cases is certainly not straightforward and becomes impractical. Finally, a constant value for  
provides that the second order differential equation for the slip can be solved analytically when using the 
bond-slip law according to MC2010. This would ultimately yield an analytical crack width calculation 
model that accounts for the effect of large covers and bar diameters more consistently compared to the 
formulation in EC2 and MC2010. The authors in this paper are currently working on such formulation.  

6 Conclusions 

The strain profile over the cover has been investigated in this paper by conducting virtual experiments 
on RC ties using NLFEA. The main purpose was to establish a better understanding and obtain a 
reasonable value for , which describes the relation between mean concrete strains and concrete strains 
at the steel bar surface at an arbitrary section over the bar length. It was observed that  more or less 



remained constant over the bar length except for a region close to the loaded end, irrespective of the 
geometry and the load level. Furthermore, virtual experiments on six different specimens showed that a 
constant value of  is reasonable. The practical significance of this finding is that the non-uniform strain 
distribution over the cover can be properly accounted for when deriving and solving the second order 
differential equation for the slip. This would ultimately yield an analytical crack width calculation model 
that predicts crack widths more consistently, also in cases of large covers and bar diameters. 
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Fig. 1(a) Typical deformation configuration of RC ties with deformed steel bars observed in 
experiments. (b) FE model with assumptions in accordance with Tan et al. (2018c) showing a typical 
deformation configuration and crack plot, where straight lines indicate inclined internal cracks and 
circles indicate internal splitting cracks.  



fib

Figure 2(a) Internally cracked section typically observed in physical experiments. (b) The internal 
cracking behavior lumped as springs to the interface between concrete and steel. (c) Statically 



equivalent section using a bond-slip law for the springs. (d) Equivalent cross sections when using the 
second order differential equation for the slip. 





Figure 3. The displacement field of an arbitrary statically equivalent section. The section to the left 
hand side shows the undeformed configuration, while the section to the right hand side shows the 
deformed configuration for a load applied to the rebar end greater than zero.  
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Figure 4. Local bond-slip curves according to Eq. (33) with adjusted parameters proposed by Russo 
and Romano (1992), Balász (1993), Debernardi and Taliano (2015) and Tan et al. (2018c) compared 
with theoretical local bond-slip curves obtained in the FE analysis of several RC ties at different 
positions over the bar length in Tan et al. (2018c). 
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Figure 5(a) and (b) Strain and slip distribution in CLLM. (c) and (d) Strain and slip distribution in 
CHLM.  
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Figure 6(a) Case 1: solution for the slip using Eq. (39), i.e. . (b) Case 2: solution for the slip 
using Eq. (39) for  and Eq. (40) for .  







Figure 7(a) Condition 1. (b) Condition 2. 
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Figure 8(a) Comparison of steel strains predicted with steel strains reported in the experiments of 
Bresler and Bertero (1968) over the bar length. (b) Comparison of crack widths predicted with crack 



widths reported in the experiments of Yannopoulos (1989) using similar specimen length  
similar to that in the experiments. 

Table 1. Comparison of crack spacing predicted with mean crack spacing reported in the experiments 
of Bresler and Bertero (1968) and Yannopoulos (1989), and the FE analysis of Tan et al. (2018c). 





Figure 9. Comparison of steel strains predicted with steel strains reported over the bar length in the 
FE analysis of Tan et al. (2018c). (a) Specimen . (b) Specimen . (c) Specimen 

. (d) Specimen .  

Table 2. Comparison of crack spacing predicted with crack spacing reported in the experiments of 
CEOS.fr (2016) and Tan et al. (2018a). 
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Fig. 10. Comparison of crack widths predicted (in specimens with lengths similar to FE analysis mean 
crack spacing reported in Table 1) with crack widths reported in the FE analysis of Tan et al. (2018c). 
(a) Specimen , . (b) Specimen , . (c) Specimen , 

. (d) Specimen , . 



Table 3. Comparison of crack spacing reported in the experiments of Tan et al. (2018a) and crack 
spacing predicted using effective reinforcement ratios. 

crack formation stage stabilized cracking stage



Fig. 11. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing 
predicted in Table 1) with crack widths reported in the experiments of Yannopoulos (1989) and the FE 
analysis of Tan et al. (2018c). (a) Yannopoulos (1989) specimen, . (b) Specimen 

, . (c) Specimen , . (d) Specimen , . 
(e) Specimen , . 



Fig. 12. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing 
predicted in Table 2) with crack widths reported in experiments. (a) CEOS.fr (2016). (b) Tan et al. 
(2018a). 

imposed deformations,



Fig. 13. Bond stresses corresponding to the steel strains predicted in Fig. 9. (a) Specimen . (b) 
Specimen . (c) Specimen . (d) Specimen . 

Fig. 14. Concrete strains corresponding to the steel strains predicted in Fig. 9. (a) Specimen . 
(b) Specimen . (c) Specimen . (d) Specimen .  
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Figure 1(a) Cracked RC membrane. (b) and (c) Equilibrium of stresses at the crack in x- and y-
direction. (d) Stresses, deformations and slip for a differential element in an RC tie.  
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Figure 2(a) Steel and concrete strains distribution over the bar length. Linear strains represent the 
concept of TCM, while nonlinear strains represent the concept of MTCM. (b) Regime 1 represents 
steel stresses over the bar length prior to yielding. Regime 2 represents steel stresses over the bar 
length that partially are below and above yielding. Regime 3 represents steel stresses over the entire 
bar length that are above yielding. 







Figure 3(a) Steel and concrete strains distribution over the bar length for the concept of CLLM. (b) 
Slip over the bar length for the concept of CLLM. (c) Steel and concrete strains distribution over the 
bar length for the concept of CHLM. (d) Slip over the bar length for the concept of CHLM. 



Figure 4(a) Stress strain curve for an RC tie with , ,  and 
. Bar lengths are set to 265 mm and 161 mm for the MTCM and the TCM 

respectively. (b) Stress strain curve for an RC tie with , ,
and . Bar lengths are set to 286 mm and 311 mm for the MTCM and TCM. 





Figure 5 Figure of Mohr’s circle of stresses for the concrete at cracks and between cracks inspired by 
Kaufmann and Marti (1998). 



Figure 6(a) CLLM at biaxial stress conditions. (b) The limit state and CHLM at biaxial stress 
conditions.







Figure 7(a) Bilinear behaviour of reinforcing steel bars. (b) Bilinear behaviour of prestressing steel.  

Figure 8(a) Compressive behaviour of concrete using the constitutive model of Foster and Marti 
(2003). (b) Tensile behaviour of concrete using the exponential curve recommended by the Dutch 
guidelines for NLFEA (Hendriks et al., 2017). 
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Table 1. Material parameters for selected RC panels.  

Figure 9 Comparison between responses predicted by the MCMM, CMM and the simplified approach 
with experimental results. 





Figure 10(a) Comparison between mean and maximum crack widths measured experimentally and 
crack widths predicted by the MCMM, CMM and the simplified approach. (b) Comparison between 
corresponding load deformation responses predicted by the MCMM, CMM and the simplified 
approach with experimental results. 
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Figure 11 Maximum crack widths measured experimentally versus crack widths predicted by the 
MCMM, CMM and the simplified approach for the 101 observations for the modelling uncertainty. 

Table 3. Modelling uncertainty for crack width predictions. 
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It is assumed that external stresses ࣌௫௬,ୣ୶୲ = ௬ ߬௫௬൧்ߪ ௫ߪൣ
 are known. The procedure excludes 

prestressing as well as Regime 2 and 3 in the MTCM.  
 
Step 1 – Use material and geometry properties to determine the crack parameters ߩୱ = ୉ߙ ,ୡܣ/ୱܣ = ߚ ,ୡܧ/ୱܧ = 1 + ߜ ,ߙ = (1 െ ߦ ,2/(ߙ = ߯ ,߰/ୱߩ୉ߙ = ߞ σగథ౩஺౩ா౩ (1 + ߛ and (ߦ =߯߬୫ୟ୶/(ݑߚଵఈ) in the reinforcement directions where ߙ = 0.35, ߬୫ୟ୶ = 5.0 MPa, ݑଵ =0.1 mm, ߰ = ߞ ,0.70 = 1.0 and σߨ߶ୱ is the sum of the perimeters of rebars in the section. 
Determine thereafter the uniaxial crack spacing  
 
 ܵୡ୰଴ = ߜ1 ቎ߝୡ୲ 1 + ߦ߰ߦ ൬ ൰ߛ12 ଵଶఋ቏ଶఋఉ

 

(A1) 

 
and the steel strain when a crack forms  
 
ୱ୰ߝ  = ୡ୲୫ߝ 1 + ߦ߰ߦ  

(A2) 

 
Step 2 – Determine the global strain tensor  
 
࢟࢞ࢿ  =  (A3) ܜܠ܍,࢟࢞࣌ଵି࢟࢞ࡰ
 
where ࢟࢞ࡰ is chosen initially as the elastic material elasticity tensor.  
 
Step 3 – Determine principal strains 
 
૚૛ࢿ  =  (A4) ࢟࢞ࢿ(ୡ୰ߠ)ࢀ
 
where ࢀ(ߠୡ୰) is the transformation tensor and ߠୡ୰ is the angle between maximum principle 
strains and the reference x-axis.  
 
Step 4 – Determine concrete principal stresses ߪ௖ଵ(ߝ௖ଵ, ,௖ଵߝ)௖ଶߪ ௖ଶ) andߝ  ௖ଶ) from a chosenߝ
constitutive law including the effect of transversal strains.  
 
Step 5 – Determine global concrete stresses  
 
࢟࢞܋࣌  =  ૚૛ (A5)ࢉ࣌୘(ୡ୰ߠ)ࢀ
 
 
Step 6a – Determine concrete stresses between cracks by  
 



2 
 

ୡଵୠߪ  = ୡ݂୲2 ൫ߣ୶ + ୷൯ߣ െ ߬୶୷2 (tan ୡ୰ߠ + cot (ୡ୰ߠ
+ ඨቂ߬୶୷2 (cot ୡ୰ߠ െ tan ୡ୰)ቃଶߠ െ ୡ݂୲2 ൫ߣ୶ െ ୷൯ߣ + ߬௫௬ଶ  ൑ ୡ݂୲ 

(A6) 

 
where ߣ୶ = ୷ߣ ୡ୲ andߝ/ୡ୶,୫ୟ୶ߝ =  ,ୡ୲. In generalߝ/ୡ୷,୫ୟ୶ߝ
 
ߣ  = ୡ୲ߝୡ,୫ୟ୶ߝ ൑ 1 (A7) 

 
at which   
 
ୡ,୫ୟ୶ߝ  = 1ߦ߰ + ߦ  ୱ୰ߝ

(A8) 

 
ୱ୰ߝ  = 1 + ߜߦ + ߦ  ୫ߝ

(A9) 

 
where ߝ୫ are mean strains obtained from the global strain tensor in the reinforcement 
directions, in this case either as ߝ௫ or ߝ௬.  
 
Step 6b – Determine crack spacing either by CLLM or CHLM.  
 
If ߣ௫ < ௬ߣ ,1 < 1 and ߪୡଵୠ/ ୡ݂୲୫ < 1 then CLLM governs and the crack spacing is 
determined as  
 
 ܵ୰ = ቊ2ܵ୰୶଴ cos|ߠୡ୰|         if      ܵ୰୶଴ cos|ߠୡ୰| ൒ ܵ୰୷଴ sin|ߠୡ୰|2ܵ୰୷଴ sin|ߠୡ୰|          if      ܵ୰୶଴ cos|ߠୡ୰| < ܵ୰୷଴ sin|ߠୡ୰| (A10) 

 
where in general 
 
 ܵ୰଴ = ߜ1 ቎ߝୱ୰ ൬ ൰ߛ12 ଵଶఋ቏ଶఋఉ

 

(A11) 

 
If either ߣ௫ = ௬ߣ ,1 = 1 and ఙౙభౘ௙ౙ౪ౣ = 1 occur then CHLM governs and the crack spacing is 

determined as  
 
 ܵୡ୰୶ = ܵୡ୰୶଴ܵୡ୰ = ܵୡ୰୶ cos|ߠୡ୰|ܵୡ୰୷ = ܵୡ୰sin|ߠୡ୰| ۙۘ

ۗ if ܵୡ୰୶଴ cos|ߠୡ୰| ൒ ܵୡ୰୷଴ sin|ߠୡ୰| (A12) 

 



3 
 

or as  
 
 ܵୡ୰୷ = ܵୡ୰୷଴ܵୡ୰ = ܵୡ୰୷ sin|ߠୡ୰|ܵୡ୰୶ = ܵୡ୰cos|ߠୡ୰| ۙۘۖ

ۖۗ if ܵୡ୰୶଴ cos|ߠୡ୰| < ܵୡ୰୷଴ sin|ߠୡ୰| (A13) 

 
where the uniaxial crack spacing ܵୡ୰୶଴ and ܵୡ୰୷଴ are determined from Eq. (A1).  
 
Step 7 – Determine steel stresses at crack.  
 
If ߣ௫ < ௬ߣ ,1 < 1 and ߪୡଵୠ/ ୡ݂୲୫ < 1 then CLLM governs and steel stresses at crack ߪୱ୰ are 
found by multiplying the steel strains obtained by Eq. (A9) with the Young’s modulus for 
steel. The mean strains are obtained as  
 
ୱ୫ߝ  =  ୫ (A14)ߝ
 
 
ୡ୫ߝ  = ୰଴ܵߦ߰ ୱ୰ܵ୰଴ߝ െ ୰,େ୐୐୑1ݑ + ߦ  

(A15) 

 
where  
 
୰,େ୐୐୑ݑ  = ൬ ൰ଵఉߛ12 ୱ୰ଶఉߝ  

(A16) 

 
If either ߣ௫ = ௬ߣ ,1 = 1 and ఙౙభౘ௙ౙ౪ౣ = 1 occur then CHLM governs and the steel stresses must 

be obtained iteratively. The steel strains at a crack is obtained as  
 
ୱ୰ߝ  = ୱߚ୫ߝ  (A17) 

 
where ߚୱ = 1 is chosen initially. The mean strains are obtained as  
 
ୱ୫ߝ  = 1 ܵୡ୰଴2 ୱ୰ߝߦ  ܵୡ୰଴2 + ୰,େୌ୐୑1ݑ + ߦ  

(A18) 

 
ୡ୫ߝ  = ୡ୰଴2ܵ ߦ߰ ୱ୰ߝ  ܵୡ୰଴2 െ ୰,େୌ୐୑1ݑ + ߦ  

(A19) 
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The maximum slip ݑ୰,େୌ୐୑ is determined iteratively as a function of ߝୱ୰ using the solution 
strategy provided for CHLM conditions in Paper III, see also Appendix B. If ߝୱ୫ ്  ୫, newߝ
values of ߚୱ = ୱ୰ߝ/ୱ୫ߝ ൑  .ୱ୫ using Eq. (A18) are calculatedߝ ୱ୰ using Eq. (A17) andߝ ,1
Steel stresses at the crack ߪୱ୰ are found by multiplying Eq. (A17) with ܧୱ.  
 
Step 8 – Determine global steel stress tensor.  
 
࢟࢞ܛ࣌  = ൥ߩ௦௫ߪୱ୰௫ߩ௦௬ߪୱ୰௬0 ൩ 

(A20) 

 
Step 9 – Determine global equilibrium.  
 
࢟࢞࣌  = ࢟࢞܋࣌ +  (A21) ࢟࢞ܛ࣌
 
Equilibrium of stresses is obtained if ࢟࢞࣌ =   .If not, proceed to Step 10 .ܜܠ܍,࢟࢞࣌
 
Step 10 – Update material elasticity tensor with new secant stiffness.  
 
૚૛܋ࡰ  = 11 െ ௖ଶଵݒ௖ଵଶݒ ൥ ୡଵܧ ୡଵܧୡଵଶߥ ୡଶܧୡଶଵߥ0 ୡଶܧ 00 0 (1 െ  ୡଵଶ൩ܩ(ୡଶଵߥୡଵଶߥ

(A22) 

 
where ߥୡଵଶ and ߥୡଶଵ is the Poisson’s ratio’s for concrete taken as zero after cracking, and (1 െ ௖ଵଶܩ(ୡଶଵߥୡଵଶߥ = ୡଵ(1ܧ]1/4 െ (ୡଵଶߥ + ୡଶ(1ܧ െ ୡଵܧ ୡଶଵ)], whileߥ = ୡଶܧ ଵ andߝ/ୡଵߪ  ଶ. The concrete elasticity tensor is found asߝ/ୡଶߪ=
 
࢟࢞܋ࡰ  =  (A23) (ୡ୰ߠ)ࢀ૚૛܋ࡰ୘(ୡ୰ߠ)ࢀ
 
Steel elasticity tensor is written as  
 
࢟࢞ܛࡰ  = ൥ߩୱ୶ܧୱ୶ 0 00 ୱ୷ܧୱ୷ߩ 00 0 0൩ 

(A24) 

 
where ܧୱ୶ = ୱ୷ܧ ,୶ߝ/ୱ୰୶ߪ =   ௬. The global material elasticity tensor is obtained asߝ/ୱ୰୷ߪ
 
࢟࢞ࡰ  = ࢟࢞܋ࡰ +  (A25) ࢟࢞ܛࡰ
 
Return to Step 2 and calculate new strains. Repeat procedure until equilibrium is obtained, i.e. ࢟࢞࣌ =   .ܜܠ܍,࢟࢞࣌
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%clc
%clear all
%close all

%%
%%%---BEGIN INPUT---%%%
format long

% eps_s0 = max(eps_s0,eps_s0_l);                                              % Steel 
strain at crack

% L_itr = L;                                                                  % 
Initial length

% The main aim of CHLM algorithm is to obtain the unknown value for u0 as a
% function of eps_s0. The equations in Paper III are used and referred to 
% unless denoted otherwise. 

while eps_s0

% L = L_itr;                                                                  % Length 
of member [mm]

sigma_s0 = eps_s0*Es; % Steel 
stress at crack [N/mm2]

udCASE = (eps_s0^2/(4*gamma))^(1/beta); % Eq. (62) 
or Eq. (69)

u0max = (eps_s0^2/(2*gamma))^(1/beta); % Eq. (57)

%%%---END INPUT---%%%

%%%---BEGIN SERIES PARAMETERS---%%%

Delta_x = 0.1; % Case 2 
parameter dx1 + dx2 (See section 4.4.3 and Fig. 7(b))

Delta_u = 5.8000e-05; % Case 2 
parameter du (See section 4.4.3 and Fig. 7(b))

m = 10; % Number 
of chosen terms in Eq. (39) and Eq. (40) (MAX 170 TERMS BECAUSE factorial(171) = 
infty)

R = -1/2; % Falling 
factorial (Pocchammer) coefficient

%%%---END SERIES PARAMETERS---%%%

%%%---BEGIN CASE CHECK---%%%
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% We need to determine wether Case 1 or Case 2 occurs according to the 
% discussions in Section 4.4.4. In general, each term in the series is 
% calculated before summed in the end.

u0_CHECK = (eps_s0^2/(4*gamma)-Delta_u)^(1/beta); % Eq. (62) 
Choose a value of u0 close to the limit value discriminating Case 1 and Case 2

C_CHECK = eps_s0^2/2 - gamma*u0_CHECK^beta; % Eq. (56) 
Integration constant for case check 

r = zeros(1,m+1); % Vector 
for calculating the falling factorial 

n = zeros(1,m+1); % Vector 
for calculating the factorial k!

bin = zeros(1,m+1); % Vector 
for the binomial coefficients

FCASE_CHECK = zeros(1,m+1); % Vector 
for function in Case 1 check

fCASE_CHECK = zeros(1,m+1); % Vector 
for function in Case 1 check

for k = 1:m

    r(1) = 1;
    r(k+1) = r(k)*(R-k+1); % Falling 
factorial

    n(1) = factorial(0);
    n(k+1) = factorial(k); % The 
factorial k!

    FCASE_CHECK(1) = (gamma/C_CHECK)^0*(u0_CHECK^(1+0*beta)/(1+0*beta));
    FCASE_CHECK(k+1) = (gamma/C_CHECK)^k*(u0_CHECK^(1+k*beta)/(1+k*beta)); % The 
function term in Eq. (61)

end

for i = 1:length(r)

    bin(i) = (r(i)/n(i)); % The 
binomial coefficients 

    fCASE_CHECK(i) = bin(i)*FCASE_CHECK(i); % Eq. (61) 
The binomial coefficients multiplied with the function terms 

end

fCASE1_CHECK = L/2 - 1/sqrt(2*C_CHECK)*sum(fCASE_CHECK); % Eq. (61) 

if fCASE1_CHECK < 0
    fprintf(' - CASE 1 ')
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else
    fprintf(' - CASE 2 ')
end

%%%---END CASE CHECK---%%%

%%%---BEGIN DETERMINE u0---%%%

% Now that we know which case that occurs, we can determine u0. 

FCASE1 = zeros(1,m+1); % Eq. (61) 
Vector for function in Case 1 

dFCASE1 = zeros(1,m+1); % Eq. (78) 
Vector for the derivatives of function in Case 1

F1CASE2 = zeros(1,m+1); % Eq. (66) 
Vector for function 1 in Case 2 

F2CASE2 = zeros(1,m+1); % Eq. (67) 
Vector for function 1 in Case 2 

F3CASE2 = zeros(1,m+1); % Eq. (68) 
Vector for function 1 in Case 2 

dF1CASE2 = zeros(1,m+1); % Eq. (80) 
Vector for the derivatives of function 1 in Case 2

dF2CASE2 = zeros(1,m+1); % Eq. (81) 
Vector for the derivatives of function 2 in Case 2

dF3CASE2 = zeros(1,m+1); % Eq. (82) 
Vector for the derivatives of function 3 in Case 2

FB2 = zeros(1,m+1); % Eq. (60) 
Vector for function in integration constant B2

fCASE1 = zeros(1,m+1); % Eq. (61) 
Vector for function in Case 1 multiplied with binomial coefficients

dfCASE1 = zeros(1,m+1); % Eq. (78) 
Vector for the derivatives of function in Case 1 multiplied with binomial coefficients

f1CASE2 = zeros(1,m+1); % Eq. (66) 
Vector for function 1 in Case 2 multiplied with binomial coefficients

f2CASE2 = zeros(1,m+1); % Eq. (67) 
Vector for function 2 in Case 2 multiplied with binomial coefficients 

f3CASE2 = zeros(1,m+1); % Eq. (68) 
Vector for function 3 in Case 2 multiplied with binomial coefficients 

df1CASE2 = zeros(1,m+1); % Eq. (80) 
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Vector for the derivatives of function 1 in Case 2 multiplied with binomial 
coefficients

df2CASE2 = zeros(1,m+1); % Eq. (81) 
Vector for the derivatives of function 2 in Case 2 multiplied with binomial 
coefficients

df3CASE2 = zeros(1,m+1); % Eq. (82) 
Vector for the derivatives of function 3 in Case 2 multiplied with binomial 
coefficients

fB2 = zeros(1,m+1); % Eq. (60) 
Vector for function in integration constant B2 multiplied with binomial coefficients

if fCASE1_CHECK < 0 

%%--BEGIN CASE 1--%%

% See section 4.4.4 for solution strategy

    u0itr = udCASE - Delta_u; % Initial 
value for u0 in Case 1 

for j = 1:20

    u0 = min(u0itr,u0max-Delta_u); % Iterated 
value for u0, however not exceeding u0max in Eq. (58) due to Eq. (56)

    C = eps_s0^2/2 - gamma*u0^beta; % Eq. (56) 

for k = 1:m

        FCASE1(1) = gamma^0*(1/C)^(1/2+0)*(u0^(1+0*beta))/(1+0*beta); % Eq. (61)
        FCASE1(k+1) = gamma^k*(1/C)^(1/2+k)*(u0^(1+k*beta))/(1+k*beta); % Eq. (61)

        dFCASE1(1) = gamma^0*((gamma*beta*u0^(beta-1)*(1/2+0)*...           % Eq. (78)
            C^(-3/2-0)*u0^(1+0*beta)/(1+0*beta))+(C^(-(1/2+0))...
            *u0^(0*beta)));
        dFCASE1(k+1) = gamma^k*((gamma*beta*u0^(beta-1)*(1/2+k)...          % Eq. (78)
            *C^(-3/2-k)*u0^(1+k*beta)/(1+k*beta))+(C^(-(1/2+k))...
            *u0^(k*beta)));

end

for i = 1:length(r)

        fCASE1(i) = bin(i)*FCASE1(i); % Eq. (61)

        dfCASE1(i) = bin(i)*dFCASE1(i); % Eq. (78)

end

    fCASE1_u0 = L/2 - 1/sqrt(2)*sum(fCASE1); % Eq. (61)
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    dfCASE1_u0 = -1/sqrt(2)*sum(dfCASE1); % Eq. (78)

    u0itr = u0 - fCASE1_u0/dfCASE1_u0; % Eq. (70)

if abs(fCASE1_u0) < 1e-4 %
Tolerance for Eq. (61)

break
end

    ITERATIONS(j) = u0itr;

end

%%--END CASE 1--%%

else

%%--BEGIN CASE 2--%%

    u0itr = udCASE + Delta_u; % Initial 
value for u0 in Case 1

for j = 1:20

    u0 = min(u0itr,u0max-Delta_u); % Iterated 
value for u0, however not exceeding u0max in Eq. (58) due to Eq. (56)

    C = eps_s0^2/2 - gamma*u0^beta; % Eq. (56)

for k = 1:m

        F1CASE2(1) = (C/gamma)^0*(u0^(delta-0*beta)/(delta-0*beta)); % Eq. (66) 
        F1CASE2(k+1) = (C/gamma)^k*(u0^(delta-k*beta)/(delta-k*beta)); % Eq. (66) 

        F2CASE2(1) = (((C/gamma)^(0/(delta-0*beta)+1/beta)+...              % Eq. (67)
            Delta_u*(C/gamma)^(0/(delta-0*beta)))^(delta-0*beta))/...
            (delta-0*beta);
        F2CASE2(k+1) = (((C/gamma)^(k/(delta-k*beta)+1/beta)+...            % Eq. (67)
            Delta_u*(C/gamma)^(k/(delta-k*beta)))^(delta-k*beta))/...
            (delta-k*beta);

        F3CASE2(1) = (gamma^0*(((1/gamma)^(1/beta)*C^((2-beta)/...          % Eq. (68)
            (2*beta*(1+0*beta))))-(Delta_u*C^(-(1/2+0)/(1+0*beta))))^...
            (1+0*beta))/(1+0*beta);
        F3CASE2(k+1) = (gamma^k*(((1/gamma)^(1/beta)*C^((2-beta)/...        % Eq. (68)
            (2*beta*(1+k*beta))))-(Delta_u*C^(-(1/2+k)/(1+k*beta))))^...
            (1+k*beta))/(1+k*beta);

        dF1CASE2(1) = (1/gamma)^0*(C^0*u0^(delta-0*beta-1)-...              % Eq. (80)
            ((gamma*beta*0*C^(0-1))/(delta-0*beta))*...
            u0^(beta*(1-0)+delta-1));
        dF1CASE2(k+1) = (1/gamma)^k*(C^k*u0^(delta-k*beta-1)-...            % Eq. (80)
            ((gamma*beta*k*C^(k-1))/(delta-k*beta))*...
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            u0^(beta*(1-k)+delta-1));

        dF2CASE2(1) = (((C/gamma)^(0/(delta-0*beta)+(1/beta))+...           % Eq. (81)
            Delta_u*(C/gamma)^(0/(delta-0*beta)))^(delta-0*beta-1))*...
            (-gamma*beta*u0^(beta-1))*(((1/gamma)^(0/(delta-0*beta)+...
            1/beta)*(0/(delta-0*beta)+1/beta)*C^(0/(delta-0*beta)+...
            1/beta-1))+(Delta_u*(1/gamma)^(0/(delta-0*beta))*...
            (0/(delta-0*beta))*C^(0/(delta-0*beta)-1)));
        dF2CASE2(k+1) = (((C/gamma)^(k/(delta-k*beta)+(1/beta))...          % Eq. (81)
            +Delta_u*(C/gamma)^(k/(delta-k*beta)))^(delta-k*beta-1))*...
            (-gamma*beta*u0^(beta-1))*(((1/gamma)^(k/(delta-k*beta)+...
            1/beta)*(k/(delta-k*beta)+1/beta)*C^(k/(delta-k*beta)...
            +1/beta-1))+(Delta_u*(1/gamma)^(k/(delta-k*beta))*...
            (k/(delta-k*beta))*C^(k/(delta-k*beta)-1)));

        dF3CASE2(1) = gamma^0*((((1/gamma)^(1/beta)*C^((2-beta)/...         % Eq. (82)
            (2*beta*(1+0*beta))))-(Delta_u*C^(-(1/2+0)/(1+0*beta))))^...
            (0*beta))*(-gamma*beta*u0^(beta-1))*(((1/gamma)^(1/beta)*...
            ((2-beta)/(2*beta*(1+0*beta)))*C^((2-beta)/(2*beta*...
            (1+0*beta))-1))+(Delta_u*((1/2+0)/(1+0*beta))*...
            C^(-((1/2+0)/(1+0*beta)+1))));
        dF3CASE2(k+1) = gamma^k*((((1/gamma)^(1/beta)*C^((2-beta)/...       % Eq. (82)
            (2*beta*(1+k*beta))))-(Delta_u*C^(-(1/2+k)/(1+k*beta))))^...
            (k*beta))*(-gamma*beta*u0^(beta-1))*(((1/gamma)^(1/beta)*...
            ((2-beta)/(2*beta*(1+k*beta)))*C^((2-beta)/(2*beta*...
            (1+k*beta))-1))+(Delta_u*((1/2+k)/(1+k*beta))*...
            C^(-((1/2+k)/(1+k*beta)+1))));

        FB2(1) = (C/gamma)^0*(u0^(delta-0*beta)/(delta-0*beta));
        FB2(k+1) = (C/gamma)^k*(u0^(delta-k*beta)/(delta-k*beta)); %Eq. (60)

end

for i = 1:length(r)

        f1CASE2(i) = bin(i)*F1CASE2(i); % Eq. (66) 

        f2CASE2(i) = bin(i)*F2CASE2(i); % Eq. (67)

        f3CASE2(i) = bin(i)*F3CASE2(i); % Eq. (68)

        df1CASE2(i) = bin(i)*dF1CASE2(i); % Eq. (80)

        df2CASE2(i) = bin(i)*dF2CASE2(i); % Eq. (81)

        df3CASE2(i) = bin(i)*dF3CASE2(i); % Eq. (82)

        fB2(i) = bin(i)*FB2(i); % Eq. (60)

end

    fCASE2 = L/2 - (1/sqrt(2*gamma))*(sum(f1CASE2)-sum(f2CASE2))-...        %Eq. (65)
        (1/sqrt(2))*sum(f3CASE2) - Delta_x; 
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    dfCASE2 = -1/sqrt(2*gamma)*(sum(df1CASE2)-sum(df2CASE2))-...            %Eq. (79)
        1/sqrt(2)*sum(df3CASE2);

    u0itr = u0 - fCASE2/dfCASE2; %Eq. (70)

if abs(fCASE2) < 1e-4 %
Tolerance for Eq. (65)

break
end

    ITERATIONS(j) = u0itr;

end

%%--END CASE 2--%%

end

eps_c_max = xi*(eps_s0-sqrt(2*C))/(1+xi); %Eq. (71)

eps_cm_max = psi*eps_c_max; %Eq. (71)

if eps_cm_max > eps_ctm %See
section 4.4.5
    fprintf('- MEMBER CRACKED i.e. NEW MEMBER LENGTH L = L/2 CHOSEN')
    L = L/2;
else

break
end

end

u0

u0itr

format short

%%%---END DETERMINE u0---%%%
%%

%%
%%%---BEGIN POSTPROCESSING---%%%

% We have now determined u0 and can now determine the unknown integration
% constants depending on u0. Finally, we can calculate the crack width.

%%--BEGIN CALCULATE X-VALUES--%%

B1 = L/2; % Eq. (59) 

B2 = (1/sqrt(2*gamma))*sum(fB2); % Eq. (60)
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ud = (eps_s0^2/(2*gamma) - u0^beta)^(1/beta); % Eq. (58)

n = 30; % Division 
to determine the stepsize in the vector for the slip u

u = 0:u0/n:u0; % Slip 
values

x = zeros(1,length(u)); % Vector 
for x-values corresponding to the slip values

FX = zeros(length(u),m+1); % Matrix 
for functions in Eq. (39) and (40)

fX = zeros(length(u),m+1); % Matrix 
for functions in Eq. (39) and (40) multiplied with binomial coefficients 

for j = 1:length(u)

%Filling functions matrix FX with either Eq. (39) or Eq. (40)
for k = 1:m

if u(j) < ud
            FX(j,1) = gamma^0*(1/C)^(1/2+0)*(u(j)^(1+0*beta)/(1+0*beta)); % Eq. (39)
            FX(j,k+1) = gamma^k*(1/C)^(1/2+k)*(u(j)^(1+k*beta)/(1+k*beta)); % Eq. (39)

else
            FX(j,1) = (C/gamma)^0*(u(j)^(delta-0*beta)/(delta-0*beta)); % Eq. (40)
            FX(j,k+1) = (C/gamma)^k*(u(j)^(delta-k*beta)/(delta-k*beta)); % Eq. (40)

end
end

%MULTIPLYING THE FUNCTIONS IN FX WITH THE BINOMIAL COEFFICIENT
for i = 1:length(r)

        fX(j,i) = bin(i)*FX(j,i);

end

%CALCULATING x-VALUES FOR EACH u-VALUE
if u(j) < ud

        x(j) = B1 - 1/sqrt(2)*sum(fX(j,:)); % Eq. (39)
else

        x(j) = B2 - 1/sqrt(2*gamma)*sum(fX(j,:)); % Eq. (40)
end

end

%%--END CALCULATE X-VALUES--%%

%%--BEGIN BOND STRESS, STRAINS AND FORCES--%%

tau = zeros(1,length(u)); % Vector 
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for bond stresses

eps_s = zeros(1,length(u)); % Vector 
for steel strains

eps_c = zeros(1,length(u)); % Vector 
for concrete strains

Ns = zeros(1,length(u)); % Vector 
for steel forces

Nc = zeros(1,length(u)); % Vector 
for concrete forces

Ntot = zeros(1,length(u)); % Vector 
for total forces

for j = 1:length(u)

    tau(j) = tau_max*(u(j)/u1)^alpha; % Eq. (33)

    eps_s(j) = (xi*eps_s0 + sqrt(2*(gamma*u(j).^beta+C)))/(1+xi); % Eq. (44) 
Steel strains

    eps_c(j) = xi*(eps_s0 - sqrt(2*(gamma*u(j).^beta+C)))/(1+xi); % Eq. (45) 
Steel strains

    Ns(j) = eps_s(j)*Es*As/1e3; % Steel 
forces

    Nc(j) = psi*eps_c(j)*Ac*Ecm/1e3; % Concrete 
forces

    Ntot(j) = Ns(j)+Nc(j); % Total 
forces

end

%%--END BOND STRESS, STRAINS AND FORCES--%%

%%%---END POSTPROCESSING---%%%
%%

%%%---BEGIN CRACKWIDTH---%

eps_smx = ((xi*eps_s0*(L/2)+u0)/(1+xi))/(L/2);

eps_cmx = (psi*xi*(eps_s0*(L/2)-u0)/(1+xi))/(L/2);

u0m = (1/(1+xi))*(xi*eps_s0*L/2*(1-psi)+u0*(1+psi*xi)); % Eq. (77) 
Maximum slip at the loaded end [mm]

w = 2*u0m; % Eq. (76) 
Crack width [mm]
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lambda = (1/(1+xi))*(1-(2*u0/(eps_s0*L))); % Eq. (91) 
in Russo and Romano (1992) 

%%%---END CRACKWIDTH---%
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