NTNU - Trondheim
Norwegian University of

Science and Technology

General Utilisation System for Timed
Application and Fast Scheduling Over
Network

Knut André Karlsen Vestergren

Master of Science in Engineering Cybernetics
Submission date: June 2012
Supervisor: Sverre Hendseth, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem

Is it possible to utilise the computational power of a multi-computer
environment for real-time applications by developing an experimental
runtime system and exploring its applications?

Abstract

In this thesis, an experimental runtime system for utilizing the computational
power of a multi-computer environment is presented.

Through simple benchmark tests it is shown how some tasks will have a con-
siderate speed-up compared to running on a single computer.

An outline for designing languages and compilers suited for the runtime is
also explored and discussed, and it is shown how the system, with some exten-
sions, would be well suited for utilizing the spare computational power in a multi-
computer environment. This also holds, with some extra considerations, for a
real-time application.

Acknowledgement

I would like to thank my supervisor, Sverre Hendseth, for guidance and inter-
esting digressions.

I would also like to thank my fiancé, Ingrid Hjorth, for her support and patience
during the time I have been working on this thesis.

Contents

1 Introduction

1.1 Thename e 1
1.2 Previouswork L 1
2 Structure 3
2.1 Terminology o 3
2.2 Task management 3
2.3 Channels e 5
2.4 Node and network managing 15
2.5 Summary of task storage 16
2.6 File and procedure managing 16
2.7 Creatingnew tasks 18
2.8 Errorhandling oL 18
3 Implementation 19
3.1 Runtime 19
3.2 Prepared programsol 20
3.3 Running GUSTAFSON 25
4 Applications 27
4.1 Low level abstraction 27
4.2 High level abstraction 0oL 31
5 Benchmark 33
5.1 The benchmark program 33
5.2 The benchmark setup 36
5.3 The benchmark results 36
5.4 Summary e e e 36
6 Discussion 39
6.1 Considerations for real-time applications 39
6.2 Efficiency 40

6.3 Further work 40

7 Conclusion 43

A Electronic attachment 47
B Translated programs 49
B.1 Simple low level abstraction 50
B.2 Factorisation 54
C Runtime Source Code 65
Cl main.c oL e 66
C.2 ChanManager.h 68
C.3 ChanManager.c 69
C.4 FunctionManager.h Lo 74
C.5 FunctionManager.c L 75
C6 Globalh 78
C.7 Global.c oL e 78
C.8 Network.ho 79
C.9 Network.c 80
C10PeerHash.ho 89
C.11PeerHash.c 90
C.12 TaskManager.h 92

C.13 TaskManager.c i 93

Code

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14

4.1
4.2
4.3
4.4
5.1
5.2

General structure for the ready-to-compile procedure
Struct holding data for each task
The typical case of the ready-to-compile procedure
Code for blocking the task until a node is connected
Code for transferring a procedure to another node
Code for spawning anew task
Struct holding data for spawning tasks and transferring procedures
Code for sending “Hello, world! to another task
Code for receiving from another task
Code for cleaning up when task is complete
Compilation of GUSTAFSON procedures
Starting an instance of GUSTAFSON as a master with no procedure
initially running. oo
Starting an instance of GUSTAFSON as a slave with no procedure
initially running. oL L
Starting an instance of GUSTAFSON as a slave with the procedure
“myProcedure” initially running.
An example of a simple producer/consumer pair
An example of a simple producer/consumer pair - modified

Simple example of distributing work to twonodes
Code 4.3 rewritten to a lower level abstraction
Inefficient factorisation program for benchmark tests
A single core C reference program for the benchmark tests

23
24
24
24
24

25

25

List of Tables

5.1 Results of benchmark tests factorising 15310972286449713778 . . . 37
5.2 Results of benchmark tests factorising 15310972286449713776 . . . 37

List of Figures

2.1 Example of channel communication over network - 1 7
2.2 Example of channel communication over network - 2 8
2.3 Example of channel communication over network -3 9
2.4 Example of channel communication over network -4 10
2.5 Example of channel communication over network - 5 11
2.6 Example of channel communication over network -6 12
2.7 Example of channel communication over network - 7 13
2.8 Example of channel communication over network - 8 14
2.9 Example of simple node connection 17

2.10 Example of interleaved node connection 17

Chapter 1

Introduction

In this thesis, an experimental runtime system developed for running real-time
applications in a multi-computer environment is presented. Structure and imple-
mentation of the runtime will be explained and its applications explored.

The thesis also briefly presents a simple benchmark test of the system.

Initially, the GUSTAFSON runtime system was planned to support the design
of a multi-computer, real-time language. However, as the planning progressed, the
design and implementation of the runtime itself showed to be of considerate size.
As such, this project focus on the runtime, with some consideration of language
design (in chapter 4).

1.1 The name

The runtime presented in this thesis has been given the name GUSTAFSON, which
stands for General Utilisation System for Timed Application and Fast Scheduling
Over Network. The name is a backronym®, and the resulting runtime may neither
be as general nor fast as the name could imply, and only manual, static scheduling
is currently used. It should, however, be a valid description for the ideal the
runtime is shaped after.

1.2 Previous work

The author has for his master’s specialisation project[1] developed an experimen-
tal real-time language with associated compiler and runtime for a single-computer,
multi-core environment. Although this thesis should be regarded as an indepen-
dent project, experiences from the specialisation project will have influenced some
decisions made in this project where their scopes overlap. This is especially true for

LA backronym or bacronym is a phrase constructed purposely, such that an acronym can be
formed to a specific desired word|3].

the task manager (presented in section 2.2), which is designed to avoid problems
faced in the specialisation project.

Chapter 2

Structure

2.1 Terminology

This is a short overview of the terminology used in this chapter.

e System is used to describe the overall system; that is, the nodes connected
together.

Node is one specific instance of the runtime, usually running on its own
computer.

e Peer is sometimes used instead of node to distinguish between one node
(called node) and other nodes (called peers) it communicates with.

Worker is a part of the runtime, running in its own thread.

e A program is executed on the system.

A procedure is a small part of the program, designed to run on a single node.

A task is an instance of a procedure, running on a single node, communicating
with other tasks on the same or other nodes.

Each node is assigned its own unique 4d, used to referring to it in the program.

2.2 Task management

2.2.1 Task state

In a concurrent system, a task will often be described to have a state that reflects
whether the task is being executed, waiting to be executed or is blocked, waiting
for another task to release a resource or finish a computation. An example of such
a set of states is given here:

RUNNING - The task is currently being executed on the CPU.
READY - The task is ready to run, and is waiting for an available CPU.

BLOCKED - The task requires a resource currently held by another task, or
needs the result from another task’s computation.

FINISHED - The task has completed, and may be deleted.

GUSTAFSON has a set of states that is based on these, but more states are added
to distinguish between different reasons for the task to be blocked, and for the task
to request actions from the runtime system.

NEW - The state of the newly created task. The runtime set the state to
NEW when the task is created, so that the task will do necessary initialisa-
tions when run for the first time.

READY - The task is ready to run, and is waiting for an available CPU in
a FIFO queue. Both the task itself and the runtime may set a task state to
READY.

CHANR - The task requests to read a channel. This may or may not block,
depending on whether the channel has data available or not. This state
is set by the task, but the runtime may return the task to this state from
CHANRNW.

CHANW - The task requests to write to a channel. This may or may not
block, depending on whether the channel has free buffer space or not. This
state is set by the task, but the runtime may return the task to this state
from CHANWNW.

NODEWAIT, CHANRNW, CHANWNW - The task is waiting for another
node to appear in the system. NODEWAIT is set by the task to tell the
runtime to check whether a given node is ready, and to wait for it if it is
not. CHANRNW and CHANWNW (“channel read node wait” and “channel
write node wait”) is set by the runtime if a channel operation could not be
performed because the corresponding node is not ready.!

TRANSFER - The task tells the runtime to transfer a procedure to another
node.

SPAWN - The task tells the runtime to execute a task on this or another
node. Arguments are given to tell the task what channels to use, and what
nodes to communicate with.

DONE - The task is finished, and the runtime should delete the entry.

IThe CHANWNW state could have been omitted, since the transmitted data is buffered in
both the sending and receiving node until read by the destination task. It has, however, been
included to simplify the runtime, and to make read and write operations more similar.

2.2.2 Operation

The task manager contains of a queue of non-blocking tasks, and a number of
workers that fetch tasks to run from this queue. The tasks in the queue can both
be ready to be executed and ready to perform channel communication. In the first
case the task will be in the state NEW or READY, and in the latter case the state
will be CHANR or CHANW, and has been put in this state by the runtime from
CHANRNW |CHANWNW (see section 2.4).

If the task is ready to run it is executed. Afterwards, the state of the task
is checked again, and if the state is READY the task is put back in the queue.
Any other state will trigger additional actions, such as channel communication or
spawning a new task. If this action does not block, the state of the task is then
returned to READY, and the task is put back in the queue. If the action blocks,
the task will be handled by other parts of the runtime (see sections 2.3 and 2.4).
If the action is to delete the task (the state is DONE), the task is of course neither
returned to the queue nor stored in other parts of the runtime.

2.3 Channels

All communications between tasks are made by asynchronous channels. The chan-
nels are made asynchronous since they partly communicate over network, and
synchronous channels would therefore in many cases cause unacceptable delay. If
procedures should need synchronous communication, such channels may easily be
built on top of asynchronous channels.

Channels are bi-directional and both the sender and the receiver specify the
number of bytes they want to read /write on each operation. It is up to the user? of
the system to ensure that the transferred data is assembled back into the correct
data structure, and that any difference in byte ordering between host is com-
pensated for. Due to this, and other design choices, channels communication is
restricted to be one-to-one, although it is not enforced by the runtime and it will
again fall to the user to ensure correct use.

The runtime system maintains two buffers for each channel; one for read and
one for write. If the communicating tasks are on different nodes both nodes holds
a copy of each of the buffers, but the buffers are not duplicated if the tasks reside
on the same node. This design is chosen so that the task may return quickly from
a channel operation® while the potentially slow network communication is carried
out by a number of parallel workers.

Each channel holds a queue* of blocked tasks. These tasks are blocked due to

2 The user may refere to both machine (compiler) or manual programming.

3Given that the operation does not block due to an empty buffer in case of a read operation
or a full buffer in case of a write operation.

4Due to the channels being one-to-one, the queue size should never exceed one. The design
and implementation do, however, not hold this limitation, partly to allow the use of queue design
from other parts of the runtime (that allows longer queues of blocked tasks), and partly to allow
future implementations of one-to-many/many-to-many channels.

an empty /full buffer. Tasks that are blocked because they are waiting for another
node to register in the system are managed by another part of the runtime. (See
section 2.4.)

2.3.1 Example

Figures 2.1 through 2.8 shows an example of one task on one node sending the
string “Hello, world!” to another task on another node. The top of the figures
show the memory in which the string to be sent resides. Below follows the send
buffer of the sending node and the receive buffer of the receiving node and finally
the memory the receiving task has allocated for the string.

The sending buffer holds three pointers to manage the data transfers; swPtr,
ssPtr and srPtr which is the write pointer, the send pointer and the read pointer,
respectively. The write pointer points to the next place in the buffer to write
to. If it points to the place before the read pointer, the buffer is considered full
(meaning that the effective capacity is one byte less than the allocated memory for
the buffer.) The send pointer points to the next byte in the buffer to send over the
network to the receiving node. The read pointer points to the next byte for the
receiving task to read, and reflects the state of the receive buffer on the other node.
It is in other words updated when the sending node receives an acknowledgement
from the receiving node that the receiving task has read some of the transferred
data.

The receiving buffer is similar, but only holds two moving pointers; rwPtr and
rrPtr, the write and read pointers, respectively. Data received over the network
is put at the location pointed to by the write pointer, and the receiving task gets
data from the location pointed to by the read pointer.

With the assumption of instant network transfers, the two buffers on the two
nodes will be identical, and the write and send pointer on the sending side will point
to the same location. This assumption does of course not hold, but the buffers will
still be identical when the system is in a stable state with no data waiting to be
sent over the network, as it is when it is idle (neither of the communicating task
wish to send or receive), only the receiver is ready, or only the sender is ready and
it has filled the buffers.

The progress of this example is described in the captions of the figures.

2.3.2 Local communication

When both the sender and the receiver resides on the same node the matter is
somewhat simplified, but also somewhat complicated. Simplified because all steps
involving network transfers and acknowledgements is no longer necessary, but com-
plicated because each buffer is both a read and write buffer, depending on which
task that is using it. The system solves this by recording the first task that access
the channel, and later it will compare any task accessing the channel to the record,
deciding what buffer to use on this basis.

comPir

|
]

l x l P l = |.0. | | i |w. | '°'| v I " ‘ .d-‘ y | \0 | comSizs = 14
sBuffer + ;
sBuffer BUFFERSIZE ~— Sending node

rBuffer +
BUFFERSIZE

—— Receving node

| | | | | | | | | | | | | | | MBI

Figure 2.1: Both the sender and the receiver is ready to start the transfer and the
buffers are empty. The receiving task is blocked and suspended, and the channel
manager will wake it when the buffer holds data for it to read.

comPtr
l | l l | | I,I | B |lwI | IOI | Irl I III ‘ Idl ‘ I!I | \0 | e
sBuffer + :
sBuffer BUFFERSIZE ~— Sending node
| | | | | | IHI | Ie' | III | III | IOI |
ssPir
swPtr i
-
—
rBuffer +
rHulfar BUFFERSIZE
T —— Receving node
wPlr
riPtr
comPlr
| | | | | | | | | | | | | | | MBI
—_—

Figure 2.2: The sender has transferred the first part (“Hello”) to the send buffer.
There is still room for more in the buffer, but the end of the allocated buffer is
reached, so the transfer is done in two parts.

comPtr

|
[Fe e[] e [e [e o e]

mSize =5
sBuffer + :
sBuffer BUFFERSIZE ~— Sending node
|||w|0| |'H'|'e'|'l'|'l'|'o'|
ssPtr
WP Sy
P
—
rBuffer +
Buffer BUFFERSIZE

=— Receving node

| | | | | | | | | | | | | | | SR

Figure 2.3: The sender has transferred the second part (“, wo”) to the send buffer.
The buffer is now full, as the effective capacity of the buffer is one byte less than
the allocated memory. The sending task is now blocked as it still need to send
“rldI\0”, and it is suspended until the channel manager wakes it up.

comPtr

|
e le o [[o]] wlo]e]r]e]r 0] onse-

sBuffer + i
sBuffer BUFFERSIZE — Sending node

@

!
HEEERGODNG
(i

WPl
el
-
"Hello"
" wo"
—_—
rBuffer +
rBuffer BUFFERSIZE
LT Twle] [w[e]r]v]v]
T T —— Receving node
wPtr rrPtr
comPtr
—

Figure 2.4: The content of the buffer is sent over the network to the receiving
node. This is actually done in two parts, similar to the transfer to the buffer, but
is shown in one figure to simplify the example. The receiving task is no longer
blocked and is waked by the channel manager to resume the write operation.

10

comPtr

|
A FREAERE] e

sBuffer + :
sBuffer BUFFERSIZE — Sending node

.
Got 5 bytes
Got 4 bytes
T———
Buffer +
rBuffer BUFFERSIZE
wl'h = Receving node
Rt
comPtr
| 'H'| e | T | T | o' | v | " |‘w' | o | | | | | | omSize =5
P

Figure 2.5: The receiver now copies the content of the receive buffer to its al-
located memory. Again, this is actually done in two parts, but the example is
simplified to show it in one figure. As the receiver reads the data, it sends an
acknowledgement to the sender, which in turn moves its read pointer, and frees
buffer space. The buffers are now empty again, meaning that the sending task
is unblocked and resumes write operation, while the receiving task is once again
blocked and suspended.

11

[e[[[e [e [[

sBuffer +
BUFFERSIZE

! }
[[e[7] [w] 7 [a] <]
f f

ssPtr
srPtir

sBuffer

swPtr

rBuffer +

Buffer BUFFERSIZE

comPtr

t
el ol el T 11 1]

comPtr
| comSize =0
= Sending node
-
—
=— Receving node
comSize =5
R

Figure 2.6: The sender now copies the rest of its message (“rld!\0”) to the buffer.
It has now completed its part of the transfer, and returns to its execution.

12

comPtr

I||II||I|IIII||lm=°

sBuffer giiouer = Sending node
Ll Lol [l e fo]]

swPtr
ssPir

srPtr

“rldho"

rBuffer +

rBuffer BUFFERSIZE

L[fefofefola]r]u]s]
T T =— Receving node

mPtr rwPtr

comPtr

|.H.| ,e.l " | " | 'o'| | " |'w‘|'o‘| | | | | | comSize=5

Figure 2.7: The content of the send buffer is again sent over the network to the
receiver. The receiving task is unblocked and resumes the read operation.

13

sBuffer + v
sBuffer BUFFERSIZE —— Sending node

Got 5 bytes

Buffer +
BUFFERSIZE

L5 = e e [0 | e [
f

wPtr
rrPtr

—— Receving node

comPtr

e[o[[[w]o]r[r[a]v]w0] s

Figure 2.8: The rest of the message is copied from the receive buffer to the allocated
memory. An acknowledgement is sent to the sender, and the receiving task has
completed the communication and returns to its execution. Both buffers are now
empty and ready for a new transfer.

14

2.4 Node and network managing

2.4.1 Connecting to other nodes

In most aspects, the nodes of the system may be regarded as equals. The system
is peer-to-peer and all nodes communicate directly with all other nodes. However,
when the system is starting up, one node is designated master and all other nodes
are told to connect to this node. When a node connects to the master it is informed
of any other node currently connected to the master, and it will in turn connect
to these other nodes as well.

Whenever a node connects to the master the master accepts the connection and
sends a “handshake” to the node. The handshake contains the id of the master and
the IP address and port number of all other nodes already connected to the master.
When receiving the handshake, the connecting node stores the id of the master
and sends a handshake back to the master. This handshake is on the same form as
the one from the master, and contains the id of the node, and the IP address and
port number of all connected nodes.” When the master receives this handshake, it
stores the id of the node, and replies with another handshake. This handshake will
be identical to the previous handshake the master sent, unless another node has
connected to the master in the meantime and is completely added®, in which case
the IP address and port number of this new node is included in the handshake
as well. When this handshake is sent, the master adds the node’s IP address
and port number to the handshake it will sent to subsequently connecting nodes.
Upon receiving this second handshake from the master, the node connects to all
the nodes specified in the handshake in the same way it connected to the master,
except it will not connect to any nodes received in handshakes from other nodes
than the master.

Figure 2.9 illustrates how node 2 connects to the master (node 1). Node 3 is
already connected to the master, and node 2 connects to this node after connecting
to the master.

Figure 2.10 illustrates how two nodes (node 2 and 3) connects to the master
at the same time. Small differences in timing may decide if node 3 should connect
to node 2, or vice versa. In this example the master deal with the handshake from
node 3 first, and thereby have node 3 completely registered before node 2, and
so it will be node 2 which connect to node 3. In the example we can also see
that the master sends its first handshake to node 2 first, but this is of little to no
consequence.

It is interesting to note that apart from that the master does not try to connect
to another node on start-up, it behaves exactly like any other node in the system.
In other words, naming any existing node as master to a new node when adding
it would work just fine, but with one exception: if two nodes join the network at
approximately the same time, connection to two different masters, they may not

5This list is empty at this time of the operation, the master is added to the list after the
handshake is sent.
6«“Completely added” means that the master has sent its second handshake to the node.

15

discover each other. For this reason, all nodes should connect to the same master.

2.4.2 Managing other nodes

All nodes know of all other nodes (its peers). The peers are stored in three different
data structures; a linked list, a hash table and a string. In addition to the socket
used for communicating with the peer, the id and address informations are stored.

The linked list is used for closing all connections when restarting the system
(on critical errors). Peers are added to the list as they connect to the node, or as
the node connect to them.

The string is the handshake used when the node connects to peers, or peers
to connect to it. If the node is the master, the connecting peer will use this
information to connect to all other peers connected to the master. (See section
24.1)

The hash table use the peer id as key and “key modulo number of buckets”
as hash function. Peers will be added when the node receives a handshake, but
an entry will also be made if a program makes a reference to a peer not yet
connected, that is, the program attempts channel communication with a peer that
is not connected, or explicitly tells the runtime to wait for a peer to be ready (by
setting it’s state to NODEWAIT, see section 2.2.1).

These three data structures are split between two modules; the network module
holds the linked list and the string, while the hash table is held by an individual
module called PeerHash, after the data structure it holds. While the network
module is responsible for the actual communication with, and connection to, other
nodes, the PeerHash module offers functionality for quickly retrieving the peer
information given the id (used by the channel communication module and the
network module) and is responsible for storing and waking tasks that are blocked
waiting for a peer to connect.

2.5 Summary of task storage

In summary, when a task is not executed” it is stored in one of three possible
locations; the queue of ready-to-run tasks (see section 2.2.2), the channel module
(tied to a channel blocking the task, see section 2.3), or the PeerHash module
(waiting for a peer to connect to the node, see 2.4.2).

2.6 File and procedure managing

A program consists of a number of procedures. When the program is prepared to
run on GUSTAFSON, each procedure is compiled as a dynamic linkable library
and placed in its own separate file with the same name as the procedure. The entry

"Non-blocking channel communication and other non-blocking actions is included in the term
execute here

16

(Master)
03.0.113.1
port; 10000

id: 3 (Conneted to master)
ip: 203.0.113.3
port: 10000

Create entry
for node 2

Set id for node 2

id: 2

ip: 203.0.113.2

port: 10000

Connect
> Create entry for master

Handshake N
Handshake) Setid (1) for master
Handshake

Add the node 2 to me<
“handshake-string”

Craate entry for node 3

Setid for node 3

Connect to all nodes
received from master

»

Connect
Create entry
for node 2
Handshake
Handshake
Handshake > Set id for node 2

Figure 2.9: Example of simple node connection

id: 3 id: 1 (Master) id: 2
ip: 203.0.113.3 203.0.113.1 ip: 203.0.113.2
port: 10000 port: 10000 port: 10000
Connect | Connect
Create entry for master (Create entry > Create entry for master
for node 2 Handshake
Cfrealzdentary > Setid (1) for master
Handshake '°' "°%°
Setid (1) for master <
Handshake = Handshake
Set id for node 3 <
Handshake
Received no nodes
from master, performes < Add the node 3 to lhs<
no more actions "handshake-string"
Set id for node 2 < Handshake
> Connecls to nodes
Add the node 2 to Iha(> received from the
"handshake-string" master (node 3)
Connect

Figure 2.10: Example of interleaved node connection

17

point (main procedure) of the program to run is specified on one of the nodes when
the runtime is started. See section 3.2.2 and 3.3 for more information on this.

It is actually possible to specify several independent, or even dependent, pro-
grams to to run simultaneously (one for each node), however, extra care must be
taken when designing such programs as the system will not validate that several
programs do not use the same channels.

GUSTAFSON holds functionality for transferring the function files to the nodes
that needs them. This is invoked manually by the task setting its state to TRANS-
FER (see section 2.2.1). The designer of the program is responsible for ensuring
that any node holds the needed files before the program tries to spawn a task from
the corresponding function on that node. Since the transferring functions is a rel-
atively slow operation®, it might be wise for the designer to ensure that all nodes
have the needed files before the program is run, and not make the program itself
do the transferring of files. The designer should however be aware that trying to
spawn a task on a node where the corresponding file does not exist, will cause a
critical error, restarting the entire system (see section 2.8).

2.7 Creating new tasks

A task can spawn a task from any procedure on any node (given that the procedure
has been transferred to that node, see section 2.6). This is done by the task setting
its state to SPAWN (see section 2.2.1) after setting the needed arguments for
spawning the new task. The arguments are which procedure to create the task
from, what node to spawn the task on, what channels to use, and on which nodes
the tasks using the other ends of those channels resides.

The runtime will send this information to the given node, which will spawn the
new task. If the node to spawn the new task on is the same as the source task is
running on, the runtime will of course spawn the new task itself.

2.8 Error handling

To simplify the system, every error is treated as a critical error and restarts the
system. If a node encounters an error, it closes down its connections to its peers,
and restarts the runtime. The peers will intrepid the closed connection as errors,
and will in turn shut down their own connections and restart.

There is a delay on the restart to allow all connections to be closed, and all
peers to go in error mode before the restart. This delay is shorter for the master
node than the slaves. This makes it probable that the master is ready to accept
incoming connections before the slaves restart.

8In this implementation, the operations ties up a worker for the entire duration of the transfer
(in contrast to channel communication, which has its own dedicated set workers), and thereby
slows down the program additionally. This is done to simplify the system, as the transferring of
files is somewhat less interesting than the remaining scope of this project.

18

Chapter 3

Implementation

3.1 Runtime

The source code for the runtime is given in appendix C, and the electronic attach-
ment (see appendix A). The description of its structure and behaviour is given in
chapter 2. This section gives a short description of the modules/files the runtime
is divided into.

3.1.1 Channel manager

The source code is given in appendix C.2 and C.3. This module is responsible for
the channel communication.

It uses the network and PeerHash modules (see sections 2.3 and 2.4). It is used
by the Task manager.

3.1.2 Function manager

The source code is given in appendix C.4 and C.5. This module is responsible for
loading procedures from files and instantiating them to tasks (together with the
task manager). It also stores files/procedures received from other nodes, and reads
files to send to other nodes.

The module uses the task manager, and is used by the task manager and the
network module.

3.1.3 Network and PeerHash

The source code is given in appendix C.8, C.9, C.10 and C.11. The network module
is the largest module in the system (in terms of code lines). It is responsible
for connecting to, and communicating with other nodes. The PeerHash module
stores tasks blocked due to missing (not yet connected) peers, and retrieves peer
information given the peers id/node id (see section 2.4.2).

19

Tt W N~

These modules use, and/or are used by, all the other modules.

3.1.4 Task manager

The source code is given in appendix C.12 and C.13. The task manager manages
the queue of the tasks that are ready to run, and holds a number of workers that
execute the tasks from this queue (see section 2.2).

The module uses all the other modules, and is used by many of them.

3.1.5 Other

A main-function, given in C.1, reads the needed arguments for the system, and
starts it. It also restarts the program in case of critical errors.

The system has one global variable (given by “Global.h” and “Global.c”, see
section C.6 and C.7) used to coordinate the restart of the system in case of errors.

3.2 Prepared programs

3.2.1 Syntax and structure

This section describes the form the procedures to be run on GUSTAFSON must
have, before being compiled/linked!. Each procedure must reside in its own file,
with the general form shown in code 3.1. The argument to the procedure (in-
stanceStruct, see code 3.2) contains fields needed to communicate with the runtime,
remembering what part of the (re-entrant) procedure that currently is executed,
and pointers to the memory used internally in the procedure and memory used by
channel communication?.

Code 3.1 General structure for the ready-to-compile procedure

void procedure name(struct InstanceStruct xinstance){
switch(instance —>step) {

}

As shown in code 3.1, all code in the procedure is placed in a switch. When the
procedure is given CPU-time, it runs the case given by argument instance->step.
Before relinquishing the CPU, the procedure updates instance->step to the next
case to run, typically incrementing it for sequentially code, or setting it to lower

IThat is, the form when written in C. In a practical application, the procedures would probable
not be translated to C, but rather an intermediate/assembly language. It is, however, more
practical to present the form in C, and this form will of course also tell the seasoned compiler
designer much about the form of the intermediate/assembly language.

2These memory areas may, or may not, overlap.

20

Nelie JBEN B« S N A

11
12
13

Tt W N~

Tt W N~

Code 3.2 The struct holding the needed data for each task. The task itself uses
all fields except the first (funStruct) and the last two (next/prev).

struct InstanceStruct{
struct FunStruct xfunStruct;
void smemPtr;
int xchanTrans;
int step;
enum InstanceState state;
void *comPtr;
int comSize;
int localCh;
int nodeWait;

struct InstanceStruct s*next, sprev;

or higher values to implement branches and loops. A simple case is given by code
3.3.

It is also shown in code 3.3 how the procedure updates its state before it returns.
The states are explained in section 2.2.1, but it is in this section shown the practical
use. Apart from updating the instance->step, no additional information is needed
for the procedure to pass to the runtime for the state READY. Most other states,
however, needs additional information to be saved in the instance struct before
returning.

The state NODEWAIT is illustrated in code 3.4. What node to wait for is
given to the runtime (in instance- >node Wait).

Code 3.3 The typical case of the ready-to-compile procedure

case N:
/*Do workx/
instance —>step = N + 1;
instance —>state = READY;
return;

Code 3.4 Code for blocking the task until node 7 is connected

case N:
instance —nodeWait = 7;
instance —>step = N + 1;
instance —>state = NODEWAIT;
return;

21

ot =W N =

NeloIIEN BN

The states TRANSFER and SPAWN has some similarities. In both cases a
struct SpawnStruct (see 3.7) must be filled with needed information. The name
of the procedure to be transferred or spawned must be supplied in both cases.

SPAWN also needs information of the channels the procedure will use (see 2.3).
Examples of cases for TRANSFER and SPAWN are given in codes 3.5 and 3.6.

Code 3.5 Code for transferring a procedure to another node. The allocation of
memory may have been done already, in the initialisation, or a previous transfer.
The SpawnStruct (see code 3.7) is filled with the data needed to transfer the
procedure; the name of the procedure (line 5) and the node to transfer it to (node
9, line 6).

case N:
instance —>comSize = sizeof(struct SpawnStruct);
instance —comPtr = malloc(instance—>comSize);
((struct SpawnStructs)instance—>comPtr)—>name = malloc(strlen (

"proc_name") + 1);

strepy (((struct SpawnStruct*)instance —>comPtr)—>name,"
proc_name") ;

((struct SpawnStructs*)instance—>comPtr)—>peerld = 9;

instance —>step = N + 1;
instance —>state = TRANSFER;
return;

Cases for sending and receiving data over channels are given by code 3.8 and 3.9.
In addition to pointers to the memory area to read from/send to, the procedure
needs to supply the number of bytes to be sent/received.

Finally, a case for cleaning up after the procedure is given in code 3.10. All
allocated memory is freed (it may be more than given in code 3.10) and the state
is set to DONE.

3.2.2 Compilation

To prepare a procedure formatted as shown in section 3.2 to be run on the runtime
GUSTAFSON, it should be compiled as a dynamic linkable library. Each proce-
dure needs to reside in its own file, and the file must have the same name as the
procedure. Code 3.11 shows the compilation in gcc.

22

W N =

10

11
12
13
14
15

Code 3.6 Code for spawning a new task on node 11. The allocation of memory
may have been done already, in the initialisation or a previous transfer. The
SpawnStruct (see code 3.7) is filled with the data needed to spawn a new task; the
name of the procedure (“proc_name”, line 5), the node to run it on (node 11, line
6), the number of channels (N CHANNELS, line 7) and the data for each channel
(CHAN ID/PEER_ID, line 9-10).

case N:
instance —>comSize = sizeof(struct SpawnStruct);
instance —>comPtr = malloc(instance—>comSize);
((struct SpawnStructs*)instance—>comPtr)—>name = malloc(strlen (

"proc_name") + 1);

strepy (((struct SpawnStruct*)instance —>comPtr)—>name,"
proc_name") ;

((struct SpawnStructx)instance —>comPtr)—>peerld = 11;

((struct SpawnStructx)instance —>comPtr)—>ctSize = 2 x
N _CHANNELS * sizeof(int);

((struct SpawnStructs)instance —>comPtr)—>chanTrans = malloc (
N _CHANNELS * sizeof(int));

((struct SpawnStructs*)instance —>comPtr)—>chanTrans[0] =
CHAN_ID;

((struct SpawnStructx)instance —>comPtr)—>chanTrans|[1l] =
PEER_ID;

/*And so on for other channelsx/

instance —>step = N + 1;
instance —>state = SPAWN;
return;

Code 3.7 Struct holding data for spawning tasks and transferring procedures

struct SpawnStruct{
char s*name;
int xchanTrans;
int ctSize;
int peerld;

}s

23

W 00] O Ot W N =

0 =1 O U W N

Tt W N =

Code 3.8 Code for sending “Hello, world!” to another task. The id of the node the
receiving task is running on and a global channel identifier in the array chanTrans
(see code 3.2) based on the number CHAN ID. “comPtr” will often be set to
point to an existing memory area (an offset of instance->memPtr), rather than
allocating a new memory area and copying data to it (line 3-4).

case N:
instance —>comSize = 14;
instance —>comPtr = malloc(14);

strcpy (intance —>comPtr, "Hello,_world!");
instance —>localCh = CHAN_ID;

instance —>step = N + 1;
instance —>state = CHANW;
return;

Code 3.9 Code for receiving 14 bytes from another task. The received data is
stored at the existing memory area pointed to by “instance->memPtr + 42” (line

case N:
instance —>comSize = 14;
instance —>comPtr = instance —memPtr + 42;

instance —>localCh = CHAN_ID;

instance—>step = N + 1;
instance —>state = CHANR;
return;

Code 3.10 Code for cleaning up when task is complete. Freeing of other memmory
areas may be needed, depending on the procedure. The instance state is set to
DONE, so that the runtime will delete the task.

case N:
free (instance —>memPtr) ;
instance —>step = 0;
instance —>state = DONE;
return;

Code 3.11 Compilation of GUSTAFSON procedures

gcc —shared —nostartfiles —o procedure name procedure _name.c —g

24

1

3.3 Running GUSTAFSON

This section briefly describes how to run GUSTAFSON in a multi-computer envi-
ronment.

When starting an instance of GUSTAFSON on a node the instance must be
set up as either a master or a slave (see section 2.4.1), and it may or may not be
given a procedure to run. This totals to 4 different modes to run GUSTAFSON
in.

Common for all modes is that the two first arguments should specify the unique
id of the node and the local (tcp) port to listen for new connections on. If no other
arguments are given, the instance starts as a master, with no procedure running
on it initially. See code 3.12 for an example.

Code 3.12 Starting an instance of GUSTAFSON as a master with no procedure
initially running. The node id is set to 2, and the instance listens to tcp port 1045
for incoming connections.

./runtime 2 1045

To start the instance as a slave the flag -c is given, followed by the ip address
and tcp port of the master. See code 3.13 for an example.

Code 3.13 Starting an instance of GUSTAFSON as a slave with no procedure
initially running. The node id is set to 3, and the instance listens to tcp port
1045 for incoming connections. The slave will connect to the node with ip address
10.0.0.1 on tcp port 1045.

./runtime 3 1045 —c 10.0.0.1 1045

To run a procedure on the instance the flag -p is given, followed by the proce-
dure name. This extension can be added both to master and slave instances. See
code 3.14 for an example.

Code 3.14 Starting an instance of GUSTAFSON as a slave with the procedure
“myProcedure” initially running. In all other aspects, the instance is equal to the
one given in code 3.13.

./runtime 3 1045 —c 10.0.0.1 1045 —p myProcedure

25

26

Chapter 4

Applications

The runtime presented so far in this report would of course have little practical use
without a language to use with it. Although the full design and implementations
of such languages and associated compilers fall outside the scope of this thesis,
this chapter will present a rough outline of such languages.

In this chapter, two levels of abstraction that can be used when programming
for GUSTAFSON is shown. The lower level of abstraction is to apply a simple
language where it is still the programmer’s responsibility to specify what part of
the program that should be split in separate tasks and on what nodes to execute
each task.

On the higher level of abstraction, a more standard type of language is applied.
In this case the compiler will split the program in tasks and assign the tasks to
different nodes, based on simple or complex analysis.

4.1 Low level abstraction

4.1.1 Example

Code 4.1 shows an example of a simple producer/consumer pair, written in a
language suited to be converted to a program intended for GUSTAFSON. This
language contains, in addition to the usual if, while, procedures and so on, syntax
for:

e waiting for other peers to connect/be connected to - WAITFOR <node id>

e transferring files/functions to other nodes - TRANSFER <procedure name>
<node id>

e reading from and writing to channels - CHAN(<chan number>) ! var and
CHAN(<chan number>) ? var

e spawning tasks on other peers (or the same node) - SPAWN <procedure
name> <node id> <channel information>

27

Code 4.1 An example of a simple producer/consumer pair

1 PROCEDURE f1

2 FOR a = 1 TO 42
3 CHAN(1) ! a
4 END

5 CHAN(2) ! a

6 END

7

8 PROCEDURE {2

9 b=20

10 WHILE b != 42
11 CHAN(1) ? b
12 PRINT b

13 END

14 CHAN(2) ! b

15 END

16

17 PROCEDURE main

18 WAITFOR. 2

19 WAITFOR. 3

20 TRANSFER f1 2
21 TRANSFER 2 3
22 SPAWN f1 2 (1:3, 2:1)
23 SPAWN f2 3 (1:2, 3:1)
24

25 CHAN(1) ? a

26 CHAN(2) ? a

27

28 PRINT "DONE!"
29 END

28

The syntax WAITFOR and TRANSFER should be relatively simple to under-
stand; see sections 2.4.2 and 2.6 for descriptions of their functions.

The syntax for reading from and writing to channels are partly inspired by
occam|2]; ! and ¢ is used to indicate writing and reading, respectively. CHAN(...)
is used to indicate the channel to use. Chan number is an identification local to
the current procedure. The runtime will translate this to a globally valid channel
id.

SPAWN starts a new task. The first two arguments are the same as for
TRANSFER; they indicate the procedure to create a task from and the node
to run it on. The last argument is a translation from the local channel identifica-
tion used in procedures, to globally valid channel id and peer id. The argument
is on the form (<chan id>:<peer id> [,<chan id>:<peer id>]*) and contains a
chan id/peer id pair for each channel used in the procedure.

In the example (code 4.1), lines 1 through 6 gives the producer (called f1). The
producer produces the numbers from 1 through 42 and writes them to channel 1
(local id). Afterwards it writes 42 to channel 2.

The consumer (called f2) on lines 8 through 15 is similar; the consumer reads
numbers from channel 1 and prints them. When the consumer reads the number
42, it exits, after writing 42 to channel 2.

Lines 17 through 29 gives the main. The main, designed to run on node 1,
spawns a producer on node 2 and a consumer on node 3. Lines 18 and 19 instructs
the main to wait to nodes 2 and 3 are connected. Then the procedure files for the
producer and consumer are transferred to nodes 2 and 3 (lines 20-21). Lines 22
and 23 spawns the producer and consumer on the remote nodes, and sets up the
channels. Channel 1 on the producer is tied to channel 1 on the consumer, and
channel 2 on both the producer and consumer is tied to the main, to channels 1
and 2, respectively. Finally, the main listens to channels 1 and 2, to tell when the
producer and consumer are finished, and prints “DONE” when they are.

The translated versions of main, f1 and 2 are given in the electronic attachment
(main.c, fl.c and 2.c), and in the appendix, section B.2.

4.1.2 Application

Manually programming in this low level abstraction does not seem feasible, since
the programmer is charged with the responsibility of managing and assigning tasks
to nodes, and the set up and use of channels is somewhat complex.

However, consider the same example given in code 4.2 with a slightly higher
lever of abstraction. In this example it is not the concern of the programmer to
decide what tasks should run on what nodes, nor to manually check which nodes
are ready; this responsibility is left to the compiler!, or even the runtime. The
programmer also uses variables for the channels, both for the actual communica-

IThe compiler would of cause not check which nodes are ready, since this obviously must be
done at runtime, but rather insert the code for checking if nodes are ready at the appropriate
place.

29

O 00 1 O U W N =

NN N NN NN = e e e e e
DO WN RO OO0 WwN e~ O

Code 4.2 An example of a simple producer/consumer pair - modified

PROCEDURE f1 (chl, ch2)
FOR a = 1 TO 42
chl ! a
END
ch2 ! a
END

PROCEDURE f2 (chl, ch2)
b=0
WHILE b = 42
chl 7 b
PRINT b
END
ch2 !' b
END

PROCEDURE main
CHAN cha, chb, chc
SPAWN {1 (cha, chb)
SPAWN {2 (cha, chc)

chb 7 a
che 7 a

PRINT "DONE!"
END

30

tion, and when setting up the tasks. This level of abstraction may be suited for
actual use.

Without these modifications, however, this low level abstraction is still suited
for an intermediate language.

4.2 High level abstraction

4.2.1 Example

As specifying the code for each task as an individual procedure is both time con-
suming and potentially greatly increase the number of code lines, a higher abstrac-
tion is desired.

Consider we want to encrypt a string with the hypothetical function encrypt().
Assume the unspecified method of encryption lets us split the string in several
parts, encrypt them separately, and reassemble the encrypted strings, forming the
same encrypted message as if we where to have encrypted the whole string in one
piece. The task is in other words well suited for parallelisation.

Code 4.3 shows a simple program to encrypt two strings in parallel. The key-
word PAR (loosely inspired by occam[2]) indicate that every statement between it
and the associated END should be run in parallel. The compiler is left responsible
for splitting the code into procedures and setting up the needed channels.

The same program is transposed to a lower level abstraction in code 4.4. The
number of lines are approximately doubled (not counting blank lines), even when
the TRANSFER and WAITFOR commands used in code 4.1 are omitted. The
readability is also reduced, even in this simple example.

4.2.2 Application

A high level abstraction language like this would be suited for many applications.
However, the ability to manually specify tasks is still in many cases useful, so the
functionality of a high level abstraction like in code 4.3 should come in addition
to the functionality shown in section 4.1.2.

31

N O Ot W N =

O 00 DT W N =

Code 4.3 Simple example of distributing work to two nodes

FUNCTION main
PAR
a = encrypt("This string should be encrypted")
b = encrypt("And so should this");
END
PRINT a + b
END

Code 4.4 Code 4.3 rewritten to a lower level abstraction

FUNCTION f1
CHAN(1) ! encrypt("This string should be encrypted")
END

FUNCTION {2
CHAN(1) ! encrypt("And so should this")
END

FUNCTION main
SPAWN f1 2 (1:1)
SPAWN f2 3 (2:1)

CHAN(1) ?

GHAN(2) ?

PRINT a -+
END

a
b
b

32

Chapter 5

Benchmark

5.1 The benchmark program

This chapter presents a simple benchmark test. By using a simple (and inefficient)
algorithm for factorising a number into its prime components, it is shown how a
near ideal! task for parallelisation is executed on nine? nodes. The program, writ-
ten in the “Low level GUSTAFSON language” given in section 4.1, is given in code
5.1. Three different implementations are used (given in appendix B.2), differing
on how the while- and for-loops (lines 4 and 5 in code 5.1) are implemented.

The implementation referred to as “-O0” returns to the runtime for each it-
eration of the loops, clearly resulting in massive overhead as the inner loop (the
for-loop on line 5) totally iterates approximately equal to the sum of the factors of
number being factorised, which may be in the millions, and even billions for some
numbers.

The “-O1” implementation does not return to the runtime for each for-loop
iteration, but rather uses the for-loop directly. It still returns to the runtime
for each iteration of the outer loop (the while-loop on line 4). This reduces the
overhead from the “-O0” implementation.

Finally the “-O2” implementation returns to the runtime at neither loop. As
the while-loop typically has few iterations, this should not have a large impact on
performance compared to the “-O1” implementation.

A single code version of the program is given in 5.2 and is used as a reference.

!deal in the sense that it has one independent component for each node, and the components
are of the same size.

?Eight nodes are doing the computations, while one node acts as a controller. Having a
separate node as a controller is not necessary, but simplify the example.

33

Code 5.1 Inefficient factorisation program for benchmark tests

1 PROCEDURE work

2 CHAN(1) ? number

3

4 WHILE number != 1

5 FOR factor = 2 TO number

6 IF number MOD factor — 0
7 PRINT factor

8 number = number / factor
9 BREAK

10 END

11 END

12 END

13 CHAN(1) ! number

14 END

15

16 PROCEDURE main
17 WAITFOR 2

18

19 WAITFOR. 9

20

21 SPAWN work 2 (1:1)
22 SPAWN work 3 (2:1)
23 SPAWN work 4 (3:1)
24 SPAWN work 5 (4:1)
25 SPAWN work 6 (5:1)
26 SPAWN work 7 (6:1)
27 SPAWN work 8 (7:1)
28 SPAWN work 9 (8:1)
29

30 //Ezample values, the actual values used differs

31 CHAN(1) ! 70312316987348207
32 CHAN(2) ! 8560050841190522549

33
34 CHAN(8) ! 9223372036854775783
35

36 CHAN(1) ? a

37 CHAN(2) ? a

38

39 CHAN(S8) 7 a

40

41 PRINT "DONE"

42 END

34

O 00 DO W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Code 5.2 A single core C reference program for the benchmark tests

#include <stdio.h>
#include <stdlib .h>
#include <limits.h>

int main(int argc, char xxargv){

if (arge < 2)
return —1;

long long unsigned int n = strtoull (argv[1l], NULL,

if(n — ULLONG MAX || n = 0)

return —1;

long long unsigned int f;
while(n != 1){
for(f = 2; f <= n; ++f){
if(n % f = 0){
printf ("%llu\n", f);
n=n/ f;
break;
}
}
}

return 0;

10);

35

5.2 The benchmark setup

Nine identical machines were used in the benchmark tests. The reference program
ran on one, while the GUSTAFSON program used one computer as a controller
and an other eight to do the computations.

The GUSTAFSON program does eight times the work of the reference program
(it factorises the same number eight times, once on each work node), meaning the
computation time for it is directly comparable with the computation time of the
reference program, provided we ignore the controller node (which is a reasonable
assumption in this example, as the factorisation demands much more computa-
tional power than the controlling node).

The scripts used to execute the program (on several computers by ssh) is given
in appendix B.2.

5.3 The benchmark results

Two different numbers is used in the bench mark, 15310972286449713778 with
factors 2, 401, 991, 4801, 22159 and 181081, and 15310972286449713776 with
factors 2, 2, 2, 2, 103, 1468189 and 903994019. The results are given in tables 5.1
and 5.2.

From the first example (table 5.1) it is shown that there is, as expected, a large
improvement from the “-00” to “-01” and “-02” implementations (the latter run-
ning about 2.75 times faster), but it is also shown that even the fast GUSTAFSON
implementations are much slower than the reference program (which runs about
40 times faster). For a small computation this should be expected, as a number of
(relatively slow) messages needs to be sent over the network.

From the second, much more computationally heavy, example (table 5.2) it is
again shown a large improvement the “-00” to “-O1” and “-02” implementations
(this time “~O1” is almost 50 times faster than “-00”). More surprisingly is is shown
a significant speed-up from “-O1” to “~O2”. The reason for this eludes the author,
but it is of little consequence for the conclusions of the benchmark. Finally, it is
shown that the difference between the reference and the GUSTAFSON program is
much smaller here, with the reference program running only twice as fast as the -
0O1” implementation, meaning the the use of the GUSTAFSON program (running
8 times the calculations of the reference) has a considerate speed-up in this case. It
should be noted that there is still a massive room for improvement, but tweaking
the runtime for maximal efficiency is not considered within the scope of this thesis.

5.4 Summary

While this chapter has briefly demonstrated the plausibility and potential of the
runtime GUSTAFSON, it should be noted that this benchmark on no expense pre-
tends to cover all aspects of GUSTAFSON and its efficiency, nor gives a complete
picture on when it may be beneficial to use GUSTAFSON.

36

Table 5.1: Results of benchmark tests factorising 15310972286449713778

Test no | Reference [ms] | -O0 [ms] | -O1 [ms] | -O2 [ms]
1 2 221 81 80
2 2 212 80 81
3 2 241 80 84
4 2 222 80 80
3 2 215 81 80
6 2 214 80 81
7 2 221 81 80
8 2 204 80 81

Table 5.2: Results of benchmark tests factorising 15310972286449713776

Test no | Reference [ms] | -O0 [ms] | -O1 [ms] | -O2 [ms]
1 7207 735499 15011 11430
2 7208 N/A 15269 11439
3 7207 N/A 15019 11431

37

38

Chapter 6

Discussion

6.1 Considerations for real-time applications

It is possible to argue that the most important aspect of a real-time application is
predictability. So, is it possible to claim that GUSTAFSON is predictable?

As the system is experimental, in many aspects unfinished, and also largely
untested, it will in all probability contain several bugs and faults, making it un-
predictable. However, those errors lay outside the scope of this thesis, and may be
ignored in this discussion.

The nodes of the system communicates with its peers over network, and the
system may hence suffer from some of the inherit unpredictability of the the net-
work. As the communication happens over TCP, it may be assumed that the
received data is correct!, and that lost packages is retransmitted. This leaves two
issues; total loss of network and unpredictable transmission time.

Measures may be made to reduce the chance of loss of network, but it will be
impossible to guarantee against failure. In this implementation, loss of network is
considered a critical, unrecoverable error, much in the same way as loss of a node.
If needed, the system could be extended to provide support for both redundant
nodes and networks.

Not being able to reliable predict transmission times may pose a problem in
critical real-time applications. Again, measures may be made to increase the
quality of the network, and hence increase the predictability, but some level of
uncertainty may be unavoidable.

The rest of the system should in most aspects be predictable, assuming it is
possible to predict how the OS grants the systems resources, but it may be needed
to tweak the number and priorities of workers.

L Assuming the system is not deliberately attacked. The security measures to prevent this is
considered outside the scope of this thesis.

39

6.2 Efficiency

Although some high level considerations (like the choice of asynchronous channels
over synchronous channels, see section 2.3) have been made, many aspects of
making the runtime as efficient as possible have not been touched. It is likely
that both minor adjustments to the code and larger redesigns could lead to a
considerate better efficiency.

As it is briefly shown in chapter 5 it is necessary with some improvement to
efficiency for GUSTAFSON to have a practical value. However, the same chapter
show that considerate speed-up is already achievable for some tasks.

6.3 Further work

The previous sections of this chapter have already suggested several aspects of
the system that would benefit from further development. This section will briefly
touch a few more aspects.

6.3.1 Applications

As discussed in chapter 4, a language with a corresponding compiler is needed for
GUSTAFSON to have any practical value.

The development of one or more such languages and compilers would form an
interesting thesis on its own. A similar task (but somewhat simpler as it only
consider one (multi-core) computer) is examined in [1].

6.3.2 Ease of use

Ease of use has not been within the scope of this project. There are several
additions to the system that would improve usability, most notably:

e GUI: A simple, intuitive user graphical user interface could greatly improve
the usability. Currently information is printed on the command line once,
with no way of query for it.

e Remote control: Currently, remote control is only available in the sense of
remote controlling the target computer (remote desktop, remote shell or
similar). By integrating some remote control features into GUSTAFSON,
combined with the previous point of a GUI, usability could be greatly in-
creased. This is especially true when the nodes of the system is not placed
in the same location.

6.3.3 Multi-platform usage

The implementation presented in this thesis is build on Linux/POSIX. By extend-
ing the system to work on multiple platforms can get the following advantages:

40

e Increased computational power: By including platforms now unavailable, it
is possible to increase the computational power.

e Increased availability: Allowing the system to work on hand held devices, e.g.
a smartphone, will greatly increase the users access to heavy computational
power.

o Utilize specialised platforms: Some platforms may be specialised in solving
particular tasks, e.g. doing matrix operation or digital signal processing. By
dividing the program in tasks suited for running on different specialised plat-
forms it is possible finish calculations faster, but also minimise the amount
of resources uses, freeing computational power for other tasks.

6.3.4 Other Extensions

In any future work with applications and languages for GUSTAFSON, it would
probably surface the need for additional support from the runtime. For instance,
it might be of use for an application to receive information about the workload
from the different nodes, for dynamically decide what node to run a task on.

Alternatively, built-in support in the runtime for scheduling, and even re-
scheduling, of task to nodes may be of interest.

Information of network bandwidth and round-trip delay between nodes may
be of interest for both static and dynamic scheduling, as would the computational
power, and number of cores, of the different nodes.

The ability to shut down one node without resetting all the other nodes would
greatly improve the system. In addition, the system should be able to handle if
a node goes down due to an error. The system would need to redistribute the
work of the affected node to other nodes. Alternatively, redundant nodes doing
the same work could be utilised, as briefly touched in section 6.1, but the system
would still need to appoint new nodes to act as new backup nodes. As the number
of nodes in the system grows, this extension would grown more important, as the
chance of an error would grow as well.

An other issue when the size of the system grows, is the way the nodes are
connected. Currently, all the nodes communicates with all the nodes, making
the total number of connections grow exponentiation with the number of nodes,
generating a lot of unnecessary traffic on the network. By letting a few larger
nodes acts as relays, it is possible to greatly reduce the number of connections.
This would of course increase the transmission time between some of the nodes,
but care could be taken in the design of the network and scheduling of tasks to
minimize the problems arising from this.

41

42

Chapter 7

Conclusion

Is it possible to utilise the computational power of a multi-computer
environment for real-time applications by developing an experimental
runtime system and exploring its applications?

The findings presented in this thesis have shown how it is possible to solve the
problem presented above. In chapter 6 several alterations and extensions that are
needed before the system has a practical use are discussed, but as an experimental
system, GUSTAFSON is suited to prove the plausibility of solving the proposed
problem.

In chapter 5 it is shown how it is still room to make the system more effi-
cient, but also that GUSTAFSON can lead to considerate speed-up of suitable
tasks. It should, however, be noted that the benchmark test performed covered
too few aspects to fully conclude anything about the efficiency of the concept.
More benchmark test, covering different patterns of task-to-task communications,
must be performed to fully explore the potential of the system.

A brief outline for suitable languages for the system has been proposed, and it
would seem a plausible task to further develop a language bases on one or more of
these and write a compiler for it to use with GUSTAFSON.

43

44

Bibliography

[1] Knut André Karlsen Vestergren. Cb - en utvidelse av ¢ for enkel parallellisering
og samtidighet i et flerkjernemiljg. Specialisation thesis, NTNU, 2011.

[2] Wikipedia. occam.
http://en.wikipedia.org/wiki/Occam_(programming_language),
2001-2011. [Read 23.01.12].

[3] Wikipedia. Backronym.
http://en.wikipedia.org/wiki/Backronym,
2011-2012. [Read 23.05.12].

45

46

Appendix A

Electronic attachment

The electronic attachment should contain the following folders and files:

Runtime - Folder containing the source code for the runtime.

Ezamples - Folder containing the example code from various examples in this
report.

Bin - Destination folder for the compiled code (both runtime and examples).
This folder is initially empty, except for the folder dlibs, which is the target
folder for the compiled examples.

Tmp - Folder for temporary files, initially empty.

Makefile - Makefile for compiling both the runtime and the (executable)
example files.

47

48

Appendix B

Translated programs

This chapter holds the source code of the example programs from chapter 4, trans-
lated to C-code ready to be compiled and run on GUSTAFSON.
Font size is reduced. See the electronic appendix for a more detailed study.

49

© 00N OO W

B.1 Simple low level abstraction

B.1.1 simple.c

#tinclude <stdio.h>
#include <stdlib .h>
#include <string.h>

#include "TaskManager.h"

void simple(struct InstanceStruct xinstance){
switch (instance —>step){

case O0:
instance —>memPtr = malloc (4);
instance —>chanTrans = malloc (4 * sizeof(int));
instance —>chanTrans [0] = 2;
instance —>chanTrans[1] = 2;
instance —>chanTrans [2] = 3;
instance —>chanTrans [3] = 3;
instance —>step = 1;
instance —>state = READY;
return;

case 1:
instance —>nodeWait = 2;

instance —>step = 2;
instance —>state = NODEWAIT;

return;
case 2:
instance —>nodeWait = 3;
instance —>step = 3;
instance —>state = NODEWAIT;
return;
case 3:
instance —>comSize = sizeof(struct SpawnStruct);
instance —>comPtr = malloc(instance —>comSize) ;
((struct SpawnStructs)instance—>comPtr)—>name = malloc (3);
strepy (((struct SpawnStruct*)instance—>comPtr)—>name,"f1");
((struct SpawnStructx*)instance—>comPtr)—>peerld = 2;
instance —>step = 4;
instance —>state = TRANSFER;
return;
case 4:

strepy (((struct SpawnStruct*)instance —>comPtr)—>name,"f2");

((struct Spawnsnuct*)mstance—>comPtr) —>peerld = 3;
instance —>step =
instance —>state — TRANSFER;

return;
case 5:
strepy (((struct SpawnStructs*)instance —>comPtr)—>name,"f1");
((struct SpawnStruct*)instance —>comPtr)—>peerld = 2;
((struct SpawnStructs*)instance —>comPtr)—>ctSize = 4 *

((struct SpawnStructx)instance —>comPtr)—>chanTrans =
((struct SpawnStruct=*)instance —>comPtr)—>chanTrans[0]
((struct SpawnStruct=*)instance —>comPtr)—>chanTrans[1]
((struct SpawnStruct*)instance —>comPtr)—>chanTrans[2]
((struct SpawnStructx)instance —>comPtr)—>chanTrans[3]

instance —>step = 6;
instance —>state = SPAWN;
return;
case 6:
strepy (((struct SpawnStructs*)instance —>comPtr)—>name,
((struct SpawnStruct*)instance —>comPtr)—>peerld = 3;

((struct SpawnStruct*)instance —>comPtr)—>chanTrans[0]
((struct SpawnStruct*)instance —>comPtr)—>chanTrans[1]
((struct SpawnStruct=*)instance —>comPtr)—>chanTrans[2]
((struct SpawnStruct*)instance —>comPtr)—>chanTrans[3]

instance —>step = T7;
instance —>state = SPAWN;
return;

case T:

free (((struct SpawnStructs*)instance —>comPtr)—>name) ;

sizeof(int);

-
M

=N e

malloc (4

1:

H
3
H

")

free (((struct SpawnStruct*)instance —>comPtr)—>chanTrans);

free (instance —>comPtr) ;

instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize 4;
instance —>step = 8;
instance —>state = CHANR;
return;
case 8:

50

*

sizeof(int));

77

79
80

82
83
84
85
86
87

89
90

92
93

95

instance —>localCh = 2;

instance —>comPtr = instance —>memPtr;
instance —>comSize = 4;
instance —>step = 9;
instance —>state = CHANR;
return;
case 9:

printf("DONE!\n") ;
instance —>state = READY;
instance —>step = 10;
return;

case 10:
free (instance —>memPtr) ;
instance —>memPtr = NULL;
instance —>state = DONE;
instance —>step = 0;

return;

o1

© 00N oUW

B.1.2

#include
#include
#include

#include

void fl(struct InstanceStruct

switch
case

fl.c

<stdio .h>
<stdlib .h>
<string .h>

"TaskManager.h"

(instance—>step){
0:

sinstance){

instance —>memPtr = malloc(4);
#(intx)instance —>memPtr = 0;
instance —>step = 1;
instance —>state = READY;
return;
case 1:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;

instance

(*

—>comSize

(int*)

4;

instance —>memPtr) ++;

instance —>step = 2;
instance —>state = CHANW;
return;
case 2:
if(*(int*)instance —>memPtr == 42)
instance—>step = 3;
else
instance—>step = 1;
instance —>state = READY;
return;
case 3:
instance —>localCh = 2;
instance —>comPtr = instance —>memPtr;
instance —>comSize = 4;
instance —>step = 4;
instance —>state = CHANW;
return;
case 4:

free (instance —>memPtr) ;

instance —>memPtr = NULL;
instance —>state = DONE;
instance —>step = 0;

return;

92

© 00N oUW

B.1.3 f2.c

#tinclude <stdio.h>
#include <stdlib .h>
#include <string.h>

#include "TaskManager.h"

void f2(struct InstanceStruct xinstance){
switch (instance —>step){
case 0:
instance —>memPtr
instance —>step
instance —>state = READY;

malloc (4) ;

Il
=l

return;
case 1:
instance —>localCh 0;
instance —>comPtr instance —>memPtr;
instance —>comSize = 4;
instance —>step 2;
instance —>state = CHANR;
return;
case 2:
printf("%d\n", %(int*)instance —>memPtr) ;
if(*(int*)instance —>memPtr == 42)
instance —>step = 3;
else
instance —>step = 1;
instance —>state = READY;
return;
case 3:
instance —>localCh = 2;
instance —>comPtr instance —>memPtr;
instance —>comSize = 4;
instance —>step 4;
instance —>state = CHANW;
return;
case 4:

free (instance —>memPtr) ;
instance —>memPtr = NULL;
instance —>state = DONE;
instance —>step = 0;
return;

93

© 001U AWN -

B.2 Factorisation

B.2.1 factorisation.c

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "TaskManager.h"
#define PREFIX "FACTORISATION: "

void factorisation (struct InstanceStruct xinstance){
switch(instance —>step){
case O0:
instance —>memPtr = malloc (12);

int tmp = open('"number.txt", O RDONLY) ;
char #tmpb = malloc (24) ; -

read (tmp, tmpb, 24);

close (tmp) ;

tmpb [23] = 0;
*(unsigned long long *)(instance—>memPtr + 4) = strtoull (tmpb, NULL, 10);
free (tmpb) ;
x(int x)(instance —>memPtr) = 1;
instance —>chanTrans = malloc (16 * sizeof(int));
instance —>chanTrans [0] = 2;
instance —>chanTrans[1] = 2;
instance —>chanTrans [2] = 3;
instance —>chanTrans [3] = 3;
instance —>chanTrans [4] = 4;
instance —>chanTrans [5] = 4;
instance —>chanTrans [6] = 5;
instance —>chanTrans [T] = 5;
instance —>chanTrans [8] = 6;
instance —>chanTrans[9] = 6;
instance —>chanTrans[10] = T7;
instance —>chanTrans[11] = T7;
instance —>chanTrans [12] = 8;
instance —>chanTrans[13] = 8;
instance —>chanTrans[14] = 9;
instance —>chanTrans[15] = 9;
instance —>step = 1;
instance —>state = ADY ;
return;

case 1:

«(int x)(instance—>memPtr) 4= 1;
if(*(int *)(instance —>memPtr) < 10){
instance —>nodeWait = #(int *)(instance—>memPtr);
instance —>step = 1;
instance —>state = NODEWAIT;
printf (PREFIX"NODEWAIT %d\n", instance —>nodeWait);

else{
instance —>step = 2;
instance —>state — READY;
H
return;
case 2:
instance —>comSize = sizeof(struct SpawnStruct);
instance —>comPtr = malloc(instance —>comSize) ;
((struct SpawnStructs*)instance —>comPtr)—>name = malloc (5);
strepy (((struct SpawnStruct*)instance —>comPtr)—>name,"work") ;
((struct SpawnStructs*)instance —>comPtr)—>peerld = 1;
((struct SpawnStructs)instance —>comPtr)—>ctSize = 2 * sizeof(int);
((struct SpawnStruct#)instance —>comPtr)—>chanTrans = malloc(2 * sizeof(int));
((struct SpawnStructs)instance—>comPtr)—>chanTrans[0] = 1;
((struct SpawnStructs)instance—>comPtr)—>chanTrans[1] = 1;
instance —>step = 3;
instance —>state = READY;
return;
case 3:

((struct SpawnStructx)instance —>comPtr)—>peerld += 1;
if (((struct SpawnStruct*)instance —>comPtr)—>peerld < 10){
((struct SpawnStructx)instance —>comPtr)—>chanTrans[0] = ((struct SpawnStruct*)
instance —>comPtr)—>peerld;

o4

76 instance —>step = 3;

77 instance —>state = SPAWN

78 prlntf(PREFIX"SPAWN %d\n", ((struct SpawnStructx)instance—>comPtr)—>peerld);

79

80 else{

81 free (((struct SpawnStructs*)instance —>comPtr)—>name);

82 free (((struct SpawnStruct=)instance —>comPtr)—>chanTrans) ;

83 free (instance —>comPtr) ;

84 instance —>localCh = —2;

85 instance —>comSize = 8;

86 instance —>step = 4;

87 instance —>state = READY;

88

89 return;

90 case 4:

91 instance —>localCh 4= 2;

92 if (instance —>localCh < 15){

93 instance —>comSize 8;

94 instance —>comPtr = instance —>memPtr + 4;

95 instance —>step = 4;

96 instance —>state = CHANW;

97 printf (PREFIX"SEND %llu TO %d:%d\n", #*(unsigned long long *)(instance —>memPtr +
4), instance—>chanTrans[instance —>localCh], instance—>chanTrans[instance
—>localCh + 1]);

98 3

99 else{

100 instance —>localCh = —2;

101 instance —>step = 5;

102 instance —>state = READY;

103 ¥

104 return;

105 case 5:

106 instance —>localCh += 2;

107 if(instance—>localCh < 15){

108 instance —>comPtr = instance —>memPtr + 4;

109 instance —>comSize = 8;

110 instance —>step = 5;

111 instance —>state = CHANR;

112 ¥

113 else{

114 instance —>step = 6;

115 instance —>state = READY;

116

117 return;

118 case 6:

119 printf (PREFIX"DONE\n") ;

120 exit (0);

121 free (instance —>memPtr) ;

122 instance —>step = O0;

123 instance —>state = DONE;

124 return;

125 B

126}

35

© 00N U W

76
77
78
79

B.2.2 factorisation ol.c

#include
#include
#include
#include
#include
#include

#include

<stdio .h>
<stdlib .h>
<string.h>
<sys/types.h>
<sys/stat.h>
<fentl.h>

"TaskManager.h"

#define PREFIX "FACTORISATION: "

void factorisation_ol(struct Instan

ceStruct =instance){

H

switch(instance —>step){
case 0:
instance —>memPtr = malloc (12)
int tmp = open("number.txt", O_RDONLY) ;

char *tmpb = malloc (24);
read (tmp, tmpb, 24);
close (tmp) ;

tmpb[23] = 0;

unsigned long long #)(instance—>memPtr + 4) = strtoull (tmpb, NULL, 10);
free (tmpb) ;

*(

*(

int *)(instance —>memPtr) =

instance —>chanTrans = malloc (
instance —>chanTrans [0] = 2;
instance —>chanTrans[1] = 2;
instance —>chanTrans [2] = 3;
instance —>chanTrans[3] = 3;
instance —>chanTrans [4] = 4;
instance —>chanTrans [5] = 4;
instance —>chanTrans [6] = 5;
instance —>chanTrans [7] = 5;
instance —>chanTrans [8] = 6;
instance —>chanTrans [9] = 6;
instance —>chanTrans[10] = T7;
instance —>chanTrans[11] = T7;
instance —>chanTrans[12] = 8;
instance —>chanTrans [13] = 8;
instance —>chanTrans[14] = 0;
instance —>chanTrans[15] = 0;
instance —>step = 1;
instance —>state = READY;
return;

case 1:
#(int) (instance —>memPtr) +=

if

(%(int *)(instance —>memPtr)
instance —>nodeWait = x(int
instance —>step = 1;

instance —>state = NODEWAIT;
printf (PREFIX"NODEWAIT %d\n

else{

}

instance —>step = 2;
instance —>state = READY;

1;
16 * sizeof(int));

1;
< 10){

%) (instance —>memPtr) ;

", instance —>nodeWait) ;

return;

case 2:
instance —>comSize = sizeof(struct SpawnStruct);
instance —>comPtr = malloc(instance —>comSize) ;
((struct SpawnStructx)instance —>comPtr)—>name = malloc (5);
strepy (((struct SpawnStructs*)instance —>comPtr)—>name,"work ol");
((struct SpawnStructx)instance —>comPtr)—>peerld = 1; -
((struct SpawnStructx)instance —>comPtr)—>ctSize = 2 % sizeof(int);
((struct SpawnStructs)instance —>comPtr)—>chanTrans = malloc(2 #* sizeof(int));
((struct SpawnStructx)instance —>comPtr)—>chanTrans[0] = 1;
((struct SpawnStructx)instance —>comPtr)—>chanTrans[1] = 1;

instance —>step = 3;
instance —>state = READY;
return;

case 3:

((struct SpawnStructs)instance—>comPtr)—>peerld += 1;

if (((struct SpawnStructx)instance —>comPtr)—>peerld < 10){
((struct SpawnStructs)instance —>comPtr)—>chanTrans[0] = ((struct SpawnStructx)

instance —>comPtr)—>pee
instance —>step = 3;
instance —>state = SPAWN;
printf (PREFIX"SPAWN %d\n" ,

rid ;

((struct SpawnStruct*)instance —>comPtr)—>peerld);

96

80

82
83

85
86
87

89
90

92
93

95
96
97

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

else{

free (((struct SpawnStructx)instance —>comPtr)—>name) ;
free (((struct SpawnStructx)instance —>comPtr)—>chanTrans) ;
free (instance —>comPtr) ;

instance —>localCh = —2j
instance —>comSize

instance —>step = 4;

instance —>state = READY;

return;

case 4:

5

instance —>localCh

4= 2;
if(instance —>localCh < 15){

instance —>comSize = 8;
instance —>comPtr = instance —>memPtr + 4;
instance —>step = 4;

instance —>state =

CHANW ;
printf (PREFIX"SEND %llu TO %d:%d\n"

}

#(unsigned

long long #)(instance —>memPtr +

4), instance —>chanTrans[instance —>localCh], instance —>chanTrans[instance

—>localCh + 1]);

else{
instance —>localCh = —2;
instance —>step = 5;

instance —>state = READY;

return ;

case 5:

instance —>localCh += 2;

if(instance —>localCh < 15){

instance —>comPtr = instance —>memPtr + 4;
instance —>comSize 8;
instance —>step = 5;

instance —>state = CHANR;

}

else{

instance—>step = 6;

instance —>state = READY;

return;

case 6:
printf (PREFIX"DONE\n") ;
exit (0) ;
free (instance —>memPtr) ;
instance —>step = 0;

instance —>state = DONE;

return;

o7

© 00N U W

76
77
78
79

B.2.3 factorisation o2.c

#include
#include
#include
#include
#include
#include

#include

<stdio .h>
<stdlib .h>
<string.h>
<sys/types.h>
<sys/stat.h>
<fentl.h>

"TaskManager.h"

#define PREFIX "FACTORISATION: "

void factorisation_o2(struct Instan

ceStruct =instance){

H

switch(instance —>step){
case 0:
instance —>memPtr = malloc (12)
int tmp = open("number.txt", O_RDONLY) ;

char *tmpb = malloc (24);
read (tmp, tmpb, 24);
close (tmp) ;

tmpb[23] = 0;

unsigned long long #)(instance—>memPtr + 4) = strtoull (tmpb, NULL, 10);
free (tmpb) ;

*(

*(

int *)(instance —>memPtr) =

instance —>chanTrans = malloc (
instance —>chanTrans [0] = 2;
instance —>chanTrans[1] = 2;
instance —>chanTrans [2] = 3;
instance —>chanTrans[3] = 3;
instance —>chanTrans [4] = 4;
instance —>chanTrans [5] = 4;
instance —>chanTrans [6] = 5;
instance —>chanTrans [7] = 5;
instance —>chanTrans [8] = 6;
instance —>chanTrans [9] = 6;
instance —>chanTrans[10] = T7;
instance —>chanTrans[11] = T7;
instance —>chanTrans[12] = 8;
instance —>chanTrans [13] = 8;
instance —>chanTrans[14] = 0;
instance —>chanTrans[15] = 0;
instance —>step = 1;
instance —>state = READY;
return;

case 1:
#(int) (instance —>memPtr) +=

if

(%(int *)(instance —>memPtr)
instance —>nodeWait = x(int
instance —>step = 1;

instance —>state = NODEWAIT;
printf (PREFIX"NODEWAIT %d\n

else{

}

instance —>step = 2;
instance —>state = READY;

1;
16 * sizeof(int));

1;
< 10){

%) (instance —>memPtr) ;

", instance —>nodeWait) ;

return;

case 2:
instance —>comSize = sizeof(struct SpawnStruct);
instance —>comPtr = malloc(instance —>comSize) ;
((struct SpawnStructx)instance —>comPtr)—>name = malloc (5);
strepy (((struct SpawnStructs*)instance —>comPtr)—>name,"work o02");
((struct SpawnStructx)instance —>comPtr)—>peerld = 1; -
((struct SpawnStructx)instance —>comPtr)—>ctSize = 2 % sizeof(int);
((struct SpawnStructs)instance —>comPtr)—>chanTrans = malloc(2 #* sizeof(int));
((struct SpawnStructx)instance —>comPtr)—>chanTrans[0] = 1;
((struct SpawnStructx)instance —>comPtr)—>chanTrans[1] = 1;

instance —>step = 3;
instance —>state = READY;
return;

case 3:

((struct SpawnStructs)instance—>comPtr)—>peerld += 1;

if (((struct SpawnStructx)instance —>comPtr)—>peerld < 10){
((struct SpawnStructs)instance —>comPtr)—>chanTrans[0] = ((struct SpawnStructx)

instance —>comPtr)—>pee
instance —>step = 3;
instance —>state = SPAWN;
printf (PREFIX"SPAWN %d\n" ,

rid ;

((struct SpawnStruct*)instance —>comPtr)—>peerld);

98

80

82
83

85
86
87

89
90

92
93

95
96
97

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

else{

free (((struct SpawnStructx)instance —>comPtr)—>name) ;
free (((struct SpawnStructx)instance —>comPtr)—>chanTrans) ;
free (instance —>comPtr) ;

instance —>localCh = —2j
instance —>comSize

instance —>step = 4;

instance —>state = READY;

return;

case 4:

5

instance —>localCh

4= 2;
if(instance —>localCh < 15){

instance —>comSize = 8;
instance —>comPtr = instance —>memPtr + 4;
instance —>step = 4;

instance —>state =

CHANW ;
printf (PREFIX"SEND %llu TO %d:%d\n"

}

#(unsigned

long long #)(instance —>memPtr +

4), instance —>chanTrans[instance —>localCh], instance —>chanTrans[instance

—>localCh + 1]);

else{
instance —>localCh = —2;
instance —>step = 5;

instance —>state = READY;

return ;

case 5:

instance —>localCh += 2;

if(instance —>localCh < 15){

instance —>comPtr = instance —>memPtr + 4;
instance —>comSize 8;
instance —>step = 5;

instance —>state = CHANR;

}

else{

instance—>step = 6;

instance —>state = READY;

return;

case 6:
printf (PREFIX"DONE\n") ;
exit (0) ;
free (instance —>memPtr) ;
instance —>step = 0;

instance —>state = DONE;

return;

99

© 00N oUW

32

33

34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50

52
53

55

B.2.4 work.c

#include
#include
#include
#include

<stdio .h>
<stdlib .h>
<string .h>
"TaskManager.h"

#define PREFIX "WORK: "

void work(struct InstanceStruct
switch (instance —>step){
case O0:
instance —>memPtr

sinstance){

= malloc(16);
1;

instance —>step =
instance —>state = READY;
return;
case 1:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize = 8;
instance —>step = 2;
instance —>state = CHANR;
return ;
case 2:
«(unsigned long longx)(instance —>memPtr + 8) = 2;
if (*(unsigned long long#)(instance —>memPtr) == 1)
instance —>step = 4;
else
instance —>step = 3;
instance —>state = READY;
return;
case 3:
if(*(unsigned long long#)(instance —>memPtr) % x(unsigned long
memPtr + 8) == 0){
«(unsigned long longx)(instance —>memPtr) /= x(unsigned long

memPtr + 8);

printf (PREFIX" Factor: %llu (%1llu left)\n", #(unsigned long
memPtr + 8), =(unsigned long longx)(instance —>memPtr));

instance —>step = 2;

else{
(#(unsigned long long#)(instance —>memPtr + 8))++;
instance —>step = 3;

instance —>state = READY;

return;

case 4:

instance —>localCh = 0;

instance —>comPtr = instance —>memPtr;

instance —>comSize = 8;

instance —>step = 5;

instance —>state = CHANW;

return;

case 5:

free (instance —>memPtr) ;

instance —>step = 0;

instance —>state = DONE;

break ;

60

long*) (instance —>

long) (instance —>

long*) (instance —>

© 00N U W

33

34
35

36

37

38

40
41
42
43
44
45

47
48
49
50
51
52
53
54
55

57

B.2.5 work ol.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "TaskManager.h"

#define PREFIX "WORK: "

void work_ol(struct InstanceStruct *instance){
switch(instance —>step){

case O0:
instance —>memPtr = malloc (24) ;
instance —>step = 1;
instance —>state = READY;
return;

case 1:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize 8;
instance —>step = 2;
instance —>state = CHANR;
return;

case 2:

«(unsigned long longx*)(instance —>memPtr + 8)
if(*(unsigned long long#)(instance —>memPtr)

instance —>step = 4;
else
instance —>step = 3;
instance —>state = READY;
return;
case 3:
instance —>step = 3;
for (x(unsigned long longx)(instance —>memPtr + 16) = x(unsigned long longx) (

instance —>memPtr + 8);
#*(unsigned long longx*)(instance —>memPtr + 16) + 1000 > #*(unsigned long long:x*) (
instance —>memPtr + 8);
(*(unsigned long longs) (instance —>memPtr + 8))++){
if («(unsigned long long*)(instance —>memPtr) % *(unsigned long longx)(instance

—>memPtr + 8) == 0){
#(unsigned long long#) (instance —>memPtr) /= *(unsigned long longx)(instance
—>memPtr + 8);
printf(PREFIX"Factor: %llu (%1llu left)\n", #(unsigned long longx)(instance
—>memPtr + 8), #(unsigned long longx)(instance —>memPtr)) ;
instance —>step = 2;
break;

}
H
instance —>state = READY;

return;

case 4:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize 83
instance —>step = 5;
instance —>state = CHANW;
return;

case 5:
free (instance —>memPtr) ;
instance —>step = 0;
instance —>state = DONE;
break;

61

© 00N U W

34

35
36
37

39
40
41
42
43
44
45
46
47

49
50
51

B.2.6

#include
#include
#include
#include

work o2.c

<stdio .h>
<stdlib .h>
<string.h>
"TaskManager.h"

#define PREFIX "WORK: "

void work_o2(struct InstanceStruct *instance){

switch

(instance —>step) {

case O0:
instance —>memPtr = malloc (16) ;
instance —>step = 1;
instance —>state = READY;
return;
case 1:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize 8;
instance —>step = 2;
instance —>state = CHANR;
return;
case 2:
x(unsigned long long#)(instance —>memPtr + 8)

if(*(unsigned long long#)(instance —>memPtr)
instance —>step = 4;
else
instance —>step = 3;
instance —>state = READY;
return;
case 3:
while (x(unsigned long longs)(instance —>memPtr) % x*(unsigned long longx)(instance
—>memPtr + 8) != 0)
(*(unsigned long longx) (instance —>memPtr + 8))++;
«(unsigned long long*)(instance —>memPtr) /= *(unsigned long longx)(instance—>
memPtr + 8);
printf (PREFIX"Factor: %llu (%1llu left)\n", *(unsigned long longx) (instance—>
memPtr + 8), *(unsigned long longx)(instance —>memPtr)) ;
instance —>step = 2;
instance —>state = READY;
return;
case 4:
instance —>localCh = 0;
instance —>comPtr = instance —>memPtr;
instance —>comSize 8;
instance —>step = 5;
instance —>state = CHANW,;
return;
case 5:
free (instance —>memPtr) ;
instance —>step = O0;
instance —>state = DONE;
break;

62

00U AWN -

©00 N W

-

-

B.2.7 Benchmark script - copy

#1/bin/bash

="120.241.187.142"
120.241.187.144"
129.241.187.145"
129.241.187.148"
129.241.187.151"
129.241.187.152"
129.241.187.155"
129.241.187.157"

for ID in 2 3 4 5 6 7 8 9

ssh ${IP[ID]} "rm ~/GUSTAFSON/ —rf; mkdir ~/GUSTAFSON"
scp node.zip ${IP[ID]}:~ /GUSTAFSON
ssh ${IP[ID]} "cd GUSTAFSON; unzip node.zip"

done

B.2.8 Benchmark script - generate

#!/bin/bash

IP[2]="129.241.187.142"
IP[3]="129.241.187.144"
IP[4]="129.241.187.145"
IP[5]="129.241.187.148"
IP[6]="129.241.187.151"
IP[7]="120.241.187.152"
IP[8]="120.241.187.155"
IP[9]="120.241.187.157"

RUNSTR="gnome—terminal ——tab —t h2 ——command=\"ssh —t ${IP[2]} ’cd ~/GUSTAFSON;
runtime 2 10002°\""
for ID in 3 4 5 6 7 8 9
do
RUNSTR="$RUNSTR ——tab —t h$ID ——command=\"ssh —t ${IP[ID]} ’sleep ${ID};ed ~/
GUSTAFSON; ./runtime ${ID} 1000${ID} —c ${IP[2]} 10002’\""
done
echo "#!/bin/bash" > ex.sh
echo $RUNSTR >> ex.sh

B.2.9 Benchmark script - execution 1

#!/bin/bash

gnome—terminal ——tab —t h2 ——command="ssh —t 120.241.187.142 ’cd ~/GUSTAFSON; ./runtime
2 10002°" ——tab —t h3 ——command="ssh —t 120.241.187.144 ’sleep 3;cd ~/GUSTAFSON;
./runtime 3 10003 —c 129.241.187.142 10002’" ——tab —t h4 ——command="ssh —t
129.241.187.145 ’sleep 4;cd ~/GUSTAFSON; ./runtime 4 10004 —c 129.241.187.142
10002°" ——tab —t h5 ——command="ssh —t 129.241.187.148 ’sleep 5;cd ~/GUSTAFSON;
runtime 5 10005 —c 129.241.187.142 10002°" ——tab —t h6 ——command="ssh —t
120.241.187.151 ’sleep 6;cd ~/GUSTAFSON; ./runtime 6 10006 —c 129.241.187.142
10002°'" ——tab —t h7 ——command="ssh —t 129.241.187.152 ’sleep 7;cd ~/GUSTAFSON;
runtime 7 10007 —c 1290.241.187.142 10002°" ——tab —t h8 ——command="ssh —t

129.241.187.155 ’sleep 8;cd ~/GUSTAFSON; ./runtime 8 10008 —c 120.241.187.142
10002’" ——tab —t h9 ——command="ssh —t 129.241.187.157 ’sleep 9;cd ~/GUSTAFSON;

runtime 9 10009 —c 129.241.187.142 10002""
B.2.10 Benchmark script - execution 2

#!/bin/bash

time ./runtime 1 10001 —c 129.241.187.142 10002 —r factorisation # or factorisations_

/ factorisation_o2

63

64

Appendix C

Runtime Source Code

This chapter holds the source code of the GUSTAFSON runtime for quick refer-

ence.
Font size is reduced. See the electronic appendix for a more detailed study.

65

00U AWN -

e e e
DUA WO

17

19
20
21
22
23

24
25
26
27

28
29
30
31

32
33

35
36

38
39
40

42
43
44
45
46
47
48
49
50
51
52
53

55
56

58
59
60
61
62
63

65
66

68
69
70
71
72
73

75

C.1 main.c

#include
#include
#include
#include

<stdio.h>

<unistd.h>
<stdlib .h>
<string .h>

#include
#include
#include
#include
#include
#include

"Global .h"
"Network .h"
"FunctionManager .
"TaskManager.h"
"PeerHash .h"
"ChanManager .

h"

h"

int main(int argc, char

if (arge < 3){

wxargv){

fprintf(stderr ,ERRFIX"Not_enough_arguments!\n_Usage

—r_<function >]\n", argv[0]);
char *tmpl, *tmp2;

int id = strtol(argv[1], &tmpl, 10);
int port = strtol(argv[2], &tmp2, 10);
if (#tmpl != 0 || *tmp2 != 0){

fprintf(stderr ,ERRFIX"Id _and_port_must_be_a_numbers!\n_Usage:
ip>_<port >]_[—r_<function >]\n",

return —1;

if(port < 1025 || port > 65535){

fprintf(stderr ,ERRFIX"Port_out_of_range!_Valid_range_is_1025—-65535\n_Usage:
argv[0]);

-<port>_[—c_<ip>_.<port >]
return —1;

H
if(id < 0 || id > 9999){

fprintf(stderr ,ERRFIX"Id _out_of_range!_Valid_range_is_.0—9999\n_Usage:
>_[—co<ip>.<port >].[—r.<function >]\n",

H
if(tm _init(4)) //TODO dynamic set number of workers?
goto errorLbl;
if (fm_init ())
goto errorLbl;
if (ph_init ())
goto errorLbl;
if(ch_init(4)) //TODO dynamic set number of workers?
goto errorLbl;
char *mip = NULL;
char *mpt = NULL;
if(arge > 5 && strcmp (argv[3], "—c") == 0){
mip = argv[4];
mpt = argv[5];
int e = nw_init(id, port, mip, mpt);
if(e == —2)
goto panicLbl;
if(e)
goto errorLbl;
char *prog = NULL;
if(arge > 4 && strcmp (argv([3], "—r") == 0)
prog = argv[4];
else if(argc > 7 && strcmp (argv[6], "—r") == 0)
prog = argv[7];
if(prog != NULL){
if (fm loadFunction(prog) || fm createlnstance(prog,

fprintf(stderr ,ERRFIX" Could_not_run_program!\n");

else

printf (PREFIX"Running_program:

H
printf(PREFIX"Running\n") ;

while (masterSwitch)
sleep (1) ;

argv [0]);

r_<function >]\n",

-%s\n", prog);

66

1 Y%s <id>_<port>_[—c_<ip>_<port

Tos .<id>_<port>_[—c.<

Tos .<id>_<port

argv [0]) ;

NULL))

s L<id >

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

panicLbl

nw_panic () ;

errorLbl :
sleep ((arge > 4 ? 5 3)); //Sleep shorter if "master"
printf(PREFIX"Restarting\n");
char *xargvv = malloc(sizeof(charxx) % (arge + 1));
int i;
for(i = 0; i < argc; ++i)
argvv[i] = argv[il];
argvv[arge] = NULL;
execve (argv[0], argvv, NULL);

perror ("Execve') ;

return

—1;

67

©00 DO WN

C.2 ChanManager.h

#ifndef _CHAN_ MANAGER_H
#define _CHAN MANAGER_H

#include <pthread.h>

#define NCHANBUCKETS 256
#define BUFFERSIZE 32768

struct PeerList;
struct InstanceStruct;

struct ChanStruct{
pthread _mutex_t lock;

int chid;

struct PeerList #*peer;

volatile void *volatile rbuffer, *xvolatile rrPtr, xvolatile rwPtr;

volatile void xvolatile sbuffer, xvolatile srPtr, xvolatile swPtr, xvolatile ssPtr;

struct InstanceStruct xwaitingInstance;

struct InstanceStruct xorgWriter;

struct ChanStruct #next;

int ch_init(int workers);
int ch_receive();

int ch_ action(struct InstanceStruct xinstance);

#endif// CHAN_ MANAGER H

68

©00 DO WN

C.3 ChanManager.c

#include <pthread .h>
#include <string.h>
#include <stdlib.h>
#include <semaphore.h>

#include "TaskManager.h"
#include "ChanManager.h"
#include "PeerHash.h"
#include "Network.h"
#include "Global .h"

static pthread_mutex_t chanHashLock = PTHREAD_MUTEX_INITIALIZER;
static struct ChanStruct *+chanHash;

static int sendQueue[256];

static unsigned char sqrPtr = 0;
static unsigned char sqwPtr = 0;
static sem_t sqrSem, sqwSem;

static pthread mutex_ t sqLock = PTHREAD_ MUTEX _ INITIALIZER;

static struct ChanStruct xallocateNew (int chid, int peerid){

struct ChanStruct *ret = malloc(sizeof(kret));
ret —>chid = chid;
if(peerid == —1 || peerid == nw_getNodeld())
ret —>peer = NULL;
else
ret —>peer — ph_getPeer(peerid);

ret —>waitingInstance = NULL;
ret —>orgWriter = NULL;

ret —>next = NULL;

pthread mutex init(&(ret—>lock), NULL);

ret —>rrPtr = ret—>rwPtr = ret—>rbuffer = malloc (BUFFERSIZE) ;
ret —>ssPtr = ret—>srPtr = ret—>swPtr = ret—>sbuffer = malloc (BUFFERSIZE) ;

return ret;

}

static int min3(int il, int i2, int i3){

il = (il < i2 7 il : i2);
return (il < i3 7 il : i3);
static void volatile_memcpy(volatile void xdest, volatile void #src, int n){
int i;
for(i = 0; i < n; ++i)
#((unsigned charx)dest + i) = *((unsigned charx)src + i);

¥

static struct ChanStruct xgetChan(int chid, int peerid){
pthread mutex lock(&chanHashLock) ;

struct ChanStruct *ptr = chanHash[chid % NCHANBUCKETS];
struct ChanStruct *last = NULL;
while (ptr != NULL && ptr—>chid != chid){
last = ptr;
ptr = ptr—>next;
if (ptr == NULL){
ptr = allocateNew (chid, peerid);
if(last —= NULL)
chanHash[chid % NCHANBUCKETS] = ptr;
else
last —>next = ptr;
if(ptr != NULL && ptr—>peer == NULL && peerid != —1 && peerid != nw_getNodeld())
ptr—>peer = ph_getPeer(peerid);

pthread _mutex_unlock(&chanHashLock) ;
return ptr;

¥

static void xworker(void xdata){
while (masterSwitch) {
sem_wait(&sqrSem) ;
pthread _mutex_lock(&sqLock) ;
int chid = sendQueue[sqrPtr++];
pthread _mutex_unlock(&sqLock) ;
sem_post(&sqwSem) ;

69

80

82

83
84
85
86
87
88
89

91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164

struct ChanStruct *ptr = getChan(chid, —1);

if(ptr == NULL){
fprintf(stderr, ERRFIX"Error_in_send_worker_—_channel_not_found_(%s:%d)\n",
__FILE _, LINE);
SHUTDOWN
H
pthread mutex lock(&(ptr—>lock));
int maxTransfer = (int)ptr—>swPtr — (int)ptr—>ssPtr;

if (maxTransfer < 0)
maxTransfer += BUFFERSIZE;
if (maxTransfer > 0){
int splitPoint = BUFFERSIZE — (int)ptr—>ssPtr 4 (int)ptr—>sbuffer;
if(splitPoint <= maxTransfer){
if(nw_ chsend(ptr—>peer, ptr—>chid, ptr—>ssPtr, splitPoint)){

fprintf(stderr , ERRFIX"Error_on_chansend_(%s:%d)\n", _FILE__, LINE__);
SHUTDOWN;
ptr—>ssPtr = ptr—>sbuffer;
if(splitPoint < maxTransfer){
if (nw_chsend(ptr—>peer, ptr—>chid, ptr—>ssPtr, maxTransfer — splitPoint)){
fprintf(stderr , ERRFIX"Error_on_chansend_(%s:%d)\n",__FILE__,_ _LINE__);
SHUTDOWN;
ptr—>ssPtr += maxTransfer — splitPoint ;
else{
if (nw_chsend(ptr—>peer , ptr—>chid, ptr—>ssPtr, maxTransfer)){
fprintf(stderr , ERRFIX"Error_on_chansend_(%s:%d)\n",__FILE__,_ _LINE__);
SHUTDOWN;

ptr—>ssPtr += maxTransfer;

H

pthread mutex unlock(&(ptr—>lock));
H
return NULL;

}

int ch_init(int workers){
chanflash = malloc (NCHANBUCKETS % sizeof(struct ChanStructs));
memset (chanHash, 0, NCHANBUCKETS # sizeof(struct ChanHashx));

sem _init(&sqrSem, 0, 0);
sem_init(&sqwSem, 0, 256);

int i;
for(i = 1; i <= workers; ++i){
pthread_t t;
if(pthread_create(&t, NULL, worker, NULL)){
fprintf(stderr , ERRFIX" Could_not_create_required _number_of_threads._(Failed_on_%d
of %d)(%s:%d)\n", i, workers, FILE__, LINE_) ;
return —1; - - -

}

return 0;

}

int ch_action(struct InstanceStruct xinstance){
int chid = instance —>chanTrans[instance —>localCh |;
int peerid = instance—>chanTrans|[instance —>localCh + 1];

struct ChanStruct *ptr = getChan(chid, peerid);
if(ptr == NULL) {

fprintf(stderr, ERRFIX"Could_not_find_chan_(%s:%d)\n",__FILE__,_ _LINE__);
return —1;
}
if (ptr—>peer == NULL && nw_getNodeld () != peerid){
instance —>nodeWait = peerid;
if(instance —>state CHANR)
instance —>state = CHANRNW;
else if(instance—>state == CHANW)
instance —>state = CHANWNW;
else{
fprintf(stderr , ERRFIX"Erroneously_state _%d_(%s:%d)\n", instance—>state , FILE
, __LINE__); o o
return —1;
}

tm_requeue(instance);
return 0;

70

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

pthread mutex lock(&(ptr—>lock));

unsigned char tr

void
void
void
void
void
void

if(ptr—>peer

volatile *volatile rbuffer;
volatile *volatile rwPtr;

ade = 0;

volatile xvolatile rrPtr;

volatile *volatile sbuffer

volatile xvolatile swPtr;

volatile xvolatile srPtr;

NULL){ //Local

5

maxTransfer) ;

if(ptr—>orgWriter NULL && instance —>state == CHANW) {
ptr—>orgWriter = instance;
if(ptr—>orgWriter == instance){
rbuffer = ptr—>sbuffer;
rwPtr = ptr—>swPtr;
rrPtr = ptr—>srPtr;
sbuffer = ptr—>rbuffer;
swPtr = ptr—>rwPtr;
stPtr = ptr—>rrPtr;
trade = 1;
H
H
if(trade == 0){
rbuffer = ptr—>rbuffer;
rwPtr = ptr—>rwPtr;
rrPtr = ptr—>rrPtr;
sbuffer = ptr—>sbuffer;
swPtr = ptr—>swPtr;
stPtr = ptr—>srPtr;
¥
if(instance —>state == CHANR){
int trans = 0;
int maxTransfer = (int)rwPtr — (int)rrPtr;
if (maxTransfer < 0)
maxTransfer += BUFFERSIZE;
while(instance —>comSize > 0 && maxTransfer > 0){
int splitPoint = BUFFERSIZE — (int)rrPtr + (int)rbuffer;
int toTransfer = min3(instance —>comSize, splitPoint ,
volatile_memcpy (instance —>comPtr, rrPtr, toTransfer);
instance —>comPtr += toTransfer;
instance —>comSize —= toTransfer;
maxTransfer —= toTransfer ;
rrPtr 4= toTransfer;
if ((int)rrPtr == (int)rbuffer 4 BUFFERSIZE)
rrPtr = rbuffer;
trans += toTransfer;
if(instance —>comSize == 0) {
instance —>state = READY;
tm_requeue(instance) ;
H
else{
instance —>prev = NULL;
instance —>next = ptr—>waitingInstance;
if(ptr—>waitingInstance != NULL){
ptr—>waitingInstance —>prev = instance;
ptr—>waitingIlnstance = instance;
H
if(trans){
if (ptr—>peer == NULL){//same peer
while(ptr—>waitingInstance != NULL){
if (ptr—>waitinglnstance != instance){
struct InstanceStruct #tmp = ptr—>waitinglnstance;
ptr—>waitingInstance = ptr—>waitingIlnstance —>next;
tm_requeue (tmp) ;
}
else {;
ptr—>waitingInstance —>prev = NULL;
ptr—>waitingInstance = ptr—>waitinglnstance —>next;
}
}
else{
nw_chsend(ptr—>peer, ptr—>chid, NULL, trans);:
H
else if(instance—>state == CHANW) {
int trans = 0;
int maxTransfer = (int)srPtr — (int)sthr — 13

if (maxTransfer < 0)

maxTransfer

+= BUFFERSIZE ;

71

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338

while (instance —>comSize > 0 && maxTransfer > 0){

int splitPoint = BUFFERSIZE — (int)swPtr 4 (int)sbuffer;

int toTransfer = min3(instance —>comSize, splitPoint , maxTransfer);
volatile memecpy (swPtr, instance—>comPtr, toTransfer);

instance —>comPtr += toTransfer;

instance —>comSize —= toTransfer;

maxTransfer —= toTransfer ;

swPtr += toTransfer;
trans += toTransfer;

if ((int)swPtr == (int)sbuffer + BUFFERSIZE)
swPtr —= BUFFERSIZE;
if(instance —>comSize == 0){

instance —>state = READY;
tm_requeue(instance);

else{
instance —>prev = NULL;
instance —>next = ptr—>waitinglnstance;
if(ptr—>waitinglnstance != NULL){
ptr—>waitinglnstance —>prev = instance;
ptr—>waitingInstance = instance;

if (trans){

if (ptr—>peer == NULL){//same peer
while(ptr—>waitingInstance != NULL){
if(ptr—>waitingIlnstance != instance){
struct InstanceStruct *tmp = ptr—>waitingInstance;
ptr—>waitingInstance = ptr—>waitinglnstance —>next;

tm_requeue (tmp) ;

else{
ptr—>waitingInstance —>prev = NULL;
ptr—>waitingInstance = ptr—>waitingIlnstance —>next;
}
}
H
else{
sem_wait(&sqwSem) ;
pthread _mutex_lock(&sqLock) ;
sendQueue [sqwPtr++4] = chid;
pthread mutex unlock(&sqLock) ;
sem _post(&sqrSem) ;
H
H
H
else{
pthread mutex unlock(&(ptr—>lock));

fprintf(stderr , ERRFIX"Erroneously _state _%d._(%s:%d)\n", instance—>state ,

__LINE__);
return —1;

H
if (trade){

ptr—>rbuffer = sbuffer;
ptr—>rwPtr = swPtr;
ptr—>rrPtr = srPtr;
ptr—>sbuffer = rbuffer;
ptr—>swPtr = rwPtr;
ptr—>srPtr = rrPtr;

H

else{
ptr—>rbuffer = rbuffer;
ptr—>rwPtr = rwPtr;
ptr—>rrPtr = rrPtr;
ptr—>sbuffer = sbuffer;
ptr—>swPtr = swPtr;
ptr—>srPtr = srPtr;

H

pthread _mutex_unlock(&(ptr—>lock));
return 0;

¥
int ch_receive(int chid, void xdata, int size){
struct ChanStruct sptr = getChan(chid, —1);
if(ptr == NULL) {
fprintf(stderr , ERRFIX"Error_on_receive_.—_channel_not_found_(%s:%d)\n",
_ LINE_);
return —1;

pthread _mutex_lock(&(ptr—>lock));

if(data == NULL){ //Ack
int maxTransfer = (int)ptr—>ssPtr — (int)ptr—>srPtr;

72

__FILE_ _

_FILE__

>

339
340
341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

if (maxTransfer < 0)
maxTransfer += BUFFERSIZE;
if(size > maxTransfer){

fprintf(stderr , ERRFIX" Buffer_overflow _%d/%d_(%s:%d)\n" ,size ,maxTransfer,

, LINE);
pthread mutex unlock(&(ptr—>lock));
return —1;

H
ptr—>srPtr += size;
if (ptr—>srPtr > ptr—>sbuffer + BUFFERSIZE)

ptr—>srPtr —= BUFFERSIZE;
while(ptr—>waitingInstance != NULL){
struct InstanceStruct stmp = ptr—>waitinglnstance;
ptr—>waitingInstance = ptr—>waitingInstance —>next
tm_requeue (tmp) ;
H
H
else{ //Receive
int maxTransfer = (int)ptr—>rrPtr — (int)ptr—>rwPtr — 1;

if (maxTransfer < 0)
maxTransfer += BUFFERSIZE;

if (maxTransfer < size){

fprintf(stderr , ERRFIX" Buffer_overflow _%d/%d_(%s:%d)\n" ,size ,maxTransfer,

, LINE);
pthread mutex unlock(&(ptr—>lock));
return —1;
3
int splitPoint = BUFFERSIZE — (int)ptr—>rwPtr 4+ (int)ptr—>rbuffer;

if(splitPoint <= size){
volatile_memecpy (ptr—>rwPtr, data, splitPoint);

ptr—>rwPtr = ptr—>rbuffer;
if(splitPoint < size){
volatile memecpy (ptr—>rwPtr, data + splitPoint, size — splitPoint);
ptr—>rwPtr 4= size — splitPoint;
H
else{
volatile_memcpy (ptr—>rwPtr, data, size);
ptr—>rwPtr += size;
while(ptr—>waitingIlnstance != NULL){
struct InstanceStruct stmp = ptr—>waitinglnstance;
ptr—>waitingInstance = ptr—>waitingInstance —>next;
tm_requeue (tmp) ;
H

pthread mutex unlock(&(ptr—>lock));
return 0;

73

__FILE_

__FILE_

©00 DO WN

C.4 FunctionManager.h

#ifndef
#define

#include
#include
#include
#include

struct 1

_FUNCTIONMANAGER_H
“FUNCTIONMANAGER_H

<sys/types.h>
<sys/stat .h>
<stdio.h>
<stdlib .h>

nstanceStruct ;

struct FunStruct{

char
FILE «*
void
void (

}s

name ;
file;

handle;

#fun) (struct InstanceStruct x*);

int fm_init ();
int fm _writeToFile (char *name, char xdata

int len ,

int fm createlnstance(char *name, int xchanTrans);
int fm loadFunction(char xname);
int fm_readFunction(char *name, void #*ptr, unsigned

#endif // FUNCTIONMANAGER_H

74

int remainder);

long

«fileLen) ;

©00 DO WN

68
69

71
72

74
75
76
77

C.5 FunctionManager.c

#define _GNU_SOURCE
#include <search.h>

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat .h>
#tinclude <pthread.h>
#include <errno.h>

#include "FunctionManager.h"
include TaskManager . h
include " k h"

#include "Global.h"

#define PATH "./dlibs /"
#define PERM 0777

static pthread mutex_t tabLock = PTHREAD_ MUTEX_INITIALIZER;
static struct hsearch_data xtab;

int fm_init (){
umask (“PERM) ;
tab = malloc(sizeof(*tab));
bzero (tab, sizeof(xtab));

if(hcreate r (50, tab) == 0){
fprintf(stderr ,ERRFIX"Error_creating_hash_table_in_function_manager._(%s:%d)\n",
FILE LINE__);
return —1; -

return 0;

¥
ENTRY *fm_createFile (char *name){
struct FunStruct *fun = malloc(sizeof(struct FunStruct));
fun —>name malloc (strlen (name) + 1);
strepy (fun—>name, name);
fun—>handle = NULL;
fun—>fun = NULL;
char *tmp = malloc(strlen (fun—>name) + strlen (PATH) + 1);
sprintf(tmp, PATH"%s", fun—>name) ;
if ((fun—>file = fopen (tmp, "wb")) == NULL) {
free (tmp) ;
fprintf(stderr ,BRRFIX"Error_creating._file!_(%s:%d)\n", FILE , LINE);
return NULL;
free (tmp) ;
ENTRY entry , #res;
entry . key name ;
entry.data = fun;
int success;
pthread _mutex_lock(&tabLock) ;
success — hsearch r(entry, ENTER, &res, tab);
pthread mutex unlock(&tabLock);
if(success == 0){
fprintf(stderr ,ERRFIX"Error_creating_hash_entry!_(%s:%d)\n", FILE , LINE);
return NULL;
if(res—>data != entry.data)
fprintf(stderr ,ERRFIX" Warning: _Hash_table_overwrite!_(%s:%d)\n", __FILE__, __ LINE__
); //TODO send warning to source?
return res;
¥

int fm_ completeFile(struct FunStruct =fun){
if(fclose (fun—>file)){
fprintf(stderr ,ERRFIX"Error_closing_file!_(%s:%d)\n", __FILE__, __LINE__);
return —1;

fun—>file = NULL;

75

78

80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

fprintf(stderr, "Error_in_%s:%d_.—.%s\n", FILE , TLINE , dlerror());
return —1;
free (tmp) ;
return 0;
}
int fm_writeToFile(char *name, char sdata, int len, int remainder){
ENTRY entry , sres = NULL;
entry.key = name;
pthread mutex lock(&tabLock);
hsearch r(entry, FIND, &res, tab);
pthread mutex unlock(&tabLock) ;
if(res == NULL)
if((res = fm_createFile(name)) == NULL)
return —1;
struct FunStruct *fun = (struct FunStructs)res—>data;
if(fun—>file == NULL){
fprintf(stderr ,ERRFIX"Error_in_ %s:%d.—_possible_overwrite\n", __FILE__, __LINE_
return —1;
¥
if(fwrite (data, 1, len, fun—>file) < len){
fprintf(stderr ,ERRFIX"Error_writing_to_file !_(%s:%d)\n", FILE , LINE);
return —1;
}
if(remainder == 0)
if(fm_completeFile (fun))
return —1;
return 0;
¥
int fm loadFunction(char xname){
struct FunStruct *fun = malloc(sizeof(struct FunStruct));
fun—>name = malloc(strlen (name) + 1);
strepy (fun—>name, name);
fun—>handle = NULL;
fun—>fun = NULL;
fun—>file = NULL;
char *tmp = malloc(strlen (fun—>name) + strlen (PATH) 4 1);
sprintf(tmp, PATH"%s", fun—>name) ;
fun—>handle = dlopen (tmp, RTLD_LAZY) ;
if (!fun—>handle){
free (tmp) ;
fprintf (stderr, "Error_in_%s:%d.—_%s\n", __FILE__, _ _LINE__, dlerror());
return —1;
fun—>fun = dlsym(fun—>handle, fun—>name);
if (fun—>fun == NULL){
free (tmp) ;
fprintf(stderr, "Error_in_%s:%d_—_%s\n", FILE , LINE , dlerror());
return —1;
3}
free (tmp) ;
ENTRY entry , sres;
entry .key = fun—>name;
entry.data = fun;
int success;
pthread mutex lock(&tabLock);
success = hsearch r(entry , ENTER, &res, tab);
pthread _mutex_unlock(&tabLock) ;
if(success == 0){
fprintf(stderr ,ERRFIX"Error_creating_hash_entry!_(%s:%d)\n", __FILE__, __ LINE_
return —1;
if(res—>data != entry.data)

char *tmp = malloc(strlen (fun—>name) + strlen (PATH) + 1);
sprintf(tmp, PATH"%s", fun—>name) ;
fun—>handle = dlopen (tmp, RTLD LAZY) ;
if (!fun—>handle){ -
free (tmp) ;
fprintf (stderr, "Error_in_%s:%d.—.%s\n", FILE__, LINE _, dlerror());
return —1; - - -
3
fun—>fun = dlsym(fun—>handle, fun—>name);
if (!fun—>fun){
free (tmp) ;

76

166

167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187

188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228

fprintf(stderr ,ERRFIX" Warning: _Hash_table_overwrite!_(%s:%d)\n", __FILE__

); //TODO send warning to source?

return 0;

}

int fm_readFunction(char xname, void *+ptr, unsigned long *fileLen){

char #tmp = malloc(strlen (name) + strlen (PATH) + 1);

sprintf (tmp, PATH"%s", name) ;

FILE «file ;
file = fopen (tmp, "rb");
if (! file){

fprintf(stderr, "Unable_to_open_file _%s_—.%s_—_(%s:%d)\n",

__FILE _, LINE);
return —1;

¥

fseek (file , 0, SEEK_END) ;
xfileLen = ftell (file);
fseek (file , 0, SEEK_SET) ;
xptr = malloc(xfileLen);
if(ptr = NULL){

name

fprintf(stderr ,ERRFIX"Unable_to_allocate _%lu_bytes_of_memory_(%s:%d)\n",

__FILE _, LINE_);
return —1;

if (fread (#ptr, 1, fileLen, file) != xfileLen){
fprintf(stderr ,ERRFIX"Error_while_reading._from_file %s_(%s:%d)\n", name,

__LINE__);
return —1;

¥

fclose (file);
free (tmp) ;
return 0;

}

int fm createlnstance(char #name, int schanTrans){

ENTRY entry , *res = NULL;
entry.key = name;

pthread _mutex_lock(&tabLock) ;

int success = hsearch r(entry, FIND, &res, tab);

pthread mutex_unlock(&tabLock);

if(res = NULL || success == 0){
if (fm_loadFunction (name)) {

fprintf(stderr ,ERRFIX"File_not._found!_%s:%d\n",

return —1;

pthread _mutex_lock(&tabLock);

success = hsearch_r(entry, FIND, &res, tab);

pthread _mutex _unlock(&tabLock) ;

3
if(res == NULL || success == 0){//Should not

happen

fprintf(stderr ,BRRFIX"Entry_not_found!_%s:%d\n", FILE

return —1;

}

if (tm_createNew ((struct FunStructs)res—>data,

fprintf(stderr ,ERRFIX"Error_on_creating_new_instance!_%s:%d\n", __FILE_

;
return —1;

}

return 0;

7

chanTrans)){

__FILE_

, __LINE__);

__LINE__);

s

, __LINE__

, strerror(errno),

«fileLen

__FILE_ _

__LINE_

’

)

S NI

c©o®w~o

-

-

C.6 Global.h

#ifndef _GLOBAL_H
#define _GLOBAL_H

extern char masterSwitch;
#define SHUTDOWN {fprintf(stderr

" 111 _SHUTDOWN. (%s:%d) \n" ,

masterSwitch = 0; return NULL;}

#define PREFIX ">>
#define ERRFIX "!!!_"

#endif // GLOBAL_H

C.7 Global.c

char masterSwitch = 1;

78

FILE _

__LINE_

)

00U AWN -

R I ey
CUAUNRODOMTDU AWK = O

27
28
29
30
31
32

C.8 Network.h

#ifndef NETWORK_H

#define _NETWORK_H

#include <pthread.h>
#include <semaphore.h>
#tinclude <stdio.h>

struct PeerList{

int socket

int id;

char cascade;

char *rcvBuffer;

char rPtr, wPtr;

sem_t rSem, wSem;

pthread mutex t sendLock;
struct sockaddr_ storage xsaddr;

struct PeerList #prev;
struct PeerList #next;

}s

int
int
int
int
int
int
int

nw _chsend(struct PeerList xpeer, int chid, volatile void * volatile data, int size)

nw_init (int id, int port, char *mip, char *mpt);
nw_getNodeld () ;

nw_sendFile (int id, char xname);

nw_spawn(int id, char sname, int xchanTrans, int ctSize);
nw_ close () ;

nw _panic () ;

#endif // NETWORK H

79

00U AWN -

R N O O o e e e e i
DR OOOTOUE WN R OWDW-10o AWK~ O

33

35
36

38
39

41
42
43

45
46
47
48
49
50
51
52
53
54
55
56

58
59

61
62
63
64
65
66

68
69

71
72
73
74
75
76

78

C.9 Network.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket .h>
#include <arpa/inet .h>
#include <netdb.h>
#include <pthread .h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <semaphore.h>

#include "Network.h"
#include "FunctionManager. . h"
#include "Global .h"
#include "PeerHash.h"
#include "ChanManager.h"

#define BLOCKS 256
#define BLOCKSIZE 1024
#define TBUFFERSIZE 2048

struct ThreadList{
pthread t x*t;
int listenSocket ;
struct ThreadList #next;

}s

enum Mode{IDLE, PARTLY, BUFFER, TRANSFER, EXECUTE, WRITE, READ, HANDSHAKE, ERROR};

BUFFER is unused
struct ParseRet{
enum Mode mode;
char xname;
int id; //Chan id, peer id or file socket/ptr, subject to change
int aux; //Auz data (port, meassage id)

int n; //number of bytes or args
}s
//List of threads to cancel in panic—mode
//Must always be consistent, and be read without allocating lock.

//(Aquire lock for writing)

static pthread_mutex_t threadsLock = PTHREAD_ MUTEX_INITIALIZER;
static struct ThreadList sxthreadsFirst = NULL;

static struct ThreadList xthreadsLast = NULL;

//List of peers
static pthread mutex t peersLock = PTHREAD MUTEX INITIALIZER;
static struct PeerList xpeers = NULL; - -
struct PeerString{
int allocSize;
int usedSize;
char *string;
}peerString;

//Node info
static int nodeld = —1;
static int nodePort;

//Internal prototypes
void #receive_thread (void x);
void *recvWrk_ thread(void x);

//List auw functions
static void addThread(pthread t *t, int listenSocket){

struct ThreadList stmp = malloc(sizeof(xtmp)) ;
tmp—>t = t;
tmp—>listenSocket = listenSocket ;

tmp—>next = NULL;
pthread _mutex_lock(&threadsLock) ;
if(threadsFirst == NULL)
threadsFirst tmp ;
if(threadsLast != NULL)
threadsLast —>next = tmp;
threadsLast = tmp;
pthread mutex unlock(&threadsLock);

80

//

79

81

82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129

130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

}

struct PeerList sxaddPeer(int nodeSocket, struct sockaddr storage

char isAccept){
struct PeerList #peer = malloc(sizeof(*peer));
peer—>prev = NULL;
peer—>socket = nodeSocket ;
peer —>saddr = client ;
peer—>id = —1;
peer —>cascade = cascade;
peer—>rcvBuffer = malloc (BLOCKS % BLOCKSIZE) ;
peer—>rPtr = peer—>wPtr = 0;
sem init(&peer—>rSem, 0, 0);
sem _init(&peer —>wSem, 0, BLOCKS) ;
pthread mutex init(&peer—>sendLock, NULL);

pthread mutex lock(&peersLock);

if (isAccept){
pthread _mutex_lock(&peer—>sendLock) ;
char *tmp = peerString.string ;
int left = peerString.usedSize;
while (left){
int n = send(peer—>socket , (voidx)tmp, left , 0);
if(n < 1){

fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", __FILE__

pthread mutex unlock(&peer—>sendLock) ;
pthread _mutex _unlock(&peersLock);
return NULL;

H
left n;
tmp 4= n;
pthread mutex unlock(&peer—>sendLock);
H
peer—>next = peers;
if(peers != NULL)
peers —>prev = peer;
peers = peer;

char host[256];
char port[10];

xclient , char cascade

, __LINE__);

if(getnameinfo ((struct sockaddrx)client , sizeof(xclient), host, 255, port, 10,
NI_NUMERICHOST | NI _NUMERICSERV) == 0){
if(isAccept) -
printf (PREFIX"[%s]:%s_connected\n", host, port);
else
printf (PREFIX" Connected_to_[%s]:%s\n", host, port);
else{
if(isAccept)
printf (PREFIX"Node_connected , _IP_not_found_.(ERROR) _—_(%s:%d)\n", __FILE__,
LINE) ;
else - -
printf (PREFIX" Connected_to_node,_IP_not_found_(ERROR)_—_(%s:%d)\n", FILE
LINE) ;

return NULL;
pthread _mutex_unlock(&peersLock);

pthread _t #t1 = malloc(sizeof (xt1));

pthread _t #t2 = malloc(sizeof (*t2));

pthread _create(tl, NULL, receive_thread , peer);
pthread create (t2, NULL, recvWrK_ thread, peer);
return peer; -

¥

int connectPeer (char xpeerinfo){
char *savePtr = NULL;
char xip = strtok_r(peerInfo, "|", &savePtr);
char xport = strtok_r(NULL, "|", &savePtr);

struct addrinfo hints;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_ socktype = SOCK STREAM;
hints.ai_flags = AI_PASSIVE;

struct addrinfo xlist ;
if(getaddrinfo(ip, port, &hints, &list)){

fprintf(stderr ,ERRFIX"Error_on_getaddrinfo_(%s:%d)\n", __FILE__, __LINE__);

return —1;
}s
struct addrinfo *ptr;
struct PeerList *peer;
for(ptr = list; ptr != NULL; ptr = ptr—>ai_next){
int serverSocket = socket(ptr—>ai_family , ptr—>ai_socktype,

81

ptr—>ai_protocol);

163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

}

if(serverSocket < 0) continue;

if(connect (serverSocket , ptr—>ai addr, ptr—>ai addrlen) < 0) continue;

struct sockaddr xaddr = malloc (sizeof xaddr);
socklen t len = sizeof xaddr;
if(getsockname(serverSocket , addr, &len)) continue;

if ((peer = addPeer(serverSocket, (struct sockaddr_storages)addr, 0, 0))

continue;
break ;

freeaddrinfo (list);
if(peer == NULL){
perror ("Connect");

fprintf(stderr ,ERRFIX"Unable_to_connect _(%s:%d)\n", __FILE__, __LINE_

return —1;

}

return O0;

int cascadePeer (char *buffer){

}

char cmpl = 0;
if(buffer[strlen(buffer) — 1] == *_°)
empl = 1;

char xsavePtr = NULL;
char stok = strtok r(buffer,"_ ", &savePtr);
char *last = NULL;
while (tok

if(last

if (connectPeer(last))
return —1;
last = tok;
tok = strtok r(NULL,"_" &savePtr);

if (empl){

if(last != NULL)
if(connectPeer(last))
return —1;
buffer [0] = 0;
¥
else {
memmove (buffer , last , strlen(last) + 1);

¥

return 0;

struct ParseRet parse(char smsg){

}

struct ParseRet ret = {IDLE, NULL, —1, 0};
char *ptr;
switch (+msg) {
case 'H': //H<id> <port> <size of list of nodes>
ret .mode = HANDSHAKE;

ret.id = strtol(msg + 1, &ptr, 10);
ret .aux = strtol (ptr + 1, &ptr, 10);
ret.n = strtol(ptr 4+ 1, NULL, 10);
break ;

case 'T’: //T<name> <size of file>
ret .mode = TRANSFER;

ret .name = strndup(msg + 1, (int)strchr(msg + 1, ’'_.’)
ret.n = strtol (msg + strlen(ret.name) + 1, NULL, 10);
break;

case 'E’: //E<name> <size of arguments>
ret .mode = EXECUTE;

ret .name = strndup(msg + 1, (int)strchr(msg + 1, '_7)
ret.n = strtol (msg + strlen(ret.name) + 1, NULL, 10);
break;

case 'W’': //W&chan> <size>
ret .mode = WRITE;

ret.id = strtol(msg + 1, &ptr, 10);
ret.n = strtol (ptr + 1, NULL, 10);
break;

case 'R’: //R<chan> <size>
ret .mode = READ;

ret.id = strtol (msg + 1, &ptr, 10);
ret.n = strtol(ptr 4+ 1, NULL, 10);
break;

default :

ret .mode = ERROR;
}

return ret;

//Thread functions
void xreceive_thread(void xdata){

struct PeerList xpeer = (struct PeerList «)data;
while (masterSwitch){

82

(int)msg —

(int)msg —

_)s

1);

1)

250 int n = 0;

251 sem _wait(&peer —>wSem) ;
252 if((n = recv(peer—>socket , &peer—>rcvBuffer[peer —>wPtr x BLOCKSIZE 4 4], BLOCKSIZE
-4, 0)) < 1)

253 SHUTDOWN ;

254 *(short*)&peer—>rcvBuffer [peer —>wPtr % BLOCKSIZE] = (short)n;

255 *(short*)&peer—>rcvBuffer [peer —>wPtr * BLOCKSIZE + 2] = 4;

256 ++peer—>wPtr;

257 sem_post(&peer —>rSem) ;

258 3}

259 return NULL;

260 }

261

262 void srecvWrk thread(void =data){

263 struct PeerList xpeer = (struct PeerListx)data;

264

265 char xbuffer = malloc (TBUFFERSIZE) ;

266 buffer [0] = 0;

267 void *chanTrans;

268 int ctPtr = 0;

269 struct ParseRet state = {IDLE, NULL, —1, 0};

270

271 //Wait for first item

272 sem _wait(&peer —>rSem) ;

273

274 char advance = 0;

275 while (masterSwitch){

276

277 short len = *(shortx)&peer—>rcvBuffer [peer—>rPtr * BLOCKSIZE];

278 short off = x(shortx)&peer—>rcvBuffer [peer—>rPtr * BLOCKSIZE + 2];

279 char *msg = &peer—>rcvBuffer [peer—>rPtr * BLOCKSIZE + off];

280 int partLen = strnlen (msg, len);

281 char end = 0;

282 if (partLen < len){

283 ++4partLen;

284 end = 1;

285 ¥

286

287 switch(state .mode){

288 case IDLE:

289 if (lend){

290 strncpy (buffer , msg, len);

201 state .mode = PARTLY;

292 }

203 else

204 state = parse(msg);

295 if (partLen len)

296 advance ;

297 else{

208 advance = 0;

299 +(short*)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE] —= partLen; //new len

300 *(short)&peer—>rcvBuffer [peer—>rPtr * BLOCKSIZE + 2] += partLen; //new
offset

301 }

302 break;

303 case PARTLY:

304 strncat (buffer , msg, partLen);

305 if(end){

306 state = parse(buffer);

307 buffer [0] = 0;

308

309 if(partLen == len)

310 advance = 1;

311 else{

312 advance = 0;

313 «(short x)&peer—>rcvBuffer [peer—>rPtr x BLOCKSIZE] —= partLen; //new len

314 *(short x)&peer—>rcvBuffer [peer—>rPtr x BLOCKSIZE + 2] 4= partLen; //new
offset

315

316 break;

317 case HANDSHAKE:

318 partLen = (len < state.n ? len : state.n);

319 state.n —= partLen;

320

321 if (peer—>id != —1 && peer—>cascade){ //Cascade on 2nd handshake

322 strncat (buffer , msg, partLen);

323 if(cascadePeer(buffer)){

324 fprintf(stderr ,ERRFIX"Could_not_cascade!_(%s:%d)\n", FILE , LINE);

325 SHUTDOWN;

326 }

327 }

328

329 if(state.n 0){

330 if (peer—>id == —1){

331 peer—>id = state.id;

332 ph_add(peer);

333 pthread mutex lock(&peersLock);

334 pthread mutex lock(&peer—>sendLock) ;

83

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360

361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

char #tmp = peerString.string;

int left — peerString.usedSize;
while(left){
int n = send(peer—>socket, (voidsx)tmp, left , 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send ! _(%s:%d)\n", FILE__, LINE) ;
pthread _mutex_unlock(&peer—>sendLock); - - -
pthread _mutex _unlock(&peersLock) ;
SHUTDOWN;;
left —= n;
tmp += nj
char host[256];
char port[10];
if(getnameinfo ((struct sockaddrx)peer—>saddr, sizeof(*peer—>saddr), host,
255, port, 10, NI_NUMERICHOST | NI_NUMERICSERV) == 0){
printf(PREFIX"Handshake_from _[%s]:%s_—_id:%d\n", host, port, state.id);
if(peerString.allocSize < peerString.usedSize + 22){
peerString . allocSize *= 2;
char *nstring = malloc(peerString.allocSize);
strcpy (nstring , peerString.string);
free (peerString .string);
peerString .string = nstring;
sprintf(peerString.string + peerString.usedSize — 1, "%s|%d_", host,
state.aux) ;
peerString .usedSize = strlen(peerString.string + 17) + 18;
sprintf(peerString.string , "H%04d_%05d_%04d", nodeld, nodePort,
peerString .usedSize — 17);
else{
printf(PREFIX" Client_connected_(ip_unavailible)\n");
return NULL;
pthread mutex unlock(&peer—>sendLock) ;
pthread mutex unlock(&peersLock);
state .mode = IDLE;
if (partLen len)
advance ;
else{
advance = 0;
*(short x)&peer—>rcvBuffer [peer—>rPtr x BLOCKSIZE] —= partLen; //new len
«(short*)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE + 2] 4= partLen; //new
offset
}
break;
case TRANSFER:
partLen = (len < state.n ? len : state.n);
state.n —= partLen;
if(fm_writeToFile(state .name, msg, partLen, state.n)){
fprintf(stderr ,ERRFIX"Error_writing_to_file!_(%s:%d)\n", FILE , LINE _
SHUTDOWN ;
}
if(state.n == 0){
free(state .name) ;
state .mode = IDLE;
}
if (partLen == len)
advance = 1;
else{
advance = 0;
(short)&peer—>rcvBuffer [peer—>rPtr x BLOCKSIZE] —= partLen; //new len
«(short*)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE + 2] 4= partLen; //new
offset
}
break;
case EXECUTE:
partLen = (len < state.n ? len : state.n);
state.n —= partLen;
if(ctPtr == 0)
chanTrans = malloc(state.n 4+ partLen);

memcpy (chanTrans + ctPtr, msg, partLen);
ctPtr 4= partLen ;

if(state.n == 0)
state .mode = IDLE;

if (partLen == len)
advance = 1;

else{
advance = 0;

84

418
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

#(short*)&peer —>rcvBuffer [peer —>rPtr * BLOCKSIZE] —= partLen; //new
x(shortx)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE + 2] 4= partLen; //new
offset

if (state.mode == IDLE) {
if(fm_createlnstance(state .name, chanTrans)){
fprintf(stderr ,ERRFIX"Error_on_execute ! _(%s:%d)\n", __FILE__, __LINE_
SHUTDOWN ;

ctPtr = 0;
free(state .name);
state .name = NULL;
}
break;
case WRITE:
partLen (len < state.n ? len : state.n);
state.n —= partLen;
if(ch_receive(state.id, msg, partLen)){
fprintf(stderr ,ERRFIX"Error_on_write_(%s:%d)\n",__FILE__,_ _LINE__);
SHUTDOWN ;

if(state.n = 0)
state .mode = IDLE;
if(partLen len)
advance
else{
advance = 0;
«(short*)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE] —= partLen; //new
«(short*)&peer—>rcvBuffer [peer—>rPtr % BLOCKSIZE + 2] += partLen; //new
offset

break;
case READ:
if(ch_receive(state.id, NULL, state.n)){
fprintf(stderr ,ERRFIX"Error_on_read_(%s:%d)\n", _FILE__, LINE__);
SHUTDOWN;

state .mode = IDLE;
break;
case ERROR:
default:
fprintf(stderr ,BRRFIX"Error_(%s:%d)\n", FILE , LINE);
SHUTDOWN;
break;

if(advance && state.mode != READ){
//Advance to newmt queue item
ttpeer—>rPtr;
sem_post(&peer —>wSem) ;
sem_wait(&peer —>rSem) ;
advance = 0;
¥
B
return NULL;
¥

void xaccept thread(void =data){
while (masterSwitch) {
struct sockaddr_storage xclient;
size_t size = sizeof(xclient);
client = malloc(size);

len

len

int clientSocket = accept (*(intx)data, (struct sockaddr *)client , &size); //Cancel

point
if(clientSocket < 0)
fprintf(stderr ,ERRFIX"Error_on_accept\n");

else if(addPeer(clientSocket , client, 0, 1) == NULL)
SHUTDOWN ;
}
return NULL;
¥
//Public functions
int nw_init(int id, int port, char *mip, char =mpt){
nodeld = id;
peerString.string = malloc (1024);
peerString.allocSize = 1024;
peerString . usedSize = 19;
sprintf(peerString.string , "H%04d_%05d_0002", id, port);

sprintf(peerString.string + 17, "_");

struct addrinfo hints;
memset(&hints, 0, sizeof hints);

hints.ai_ family = AF_INET; //CHANGE TO AF_NET6 for IPv6
hints.ai_socktype = SOCK_STREAM; -

85

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582
583
584
585
586
587

hints.ai_flags = AI_PASSIVE;
struct addrinfo #list

char portStr[6];

sprintf(portStr, "%d", port);
if (getaddrinfo (NULL, portStr, &hints, &list)){
fprintf(stderr ,ERRFIX"Error_on_getaddrinfo_(%s:%d)\n", __FILE__, _ _LINE__);
return —1;
3
int errorListen = —1;
struct addrinfo #ptr;
for(ptr = list; ptr != NULL; ptr = ptr—>ai next){
int yes = 1;
int serverSocket = socket(ptr—>ai family, ptr—>ai_ socktype, ptr—>ai protocol);

if(serverSocket < 0) continue;

if (setsockopt(serverSocket , SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) < 0)

continue;
if (bind (serverSocket , ptr—>ai_addr, ptr—>ai_addrlen) < 0) continue;
if(listen (serverSocket , 10) < 0) continue;

pthread t st = malloc(sizeof(%t));
int xsocket = malloc(sizeof(int));
xsocket = serverSocket ;

if (pthread create(t, NULL, accept_thread, socket)){
free (t);
free (socket);
continue;

}
addThread (t, serverSocket);
errorListen = 0;

¥

freeaddrinfo (list);

if(errorListen){
perror ("Listen");

fprintf(stderr ,ERRFIX" Unable_to_socket/bind/listen _(%s:%d)\n", __FILE__, __LINE__);
return —1;
¥
if (mip != NULL && mpt != NULL) {
if(getaddrinfo(mip, mpt, &hints, &list)){
fprintf(stderr ,BERRFIX" Error_on_getaddrinfo._(%s:%d)\n", FILE , LINE);
return —1;
}s
struct addrinfo xptr;
struct PeerList xpeer;
for(ptr = list; ptr != NULL; ptr = ptr—>ai_next){
int serverSocket = socket(ptr—>ai_family, ptr—>ai_socktype, ptr—>ai_protocol);
if(serverSocket < 0) continue;
if(connect(serverSocket , ptr—>ai_addr, ptr—>ai_addrlen) < 0) continue;
struct sockaddr xaddr = malloc(sizeof xaddr);
socklen t len = sizeof saddr;
if(getsockname(serverSocket , addr, &len)) continue;
if ((peer = addPeer(serverSocket , (struct sockaddr storages)addr, 1, 0)) == NULL)
continue;
break;
¥
freeaddrinfo (list);
if(peer == NULL) {
fprintf(stderr ,ERRFIX" Unable_to_connect (%s:%d)\n", __FILE__, __LINE__);
return —2;
¥
¥

return 0;

}

int nw_getNodeld () {
return nodeld;

H
int nw_sendFile(int id, char =xname){
struct PeerList xpeer = ph getPeer(id);
if(peer == NULL){ -
fprintf(stderr ,ERRFIX" Trying_to_transfer_to_non—excisting._peer_.—_id=%d_name=%s _(%s
:%d)\n", id, name, __FILE__, __LINE__);
return —1;

}
void #ptr = NULL;
unsigned long size;
if(fm_ readFunction(name, &ptr, &size)){
fprintf(stderr ,ERRFIX"Error!_(%s:%d)\n", __FILE__, __LINE__);

86

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

return —1;
H
char xheader = malloc(strlen (name) + 15);
sprintf(header, "T%s_%lu", name, size);
pthread mutex lock(&peer —>sendLock) ;
int left = strlen (header) + 1;
while(left){
int n = send(peer—>socket, (void*)header, left , 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", __FILE__, __LINE__);
pthread _mutex_unlock(&peer —>sendLock) ;
return —1; -
left —= n;
header 4= n;
left = size;
while(left){
int n = send(peer—>socket, (voidx*)ptr, left , 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", __FILE__, __LINE__);
pthread _mutex_unlock(&peer—>sendLock) ;
return —1; -
left —= n;
ptr += nj
H

pthread _mutex_unlock(&peer—>sendLock) ;
return 0;

¥
int nw_spawn(int id, char *name, int *chanTrans, int ctSize){
struct PeerList xpeer = ph_getPeer(id);
if(peer == NULL){
fprintf(stderr ,ERRFIX" Trying_to_execute_on_non—excisting_peer.(%s:%d)\n", FILE
_ LINE_)
return —1;
H
char *buffer = malloc(strlen (name) + 12 + ctSize);
sprintf(buffer, "E%s_%d", name, ctSize);
memcpy (buffer + strlen(buffer) 4+ 1, chanTrans, ctSize);
pthread _mutex_lock(&peer—>sendLock) ;
int left = strien (buffer) + ctSize + 1;
while (left) {
int n = send(peer—>socket , (voidx)buffer, left , 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", FILE , LINE);
pthread mutex unlock(&peer—>sendLock);
return —1;
left —= n;
buffer 4= n;
pthread _mutex_unlock(&peer—>sendLock) ;
return 0;
H
int nw_chsend(struct PeerList speer, int chid, volatile void * volatile data, int size)
{
char *buffer = malloc (32);
char *tmp = buffer;
if(data == NULL) //R<id> <size >\0

sprintf(buffer , "R%d_%d", chid, size);
else //Wid> <size >\0O<data>

sprintf(buffer , "W&d_%d", chid, size);
pthread mutex lock(&peer—>sendLock) ;

int left = strien (buffer) + 1;
while (left) {
int n = send(peer—>socket , (voidsx)buffer, left , 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", __FILE__, __LINE__);
pthread _mutex_unlock(&peer —>sendLock) ;
return —1;
¥
left —= n;

buffer 4= n;

free (tmp) ;
if(data){
left = size;
while (left) {
int n = send(peer—>socket , (voidx)data, left, 0);
if(n < 1){
fprintf(stderr ,ERRFIX"Error_on_send!_(%s:%d)\n", __FILE__, __LINE__);
pthread _mutex_unlock(&peer —>sendLock) ;
return —1;
left —= n;

87

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

}

data += n;

pthread mutex unlock(&peer—>sendLock);

return 0;

int nw_panic(){

}

printf (PREFIX"Panic!\n");
pthread _mutex_lock(&peersLock) ;
struct ThreadList *pt;

for(pt — threadsFirst; pt != NULL; pt — pt—>next){
shutdown (pt—>listenSocket , 2);
pthread cancel (xpt—>t);

H

struct PeerList *pp;

for(pp = peers; pp != NULL; pp = pp—>next)

shutdown (pp—>socket , SHUT _RDWR) ;
pthread _mutex_unlock(&peersLock) ;
return 0;

88

00U AWN -

e e
OO UAWN O

C.10 PeerHash.h

#ifndef _PEER_HASH_H
#define _PEER_HASH_H

#define NPEERBUCKETS 64
struct PeerHash {

int id;

struct PeerList xpeer;

struct InstanceStruct *waitingIlnstance;

struct PeerHash *next;

}s

int ph_init();

int ph_add(struct PeerList xpeer);

int ph waitForNode(struct InstanceStruct

struct PeerList xph_getPeer(int

#endif// PEER_HASH_H

id);

*instance

89

int

id);

00U AWN -

C.11 PeerHash.c

#include <pthread .h>
#include <string.h>
#include <stdlib.h>

#include "TaskManager.h"
#include "PeerHash.h"
#include "Network.h"

static pthread_mutex_t peerHashLock = PTHREAD_MUTEX_INITIALIZER;

struct PeerHash xxpeerHash;

int ph_add(struct PeerList xpeer){

if(peer—>id < 0)

return —1;
pthread mutex lock(&peerHashLock) ;
struct PeerHash #ptr = peerHash[peer—>id % NPEERBUCKETS];
struct PeerHash xlast = NULL;
while(ptr != NULL && ptr—>id != peer—>id){
last = ptr;
ptr = ptr—>next;
if(ptr NULL) {
ptr = malloc(sizeof xptr);
ptr—>id = peer—>id;

ptr—>peer

peer;

ptr—>waitingInstance = NULL;

ptr—>next = NULL;

if(last == NULL)
peerHash [peer —>id % NPEERBUCKETS] = ptr;
else
last —>next = ptr;
3
else{
ptr—>peer peer;
while (ptr—>waitingInstance != NULL){
struct InstanceStruct sinstance = ptr—>waitingInstance;
ptr—>waitingInstance = ptr—>waitingInstance —>next;
if(instance—>state == CHANRNW)
instance —>state = CHANR;
else if(instance—>state == CHANWNW)
instance —>state = ;
else
instance —>state = READY;
tm requeue(instance);
H
pthread mutex unlock(&peerHashLock);

return 0;

int

H
int ph_waitForNode(struct InstanceStruct xinstance,
if(id < 0)
return —1;
pthread _mutex lock(&peerHashLock) ;
struct PeerHash xptr — peerHash[id % NPEERBUCKETS];
struct PeerHash xlast = NULL;
while(ptr != NULL && ptr—>id != id){
last = ptr;
ptr = ptr—>next;
if (ptr == NULL) {
ptr = malloc(sizeof *ptr);
ptr—>id = id;
ptr—>peer = NULL;
ptr—>waitingInstance = instance;
ptr—>next = NULL;
if(last == NULL)
peerHash[id % NPEERBUCKETS| = ptr;
else
last —>next = ptr;
H
else if(ptr—>peer != NULL){

if(instance —>state ==
instance —>state = CHANR;
else if(instance—>state ==

CHANRNW)

CHANWNW)

90

id){

105
106
107
108
109
110
111
112
113
114
115

instance —>state = CHANW;
else

instance —>state = READY;
tm_requeue(instance);

H

else{
instance —>prev = NULL;
instance —>next = ptr—>waitingInstance;
if (ptr—>waitingInstance != NULL){

ptr—>waitinglnstance —>prev

ptr—>waitingInstance = instance;

pthread mutex unlock(&peerHashLock)
return 0;

instance ;

H
struct PeerList sph_getPeer(int id){
if (id < 0)
return NULL;
pthread _mutex_lock(&peerHashLock) ;
struct PeerHash #ptr = peerHash[id % NPEERBUCKETS];
while(ptr != NULL && ptr—>id != id)
ptr = ptr—>next;
pthread mutex unlock(&peerHashLock) ;
if(ptr == NULL)
return NULL;
return ptr—>peer;
H

int ph_init(){

peerHash = malloc (NPEERBUCKETS # sizeof(struct PeerHashx));

memset (peerHash , 0, NPEERBUCKETS =
return 0;

}

sizeof(struct PeerHashx));

91

SN YO

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35

C.12 TaskManager.h

#ifndef _TASK_MANAGER_H
#define _TASK_MANAGER_H

struct FunStruct; //Forward from FunctionManager.h

enum InstanceState{NEW = 1, READY = 2, CHANR =

32, NODEWAIT = 64, TRANSFER = 128,

struct InstanceStruct{
struct FunStruct *funStruct;
void smemPtr;
int sxchanTrans;
int step;
enum InstanceState state;
void *comPtr;
int comSize;
int localCh;
int nodeWait;

struct InstanceStruct snext, *prev;

}s

struct SpawnStruct{
char *name;
int schanTrans;
int ctSize;
int peerld;

}s

int tm _init(int workers);

int tmicreateNew(struct FunStruct *funStruct, int

int tm_requeue(struct InstanceStruct

#endif// TASK_MANAGER_H

xinstance) ;

92

4, CHANW = 8,
SPAWN = 256, DONE = 512};

xchanTrans) ;

©00 DO WN

C.13 TaskManager.c

#include <pthread .h>
#include <stdlib.h>
#include <string.h>

#include "FunctionManager.h"
#include "TaskManager.h"
#include "PeerHash.h"
#include "Global .h"
#include "Network.h"
#include "ChanManager.h"

//Add to last, take from first;

static pthread_mutex_t queueLock = PTHREAD_ MUTEX_INITIALIZER;
static pthread_cond_t queueCond = PTHREAD_COND_INITIALIZER;

static struct InstanceStruct =first , =last;

static void addToQueue(struct InstanceStruct

pthread mutex lock(&queueLock) ;

instance —>next = last ;
instance —>prev = NULL;
if(last != NULL)
last —>prev = instance;
last = instance;
if(first == NULL)
first = instance;
else if(first —>prev == NULL)
first —>prev = instance;

pthread cond broadcast(&queueCond) ;
pthread mutex unlock(&queueLock);

¥

//Blocks if queue is empty

static struct InstanceStruct =getFirstItem (){

struct InstanceStruct *ret;
pthread _mutex_lock(&queueLock) ;
while (first == NULL)

xinstance){

pthread _cond _wait(&queueCond, &queueLock);

ret = first;
if(first != NULL){
if(first —>prev){

first —>prev—>next = NULL;

first = first —>prev;
else{

first = NULL;

last = NULL;

}

pthread mutex unlock(&queueLock);
return ret ;

}

static void sworker(void xdata){
while (masterSwitch){

struct InstanceStruct *item = getFirstItem ();

if (item—>state & (READY | NEW))
item—>funStruct —>fun (item) ;
switch (item—>state){
case NEW:

fprintf(stderr ,BRRFIX" Task_has_invalid_state_(%s:%d)\n",

SHUTDOWN;
break ;

case READY:
addToQueue (item) ;
break ;

case CHANR:

case CHANW:
if(ch_action (item)){

fprintf(stderr ,ERRFIX"Error_on

SHUTDOWN ;

}
break;

case CHANWNW:

case NODEWAIT':

ph_waitForNode (item, item—>nodeWait);

break ;
case TRANSFER:

_ch_action_(%s:%d)\n",

__FILE_

FILE

if(nw_sendFile (((struct SpawnStruct*)item—>comPtr)—>peerld,

93

s

LINE_

LINE

80

82
83

85
86
87
88
89

90

91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

((struct SpawnStructx*)item—>comPtr)—>name)) {
fprintf(stderr ,ERRFIX"Error_on_transfer _(%s:%d)\n", FILE _, LINE_ _);
SHUTDOWN ;
}
item—>state = READY;
addToQueue(item);

break ;
case SPAWN:
if (((struct SpawnStructs)item—>comPtr)—>peerld == nw_getNodeId ()){
int schanTrans = malloc (((struct SpawnStructx)item-—>comPtr)—>ctSize * sizeof(
int));
memepy (chanTrans, ((struct SpawnStructx)item—>comPtr)—>chanTrans, ((struct

SpawnStruct *)item—>comPtr)—>ctSize * sizeof(int));

if (fm createlnstance (((struct SpawnStructs)item—>comPtr)—>name, chanTrans)){
“fprintf(stderr ,ERRFIX"Error_on_spawn_(%s:%d)\n", FILE , LINE);
SHUTDOWN ;
}

else if(nw_spawn(((struct SpawnStructs)item—>comPtr)—>peerld,
((struct SpawnStruct=*)item—>comPtr)—>name,
((struct SpawnStruct=*)item—>comPtr)—>chanTrans,
((struct SpawnStruct=*)item—>comPtr)—>ctSize)){
fprintf(stderr ,ERRFIX"Error_on_spawn_(%s:%d)\n", FILE__, LINE_ _);
SHUTDOWN ;
}
item—>state = READY;
addToQueue(item) ;;
break ;
case DONE:
free (item—>chanTrans) ;
free (item);
break ;
}
H
return NULL;
H

int tm_init(int workers){

first = NULL;

last = NULL;

int i;

for(i = 1; i <= workers; ++i){

pthread t t;
if(pthread create(&t, NULL, worker, NULL)){
fprintf(stderr ,ERRFIX" Could_not_create_required _number_of_threads._(Failed_on_%d._

of (%d) _(%s:%d)\n", i, workers, __FILE__, __LINE__);
return —1;
}
return 0;
}
int tm_createNew (struct FunStruct xfunStruct, int xchanTrans){
struct InstanceStruct sinstance — malloc(sizeof xinstance);
instance —>funStruct = funStruct;
instance —>memPtr = NULL;
instance —>chanTrans = chanTrans;
instance —>step = 0;

instance —>state = NEW;
addToQueue(instance);
return 0;

}

int tm_requeue(struct InstanceStruct *instance){
addToQueue(instance);
return 0;

¥

94

	Title Page
	masteroppgave.pdf

