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Abstract

Metamaterials are composite materials acting as effectively continuous media,
which are capable of realizing entirely new phenomena such as negative refraction
and transformation optics. This class of new materials may therefore in principle
make available concepts such as the perfect lens and invisibility cloaks. These
materials are thus promised to achieve electromagnetic properties which most cer-
tainly go beyond materials found in nature, or ever encountered before, except
from perhaps in science fiction. Such media may in general be built up of both
active and passive components.

New physical phenomena may require new physical models. A thorough in-
vestigation should therefore be made regarding the well established mathematical
models from earlier research on electromagnetic properties of continuous, as well
as structured media. This thesis contributes in various ways to the development
of a solid theoretical framework, which can be used in the analysis of such novel
materials. Two lines of inquiry are followed.

The first part of the thesis considers isotropic, possibly active media, which
are described by given material parameters; a permittivity ε(ω) and a perme-
ability μ(ω). A mathematical framework based on Fourier-Laplace analysis is
introduced for representing the response from such media in terms of (possibly
complex) frequency- and transversal wavenumber components. The idealization of
monochromatic plane waves may for active systems be dangerous due to the pres-
ence of growing waves, and the possibility of approaching this limit is investigated
by deforming the integration surface in complex frequency-complex wavenumber
space. We also give the most general criterion for absolute instabilities. The
general theory is used to analyze example media with weak or strong gain. In
particular it is used to show the existence of isotropic media which in principle
exhibit simultaneous refraction, meaning they refract positively and negatively at
the same time.

In the second part, the importance of spatial dispersion in metamaterials con-
sisting of passive components is considered. We discuss the importance of higher
order multipole terms in homogenization theories for metamaterials. While it is
common to include polarization, magnetic dipole and perhaps electric quadrupole
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terms, it is shown that certain higher order terms are generally significant when
second order spatially dispersive effects (e.g. magnetism) are concerned. Based
on this notion it is not necessarily clear how the magnetic permeability should be
defined. We therefore state and compare four different definitions of the perme-
ability, and analyze their properties in general. As a further investigation of their
physical relevance we compare how well the parameters predict the reflection from
semi-infinite periodic metamaterial structures. The predictions are based on the
Fresnel equation using these four permeabilities. It is found that the Fresnel equa-
tion gives accurate results for 2D metamaterials which mimic natural magnetism,
in a frequency range where the magnetic moment dominates the O(k2) part of
the total Landau-Lifshitz permittivity. For a 1D layered structure, or for large
frequencies, the correspondece is poor.
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Chapter 1

Introduction

Optical technologies play an important role in today’s society, and they are making
a significant impact on everyday life. Wireless and fiber communication as well as
cameras, detectors and sensors are all crucial elements present in almost any device,
and may be regarded as important factors for societal and individual advancement.
Applications range from the basic to the recreational - e.g. from medical devices
to high resolution images for social media. To continue the ongoing development
of better optical and wireless components, the engineers will eventually need new
materials to work with. Metamaterial researchers might e.g. provide solutions to
problems such as cost, efficiency, sensitivity and size of micro-sensors.

Metamaterials are structured, composite media with tailored optical properties,
in particular properties that cannot be found in nature. Negative refraction, optical
cloaking and transformation optics are potential effects which may be realized by
metamaterials. Such novel properties may be obtained by tailoring the micro
structure, so that the macroscopic electromagnetic properties can be described by
effective material parameters. For this to be the case the unit cell of the micro
structure should be much smaller than the wavelength of the electromagnetic wave
propagating inside the material.

In the analysis of novel physical phenomena, the well established results from
classical physics cannot necessarily be straightforwardly applied. A well known
example of this is if one consider an object moving at a velocity close to the speed
of light c. Despite the purity and simplicity of the classical solution according to
Newton’s laws, it has no physical relevance. This is because the classical solution
relies on assumptions not valid in this regime of particle velocities. To predict
the trajectory of the object accurately one has to resort to the mathematically
more advanced model offered by Einstein’s special theory of relativity. This thesis
considers certain assumptions and simplifications often made in classical electro-
dynamics, which should be cautiously applied in the analysis of metamaterials.

There are two aspects to the possible necessity of new physical models. As the
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Chapter 1. Introduction

above example illustrate, the classical models may predict unphysical results, and
thus become irrelevant. In addition, being tied up by the well established theories
for conventional media might also prevent us from seeing the true possibilities of
properties which may be achieved by careful design of metamaterial structures.

The research field of metamaterials is often considered to be started by John
Pendry’s paper from 1999 [1]. The paper demonstrates how one can achieve a
magnetic response from a medium consisting of non-magnetic metallic microstruc-
tures. Artificial materials for manipulating electromagnetic waves were, however,
not new at that time. Already in 1898 twisted structures were reported to have
the potential of field rotation [2], and the effective permittivity of metal inclusions
in glass was calculated in 1904 [3]. The calculations rely on the Clausius-Mossotti
relation derived in the 19th century.

The split-ring structure proposed in [1] is found to exhibit a negative perme-
ability μ < 0 close to the resonance frequency. A composite medium based on a
periodic array of inter-spaced split-ring resonators and continuous wires was then
shown to exhibit a frequency region with simultaneous negative permittivity ε < 0
and a negative permeability μ < 0 [4]. In his paper from 1967 Veselago showed
that in such a medium also the refractive index n will be negative [5]. This means
the refraction angle at an interface can be negative, and the phase and group veloc-
ities of the electromagnetic wave may point in opposite directions. Also negative
refraction and negative group velocity had already been studied in the preced-
ing years [6–8]. However, the phenomenon was first experimentally verified for
microwaves in 2000 [4]. Recent development in nano structuring techniques and
simulation tools has led to the huge progress seen in metamaterial research the
last decades.

Veselago argued that a slab of a negative refractive index material in some
sense will work as an unconventional lens [5]. Pendry showed that such a slab in
fact functions as a perfect lens, where the resolution is not limited to the order of
a wavelength according to the Abbe diffraction limit. This is because the negative
refraction amplifies and restores the evanescent components of the field, so that
all Fourier components still are present in the image plane. An actual realization
of such a lens will suffer from losses. Along with the fact that negative refraction
can only be achieved over a finite bandwidth, these losses cause the perfect lens to
become imperfect. The optimal resolution as a function of bandwidth can however
still be found [9].

The metamaterial application which attracts the most attention from popular
culture is the concept of optical invisibility [10,11]. Both these papers use coordi-
nate transformations to find the required electromagnetic parameters for obtain-
ing the desired optical ray trajectories. An experimental display of the cloaking
mechanism for microwave frequencies was given in [12]. The transformation op-
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tics technique in general relies on the theory of differential geometry [13], mostly
known from Einstein’s general theory of relativity. Also the invisibility cloak turns
out to be difficult to realize in practice. Again, this is due to lossy components,
and the fundamental limitation that one can only achieve the desired parameters
over a narrow bandwidth. These problems will in general be potential obstacles in
metamaterial applications. Even another challenge is the difficulty of fabricating
the 3D micro- and nano structures. For some applications, the recent develop-
ment of metasurfaces [14,15] may be a potential solution. Metasurfaces are planar
metamaterial structures with sub-wavelength thickness.

The papers included in this thesis all contribute to the development of the-
oretical frameworks which strengthen our understanding of the electromagnetic
response from metamaterials. It has been suggested to use optical amplification to
overcome the losses in metamaterial structures [16]. In the analysis of such gain
media it turns out one should be very careful with approximating the illuminating
source as a monochromatic plane wave. The first two papers of this thesis deals
with this concern. Paper I presents a mathematical framework which can be used
for analyzing the response from a semi-infinite gain medium excited by a physical
source, which is causal and has finite size. It turns out that the monochromatic
and plane wave limits in general do not commute, due to possible instabilities be-
ing present. The general theory is applied in several cases, and is used to predict
media with novel properties. Paper II applies the same theory in analyzing the
response from a gainy slab made from a conventional weak gain medium. Unphys-
ical results obtained when applying the conventional monochromatic plane wave
approximation are first demonstrated, and the theory from Paper I is used to re-
solve these peculiarities. These two papers consider homogeneous media where
the material permittivity ε(ω) and permeability μ(ω) are given parameters. The
mathematical framework presented is thus only applicable to media where these
given parameters describe the electromagnetic response well for all frequencies.
How these parameters may be achieved, e.g. from given metamaterial structures,
is not considered.

The remaining included papers (Papers III - VI) consider different topics within
metamaterial homogenization, i.e. the procedure of obtaining effective parameters
from a given microscopic structure. All example structures considered in these
papers are periodic. Conventional textbook treatments on electromagnetic wave
propagation consider the induced charge and current densities as “bound”, and
therefore absorb them into a refractive index. In Paper III we consider the pos-
sibility of rather treating the medium as vacuum, where all charge and current
densities are considered as “free”. An explanation of why the wavelength inside
the medium still becomes different from that in vacuum is given, along with asso-
ciated time domain simulations. The paper is meant to demonstrate how different
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Chapter 1. Introduction

mathematical descriptions of the same phenomenon always should predict the same
physical response.

Papers IV, V and VI consider spatial dispersion in metamaterial homogeniza-
tion. We argue in Paper IV that in metamaterial structures, higher order multi-
poles may contribute significantly to the effective medium response; in particular to
the magnetic permeability μ. The conventional dipole approximation (the material
response is only given by the electric and magnetic dipole moments) is therefore
not in general sufficient to describe the response of such media. This leads to the
question how to define the magnetic permeability μ in general. In Paper V we
compare four different definitions of μ, and discuss the connection between them,
and properties in general. The discussed properties include causality, passivity,
symmetry, asymptotic behavior, and origin dependence. Finally, Paper VI con-
siders how well these permeabilities predict the reflection from several example
structures, when used in the Fresnel reflection coefficient.
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Chapter 2

Background

Metamaterial research relies on the assumption that a composite material can
be viewed as an effective medium. When this is the case the microscopic elec-
tromagnetic fields inside the composite can be approximated by macroscopically
averaged fields, and these macroscopic fields can be related by effective material
parameters. Intuitively this may be possible if the constituents of the composite
are much smaller than the effective wavelength of the light propagating through
the material.

The electromagnetic properties of most natural materials are well described
by the permittivity ε(ω) and possibly also a permeability μ(ω), which in general
depend on the frequency ω. For brevity, this frequency dependency is sometimes
suppressed in the notation. The reflection and transmission of a monochromatic
plane wave can often be described in terms of these parameters through Fresnel’s
equations. In this and the next chapter we will assume that the effective response
of the metamaterial similarly can be approximated by an effective permittivity
and permeability. The macroscopic fields and effective material parameters must
be obtained from a homogenization method. Numerous such methods have been
developed, which mainly follow two lines: retrieval from scattering parameters
[17, 18], or field averaging [1]. Several difficulties and limitations of the differ-
ent methods have been reported (e.g. branch problems, non-local, non-causal or
thickness dependent parameters). Possible improvements and modifications of the
methods have been suggested [19–29].

Natural materials are well approximated as continua for a wide range of fre-
quencies. Even natural materials are built up by discrete building blocks (e.g.
atoms in a periodic lattice in a crystal or molecules in a liquid or gas). For X-
rays this discreteness becomes apparent in the reflection from a crystal structure in
terms of Bragg diffraction [30]. This shows that natural media cannot be viewed as
continua for all frequencies. Models for the effective parameters of metamaterials
will similarly break down for sufficiently high frequencies.
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Chapter 2. Background

This chapter describes the outline of a classical homogenization procedure used
by Russakoff [31] and Jackson [32], where the averaged fields are calculated as a
spatial convolution of the microscopic fields by a test function f(r)1. In Chapter 4
we present a recent homogenization method for infinite periodic structures [33–35],
and we use this formalism in the analysis of spatial dispersion in metamaterials.

In all examples in this work where actual homogenization calculations are to be
performed and analyzed, we will consider one or two dimensional periodic struc-
tures. In such media the microscopic structure is given by a unit cell, which is
repeated in the given number of dimensions. It is worth mentioning that interest-
ing electromagnetic properties can also be achieved using amorphous structures
[36].

2.1 Classical approach
Electromagnetic fields in a medium are governed by Maxwell’s equations

ε0∇ · e = �ext + �, (2.1a)
∇ · b = 0, (2.1b)

∇ × e = iωb, (2.1c)
1
μ0

∇ × b = −iωε0e + jext + j. (2.1d)

Here we have assumed harmonic time dependency e−iωt. We will use lower case
letters to denote the microscopic fields and current densities. These fields will
depend on the position inside the unit cell of a periodic structure, e.g. e = e(r).

The charge and current densities on the right hand side of (2.1a) and (2.1d)
have been split into two contributions: external and induced. The external charge
and current densities, �ext and jext, are given or known quantities, independent
of the local fields. The induced charge and current densities, � and j, are on the
other hand functions of the fundamental electromagnetic fields e and b [37].

We will now consider an electromagnetic wave propagating in vacuum. By
combining the two Maxwell curl equations we obtain the wave equation for the
electric field in vacuum, where there are no charge or current densities:

∇2e + ω2

c2 e = 0, (2.2)

1The method was initially derived for natural materials consisting of atoms or molecules,
but can straightforwardly be applied to metamaterials by replacing these fundamental building
blocks by the structured inclusions.
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2.1. Classical approach

where c = 1/
√

ε0μ0 is the speed of light in vacuum. The solutions to this equation
are plane waves, i.e.

e(r) = e0eik · r. (2.3)

Here |k| = ω/c, and e0 is some complex vector amplitude. Such a plane wave
in vacuum would have to be excited by some external current density jext, which
would determine the amplitude and direction of e0, as well as the propagation
direction of the plane wave k/|k|.

When materials are present, the solution (2.3) will be altered due to induced
charge and current densities. We will consider metamaterials consisting of compo-
nents made of linear, isotropic and time-shift invariant materials. Microscopically
the induced charge density may then be expressed

j(r) = −iωp(r) + ∇ × m(r), (2.4)

where

p(r) = ε0[ε(r) − 1]e(r), (2.5a)

m(r) = 1
μ0

(
1 − 1

μ(r)
)
b(r). (2.5b)

The introduced parameters ε(r) and μ(r) are the microscopic relative permittivity
and permeability, which describe the material present at a given position r. We
will in the following leave out the word “relative” when refering to the material
parameters. Note that there has already happened a homogenization from the
level of atoms and molecules, in order to describe the materials of the different
constituents in terms of their material parameters. I will later homogenize the
fields and materials parameters to the next level. These macroscopic fields will be
denoted by calligraphic capital letters, and the composite media will be described
in terms of effective material parameters.

For a homogeneous medium with constant ε(r) = ε and μ(r) = 1 the wave
equation takes a similar form as (2.2):

∇2e + [n · ω]2
c2 e = 0. (2.6)

Also here the solution is given by the plane wave (2.3), but now |k| = n · ω/c. Here
we have introduced the refractive index n = ω

√
ε/c. The refractive index predicts

how the wavelength and phase velocity of the electromagnetic wave will change
inside the homogeneous medium compared to in vacuum. Equation (2.6) may be
found by insertion of (2.4)-(2.5) into (2.1d), before combining it with (2.1c) to
eliminate b. This is the conventional method used to show that the wavelength of
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Chapter 2. Background

an electromagnetic wave inside an homogeneous medium will be given by

λ = 2π

|k| = 2πc

n · ω
= λ0

n
, (2.7)

where λ0 is the wavelength a plane wave at a frequency ω would have had in
vacuum.

No matter how we choose to describe j, the fundamental fields e and b, as well
as the relation between j and these fields will remain the same. Paper III of this
thesis serves as an example of this, where rather than using the decomposition
(2.4), we consider j inside a dielectric as a superposition of current sheets situated
in a vacuum. A current sheet in vacuum will emit electromagnetic waves with the
vacuum wavelength. The total electric field inside the dielectric will then be given
as a superposition of the incident wave and the waves produced by the “current
sheets”. All these waves have the vacuum wavelength. The paper provides an
explanation of how this superposition still will add up to a wave with wavelength
λ0/n inside the dielectric. As an attempt to visualize these “current sheets in
vacuum” we present finite difference time domain (FDTD) simulations [38] of
a plane wave propagating through a layered structure where we essentially have
compressed the induced currents into thin current sheets surrounded by vacuum. It
is worth mentioning that even though we consider the medium as source charge and
current densities, these sources depend on the electric field and should therefore
be characterized as induced charges and currents [37].

A similar analysis using perturbation theory was done by James and Griffiths
[39]. Their analysis is however somewhat complicated, and does not explain the
physical mechanism for the altered wavelength in terms of a z-dependent set of
sources. After Paper III was published we were made aware of another paper which
deals with the same subject in more general terms, and use an identical technique
to solve the fundamental integral (10) of our paper [40].

We will now consider 1D propagation through the same periodic, layered struc-
ture of alternating permittivities ε1 = 31 and ε2 = 1 to visualize the classical
homogenization procedure from Russakoff-Jackson [31, 32]. The resulting electric
field from the FDTD simulation is shown in Fig. 2.1. Considering the structure as
a metamaterial we expect it to behave approximately as a continuum with effective
permittivity given as a weighted averaged of the two permittivities [41]:

ε = ε1d1 + ε2d2

d1 + d2
= 4. (2.8)

Here d1 = 0.1a and d2 = 0.9a are the thicknesses of the two alternating layers
expressed in terms of the lattice parameter a. In the FDTD simulation Fig. 2.1 we
used the excitation frequency ω1 = 0.1c/a. As everything scales with the lattice
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2.1. Classical approach

parameter, and we consider non-dispersive components (permittivity independent
on frequency), the parameter a can be chosen arbitrarily.

From the figure it is clear that e(z) effectively propagates with a wavelength
λ ≈ λ0/2, where λ0 is the wavelength outside of the metamaterial slab. This is in
good agreement with (2.7), where n =

√
ε = 2. The field profile is however jagged

due to the rapid fluctuation of the microscopic permittivity. The macroscopic
field behavior may be found by homogenization. The macroscopic field should be
a smooth profile approximating the behavior of the microscopic field e(z). We will
denote such macroscopic (averaged) fields by calligraphic capital letters, e.g. E for
the macroscopic electric field. The Russakoff-Jackson homogenization procedure
[31,32] calculates such an average by using a test function f(r):

E(r) =
∫

f(r′)e(r − r′)dr′, (2.9)

where f(r) is real, non-zero in some neighborhood of r = 0, and it’s integral is
normalized to unity over all space. In the calculation of the macroscopic field
at position r the test function weights the microscopic field at the surrounding
points differently. The macroscopic magnetic field B and the induced charge and
current densities ρ, ρext, J and J ext are defined similarly from their microscopic
counterparts b, �, �ext, j and jext.

It can be shown that the average operation (2.9) commutes with the operations
of spatial differentiation. This gives the macroscopic Maxwell equations

ε0∇ · E = ρext + ρ, (2.10a)
∇ · B = 0, (2.10b)

∇ × E = iωB, (2.10c)
1
μ0

∇ × B = −iωε0E + J ext + J . (2.10d)

These equations can be used to describe macroscopic wave phenomena in periodic
metamaterials. To be able to do so, we do however need a relation between J and
the macroscopic fields E , B.

For the microscopic fields the material parameters enter (2.1d) by insertion
of the known relations (2.4)-(2.5). To obtain effective material parameters from
the macroscopic fields and current densities in (2.10) we should thus find similar
constitutive relations between the macroscopic induced current density J and the
macroscopic electromagnetic fields E and B. In the Russakoff-Jackson formalism
such relations are found by approximating the macroscopic induced current density
by a macroscopic multipole expansion [32,42]. If only the macroscopic electric and
magnetic dipole moments contribute significantly in this expansion we get

9



Chapter 2. Background

J (r) = −iωP + ∇ × M. (2.11)

The macroscopic electric and magnetic dipole moments are given by

P(r) =
∫

f(r′)p(r − r′)dr′, (2.12)

and
M(r) =

∫
f(r′)

[
m(r − r′) + (r − r′) × p(r − r′)

2

]
dr′. (2.13)

In (2.12) the macroscopic electric dipole moment is expressed in terms of an aver-
age of the microscopic electric dipole moment. The macroscopic magnetic dipole
moment on the other hand is expressed in (2.13) in terms of the average of the sum
of the microscopic magnetization density m and the microscopic magnetic dipole
moment (r × p)/2.

In our application of the Russakoff-Jackson method to homogenization of meta-
materials the microscopic magnetization density m denotes the intrinsic magnetic
moment of the constitutes, while the term (r × p)/2 takes into account the addi-
tional magnetic moment due to potential induced currents circulating around an
origin of the unit cell. In the original Russakoff-Jackson derivation of the macro-
scopic Maxwell equations the term m similarly denotes the intrinsic magnetic
moments of each charge in a molecule, while the term (r×p)/2 takes into account
the molecular magnetic moment due to the charges’ movement around an origin
of the molecule.

Inspired by (2.5), effective macroscopic material parameters may be defined by
relating the macroscopic dipole moments P , M to the macroscopic electromag-
netic fields E , B:

P(r) = ε0
[
ε − 1

]
E(r), (2.14a)

M(r) = 1
μ0

[
1 − 1

μ

]
B(r). (2.14b)

For simplicity, we here consider media where the macroscopic response may be
described in terms of isotropic material parameters; the relative permittivity ε,
and the relative permeability μ. Again, we will leave out the word “relative” when
refering to the material parameters. The anisotropic case is considered in Chapter
4, and in Paper V of this thesis. Note that the permeability μ in (2.14) is a different
parameter than the microscopic permeability in (2.5).

From (2.13) it becomes apparent that it is possible to obtain a magnetic re-
sponse μ �= 1 in a metamaterial consisting of non-magnetic components, where
m(r) = 0 for all r. This is referred to as artificial magnetism, and is an important
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2.1. Classical approach

reason to why metamaterials can be used to obtain novel scattering properties.
In metamaterials, not only the permittivity ε(ω), but also the permeability μ(ω)
can contribute significantly to the electromagnetic response, also for quite high
frequencies where the magnetic response of all natural materials is absent.

Macroscopic Maxwell equations which can be used to predict wave phenomena
in metamaterials may now be found by insertion of (2.11) into (2.10d). With
the relations (2.14) it is convenient to introduce auxiliary fields D = ε0εE and
H = B/(μ0μ). This gives the macroscopic Maxwell equations

∇ · D = ρext, (2.15a)
∇ · B = 0, (2.15b)

∇ × E = iωB, (2.15c)
∇ × H = −iωD + J ext. (2.15d)

In the remaining of this and the next chapter, we will assume that effective
parameters ε(ω) and μ(ω) for a metamaterial are given, and rather consider the
electromagnetic response from a homogeneous medium with these parameters.
The given parameters may for instance be obtained through an analytical model,
or through a numerical implementation of a given homogenization theory. In
Chapter 4 we will consider the homogenization of actual periodic structures in
more detail.
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ẑ

ε0, μ0

ε = 31ε0, μ0

Figure 2.1: The microscopic electric field profile of a plane wave incident from vacuum
on the left-hand side, upon a layered dielectric structure on the-right hand side. The
figure also shows the macroscopic field calculated according to a one dimensional variant
of (2.9), with f(z) being a Gaussian with a full width of half maximum approximately
equal to the lattice parameter of the layered structure a. The macroscopic field has been
scaled with a factor 0.5, to make the two graphs distinguishable. It is seen that E(z) is a
smoothened version of e(z). The arrows indicate the phase velocity of the wave at that
given z. The two arrows for z < 0 indicates that in this area the field is a sum of the
incident and reflected wave. The difference in thickness of the arrows roughly describe
the amplitude ratios between the three different modes of the macroscopic electric field
(incident, reflected, transmitted). Note that the axes in the plot has been left out. This
is because neither the magnitude of the field, nor numerical values for the position z are
used in any of our interpretations of the plot. Including axes with numerical values (in
arbitrary units) will thus only disturb the points the figure is meant to illustrate. The
axes will, for the same reason, be left out in all similar figures in this thesis.
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2.2. Negative refraction in a medium with ε < 0 and μ < 0

2.2 Negative refraction in a medium with ε < 0
and μ < 0

We now consider negative refraction, as an example of a novel property which can
be attained in a metamaterial. In his paper from 1968 Veselago suggested that
negative refraction will occur at an interface between vacuum and a medium with
simultaneous negative permittivity and permeability [5]. By inserting plane wave
solutions E = E0eik · r−iωt and H = H0eik · r−iωt in the curl equations in (2.15),
with the constitutive relations (2.14) we get

k × E0 = iωμH0, (2.16a)
k × H0 = −iωεE0. (2.16b)

Since ε and μ are real, we can without loss of generality assume that E0 and H0
are real vector amplitudes. If ε and μ are negative, the vectors (E , H, k) form a
left-handed set. Media with negative ε and μ are therefore often referred to as
left-handed media.

The energy flow in the medium is described by the Poynting vector

S = 1
2E0 × H0, (2.17)

so S and k are anti-parallel in a medium with negative ε and μ. This is demon-
strated in Fig. 2.2. We note that the definition of “left handed” and “right handed”
that is based on the set formed by the vectors (E , H, k) is not rigorous, since the
permittivity ε(ω) and permeability μ(ω) generally are complex quantities. It is
therefore common to adopt the following definition: A medium is said to be left
handed at the frequency ω if the associated, time-averaged Poynting vector and
the phase velocity point in opposite directions. If they point in the same direction,
the medium is right handed.

The electron gas in a metal approximately behaves as a plasma:

ε(ω) = 1 − ω2
p

ω2 . (2.18)

In a metal the permittivity is therefore negative below the plasma frequency ωp,
which typically is in the ultraviolet region. A metamaterial consisting of parallel
metal wires, as shown in Fig. 2.3a, will therefore exhibit a negative effective per-
mittivity ε, where the plasma frequency can be tuned by the thickness of the wires
[43,44].

A negative permeability may be obtained in a medium where the effective
permeability μ(ω) is given by the Lorentz oscillator model [41, p. 176] μ(ω) = f(ω),
where
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z = 0

Sk

E

H
S, k

E

H

ε0, μ0 ε < 0, μ < 0

(a) (b) ẑ
x̂

ŷ

Figure 2.2: An electromagnetic plane wave propagating from vacuum (figure a) upon
a medium with ε < 0 and μ < 0 (figure b). In vacuum (a) S and k are parallel, while
inside the medium (b) they are anti-parallel.

f(ω) = 1 + Fω2
0

ω2
0 − ω2 − iΓω

. (2.19)

Here the parameter F is the strength of the response, ω0 is the resonance frequency,
and Γ is the damping rate, which also describes the bandwidth of the resonant
frequency response. Provided the resonance is strong enough, the real part of
μ will be negative for frequencies above the resonance ω0. A magnetic response
μ(ω) given by (2.19) may be approximated by a medium consisting of periodically
placed split-ring resonators [1], shown in Fig. 2.3b. Assuming a uniform time
varying magnetic field across the unit cell, an expression similar to (2.19) may
be derived for this structure using the field averaging approach from [1]. The
parameters F , ω0 and Γ are then expressed in terms of geometric sizes from the
split-ring structure.

By combining the split-ring and wire structures into a single composite effective
medium, and carefully choosing the parameters of the structures, we may thus
achieve negative refraction. Both structures in Fig. 2.3 are clearly anisotropic.
The negative effective permittivity of the wire medium will only be experienced by
the electric field component pointing along the metal wire. Similarly the magnetic
response from the split-ring structure will only affect the magnetic field component
normal to the split-ring cross section. In the combined structure the wires should
therefore be placed in a plane parallel to the split-ring cross section. A similar
structure has been experimentally verified to experience negative refraction [45].

Figure 2.4 shows the propagation of a plane wave normally incident to a
medium where ε(ω) = μ(ω) are both given by the same Lorentz response given in
(2.19). Close to the medium boundary the backward wave is established. Further
inside the medium the Brillouin and Sommerfeld precursors can be seen.
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(a) (b)

Figure 2.3: Unit cell cross sections of a wire medium (a) and a split-ring resonator
medium (b). Combined, these structures may result in a negative refracting medium.
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ε(ω), μ(ω)ε0, μ0

ẑ

Figure 2.4: A FDTD simulation of a plane wave propagating from vacuum incident to
a medium with ε = μ given by (2.19). The boundary surface at z = 0 is indicated by
the thick vertical line, and close to the boundary a backward wave is established. The
parameters F = 20, Γ = 0.1ω0, and the excitation frequency ω1 = ω0

√
11 were used in

the simulation. Here ω0 is the resonance frequency of the permittivity and permeability.
Again, note that axes has been left out, as the numerical values are not relevant for our
interpretations of the plot. Also here, and in the remaining plots, the arrows display the
direction of phase velocity at different z.
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2.2.1 Obtaining desired ε and μ

Inspired by transmission line metamaterials [46] one possible route to finding the
required microstructure for given desired effective parameters ε and μ is through
combining circuit elements in a specific manner [1,4,47,48]. The circuit equivalent
for the split-ring will be a RLC-circuit, where R is the internal resistance of the
ring, L is the self-inductance of the ring, and C is the capacitance from the gap.
An oscillating magnetic field through the split-ring will induce a current, and the
RLC-circuit equations can be used to show that the magnetic response μ of this
medium in fact is approximated by a Lorentz function. A more general method
for finding the necessary combination of circuit elements for a desired response is
the procedure of Brune synthesis [49].

The experimental verification of negative refraction in a combined split-ring and
wire medium suggests that even more sophisticated responses may be obtained by
combination of several known metamaterial building blocks. A magnetic response
μ(ω) with multiple resonances may for instance be obtained in a unit cell with
multiple split-ring resonators of different geometry. Assuming the inclusions con-
tribute to the response independent of each other is of course a simplification. In
general the inclusions will interact with each other, and the actual homogenized
parameters may be tedious to find. One should also note that even if a given
structure is predicted to achieve your desired response, the given structure may
be difficult to fabricate. The model may also be based on assumptions which are
not valid for the frequency range of interest.

From a theoretical perspective a natural question arises: given any desired
response how close can a metamaterial approach this response, while obeying the
fundamental principle of causality?

2.2.2 Kramers-Kronig relations
To obtain desired responses such as negative refraction, some metamaterials make
use of material resonances. A resonant response is often associated with high
losses. Imperfectness in production may lead to additional loss. This means the
permittivity and permeability, and therefore also the refractive index, will in gen-
eral be complex quantities, as appears from e.g. (2.19). As an example, consider
the perfect lens which requires a real refractive index n = −1 [50]. As already
mentioned, fundamental limitations prohibit such a lossless response over a finite
bandwidth of frequencies [9].

Despite the fact that the loss is undesirable, it may in fact be a requirement for
negative refraction to occur in a passive medium. The Kramers-Kronig relations
relates the real and imaginary parts of a function that is analytic in the upper half
plane Im (ω) > 0. We here consider media where the Kramers-Kronig relations for
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n(ω) are valid. For the refractive index n(ω) the relations in question are

Re n(ω1) = 1 + 2
π

P
∫ ∞

0

ωIm n(ω)
ω2 − ω2

1
dω, (2.20a)

Im n(ω1) = −2ω1

π
P

∫ ∞

0

ωRe n(ω)
ω2 − ω2

1
dω. (2.20b)

Here P means the principal value. The Kramers-Kronig relations in the form
(2.20) rely on the fact that Im n(ω) is an odd function.

We note that the factor ω/(ω2 − ω2
1) in (2.20a) is positive for ω > ω1 and

negative for ω < ω1. To obtain Re n(ω1) < 0 we must thus have either Im n(ω) <
0 for ω > ω1 and/or Im n(ω) > 0 for ω < ω1. It is also worth noting that
Im n(ω) at the frequencies close to ω1 is weighted the most, as the denominator
gets small. It is therefore possible to obtain a negative Re n(ω1) with Im n(ω1) ≈ 0
at an observation frequency ω1, if there is a steep drop in Im n(ω) just above
this frequency [51]. It is similarly possible to achieve a negative refractive index
n = √

εμ at arbitrarily low gain through a steep drop in Im n(ω) just above the
observation frequency.

The relations (2.20) will be valid if the same relations are separately satisfied
for ε(ω) and μ(ω). We now consider how such relations for these parameters may
be established.

The conventional derivation of the Kramers-Kronig relations for ε(ω) is based
on Titchmarsh’s theorem [52, 53]. This theorem states that if a function χ(ω) is
square integrable over the real ω-axis, then any of the following implies the other
two:

1. Causality: The inverse Fourier transform χ(t) = Fω[χ(ω)] is zero for t < 0.

2. Analyticity: The function χ(ω) is analytic for Im ω > 0. Furthermore, χ(ω)
is uniformly square integrable along a line parallel to the real axis in the
upper half-plane:

∫∞+iγ
−∞+iγ |χ(ω)|2dω < k for some number k > 0 and all

γ > 0.

3. Kramers-Kronig: The real and imaginary parts of χ(ω) (where ω is real) are
Hilbert transforms of each other.

That the susceptibility χ(ω) = ε(ω) − 1 is integrable over the real ω-axis must
either be assumed, or verified for a given homogenized permittivity ε(ω). For media
where this is the case, it follows from Titchmarsh’s theorem that the relations
(2.20) will be valid for ε(ω), provided χ(t) is zero for t < 0. This is usually
considered to follow from causality. A causality argument requires an input-output
relation, where the output response cannot precede the onset of the input. In case
of the susceptibility χ(t), the electric field E(t) is considered the input, and P(t)
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the output. As χ(t) describes how the polarization density depends on the electric
field at earlier times, it should therefore be zero for t < 0. It can be argued that
this is not a rigorous formulation, as the polarization density P and field E both
should be considered as the output from a source current density J ext [54] (see
Appendix C of Paper V for a more detailed discussion).

According to Landau-Lifshitz’ textbook [55] the permeability μ(ω) ceases to
be physically meaningful for relatively low frequencies. Modified Kramers-Kronig
relations are therefore suggested for μ(ω). We note that these arguments are made
for natural materials and not metamaterials [56]. For metamaterials it has been
argued that the Kramers-Kronig relations for μ(ω) should be even further modified
[57].

In Paper V of this thesis we present our interpretation of the Landau-Lifshitz
permeability argument. We also consider different definitions of magnetic per-
meability which in principle can be used for all frequencies, and discuss whether
Kramers-Kronig relations for these permeabilities can be established.

2.3 Non-magnetic negative refraction
The discussion in Sec. 2.2 shows that when ε and μ are simultaneously negative,
the refractive index also becomes negative. For such media the negative sign of the
square root must chosen in the calculation n(ω) =

√
ε(ω)μ(ω). In passive media,

where losses are present, it is sufficient to choose the sign such that Im n(ω) > 0.
For active media, however, one must be careful when identifying the sign of the
refractive index.

This is seen by writing the permittivity and permeability in polar form, giving

n(ω) =
√

|ε||μ|ei(θε+θμ)/2, (2.21)

where θε and θμ are the complex phases of ε and μ respectively. Adding a phase
2π to either ε or μ will not change the value of these parameters, but will flip the
sign of n. For the refractive index to describe something physical it cannot depend
on such mathematical manipulations. Assuming ε(ω) and μ(ω) are analytic and
zero-free functions in the upper frequency plane it is possible to retain a physical
interpretation of n(ω) by considering the global properties of these analytic func-
tions [58]. We define n(ω) for Im ω > 0 as the analytic branch of

√
ε(ω)μ(ω) that

tends to +1 as Re ω → ∞.
It is seen from (2.21) that a negative refractive index may be obtained even in a

non-magnetic medium, provided that sufficiently amount of phase is accumulated
in ε as we reduce ω from ∞ down to a certain observation frequency ω1. If the
accumulated phase in ε is θε(ω1) = 2π we indeed get n(ω1) = −1. In this medium
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both ε(ω1) and μ(ω1) are positive, which shows that negative refraction is also
possible in right handed media.

One way of obtaining a right-handed, non-magnetic negative refracting medium
is to use a permittivity function which is a sum of a passive and active Lorentz
function [59]. It has been suggested that such a medium can be physically realized
using Bose-Einstein condensates [60]. The propagation of a plane wave incident
from vacuum to such a medium is shown in Fig. 2.5. As in Fig. 2.3 a backward wave
is established close to the boundary. It is seen that the electric field decays very fast
with z inside the medium. This is due to the large positive value Im n(ω1). Since
the backward wave reaches a larger magnitude than the incident wave (due to the
gain), the excess energy leaves the medium, and appears as an amplified reflection.
By examining the time evolution as the incoming wave hits the boundary surface
it is found that the reflection grows in magnitude for a while, before it stabilizes
at a maximum amplitude of around 4.5 times the amplitude of the incident field.
This gives a reflection coefficient of 3.5, which corresponds to a power reflection
coefficient larger than 10.

It is worth noting that the gain of this medium is relatively high. For other
media, this high gain may have lead to rapidly growing fields, which again leads
to artificial reflections destroying the validity of the simulation. The reason this
does not happen for this medium is that the frequencies for which the medium has
gain are refracted negatively. The gain is therefore working towards the boundary,
so the fields don’t propagate a long distance, and thus never grow very large.
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ẑ

ε(ω), μ(ω)ε0, μ0

Figure 2.5: A FDTD simulation of a plane wave propagating from vacuum incident to a
right handed negative index medium similar to the one suggested by [59]. The boundary
surface at z = 0 is indicated by the thick vertical line, and close to the boundary a
backward wave is established. The arrows display the direction of phase velocity at
different z. The arrows in both directions for z < 0 indicate that the total field is a
sum of the incident field and its reflection here. The arrow in the negative z-direction is
thicker to indicate that the reflection has a larger amplitude than the incident field, due
to gain. The permittivity ε(ω) is given as as sum of to Lorentzian terms with F1 = 2.44,
Γ1 = 0.0572ω01, and F2 = −0.14, ω02 = 1.428ω01, Γ2 = 0.0572ω01, with the observation
frequency ω1 = 1.4708ω01. Here ω01 is the resonance frequency of the first Lorentzian
term of ε(ω). The medium is non-magnetic, i.e. μ = 1 for all frequencies.
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Chapter 3

Active media

To overcome the undesirable losses in metamaterials it has been suggested to
introduce gain in the design of these media [16, 61–65]. For example, introducing
gain may improve the performance of actual realizations of the “perfect” lens,
where finite loss cuts off the finer details of the image [16,66]. The introduction of
gain may also enable properties not achievable in passive systems, such as negative
refraction in a right-handed medium (Sec. 2.3). Waves propagating inside gain
media will be amplified, and instabilities may therefore be present. Due to the
possibility of instabilities and novel properties, the well established theory for
passive media should be applied with care. In this chapter we consider certain
potential pitfalls in the analysis of wave propagation in gainy media, and discuss
how they may be resolved.

The idealization of monochromatic plane waves may for active systems be dan-
gerous, due to the presence of growing waves. This problem is the topic of Papers
I and II of this thesis. In general it turns out to be necessary to involve complex
frequencies ω and/or complex transversal wavenumbers kx, even for the case with
a weakly amplifying slab that does not lase [67]. The framework from these papers
is reviewed here, and we present two examples where the framework is applied to
analyze novel phenomena which may occur in certain gain media. In Paper II a
gainy slab of finite width in the longitudinal direction is analyzed. We will here
only consider the semi-infinite case.

We restrict the analysis to linear, time-shift invariant, isotropic, homogeneous
media without spatial dispersion. Moreover, we assume the following asymptotic
behavior for the product of relative permittivity ε and relative permeability μ, as
ω → ∞ [55]: ε(ω)μ(ω) = 1 + O(ω−2). Finally, we assume that the medium does
not support super-exponential instabilities [51], meaning that any field solution
should not grow faster with time than an exponential. For simplicity, we limit the
discussion to propagation in two dimensions x and z and transversal electric (TE)
fields.

23



Chapter 3. Active media

ε(ω), μ(ω)ε0, μ0

z = 0

σ
K

ẑ

x̂

Figure 3.1: A semi-infinite active medium, described by parameters ε(ω) and μ(ω)
covers the region z > 0. For z < 0 there is vacuum. The active medium is illuminated
by a TE polarized source of finite width σ, located somewhere to the left of the boundary.
The source is indicated by the solid red line, and the vector K = Kxx̂ + K1zẑ indicates
the propagation direction of the main plane wave component of the source. Here K1z =√

ω2
1/c2 − K2

x, and ω1 and Kx are input parameters of the source.

In the analysis we consider a semi-infinite medium which is illuminated by a
realistic incident beam, which both is causal and has finite width. A schematic of
the setup considered is shown in Fig. 3.1.

We will here consider an excitation in the form u(x)v(t), where

u(x) = beam(x/σ) exp(iKxx), (3.1a)
v(t) = H(t) exp(−iω1t). (3.1b)

Here beam(x/σ) stands for a function which vanishes for |x| > σ, is smooth for
|x| < σ, and beam(0) = 1. This represents a beam of thickness ∼ σ, and a
bundle of transversal wavenumbers around the central transversal wavenumber
Kx. The envelope function H(t) in (3.1b) will in most of our examples be a unit
step function, i.e. H(t) = 0 for t < 0, and H(t) = 1 for t > 0. This sharp onset
will cause all frequencies ω to be excited to some extent. We will also consider two
examples where H(t) is a truncated Gaussian function. This will be referred to as
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a Gaussian pulse in time. Note that the excitation u(x)v(t) is complex, and will
thus produce complex electromagnetic fields. The corresponding physical fields
and current densities are given as the real values of these complex quantities.

Considering semi-infinite media helps us understand the electromagnetic re-
sponse given solely by the media’s properties; effects related to e.g. reflections
from the back side of a slab have been ruled out. Of course, there are no semi-
infinite gain media in practice. However, as long as the smallest distance from
an observation point to the boundary of the medium is larger than ctmax, where
tmax is the maximum duration of the experiment, the size does not matter and we
may as well assume it is infinite. To approach steady state (or the monochromatic
limit) we must require tmax to be large. Then, we must have in mind that the
dimensions of the gain medium must be accordingly large.

In reality the active media will be restricted by gain saturation, which will
make the optical response non-linear. This problem is dealt with by assuming
that the excitation is sufficiently weak, so that the magnitude of the fields always
are below the saturation limit.

3.1 Instabilities
Wave propagation in semi-infinite gain media may involve instabilities. The waves
are allowed to travel an infinitely large distance, picking up gain as they propagate,
and may thus result in infinite fields. Active systems are well understood from the
research on plasma physics [68], where instabilities are classified in terms of two
main categories which we will adopt here.

Diverging fields due to an infinite traveled distance, and which does not grow
with time for a fixed point in space are called convective instabilities - the diverging
fields are convected away. This means the electric field at a given point (x0, z0)
will remain finite for all times, i.e. limt→∞ E(x0, z0, t) < ∞.

In certain cases the fields may also grow with time at a fixed point in space.
This means limt→∞ E(x0, z0, t) = ∞. Such instabilities are referred to as abso-
lute instabilities. The two types of instabilities are illustrated in terms of FDTD
simulations in Figs. 3.2-3.3.
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ε(ω), μ0ε0, μ0

ẑ

Figure 3.2: A Gaussian pulse in time has propagated from vacuum towards the interface
of a semi-infinite active medium. The active medium is described by a permittivity ε(ω)
which has a pole in the upper half plane Im ω > 0. The image shows the electric field
profile at a time frame long after the pulse was reflected at the boundary. Even after the
reflected pulse has traveled out through the left edge of the image, there is still produced
a constant reflection at the interface. Inside the active medium the electric field grows
exponentially in time, with a growth rate consistent with Im ω for the pole of ε(ω). The
black arrows indicate the phase velocity of the wave at different z. The vertical red
double arrow indicates that the field grows with time inside this medium.
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ε(ω), μ0ε0, μ0

ẑ

Figure 3.3: A Gaussian pulse in time has propagated from vacuum towards the interface
of a semi-infinite conventional weak gain medium. The image shows the electric field
profile at a time frame right after the pulse crossed the interface. The pulse will grow
without bounds as it propagates towards positive z. For each z the electric field will,
however, eventually die out to zero. The instability is thus “convected away”. The arrows
indicate the phase velocity of the wave at different z. The reflection to the left is small,
as we consider a weak gain medium where ε(ω) ≈ 1.
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3.2 Fourier and Laplace transforms
Due to the possible occurence of instabilities, the analysis of wave propagation
cannot necessarily be done by considering a single real frequency and a single
plane-wave component, as is usually done in linear, passive media. We must have
in mind that real physics happens in the time-spatial domain; the monochromatic
and plane-wave limits can never be realized in practice. The monochromatic limit
is approached by turning on the excitation at some time t = 0, and waiting a
sufficiently long time until the transients have died out. The plane-wave limit
is approached by letting the width of the excitation σ be sufficiently large. If
instabilities are present, the Fourier transform does not necessarily exist.

A remedy is to use the Laplace transform, decomposing the time-domain fields
into exponentially increasing functions e−iωt for Im ω = γ for some real γ > 0 [51].
The excitation in time starts at time t = 0, so all fields are equal to 0 for t < 0.
We here consider the physical electric field in the time-spatial domain, which is
denoted E(x, z, t) = E(x, z, t)ŷ. The Laplace transform is given by

E(x, z, ω) =
∫ ∞

0
E(x, z, t)eiωtdt, (3.2)

where the standard transformation variable s has been substituted with −iω. The
calligraphic capital letter is kept for the Laplace transformed field, to get con-
sistency with the notation in Chapter 2. Explicitly stating the arguments are
therefore required to distinguish between E(x, z, t) and E(x, z, ω). For the Laplace
transform to exist we must require that the signal does not grow faster than as an
exponential with time, so it is assumed that

|E(x, z, t)| < E0eγt (3.3)

for some positive, finite E0 and γ. This requires Im ω > γ (i.e. Re s > γ).
In reality the width of the source cannot be infinitely large, so the signal will

also contain different plane wave components. This decomposition can be done
using the Fourier transform

E(kx, z, ω) =
∫ ∞

−∞
E(x, z, ω)e−ikxxdx, (3.4)

where all the kx’s are real. For the Fourier-Laplace transformed field E(kx, z, ω)
we have here used a regular capital letter, to make it easy to distinguish from the
physical field E(x, z, t).

By comparing the transforms in (3.2) and (3.4) it can be seen that the Laplace
transform is just a Fourier transform with a possibly complex argument1. The

1In the Laplace transform the integral is taken from t = 0 to ∞, but since the electric field is
0 for t < 0, it wouldn’t make any difference to change the lower limit to −∞.
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signs of the transformation variables are opposite for the transformation in space
and time. This convention is chosen because this gives a wave propagating in the
positive x-direction for positive kx and Re ω.

The inverse Fourier transform is taken by performing a similar integral as the
forward transform, but where the sign in the exponent has switched, and with
an extra factor of 1/(2π). The convenience of the substitution of the Laplace
transformation variable now becomes apparent, as the inverse Laplace transform
becomes an inverse Fourier transform taken along the line Im ω = γ. The actual
electric field in the temporal and spatial domain is thus given by

E(x, z, t) = 1
(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞
E(kx, z, ω)eikxx−iωtdkxdω. (3.5)

From this equation we see that the line Im ω = γ must lie above all singularities
of E(kx, z, ω), to ensure E(x, z, t) = 0 for t < 02. The ω and kx integration paths
are for clarity shown in Fig. 3.4.

In Paper I of this thesis we show that for a wide range of active media of
interest it is possible to deform the inverse Laplace transform contour (Bromwich
path) down to the real ω-axis3. When this is possible, no absolute instability is
present, and the monochromatic limit may be reached by waiting a sufficiently long
time until the transients have died out. This may however come at the expense
of deforming the paths for each ω [68]; i.e. the fields may have to be described
as a sum of complex plane wave components, meaning the fields grow in the ±x-
directions. This corresponds to a convective instability.

If the Bromwich path in the ω domain cannot be moved down to the real ω-
axis for all Re ω, the electric field must be described in terms of complex frequency
components e−iωt. This means the field grows with time even at a fixed point in
space. Thus we have an absolute instability. It is shown in the paper that this
happens if εμ is not analytic or zero-free in the upper half plane Im ω > γ.

When no absolute instabilities are present we get

E(x, z, t) = 1
(2π)2

∫ ∞

−∞

∫
κ(ω)

E(kx, z, ω)eikxx−iωtdkxdω, (3.6)

where the paths κ(ω) are found by tracing the singular points of E(kx, z, ω) in the
complex kx-plane as we reduce Im ω from γ to 0 for each ω along the Bromwich
path.

2This is seen by closing the integration path along an infinite semi-circle in the upper half
plane. If there are no singularities for Im ω > γ the integral along the closed path is zero from
Cauchy’s integral theorem [69].

3The deformation theory is explained in detail in Paper I. The application of Fubini’s theo-
rem requires the source u(x)v(t) to be sufficiently smooth. These requirements are specified in
Appendix B in the paper.
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γ

Re ω

Im ω

Re kx

Im kx

Figure 3.4: (a) The initial ω-integration path (black, dashed line) in (3.5). (b) For each
ω = Re ω + iγ, the integration over transversal wavenumbers is taken along the real kx-
axis. We consider the possibility of deforming the ω-integration path in (a) down to the
real ω-axis. To do this, we may have to deform the integration path in the complex kx

domain, to avoid singularities of the integrand in (3.5). The resulting deformed kx-path
κ(ω) may in general be different for each frequency ω.

Even though the monochromatic limit exists, it may for certain gain media take
a long time for the transients to die out. This will be the case if the gain is very
strong in a frequency region Ωg, while the structure is excited at a frequency ω1
outside of Ωg. Due to the causal onset of the source, all frequencies will be excited
at some extent. Since the gain is very large for ω ∈ Ωg these frequency components
will be amplified strongly, and may therefore dominate the field propagation even
for relatively long times. The excitation of frequencies away from the observation
frequency ω1 can be reduced by turning on the source smoothly. To completely
remove unwanted frequency content a long onset-time is however required, which
will increase the necessary simulation time or experiment duration. In media with
strong gain numerical errors or physical imperfections may then invalidate the
results from a simulation or actual experiment before the monochromatic response
at ω1 can be observed.

By examining the monochromatic and plane wave limits, we find that the limits
do not in general commute. Whether the fields tend to ∞ or not may also depend
on which excitation is used to approach the plane wave limit (see Paper I for
details). The plane wave limit σ → ∞ can in some cases cause instabilities to
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occur. This may be explained in terms of side waves, which will propagate the
infinite distance from x = ±∞ picking up gain, and thus leading to diverging
fields. In other cases the limit σ → ∞ can prevent instabilities from occurring, by
limiting the excitation of the kx’s associated with the instabilities.

Papers I and II of this thesis demonstrate that monochromatic plane wave anal-
ysis of gain media may be dangerous in general, and may lead to unphysical results.
Several publications had pointed this out earlier [51, 70–72]. However, Kolokolov
only considered the special case with weak or no dispersion, while Refs. [51,71,72]
only considered a single plane wave component at the time. The Fourier-Laplace
formalism from Ref. [68] applied in Papers I and II provides a robust framework
of analyzing active systems. This includes determining how the correct monochro-
matic limit and/or plane-wave limits can be taken, and predicting the presence of
convective and/or absolute instabilities.

3.2.1 Sign of the longitudinal wavenumber k2z

Equation (3.5) express the physical electric field as a superposition of frequency-
wavenumber components E(kx, z, ω)eikxx−iωt. Note that we start out with (3.5),
and in this subsection thus consider some upper half plane of frequencies Im ω >
γ. The linearity of Maxwell’s equations (2.10) gives that these equations must
be satisfied for each component E(kx, z, ω)eikxx−iωt separately. This means that
E(kx, z, ω) must obey the Helmholtz equation for each (kx, ω):

[ d2

dz2 − k2
x + εμω2/c2

]
E(kx, z, ω) = 0. (3.7)

The general solution to this equation is

E(kx, z, ω) = A(kx, ω)eik2zz + B(kx, ω)e−ik2zz, (3.8)

where
k2

2z = εμω2/c2 − k2
x. (3.9)

Since k2z must be found by taking the square root of (3.9) we must choose a sign
convention. For a passive medium only one of the terms in (3.8) may be present,
as an imaginary part of k2z would give diverging fields for z → ∞ from one of the
two terms. The common approach is to set B(kx, ω) = 0, and choose the sign of
k2z such that Im k2z > 0 for all ω.

Since we here consider potentially active media, we cannot use such a principle.
The problem of determining the sign of k2z in active media is far from trivial.
It has been discussed in the context of total internal reflection from a weakly
amplifying medium [70, 71, 73–86], and more recently in the context of the wave
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vector refractive index of more advanced media such as metamaterials [58,59,87–
96].

There now seems to be agreement that the sign of the wave vector should be
determined such that for a fixed kx:

k2z(kx, ω) is analytic for Im ω > γ, and
k2z(kx, ω) → +ω/c as ω → ∞ in the region Im ω > γ. (3.10)

In the region Im ω > γ the principle of causality may be applied to show that
B(kx, ω) = 0, when the sign of k2z is chosen according to (3.10) (see Appendix C
in Paper I for details). This result is only valid in the region Im ω > γ. In fact, it
turns out there (at least in principle) exist isotropic gain media where both signs of
k2z are excited at the same time when interpreted at a real observation frequency
ω1 [97].

3.3 Application of the Fourier-Laplace framework
We now consider two examples where the general path deformation theory from
Paper I is applied. First the case of total internal reflection from a conventional
weak gain medium is considered. We then consider the exotic possibility of simul-
taneous refraction from an isotropic medium.

3.3.1 Evanescent gain

Total internal reflection occurs for large angles of incidence, when light is incident
from a high-refractive-index medium onto a low-index medium. If the low-index
medium is active, evanescent gain is possible [71]. By evanescent gain we mean
that the evanescent field picks up gain, resulting in a reflectivity exceeding unity.

For concreteness we consider a dielectric medium with ε1 = 4.7 for z < 0. For
z > 0 there is a weak Lorentzian gain medium, where ε2(ω) is given by (2.19)
with F = −0.05, Γ = 0.1ω0, and ω0 is the resonance frequency. This permittivity
is analytic and zero-free for Im ω > 0, so the medium does not support absolute
instabilities, and the monochromatic limit may be reached.

For an excitation of finite transversal width, and with frequency ω1 = ω0, we
thus get for z > 0 and sufficiently large time

E(x, z, t) = e−iω1t

2π

∫
κ(ω1)

A(kx, ω1)eikxx+ik2zzdkx. (3.11)
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Here A(kx, ω) is determined by the transversal profile of the source (3.1a) and the
Fresnel transmission coefficient [55]. A schematic of the kx integration path κ(ω1)
is shown in Fig. 3.5.

Note that the resulting integration path κ(ω1) contains vertical detours with
complex kx, which means exponentially growing side waves with k2z = 0 will be
present. The plane wave limit σ → ∞ will therefore lead to diverging fields. It may
be tempting to simply overlook the vertical detours, so that the inverse Fourier
transform is taken along the real kx-axis, as it would be for a passive medium.
However, this is not possible due to the branch cuts from the zeros of k2z, which
cross the real kx-axis.

We now consider the possibility of evanescent gain. The sign of k2z will flip
at the branch cuts at Re kx ≈ ±

√
ε2(ω)ω/c. It turns out that (see Paper I for

details) for kx above the branch cut, the real part of k2z is negative, while Im k2z is
positive. This means, for sufficiently large incident angles4 the “phase velocity” of
the evanescent wave is directed towards the boundary. The wave will be amplified
as it “propagates” in this direction, which means evanescent gain may be possible.

Re kx

Im kx

Figure 3.5: The resulting path κ(ω1) (black, dashed line) after the ω-integration path
has been moved down to the real axis. We here consider a weak Lorentzian gain medium,
where ε2(ω) is given by (2.19), with F = −0.05, Γ = 0.1ω0 and ω0 is the resonance
frequency. The kx integration must detour around the branch points k2z = 0 located at
kx = ±√

ε2(ω1)ω1/c, marked with open blue circles. From the branch points there goes
branch cuts (blue lines) towards infinity, through which k2z flips sign.

If we on the other hand take the plane wave limit σ → ∞ first, while keeping
the Bromwich integration path at Im ω = γ, the plane wave limit of a single Kx is
reached. However, then the ω-integration path cannot be moved all the way down
to the real axis, due to branch points close to ω = Kxc. Thus, now the system
supports absolute instabilities, even though the permittivity ε2(ω) is analytic and
zero-free in the upper half plane Im ω > 0. The monochromatic limit can therefore
not be reached.

4That is, above the critical angle given by kx ≈ |√ε2(ω)ω/c|.
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The resulting ω-integration path after deforming it as close to the real axis as
possible is shown in Fig. 3.6. As argued in Ref. [71] we can interpret the field
as “quasi-monochromatic” up to a certain time, provided the excitation frequency
is far away from Kxc. For sufficiently large times the side waves with k2z =
0 corresponding to the frequency obeying ω

√
ε2(ω) = Kxc will dominate, and

eventually result in a diverging field.

Re ω

Im ω

Figure 3.6: If the plane wave limit is taken first, this is the resulting ω-integration
path (black, dashed line) one obtain after deforming it down as close to the real axis
as possible. The path must take detours around the branch cuts (blue lines) from the
branch points close to ω = ±Kxc towards ±Kxc−i∞, and the electric field will therefore
eventually grow with time. If the excitation frequency is far from Kxc, the field may still
be considered as quasi-monochromatic up to a certain time, when the field eventually
starts to diverge.

Figure 3.7 shows a FDTD simulation of a plane wave with Kx = 1.5ω0/c
incident from the high index medium with ε1 = 4.7 upon the weak Lorentzian gain
medium. The field is plotted for x = 0 and t = 800/ω0. The arrows for z < 0
indicate that the field is a sum of the incident and reflected fields in this region.
The power reflection coefficient is found to be larger than unity. By considering
the time evolution it is seen that a partially standing wave is established. Since the
reflection coefficient is larger than unity, this “standing wave” partially propagates
towards the left.
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ε(ω), μ0ε0, μ0

ẑ

Figure 3.7: A plane wave is incident from a high index medium with ε1 = 4.7 to the
left, upon a weak Lorentzian gain medium. The incident plane wave has a transverse
plane wave component Kx = 1.5ω0/c, where ω0 is the resonance frequency of the gain
medium. The permittivity of this gain medium is given by the Lorentz function (2.19),
with F = −0.05, Γ = 0.1ω0 and ω0 is the resonance frequency. The excitation frequency
of the incident plane wave is ω1 = ω0.
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3.3.2 Simultaneous refraction
We now consider an active medium where the refractive index n(ω) is given by
(2.19), with the parameters F = −0.5, Γ = 0.05ω0 and ω0 is the resonance fre-
quency. In the following we consider a nonmagnetic realization of this refractive
index, i.e. ε(ω) = [n(ω)]2. The medium is placed at z > 0, and for z < 0 we let
there be vacuum. We first consider a causal beam of finite width σ illuminating
the medium. We will in this section only consider a normally incident beam, i.e.
we set Kx = 0.

At the excitation frequency ω1 = 0.853ω0 it turns out that the kx integration
path κ(ω1) must be deformed as shown in Fig. 3.8, to avoid the branch cuts from
k2z(kx, ω) = 0 (see Paper I for details). The medium under consideration does not
support absolute instabilities, as εμ is analytic and zero-free for Im ω > 0. This
means the monochromatic limit can be reached. In this limit the field is given by
(3.11), where κ(ω1) is as shown in Fig. 3.8. Also this path contains complex kx,
from the integration around the branch points at kx = ±n(ω1)ω1/c. Thus, also
in this example the plane wave limit σ → ∞ will lead to diverging fields. We
therefore instead consider a large, but finite σ.

We argue in the paper that in the monochromatic limit the electric field can
be approximated by

E(x, z, t) =
(4k1zeik2zz

k1z + k2z

− 2k1ze−ik2zz

k1z − k2z

)
e−iω1t. (3.12)

The isotropic gain medium here considered thus support waves propagating with
both signs of k2z, which we refer to as simultaneous refraction.

For (3.12) to approximate the field behavior in the monochromatic limit well,
the integration around the vertical detours in Fig. 3.8 should be negligible com-
pared to the horizontal integrations through kx = 0. For a beam of finite support
the plane wave components in κ(ω1) with Im kx �= 0 will in fact be more and more
excited as σ increases. For (3.12) to provide a good approximation of the actual
field (given by (3.11)) in a simulation or experiment, the source width σ should
therefore be chosen with care; σ should be small enough so that the integration
over real kx’s dominate over the vertical detours, while at the same time large
enough that kx = 0 dominates over all other Re kx’s.

If we on the other hand take the limit σ → ∞ first, and then approach the
monochromatic limit5, we get

E(x, z, t) = 2k1z

k1z + k2z

eik2zz−iω1t. (3.13)

5This can be done here, since we consider a normally incident plane wave.
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Re kx

Im kx

Figure 3.8: The resulting path κ(ω1) (black, dashed line) at the frequency ω1 = 0.853ω0
for the simultaneous refracting medium. The kx integration must detour around the
branch points k2z = 0 located at kx = ±√

ε2(ω1)ω1/c, marked with open blue circles.
To avoid the branch cuts (blue lines) the integration path becomes zig-zag in the complex
kx domain.

Here only the positive sign of k2z is present6. This means, if the plane wave limit
σ → ∞ (Kx = 0) is taken before the monochromatic limit, simultaneous refraction
does not occur. Equations (3.12)-(3.13) thus exemplifies the result from Paper I
that the two orders of the monochromatic and plane wave limits may yield different
results.

From this it is understood that simultaneous refraction is a two-dimensional
effect. In the case of a finite σ there will always be oblique waves with kx �= 0
excited, no matter how large σ is. After a sufficiently long time t these oblique
waves will somehow establish waves along the z-direction with both signs for k2z.
However, if σ → ∞ is taken first, there will be no oblique waves excited. The
simultaneous refracting waves can thus not be established. This latter situation
is one-dimensional, as the transverse excitation profile is constant for all x, and
Kx = 0.

The suggested medium has a very large gain at resonance, so the frequencies of
the transients close to resonance will be strongly amplified as they propagate into
the medium. This medium will thus suffer from the problem mentioned in Sec. 3.2,
that it will take a long time before the transients have died out. Media with such a
large gain are not suited for FDTD simulations or physical realization. A method
which may be used to find simultaneous refracting media with low gain at all ω may
be found in Chapter 8 of the Author’s Master thesis [98]. The method is based on
the discussion on how to obtain a negative refractive index at low loss/gain done
by [99]. Even though the maximum gain was drastically reduced, the gain was
still too large for this medium to be suited for FDTD simulations.

6This corresponds to a negatively refracted plane wave, as Re n(ω) is negative at our obser-
vation frequency ω1.
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Chapter 4

Spatial dispersion in
metamaterials

We now leave the discussion of active media, and turn to the topic of homogeniza-
tion of media consisting of passive constituents. Up until now we have considered
media where the macroscopic electromagnetic response can be described by two
frequency dependent parameters; the permittivity ε(ω) and the permeability μ(ω).
For most metamaterial structures these two parameters are not sufficient to give
an accurate description. As already mentioned in Chapter 2 the unit cells are
often anisotropic, which means the response must be described by tensors ε(ω)
and μ(ω). Secondly, if the microscopic susceptibility ε(r)−1 and/or the frequency
ω is large, the assumption of small ka1 is not necessarily valid. When this is the
case, spatial dispersion becomes important.

In Chapter 2 we considered temporal dispersion, that is the material parame-
ter’s dependency on the frequency ω. In the time domain this means the material
response, e.g. the polarization density P(r, t) at a given point r and time t will
depend on the electric field E(r, t′) at the same point at all previous times t′ < t.
If a medium in addition is spatially dispersive, then P(r, t) also depends on the
electric field at surrounding points r′ �= r. In the wavenumber space this leads to
material parameters depending on the wavenumber k, as well as the frequency ω.

The effects of spatial dispersion have previously been studied in crystal op-
tics [100] and continuous media [55], and the importance of spatial dispersion in
metamaterials has also been known for quite some time [101–103]. The emergence
of spatial dispersion may possibly explain the strange and apparently unphysical
behavior of certain metamaterial parameters [19–29, 104], and makes the analysis
more difficult. Homogenization of such non-local media becomes more complicated
and the boundary conditions for the macroscopic electromagnetic fields may have

1I.e. if the unit cells are small compared to the effective wavelength inside the medium.
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to be modified. In addition, such media may allow the propagation of additional
modes. The latter result means that even additional boundary conditions for the
electromagnetic fields may be required [105–109], which is covered in Chapter 5 of
this thesis.

Possible routes have been suggested for achieving artificial magnetism without
spatial dispersion [110–113]. Such an approach would avoid having to deal with
the obstacles mentioned above. As many common metamaterial realizations turns
out to be (weakly or strongly) spatially dispersive [101,102,114–117], it is however
crucial to develop theoretical framework for analysis and development of such me-
dia. The strong spatial dispersion due to structural inhomogenity in layered media
[116] has recently been reported as the intrinsic property which makes such struc-
tures suitable for obtaining frequency-independent anti-reflection for a wide range
of incident angles [118, 119]. Despite the large amount of research already done
on the topic, many possibilities and limitations caused by spatial dispersion, with
implications for metamaterial applications, probably still remains to be discovered.

In this chapter we present a homogenization method suitable for analyzing me-
dia with spatial dispersion, based on the analysis in Refs. [33–35]. It is shown how
artificial magnetism may be viewed as a second order spatially dispersive effect,
that is the magnetic permeability may be described by O(k2)-term in the Taylor
expansion of the total Landau-Lifshitz permittivity ε(ω, k). Based on a multipole
expansion of the induced current density it is argued that the electric quadrupole
moment [120], but also even higher order multipole moments [121] (Paper IV)
may equally contribute to the O(k2)-term of ε(ω, k). Based on this observation,
we state and compare four different definitions of magnetic permeability for peri-
odic, artificial media, or metamaterials [122] (Paper V).

4.1 Homogenization procedure
We consider an infinite periodic structure, which is excited by a source. The
periodic structure consists of cubic unit cells with lattice parameter a, which con-
tains linear, isotropic, time-shift invariant, non-magnetic, spatially non-dispersive
but potentially temporally dispersive constituents, described by a microscopic per-
mittivity ε(r). We consider a single frequency component e−iωt, which is always
possible for passive media [97]. It is convenient to also look at a single spatial
Fourier component of the source,

J ext(r) = Jexteik · r, (4.1)

to enable the use of Floquet theory. Here Jext is independent on r, and k is a fixed
parameter, in general unrelated to the frequency ω.
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The resulting microscopic electric field e(r) is found from the microscopic
Maxwell equations (2.1). For special cases (e.g. a layered structure) these equa-
tions may be solved analytically, but in general a numerical method must be
used. In our case we use the finite difference frequency domain (FDFD) method
[121,123]. From the microscopic electric field the microscopic induced current den-
sity is found from (2.4) and (2.5) (since we consider non-magnetic constituents,
we have m = 0):

j(r) = −iω[ε(r) − 1]e(r). (4.2)

The spatial dependency eik · r of the source will cause the microscopic field to
be Bloch-periodic with Bloch-vector equal to k:

e(r) = ue(r)eik · r. (4.3)

Here ue(r) is a periodic function with the same periodicity as the lattice. The
other microscopic fields are expressed similarly. Let V be the unit cell containing
the origin. We now define the macroscopic fields as the fundamental Floquet mode,
expressed from the averaged Bloch function [33]. For the electric field we then get

E(r) = eik · r

V

∫
V

e(r)e−ik · rd3r, (4.4)

and the macroscopic magnetic field B(r) and the macroscopic induced current
J (r) are defined similarly. The definition of the macroscopic fields according to
(4.4) may be shown to be a special case of (2.9), with a specific choice of the test
function f(r′) [123].

Since the average operation (4.4) commutes with the operations of spatial dif-
ferentiation, the two macroscopic Maxwell curl equations given by (2.10c) and
(2.10d) are still valid with the definition (4.4) of the macroscopic fields. Since the
only spatial dependency of these macroscopic fields is the exponential factor eik · r,
the curl equations may be written

ik × E = iωB, (4.5a)
1
μ0

ik × B = −iωε0E + Jext + J. (4.5b)

Here we have multiplied both equations by the factor e−ik · r, and all capital (reg-
ular) letters denote the amplitudes of the corresponding macroscopic fields or cur-
rent densities (e.g. E = Ee−ik · r). This is done to obtain Maxwell equations for
fields only depending on k and ω. This dependency is suppressed in the notation
for brevity. The next step of the homogenization procedure is to find material
parameters relating J to the fundamental fields E and B.
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We will here consider four approaches appearing in literature. In the Landau-
Lifshitz approach [55,100] a single parameter, that is the Landau-Lifshitz (relative)
permittivity tensor ε(ω, k), is used to describe the entire electromagnetic response
of the infinite periodic medium. The second approach decomposes the induced
current into two terms; that is a longitudinal and transversal component. In the
third approach J is approximated by a multipole expansion. The fourth approach
write J in terms of modified electric and magnetic polarization densities, based on
an exact decomposition of the microscopic current into three terms [124]. These
four decompositions are considered in detail in Paper V of this thesis. In particular,
properties of the corresponding permeabilities, as well as the parameter ε(ω, k),
are discussed, including causality, passivity, symmetry, asymptotic behavior and
origin dependence.

The homogenization method presented here relies on the assumption that we
can consider a single spatial Fourier component of the source at the time. This
approach has faced some opposition, and should therefore be justified. It has
been argued that such a plane wave source is not physically realizable [125, 126],
as the external source necessarily overlaps with the infinite medium. Inside the
volume occupied by the source, which in a physical realization has to be finite,
constitutive relations characteristic of the medium no longer hold. We note that
in the homogenization method the source is only introduced to produce fields from
which the constitutive parameters may be extracted. The method highly relies on
numerical calculations, where an infinite plane wave source, which is unaffected
by the local fields, is straightforward to implement, despite the possible challenges
related to physically realizing such a source.

A valid point made in Refs. [125,126] is, however, that surface currents at the
media boundaries cannot be determined by considering infinite media. Consider-
ing infinite media helps us understand the electromagnetic response given solely
by the medium’s properties; effects related to interactions with surrounding me-
dia have been ruled out. After the material parameters are extracted, one often
desires to use them to predict the response of finite objects. Whether the ma-
terial parameters obtained from any homogenization method are useful in such
situations, can be determined by comparing predictions based on these material
parameters to analytical solutions or e.g. time domain simulations. The topics of
surface currents and modified boundary conditions are covered in Chapter 5.

4.1.1 Landau-Lifshitz approach
In their famous textbook Landau, Lifshitz and Pitaevskii describe all induced
current in terms of an electric polarization density Pll:

J = −iωPll. (4.6)
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This means that the magnetization is zero (Mll = 0), and the permeability is
trivial, μll = I, where I is the identity. The auxiliary magnetic field is thus given
by Hll = B/μ0. In a linear medium there is a linear relationship between the
displacement vector Dll and E:

Dll = ε0E + Pll = ε0ε(ω, k) · E. (4.7)

Considering terms up to second order in k, the single constitutive parameter ε(ω, k)
becomes

εij(ω, k) − δij = χij + αikjkk/ε0 + βikljkkklc
2/ω2, (4.8)

for some tensors χij, αikj, βiklj independent of k. Media where (4.8) gives an accu-
rate description of the macroscopic response we classify as weakly spatially disper-
sive. If the spatial dispersion is strong, where higher order terms are not negligible,
we let the βikljkkklc

2/ω2 term absorb the remainder. For such media the βiklj ten-
sor gets dependent on k.

By eliminating B, and inserting (4.6) in (4.5) we obtain using (4.7):
(

k2I⊥ − ω2

c2 ε(ω, k)
)

· E = iωμ0Jext, (4.9)

with I⊥ = I − kk/k2. The matrix in the brackets in (4.9) may be inverted to
obtain an input-output relation

E = G(ω, k)Jext, (4.10)
where G(ω, k) is a (matrix) response function given by

G(ω, k)−1 = (iωμ0)−1
(

k2I⊥ − ω2

c2 ε(ω, k)
)

. (4.11)

In Paper V of this thesis we prove in Appendix C that G(ω, k)−1 is analytic
in the upper half-plane Im ω > 0, and from (4.11) thus so is ε(ω, k). In the limit
ω → ∞ the microscopic susceptibility ε(r) − 1 will tend to unity [55], and we thus
have ε(ω, k) → I in this limit. It may then be showed that the function

χ(ω, k) = ε(ω, k) − I (4.12)

satisfies Kramers-Kronig relations for a fixed k [27,122]. These relations are valid
provided χ(ω, k) → 0 sufficiently fast as |ω| → ∞, and that χ(ω, k) does not have
singularities for real frequencies. It may further be shown [35] that for reciprocal
metamaterial inclusions ε(ω, k) satisfies the symmetry relation

εT(ω, −k) = ε(ω, k). (4.13)
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Chapter 4. Spatial dispersion in metamaterials

For non-gyrotropic media the first order term in (4.8) will vanish, and the relation
above becomes

ε(ω, −k) = ε(ω, k). (4.14)
This will be the case if there is a center of symmetry in the periodic structure.

Source free propagation inside the infinite periodic structure is described by
(4.5) if we set Jext = 0. Equation (4.9) then gives the dispersion relation for the
plane wave modes in a generic spatially dispersive material [33, 100]:

det(G(ω, k)−1) = 0. (4.15)

For weakly spatially dispersive media, i.e. when the approximation (4.8) holds,
the equation above in general has 6 solutions2 k(ω). In the case of a semi-infinite
passive periodic structure excited by an incident plane wave with frequency ω,
three of these modes may be disregarded by requiring the fields to vanish in the
limit z → ∞. For structures with certain symmetries some of the coefficients
βiklj in (4.8) will become zero, which may lead to a fewer number of modes being
allowed to propagate. For instance in a layered structure, only a single Bloch mode
k(ω) is excited.

In this work we consider spatial dispersion to be present if ε(ω, k) is dependent
on k. Based on this definition, we now demonstrate how a magnetic response may
be considered as a second order spatially dispersive effect. In certain situations, e.g.
when the dispersion equation (4.15) is to be solved to find the allowed propagating
modes k(ω), it is convenient to have a single parameter ε(ω, k) describing the entire
macroscopic electromagnetic response of the infinite structure. In metamaterial
structures designed to possess artificial magnetism it is, however, often desirable
to express the magnetic response more explicitly by introducing a permeability
tensor, related to the second order term in (4.8) [33, 55,128].

We now show how the parameter ε(ω, k) can be converted into two such pa-
rameters ε̂ and μ̂. We start by observing that the macroscopic quantities E and
B in (4.5) are left invariant upon the transformation

J → −iωP̂ + ik × M̂, (4.16)

where the quantities P̂ and M̂ are arbitrarily chosen. The left hand side may be
expressed in terms of the non-local tensor ε(ω, k) by (4.7), and the right hand side
in terms of two new tensors ε̂ and (I − μ̂−1), in order to obtain [33,121]

ε(ω, k) = ε̂ − c2

ω2 k × [I − μ̂−1] × k. (4.17)

2Each component of the matrix G(ω, k 1) may contain terms up to second order in k. Equa-
tion (4.15) thus can contain terms up to sixth order in k, which gives (at most) 6 solutions in
general [127].
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4.1. Homogenization procedure

This division into two terms is inspired by (2.14), as the two new parameters
ε̂ and μ̂ will relate P̂ and M̂ to the fundamental fields E and B according to

P̂ = ε0[ε̂ − I]E, (4.18a)
M̂ = μ−1

0 [I − μ̂−1]B. (4.18b)

In general both ε̂ and μ̂ will depend on both ω and k.
For weakly spatially dispersive media only terms up to second order in k con-

tribute to ε(ω, k). From (4.17) we see that μ̂ in that case becomes k-independent.
For media with certain symmetries it is further possible to define the magnetization
M̂ such that both ε̂ and μ̂ becomes independent on k.

In the following subsections we consider three different definitions of μ̂, which
lead to corresponding permittivities ε̂ through (4.17). These parameters will fur-
ther correspond to polarization and magnetization vectors (4.18), from which
(4.16) may be used to relate the induced current density J to the fundamental
fields through the defined two constitutive tensors ε̂ and μ̂. We do, however, note
that the defined polarization and magnetization vectors in the different decompo-
sitions not necessarily correspond to P̂ and M̂ from (4.18). This is because, in
certain formulations, the way the magnetization is defined implies that it may be
induced by the electric field E as well as the magnetic field B through a magneto-
electric coupling.

Contributions from the transversal component of E to the specific magnetiza-
tion may be included in the permeability μ̂ through a suitable transformation. If
the structure allows the longitudinal component of E to induce the magnetization,
this contribution must, however, be described by the permittivity ε̂ in the divi-
sion (4.17). This is because the longitudinal component of E cannot be expressed
explicitly in terms of B from Faraday’s law B = k × E/ω.

4.1.2 Transversal - longitudinal (tl) decomposition
First we consider the decomposition used in Refs. [33, 55], which is generalized in
Paper V of this thesis. In this approach the induced current J is decomposed in a
transversal and a longitudinal part, where the transversal part of the k-dependent
part of J is taken care of by the term ik × Mtl. The remainder of J is described
by the term −iωPtl. This strategy puts “as much as possible” of the k-dependent
induced current into the magnetization (and therefore the permeability).

In an arbitrary coordinate system the permeability μtl corresponding to Mtl is
given by (see Paper V for details)

[I − μ−1
tl ]mn = εmipεnjq

kkklkpkq

k4 βiklj. (4.19)
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The permittivity εtl then describes the remainder of ε(ω, k), i.e.

εtl = ε(ω, k) + c2

ω2 k × [I − μ−1
tl ] × k. (4.20)

Provided the entire second order term of ε(ω, k) be described in terms of a per-
meability, this permeability will be given by μtl. For a weakly dispersive, non-
gyrotropic medium (i.e. the first order term of ε(ω, k) is zero), both parameters
εtl and μtl then will become k-independent, and the macroscopic response may
thus be considered as local.

4.1.3 Multipole decomposition
We now consider the traditional way of decomposing the induced current by a mul-
tipole expansion [31, 32, 34, 42, 121, 129, 130]. The amplitude J of the macroscopic
induced current density may be expressed similarly to (4.4):

J (r) = 1
V

∫
V

j(r)e−ik · rd3r, (4.21)

where j is given by (4.2). By Taylor expansion of the exponential e−ik · r to second
order in k we obtain [34,121,129]

J ≈ 1
V

∫
V

[1 − ik · r − 1
2(k · r)(k · r)]j(r)d3r (4.22a)

= −iω
[
Pe − k × Mmm

ω
− ik · Qe/2 + R

]
, (4.22b)

where we have defined

Pe = 1
−iωV

∫
V

j(r′)d3r′ (4.23a)

Mmm = 1
2V

∫
V

r′ × j(r′)d3r′ (4.23b)

Qe = 1
−iωV

∫
V

[
r′j(r′) + j(r′)r′

]
d3r′ (4.23c)

R = 1
2iωV

∫
V

(k · r′)2j(r′)d3r′. (4.23d)

To improve the accuracy of the approximation in (4.22) even higher order
multipoles could be included. Expressions for the higher order terms similar to
(4.23) are found by expanding exp(−ik · r) to terms of third or even higher order in
k. Alternatively we could let R include all higher order terms. For weakly spatially
dispersive media a second order expansion is sufficient, and both definitions would
give approximately the same R.
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From (4.23) explicit material parameters may be assigned to relate each mul-
tipole term to the fundamental fields E and B. Also here we consider the decom-
position (4.17), where we first define a permeability μmm according to

(I − μ−1
mm)im = εmkj

kkkl

k2 νilj, (4.24)

where εmkj is the Levi-Civita symbol, and νilj will be defined shortly.
The definition (4.24) is based on the discussion in Subsec. III B of Paper V .

It relies on the following constitutive relation between the magnetization (4.23b)
and E:

Mmm
i = ωζijEj + νiljklEj/(μ0ω). (4.25)

Here ζij is a pseudo-tensor describing a magneto-electric coupling. The first order
term in k is included to ensure that contribution ik×Mmm gives a contribution up
to second order in k to the induced current. Any dependency of Mmm on B is de-
scribed by this term, through Faraday’s law B = k×E/ω. The components of the
pseudo-tensor νilj which describe such a relation, are included in the permeability
definition (4.24).

From (4.17) and (4.24) we find the corresponding permittivity function to be
given by

εmm = ε(ω, k) + c2

ω2 k × [I − μ−1
mm] × k. (4.26)

Note that this permittivity only becomes k-independent if the magnetic moment
density Mmm in loose terms dominates the second order term of ε(ω, k). This
permittivity also describes possible gyrotropic effects, due to a non-zero first order
term in ε(ω, k).

In obtaining (4.22b) we have split the term (k · r)j from (4.22a) into a sym-
metric and anti-symmetric part. This gives the three first terms in the multipole
decomposition (4.22b) a clear physical interpretation; as an electric polarization
vector Pe, an electric quadrupole tensor Qe, and a magnetization vector Mmm.
In particular, Mmm quantifies the amount of circulating, induced currents. The
higher order term R could further be split into an electric octupole and a magnetic
quadrupole term [34, 131]3. The magnetic quadrupole moment could in that case
be included in the magnetization Mmm, leading to different material parameters
εmm and μmm.

4.1.4 Vinogradov-Yaghjian (vy) decomposition
In Ref. [35] Yaghjian, Alù and Silveirinha decompose J into modified electric and
magnetic polarization densities. This decomposition is based on the following exact

3Note that the magnetic quadrupole moment then could be defined in various ways [132,133],
where the electric octupole moment must describe the remainder of R.
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decomposition of the microscopic induced current density into three terms [124]:

j = −r∇ · j + 1
2∇ × (r × j) + 1

2∇ · (rj + jr). (4.27)

Inserting this into (4.21) we obtain

J = −iω[Pvy − k × Mvy

ω
+ ik · Q̄vy

/2], (4.28)

where

Pvy = 1
iωV

∫
V

[∇ · j(r′)]r′e−ik · r′d3r′ (4.29a)

Mvy = 1
2V

∫
V

r′ × j(r′)e−ik · r′d3r′ (4.29b)

Q̄vy = 1
−iωV

∫
V

[r′j(r′) + j(r′)r′]e−ik · r′d3r′ (4.29c)

(4.29d)

Equations (4.28) and (4.29) are similar to the corresponding expressions in
the multipole expansion, i.e. (4.22b) and (4.23). There are, however, certain
differences. The generalized multipoles in (4.29) contain the factor e−ik · r in the
integrands. Also, note that the sign of the generalized quadrupole term in (4.28)
is opposite of that in the conventional expansion (4.22b).

A permeability relating Mvy to B may be defined exactly as in Subsec. 4.1.3.
Similar to (4.25) we may write a constitutive relation between Mvy and E:

Mvy
i = ωζvy

ij Ej + νvy
iljklEj/(μ0ω). (4.30)

From this relation we again define the permeability as the components of νvy
ilj which

may relate Mvy to B:
(I − μ−1

vy )im = εmkj
kkkl

k2 νvy
ilj . (4.31)

The corresponding permittivity function is again given by

εvy = ε(ω, k) + c2

ω2 k × [I − μ−1
vy ] × k. (4.32)

Similar to εmm, this permittivity becomes independent of k if the modified mag-
netic moment density Mvy dominates the second order term of ε(ω, k). Also in
this decomposition the permittivity alone describes possible gyrotropic effects.

We note that in general μvy does not equal μmm, due to the factor e−ik · r in
(4.29b). For instance, it may be showed that μvy → I as ω → ∞, but in general
μmm may approach a constant (which is not necessarily I). The relation between
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the terms may be further investigated by expanding the exponential inside the
integral in (4.29b). To first order we get

Mvy = Mmm − ik
2 · Qm, (4.33)

where we defined a magnetic quadrupole term

Qm = 1
V

∫
V

r′[r′ × j(r′)]d3r′. (4.34)

This magnetic quadrupole term differs from the one used in [34]. The expansion
of the exponential inside the integral in (4.29b) could in principle be done to any
order in k. Based on this expansion higher order magnetic multipoles could be
defined similar to (4.34). From this it is seen that Mvy may be considered as a
series of carefully defined magnetic multipole terms.

4.2 Practical implications of spatial dispersion
In the above discussion an infinite periodic structure is characterized as spatially
dispersive if the Landau-Lifshitz permittivity ε(ω, k) is dependent on k. The ob-
tained material parameters from the different decompositions of J are also called
non-local if they depend on the wave vector k, not only the frequency ω. In
the following we will consider a few examples where the theoretical framework
from Sec. 4.1 is applied to describe certain possible effects and properties of spa-
tially dispersive media. For concreteness we consider non-gyrotropic media which
are weakly spatially dispersive. In this case any of the permeabilities defined in
Subsecs. 4.1.2-4.1.4 will be independent on k. Further, the corresponding per-
mittivities will not contain first order terms. They may, however, contain second
order terms in k which are not taken care of by the permeability of the given
decomposition. The permeability μtl takes care of “as much as possible” of the
second order term.

However, any second order term of ε(ω, k) which relates Pll and longitudinal
component of E cannot be included in any permeability definition. This is due
to the cross products applied to the tensor μ̂ in (4.17), which makes any com-
ponent parallel to k vanish. For media where ε(ω, k) may be decomposed into
k-independent parameters ε̂ and μ̂, the decomposition seems meaningful. The
dispersion relation may for instance in some cases then be described by the well
known k = ±√

εμω/c, where ε and μ are certain components of ε̂ and μ̂. If, on the
other hand, ε̂ depends strongly on k, the decompositions (in the author’s opinion)
have limited use.
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4.2.1 Importance of the electric quadrupole, or even higher
order terms

In their paper from 2008, Cho et.al consider the scattering from a single unit cell
consisting of two parallel metal bars of equal length [120], as shown in Fig. 4.1a. In
such a structure the incident electric field can induce symmetric or anti-symmetric
electron oscillations, depending on the driving frequency. For the symmetric mode
the current in the two wires are parallel, while for the anti-symmetric mode the
currents are anti-parallel, as shown in Fig. 4.1 b and c. By analysis of how the
different multipole terms contribute to the scattering intensity spectra, they find
that the contribution from the electric quadrupole term is actually comparable to
that from magnetic dipole term. A schematic indicating how the two terms M
and Qe contribute to the anti-symmetric mode is shown in Fig. 4.2. The schematic
provides an intuitive understanding of their obtained result that the contribution
from Qe is comparable to that from M to the scattering data. To describe the
anti-symmetric current in terms of a magnetization M one may, as the schematic
shows, in addition include an electric quadrupole term Qe.

An anti-symmetric mode could also be excited due to anti-symmetric lengths
of the metal bars [134,135], rather than due to an anti-symmetric excitation as is
the case in [120].

kx̂

Eŷ

(a)

J

(b)

J

(c)

Figure 4.1: (a) An electromagnetic plane wave incident upon a single unit cell consisting
of two metal bars. (b) Symmetric mode of the induced current. (c) Anti-symmetric mode
of the induced currents

This suggests that for metamaterial structures, the electric quadrupole term
should in general not be neglected if effects such as artificial magnetism is included
in our medium description. The homogenization method from Sec. 4.1.3 allows us
to quite easily include the effects from an arbitrary number of multipoles in our
analysis. As we have already seen, the magnetization vector Mmm in (4.23) may be
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J

(a)

J

M

(b)

J

Q

(c)

Figure 4.2: (a) The anti-symmetric mode of the induced currents may be written as
an equal contribution from (b) a magnetic dipole and (c) an electric quadrupole. The
horizontal currents in (b) and (c) will cancel, while the vertical currents will add up to
the current in (a). The arrows refer to currents, and the “+” and “-” signs to the charge
distributions.

considered as a second order contribution in k to the Landau-Lifshitz permittivity
ε(ω, k). In Paper IV of this thesis we use this framework to demonstrate that in
general also the electric quadrupole term Qe, the higher order term R, and even
the electric polarization density Pe all will contribute to the second order term.

To demonstrate this result we consider the response from the two bar structure
in Fig. 4.1 a, but where the bars are made of a dielectric with relative permittivity
ε = 16. The contributions to the second order term from all the multipoles are
shown in Fig. 4.3. We observe that the different contributions are of the same
order of magnitude, but with different signs. The resulting second order term β
is therefore quite small in this case, resulting in a permeability μtl very close to
identity.

From the Taylor expansion of exp(−ik · r) the multipole decomposition (4.22b)
is based upon, the terms with Mmm and Qe are derived from the first order term
in k, while the term R, containing the magnetic quadrupole and the electric
octupole response, comes from the second order term. The reason all these terms
still may be equally important is that in a centro-symmetric structure, an anti-
symmetric electric field profile throughout the unit cell is required to excite the
magnetic dipole - electric quadrupole terms. This means the multipole magnitudes
themselves are first order in k, so that the contribution from ik × M and −ik · Qe

becomes of second order.
In fact, all the multipole magnitudes in (4.22b) will be k-dependent, even

the first term −iωPe. As shown in Fig. 4.3, the second order contribution from
Pe in fact is in the same order of magnitude as from the other terms of the
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Figure 4.3: The contributions to the second order term β1331 of ε(ω, k) from the
different multipoles in (4.22b). The tensor elements η, ν, γ and ψ corresponds to the
contributions from Pe, Mmm, Qe and R, respectively. The tensor element β1331 describes
the second order contribution to the relation between the ŷ-components of the total
polarization density Pll and the electric field E, when the propagation direction k of the
plane wave is in the z-direction. In our example this is thus the most relevant tensor
element of βiklj .

expansion. All these four terms must thus be considered to correctly determine
the total second order term in the relation (4.7) between J = −iωPll and E. It was
verified numerically that to second order the four terms in (4.22b) sum up to the
independent calculation of the second order term in (4.8). The results from Paper
IV therefore emphasize that the dipole-dipole approximation, where the Qe and R
terms are assumed negligible, should be applied with care in the homogenization
of metamaterial structures.

4.2.2 Plane wave modes in a quadrupolar continuum
The potential importance of higher order terms leads to another peculiar feature
emerging from the presence of spatial dispersion in metamaterials; the fact that
multiple modes may be allowed to propagate, even in an isotropic crystal. As
a reference, we first consider an infinite conventional medium, where the dipole-
dipole approximation is applicable. The medium is assumed to be isotropic and
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passive, and is described by two parameters ε and μ. In such a medium the
solutions to the dispersion relation are given by k = ±√

εμω/c. Since the medium
is infinite, plane waves with both signs of k(ω) are allowed to propagate. In the
semi-infinite case, one of these solutions must be discarded to ensure non-diverging
fields, so only one plane wave mode is allowed in this case. At normal incidence
this mode will be propagating, provided εμ is approximately real and positive.

We then move on to a the case of an infinite, isotropic quadrupolar continuum,
that is a medium where all terms except for −ωk · Qe/2 are negligible in the
multipole expansion (4.22b). We do not bother here whether such media exist, or
how such a medium could be realized practically. This description could, however,
work for a medium and frequency range with an electric quadrupolar resonance.
In that case, the γ curve in Fig. 4.3 would be much larger than the other curves,
and we would have [1−μ−1

tl ]1331 = β1331 ≈ γ, meaning the permeability μtl is solely
determined by the quadrupole term.

To describe the possible plane wave solutions which may propagate inside such
a medium we need a constitutive relation between

J = −1
2ωk · Qe (4.35)

and E and/or B, similar to (4.25). Such a relation is suggested in [108,136]:

Qe = αQε0

2 i[kE + Ek] − αQε0

3 i(k · E)I. (4.36)

This relation is based upon the point made in Subsec. 4.2.1, that in a symmetric
structure (such as this isotropic medium) a quadrupolar response must be excited
by the asymmetric component of the electric field profile. This suggests that the
tensor Qe is proportional to the tensor ikE rather than just some permutations
of the components of E. In (4.36) the proportionality constant is chosen as αQε0,
where αQ has the dimensions of m2, and the vacuum permittivity has been explic-
itly factored out for later convenience. This parameter is allowed to depend on the
frequency ω, but is here assumed to be k independent. Further, the expression for
Qe has been made symmetric (in accordance with our definition of Q in (4.23))
and traceless [32,108,136].

By insertion of the above constitutive relation (4.36) into (4.35), we obtain

J = −iωαQε0

4 [k2I + 1
3kk]E. (4.37)

Recalling that Pll = J/(−iω) = ε0[ε(ω, k) − I]E the Landau-Lifshitz permittivity
may be extracted directly from the above relation, and we obtain

ε(ω, k) = (1 + αQ

4 k2)I + αQ

12 kk. (4.38)

53



Chapter 4. Spatial dispersion in metamaterials

Based on the constitutive relation (4.36) we thus obtain a (trivial) zeroth order
term, as well as a second order term.

We now continue to find the possible plane wave modes allowed by (4.38).
The possible solutions k(ω) may be found from the dispersion relation (4.15). In
Ref. [108] a different route to the solution is found by observing that Qe will be
differently excited based on the relative directions of k and E. For a given direction
of k (could be in any direction, as we consider an infinite, isotropic medium), we
decompose E in components parallel and perpendicular to k. We then consider
the potential longitudinal and transversal modes separately. For the longitudinal
mode, Faraday’s law (4.5a) gives B‖ = k‖ × E‖/ω = 0. Ampere’s law (4.5b) then
gives ε(ω, k)E‖ = 0, and the longitudinal solutions

k‖ = ±i

√
3

αQ

(4.39)

are thus found by setting the kk part of (4.38) equal to 0. Note that for a
longitudinal mode, (k‖k‖) · E‖ = k2

‖I · E‖. For an approximately real4 αQ this
mode is evanescent, and in the case of a semi-infinite medium only the solution
with Im k‖ > 0 may be excited due to passivity.

The wavenumber k⊥ for the transversal mode on the other hand is found by
combining Faraday’s and Ampere’s law, to obtain the well known wave equation
for E⊥:

[ε(ω, k⊥)ω2

c2 − k2
⊥I]E⊥ = 0. (4.40)

Using k⊥ · E⊥ = 0 we obtain a scalar equation for k⊥:

(1 + αQ

4 k2
⊥)ω2

c2 − k2
⊥ = 0, (4.41)

which gives the solutions

k⊥ = ±
√

1
1 − αQω2/(4c2)

ω

c
. (4.42)

For an approximately real αQ this mode will be propagating for frequencies ω <

c
√

4/αQ. Again, in the case of a semi-infinite medium only one of the two solution
of (4.42) may be excited due to passivity, i.e. the solution with Im k⊥ > 0.

The above discussion shows that in an infinite, isotropic quadrupolar continuum
four modes with k = kẑ are allowed to propagate. In the semi-infinite case the
number of allowed modes is two (i.e. the two solutions k‖ and k⊥, where Im k > 0

4In reality αQ will always have some imaginary part, due to the presence of (potentially small)
losses.
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4.2. Practical implications of spatial dispersion

for both k′s). To determine the reflection from such a semi-infinite medium we
thus need to match the coefficients of both these modes to the coefficients of the
incident and reflected fields. The standard Maxwellian boundary conditions are
therefore not sufficient, and an additional boundary condition is required.

Boundary conditions for such a medium has been derived in Refs. [107–109,127].
In Ref. [109] these boundary conditions are used to calculate the reflection coef-
ficient from a quadrupolar continuum. It is found that in general the evanescent
mode has to be taken into account to correctly determine the reflection coefficient
from such a medium. However, for sufficiently small frequencies this mode can be
ignored, and the standard Maxwellian boundary conditions should be sufficient.
It may be argued that the frequencies from which the evanescent mode becomes
important, the quadrupole medium cannot longer be considered a continuum. In
other words, for such high frequencies it is likely that terms of higher order than
second order in k should be included in the constitutive relation (4.36), and thus
in (4.38).

Whether this particular evanescent mode is physically important or not, this
quadrupolar example for sure demonstrate that the possibility of several modes
getting excited in weakly spatially dispersive media should be further investigated.
The results in Ref. [109] could be independently verified through FDTD simula-
tions [38], but then a method for considering quadrupolar media in such simula-
tions must first be developed. Another possibility is to study5 the reflection from
a given metamaterial structure near a quadrupolar resonance.

4.2.3 Applicability of the obtained parameters
The homogenization method in Sec. 4.1 is appealing as it lets us calculate all
constitutive parameters of an infinite periodic structure by only considering a single
unit cell. Through our implementation of the FDFD method the parameters of a
two dimensional structure may be obtained quite efficiently, for any desired pair of
(ω, k). It has, however, been questioned whether the obtained parameters are of
any practical use [125,126]. Some reasonable points are made in these publications,
and we agree that the following two aspects therefore should be justified:

• Do the parameters describe the electromagnetic response of an infinite struc-
ture accurately for the parameter ranges of interest?

• Can these parameters describe the response of a semi-infinite structure ac-
curately?

For the first bullet point it is hard to find independent verification methods, as
infinite media do not exist. Some simple checks can, however, still be performed.

5This can be done either through time domain simulations, or actual experiments.
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Chapter 4. Spatial dispersion in metamaterials

In most known applications of the electromagnetic parameters in photonics, elec-
tromagnetic fields propagating inside a structure are generated by a source outside
of the structure. This means we are interested in the response from eigenmodal
propagation, where the spatial variation of the macroscopic fields are given by the
solution to the dispersion relation kB = k(ω), and not the forced k of the plane
wave source present everywhere in our homogenization method. For the homoge-
nized parameters for a given structure to be of any use, they should therefore be
able to describe eigenmodal propagation. To substantiate a potential test for this,
we present an example.

ẑ
x̂ a

ε1 ε2

Figure 4.4: An infinite layered structure, consisting of alternating permittivities of
ε1 = 1 and ε2 = 31. The thickness of the two repeating layers are d1 = d2 = 0.5a, where
a is the lattice parameter of the unit cell.

For concreteness we again consider a one dimensional layered structure. The
structure consists of alternating permittivities of ε1 = 1 and ε2 = 31, as shown in
Fig. 4.4. The thickness of the two repeating layers are d1 = d2 = 0.5a, where a is
the lattice parameter of the unit cell. As mentioned, we want to consider eigen-
modal propagation inside this infinite structure. For sufficiently small frequencies
such a structure may be considered as weakly spatially dispersive, and we expect
(4.8) to provide an accurate description. We assume the electric field of the plane
wave eigenmode is polarized along the x̂-axis, and propagates along the ẑ-axis.
The Bloch wavenumber kB may in this simple case be calculated analytically, from
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4.2. Practical implications of spatial dispersion

the dispersion relation [126]:

cos(kBa) = cos
[
(n1d1 + n2d2)ωa/c

]
(4.43)

− (n1 − n2)2

2n1n2
sin

(
n1d1ωa/c

)
sin

(
n2d2ωa/c

)
.

To check how the parameters from our homogenization method predict eigen-
modal propagation inside an infinite structure, we compare the Bloch wavenumber
found from (4.43), to the wavenumbers calculated from the conventional dispersion
relation k = √

εμω/c. The relevant permeability tensor element from (4.19) is

μtl = 1
1 − β1331

. (4.44)

The local permittivity ε11 is defined by ε11 = limk→0 ε11(ω, k). In Fig. 4.5 we
compare the wavenumber k = √

ε11μtlω/c to the exact solution from (4.43). We
also include the corresponding wavenumbers obtained assuming only the magnetic
moment term in the multipole expansion, or the generalized magnetization density
in the vy-decomposition contribute to the second order term. In addition, we
include the wavenumber k = √

ε11ω/c, which is obtained by completely ignoring
the second order term. All the constitutive parameters are calculated using our
FDFD program.

The second bullet point can be answered by considering how well the param-
eters predict the reflection from a boundary surface. The predictions may be
compared to “exact solutions” obtain from e.g. time domain simulations or mode
matching techniques. In very simple cases, such as an one dimensional layered
structure, even analytical solutions can be found. We note that deviations be-
tween the predicted and “exact” solutions may be due to a poorly chosen prediction
model, and therefore does not necessarily prove that the homogenized parameters
are useless.

In Paper VI of this thesis we insert permittivities and permeabilities obtained
from infinite structures in the Fresnel equation, and see how well they predict the
reflection from a semi-infinite metamaterial. We consider three example structures:
a 1D dielectric layered structure, a 2D metal bar structure and a 2D metallic split-
ring medium. The examples show that the Fresnel coefficient predicts the reflection
well only in frequency ranges where the magnetic moment density dominates the
second order term of ε(ω, k). When this is the case all three permeabilities defined
in Subsecs. 4.1.2-4.1.4 will coincide, and the dipole-dipole approximation valid in
conventional media applies to our metamaterial. In this case also the conventional
Maxwellian boundary conditions are valid, and all requirements of the derivation
of Fresnel’s equations are met [55].
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Figure 4.5: The wavenumbers k = √
ε11μω/c calculated using the four different perme-

abilities from Sec. 4.1 are compared to the actual Bloch wavenumber kB of the structure,
calculated from (4.43). This is done by subtracting the different wavenumbers, and di-
viding by k0 = ω/c. The parameters which are compared in the plot may thus be viewed
as a difference in the refractive index corresponding to the different wavenumbers. It is
seen that μtl gives the best approximation for ωa/c < 0.5, although the deviations are in
the same order of magnitude for all the four permeabilities. For ωa/c > 0.5 none of the
permeabilities give good match, as the weak spatial dispersion approximation no longer
holds for such high frequencies. For small frequencies, ωa/c < 0.3, all the permeabilities
give good match, as they all are approximately 1 there.
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4.2. Practical implications of spatial dispersion

For media and frequency ranges where the higher order multipole terms sig-
nificantly contributes to the second order term, several possible explanations exist
for the deviation of the reflection curves:

• The boundary conditions should be modified, leading to a different Fresnel
reflection coefficient.

• More modes are excited, so even additional boundary conditions are required
to obtain a correct reflection coefficient.

• The microscopic susceptibility ε(r)−1 and/or the considered frequencies are
too high, so that the condition of weak spatial dispersion is not met. This
means the parameters in (4.8) becomes k-dependent.

Determining which of these points are most significant in each of the three examples
in Paper VI may be the topic of a later publication.

The reflection from a semi-infinite periodic structure can always be calculated
using only results calculated for an infinite structure [137]. This is done by match-
ing the Bloch modes of the periodic metamaterial to the incident and reflected
plane waves. If a modified Fresnel coefficient predics the reflection poorly, this
thus means the coefficient is based on a poor selection of constitutive parameters
and/or non-accurate boundary conditions.
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Chapter 5

Boundary conditions for weakly
spatially dispersive media

When an electromagnetic wave is incident from vacuum to a plane boundary, the
Fresnel equations can often be used to calculate the reflection and transmission
coefficients, provided the medium can be described by a permittivity ε and per-
meability μ. Consider a TM-polarized wave normally incident from vacuum onto
a medium with electromagnetic parameters ε and μ. The Fresnel reflection coeffi-
cient for such a wave is given by [55]

rTM = εk0 − k

εk0 + k
. (5.1)

Here rTM is defined as the ratio between the complex amplitudes of reflected and
incident magnetic B-field at the boundary. Moreover k0 = ω/c and k = √

εμω/c
are the wavenumbers in vacuum and in the medium, respectively.

In Paper VI of this thesis we consider a boundary surface between vacuum
and a 2D periodic metamaterial. The metamaterial consists of square unit cells
with lattice parameter a, and covers the semi-infinite region z > 0, extending
infinitely in the x-direction. This medium is illuminated by a normally incident
TM-polarized plane wave, using a source located somewhere to the left of the
boundary. We are interested in the reflected fields. For simplicity we still assume
that the unit cells consist of non-magnetic constituents, and that the metamaterial
has a center of symmetry when viewed as an infinite periodic medium.

We consider three different metamaterial structures, and describe them by the
permittivity ε = limk→0 εxx(ω, k), and the four permeabilities μtl, μmm, μvy and
μll = 1, which are the yy-components of the corresponding permeability tensors
from Subsecs. 4.1.1-4.1.4. The examples in this paper demonstrate something
important. The permeability μtl will in general make (4.17) a better approximation
than any of the other permeabilities, as it includes as much as possible of the

61



Chapter 5. Boundary conditions for weakly spatially dispersive media

z = 0

ε0, μ0 ε(r), μ0a

k ẑ

x̂

Figure 5.1: A semi-infinite 2D periodic metamaterial covers the region z > 0. For
z < 0 there is vacuum. The structure is illuminated by a TM plane wave source located
somewhere to the left of the boundary. The square unit cells of the metamaterial have
lattice parameter a.

O(k2)-term. This permeability thus describes the response from an infinite layered
structure the best, as was demonstrated in Subsec. 4.2.3. However, the examples
in Paper VI shows that it is only if the magnetic moment density dominates the
second order term, i.e. μtl ≈ μmm, that we can use the Fresnel coefficient (5.1)
to accurately predict the reflection from a boundary surface. When μtl ≈ μmm
the dipole-dipole approximation is valid, and the boundary conditions which the
Fresnel coefficient (5.1) is derived from are valid.

The permeabilities μtl and μmm will, however, not be equal for structures where
any of the multipole terms Pe, Qe or R significantly contributes to the second
order term of ε(ω, k). In situations where the spatial dispersion is responsible
for the appearance of so-called additional electromagnetic waves, the conventional
boundary conditions are not even sufficient to find the amplitudes of all the modes.
This means an additional boundary condition (ABC) has to be used.

The problem of boundary conditions for spatially dispersive media have a long
history [56, 138–141]. In this chapter we review some of the recent attempts at
deriving boundary conditions to be used in the analysis of multipolar media or
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5.1. Macroscopic derivation of boundary conditions

spatially dispersive metamaterials [42,107–109,127].

5.1 Macroscopic derivation of boundary condi-
tions

In this section we consider boundary conditions derived from a macroscopic ap-
proach. We first consider a conventional medium, where only the polarization den-
sity P and the magnetization density M contribute to the macroscopic response
of the medium. We then use the same method to derive boundary conditions for
multipolar media. In these two subsections the electric and magnetic fields, as well
as the multipole terms are allowed to have jump discontinuities, but are assumed
to otherwise be free of singularities at the interface. A sharp boundary is assumed,
meaning the transition from vacuum (z < 0) to the medium under investigation
(z > 0) happens exactly at the interface z = 0.

5.1.1 Conventional boundary conditions
As a starting point we choose to describe all charge and current densities explic-
itly, as was done in (2.10). Following the standard approach of integrating these
equations over a pillbox/rectangular loop across the interface z = 0 we obtain

ε0(E2n − E1n) = ρext,s + ρs, (5.2a)
B2n − B1n = 0, (5.2b)
E2t − E1t = 0, (5.2c)

1
μ0

(B2t − B1t) = −ẑ × [J ext,s + J s]. (5.2d)

Here the subscripts 1 and 2 refer to the fields evaluated just to the left and right
of the boundary z = 0, respectively. The subscripts “t” and “n” refers to the
transversal and longitudinal components of the fields, with respect to the boundary
surface at z = 0. The surface charge and current densities ρext,s, ρs, J ext,s, and J s
will be defined in the following.

In obtaining (5.2) we assumed the fields E and B to be sectionally continuous,
and free of singularities at the interface z = 0 [142]. The macroscopic charge and
current densities on the other hand are allowed to be singular, represented by the
surface charge and current densities on the right hand sides of (5.2a) and (5.2d).
For later convenience we define the induced surface current density as

J s =
∫ l

0
J 0dz, (5.3)
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Chapter 5. Boundary conditions for weakly spatially dispersive media

where J 0(z) is the induced current density that is valid throughout space. That
is, J 0 = 0 for z < 0, while J 0 = J for z > 0.

The upper integration limit l in general is the thickness of a transition layer,
which in this sharp medium model may be chosen arbitrarily small. In this and the
following subsection the integration

∫ h
0 dz may thus be considered as “integration

over some infinitesimal small region containing z = 0”. The surface charge density
J ext,s, and the surface charge densities ρs and ρext,s are defined similarly.

To obtain the conventional form of the boundary conditions (5.2), these surface
charge and current densities are expressed in terms of the multipole densities of
the medium inside the half space z > 0. Let P0(r) and M0(r) be the polarization
and magnetization densities that are valid throughout all space. We now assume
these quantities may be expressed according to

P0(r) = u(z)P , (5.4a)
M0(r) = u(z)M, (5.4b)

where u(z) is the unit step function, which takes the values 1 for z > 0 and 0 for
z < 0. To the left of the boundary there is vacuum, so P0(r) = M0(r) = 0. Inside
the medium on the other hand, the polarization and magnetization will take their
bulk values P and M. We assume these quantities are continuous through z = 0.

If we insert the two relations from (5.4) in (2.11) we obtain an expression for
the induced current density J 0(r) valid throughout all space:

J 0(r) = u(z)[−iωP + ∇ × M] + δ(z)ẑ × M. (5.5)

Here δ(z) = u′(z) is the Dirac delta function. Note that δ(z) is a distribution, and
not a regular function.

By inserting (5.5) into (5.3) we find J s = ẑ × M. The corresponding induced
charge density ρ0(r) valid throughout all space is found through the law of charge
conservation,

ρ0 = ∇ · J 0

iω
= −∇ · P0 = −u(z)∇ · P − δ(z)Pz, (5.6)

where Pz is the z component of the bulk polarization density inside the medium.
Inserting (5.6) into the definition of ρs corresponding to (5.3) we find ρs = −Pz.

Insertion of the obtained relations in (5.2) then gives

D2n − D1n = ρext,s, (5.7a)
B2n − B1n = 0, (5.7b)
E2t − E1t = 0, (5.7c)

H2t − H1t = −ẑ × J ext,s, (5.7d)
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5.1. Macroscopic derivation of boundary conditions

where we have defined the fields D = ε0E +P0 and H = B/μ0 −M0. In obtaining
(5.7d) we used −ẑ × ẑ × M = M2t, where M2t is the tangential component of
the magnetization density, evaluated just to the right of the boundary at z = 0.

This concludes our derivation of the conventional boundary conditions. The
above relations state that in the absence of external surface charge and current
density at z = 0, the normal components of the fields B and D, as well as the
tangential components of the fields E and H, are continuous across a boundary
surface. The conventional Fresnel equations are based upon these two tangential
continuity conditions.

5.1.2 Boundary conditions for a multipolar medium, with
a sharp boundary model

By including also the electric quadrupole term in our medium model, the bulk
induced current density may be expressed similar to (5.5) [42, 107]:

J 0 = −iω[P0 − 1
2∇ · Qe

0] + ∇ × M0

u(z)[−iωP + iω

2 ∇ · Qe + ∇ × M]

+ δ(z)[ẑ × M + iω

2 ẑ · Qe]. (5.8)

In comparison to the multipole expansion in Subsec. 4.1.3, the multipoles are here
expressed in the spatial domain, and we have assumed the R term (containing
the magnetic quadrupole and electric octupole terms) is negligible. We can now
calculate J s using (5.3), and we find

J s = ẑ × M + iω

2 ẑ · Qe. (5.9)

The induced charge density is then calculated similarly to (5.6):

ρ0 = ∇ · J 0

iω
= −∇ · [P0 − 1

2∇ · Qe
0] = −u(z)[∇ · P − 1

2∇ · ∇ · Qe]

− δ(z)[Pz − (∇t · Qe)z] + 1
2∇z

(
∇z[u(z)Qe

2,zz]
)
. (5.10)

The definition (5.3) then gives

ρs = −Pz + ∇t · (ẑ · Qe) + 1
2∇zQe

2,zz, (5.11)

where we used the fundamental theorem of calculus to calculate the integral of
the last term in (5.6). Using (5.11) and (5.9) in (5.2) we obtain the boundary
conditions for a multipolar medium to electric quadrupole - magnetic dipole order:
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E2n − E1n = −P2n + ∇t · (ẑ · Qe) + 1
2∇zQe

2,zz, (5.12a)

B2n − E1n = 0, (5.12b)
E2t − E1t = 0, (5.12c)

B2t − B1t = −ẑ × [ẑ × M + iω

2 ẑ · Qe]. (5.12d)

We have here set ρext,s = J ext,s = 0, which is often the case in practical situations.
In a quadrupolar medium an additional mode may propagate (see Subsec. 4.2.2),

and the above conditions are therefore not sufficient for solving boundary problems.
An additional boundary condition is found from insertion of J 0 given by (5.8) as
the induced current in Ampere’s law (2.10d). Integration of the z component of
this equation across the boundary surface gives

[ẑ × M + iω

2 ẑ · Qe]z = 0. (5.13)

The assumption that none of the fields or multipole densities have singularities
at z = 0 ensures that the integral of all terms in (5.8) equal zero, except the term
containing δ(z). The first term in (5.8) is zero, since ẑ × M is perpendicular to
z. We thus arrive at the boundary condition

Qe
0,zz = 0. (5.14)

From the assumption of no singularities in Ez this is essentially the same as
(10) in Ref. [143], where Pδ refers to the potential singular terms in the “total
polarization density”, which in our case corresponds to P0 − 1

2∇ · Qe
0. The only

potential singular term at z = 0 is due to the differentiation of the discontinuity
of Qe

0, which is defined similar as P0 and M0 in (5.4).
Defining D = ε0E +P0 −∇ · Qe

0/2 and H = B/μ0 −M0, the above conditions
may be rewritten as

D2n − D1n = 1
2∇t · (ẑ · Qe), (5.15a)

B2n − B1n = 0, (5.15b)
E2t − E1t = 0, (5.15c)

H2t − H1t = −iω

2 ẑ × [ẑ · Qe], (5.15d)

Qe
2,zz = 0. (5.15e)
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The first four boundary conditions above are the same as those found in
Ref. [107], and the same conditions were verified in Ref. [108]. In Ref. [108] a
transition layer of thickness δ was considered, but the assumption of non-singular
fields and multipoles was used in both these publications. In Ref. [108] the addi-
tional boundary condition (5.15e) was stated explicitly, although as seen from the
above discussion this discussion follows directly from the assumption of fields and
multipole densities with potential jump discontinuities, but which are otherwise
free of singularities at z = 0. We note that in Refs. [107,108] the right hand side of
(5.15c) is given as 1

2∇t · Qe
2,zz, but after obtaining (5.15e) it is seen that continiuty

of E t is ensured also in the presence of a quadrupolar response.
The boundary conditions (5.15) were also derived in Refs. [109,127]. In Ref. [127]

a completely different approach than the above derivation is used. The derivation
relates transverse averaged fields to the bulk fields by making use of Green func-
tion formalism [144]. Also here the additional boundary condition (5.15e) is found
by assuming non-singular fields and multipole densities at the boundary surface.

In Ref. [109] a transition layer of thickness l is introduced, where the elec-
tromagnetic properties gradually change from those of free space to those of the
electric quadrupolar continuum. This is done to get a better understanding of the
field behavior at the interface. An explicit expression for the electric quadrupo-
larization density Qe

0 is assumed to be valid throughout the transition layer. The
electric field is initially assumed to contain singular terms, but it is later shown
that under certain assumptions all these singular terms must be zero.

5.2 Fresnel’s equations for a quadrupolar contin-
uum

Following the standard procedure, we now derive Fresnel’s equations for a TM
polarized plane wave incident from vacuum upon a semi-infinite quadrupolar con-
tinuum. The procedure below can be straightforwardly modified to be valid for any
nongyrotropic, isotropic medium where the second order contribution of ε(ω, k)
may be written on the form ak2I⊥ + bkk. For such media the only second order
term which may not be described by (1 − μ−1

tl ) is the second order contribution to
εzz(ω, k), in a coordinate system where k = kẑ [56].

The electric field in vacuum is a superposition of two plane waves; the incident
(i) and reflected (r) waves. Inside the quadrupole continuum, there are also two
modes (according to Subsec. 4.2.2): a propagating transmitted (t) wave, and an
evanescent (e) longitudinal wave. The electric and magnetic fields of these four
modes are given as Em = [Emx, 0, Emz] for m = i,r,t and e, while the magnetic field
is given by Bm = Bmŷ for m = i, r and t. From Faraday’s law we get that there
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is no evanescent Be-field, as ke × Ee = 0.
All field components will propagate according to eik · r, but with different wave

vectors k. The x component of the wave vector kx = k · x̂ will be the same
for all waves. The z components of the vacuum waves are given by kiz = k1z =√

ω2/c2 − k2
x and krz = −k1z. The z components of the two waves in the quadrupo-

lar continuum are found from Subsec. 4.2.2, where ktz = k2z is given by (4.42) and
kez is given by (4.39).

The boundary condition (5.15c) gives that

Eix + Erx = Etx + Eex. (5.16)

Similarly (5.15d) gives

Bt = Bi − Br − iωμ0

2 [ẑ × (ẑ · Qt + ẑ · Qe)] · ŷ, (5.17)

since M = 0 in a pure quadrupolar continuum. Here Qt and Qe are the
quadrupole density of the transmitted and the evanescent modes, respectively.
The additional boundary condition (5.15e) becomes:

ẑ · (Qt + Qe) · ẑ = 0. (5.18)

The different pairs of E- and B-fields must satisfy Maxwell’s equations in each
medium separately. From Faraday’s law we have for the four modes:

kxEiz − k1zEix = iωBi, (5.19a)
kxErz + k1zErx = iωBr, (5.19b)
kxEtz − k2zEtx = iωBt, (5.19c)
kxEez − kezEex = 0, (5.19d)

Moreover, from Gauss’ law for the three propagating modes we have

ki · E i = kxEix + k1zEiz = 0, (5.20a)
kr · E r = kxErx − k1zErz = 0, (5.20b)
kt · E t = kxEtx + k2zEtz = 0. (5.20c)

The boundary condition (5.18), combined with the above equations, relates Eex

and Etz:

k2zEtz + 2
3kezEez − 1

3kxEex = 0, (5.21)

which again may be related to Bt through Maxwell’s equations.
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By combining (5.16), (5.17),(5.19),(5.20) and (5.21) we find two expressions
relating Bi, Br and Bt, which allows us to define reflection and transmission coeffi-
cients for the B-field:

rB = Br

Bi
= f − g

f + g
, (5.22)

and
tB = Bt

Bi
= 2

f + g
. (5.23)

We here defined
f = k2z

k1z

1 − αQω2/(4c2)
1 + αQ

2 k2
x

, (5.24)

and
g = 1 − αQω2/(4c2)

1 + αQk2
x/2 [1 + 1

2αQk2
x(2 + 1

2αQ{k2
x + kezk2z})]. (5.25)

Since all components of the E-fields may be expressed through the B-fields,
we may also define tensors rE, tE and eE, which relate the amplitudes of the
reflected, transmitted and evanescent electric field components to the components
of the incident electric field.

5.3 Poynting’s vector
A natural first check of the validity of the Fresnel equations above is to verify that
the normal component of Poynting’s vector is continuous across the boundary
surface. Poynting’s vector, S, inside a spatially dispersive medium is given by
(103.15) in [55]:

Sk = 1
2μ0

Re {εijkE∗j Bk} − ε0ω

4
∂εij

∂kk

E∗i Ej, (5.26)

where εij = εij(ω, k) is the Landau-Lifshitz permittivity function for the given
medium. In the quadrupolar continuum this function in given by (4.38). Calcu-
lating the derivative wrt. kk of this function gives

∂εij

∂kk

= αQ

4 [2δijkl
∂kl

∂kk

+ 1
3( ∂ki

∂kk

kj + ki
∂kj

∂kk

)], (5.27)

which is a tensor of rank 3. Using the relation ∂kα

∂kβ
= δαβ this becomes

∂εij

∂kk

= αQ

2 [δijkk + 1
6(δikkj + kiδjk)]. (5.28)

Only the propagating mode E t will contribute to the Poynting vector. Insertion
of expressions for E t, Bt and (5.28) gives after some algebra
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St = c2

2μ0ω

(
1 − αQω2/(4c2)

)2
|Bt|2kt. (5.29)

In particular, the normal component is given by

S2z = c2

2μ0ω

(
1 − αQω2/(4c2)

)2
|Bt|2k2z. (5.30)

For frequencies ω2/c2 > 4/αQ we have St = 0, as E t then is evanescent.
A similar expression is found for the normal component of Poynting’s vector

for z < 0, where the contributions from both the incident and reflected waves must
be summed up:

S1z = c2

2μ0ω
(1 − |rB|2)|Bi|2k1z. (5.31)

Due to energy conservation the normal component of Poynting’s vector should
be continuous. Setting (5.30) equal to (5.31), and using Bt = tBBi we obtain that
the following equation should be satisfied

1 − |rB|2 =
[
k2z

k1z

(1 − αQω2

4c2 )
]2

|tB|2. (5.32)

It can be checked numerically that this is correct to within computer accuracy.
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Chapter 6

Summary and future work

6.1 Summary

Active and passive metamaterials have the potential of exploiting extraordinary
electromagnetic properties. It therefore becomes important to develop an accurate
theoretical framework which can be used to analyze such media and structures.
The papers of this thesis contribute in various ways to do so along the lines of
Fourier-Laplace analysis and homogenization theory.

Paper I presents a Fourier-Laplace framework which may be used to describe
the response of active media or metamaterials in terms of (possibly complex) fre-
quency and wavenumber components. By considering a causal source of finite
width, the paper demonstrates the important fact that a monochromatic plane
wave analysis of such media should be applied with care. The monochromatic
plane wave limit does not necessarily exist due to the possible presence of insta-
bilities, and it is found that in general the monochromatic limit and plane wave
limit do not commute. For example, one order may lead to a diverging field, while
the other leads to a finite field. Moreover, the plane-wave limit may be dependent
on whether it is realized with a finite-support excitation or a Gaussian excitation,
eventually of infinite widths. The framework is used to analyze examples of media
with weak and strong gain. In particular it is used to predict the existence of
isotropic media which in principle exhibit simultaneous refraction, meaning they
refract positively and negatively at the same time.

Paper II applies the framework from Paper I in the analysis of a gainy slab.
Even for the case with a weakly amplifying slab that does not lase, it is necessary
to involve complex frequencies ω and/or complex transversal wavenumbers kx. We
also show that the only possibility to have an absolute instability for a finite width
beam is if a normally incident plane wave would experience an instability.

Paper III considers the well known fact that a monochromatic wave propagates
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with a different wavelength inside a medium compared to in vacuum. Instead of the
standard procedure of describing the induced charge and current as bound, and
therefore absorb them into a refractive index, we here rather treat the medium
as vacuum, but with explicit charge and current densities. However, since the
induced waves propagate in vacuum in this picture, it is not straightforward to
reconcile that the wavelength becomes different to that in vacuum. Although the
main purpose of the paper is educational, the analysis also has relevance in the
context of this thesis. It reminds us that in Maxwell’s equations the fundamental
electromagnetic fields are invariant upon how we chose to describe the induced
current.

Papers IV, V and VI are concerned with the consequences of spatial disper-
sion on the effective parameters. Paper IV demonstrates that certain higher order
multipole terms, above the electric quadrupole, are generally as important as the
magnetic dipole and electric quadrupole terms when second order spatially dis-
persive effects are considered. Based on this discovery, Paper V deals with the
concern of how one should define the permeability of spatially dispersive media.
In particular, four different definitions of the permeability are stated and com-
pared. General properties are discussed, including causality, passivity, symmetry,
asymptotic behavior, and origin dependence.

In Paper VI these four permeabilities are paired with a local permittivity de-
fined as the zeroth order contribution to ε(ω, k), and the predictive power of these
four sets of local parameters is tested. This is done by calculating the Fresnel
reflection coefficient, and comparing the four predictions with the true solution
obtained through finite difference time domain simulations. It is found that the
Fresnel coefficient predicts the reflection well only in regimes where the three non-
trivial permeabilities coincide. One potential explanation is that when considering
media where the dipole-dipole approximation does not hold, the boundary condi-
tions should be modified, and the conventional Fresnel’s equations are not valid.
It may also be that a non-local contribution is lost when we choose describing the
medium response by two local parameters. Even another option is that multiple
modes are excited, so even additional boundary conditions may be required. Fi-
nally, for a sufficiently large microscopic permittivity ε(r) − 1 and/or frequency ω,
the long wavelength limit ka 
 1 will no longer hold, and higher order terms will
contribute significantly to ε(ω, k). Which of these four explanations that domi-
nates the poor reflection predictions is not discussed in the paper. We do however
demonstrate another, perhaps even more surprising result. Local constitutive pa-
rameters ε and μ describing the Landau-Lifshitz permittivity ε(ω, k) well is not
a sufficient condition for the standard Fresnel equation to be valid. This means
that the continuity of the tangential components of E and H must be violated
for the macroscopic fields defined as fundamental Floquet modes. Alternatively
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the macroscopic fields may be defined differently, so that they become continu-
ous. There will then be a “transition layer” close to the boundary, with different
constitutive behaviour.

6.2 Future work
Based on the discussion of boundary conditions in Chapter 5 it might be necessary
to consider the possibility that several modes get excited, even in the case of weak
spatial dispersion. For media and frequency regions where other terms than the
magnetic moment density have significant contributions to the second order term
in ε(ω, k), it is therefore necessary to obtain boundary conditions valid for such
media. Provided the R-term in the multipole expansion is negligible, the boundary
conditions in Chapter 5 might be sufficient, but in general new conditions taking
also the R-term into account should be derived. It may be that the transverse
field approach from Ref. [127] can be used to find such conditions.

If boundary conditions valid for general weakly spatially dispersive media are
found, these may be verified through FDTD simulations such as in Paper VI . To
verify the boundary conditions obtained for a pure quadrupole continuum in this
way, a possibility of considering such media in the FDTD method must, however,
first be developed.

It should also be considered whether defining constitutive parameters such as a
permeability based on components of ε(ω, k) actually is an useful approach at all.
If one first has to calculate ε(ω, k), one may find the solutions kn(ω) from (4.15)
directly, where n = 1, ..., N for the N possible solutions to the equation. Mode
matching techniques [137] may then be used to find the reflected and transmitted
fields directly from knowing all potential transmitted modes kn(ω). If the goal is
to find the reflection coefficient, going the detour through defining parameters such
as the permeability μ may thus be unnecessary complicated. The mode matching
techniques will then give the actual discontinuity of the fields directly. This means
it might not even be necessary to find new and/or additional boundary conditions.

Another related aspect, which would be interesting to look more into, is how
the constitutive relations should be modified inside a transition layer between free
space and a general weakly spatially dispersive medium. From FDTD simulations
of media where the Q and R terms are known to be important, one may calculate
the actual multipole densities throughout space according to their spatial domain
definitions [32]. In Ref. [109] it was assumed that the quadrupolarizability gradu-
ally changes from the value in free space to that of the bulk medium throughout
the transition layer. It is natural to expect this to be the case also for a magnetic
susceptibility (I − μ−1). Such intuitive guesses of constitutive relations should
however be verified, and it could be that the same transition is valid for all the
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second order coefficients βiklj of ε(ω, k). To the author’s best knowledge there
has not been any numerical verifications of such transition layer models based on
FDTD simulations so far.

From our work with Papers I and II it would be interesting to look further into
the possibility of verifying the existence of simultaneous refracting media through
e.g. time domain simulations. In this regard I recommend focusing on finding
simultaneous refracting media with significantly lower gain than those considered
in our work so far. Time domain simulations of media with a very strong gain are
challenging, because the transient frequencies might get very strongly amplified,
before they eventually are supposed to die out. In any finite difference calculation
of wave phenomena artificial reflections will be present, due to the discretization
of the physically continuous space. These artificial reflections will grow large due
to the strong gain, and eventually destroy the validity of the simulation. Besides
searching for simultaneous refracting media with lower gain, there might also be
computational workarounds to this problem.

Another potential next step is to perform a similar analysis to that in Paper I
to a semi-infinite, potentially active medium described by ε(ω, k) to second order,
rather than the isotropic parameters ε(ω) and μ(ω) used in our paper. To describe
a medium boundary, a new set of Fresnel equations based on new boundary con-
ditions are again required. It could be that the dependency of both ω and k of
ε(ω, k) may lead to some difficulties, but also perhaps some new interesting effects
which actually may be made available through some sophisticated metamaterial
structure based on active components.
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Contributions in papers

This section summarizes my contribution to each of the papers contained in this
thesis. The papers are labeled with the same numbers as in this thesis.

Paper I
H.O. Hågenvik, M.E. Malema and J. Skaar “Fourier theory of linear gain media,”
Physical Review A 91, 043826 (2015).

My contribution: Significantly contributed to the development of the theory:
especially in the establishment of the existence of the involved transforms. Sec-
tions III and IV: Choice of excitations, and associated analysis. Subsections V.D
and V.E: Choice of medium, analysis, numerical experiments, and discussions.
Section VI: Conclusion. I wrote most of Subsec. V.E, and performed the FDTD-
simulations which were meant to visualize the effect described in this section. The
FDTD-program was also used to verify the responses which are described analyti-
cally in the examples V.A-V.C. I was the corresponding author during the lengthy
review process.

Paper II
H.O. Hågenvik and J. Skaar, “Fourier-Laplace analysis and instabilities of a gainy
slab,” Journal of the Optical Society of America B 32, 9 (2015).

My contribution: Generated all figures, and performed all simulations and anal-
ysis. I wrote the paper, with input from Johannes. I suggested the paper topic
based on the lengthy review process of Paper I. I came up with the proof in the
appendix. I was the corresponding author during the review process.
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Paper III
H.O. Hågenvik, K. Bløtekjær and J. Skaar, “Dielectric media considered as vacuum
with sources,” Am. J. Phys 85, 11 (2017).

My contribution: I performed the simulations, and contributed to the writing
of the paper.

Paper IV
C.A. Dirdal, H.O. Hågenvik, H.A. Haave and J. Skaar, “Higher order multipoles
in metamaterial homogenization,” IEEE Trans. Antennas Propag. 66, 11 (2018).

My contribution: Contributed to the development of the theory.

Paper V
J. Skaar, H.O. Hågenvik and C.A. Dirdal, “Four definitions of magnetic perme-
ability for periodic metamaterials,” Physical Review B 99, 064407 (2019).

My contribution: Contributed to the development of the theory.

Paper VI
H.O. Hågenvik and J. Skaar, “Magnetic permeability in Fresnel’s equation,” Jour-
nal of the Optical Society of America B 36, 1386-1395 (2019).

My contribution: Generated all figures, and performed all simulations and anal-
ysis. I wrote the paper, with input from Johannes. I was the corresponding author
during the review process.
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Hans Olaf Hågenvik, Markus E. Malema, and Johannes Skaar*

Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
(Received 1 July 2014; published 15 April 2015)

The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency
(the monochromatic limit) and also often a single plane-wave component (plane-wave limit). For gain media,
we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging
field, while the other order leads to a finite field. Moreover, the plane-wave limit may be dependent on whether
it is realized with a finite-support excitation or Gaussian excitation, eventually of infinite widths. We consider
wave propagation in gain media by a Fourier-Laplace integral in space and time, and demonstrate how the
correct monochromatic limit or plane-wave limit can be taken, by deforming the integration surface in complex
frequency–complex wave-number space. We also give the most general criterion for absolute instabilities. The
general theory is applied in several cases, and is used to predict media with novel properties. In particular, we
show the existence of isotropic media which in principle exhibit simultaneous refraction, meaning that they
refract positively and negatively at the same time.
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I. INTRODUCTION

Fourier theory makes it possible to consider single fre-
quencies and plane-wave components separately, in describing
electromagnetic wave propagation in linear, passive media.
This leads to huge simplification in analysis and interpretation,
especially for dispersive (and/or spatially dispersive) media.
Nevertheless, we must have in mind that real physics happens
in the time-spatial domain, not in frequency-wave-number
space; the monochromatic and plane-wave limits can never be
realized in practice. The monochromatic limit is approached
by turning on the excitation at some time t = 0 [1], and waiting
a sufficiently long time until the transients have died out. The
plane-wave limit is approached by letting the width of the
excitation be sufficiently large.

For active media (gain media), it is clearly of large interest
to use the same Fourier theory, by decomposing the field
into frequency components and/or plane waves. There are,
however, a number of obstacles. The most obvious one is that
active media are inherently nonlinear due to gain saturation [2].
In practice, this can be dealt with by verifying that the
magnitude of the solution is less than the threshold for gain
saturation. If it is not, then the excitation must be reduced
accordingly, or the solution must be rejected. If there are
divergences associated with the linear solution, the solution
must be rejected in any case.

Another problem is that the Fourier transform does not
necessarily exist. A remedy is to use the Laplace transform,
decomposing the time-domain fields into exponentially in-
creasing functions exp(−iωt) for Im ω > 0 (see Sec. II). Once
the solution has been found, it can often be continuated towards
real frequencies, enabling simpler interpretation (Sec. III). One
may argue that the Fourier transform should be sufficient
for the relevant situations since diverging solutions must
be rejected anyway. However, this strategy is dangerous, as
imposing Fourier transform analysis may give the impression
of false, stable solutions.

*johannes.skaar@ntnu.no

An extensively discussed problem in the context of active
media is the determination of the sign of the longitudinal wave
number kz. This problem is far from trivial, even, e.g., in the
context of total internal reflection from a weakly amplifying
medium [3–6]. More recently, the problem has been discussed
in the context of the wave vector or refractive index of more
advanced active media including active metamaterials [7–10].

We are not going to focus on this problem here, as it
now seems to be agreed that the sign of the longitudinal
wave number must be determined by ensuring it is analytic
in some upper half-plane of complex frequency, and such
that kz → +ω/c for ω → ∞ [8–12]. Here, ω is the (possibly
complex) frequency and c the vacuum light velocity. However,
we will take the analysis one important step further: by
considering a double Fourier-Laplace transform with respect
to space and time. Clearly, for realistic situations, the fields can
neither have infinite durations nor infinite widths. In addition
to turning the field excitations on at t = 0, it turns out to be
crucial to let them have finite widths, to see how the medium
behaves in practice. Indeed, even though a particular medium
does not show absolute instabilities for plane-wave excitations,
it can support absolute instabilities in the presence of other
excitations.

Once the general theory governing causal finite beam
propagation has been discussed, it is of interest to consider
the monochromatic limit and plane-wave limit. A number
of peculiar but interesting results arise. First of all, the
monochromatic and plane-wave limits do not commute in
general. For very common situations with conventional gain
media, one order leads to finite fields, while the other order
leads to infinite fields. Second of all, the plane-wave limit
may depend on the way it is taken, if it is realized using a
finite-support excitation or a Gaussian excitation, eventually
of infinite widths. Our analysis leads to a better understanding
of the nontrivialities associated with earlier, monochromatic,
and plane-wave analyses of active media. It also can be
used to predict new classes of active media, with novel
responses. For example, we predict the presence of isotropic
media which exhibit simultaneous refraction, i.e., both positive
and negative refraction simultaneously. While this is a novel

1050-2947/2015/91(4)/043826(14) 043826-1 ©2015 American Physical Society
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and surprising response, it may be argued that the required
gain is unrealistically high, and makes both realization and
time-domain simulations challenging, at least for the specific
media proposed here.

Previously, Kolokolov [4] and Grepstad and Skaar [6] have
treated the problem of Fourier-Laplace transform analysis of
active media. However, Kolokolov only considered the special
case with weak or no dispersion. Dispersion has important
consequences for the theory, as it turns out to fundamentally
change the method of deformation in the complex frequency–
wave-number space. The dispersion, possibly engineered by
metamaterials, may lead to new classes of active media, as
shown by the different possible behaviors in frequency–wave-
number space. Grepstad and Skaar did not perform a complete
analysis since they did not consider the deformation in
frequency–wave-number space, including the monochromatic
limit for finite beams.

The article is structured as follows. In Sec. II, we state
the problem and discuss the assumptions in detail, before
analyzing the fields using the Laplace transform (in time) and
Fourier transform (in space). In Sec. III, we discuss how we
may approach real frequencies for media without absolute
instabilities. This happens at the expense of deforming the
integration path in the complex wave-number (kx) space. In
Sec. IV, we discuss the plane-wave limit, and the interpretation
of divergences and noncommutativity. The theory is applied
to the understanding of existing media and novel media in
Sec. V. In particular, we show the presence of simultaneous
refraction, before concluding in Sec. VI.

II. LAPLACE AND FOURIER TRANSFORM ANALYSIS

We restrict the analysis to linear, time-shift invariant,
isotropic, homogeneous media without spatial dispersion.
Moreover, we assume the following asymptotic behavior for
the product of relative permittivity ε and relative permeability
μ, as ω → ∞ [13]: ε(ω)μ(ω) = 1 + O(ω−2). Finally, we
assume that the medium does not support superexponential
instabilities [14], meaning that any field solution should not
grow faster with time than an exponential.

In the analysis we consider an infinite or semi-infinite
medium. Considering infinite media helps us understand
the electromagnetic response given solely by the medium’s
properties; effects related to interactions with surrounding
media have been ruled out. Of course, there are no infinite gain
media in practice. However, as long as the smallest distance
from an observation point to the boundary of the medium
is larger than ctmax, where tmax is the maximum duration
of the experiment, the size does not matter and we may as
well assume it is infinite. To approach steady state (or the
monochromatic limit) we will later require tmax to be large.
Then, we must have in mind that the dimensions of the gain
medium must be accordingly large.

We will assume that the medium is dark for t � 0. This
assumption needs some clarification. To establish the active
medium, an energy pump must be turned on before t = 0.
When the system does not support instabilities, we can imagine
that the pump was turned on a long time before t = 0, such that
any transients have died out. If there are instabilities, however,
any disturbance will blow up with time. We could assume that

the pump is turned on slowly before t = 0, sufficiently smooth
such that no significant transients are generated as a result of
the pump, but sufficiently fast such that the (small) transients
do not grow too much before t = 0. We do not consider the
existence of such a tradeoff further; we rather demand that
any transients from the pump or from other perturbations or
fluctuations in the system must be included into the analysis.
This is done by including them into the excitation of the
system, to be defined in the following.

It is also in order to comment on the linearity assumptions
in some detail. The amplitude in any practical medium will be
limited by nonlinear effects such as gain saturation. When we
refer to “diverging fields,” or “instabilities,” it strictly means
that the fields grow until they are limited by gain saturation.
Clearly, in such cases the linear analysis is only accurate for
a limited duration. In the absence of instabilities, the analysis
is clearly accurate for all times, provided the excitations are
sufficiently weak.

For simplicity, we limit the discussion to propagation in
two dimensions x and z and transversal electric (TE) fields.
Let E(x,z,t)ŷ be the physical electric field, pointing in the y

direction ŷ. Since the medium is active, the field may diverge
with time t . We have limited our attention to active media
and sources that lead to fields growing at most exponen-
tially. Moreover, we assume that the electric field is square
integrable (finite energy) with respect to x (for the complete
assumptions, see Appendix B). The electric field is Laplace
transformable:

E(x,z,ω) =
∫ ∞

0
E(x,z,t) exp(iωt)dt (1)

for Im ω > γ , where γ is a sufficiently large positive number
characterizing the maximum growth of the field. Furthermore,
E(x,z,ω) is Fourier transformed wrt x, to obtain the plane-
wave spectrum

E(kx,z,ω) =
∫ ∞

−∞
E(x,z,ω) exp(−ikxx)dx. (2)

The inverse transform can be written

(2π )2E(x,z,t)

=
∫ iγ+∞

iγ−∞

∫ ∞

−∞
E(kx,z,ω) exp(ikxx − iωt)dkxdω

=
∫ ∞

−∞

∫ iγ+∞

iγ−∞
E(kx,z,ω) exp(ikxx − iωt)dω dkx, (3)

where, in the last equality, we have interchanged the order of
integration (see Appendix B).

We consider a source in the plane z = 0 (Fig. 1) in-
finitely thin, but possibly of infinite width. In general,
we may have sources everywhere; in that case, we would
have to superpose the fields resulting from the differ-
ent sources. For z �= 0, Maxwell’s equations mean that
(d2/dz2 − k2

x + εμω2/c2)E(kx,z,ω) = 0. Furthermore, the
transversal (x component) of the magnetic field is given
by −iωμμ0H (kx,z,ω) = dE(kx,z,ω)/dz, where μ0 is the
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source
z

x

σ
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FIG. 1. An excitation is located at z = 0 in a homogeneous
medium. In the figure, the special case with finite width 2σ is shown.

permeability in vacuum. Hence, we can express

E(kx,z,ω) = A(kx,ω)eikzz + B(kx,ω)e−ikzz, (4a)

H (kx,z,ω) = − kz

ωμμ0
[A(kx,ω)eikzz − B(kx,ω)e−ikzz]

(4b)

for z < 0, and

E(kx,z,ω) = C(kx,ω)eikzz + D(kx,ω)e−ikzz, (5a)

H (kx,z,ω) = − kz

ωμμ0
[C(kx,ω)eikzz − D(kx,ω)e−ikzz]

(5b)

for z > 0. Here,

k2
z = εμ

ω2

c2
− k2

x. (6)

The four functions A(kx,ω), B(kx,ω), C(kx,ω), and D(kx,ω)
are connected by the electromagnetic boundary conditions,
which in turn are dependent on the source. For a current
source, E(kx,z,ω) is continuous across the source plane, while
H (kx,0+,ω) − H (kx,0−,ω) = J (kx,ω), where J (kx,ω) is the
(Fourier-Laplace transformed) surface current source. With
reflection symmetry about the plane z = 0, this means that

A = D, (7a)

B = C, (7b)

2kz

ωμμ0
(A − B) = J (kx,ω). (7c)

Clearly, both unknown functions A and B cannot be found
from (7). Moreover, since the medium potentially is active, we
cannot use principles like requiring the source to do positive
work, or field decay as z → ∞. We must invoke the principle
of causality in its most fundamental form.

First, we note that the sign of kz can be chosen arbitrarily
in (4) and (5); a change of sign means only that the functions
C and D (and A and B) are interchanged. Since ε(ω) and μ(ω)
are analytic for Im ω > γ , and tend to unity as ω → ∞ there,
we choose the sign such that for a fixed kx ,

kz(kx,ω) is analytic for Im ω > γ, and

kz(kx,ω) → +ω/c as ω → ∞ in the region Im ω > γ. (8)

Assuming that the medium and the source are dark for
t < 0, the fields as described by (5) are causal, and we can
use a version of Titchmarsh theorem for diverging functions
(Appendix C) to prove that in (4) and (5), we have

A = D = 0, (9a)

B = C = −μμ0ω

2kz

J (kx,ω). (9b)

Moreover, in Appendix A we prove that the function kz(kx,ω)
is zero free in a region Im ω > γ ; thus, B is analytic there.1

We now consider the usual situation described by the
Fresnel equations, where we have different media on each
side of the plane z = 0, and there is no source at z = 0 but
rather somewhere in the medium on the left-hand side (z < 0).
Clearly, we can use the identical causality argument on the
right-hand side (z > 0) to obtain (8) and D = 0. The elec-
tromagnetic boundary conditions E(kx,0+,ω) = E(kx,0−,ω)
and H (kx,0+,ω) = H (kx,0−,ω) then give the reflection and
transmission coefficients

B

A
= μ2k1z − μ1k2z

μ2k1z + μ1k2z

, (10a)

C

A
= 2μ2k1z

μ2k1z + μ1k2z

, (10b)

where k2
iz = εiμiω

2/c2 − k2
x . Here, subscripts 1 and 2 stand

for the medium to the left and right, respectively. Throughout
this paper, we will for simplicity assume that medium 1 is
vacuum or a passive medium.

We will consider sources in the product form u(x)v(t),
with transform U (kx)V (ω). For the situation with a current
source plane, we set J (kx,ω) = −U (kx)V (ω)/cμ0, and for the
situation with an incident wave, we set A(kx,ω) = U (kx)V (ω).
For later use, we sum up by writing the electric field solutions
for z > 0 for the current source plane and the Fresnel situation,
respectively:

E(kx,z,ω) = μωeikzz

2kzc
U (kx)V (ω), (11a)

E(kx,z,ω) = 2μ2k1ze
ik2zz

μ2k1z + μ1k2z

U (kx)V (ω). (11b)

Here, kz is given by (6) and (8). It is important to note that these
results have been derived for Im ω > γ . In Sec. III, we will
consider the possibility of continuating the solutions towards
real frequencies.

III. TOWARDS REAL FREQUENCIES

To facilitate interpretation and computation, it is useful
to examine if we can move the inverse Laplace transform
contour (Bromwich path) in (3) down to the real ω axis,
such that it describes an inverse Fourier transform. This is

1If we had chosen the opposite sign for kz in (8), we would have
obtained B = C = 0. If we had chosen the sign in another, arbitrary
way, we would have obtained A = D = 0 for some frequencies, and
B = C = 0 else. Such choices are inconvenient (but perfectly valid)
as kz and the four functions A, B, C, and D get nonanalytic.
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desirable, as steady-state harmonic excitations and solutions
are convenient to interpret physically. For the active media
and systems where this is possible, we have only convective
instabilities [15,16]: Then, nondiverging excitations lead to
nondiverging fields for every fixed point (x,z). This means
that any growing wave must be convected away. On the other
hand, if the Bromwich path cannot be moved down to the
real axis due to singularities or cuts, the transform can be
described as an inverse Fourier transform plus integrals around
the nonanalytic points. Since the latter integrals diverge with
time, we have absolute instabilities, meaning that the fields
diverge even at fixed points in space.

For a wide range of active media of interest, it turns out to
be possible to move the Bromwich path in (3) down to the real
axis, at the expense of deforming the integration path in the kx

domain [16]. This is what we will consider in the following.
The clue here is to realize that the integrand is analytic in
both kx and ω, so integration paths can be deformed until they
reach singularities. To this end, we assume that εμ does not
have singularities or zeros for Im ω � 0; situations with zeros
in the upper half-plane will be discussed later. Under these
conditions,

√
εμ is analytic and zero free for Im ω � 0. We

consider the evaluation of the physical field in the spatial and
time domain, according to (3), but along a possibly deformed
surface � in the (kx,ω) domain:

(2π )2E(x,z,t)=
∫

�

E(kx,z,ω) exp(ikxx − iωt)dkxdω. (12)

Here, E(kx,z,ω) is given by (11). Apparently, the integrand is
analytic in both kx and ω, except at the branch cuts arising from
the square root kz = √

εμω2/c2 − k2
x , and also if kz = 0 for

the case (11a), or if μ2k1z + μ1k2z = 0 for the case (11b). The
last possibility will be ignored in the following; we simply
assume that two involved media are chosen such that these
singularities do not disturb the deformation of �. Examples
will be given later. From the theory below it will also become
clear how to generalize to account for such singularities.

Consider Figs. 2(a) and 2(b), showing the original integra-
tion paths in the ω and kx domains. For all ω in the indicated
domain Dω, the branch points of kz, i.e., kx = ±√

εμω/c, are
located in the domain Dkx

. Now, consider the short piece of the
integration path that lies in Dω. For these ω values, the idea is
to deform the corresponding kx integration path, as shown in
Fig. 2(c). This can safely be done since kz(kx,ω) and therefore
E(kx,z,ω) are analytic wrt kx away from the branch cuts.

The next step is to interchange the order of integration.
For each kx in the path in Fig. 3(b), we can deform the
short piece of the ω path, obtaining the path in Fig. 3(a).
Repeating the procedure for two neighboring pieces of the
ω-integration curve, we obtain the situation in Fig. 4, generally
with two different integration curves in the kx domain. In
simple situations such as the one in the figure, we could use
a single, common integration curve in the kx domain for both
pieces in the ω domain. In general, to get rid of the vertical
integration curves between the two domains in Fig. 4(a), we
must require the existence of a common integration curve in
the kx domain detouring the interface between the neighboring
domains [Fig. 4(c)]. If this is always the case, we can continue
the deformation in the ω domain until the integration curve

Dω

(a)

(c)

Im kx

Im kx

Dkx
(b)

Re kx

Reω

Re kx

Imω

γ

FIG. 2. The dashed lines correspond to the integration paths
in (3): (a) ω domain; (b) kx domain; and (c) deformed path in the
kx domain for the ω indicated by a circle in (a). The domain Dkx

corresponds to the set of values kx = ±√
εμω/c for ω ∈ Dω. The

open circles in the kx plane correspond to the open circle in the
ω plane. The dotted vertical lines indicate branch cuts for kz(kx,ω)
for the particular ω as indicated by the open circle. We proved in
Appendix A that kz(kx,ω) is analytic wrt kx , for Im ω = γ and real
kx ; thus, the branch cuts must avoid the real kx axis. In the figure, we
take them to be vertical, starting at the circles.

Imω

(a)
Reω

Im kx

Re kx
(b)

γ

FIG. 3. Deformation in the ω domain. For each kx in the path in
(b), the integration path in Dω can be deformed (a).

043826-4



FOURIER THEORY OF LINEAR GAIN MEDIA PHYSICAL REVIEW A 91, 043826 (2015)

Imω

(a)
Reω

γ

Im kx

Re kx
(c)

Im kx

Re kx
(b)

FIG. 4. (Color online) Deformation of two neighboring pieces of
the ω-integration curve (dashed black and solid blue lines) (a) and the
associated kx-integration curves (b). For ω values along the vertical
integration curves between the neighboring domains in (a), one can
use a common kx-integration curve (c).

coincides with the real axis:

E(x,z,t) = 1

2π

∫ ∞

−∞
E(x,z,ω) exp(−iωt)dω, (13)

where

E(x,z,ω) = 1

2π

∫
κ(ω)

E(kx,z,ω) exp(ikxx)dkx. (14)

Here, κ(ω) is the deformed path in the kx domain, for
each ω. Since Im ω = 0 in (13), the resulting field will not
diverge with time. Thus, in these situations, there are no
absolute instabilities, and (14) can be interpreted as the usual
frequency-domain field for real ω. The possible appearance of
complex kx’s in the integration path κ(ω) means that the field
may grow with x.

We have required the existence of a common kx integration
curve for any two neighboring ω’s. To this end, consider
the trajectories of kz’s branch points, kx = ±√

εμω/c, as
we reduce Im ω from γ to zero. It is necessary that for
two neighboring values of Re ω, these two trajectories will
become arbitrarily close as the two Re ω’s approach each
other. A sufficient condition for this is that

√
εμ is analytic

for Im ω � 0.
We have also required that εμ be zero free for Im ω � 0.

While even order zeros give analytic square root, they induce

another problem: At the zero the two branch points in the kx

domain coincide so the integration curve gets “stuck.”
The frequency-domain field E(x,z,ω) is related to the

physical, time-domain field in the so-called monochromatic
limit. From (13),

E(x,z,t) = 1

2π

∫ ∞

−∞

E(x,z,ω)

V (ω)
V (ω) exp(−iωt)dω, (15)

where E(x,z,ω)/V (ω) is the transfer function from the
excitation V (ω) to the resulting field E(x,z,ω), as given
by (11). Note that V (ω) is a factor in E(x,z,ω), so the transfer
function is independent of V (ω). We can, for example, take a
unit-step modulated complex exponential as the excitation:

v(t) = H (t) exp(−iω1t), H (t) =
{

0, t < 0

1, t > 0
(16)

with Laplace transform

V (ω) = i

ω − ω1
. (17)

The inverse transform (15) can be found with the residue
theorem by closing the contour by a large semicircle in the
lower half-plane:

E(x,z,t) =
[
E(x,z,ω)

V (ω)
exp(−iωt)

]
ω=ω1

+ transients(t). (18)

Here, the term transients(t) is a result of the integration around
all singularities and cuts in the lower half-plane, and will decay
exponentially. For later use, we define the monochromatic limit
limω1 E(x,z,t) as the field when the excitation is given by (16),
and for sufficiently large t such that the transients can be
ignored:

lim
ω1

E(x,z,t) = E(x,z,ω1)

V (ω1)
exp(−iω1t), (19)

valid when εμ is analytic and zero free for Im ω � 0. Even
though the monochromatic limit exists in principle, in some
situations (media with large gain and large x or z) the transients
may be extremely strong, which means it may take a very long
time before they have died out.

We now consider the more complicated situation where εμ

is not analytic or zero free everywhere in the upper half-plane
Im ω > 0. For concreteness, we assume εμ has two simple
zeros but is analytic otherwise. Then,

√
εμ has branch cuts,

which we take to be vertical towards −i∞. Since
√

εμ is
analytic everywhere in the upper half-plane except at the
branch cuts, we can use the procedure above to deform the
integration paths, leading to the ω-integration curve depicted
in Fig. 5(a). It is natural to try to deform also the remaining
detours to reach the real ω axis everywhere. To this end, we
let Im ω be reduced from γ to zero, on the left-hand side
and right-hand side of

√
εμ’s branch cut [Fig. 5(b)]. The

corresponding trajectories of kx = ±√
εμω/c are shown in

Figs. 5(c) and 5(d), respectively. Apparently, the result of
the integration in Fig. 5(c) differs from that of Fig. 5(d),
so the integrations up and down in Fig. 5(a) generally do
not cancel. As a result, the detours cannot be omitted. The
necessary presence of complex frequencies exp(−iωt) with
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HÅGENVIK, MALEMA, AND SKAAR PHYSICAL REVIEW A 91, 043826 (2015)

Imω

(a)
Reω

γ

Im kx

Re kx

Im kx

Re kx

Imω

Reω

γ

(c)

(d)

(b)

FIG. 5. Deformed integration paths (dashed line) when
√

εμ has
branch cuts in the upper half-plane. The branch points of

√
εμ are

shown by open circles in (a); the cuts go vertically towards −i∞. As
Im ω is reduced from γ to zero along the left and right arrows in (b),
the corresponding trajectories of kx = ±√

εμω/c are shown by solid
lines in (c) and (d), respectively.

Im ω > 0 means that the field will diverge with time, even
at a fixed point in space. This means that the field cannot be
interpreted at real frequencies as in (18); we have an absolute
instability.

IV. PLANE-WAVE LIMIT

We have seen that when there are no absolute instabilities,
it is possible to move the inverse Laplace transform path
down to the real axis, enabling interpretation of the fields (4)
and (5) for real frequencies. However, considering active
media, this has come at a price: The integration curve in
kx must be deformed to include complex values of kx .
As will be demonstrated shortly, this means that it is not
necessarily possible to approach the plane-wave limit any
longer.

Consider an excitation in the form u(x)v(t), with transform
U (kx)V (ω). The function v(t) could be given by (16), while
u(x) could be, e.g., one of the following alternatives:

u1(x) = beam(x/σ ) exp(iKxx), (20a)

u2(x) = exp(−x2/2σ 2) exp(iKxx). (20b)

Here, beam(x/σ ) stands for a function which vanishes for
|x| > σ , is smooth for |x| < σ , and beam(0) = 1. Both
alternatives represent a beam of thickness ∼σ and a bundle
of kx’s around the central transversal wave number Kx . The
wave-number spectra of the excitations are given by

U1(kx) = σ Beam[σ (kx − Kx)], (21a)

U2(kx) =
√

2πσ exp[−σ 2(kx − Kx)2/2]. (21b)

Here, Beam(kx) is the Fourier transform of beam(x). Both
spectra U1(kx) and U2(kx) are entire functions in kx . For real
kx and Kx both functions can be thought of as 2πδ(kx − Kx) in
the limit σ → ∞. However, the two of them are fundamentally
different in the sense that the first goes slowly to zero compared
to the second. Indeed, if the mth derivative of beam(x) is
nonzero at the endpoints, while the lower-order derivatives
vanish, the asymptotic behavior of U1(kx) for large |kx | is

|U1(kx)| ∼ exp(|Im kx |σ )

|kx |m+1σm
, (22)

as can be proved using integration by parts. A similar result
is valid for smooth functions with support [−σ,σ ] (so-called
bump functions), except that the decay along the real kx axis
is faster than 1/polynomial and slower than an exponential.

We will now consider limσ→∞ limω1 E(x,z,t). This limit
can be realized as follows. We pick an excitation width σ and
perform the experiment, waiting a sufficiently long time such
that the electric field has reached the monochromatic limit.
Next, we pick a larger σ and repeat the experiment, waiting a
sufficiently long time (possibly longer than the first time) until
the field has reached the monochromatic limit. After repeating
the experiment several times, with increasing σ , the field will
tend to limσ→∞ limω1 E(x,z,t).

The monochromatic limit is given by (19), so we need
to consider the limit σ → ∞ in (14), expressed at the real
excitation frequency ω1. To this end, we have assumed that
the monochromatic limit exists (no absolute instabilities), i.e.,
εμ has no poles or zeros in the upper half-plane Im ω � 0.
The integration path κ(ω1) in the kx plane, such as that in
Fig. 3(b), involves complex kx . Surprisingly, now the limit
σ → ∞ does not necessarily exist, as U1(kx) diverges for
complex kx . In fact, this will always be the case in practice
since the excitation necessarily must have finite support to be
realizable.

However, from a theoretical perspective it is quite common
to consider Gaussian beams or excitations, so it is interesting
to consider the possibility U2(kx). Surprisingly, even though
the plane-wave limit σ → ∞ did not exist when using U1(kx),
it may exist when using U2(kx) since the Gaussian tends to
zero provided |Im kx | < |Re kx − Kx |. Thus, when the detours
of the kx-integration curve are not too far away from the real
axis, or too close to the excitation wave number Kx , we can
take the plane-wave limit using a Gaussian excitation, but not
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a finite-support excitation. When the limit exists, we can write

E(x,z,ω1) = Ẽ(Kx,z,ω1)

U (Kx)
exp(iKxx) (23)

for some function Ẽ(Kx,z,ω1), expressing the field with a
single wave number Kx . For most media, the part of the
integration in (14) along the real axis is one way, which means
that Ẽ(Kx,z,ω1) = E(Kx,z,ω1). For certain, very special
media, as we will see in Sec. V E, the integration along part
of the real axis will give rise to one more term in Ẽ(Kx,z,ω1).
Equation (23) means that the physical time-domain field in the
monochromatic limit will tend to

lim
σ→∞ lim

ω1

E(x,z,t) = Ẽ(Kx,z,ω1)

U (Kx)V (ω1)
exp(iKxx − iω1t), (24)

as the width of the Gaussian tends to infinity.
The peculiar divergence discussed above can be interpreted

as follows. For certain frequencies ω and wave numbers ±kx ,
the longitudinal wave number kz becomes zero. These modes
correspond to side waves, which propagate in the ±x direction.
If the medium is gainy, and the excitation extends over all x’s,
the field at an observation point x may diverge since the side
waves propagate an unlimited distance before reaching the
point. For the finite-support excitation u1(x), as σ increases,
side waves will have the chance to propagate a larger distance
before reaching the observation point; thus, we expect an
exponential growth. At the same time, the excitation U1(kx)
at the particular kx associated with the side wave becomes
weaker, but only as ∝σ−m. For the Gaussian excitation u2(x),
an increased σ will again give rise to an exponential growth
as a result of the increased distance; however, the excitation
itself at the particular kx associated with the side wave may be
much weaker due to the factor exp[−σ 2(kx − Kx)2/2].

We now consider limω1 limσ→∞ E(x,z,t). This order of
limits is more difficult to realize that the opposite order, but can
be approached by measuring the time response E(x,z,t) for a
fixed-time interval, repeating the experiment for increasing σ .
After convergence, the time interval is shifted to later times,
and the series of experiments is repeated, etc.

Mathematically, limω1 limσ→∞ E(x,z,t) is found most eas-
ily by taking the limit σ → ∞ in (3). Since only real kx’s are
involved in the integral, the limit σ → ∞ always exists, which
leads to

lim
σ→∞ E(x,z,t)= 1

2π

∫ iγ+∞

iγ−∞

E(Kx,z,ω)

U (Kx)
exp(iKxx−iωt)dω.

(25)

Equation (25) has the disadvantage that it is expressed using
complex frequencies. We would like to be able to set γ = 0
in (25) for interpretation at real frequencies. If the integrand
is analytic for Im ω � 0, we can move the integration path to
the real axis. However, as we will see in the following, this is
not always the case, not even for media with analytic and zero
free εμ for Im ω � 0. Since Kx is fixed, we must require that√

εμω2/c2 − K2
x is analytic in the upper half-plane Im ω � 0

to avoid absolute instabilities. Although this can happen, it
is not very common; for Kx �= 0 it is not even the case for
conventional, weak gain media [6,9]: For such media, there is
a branch point slightly above the real ω axis, corresponding

to a side wave with Kz = 0. For plane-wave excitations, this
side wave propagates an infinite distance along the x axis, thus
picking up an infinite amount of gain.

This type of absolute instability is somewhat artificial since
it is induced by an excitation of infinite width. For the case with
finite σ we have seen that the instability is only convective, as
long as the medium has analytic and zero free εμ for Im ω � 0.
This makes sense intuitively since, for finite σ , the side wave
has only propagated a finite distance from the excitation to a
fixed observation point.

In other words, if εμ is analytic and zero free for Im ω � 0,
but

√
εμω2/c2 − K2

x is not analytic there (which is the case,
e.g., for a weak inverted Lorentzian and Kx �= 0),

lim
ω1

E(x,z,t) = finite (26)

for any finite σ , while

lim
ω1

lim
σ→∞ E(x,z,t) = ∞. (27)

However,

lim
σ→∞ lim

ω1

E(x,z,t), (28)

on the other hand, is dependent on the manner in which the
plane-wave limit is taken. If it is taken using an excitation
U1(kx) of finite support, it is infinite, but if it is taken using a
Gaussian U2(kx), it is finite provided |Im kx | < |Re kx − Kx |
along the integration detour. The Gaussian excitation u2(x)
is somewhat unphysical, as it requires an infinitely wide
source even for finite σ . Even though the Gaussian excitation
is unphysical, the fact that it makes it possible to take the
plane-wave limit is interesting. It tells us that the growing side
waves in a gain medium may be reduced by making the source
sufficiently smooth, and will disappear in the limit of a perfect
Gaussian.

Remarkably, and less intuitively, for certain media with
absolute instabilities for finite σ (meaning that εμ is not
analytic and zero free everywhere in the upper half-plane),
it is possible to eliminate the absolute instabilities by letting
σ → ∞. Indeed, if

√
εμω2/c2 − K2

x is analytic for Im ω > 0
while εμ is not analytic and zero free,

lim
ω1

E(x,z,t) = ∞ (29)

for any σ , while

lim
ω1

lim
σ→∞ E(x,z,t) = finite. (30)

For example, this happens for media for which εμω2/c2 − K2
x

has no zeros in the upper half-plane Im ω > 0, while εμ

has two simple zeros there. Such a medium is suggested
in Ref. [6]. Equations (29) and (30) can be interpreted as
follows. Consider the field E(x,z,t) when σ and t are finite.
As σ is made larger, the unstable mode with kz = 0 is excited
more weakly. Thus, a larger t can be tolerated before E(x,z,t)
gets large. If σ → ∞ first, we can let t be infinite as well,
without getting an infinite field. Thus, the monochromatic limit
exists.

We conclude this section by noting that the monochromatic
and plane-wave limits are far from trivial in gain media.
Although it can be argued that these limits are unphys-
ical, since infinite experiment durations or infinite beam
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thicknesses cannot exist, they provide valuable intuition for
experiments with wide beam excitations or long duration.
Apparently, different results may be obtained dependent
on the wideness of the excitation and the duration of the
experiment.

V. MEDIA

The general method from the previous sections is now
applied to analyze a wide range of media of interest, starting
with simple passive and active media, and ending with novel
classes of active media.

A. Passive media

Passive media are simple to analyze, due to the absence
of instabilities. Fourier analysis is therefore sufficient, and
the Fourier components wrt kx and ω can be interpreted
straightforwardly. Although these facts are well known, it is
useful to demonstrate the formalism before moving on to more
complex cases.

A passive medium has Im ε(ω) > 0, Im μ(ω) > 0, and
Im n(ω) > 0 for ω > 0. Here, n(ω) = √

εμ is the refractive
index, which is analytic in the upper half-plane [17]. Due to odd
symmetry of these functions, Im nω/c � 0 for all real ω. Since
Im nω/c is a harmonic function [18], it takes its minimum on
the real axis; thus, Im nω/c � 0 in the closed upper half-plane.
It follows that kz’s branch points, kx = ±nω/c, do not cross
the real kx axis as we reduce Im ω towards zero. In Fig. 6, we
show two different possibilities; a passive medium which will
turn out to show positive refraction (b), and a passive medium
with negative refraction (c). Clearly, in both cases we can
integrate along the real ω and kx axes, and the monochromatic
and plane-wave limits may be taken, leading to fields with
frequency ω1 and wave number Kx . The resulting Kz shows
the behavior of the wave in the medium.

We can find the sign of Kz by tracing arg kz as
kx decreases from +∞ to Kx . For kx → +∞, kz →
+ikx (see Appendix A). As kx decreases, consider
k2
z = ε(ω1)μ(ω1)ω2

1/c
2 − k2

x , with the two zeros shown by the
solid arrow ends in Figs. 6(b) and 6(c). Now, k2

z picks up phase
from the two zeros, but very little if kx is in the regime far away
from the zeros. Since kz(kx,ω) is continuous in kx away from
the branch cuts, it follows that Kz = kz(Kx,ω1) ≈ iKx in the
regime far to the right of the zeros, corresponding to an evanes-
cent behavior in the total internal reflection regime of large Kx .
So far, we have not invoked the properties of the medium; in
other words, the result is valid for all media and situations
where the monochromatic and plane-wave limits exist.

As Kx becomes smaller, we must consider the two
passive media separately. For the positive refractive medium
[Fig. 6(b)], since the right-hand zero is above the real kx axis, as
we pass it on the way from large kx to small kx , the phase arg k2

z

reduces from π through π/2 towards arg{ε(ω1)μ(ω1)}. Again,
since kz(kx,ω) is continuous in kx away from the branch cuts, it
follows that arg kz(kx,ω1) goes from π/2 through π/4 towards
the small number arg{ε(ω1)μ(ω1)}/2. Thus, as expected, we
obtain a damped, propagating wave with wave vector directed
away from the source.

For the negative refractive medium [Fig. 6(c)], the right-
hand zero is below the real kx axis. Thus, we find that arg k2

z

Imω

(a)
Reω

γ

Im kx

Re kx
(c)

Im kx

Re kx
(b)

ω1

FIG. 6. As Im ω is reduced from γ to zero (a), kz’s branch points,
kx = ±√

εμω/c, moves along the trajectories in (b) for a passive,
positive refractive medium, and (c) for a passive, negative refractive
medium.

increases from π to almost 2π , and therefore, arg kz increases
from π/2 to almost π . In other words, Kz will be close
to a negative number (negative refraction) in the regime of
small Kx .

B. Weak gain medium

We now consider a weak gain medium, or conventional
gain medium, with |Im ε| 
 1 and |Im μ| 
 1 for all frequen-
cies, and weak dispersion. For example, we can consider a
nonmagnetic medium with ε(ω) = 1 + χ (ω), where Im χ (ω)
is negative at the observation frequency, and |χ (ω)| 
 1 for
all ω. When we reduce Im ω as in Fig. 7(a), the branch
points kx = ±√

εμω/c move according to Fig. 7(b). Thus,
to be able to express the integral (12) with real frequencies
ω, it is necessary to deform the kx integration with detours.
These detours are result of the fact that the system supports
amplifying side waves with kx = ±√

εμω/c.
Having taken the monochromatic limit, we consider the

possibility of approaching plane waves. According to the
discussion in Sec. IV, the limit σ → ∞ does not exist when
using excitation profiles of finite support; then, the side waves
will diverge. However, for the Gaussian excitation profile
u2(x), and provided |Im √

εμω1/c| < |Re
√

εμω1/c − Kx |,
we can take the plane-wave limit since then the side waves
are very weakly excited. By tracing arg kz as kx is reduced
from ∞ (as in Sec. V A), we still obtain Kz ≈ iKx in
the total internal refraction regime of large Kx . Thus, the
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Imω

(a)
Reω

γ

Im kx

Re kx
(b)

ω1

FIG. 7. As Im ω is reduced from γ to zero (a), kz’s branch points
kx = ±√

εμω/c move along the trajectories in (b) for a weak gain
medium. The integration path in the kx domain must detour around
these branch points.

behavior remains approximately evanescent there, in agree-
ment with earlier predictions [4] and finite-difference time-
domain (FDTD) simulations [5]. FDTD simulations solve
Maxwell’s equations directly in the time domain, and thus
provide an independent verification of the theory. For small
Kx , since we have passed the zero from below, we get arg Kz ≈
arg{ε(ω1)μ(ω1)}/2. This represents a weakly amplified wave, a
result that is well documented with numerous experiments and
simulations.

As an alternative, we can take the plane-wave limit while
keeping the Bromwich integration path at Im ω = γ , leading
to a single wave number Kx . Then, we can deform the
Bromwich path towards the real axis; however, there will be
branch points close to ω = Kxc, above the real axis. This
means that the system supports absolute instabilities, and
that the real frequencies are not meaningful in general. The
absolute instabilities are again a result of diverging side waves,
being excited infinitely far away from the observation point.
However, as shown in Ref. [6], as long as the excitation
frequency ω1 is far away from Kxc, we can interpret the
field as “quasimonochromatic” up to a certain time, where
the diverging side waves start to dominate.

C. Nonmagnetic negative index medium

If the permittivity and permeability from the negative index
medium in Sec. V A are denoted εp and μp, we let the
permittivity of an active, nonmagnetic medium be ε = εpμp.
Clearly, the behavior of the branch points and the integration
paths becomes identical to that in Fig. 6(c), and we get a
negative refractive index at the frequency shown in the figure.
This type of media was suggested in Ref. [7] and analyzed
in Ref. [8]. When a plane wave is normally incident from
vacuum, a backward wave is excited in the medium, drawing
energy from the medium and propagating energy towards
the interface [8]. However, note that both the phase velocity
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Ren(ω)
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FIG. 8. Plot (a) shows n(ω) as given by (31). Plot (b) shows the
trajectories of kz’s branch points, kx = ±n(ω)ω/c, as Im ω is reduced
from γ to zero, and Re ω = ω1. The values for ω = ω1 are shown with
solid arrows. The branch cuts in the kx domain, for ω = ω1, can be
taken along the trajectories (b, solid lines); however, it is convenient
to use analytic continuation to deform them into the solid lines shown
in (c). The integration path in the kx domain (dashed line) must detour
around the branch cuts.

and the Poynting vector point backwards, so the medium
is fundamentally different from left-handed negative index
media.

The fact that this type of media exhibits negative refraction
has also been independently verified through time-domain
simulations, e.g., in Ref. [10].

D. Antievanescent medium

Having analyzed previously known media with the ω- and
kx-integration formalism, we now consider how the formalism
can be used to predict novel classes of media. As we reduce
Im ω from γ to zero, the trajectories of kz’s branch points may
be more complicated than in the previous examples.

Consider a medium with refractive index

n(ω) = 1 − Fω2
0

ω2
0 − ω2 − i�ω

, (31)

and F > 0 [see Fig. 8(a)]. This refractive index can be ob-
tained, e.g., by letting ε(ω) = μ(ω) = n(ω). Such Lorentzian
resonances can be realized in metamaterials; however, there are
challenges associated with high gain (see Sec. V E). The same
refractive index can be obtained by setting ε(ω) = [n(ω)]2 and
μ = 1. In the following, we will for simplicity consider this
nonmagnetic realization.

Provided F < 1, the zeros of ε(ω) are located in the
lower half-plane, so the medium does not support absolute
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instabilities. Hence, we may consider the monochromatic
limit. We take F = 0.5 and � = 0.05ω0, and consider the
observation frequency ω1 = 0.71ω0, for which Re n(ω1) = 0
and Im n(ω1) = −i0.072.

The trajectories of kz’s branch points kx = ±n(ω)ω/c, as
Im ω is reduced from γ to 0 while Re ω = ω1, are shown
in Fig. 8(b). For ω = ω1 we can take the branch cuts along
the solid lines in Fig. 8(c), and the integration path along the
dashed line. We let the two branch cuts approach each other.
Considering an incident wave from vacuum, we find with the
help of (11b) and (14)

2π
E(x,z,ω1)

V (ω1)

=
∫ ∞

−∞
U (kx)

2k1ze
ik2zz

k1z + k2z

eikxxdkx

+
∫ kb

−kb

U (kx)

(
2k1ze

ik2zz

k1z + k2z

− 2k1ze
−ik2zz

k1z − k2z

)
eikxxdkx.

(32)

Here, the integration
∫ kb

−kb
is along a vertical path from the

lower to the upper branch point [indicated with solid arrows
in Fig. 8(c)], immediately to the right of the branch cuts.

To interpret (32), we note that k2
2z = n2(ω1)ω2

1/c
2 − k2

x is
negative for real kx and also along the vertical integration
paths in Fig. 8(c). Since k2z → +ikx for kx → +∞, k2z must
be positive imaginary for real kx away from the branch cuts.
Along the imaginary axis, however, k2z becomes negative
imaginary, due to the presence of the right-hand branch cut. We
choose an excitation U (kx) = U1(kx), with Kx = 0 (normal
incidence). Clearly, the plane-wave limit does not exist, as the
second integral in (32) involves complex kx’s for which U1(kx)
diverges as σ → ∞. For a finite, though large σ , the field is
dominated by the second integral in (32). As a result of the two
terms of the second integral, the field contains a superposition
of modes with both signs of kz: evanescent (Im kz > 0) and
antievanescent (Im kz < 0).

The situation is different if we take the plane-wave limit
before the monochromatic limit. If we still assume Kx = 0,
we have K2z = +n(ω)ω/c. Both limits exist, and we end up
with the monochromatic field amplitude

E(x,z,t) = 2K1z

K1z + K2z

eiKxx+iK2zz−iω1t . (33)

For the medium in this example, n(ω) is negative imaginary
at the observation frequency ω = ω1. Thus, we have an
antievanescent behavior.

In other words, let the beam width σ be fixed and
finite. Then, after sufficiently long time, the field will be a
superposition of evanescent and antievanescent modes. On the
other hand, for σ → ∞, and after a long time the field will be
purely antievanescent.

E. Simultaneous refractive index medium

In the previous example, we observed that the evanescent
and antievanescent modes were excited simultaneously. We
will now demonstrate a remarkable result: that there exist

Imω

(a)
Reω

γ

Im kx

Re kx

Im kx

Re kx
(b)

(c)

ω1

FIG. 9. As Im ω is reduced from γ to zero (a), kz’s branch
points kx = ±√

εμω/c move along the trajectories (b). By deforming
branch cuts and integration paths, we get situation (c). In (b) the
branch cuts are taken to be along the trajectories, while in (c) they are
deformed into the solid lines.

isotropic media exhibiting positive and negative refraction
simultaneously.

Consider the example in Fig. 9. As ω approaches the real
axis, the branch point in the first quadrant moves via the fourth
to the third quadrant. The integration path therefore becomes
zigzag. We consider an incident wave from a passive medium
(medium 1) to the medium under investigation (medium 2),
and calculate the transmitted field using (11b). Using the
integration path in Fig. 9(c), this leads to

2π
E(x,z,ω1)

V (ω1)

=
(∫ −kb

−∞
+

∫ ∞

kb

)
U (kx)

2μ2k1ze
ik2zz

μ2k1z + μ1k2z

eikxxdkx

+
∫ kb

−kb

U (kx)

(
4μ2k1ze

ik2zz

μ2k1z + μ1k2z

− 2μ2k1ze
−ik2zz

μ2k1z − μ1k2z

)
eikxxdkx

+
∫

vertical detours
U (kx)

2μ2k1ze
ik2zz

μ2k1z + μ1k2z

eikxxdkx. (34)

In (34), kb is the real part of the branch point in the first
quadrant, and the last integral represents all vertical integration
paths in Fig. 9(c), letting the up-and-down paths around a
branch cut be infinitely close to each other. In the third line
of (34), k2z is the value along the upper integration path, above
both branch cuts.
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Considering the observation frequency ω1 (monochromatic
limit), we now take the plane-wave limit σ → ∞. Using the
Gaussian excitation U2(kx), the limit exists provided |Im kx | <

|Re kx − Kx | on the integration path. Assuming −kb < Kx <

kb, we end up with

E(x,z,t) =
(

4μ2K1ze
iK2zz

μ2K1z + μ1K2z

− 2μ2K1ze
−iK2zz

μ2K1z − μ1K2z

)
eiKxx−iω1t .

(35)

With an excitation u1(x) of finite support, the limit would not
exist; however, for bounded x and z we may come as close
as we wish to the field (35) by ensuring that the medium has
branch points sufficiently close to the real kx axis.

On the other hand, by taking the limit σ → ∞ without
taking the monochromatic limit, we get

E(x,z,t) = 1

2π

∫ iγ+∞

iγ−∞
V (ω)

2μ2K1z

μ2K1z + μ1K2z

× exp(iKxx + iK2zz − iωt)dω. (36)

However, moving the integration path down to the real ω axis
requires K2z to be analytic for Im ω � 0. Even for weak gain
media, this will not be the case [6], except for the special case
Kx = 0.

If Kx = 0, and both
√

εμ and the Fresnel transmission
coefficient are analytic for Im ω > 0, the integration path can
in fact be moved down to the real ω axis. In the monochromatic
limit, we then get

E(x,z,t) = 2μ2K1z

μ2K1z + μ1K2z

eiKxx+iK2zz−iω1t , (37)

with K2z = +n(ω1)ω1/c. This differs from (35), and once
again the two orders of the monochromatic and plane-wave
limits yield different results.

In other words, consider the case Kx = 0, for a sufficiently
large, but finite σ . In the monochromatic limit t → ∞, the field
will then be approximately given by (35), i.e., a superposition
of waves with wave number +K2z and −K2z in the z direction.
However, if σ → ∞ first, the monochromatic limit leads to a
plane wave propagating in the z direction, with wave number
+K2z. From this, it is understood that simultaneous refraction
is a two-dimensional effect. In the case of a finite σ there
will always be oblique waves with kx �= 0 excited, no matter
how large σ is. After a sufficiently long time t these oblique
waves will somehow establish waves along the z direction with
both signs for K2z. However, if σ → ∞ is taken first, there
will be no oblique waves excited. The simultaneous refracting
waves can thus not be established. This latter situation is one
dimensional, as the excitation u2(x) is constant for all x, and
Kx = 0.

Trajectories for kz’s branch points, similar to those in
Fig. 9(b), can be achieved using a medium with the same
refractive index (31) as in the previous example, but at a
slightly higher observation frequency ω1 = 0.853ω0. At this
frequency, and for sufficiently small |Kx |, we have |Im kx | <

|Re kx − Kx | on the integration path [Fig. 9(c)]. Then, the
limit σ → ∞ exists, and we end up with the field (35) for the
Fresnel situation, and a similar result for the current source in

the plane z = 0 (then the transmission coefficients 2μ2K1z

μ2K1z±μ1K2z

are replaced by ±μω1/2Kzc).
The time-domain response of a medium with ε(ω) =

μ(ω) = n(ω), where the refractive index n(ω) is given by (31),
was simulated using the FDTD method [19] for Lorentzian
media [20]. In the simulation, the situation with a current
source in z = 0 was implemented. For Kx = 0, ω1 = 0.853ω0,
and a finite, but large σ , the field should describe a partially
standing wave consisting of traveling waves with both signs of
Kz, after sufficiently long time. It turns out, however, that the
time it takes to reach the monochromatic limit is much longer
than what is possible to simulate.

The simulations show that the fields grow rapidly as
they propagate, both in the x and z directions. This rapid
growth is explained as follows. Since the excitation vanishes
for t < 0, it will contain other frequencies than just the
observation frequency. Even though the frequency spectrum
has a large peak at ω1, the frequencies around resonance ω0

will dominate for a very long time, due to extremely high gain
there. Indeed, n(ω0) = 1 − 10i, so at resonance the forward
propagating wave will grow as exp(20πz/λ), where λ is the
vacuum wavelength, as it propagates in the z direction. Also,
the side waves, with kx = ±n(ω0)ω0/c, will grow at this
rate in the ±x direction. Since |Im kx | > |Re kx | these side
waves will be strongly excited. For t → ∞, the excitation
only contains ω1, and the field should eventually describe
simultaneous refraction. However, as can be verified using
frequency-domain simulations, the transients are extremely
strong so it takes a very long time for them to die out.

Due to numerical errors, artificial reflections may happen
during FDTD if the fields become extremely large. If such
artificial reflections occur before the monochromatic limit
is reached, the simulation will never be able to reveal
simultaneous refraction: waves may be reflected back and
forth, being amplified as they propagate, and the solution will
eventually grow with time even at fixed points in space.

Nistad and Skaar showed that negative refraction can occur
at a single observation frequency ω1, with arbitrarily low loss
for all frequencies, if there is a steep drop in Im n(ω) just below
ω1 [14]. It is similarly possible to achieve a negative refractive
index n = √

εμ at arbitrarily low gain through a steep drop
in Im n(ω) just above the observation frequency. For such a
medium, the trajectories of kz’s branch points will in fact be
similar to those in Fig. 9(b) for the frequencies where n(ω) <

0. One such medium, where the maximum gain was reduced
to Im n(ω) = −2, was simulated, but artificial reflections
destroy the validity of the simulation solution before the
transients die out. For FDTD simulations to be able to reveal
simultaneous refraction, media with a significantly lower gain,
while having branch point trajectories as in Fig. 9(b), must be
found.

VI. DISCUSSION AND CONCLUSION

Wave propagation in gain media has been considered
by a Fourier-Laplace integral in space and time. How the
correct monochromatic and plane-wave limits can be taken is
demonstrated by deforming the integration surface in complex
frequency–wave-number space. In some cases, it is possible
to deform the inverse Laplace transform contour down to the
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real ω axis, at the expense of deforming the inverse Fourier
kx-integration path. For active media where this can be done,
the path will contain complex kx , representing amplified waves
as they propagate in the x direction. If such a deformation is not
possible, the inverse Laplace transform will contain complex
frequencies, and the field will therefore grow exponentially
with time, even at a fixed point in space: there is an absolute
instability.

It is shown that the monochromatic and plane-wave limits
generally do not commute; for example, one order may lead
to a diverging field, while the other order leads to a finite
field. The plane-wave limit may be dependent on whether it is
realized by a Gaussian excitation or a finite-support excitation,
eventually of infinite width. This is because amplifying side
waves are less excited by the Gaussian excitation.

The general path deformation theory is applied to analyze
familiar passive and active media, and to predict media
with novel properties. In particular, it is shown that certain
gain media may be simultaneous refracting, i.e., they refract
positively and negatively at the same time. It is argued that
this is a two-dimensional effect, i.e., it will not occur if an
infinitely wide source produces a wave propagating only in
the z direction. The monochromatic plane-wave response of
these media generally depends on which of the limits is taken
first, or the width of the source relative to the duration of the
experiment as both of these parameters tend to infinity.

An example of a simultaneous refracting medium is given.
For a large, but finite width of the source, this medium
is, in principle, simultaneous refracting after a sufficiently
long time, i.e., in the monochromatic limit. In attempt to
visualize the effect, and to independently verify the theory,
time-domain simulations of this medium were performed.
However, the simulations were not able to visualize the
effect, as the monochromatic limit never was reached. The
suggested medium has a very large gain at resonance, so
frequencies of the transients close to resonance will be strongly
amplified as they propagate into the medium. Due to the
occurrence of artificial reflections before these transients
die out, simultaneous refraction is therefore not seen in
the simulations. Similar stability problems are expected for
experimental realizations. It should therefore be investigated
if simultaneous refracting media with significantly less gain
exist.

APPENDIX A: PROPERTIES OF kz(kx,ω)

We here consider the properties of the function kz(kx,ω)
along the real kx axis, and in a region Im ω > γ . The function
is defined by (6) and (8). We prove that kz(kx,ω) is zero free
and analytic in both arguments. Moreover, kz → +ω/c for
ω → ∞ and fixed kx , and kz → +ikx for kx → +∞ and fixed
ω. Initially, we require γ to be large, such that εμ is close to
unity in the region. In Sec. III, we use analytic continuation to
make use of the results in a larger region (i.e., reduce γ ).

First, we consider the zeros of kz(kx,ω), given by kx =
±√

εμω/c (see Fig. 10). None of these is located at real kx

since ω is complex in the region Im ω > γ and εμ is close to
unity there: Consider first a region characterized by a bounded
Re ω. If a zero existed for positive kx , we could just increase
γ (and therefore Im ω) such that

√
εμ gets closer to unity

(a)
Reω

Re kx
(b)

γ

Imω

Im kx

FIG. 10. For a fixed ω, with Im ω > γ and Re ω > 0 [indicated
by an open circle in the complex ω plane (a)], the zeros of k2

z =
εμω2/c2 − k2

x are shown in the complex kx plane (b). For large Im ω,
the zeros kx = ±√

εμω/c are located away from the real axis.

and arg ω increases; then the zero would move away from
the real kx axis. Next, consider Re ω → ∞. Since

√
εμ =

1 + O(ω−2), the zeros are located at kx = ±ω/c + O(ω−1).
Thus, kz(kx,ω) has no zeros approaching the real kx axis as
Re ω → ∞.

Second, we argue that kz(kx,ω) is analytic in both argu-
ments. The analyticity in ω has already been established (8),
and the analyticity in kx is immediate from (6) provided there
are no sign changes. Indeed, such sign changes are impossible:
If kz(kx,ω) were discontinuous in kx , we could find a (kx,ω)
and a tiny δ such that kz(kx + δ,ω) ≈ −kz(kx,ω). This leads
to a contradiction since kz(kx,ω) is zero free and continuous
in ω in the region Im ω > γ , and kz(kx + δ,ω) → kz(kx,ω) as
ω → ∞ there.

It is interesting to examine the behavior of kz in the limit of
large kx . The sign of kz for active media in the total internal
reflection regime has been discussed extensively in previous
literature [3,4,6]. For kx = 0, we have kz ≈ ω/c in the region
Im ω > γ . As kx increases along the dashed line in Fig. 10,
the complex argument of k2

z increases according to the zero
configuration in the figure. Since kz is a continuous function
of kx it follows that as kx → +∞, kz → +ikx . This seems to
predict an evanescent behavior in the total internal reflection
regime of large kx ; however, it is important to remember that
we only have considered the complex frequencies with Im ω >

γ . Interpretation at real frequencies is possible under certain
circumstances (Sec. V B) [4,6]; however, for conventional,
weak gain media it turns out to be an instability associated
with amplified side waves.

APPENDIX B: EXISTENCE OF TRANSFORMS AND
INTERCHANGING THE ORDER OF INTEGRATION

Here, we establish the existence of the involved transforms
in solving Maxwell’s equations, and argue that their order
can be interchanged. To establish the existence, we must
make assumptions on the electric and magnetic fields, and
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their derivatives wrt x, z, and t . These assumptions enable
formulating electromagnetics in the (kx,ω) domain by the L2

theory of Fourier transforms, to obtain the solutions (11).
Finally, we verify that the solutions are consistent with the
initial assumptions, making a self-consistent theory.

To limit the amount of writing, we will only consider the
electric field E(x,z,t) here; the other functions can be treated
similarly with some small complications from derivatives. We
will only consider the solution (11a); the other solution (11b)
can be treated similarly. With respect to x the function E(x,z,t)
is assumed to be in the Hilbert space L2 of square integrable
functions. With respect to t , E(x,z,t) exp(−γ t) is assumed to
be in L2, for a sufficiently large, positive γ . Defining

E(x,z,ω) =
∫ ∞

0
E(x,z,t) exp(iωt)dt, (B1a)

E(kx,z,t) =
∫ ∞

−∞
E(x,z,t) exp(−ikxx)dx, (B1b)

we assume that E(x,z,ω) is in L2 wrt x for Im ω = γ , and
E(kx,z,t) exp(−γ t) is in L2 wrt t for real kx . This means
that we can Fourier transform E(x,z,ω) wrt x, or Laplace
transform E(kx,z,t). By solving Maxwell’s equation in the
resulting transform domain (ω,kx) we obtain (11a). Our job
now is to verify all assumptions, after inverse transformation
of (11a).

To this end, we assume that the source u(x)v(t) is
sufficiently smooth such that

U (kx)kp
x ∈ L1 ∩ L2, (B2a)

V (ω)ωp ∈ L1 ∩ L2 (B2b)

for p = 0, 1, and 2. That a function of ω is in L1 ∩ L2, such
as, e.g., V (ω), is to be interpreted as V (ω′ + iγ ) ∈ L1 ∩ L2

viewed as a function of the real variable ω′.
Consider the factor μ exp(ikzz)/kz in (11a). A little thought

shows that this factor is bounded along the integration surface
(−∞,∞) × (iγ − ∞,iγ + ∞) in the (kx,ω) space. Thus,
E(kx,z,ω) ∈ L1 wrt (kx,ω), so with the help of Fubini’s
theorem we can express E(x,z,t) with inverse transforms of
either order (3).

By taking only one of the inverse transforms in (3), we can
write

E(x,z,ω) = 1

2π

∫ ∞

−∞
E(kx,z,ω)eikxxdkx, (B3a)

E(kx,z,t) = 1

2π

∫ iγ+∞

iγ−∞
E(kx,z,ω)e−iωtdω. (B3b)

Clearly, E(kx,z,ω) ∈ L2 both wrt kx and ω, so the functions
E(x,z,ω) and E(kx,z,t) exp(−γ t) are in L2 wrt x and t ,
respectively.

Substituting (11a) into (B3) we obtain

E(x,z,ω) = μV (ω)ω

4πc

∫ ∞

−∞

eikzz

kz

U (kx)eikxxdkx, (B4a)

E(kx,z,t) = U (kx)

4πc

∫ iγ+∞

iγ−∞

μeikzz

kz

V (ω)ωe−iωtdω.

(B4b)

Since the integrals in (B4a) and (B4b) are bounded
wrt ω and kx , respectively, it follows that E(x,z,ω) and
E(kx,z,t) are in L2 wrt ω and kx . After the final inverse
transforms, we therefore obtain a function E(x,z,t) for which
E(x,z,t) exp(−γ t) ∈ L2 wrt t and x.

We have assumed that the excitation u(x)v(t) is sufficiently
smooth, such that U (kx) and V (ω) tend to zero sufficiently
quickly (B2). Considering the source U2(kx), as given by (21),
this is automatically satisfied. For U1(kx), the condition will be
satisfied if u1(x) is three times differentiable at its endpoints,
as evident from (22). For V (ω), as given by (17), the condition
will not be satisfied; however, this can be fixed by slightly
smoothening the onset of v(t) such that it is three times
differentiable. This makes (17) valid for arbitrarily large ω,
before it starts to decay faster. Defining ṽ(t) as the smoothened
excitation, ṽ(t) − v(t) has finite support. Thus, Ṽ (ω) − V (ω)
is an entire function, which means that the smoothening does
not affect the electric field solution in the monochromatic limit.

The reason for doing this analysis in a more rigorous way
than is common in the physics literature is the appearance of
unusual phenomena and the need to go back to first principles
when considering gain media. Nevertheless, this Appendix
shows that the conditions for existence of the transforms are
similar for active and passive media; the only difference is
that the Fourier transform in time (for passive media) must be
replaced with the Laplace transform (for active media).

APPENDIX C: CAUSALITY AND THE TITCHMARSH
THEOREM FOR DIVERGING FUNCTIONS

To prove the causality result (9) from the choice (8),
we employ the Titchmarsh theorem [17,21], formulated for
exponentially diverging functions.

Let f (t) be a causal function

f (t) = 0 for t < 0, (C1)

such that f (t) exp(−γ t) is square integrable for some real γ .
Consider the Laplace transform of f (t):

F (ω) =
∫ ∞

0
f (t) exp(iωt)dt. (C2)

Then,

F (ω) is analytic for Im ω > γ, (C3)

and there is a uniform bound K such that∫ ∞

−∞
|F (ω′ + iγ ′)|2dω′ � K < ∞ for all γ ′ � γ . (C4)

The converse result is also true: Let a function F (ω) be analytic
for Im ω > γ and satisfy (C4) for some K . Then, the inverse
Laplace transform

f (t) = 1

2π

∫ iγ+∞

iγ−∞
F (ω) exp(−iωt)dω (C5)

satisfies (C1) and f (t) exp(−γ t) is square integrable. The
proof is immediate from the Titchmarsh theorem by consid-
ering the function f (t) exp(−γ t) and its Laplace (or Fourier)
transform F (ω′ + iγ ).
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Returning to the electric and magnetic fields for z > 0,
as expressed by (5), we know that the corresponding time-
domain fields are causal (C1). Thus, the fields satisfy (C3)
and (C4). This means that C(kx,ω)eikzz and D(kx,ω)e−ikzz,
separately, satisfy these conditions. From the initial value
theorem and the fact that kzc = ω + O(ω−1), it is intuitively
clear that the factor e−ikzz shifts the beginning of the associated
time-domain response to earlier times by an amount z/c.
Thus, D(kx,ω)e−ikzz can only be compatible with causality
for all z > 0 if D(kx,ω) ≡ 0. A rigorous argument goes as
follows (here, we suppress the kx dependence for clarity):
Since D(ω) exp(−ikzz) is required to satisfy (C4) for all
z, and since kzc = ω + O(ω−1), we have for sufficiently
large γ

∫ ∞

−∞
|D(ω′ + iγ )|2dω′ � 2K(z) exp(−2γ z/c). (C6)

Here, K(z) is independent of γ . If d(t) is the inverse
Laplace transform of D(ω), then d(t) exp(−γ t) is the inverse
Laplace transform of D(ω + iγ ). Thus, from Parseval’s re-
lation,

∫ ∞
0 |d(t)|2 exp(−2γ t)dt = 1

2π

∫ ∞
−∞ |D(ω′ + iγ )|2dω′.

Combination with (C6) yields∫ T

0
|d(t)|2dt � exp(2γ T )

∫ T

0
|d(t)|2 exp(−2γ t)dt

� exp(2γ T )
∫ ∞

0
|d(t)|2 exp(−2γ t)dt

� K(z)

π
exp[−2γ (z/c − T )] (C7)

valid for any z and T , and for sufficiently large γ . Letting
z/c > T , it is apparent that we can make the right-hand side
as small as we wish, by letting γ be sufficiently large. Since
T was arbitrary, d(t) vanishes almost everywhere.
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Conventional textbook treatments on electromagnetic wave propagation consider the induced

charge and current densities as “bound” and therefore absorb them into a refractive index. In

principle, it must also be possible to treat the medium as vacuum but with explicit charge and

current densities, thus giving a more direct, physical description. However, since the induced

waves propagate in vacuum in this picture, it is not straightforward to reconcile that the wavelength

becomes different compared to that in vacuum. We provide an explanation for this phenomenon,

including associated time-domain simulations. As an extra bonus, the results turn out to illuminate

the behavior of metamaterials.VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.5003810]

I. INTRODUCTION

Electromagnetic fields in a medium are governed by
Maxwell’s equations

r � D ¼ qfree; (1a)

r � B ¼ 0; (1b)

r� E ¼ ixB; (1c)

r�H ¼ �ixDþ Jfree: (1d)

Here, we have assumed harmonic time dependence e�ixt. The
two equations containing the auxiliary fields D and H are,
however, not unique. Their forms are dependent on which
charges are considered as “bound” and which are “free.”
Taking a source-free dielectric medium as an example, the
charge and current densities are conventionally considered as
bound and therefore described by the polarization density P.
In this way, the charges and currents do not bother us; they
are simply taken into account by using a (possibly complex)
permittivity �. In this picture, the two equations read

r � �E ¼ 0; (2a)

l�1
0 r� B ¼ �ix�E: (2b)

But there is another possibility. The medium can be consid-
ered as vacuum, with charge and current densities described
explicitly. In this picture, the previous equations become

r � �0E ¼ q; (3a)

l�1
0 r� B ¼ �ix�0Eþ J: (3b)

If we write �E ¼ �0Eþ P in Eq. (2), we find the connection
between the two pictures

J ¼ �ixP; (4a)

q ¼ �r � P: (4b)

In this note, we would like to use the two pictures to solve
Maxwell’s equations in a dielectric slab. As we know from
basic physics, the phase velocity and wavelength in the
medium will be different from the values in vacuum.1–3 In
the first picture, this is shown straightforwardly in terms of a
refractive index different from unity. In the second picture,
however, it is less straightforward to realize that the phase
velocity and wavelength are changed compared to the situa-
tion in vacuum. After all, in this picture the medium is con-
sidered as vacuum, with additional current and charge
densities that can be viewed as sources. One would think
that a superposition of waves with vacuum wavelength will
result in the same vacuum wavelength.
It is worth mentioning that the second picture does not

describe any new physical effects compared to the first pic-
ture. While the mathematical reason for the altered wave-
length is clear in the first picture (Sec. II), the physical
reason will become more transparent in the second (Sec. III).
The fact that the induced field exactly cancels the incident
field is known as the Ewald-Oseen extinction theorem.4–6

When considering wave propagation in dielectric media,
it is usually most practical to consider the induced charges
and currents as bound. The simplicity of the explanation of
the altered wavelength and phase velocity in terms of a dif-
ferent refractive index is definitely appealing compared to
the more complicated, but perhaps more illuminating, expla-
nation in the second picture. However, in some circumstan-
ces, it is natural to consider induced currents as free, e.g., the
induced current in a coil of wire due to a time varying mag-
netic field.
Whether induced currents should be characterized as free

or bound is a relevant question within the research field of
metamaterials. By designing structures with characteristic
size small compared to the wavelength of the electromag-
netic radiation, one may control the induced currents to
obtain electromagnetic responses not available in natural
materials. The superposition of fields produced by the
induced currents in the designed structures gives effective
permittivity �eff and permeability leff .
As an example, consider a metamaterial consisting of peri-

odically arranged, parallel, thin metallic wires surrounded by
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vacuum.7 For large wavelengths compared to the lattice con-
stant, the metamaterial can be viewed as a continuous plasma
with negative effective permittivity. This description corre-
sponds to picture 1, since the currents in the wires are
absorbed into an effective permittivity. For sufficiently small
wavelengths, it makes little sense to describe the structure
using an effective permittivity; it is more practical to
describe the currents in the wires explicitly (picture 2). In an
intermediate range of wavelengths, the medium can be
described with an effective permittivity, however, with spa-
tial dispersion. In this range, both pictures can be useful,
dependent on the particular application.

We will consider a simple metamaterial example: 1D
propagation through a periodic, layered structure8 of alter-
nating permittivities �1 and �2. The effective permittivity
becomes a weighted average of the two permittivities

�eff ¼ �1d1 þ �2d2
d1 þ d2

; (5)

with d1 and d2 being the thicknesses of the two alternating
layers. Such a metamaterial structure is used to visualize the
second picture through simulations in Sec. IV.

This paper is intended for teachers and students in under-
graduate physics who are familiar with basic electromagnetic
fields and waves. In particular, the discussion illuminates the
freedom in Maxwell’s equations when it comes to whether
charges and currents are considered as free or bound, thus
providing a connection between undergraduate physics edu-
cation and modern metamaterial research.

II. BOUND CHARGES AND CURRENTS

We consider a dielectric slab, located in the region
0 < z < a, with vacuum elsewhere, as shown in Fig. 1. The
dielectric medium is assumed to be linear, isotropic, and
homogeneous. A plane wave is normally incident from a
source located at z ¼ �1. From Maxwell’s equations, we
can derive Helmholtz’ equation

E00ðzÞ þ b2EðzÞ ¼ 0; (6)

with the following field solution in the dielectric medium:

EðzÞ ¼ Aeibz þ Be�ibz: (7)

Here, b ¼ kn; n ¼ ffiffiffiffi
�r

p
is the refractive index, �r ¼ �=�0 is the

relative permittivity, k ¼ x=c is the vacuum wavenumber,
and c is the vacuum light velocity. From Eq. (7), we find that
the wavelength in the medium is 2p=b ¼ ð2p=kÞ=n ¼ k=n,
and the phase velocity is c/n. Here, k ¼ 2p=k is the vacuum

wavelength. The constants A and B can be determined from a,
�, and the source by using the electromagnetic boundary con-
ditions, i.e., that the electric and magnetic fields must be con-
tinuous at z¼ 0 and z¼ a.

III. FREE CHARGES AND CURRENTS

We would like to explain the result in Sec. II by consider-
ing the medium as charges and currents situated in a vacuum.
In each plane z ¼ z0 in the material, there is a current density
Jðz0Þ, while the charge density is zero, according to Eq. (4).
The current density can be viewed as a source, distributed
over the volume of the slab. The current generates a varying
magnetic field and therefore also an electric field. By solving
Maxwell’s equations for a current source plane with surface
current density Jðz0Þdz0 in vacuum, we obtain the field

dEJ z; z0ð Þ ¼
� g
2
J z0ð Þeik z�z0ð Þ

dz0 for z > z0;

� g
2
J z0ð Þe�ik z�z0ð Þ

dz0 for z < z0;

8>><
>>: (8)

where g ¼ ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
is the wave impedance in vacuum (see

Appendix A or, e.g., Ref. 9). In the observation plane z, the
total electric field will be a superposition of the field from all
current planes, in addition to the direct field EsðzÞ from the
source. If we let 0 < z < a, we find

E zð Þ ¼Es zð Þ � g
2

ðz
0

J z0ð Þeik z�z0ð Þ
dz0

� g
2

ða
z

J z0ð Þeik z0�zð Þ
dz0: (9)

To proceed, we need to know the connection between
the electric field and the resulting current. Assuming J ¼
�ix�0vE for a susceptibility v,

EðzÞ ¼EsðzÞ þ neikz
ðz
0

Eðz0Þe�ikz0dz0

þne�ikz

ða
z

Eðz0Þeikz0dz0; (10)

where n ¼ ix�0vg=2 ¼ ikv=2. This integral equation
expresses the total electric field as a sum of the source field
and the induced field from the currents in the medium.
To solve the integral equation, we differentiate Eq. (10)

twice and then substitute the original equation to eliminate the
integrals. Taking the source to be EsðzÞ ¼ eikz, the result is

E00ðzÞ þ b2EðzÞ ¼ 0; (11)

where b now is defined by

b2 ¼ k2ð1� 2in=kÞ ¼ k2ð1þ vÞ: (12)

To find the correspondence between the two pictures, we
need that �r ¼ 1þ v, which is recognized as the usual con-
nection between susceptibility and permittivity.1,2

The general solution to Eq. (11) is given by Eq. (7). The
constants A and B cannot be determined from boundary con-
ditions as in Sec. II, since now there is vacuum everywhere.
However, they can be determined by Eq. (10) directly.
Substituting Eq. (7) back into Eq. (10) gives

Fig. 1. A dielectric slab located in the region 0 < z < a. A plane wave is

incident from z ¼ � 1.
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EðzÞ ¼ Aeibz þ Be�ibz

¼ eikz þ nAeikz
ðz
0

eibz
0�ikz0dz0

þnBeikz
ðz
0

e�ibz0�ikz0dz0

þnAe�ikz

ða
z

eibz
0þikz0dz0

þnBe�ikz

ða
z

e�ibz0þikz0dz0: (13)

By calculating the integrals, one finds that the coefficients of
the resulting e6ibz terms balance on each side of the equa-
tion. Once these terms are removed, A and B are found so as
to make the remaining e6ikz terms exactly cancel. In particu-
lar, it then turns out that the z-dependence of the integral
terms cancels the eikz dependence of the source.

The reason for the e6ibz dependence in the medium, rather
than e6ikz, can be explained intuitively as follows. First, let
the observation plane z be outside the slab, i.e., z> a. Rather
than Eq. (10), we would then have

EðzÞ ¼ EsðzÞ þ neikz
ða
0

Eðz0Þe�ikz0dz0; (14)

since now the observation plane is located to the right of all
current sources (z > z0). Similarly, for z< 0 we have

EðzÞ ¼ EsðzÞ þ ne�ikz

ða
0

Eðz0Þeikz0dz0: (15)

Clearly, all sources (or induced currents) generate waves of
the form e6ikz, which, after superposition, also can be written
in this form.

Returning to an observation plane inside the slab, we must
use Eq. (10). As we move the observation plane to the right,
a different set of sources will contribute to the forward-
propagating wave, as seen by the upper limit z in the first
integral. What this means is that the z-dependence is not
only a result of the z-dependence of each wave separately
but also a result of the fact that the set of contributing sour-
ces to the left of the observation plane is dependent on the
position of the observation plane.

This provides a different perspective compared to the
analysis by James and Griffiths,3 who viewed the response of

the dielectric medium as a perturbation expansion—the vac-
uum electric field induces a polarization, which induces a
field, which in turn induces another polarization, etc. While
such a perturbation series converges to a wave with reduced
speed c/n, the analysis is somewhat complicated and does
not explain the physical mechanism for the altered wave-
length in terms of z-dependent sets of sources.

IV. FINITE TIME DOMAIN SIMULATIONS

Figures 2 and 3 show the resulting electric field of an elec-
tromagnetic wave propagating through a slab. We have used
Finite Difference Time Domain (FDTD) simulations10–12 of
the conventional Maxwell equations in a dielectric medium,
i.e., the time-domain counterparts of Eqs. (1b), (1c), and (2).
Outside the slab there is vacuum. In both simulations, nor-
malized units have been used. The source produces a wave
with frequency x¼ 1 approaching the slab from the left. The
speed of light in vacuum is taken to be c¼ 1. Using these
units, the vacuum wavelength at x¼ 1 is k ¼ 2p.
In Fig. 2, the slab consists of a dielectric medium with

�r ¼ 4, which gives a refractive index n ¼ ffiffiffiffi
�r

p ¼ 2. The
wave propagates at the speed c=2, and the wavelength inside
the slab is k=2, in agreement with the first picture described
in Sec. II.
In Fig. 3, the slab is a composite medium or metamaterial.

The layered structure consists of a high-index medium
(�2 ¼ 31) which fills 10% of the slab volume. Between the
high-index layers, there is vacuum (�1 ¼ 1). According to Eq.
(5), the homogenized, effective permittivity is �eff ¼ 4. The
high-index layers are distributed evenly throughout the slab,
with a separation distance such that there are approximately four
unit cells over one effective wavelength. In other words, we
have essentially compressed the induced currents in the homoge-
neous slab into thin current sheets surrounded by vacuum.
In some sense, Fig. 3 therefore visualizes the second pic-

ture described in Sec. III—the total electric field is a super-
position of the source field and the fields produced by
induced currents in all high-index layers. When viewing the
field in Fig. 3 in detail, one finds that the variation with z in
the vacuum layers is slow, corresponding to waves in a vac-
uum, while the variation in the high-index layers is rapid.

Fig. 2. A plane wave is incident from a source located at z ¼ �1 propagat-

ing through a dielectric slab with constant permittivity �r ¼ 4 (enhanced

online) [URL: http://dx.doi.org/10.1119/1.5003810.1].

Fig. 3. A plane wave is incident from a source located at z ¼ �1 propagat-

ing through a metamaterial slab with �eff ¼ 4. The slab is a layered structure

where a high-index medium with �2 ¼ 31 fills 10% of the slab volume; the

remaining layers consist of vacuum with �1 ¼ 1 (enhanced online) [URL:

http://dx.doi.org/10.1119/1.5003810.2].
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However, the resulting wave, if the small features are
washed out, is approximately as in Fig. 2. In the present sim-
ulation, the parameters were chosen such that the nonideal
effects are visible so that one sees the behavior in the differ-
ent layers. A more homogeneous solution could be obtained
by spreading the high-index layers out, i.e., by having more
units cells per wavelength.

V. CONCLUSION

We have described propagation through a dielectric slab
using two different pictures. The first picture, which is the
conventional one, regards the induced charges and currents
as bound, conveniently absorbing them into a relative per-
mittivity �r. The fact that the wavelength and phase velocity
of the electromagnetic wave are different in the medium
compared to the situation in vacuum is explained in terms of
a refractive index n ¼ ffiffiffiffi

�r
p

.
In the second picture, the medium is instead considered as

vacuum with source charge and current densities. A superpo-
sition of waves from sources in vacuum seems to imply a
wavelength equal to the vacuum wavelength. However, by
examining the superposition in detail, we find that the altered
wavelength and propagation speed are a result of the fact that
the set of sources to the left and right of an observation plane
z depends on z. Although the calculations become more com-
plicated, this picture provides useful physical insights.

Figures and animations of the resulting electric field from
FDTD simulations are provided to visualize the two descrip-
tions. The second picture, together with the simulation of the
metamaterial slab, may also be useful when it comes to
understanding the homogenized, effective parameters of
metamaterials.

APPENDIX: FIELD FROM A UNIFORM SURFACE
CURRENT SOURCE

Let a uniform surface current source Js be located in the
plane z¼ 0 and surrounded by vacuum (see Fig. 4). We want
to determine the electric field everywhere. In the region
z> 0, the electric field solution to Helmholtz’ equation must
be of the type Eþeikz, while in the region z< 0 we must have
a field E�e�ikz. From reflection symmetry about the plane
z¼ 0, we must have E� ¼ Eþ. We choose the coordinate
system such that Eþ ¼ Eþx̂. From Faraday’s law, this gives
a magnetic field

Hþ ¼ 1

ixl0
r� Eþ ¼ kEþ

xl0
ŷ ¼ Eþ

g
ŷ; (A1)

and similarly we find H� ¼ �Hþ. Now, we apply the
Maxwell boundary condition

Hþ �H� ¼ Js � ẑ (A2)

to determine the constant Eþ. This gives Eþ ¼ �ðg=2ÞJs
and therefore

E zð Þ ¼
� g
2
Jse

ikz for z > 0;

� g
2
Jse

�ikz for z < 0:

8>><
>>: (A3)

1L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of
Continuous Media (Pergamon Press, Oxford, 1984).

2J. D. Jackson, Classical Electrodynamics (Wiley, New Jersey, 1999).
3M. B. James and D. J. Griffiths, “Why the speed of light is reduced in a

transparent medium,” Am. J. Phys. 60, 309–313 (1992).
4M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U.P.,

Cambridge, 1999), Chap. 2.4.2.
5H. Fearn, D. F. V. James, and P. W. Milonni, “Microscopic approach to

reflection, transmission, and the Ewald-Oseen extinction theorem,” Am. J.

Phys. 64, 986–995 (1996).
6V. C. Ballenegger and T. A. Weber, “The Ewald-Oseen extinction theorem

and extinction lengths,” Am. J. Phys. 67, 599–605 (1999).
7J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low fre-

quency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10,
4785–4809 (1998).

8B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New

Jersey, 2007).
9D. M. Pozar,Microwave Engineering (Wiley, New Jersey, 2012).

10K. S. Yee, “Numerical solution of initial boundary value problems involv-

ing Maxwell’s equations in isotropic media,” IEEE Trans. Antennas

Propag. 14, 302–307 (1966).
11K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain
Method for Electromagnetics (CRC Press, New York, 1993).

12J. B. Schneider, Understanding the Finite-Difference Time-Domain

Method, 2010 can be determined at <http://www.eecs.wsu.edu/�schneidj/

ufdtd/ufdtd.pdf>.

Fig. 4. A uniform surface current source Js is located in the plane z¼ 0. A

harmonic time dependence e�ixt is assumed.
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We state and compare four different definitions of magnetic permeability for periodic, artificial media, or
metamaterials. The connections among them, and properties in general, are discussed in detail, including causal-
ity, passivity, symmetry, asymptotic behavior, and origin dependence. The analysis is limited to metamaterials
made from linear and nonmagnetic constituents.
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I. INTRODUCTION

In their famous textbook [1], Landau and Lifshitz argue
that magnetic permeability ceases to have any physical mean-
ing at relatively low frequencies and above. The basis of their
argument is that for high frequencies, the electric polarization
current may become comparable or even larger than the
current from the microscopic magnetization, contributing to
the magnetic moment of the sample. The microscopic magne-
tization cannot therefore be interpreted as the total magnetic
moment density.

For metamaterials, such as the split-ring resonator medium
proposed by Pendry [2], the induced current in the inclusions
is actually the main source of magnetism. By defining a
macroscopic magnetization vector to describe a given part of
the induced current, we obtain a definition of magnetic per-
meability which in principle can be used for all frequencies.
However, this raises several questions. First, how should the
induced current be decomposed into a magnetization term,
electric polarization term, and possibly other terms? Second,
will the resulting permeability have the “conventional” prop-
erties that we expect for a permeability?

We limit the discussion to periodic media. Clearly, there is
an infinite number of possibilities to decompose the induced
current [1,3–9]; any transversal part of the induced current
can be described both as a time-dependent, electric polariza-
tion term and a magnetization term. We will consider four
possibilities: In the so-called Landau-Lifshitz formulation
(Sec. III A), all induced current is described by the electric
polarization vector and therefore permittivity. Another natural
and well-known possibility is to define the magnetization as
the magnetic moment density of the sample, using a fixed
origin in each unit cell (Sec. III B). A variant of this ap-
proach was proposed by Yaghjian, Alù, and Silveirinha [8],
using a decomposition of induced current in Vinogradov and
Aivazyan [3] (Sec. III C). A final possibility is to define the
permeability to include “as much as possible” of the second-
order spatial dispersion of the Landau-Lifshitz permittivity.
This approach was used by Landau, Lifshitz, and Pitaevskii

*johannes.skaar@its.uio.no

[1] and Silveirinha [5] and is generalized here (Sec. III D).
The method used to construct other decompositions will be
described briefly in Sec. III E.

Dependent on the particular decomposition, the resulting
permeability gets more or less nonlocal (or dependent on
wave number k). However, at least for metamaterials which
mimic natural magnetism, we expect that all four perme-
abilities coincide for low frequencies and that they are local
there. Nevertheless, to obtain a sufficiently large response,
metamaterials are often used for relatively large frequencies
where the lattice constant is comparable to the wavelength. In
this region the permeabilities may differ (Sec. IV).

In Secs. III and IV we will compare the different per-
meabilities and discuss their properties, including causal-
ity/analyticity, passivity, symmetry, asymptotic behavior, and
origin dependence. While some of these properties have been
established previously, at least for certain permeabilities or
with limited generality, the complete list, with associated
proofs, is new, to the best of our knowledge. In particular,
we develop a rigorous framework where the source is treated
as the proper input to the system and obtain analyticity and
invertibility for the tensor response function and the Landau-
Lifshitz permittivity tensor. This framework turns out to be
useful to establish that all inverse permeabilities are causal
(only one of them were known to be causal from Ref. [8]).
Furthermore, we determine the asymptotic behavior of the
permeabilities. We also find analytically and numerically that
all permeabilities may be different even for small ka, where
a is the lattice constant. This may appear surprising when
comparing the definitions of magnetization in Secs. III B
and III C. Finally, a novel feature about the formulations is
that even for nongyrotropic media, the magnetizations are
allowed to depend on the longitudinal electric field. This is
necessary to obtain a general treatment valid in the absence of
symmetries.

Before reviewing the homogenization procedure, we will
make a couple of definitions. The analysis happens in the
frequency domain. The fields and parameters are clearly
dependent on frequency in general; however, for simplicity in
notation, we will usually not write this dependence explicitly.
We use the standard notations O(kn) and �(kn) for the
asymptotic behavior near zero or infinity; O(kn) is used for
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expressions that are less than or equal to Ckn (C sufficiently
large constant), while �(kn) means expressions that tends to
Ckn for some constant C.

A time-domain function or distribution f (t ) is said to be
causal if it vanishes for t < 0. A frequency-domain function
f (ω) is said to be causal if

(i) f (ω) is analytic in an upper half-plane Im ω > γ ,
where γ is some real constant;

(ii) f (ω) = O(|ω|n) as ω → ∞ in this half-plane, for
some integer n.

This definition makes sense because of the following result
from the theory of Laplace transforms [10]: Any function
f (ω) satisfying (i) and (ii) above can be represented as a
Laplace transform of a causal time-domain function or dis-
tribution f (t ), setting the Laplace variable s = −iω.

II. HOMOGENIZATION

We consider a cubic periodic metamaterial. The meta-
material inclusions are assumed to be linear, nonmagnetic,
passive, and time-shift invariant. The microscopic, complex,
relative permittivity in a unit cell will be denoted ε(r). The
permittivity and permeability in vacuum are ε0 and μ0, re-
spectively, and the vacuum light velocity is c = 1/

√
ε0μ0.

Angular frequency is denoted ω. The microscopic Maxwell
curl equations in the frequency domain are

∇ × e(r) = iωb(r), (1a)

1

μ0
∇ × b(r) = −iωε0e(r) + j(r) + jext(r), (1b)

with time dependence convention exp(−iωt ). Here j(r) is the
induced current density, which includes the “bound” current
due to time-dependent, electric polarization density. More-
over, jext(r) represents an external source current density,
which can be expressed by an inverse Fourier transform

jext(r) = 1

(2π )3

∫
Jext(k)eik·rd3k. (2)

To probe the metamaterial in the appropriate regime, it is
natural to assume that the source is slowly varying over a
unit cell size a, so that essentially only k values with ka 
 1
contribute in the integral. However, this assumption is only
necessary if we want our macroscopic fields to be true spatial
averages [see the paragraph with Eqs. (8) and (9)].

It is convenient to consider each spatial Fourier component
in (2) separately to enable the use of Floquet theory. Rather
than (2), we will therefore use a source1

jext(r) = Jext(k)eik·r. (3)

Then Floquet theory ensures that the fields can be written in
the forms

e(r) = ue(r, k)eik·r, (4a)

b(r) = ub(r, k)eik·r, (4b)

j(r) = uj(r, k)eik·r, (4c)

1The dimension of Jext(k) in (3) has an extra m−3.

where ue(r, k), ub(r, k), and uj(r, k) are periodic functions
with periods equal to those of the material. Thus we can write

ue(r, k) =
∑
lmn

Elmn(k)eiblmn·r, (5)

where blmn’s are the reciprocal lattice vectors. In other words,
the resulting field e(r) contains a discrete Fourier spectrum,
with a fundamental component

E(k) ≡ E000(k). (6)

This component is the zeroth Fourier coefficient of the peri-
odic function ue(r, k):

E(k) = 1

V

∫
V

ue(r, k)d3r = 1

V

∫
V

e(r)e−ik·rd3r, (7a)

where V denotes the volume of a unit cell. Note that (7a) is
not a Fourier transform, as e(r) is dependent on k. Similarly,
we have

B(k) = 1

V

∫
V

ub(r, k)d3r = 1

V

∫
V

b(r)e−ik·rd3r, (7b)

J(k) = 1

V

∫
V

uj(r, k)d3r = 1

V

∫
V

j(r)e−ik·rd3r. (7c)

As in Refs. [5,7,8], we define the macroscopic field associ-
ated with the single-Fourier-component source as

E (r) = E(k)eik·r, (8a)

B(r) = B(k)eik·r, (8b)

J (r) = J(k)eik·r. (8c)

This definition, from the fundamental Floquet mode can
in principle be used for all k and ω. Only when ka 
 1
can we view the macroscopic fields as true spatial averages
according to

E (r) =
∫

f (r′)e(r − r′)d3r′, (9a)

B(r) =
∫

f (r′)b(r − r′)d3r′, (9b)

J (r) =
∫

f (r′)j(r − r′)d3r′. (9c)

Here f (r) is a test function whose Fourier transform is
negligible outside the first Brillouin zone and normalized to
unity for k = 0. The equivalence of (9) and (8) under these
conditions is established by Fourier transforming (9) [11].

Starting from the microscopic Maxwell equations (1), us-
ing (4) and (5), we can prove (see Appendix A for details):

ik × E(k) − iωB(k) = 0, (10a)

1

μ0
ik × B(k) + iωε0E(k) − J(k) = Jext(k). (10b)

As will become clear in the next two paragraphs, Eqs. (10)
should be viewed as the k-space counterparts of Maxwell’s
equations for macroscopic fields E (r), B(r), and J (r). They
are not the k-space counterparts of the microscopic Maxwell
equations.
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In this work we will mostly use the single-Fourier-
component source. However, we will now discuss the macro-
scopic field after superposition of the spatial Fourier com-
ponents according to (2). Rather than (8a) we then have the
macroscopic field

E (r) = 1

(2π )3

∫
E(k)eik·rd3k, (11)

which is the inverse Fourier transform of the fundamental
Floquet mode E(k). The macroscopic fields B(r) and J (r)
are expressed similarly. It is important to note that E (r) �=
e(r) in general. Even for wave-number spectra with ka 
 1,
the microscopic field e(r) may vary rapidly in the unit cell,
as described by the periodic function (5). The operation (7a)
picks only out the constant term in (5), and the inverse Fourier
transform (11) is not able to restore the rapid variation.

By inverse Fourier transforming (10) we obtain the
Maxwell equations for the macroscopic fields (or fundamental
Floquet modes):

∇ × E (r) − iωB(r) = 0, (12a)

1

μ0
∇ × B(r) + iωε0E (r) − J (r) = jext(r). (12b)

In principle, the Maxwell equations (10) and (12) are valid
for all ω and any spectra of k’s. In other words, although it
is natural to assume that ka 
 1 for the contributing modes,
such that the macroscopic fields are true spatial averages, we
may in principle use the macroscopic fields for the entire
k and ω spectrum, as long as we recall their meaning as
fundamental Floquet modes. A natural question then is if the
macroscopic fields have any physical significance for arbitrary
ka. Indeed, it turns out that they can be used to calculate
the work done by the source in each unit cell, provided the
wave-number spectrum is sufficiently narrow (Appendix B).

Note that in the presence of a source, ω and k are free
parameters [5,7,8,12], resulting from the Fourier decomposi-
tion of the source with respect to t and r. For example, the
homogenized electric field is described in (ω, k) space by the
quantity E(k), which is dependent on ω and k separately (the
ω dependence is suppressed in the notation). For discussions
on causality and asymptotic behavior we will hold k fixed
and vary ω. This corresponds to considering the frequency (or
temporal) dependence of a single spatial Fourier component
of the source and the associated response. As seen below, this
leads, e.g., to a causal Landau-Lifshitz permittivity [1,12].

III. INDUCED CURRENT

Now the big question is how to decompose the induced
current density to obtain a macroscopic permittivity, perme-
ability, and possibly other parameters. In the most convenient
and conventional case, we can express

J(k) = −iωP(k) + ik × M(k), (13a)

P(k) = ε0(ε − 1)E(k), (13b)

M(k) = μ−1
0 (1 − μ−1)B(k), (13c)

for some relative permittivity and permeability tensors ε and
μ independent of k. Then we have a local description of the
constitutive relations. By defining auxiliary fields

D(k) = ε0E(k) + P(k), (14a)

H(k) = B(k)/μ0 − M(k), (14b)

Maxwell’s equations (10) can be written

ik × E(k) − iωB(k) = 0, (15a)

ik × H(k) + iωD(k) = Jext(k). (15b)

Transforming to the spatial domain,

∇ × E (r) − iωB(r) = 0, (16a)

∇ × H(r) + iωD(r) = jext(r), (16b)

with

D(r) = ε0E (r) + P (r) = ε0εE (r), (17a)

H(r) = B(r)/μ0 − M(r) = μ−1
0 μ−1B(r), (17b)

where P (r) and M(r) are the inverse Fourier transform of
P(k) and M(k), respectively. The equation set (16) with (17)
is a local description of the electromagnetic fields.

In general, it is not always possible to express the induced
current exactly as in (13) with local constitutive parameters ε

and μ (independent of k). In Secs. III A–III D we will consider
four possibilities of how to decompose the induced current.
All decompositions have appeared in previous literature, al-
though the one in Sec. III D has been generalized. In each
subsection, we will discuss the properties of the different,
resulting permeabilities. In Sec. III E we discuss how one can
construct other decompositions and analyze their properties.

We want Maxwell equations in the forms (15) and (16) to
be valid in all cases, however, with different expressions for
the auxiliary fields D(k) and H(k). The strategy will be, first,
to define a magnetization M(k) and then put

D(k) = ε0E(k) + J(k) − ik × M(k)

−iω
, (18a)

H(k) = B(k)/μ0 − M(k). (18b)

Substituting (18) into (15), we recover (10).
From now on, we will omit the k dependence in the nota-

tion, i.e., we will, e.g., write J rather than J(k). An exception
is the Landau-Lifshitz permittivity in Sec. III A, which always
will be denoted ε(ω, k), i.e., with arguments. Note that the
fundamental fields, i.e., E, B, J, and Jext, are the same in all
formulations. We will often, without loss of generality, orient
the coordinate system such that k points in the x̂ direction, i.e.,
k = kx̂.

A. Landau-Lifshitz (ll) formulation

In the Landau-Lifshitz formulation [1], we describe all
induced current in terms of a electric polarization density Pll:

J = −iωPll. (19)

This means that the magnetization is zero (Mll = 0), and the
permeability is trivial, μll = I. The displacement vector is
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Dll = ε0E + Pll, or

Dll = ε0E − J/iω. (20)

In a linear medium, there is a linear constitutive relation
between Dll and E:

Dll = ε0ε(ω, k)E. (21)

This defines the Landau-Lifshitz permittivity ε(ω, k). We note
that the constitutive relations are described in the form of
a single parameter, ε(ω, k). Considering terms up to second
order in k,

εi j (ω, k) − δi j = χi j + αik jkk/ε0 + βikl jkkkl c
2/ω2, (22)

for some tensors χi j , αik j , and βikl j , independent of k. In (22)
summation over repeated indices is implied. In the presence
of strong spatial dispersion, where higher-order terms are
not negligible, we let the βikl jkkkl c2/ω2 term absorb the
remainder. For such media the βikl j tensor gets dependent
on k.

Maxwell’s equations (10) take the form

ik × E − iωB = 0, (23a)

1

μ0
ik × B + iωε0ε(ω, k)E = Jext. (23b)

By eliminating B, we obtain[
k2I⊥ − ω2

c2
ε(ω, k)

]
E = iωμ0Jext, (24)

with I⊥ = I − kk/k2, where I is the identity, or

I⊥ =

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦, (25)

expressed in a coordinate system where k = kx̂. The matrix
in the brackets in (24) can be inverted (Appendix C) to obtain
an input-output relation

E = G(ω, k)Jext, (26)

where G(ω, k) is a (matrix) response function given by

G(ω, k)−1 = (iωμ0)−1

[
k2I⊥ − ω2

c2
ε(ω, k)

]
. (27)

For an isotropic medium, the permittivity tensor can be written

ε(ω, k) =

⎡
⎢⎣

ε‖ 0 0

0 ε⊥ 0

0 0 ε⊥

⎤
⎥⎦, (28)

for a longitudinal ε‖ and transversal ε⊥ permittivity, respec-
tively. In this case the response function G(ω, k) becomes
G(ω, k) = 1/iωε0ε‖ or

G(ω, k) = iωμ0

k2 − ω2

c2 ε⊥
, (29)

dependent on the direction of the source Jext.

For each k, we have, due to passivity and causality (Ap-
pendix C):

G(ω, k) analytic for Im ω > 0 and fixed k, (30a)

−G(ω, k)−1 − G(ω, k)−1† positive definite, (30b)

det G(ω, k) �= 0 for Im ω > 0, (30c)

det G(ω, k)−1 �= 0 for Im ω > 0, (30d)

ε(ω, k) analytic for Im ω > 0 and fixed k, (30e)

−iω[ε(ω, k) − ε(ω, k)†] positive semidefinite. (30f)

Here † denotes Hermitian conjugate (transpose and com-
plex conjugate). For (30f) we have assumed real ω and k, as
is the case for Fourier decomposition of the fields (Sec. II). If
the Fourier integrals in ω and k are deformed into the complex
plane, then the permittivity satisfies (C13) rather than (30f).

For reciprocal metamaterial inclusions, we have

GT (ω,−k) = G(ω, k), (31a)

εT (ω,−k) = ε(ω, k), (31b)

where the superscript “T” denotes transpose. From (27) the
two equations in (31) are equivalent. The symmetry relation
(31b) is well known in the literature [1,12]; a proof can be
found in Ref. [8].

For nongyrotropic media, we have ε(ω,−k) = ε(ω, k)
[1,12]. This will be the case if there is a center of symmetry in
the medium. Then the odd-order term in (22) vanishes,

αik j = 0. (32)

The asymptotic behavior of ε(ω, k) as ω → ∞ can be viewed
in two different ways. In principle, for sufficiently large fre-
quencies the permittivities of the inclusions and host medium
tend to unity [1]; thus eventually ε(ω, k) → I. Nevertheless,
in some cases it can be convenient to describe the asymptotic
behavior as ε(ω, k) → const, where the constant tensor limit
can be different from identity. This may be the case, e.g., if
the permittivities of the inclusions and the host medium are
considered nondispersive in the frequency range of interest.

With either of these asymptotic behaviors, the tensors
ε(ω, k), G(ω, k)−1, and G(ω, k) are causal functions. This
follows from the definition of a causal function in Sec. I and
(27) and (30).

B. Multipole decomposition

The traditional way to decompose the induced current is
by multipole expansion [7,9,13]. Consider the unit cell that
contains the origin. Using

exp(−ik · r) = 1 − ik · r − (k · r)2/2 + �[(k · r)3], (33)

we obtain from (7c) to second order in k:

J = 1

V

∫
V

je−ik·rd3r (34)

= 1

V
·
[∫

V
jd3r − ik ·

∫
V

rjd3r − 1

2

∫
V

(k · r)2jd3r

]
≡ −iωP + ik × M − ωk · Q/2 − iωR, (35)
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where

P = 1

−iωV

∫
V

jd3r, (36a)

M = 1

2V

∫
V

r × jd3r, (36b)

Q = 1

−iωV

∫
V

(rj + jr)d3r, (36c)

R = 1

2iωV

∫
V

(k · r)2jd3r. (36d)

Here we have decomposed the tensor rj into its antisym-
metric and symmetric parts,

k · rj = k · (rj − jr)/2 + k · (rj + jr)/2

= −k × r × j/2 + k · (rj + jr)/2. (37)

In addition to the polarization vector P, magnetization vector
M, and quadrupole tensor Q, the extra term R includes electric
octupole and magnetic quadrupole. All these multipole terms
are dependent on k although not explicitly specified.

A convenient feature of the multipole decomposition is that
the terms have a clear physical interpretation. In particular,
M quantifies the amount of circulating, induced currents. For
example, if a 2D metamaterial unit cell consists of a cylinder
inclusion with a circular symmetric current in the azimuthal
direction, we obtain P = 0, Q = 0, and R = 0, while M is
nonzero.

From M we define, as usual,

H = B/μ0 − M. (38)

The remaining terms in (35) go into the displacement vector,
according to(18a)2:

D = ε0E + P − ik · Q/2 + R. (39)

In a linear medium, we can write the associated constitutive
relations

Pi = ε0χi jE j + ξik jkkE j + ηikl jkkklE j/(μ0ω
2), (40a)

Mi = ωζi jE j + νil jkl E j/(μ0ω), (40b)

Qik = 2iσik jE j + 2iγikl jkl E j/(μ0ω
2), (40c)

Ri = ψikl jkkklE j/(μ0ω
2), (40d)

for some tensors χi j , ξik j , ηikl j , σik j , γikl j , ψikl j , and pseu-
dotensors ζi j and νil j . Treating the (pseudo-)tensors as Taylor
coefficients independent of k, we have included the necessary
orders of k such that J is second order when substituting in
(35). We can consider higher-order spatial dispersion by let-
ting the highest-order term in (40) take care of the remainder.
For example, in (40b) this will lead to a νil j which is dependent
on k.

From Faraday’s law B = k × E/ω, we note that any de-
pendence on B is taken care of by the k-dependent terms

2Alternatively, the electric octupole–magnetic quadrupole term R
could be split such that the magnetic quadrupole is included into (38).

in (40). For later convenience we have included certain k-
independent quantities (such as μ0ω

2) in the tensor elements.
Magnetoelectric coupling is taken into account in terms of ξik j

and ζi j .
We are interested in the magnetization (40b). Choosing a

coordinate system such that k = kx̂, we can write

Mi = ωζi jE j + kνi1 jE j/(μ0ω)

= ωζi jE j + kνi11E1/(μ0ω) + μ−1
0 (1 − μ−1)i jB j, (41)

with

1 − μ−1 =
[−ν213 ν212

−ν313 ν312

]
. (42)

Here μ−1 is identified as an inverse permeability, resulting
from the magnetization M defined as the averaged magnetic
moment density (36b). Note that in the coordinate system
where k = kx̂, the inverse permeability is described as 2 × 2.
The reason for this is that B is transversal (i.e., B1 = 0) and
that only the transversal part of M contributes to J by (35). In
an arbitrary coordinate system, (42) can be written

(1 − μ−1)im = εmk j
kkkl

k2
νil j, (43)

where εmk j is the Levi-Civita symbol. This means that 1 −
μ−1 is a tensor.

We will now compare the Landau-Lifshitz formulation and
the multipole decomposition. By eliminating D from (20) and
(21), and comparing with (35), we obtain

ε0ε(ω, k)E = ε0E + P − k × M/ω − ik · Q/2 + R. (44)

Using the constitutive relations (40), this gives

εi j (ω, k) − δi j

= χi j + (ξik j + σik j − εikmζm j )kk/ε0

+ (γikl j + ψikl j + ηikl j − εikmνml j )kkkl c
2/ω2. (45)

Comparing (22) and (45), and noting that βikl j , ψikl j , and ηikl j

can be taken to be symmetric in k and l , we have

αik j = ξik j + σik j − εikmζm j, (46a)

βikl j = ψikl j + ηikl j + γikl j + γilk j

2
− εikmνml j + εilmνmk j

2
.

(46b)

For nongyrotropic media, if there is a center of symmetry
in the medium, then we can take the center of the unit cell to be
the center of symmetry. For k = 0, from symmetry and (36),
it follows that M = 0 and Q = 0. This means that ζi j = 0,
σik j = 0, and from (32), ξik j = 0.

In other words, for nongyrotropic media, M and Q contain
only first-order terms in k, which means that all terms in (35)
except P are second order in k. This means that the electric
octupole-magnetic quadrupole term R can be of the same
order of magnitude as the magnetization and quadrupole
terms [9]. Thus, when concerned with the magnetic response,
the R term and Q should in general be taken into account in
addition to M.

Even when considering an asymptotic behavior of the mi-
croscopic permittivity ε(r) → 1 as ω → ∞, it turns out that
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for fixed k, we have μ−1 �→ I in general [14]. An asymptotic
value different from identity does not violate causality, as
μ−1 → I is only required for eigenmode propagation where
ω and k are connected. Even though the asymptotic behavior
for fixed k may have limited direct physical importance,
it has implications for the Kramers-Kronig relations, being
formulated for fixed k. The asymptotic behavior of μ is
found as follows. The asymptotic behavior of any microscopic
permittivity is of the form [1]

ε(r) = 1 − ω2
p(r)

ω2
+ O(ω−3), (47)

where ωp(r) is the plasma frequency. As ω → ∞ the fields
will tend to those we would have if the metamaterial were
replaced by vacuum. Thus we can write

e(r) = E exp(ik · r) + f (r), (48a)

j(r) = −iωε0[ε(r) − 1][E exp(ik · r) + f (r)], (48b)

for some f (r), with

f (r) → 0 as ω → ∞. (49)

Here we have assumed a source such that E is independent
of ω for large frequencies (this condition can be removed).
Having an expression for j(r), it is straightforward to obtain
M by (36b):

M = iωε0

2V
E ×

∫
V

r[ε(r) − 1]eik·rd3r

− iωε0

2V

∫
r × f (r)[ε(r) − 1]d3r. (50)

According to (47) and (49), the last term in (50) tends to zero
faster than ω−1. Comparing with (40b), this means that the
term will not contribute to νil j in the limit ω → ∞. The first
term in (50) can be written

−iε0

2ωV
E ×

∫
V

r ω2
p(r)eik·rd3r + O(ω−2). (51)

The integral in (51) is clearly nonzero in general. Then (51) is
�(ω−1), which by (40b) means that ν �→ 0. We therefore find
that

1 − μ−1 = O(1) as ω → ∞, for fixed k, (52)

and, in general, μ−1 �→ I.
For diagonal μ it is straightforward to find examples

where Im μ is both positive and negative, depending on the
frequency (see Sec. IV). This is not a violation of passivity;
it is just an indication of the phase relationship between
the magnetization and the macroscopic field in the unit cell.
The fundamental passivity condition is only that the Landau-
Lifshitz permittivity satisfies (30f).

We will now consider the causality and analyticity of the
inverse permeability. Note that E is the same in all formu-
lations, so we can use the Landau-Lifshitz formulation to
express

E = G(ω, k)Jext, (53)

with a response function G(ω, k), as in (26). According to
(30c), G(ω, k) is invertible in the upper half-plane Im ω > 0.

Hence, we can choose Jext such that only a single component
of E is nonzero, say, E j , and such that E j is any analytic
and causal function. The required Jext is analytic in the up-
per half-plane from the analyticity of G(ω, k)−1. Taking the
asymptotic behavior of G−1(ω, k) as ω → ∞ into account,
the required Jext is realizable as a causal source.

We have from (41) that

Mi = ωζi jE j + kνi1 jE j/(μ0ω), (54)

where now only a single component E j is nonzero. Clearly, the
microscopic, induced current j is causal, since it is causally
related to the source. Thus Mi, as given by (36b), is causal.
Putting k = 0 in (54), and remembering that E j is any causal
function, it follows that ζi j is analytic in the upper half-plane.
By letting k �= 0, we find that νi1 j is analytic there, since Mi

and ωζi jE j are. From (42) we conclude that μ−1 is analytic in
the upper half-plane. Moreover, taking (52) into account, μ−1

is causal. Writing μ−1(ω, k) → μ−1(∞, k), we can establish
Kramers-Kronig relations (C10) for χ(ω, k) ≡ μ−1(ω, k) −
μ−1(∞, k) [15].

It is also possible to combine ζi j and μ−1
i j into a single,

inverse permeability tensor [8] and consider its causality. In
a coordinate system where k = kx̂, Faraday’s law (10a) be-
comes E2 = B3ω/k and E3 = −B2ω/k. We can then express
(41) as

Mi = ωζi1E1 + kνi11E1/(μ0ω) + ω2ζi2B3/k

−ω2ζi3B2/k + μ−1
0 (1 − μ−1)i jB j (55)

or

Mi = ωζi1E1 + kνi11E1/(μ0ω) + μ−1
0 (1 − μ̃−1)i jB j (56)

with the modified inverse permeability

μ̃−1 = μ−1 − μ0ω
2

k

[−ζ23 ζ22

−ζ33 ζ32

]
. (57)

In the two previous paragraphs we found that μ−1 and ζi j are
analytic in the upper half-plane; thus so is μ̃−1.

It is interesting to note that all (pseudo-)tensor elements
in (40) are analytic in the upper half-plane. This is seen as
follows. First, recall from (53) and (30c) that the source can be
chosen such that only a single component of the electric field,
say, E j , is nonzero and such that E j is any analytic function.
Also, Pi, Mi, Qik , and Ri are analytic, since they are given by
the induced, microscopic current through (36). We now apply
the general result in Appendix E to the expansions (40), with
the result that all (pseudo-)tensor elements in (40) are analytic
in the upper half-plane.

Finally, we note the well-known fact [16] that, in general,
the multipole quantities are dependent on the choice of origin.
We have assumed that the origin is inside the unit cell V , but
we are free to move the origin inside the cell. Substituting r =
r′ + r0 in (34) and expanding the exponential exp(−ik · r′)
give

J = e−ik·r0 (−iωP + ik × M′ − ωk · Q′/2 − iωR′), (58)
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with

M′ = 1

2V

∫
V

r′ × jd3r, (59a)

Q′ = 1

−iωV

∫
V

(r′j + jr′)d3r, (59b)

R′ = 1

2iωV

∫
V

(k · r′)2jd3r. (59c)

By changing r0, the different multipole quantities will
change, however, such that the sum of contributions to the
induced current [right-hand side of (58)] is constant. Since

M′ = M + iωr0

2
× P, (60)

we have M′ ≈ M when ωaP 
 M.
Since the magnetization vector is dependent on the choice

of origin, so is the resulting μ in general. This dependence is
not only a consequence of the difference between M′ and M
but also the exponential factor exp(−ik · r0) ≈ 1 − ik · r0 in
(58). This factor will mix the �(1) and �(k) terms in (54) in
the presence of magnetoelectric coupling (ζi j �= 0).

C. Vinogradov-Yaghjian (vy) decomposition

In Vinogradov and Aivazyan [3] the microscopic current is
decomposed into three terms:

j = −r ∇ · j + 1
2∇ × (r × j) + 1

2∇ · (rj + jr). (61)

Equation (61) can be verified by straightforward calcula-
tion. The microscopic current satisfies continuity ∇ · j =
iω�, where � is the microscopic induced charge density.
Yaghjian, Alù, and Silveirinha [8] suggested to decompose
the macroscopic induced current by substituting (61) into (7c),
resulting in

J = −iωPvy + ik × Mvy + ωk · Qvy/2, (62)

where

Pvy = 1

V

∫
V

�(r)re−ik·rd3r, (63a)

Mvy = 1

2V

∫
V

r × j(r)e−ik·rd3r, (63b)

Qvy = − 1

iωV

∫
V

(jr + rj)e−ik·rd3r. (63c)

The integrals are over the unit cell containing the origin. To
obtain (62) it is assumed that the boundaries of the unit cells
lie in free space. Equation (62) is not a multipole expansion,
due to the factor exp(−ik · r) in the integrands of (63). All
induced current is described by the three terms in (62), as
opposed to a multipole expansion with an infinite number of
terms. Note that the sign of the “quadrupole” term ωk · Qvy/2
is opposite of that resulting from a conventional multipole
expansion (35).

From the magnetization Mvy, we can define a permeability
exactly as in Sec. III B. From a constitutive relation

Mvy
i = ωζ

vy
i j E j + ν

vy
il jklE j/(μ0ω), (64)

set (
1 − μ−1

vy

)
im = εmk j

kkkl

k2
ν

vy
il j (65)

or

1 − μ−1
vy =

[−ν
vy
213 ν

vy
212

−ν
vy
313 ν

vy
312

]
(66)

in a coordinate system where k = kx̂. (Alternatively, as in
Ref. [8] and in (57), we can define a new permeability μ̃vy
by combining μvy and ζvy into a single tensor.)

The asymptotic behavior of μ−1
vy turns out to be different

from that of μ−1 in Sec. III B. Substituting (48b) into (63b):

Mvy = iωε0

2V
E ×

∫
V

r[ε(r) − 1]d3r

− iωε0

2V

∫
r × f (r)[ε(r) − 1]e−ik·rd3r. (67)

The first integral is independent of k and therefore cannot
contribute to the last term in (64). The second term in (67)
tends to zero faster than ω−1 [see (47) and (49)] and leads to
a ν

vy
il j that tends to zero. We therefore find that

μ−1
vy → I as ω → ∞. (68)

The definition of Mvy in (63b) can be used to prove that μ−1
vy

is analytic in the upper half-plane Im ω > 0, using the exact
same method as in Sec. III B. This result is already known
from Ref. [8]. Taking (68) into account, we conclude that μ−1

vy
is causal for each, fixed k.

The connection between the constitutive parameters for
Pvy, Mvy, Qvy, and the Landau-Lifshitz permittivity can be
obtained directly from (45) by setting ψikl j = 0 (and adding
superscripts “vy”).

At first sight, the multipole quantities in (36) and in (63)
seem to be quite similar; the difference is only a factor
exp(−ik · r) in the integrands. The connection between the
multipole quantities can be established by expanding the
exponential (33). Note that since we are interested in magnetic
effects, which are known to be a second-order �(k2) effect
in the Landau-Lifshitz permittivity, we include terms for the
induced current up to order �(k2). Expressing iω� = ∇ · j
and using integration by parts, we obtain from (63a):

−iωPvy = 1

V

∫
V

je−ik·rd3r − ik·
V

∫
V

jre−ik·rd3r. (69)

Expanding the exponential we find to second order in k:

−iωPvy = −iωP − ωk · Q − iωR − 1

V

∫
V

(k · j)(k · r)rd3r.

(70)
Furthermore, we obtain

ik × Mvy = ik × M + k
2V

·
∫

V
(jr − rj)(k · r)d3r (71)

and

ωk · Qvy = ωk · Q + k
V

·
∫

V
(jr + rj)(k · r)d3r. (72)

Equations (70)–(72) show the relation between the “dipole”
and “quadrupole” terms in (62) compared to the usual ones.
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For example, (71) shows that the difference ik × (Mvy − M)
is given by a magnetic quadrupole term.

Summing the contributions to the induced current, we
obtain

−iωPvy + ik × Mvy + ωk · Qvy/2

= −iωP + ik × M − ωk · Q/2 − iωR. (73)

Equation (73) could have been found directly by comparing
(35) and (62).

One may think that Mvy and M, and the corresponding
permeabilities, are equal in the limit ka → 0, since then the
exp(−ik · r) factor in the integrand in (63b) tends to unity.
Surprisingly, this is, however, not true in general. As an
example, consider a metamaterial with a center of symmetry
in the unit cell, which is taken as the origin. We must have

j(−r) = j(r) when k → 0, (74)

which means that M → 0 as k → 0. In other words, M =
O(k). This can also be realized from Faraday’s law: When
there is no magnetoelectric coupling, M is proportional to B,
i.e., M = χB = χ(k × E)/ω = O(k) for some tensor χ. By
expanding the exponential in the definition of Mvy (63b), the
connection between Mvy and M can be written

Mvy = M + −i

2V

∫
V

(k · r)r × j(r)d3r. (75)

The factor k · r in the integrand destroys the odd inversion
symmetry, so the integral does not vanish in general. Thus the
integral is �(k) and may be equally important as M in the
limit ka → 0. Recall that the permeabilities are found from
the O(k) part of Mvy and M, respectively. In other words,
even though both Mvy and M tend to zero, the permeabilities
derived from Mvy and M may be different. The difference
between the permeabilities will be explored numerically in
Sec. IV.

Finally, we note that in general, the quantities Pvy, Mvy,
and Qvy are dependent on the choice of origin inside the cell
V . Since Mvy may be origin dependent, so is the resulting
permeability μvy. From the definition (63b) it follows that the
relative size of the origin dependence of Mvy is negligible
when ωaPll 
 Mvy. Numerically, the origin dependence of
μvy turns out to be minor, as discussed in Sec. IV.

D. Transversal-longitudinal (tl) decomposition

Starting from the Landau-Lifshitz permittivity, it is natural
to use a strategy to put “as much as possible” of the k-
dependent induced current into the magnetization and there-
fore the permeability. The resulting permeability is a gen-
eralization of that in chapter XII of Landau and Lifshitz’s
textbook [1] and in Silveirinha [5].

The induced current can be divided into two parts:

J = −iωPtl + ik × Mtl. (76)

In (76) the part which is independent of k is put into the first
term −iωPtl. Moreover, the k-dependent part is divided into a
longitudinal part (which is parallel to k) and a transversal part.
The longitudinal part is also absorbed by the −iωPtl term,
while the transversal part is taken care of by the magnetization

term ik × Mtl. In a coordinate system oriented such that k =
kx̂, we can write

J = ( − iωPtl
1 ,−iωPtl

2 − ikM tl
3 ,−iωPtl

3 + ikM tl
2

)
, (77)

where Ptl
2 and Ptl

3 are independent of k. As in Sec. III B (41),
we express

M tl
i = ωζ tl

i jE j + kν tl
i1 jE j/(μ0ω)

= ωζ tl
i jE j + kν tl

i11E1

μ0ω
+ μ−1

0

(
1 − μ−1

tl

)
i jB j

= ωζ tl
i jE j + kν tl

i11E1

μ0ω
+ 1

μ0ω

[(
1 − μ−1

tl

)
k × E

]
i (78)

for some ζ tl
i j , ν tl

ilk , and μtl.
The induced current density can also be expressed

Ji = −iωε0[εi j (ω, k) − δi j]E j, (79)

= −iωε0[χi j + αik jkk/ε0 + βikl jkkkl c
2/ω2]E j, (80)

where we have substituted the Landau-Lifshitz permittivity
(22). Equating the O(k2) part of (77) and the last term in (80),
we obtain

1 − μ−1
tl =

[
β3113 −β3112

−β2113 β2112

]
. (81)

In an arbitrary coordinate system, the tensor (81) can be
written [

1 − μ−1
tl

]
mn = εmipεn jq

kkklkpkq

k4
βikl j . (82)

For strongly spatially dispersive media, we have let the last
term in (80) contain the remainder [�(k2) and higher order].
Then βikl j and the resulting μtl become dependent on k.

The symmetry (31b) means, according to (22), that
βikl j (k) = β jkli(−k). This means that

μT
tl (−k) = μtl(k). (83)

In particular, if we only consider terms of ε(ω, k) up to second
order in k (weakly spatially dispersive media), then we have
μT

tl = μtl.
As for the asymptotic behavior of μtl as ω → ∞, recall

that the microscopic field tends to a plane wave in this limit,
approximately unaffected by the structure. Using (7c) and
(48), we find

J = −iωε0E
V

∫
V

[ε(r) − 1]d3r + �J, (84)

where

�J = − iωε0

V

∫
V

[ε(r) − 1]f (r)e−ik·rd3r. (85)

The asymptotic behavior of ε(r) as ω → ∞ is of the form
(47). From (49) it is clear that �J → 0 faster than J. By
comparison to (79) the resulting Landau-Lifshitz permittivity
becomes

εi j (ω, k) = δi j

V

∫
V

ε(r)d3r + Fi j (ω, k), (86)

where Fi j (ω, k) tends to zero faster than ω−2. The first term
in (86) is independent of k; thus it does not contribute to the

064407-8



FOUR DEFINITIONS OF MAGNETIC PERMEABILITY FOR … PHYSICAL REVIEW B 99, 064407 (2019)

�(k2) term of the Landau-Lifshitz permittivity (22). The term
Fi j (ω, k) may contribute but gives a βikl j that tends to zero as
ω → ∞. In other words,

μ−1
tl → I when ω → ∞. (87)

Since βikl j are the second-order coefficients of εi j (ω, k), we
can apply the general result in Appendix E to deduce that βikl j

and therefore μ−1
tl are analytic in the upper half-plane. With

(87) we conclude that μ−1
tl is causal.

The relation between the permeability resulting from the
magnetic moment density (Sec. III B) and that in (81) can be
found by subtracting (81) and (42):

μ−1 − μ−1
tl =

[
(γ + ψ + η)3113 −(γ + ψ + η)3112

−(γ + ψ + η)2113 (γ + ψ + η)2112

]
.

(88)

In other words, the difference is due to the electric quadrupole,
magnetic quadrupole + electric octupole, and �(k2) part of
electric dipole. The difference μ−1

vy − μ−1
tl can be expressed

similarly as in (88), however, without the ψ tensor.
We have chosen, somewhat arbitrarily, to associate the

entire �(k) term of the transversal current with the magnetiza-
tion Mtl. The �(k) term could be associated with polarization
Ptl instead or shared between the two. This has, however, no
influence on the permeability (81), being defined from the
O(k2) term.

Since the permeability μtl is derived from the Landau-
Lifshitz total permittivity ε(ω, k), which in turn is found from
J and E with (7a) and (7c), it follows that μtl is not dependent
on the choice of origin.

E. Other decompositions

Clearly, there are infinite number of ways to decompose the
induced current, obtaining “P,” “M,” and possibly other “mul-
tipole” terms. The possible decompositions fall roughly into
two categories. In the first category the magnetization vector is
defined from an integral of the microscopic current. Examples
include (36b) and (63b). The analyticity of the resulting
inverse permeabilities, asymptotic behavior, and connection
to the Landau-Lifshitz permittivity follow in the same way
as in Sec. III B. In the second category the magnetization is
defined from a certain division of the O(k2) part of the induced
current by including any desired part of the βikl j tensor in
(22). Then the properties of the resulting μ−1 can be explored
along the lines in Sec. III D. Of course, not all such definitions
lead to an analytic μ−1; this must be ensured by carefully
considering the frequency dependence of the division. Also,
to ensure that μ−1 is a tensor, the division of βikl j must be
possible to formulate in tensor form.

IV. NUMERICAL RESULTS

We will now consider some concrete examples of 2D meta-
materials, using a finite-difference-frequency-domain numer-
ical method [9,17]. The metamaterial unit cells, and the
associated, inverse permeability element 33 (perpendicular
to the unit cell figures) are shown in Figs. 1–4 for k = 0.
For all examples except that in Fig. 1(b), we have used

FIG. 1. (a) Unit cell with an annulus; (b) 1 − permeability−1

when the annulus is a lossless dielectric (ε = 16). Real (c) and
imaginary (d) parts when the annulus is made from silver, a = 1 μm.

silver inclusions described by a Drude-Lorentz model with
parameters from Ref. [18].

We observe that the different permeabilities are identical in
the low-frequency limit. However, for the dielectric inclusions
[Fig. 1(b)], the relative differences are relatively large and
do not vanish in the low-frequency limit. For ωa/c > 0.6,
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FIG. 2. (a) Unit cell with a split-ring resonator made from silver,
a = 1 μm. Real (b) and imaginary (c) part of 1 − permeability−1.

corresponding to a/λ > 0.1 (λ is the vacuum wavelength), the
differences between the permeabilities are quite visible for all
examples except the split ring resonator medium (Fig. 2).

Note that although the definition of μvy is similar to that of
μ, in the examples μvy is closer to μtl in magnitude.

In Fig. 4 we observe the origin dependence of the per-
meabilities. The permeability μtl is origin independent by
definition, while μ and μvy are dependent on the choice of
origin. The origin dependence is, however, rather weak in the
considered frequency range. In general, the origin dependence
of μvy seems to be weaker than that of μ. In fact, for the
examples in Figs. 1–3 the origin dependence of μvy turned
out to be negligible (not shown).

In Fig. 4 we find that for larger frequencies, the imaginary
parts of the three permeabilities can be negative. Clearly, the
medium response must be highly nonlocal in this region; in
the presence of spatial dispersion the condition for passivity
is formulated in terms of the Landau-Lifshitz permittivity
ε(ω, k) [see (C14)].

FIG. 3. (a) Unit cell with two bars made from silver, a = 1 μm.
Real (b) and imaginary (c) part of 1 − permeability−1.

The causal properties of the inverse permeabilities μ−1,
μ−1

vy , and μ−1
tl , proven in Sec. III, have been verified nu-

merically for the metamaterials in Figs. 1(a)–4(a) using a
Lorentzian model for the microscopic permittivity. This is
done by first computing the (3,3) elements of the inverse per-
meabilities over a large bandwidth (such that the asymptotic
limit can be seen). Then the results are Fourier transformed
and verified to be vanishing small for negative time.

Although the inverse permeabilities are causal, the per-
meabilities are generally not. This was noted for the μvy
permeability in Ref. [19]. Note that the inverse permeability
is the natural response quantity appearing when expressing
M from the fundamental field B [or expressing M from
the applied current density Jext, using (54), (53), and (42)].
Therefore, the inverse permeability is causal. Proving that the
permeability itself is causal, from the causality of the inverse
permeability, is possible only in certain special cases [1,19].
For example, when the inverse permeability is scalar, and
Im μ−1 takes only negative values, the inverse permeability
turns out to be zero free in the upper half-plane Im ω > 0.
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FIG. 4. (a) Unit cell with a “U” made from silver, a = 1 μm.
Real (b) and imaginary (c) part of 1 − permeability−1. Also shown
are the results when the origin has been shifted from the center of
the cell (0,0) to top right corner (a/2, a/2). In (d) and (e) the results
are plotted for higher frequencies, demonstrating that the imaginary
parts can have either sign in this region. This does not mean violation
of passivity but that the medium response is nonlocal.

Then the permeability becomes causal. Otherwise, as for
the metamaterials in Figs. 1(a)–4(a), the permeabilities are
noncausal despite the inverse permeabilities being causal.

V. DISCUSSION AND CONCLUSION

In conclusion we have considered four definitions of per-
meability for periodic metamaterials and their properties. The
properties of the induced current decompositions and associ-
ated permeabilities are summed in Table I.

Having considered several different definitions of the mag-
netic permeability, it is natural to ask which is preferred.
Of course there is no simple answer to this question. The
Vinogradov-Yaghjian decomposition has the advantage of
representing all induced current with only three terms. On the
other hand, the conventional multipole decomposition has a
clear physical interpretation; in particular, the permeability μ

is induced from the magnetic moment density M. However,
the asymptotic behavior for ω → ∞ and fixed k is not nec-
essarily μ → I, and the origin dependence is generally larger
than that of μvy. The permeability μtl has a less direct physical
interpretation compared to μ but has the nice properties that
it is independent of the choice of origin and symmetric. In
addition it is appealing that it contains “as much as possible”
of the O(k2) part of the Landau-Lifshitz permittivity.

For weakly spatially dispersive media where the higher-
order O(k3) terms are ignored, all permeabilities are indepen-
dent of k. For μ and μvy, higher-order terms are included
by allowing νil j in (40b) and (64) to be dependent on k.
For μtl, higher-order terms are included by letting βikl j in
(22) be dependent on k. In all these cases the highest-order
term in the Taylor expansions absorbs the remainder, making
the permeabilities dependent on k in a straightforward way.
For strongly spatially dispersive media, this could perhaps be
useful in certain cases where the magnetization part of the
induced current dominates.

Despite the induced current being exactly represented by
the expansion terms, neither of the permeabilities can alone
describe the entire �(k2) part of the Landau-Lifshitz permit-
tivity. Therefore, even for weakly spatially dispersive media,
we cannot always use one of the permeabilities in addition
to a permittivity in Fresnel equations to describe reflection
and transmission at an interface. When using the Fresnel
equations, the errors will be dependent on the impact of the
missed terms but also induced by the fact that the conventional
boundary conditions are not necessarily valid for the funda-
mental Floquet mode fields [20]. In the multipole expansion,
the missed terms are the �(k2) part of P, Q, and R. In the
Vinogradov-Yaghjian decomposition, the missed terms are the
�(k2) part of Pvy and Qvy. In the transversal-longitudinal
decomposition the missed term is the �(k2) part of Ptl. Here
we have assumed a nongyrotropic medium.

The semi-infinite case has been studied numerically in
a separate work [20]. It was found that Fresnel equations
with the three permeabilities in Secs. III B–III D give accurate
results for 2D metamaterials which mimic natural magnetism
in a frequency range with nontrivial magnetic response. The
frequency range where the prediction of Fresnel’s equation is
accurate is where the three permeabilities are approximately
equal. Considering the numerical examples in Sec. IV, we can
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TABLE I. General properties of induced current expansions and associated permeabilities; i.g. = in general. For the Landau-Lifshitz
formulation the permeability is trivial, and the table column displays the properties of the permittivity tensor ε(ω, k).

III B III C III D III A
Multipole Vinogradov-Yaghjian Transversal-longitudinal Landau-Lifshitz, μll = I

Number of J expansion terms ∞ (P, M, Q, R, ...) 3 (Pvy, Mvy, Qvy) 2 (Ptl, Mtl) 1 (Pll)
Causal, μ−1 analytic for Im ω > 0 Yes Yes Yes G(ω, k) causal
Causal, μ analytic for Im ω > 0 No (i.g.) No (i.g.) No (i.g.) ε(ω, k) causal
For ω → ∞ and fixed k μ → const μvy → I μtl → I ε(ω, k) → I
Sign of Im μ (for diagonal μ) Both (i.g.) Both (i.g.) Both (i.g.) ω[ε(ω, k) − ε(ω, k)†] pos.
Symmetry – – μT

tl (−k) = μtl (k) εT (ω,−k) = ε(ω, k)
Origin dependence Yes (i.g.) Yes (i.g.) No No

therefore expect that the permeabilities (except the trivial one
in Sec. III A) are useful in Fresnel’s equation in the range
where they approximately coincide.

For media with strong electric quadrupole response, and/or
higher-order multipoles, the basic Fresnel equation will not
give an accurate prediction. The permeability can still be
relevant, provided additional boundary conditions for the par-
ticular structure are found [21–25]. In these cases, a better
alternative could perhaps be to calculate the reflection and
transmission using exact mode matching techniques or even,
e.g., finite-difference time-domain simulations.

It is natural to ask whether the permeabilities are useless
in the frequency ranges where they cannot be used to predict
the reflection from a semi-infinite structure. Although the
permeabilities have limited use in these cases, it is convenient
to have definitions which are valid for all frequencies. This
makes it possible to apply Kramers-Kronig relations and other
theoretical constraints which are formulated for the entire
frequency range. Although the permeabilities lose their usual
physical interpretation for sufficiently large frequencies, they
are still physical in the sense that they are found from the
physical, microscopic fields using the particular definition.
For example, μ in Sec. III B results from a magnetization M
which quantifies the magnetic moment of the unit cell.
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APPENDIX A: DERIVING k-DOMAIN MAXWELL
EQUATIONS FOR HOMOGENIZED FIELDS

Our starting point is the microscopic Maxwell equations:

∇ × e = iωb, (A1a)

1

μ0
∇ × b = −iωε0e + j(r) + Jexte

ik·r. (A1b)

Since the structure is periodic, and the source is of the
form Jexteik·r with constant Jext, all fields can be written in
Floquet form. For example, e = ueeik·r. Substituting into (A1)
we obtain

∇ × ue + ik × ue = iωub, (A2a)

1

μ0
∇ × ub + 1

μ0
ik × ub = −iωε0ue + uj + Jext. (A2b)

Recall that the periodic u functions can be written in
terms of their Fourier components, as in (5). Equations (A2)
[and therefore (A1)] are satisfied if and only if the Fourier
components of (A2) satisfy:

i(blmn + k) × Elmn = iωBlmn, (A3a)

1

μ0
i(blmn + k) × Blmn = −iωε0Elmn + Jlmn, (A3b)

for all l, m, n except l = m = n = 0, for which the set can be
written

ik × E = iωB, (A4a)

1

μ0
ik × B = −iωε0E + J + Jext. (A4b)

Equations (A4) are the Maxwell equations for the fun-
damental Floquet modes, which we have taken to be the
macroscopic fields. Equations (A3) are the equations that the
other Fourier components must satisfy.

The induced current Jlmn couples between sets with differ-
ent indices. Defining σ (r) = −iωε0[ε(r) − 1], we have

Jlmn = 1

V

∫
j(r)e−ik·r−iblmn·rd3r

= 1

V

∫
σ (r)e(r)e−ik·r−iblmn·rd3r

=
∑
l ′m′n′

El ′m′n′ · 1

V

∫
σ (r)ei(bl′m′n′ −blmn )·rd3r (A5)

By eliminating Blmn from (A3) and (A4), and using (A5), we
obtain a linear equation set in the form∑

n

AmnEn = Jextδm0, (A6)

where the matrix Amn depends on ω, k, and microscopic
permittivity but not the fields. The three indices lmn and the
index of the vector components have been combined into a
single index n or m, and the coordinate system is oriented such
that Jext is along one of the axes, corresponding to m = 0.
The elements En of the new field vector contains the three
components of each Elmn. From (A6) we note that all fields,
e.g., Elmn or E, are proportional to Jext.
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APPENDIX B: MACROSCOPIC FIELDS
FOR ARBITRARY ka

Here we will prove that the macroscopic fields (or funda-
mental Floquet mode fields) can be used to calculate the work
done by the source in a unit cell, even for large wave numbers.
Consider, first, a source with a single, spatial Fourier com-
ponent, jext(r) = Jext(k)eik·r. The work done by the source
per unit volume and per unit time (after averaging over a
period) is

pext = 1
2 Re {jext · (−e∗)}, (B1)

where e is the microscopic electric field. Substituting (3) and
(4a) we find

pext = 1
2 Re {Jext · (−u∗

e )}, (B2)

which after averaging over a unit cell V [using (7a)] becomes

〈pext〉 = 1
2 Re {Jext · (−E∗)} (B3)

or

〈pext〉 = 1
2 Re {jext · (−E∗)}. (B4)

In other words, we can find the work from the macroscopic
field E .

For a source in the form

jext(r) = j0(r)eik0·r, (B5)

where k0 is any constant vector, and j0(r) �= 0, (B4) remains
valid if the source contains a sufficiently narrow band of wave
vectors around k0. This can be demonstrated by expressing
the Fourier integrals of the source and the microscopic electric
field and averaging (B1) over a unit cell. For more details on
sources of finite sizes, see Appendix D.

APPENDIX C: CAUSALITY, PASSIVITY,
AND KRAMERS-KRONIG RELATIONS

Here we will establish a framework for studying the
analytic properties of the electromagnetic parameters and
the implications of passivity [1,8,12,26,27]. If we use the
Landau-Lifshitz formulation in which the medium is de-
scribed solely by a permittivity ε(ω, k), then it has been
stated that ε(ω, k) is an analytic function in the upper half-
plane Im ω > 0 for fixed k, at least for sufficiently small
k [1,12]. This follows by regarding the electric field as the
excitation and the displacement field as the response. How-
ever, as pointed out in Ref. [26], such an argument is not
compelling since the electric field includes the response of the
medium. Here we will use the relation between the applied
source and the resulting field to prove that for fixed, real k,
the Landau-Lifshitz permittivity tensor ε(ω, k) is analytic in
the upper half-plane, even for anisotropic, bianisotropic, and
spatially dispersive media. We will also provide the passivity
condition.

Since the medium is assumed linear and time-shift invari-
ant, the resulting macroscopic field E is related to the source
Jext by a linear relation

E = G(ω, k)Jext, (C1)

where G(ω, k) is a (matrix) response function. For simplicity
in notation we have suppressed the ω and k dependence of
the fields. Recall that the medium is assumed to be causal
and passive, so if the time-domain source current is any finite-
duration pulse starting at t = 0, then the time-domain electric
field vanishes for t < 0 and does not blow up as t → ∞. It
follows that

G(ω, k) analytic for Im ω > 0 and fixed k. (C2)

This applies to all elements of the matrix, since Jext can be
chosen to point in any direction.

Since the work done by the source must be non-negative,
we must have −Re J∗

ext · E � 0 [see (B3)], or

−Re J†
extG(ω, k)Jext � 0, (C3)

for real frequencies. Here † stands for Hermitian conjugate,
i.e., transpose and complex conjugate. We have argued for
(C2) and (C3) using a single k source; however, as shown in
Appendix D, they also follow when using a realistic source
of finite size. Inequality (C3) is valid in the upper half-plane
Im ω > 0, as shown in Appendix D.

Define a function

f (ω) = −J†
0G(ω, k)J0, (C4)

where J0 is an arbitrary but constant vector. We have just
seen that Re f (ω) � 0 for Im ω > 0. In fact, since f (ω) is an
analytic function, it must be that Re f (ω) > 0 for Im ω > 0:
Assume f (ω) = 0 somewhere in the upper half-plane. A zero
of an analytic function is isolated, and in the vicinity of a zero,
the function’s complex argument takes all values from 0 to
2π . This would make Re f (ω) < 0 somewhere around zero,
which contradicts Re f (ω) � 0.

We have proved that

−Re [J†
0G(ω, k)J0] > 0 for Im ω > 0 (C5)

for any constant J0. Thus E = G(ω, k)Jext �= 0 for any
nonzero Jext for Im ω > 0. This means that

det G(ω, k) �= 0 for Im ω > 0. (C6)

In other words, for all ω in the upper half-plane, we can invert
G(ω, k) to obtain G(ω, k)−1. Since G(ω, k) is analytic, so is
G(ω, k)−1.

In the Landau-Lifshitz formulation, the Maxwell equations
take the form

ik × E − iωB = 0, (C7a)

1

μ0
ik × B + iωε0ε(ω, k)E = Jext (C7b)

in the frequency–wave-number space. Combining them, we
obtain [

k2I⊥ − ω2

c2
ε(ω, k)

]
E = iωμ0Jext, (C8)

with I⊥ = I − kk/k2 [or expressed by (25) in a coordinate
system where k = kx̂]. Comparing (C8) and E = G(ω, k)Jext,
we identify

G(ω, k)−1 = (iωμ0)−1

[
k2I⊥ − ω2

c2
ε(ω, k)

]
. (C9)
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We have already proved that G(ω, k)−1 is analytic in the upper
half-plane Im ω > 0; thus so is ε(ω, k).

With an asymptotic behavior ε(ω, k) → ε(∞, k) as ω →
∞ and k is fixed, we can now state the Kramers-Kronig
relations for χ(ω, k) ≡ ε(ω, k) − ε(∞, k):

Re χ(ω, k) = 2

π
P

∫ ∞

0

Im χ(ν, k)ν

ν2 − ω2
dν, (C10a)

Im χ(ω, k) = −2ω

π
P

∫ ∞

0

Re χ(ν, k)

ν2 − ω2
dν. (C10b)

Here ω is real, and P denotes the Cauchy principal value.
To obtain the Kramers-Kronig relations from the analyticity
and the asymptotic behavior, we have used the Titchmarsh
theorem [15]. To this end we have assumed that χ(ω, k) → 0
sufficiently fast as |ω| → ∞, and that χ (ω, k) does not have
singularities for real frequencies.3

Substituting J0 = G(ω, k)−1E0 in (C5) gives

−Re [E†
0G(ω, k)−1†E0] > 0 for Im ω > 0, (C11)

valid for any vector E0. This can be written

−G(ω, k)−1 − G(ω, k)−1† positive definite, (C12)

or, using (C9),

i

[
ωε(ω, k) − k2c2

ω
I⊥

]†

− i

[
ωε(ω, k) − k2c2

ω
I⊥

]
positive definite. (C13)

In principle, the passivity condition (C13) has been derived for
Im ω > 0. By taking the limit Im ω → 0, the passivity condi-
tion remains valid for all Re ω where this limit exists, provided
we relax “positive definite” to “positive semidefinite.” When
both ω and k are real, as is the case when they represent a
Fourier component in time and space, the passivity condition
becomes

−iω[ε(ω, k) − ε(ω, k)†] positive semidefinite. (C14)

This reduces to the well-known condition Im ε(ω, k) � 0 for
scalar permittivity and positive frequency.

APPENDIX D: SOURCE OF FINITE SIZE

In Appendix C we imagined a source with a single wave
vector k. This source is somewhat unphysical, since it is
present everywhere. Here we will consider sources of finite
size and rederive the causality and work results (C2) and (C3).

In this section we will write out the ω and k dependence
explicitly. Let us consider a causal source in product form,

Jext(ω, k) = F (k)W(ω). (D1)

3To establish Kramers-Kronig relations, the Titchmarsh theorem
requires the function to be uniformly square integrable along a line in
the upper half-plane, parallel to the real axis. The assumption is for
example valid if the function vanishes as 1/|ω| or faster, but, clearly,
weaker conditions are possible. If the function has singularities
on the real axis, then modified Kramers-Kronig relations can be
derived [1].

From (4a) and (5) the frequency-domain microscopic electric
field is

e(ω, r) = 1

(2π )3

∫ ∑
lmn

Elmn(ω, k)eiblmn·r+ik·rd3k

= 1

(2π )3

∑
lmn

∫
Elmn(ω, k)eiblmn·r+ik·rd3k

= 1

(2π )3

∑
lmn

∫
Elmn(ω, k′ − blmn)eik′ ·rd3k′

= 1

(2π )3

∫ ∑
lmn

Elmn(ω, k − blmn)eik·rd3k, (D2)

where Elmn(ω, k) is proportional to F (k). Since e(ω, r) de-
scribes a causal field for all r, we must have∑

lmn

Elmn(ω, k − blmn) causal, for fixed k. (D3)

The source function F (k) can be chosen such that

F (k0) = 1 for lmn = 000,

F (k0 − blmn) = 0 for all lmn �= 000. (D4)

In other words, there is a peak at k = k0 and zeros at k =
k0 − blmn for lmn �= 000. This is achieved, e.g., if

F (k)=sinc2[(kx−k0x )a]sinc2[(ky−k0y)a]sinc2[(kz−k0z )a].

(D5)

This source has a finite extent, as seen by inverse Fourier
transforming (D5). By setting k = k0, and considering (D3),
we find that E(ω, k) ≡ E000(ω, k) is causal.

We can write

E(ω, k) = G(ω, k)Jext(ω, k), (D6)

where G(ω, k) is a (tensor) response function. We choose
a source with finite duration in the time domain. Since the
medium is passive, the electric field does not blow up as t →
∞. Since Jext(ω, k) and E(ω, k) are causal, it follows that they
are analytic in the upper half-plane Im ω > 0. As Jext(ω, k)
is otherwise arbitrary, the response function G(ω, k) must
therefore be analytic for Im ω > 0 for each fixed k (C2).

The properties of G(ω, k) in the upper half-plane can be
further explored by considering sources with time dependence
exp(γ t − iω′t ) [28]:

jext(t, r) = Re [f (r)u(t )eγ t−iω′t ]. (D7)

Here u(t ) is the unit step function, γ > 0, and ω′ is real. Tak-
ing f (r) to be real, this source can be expressed in frequency–
wave-number space

Jext(ω, k) = F(k)W (ω), (D8)

where F(k) is the Fourier transform of f (r), and W (ω) is the
Laplace transform of eγ t cos(ω′t ), after setting the Laplace
variable s = −iω.

At least for t � 1/γ , the transients can be ignored com-
pared to the exponentially increasing field. Then the electric
field will be of the form exp(γ t − iω′t ), and the power density

064407-14



FOUR DEFINITIONS OF MAGNETIC PERMEABILITY FOR … PHYSICAL REVIEW B 99, 064407 (2019)

pext(t ) = −jext(t, r) · e(t, r) becomes

pext(t ) = −Re

[
eγ t−iω′t

(2π )3

∫
F(k)eik·rd3k

]

·Re

[
eγ t−iω′t

(2π )3

∫ ∑
lmn

Ẽlmn(ω, k − blmn)eik·rd3k

]
.

(D9)

Here Ẽlmn(ω, k) is the same as Elmn(ω, k) except that the fac-
tor W (ω) has been removed and ω = ω′ + iγ . Using Re α =
(α + α∗)/2, and integrating the resulting expression over all
space and from time t0 to t1, we find the total work in this time
interval:

Wext =
∫ t1

t0

∫
pextd

3rdt

= −e2γ t1 − e2γ t0

4γ (2π )3
Re

∫
F∗(k) ·

∑
lmn

Ẽlmn(ω, k − blmn)d3k

+ Re [C(e2γ t1−2iω′t1 − e2γ t0−2iω′t0 )], (D10)

where C is a complex-valued quantity which is independent
of t0 and t1. Let t0 � 1/γ . Since t0 is finite, the source has
only done a finite amount of work W0 before t0. Assuming
the medium has no stored energy before t = 0, we must
have W0 + Wext � 0. For a sufficiently large t1, but such that
Ce−2iω′t1 is imaginary, we obtain the condition

−Re
∫

F∗(k) ·
∑
lmn

Ẽlmn(ω, k − blmn)d3k � 0. (D11)

Recall that Ẽlmn(ω, k) is proportional to F (k). Thus, by
picking a source with a sufficiently narrow, effective band �k
around a fixed wave number k0 (�ka 
 1, which means that
the source must cover several unit cells), we can make the
terms with lmn �= 000 arbitrarily small. Hence we must have

−Re
∫

F∗(k) · Ẽ(ω, k)d3k � 0. (D12)

We now use (D6), which means Ẽ(ω, k) = G(ω, k)F(k).
Choosing a F(k) which is narrow banded in k compared to
the variations in G(ω, k), we obtain

−Re J†
0G(ω, k)J0 � 0 (D13)

for all constant vectors J0.

APPENDIX E: ANALYTICITY OF TENSOR ELEMENTS

Suppose we have an expansion in the form

f (ω, k) = a(ω) + bi(ω)ki + ci j (ω)kik j, (E1)

where a(ω), bi(ω), and ci j (ω) are independent of k. We take
ci j (ω) to be symmetric, as any antisymmetric part is irrelevant
for the expansion. Let f (ω, k) be an analytic function of ω

(in a given domain) for any fixed k. We will prove that the
coefficients a(ω), bi(ω), and ci j (ω) are analytic.

By putting k = 0, we find that a(ω) = f (ω, 0) is analytic.
Considering

f (ω, k) − f (ω,−k) = 2bi(ω)ki, (E2)
it follows that bi(ω) is analytic. We now have that

ci j (ω)kik j = f (ω, k) − a(ω) − bi(ω)ki (E3)

is analytic. By letting k point in the x̂, ŷ, or ẑ direction, we
find that cii(ω) are analytic for any i. Finally we obtain, e.g.,
that c12 is analytic by letting k = k(x̂ + ŷ)/

√
2.

The argument can be extended to an infinite Taylor series,
or a series with a remainder term, by noting that the partial
derivatives ∂ f /∂ki and ∂2 f /∂ki∂k j are analytic. This follows
by using the Cauchy-Riemann equations, assuming symmetry
of second-order derivatives.

In particular, if the Landau-Lifshitz permittivity is ex-
pressed in the form

εi j (ω, k) − δi j = χi j + αik jkk/ε0 + βikl jkkkl c
2/ω2, (E4)

then the analyticity of εi j (ω, k) means that the tensors χi j ,
αik j , and βikl j are analytic.
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