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Abstract 

When a robot performs a task in an unstructured dynamic environment, it has to 

account for many factors. It should not only keep the track of where it is and how it 

should move, but also ensure that the kinematic, dynamic and task specific limitations 

are observed. It is also important that the robot can effectively avoid collisions with 

static and moving obstacles. In the current thesis we present design and 

implementation of an algorithm capable to face all these challenges. The system 

combines principles of dynamic roadmaps and elastic roadmaps frameworks, both of 

which are the state-of-art approaches to motion planning problem.  

The suggested solution is presented in the context of a broad overview of the 

literature in motion planning domain focusing on methodology of sample-based and 

feedback planning in dynamic environments. The implemented algorithm is applied to 

a 7-degree-of-freedom manipulator and is demonstrated and analyzed through a 

variety of simulated test scenarios. The result is an extensible and future-oriented 

planning system that can plan and execute movement between a starting and target 

position while preserving task constraints and reacting to environment changes in real 

time. 
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1. Introduction 

1.1. Motivation 
Nowadays more and more robots face the task of working in unstructured dynamic 

environments. The robots leave specially designated perfectly known working areas 

and fulfil their tasks in places that have not been specially prepared. This can be a 

living room in a flat for an assistant robot or a factory floor where a robot has to 

manoeuvre among people and machines. Operation in such environments is a 

challenge for modern systems because of their complexity and inherent uncertainty. 

According to [1], the main difficulties that a robot faces while working in human 

environments are the following: 

 In unstructured environments, a robot can only possess partial knowledge of 

its surroundings, objects can change their state unbeknownst to the robot, 

and manipulation tasks may require the end effector to move on a 

constrained trajectory rather than simply to reach a specific location; 

 Complex task requirements impose strict requirements for high-frequency 

feedback; 

 Perception systems of robots have to address an intractable amount of 

information acquired by multiple sensor modalities;  

 Interpretation of the acquired information is complex task as the sensors 

provide ambiguous and redundant information and introduce uncertainty due 

to noise; 

 In order to avoid collisions robots must solve the high-dimensional problem of 

distinguishing between objects and free space, calculating how far away 

objects are, figuring out how they are positioned etc. 

In such situation adequate motion planning becomes a crucial requirement for robot 

operation in dynamic environments. 

1.2. Background 
This section gives a short introduction to the most important background of the 

thesis. Much more details will be presented in the further chapters. 

The goal of the current project is to design and implement a framework that would 

allow performing motion planning and control of a manipulator in a dynamic 

environment while preserving task constraints. An example of manipulation task 

suitable for the framework is movement of a glass of water from one point to another 

while keeping it upright. Another situation when such framework is needed is when a 

camera is installed at manipulator’s end effector and it should aim at the same object 
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during movement. Thus, not only position of the end effector, but also its orientation 

should be considered throughout planning and path following. A task may also 

constrain position of the end effector, e.g. it can be required to keep the end effector 

at a specified height above the ground. 

To the author’s best knowledge, the only planners that consider task constraints 

(constrains on position and/or orientation of robot’s end effector) are elastic stripes 

and elastic roadmaps (refer to the Literature survey, sections 2.4.6 and 2.5 for more 

details). Both frameworks utilize task-level controller - a convenient and powerful tool 

for generating multi-objective behaviour for robotic systems designed by Khatib and 

Sentis ( [2], [3]). Therefore, it looks logical to use the task-level controller for the 

current project as well.  

Last semester in a specialization project the elastic roadmaps framework for a mobile 

manipulator was implemented ( [4]) and several drawbacks inherent to the approach 

were identified as a result of the project (see chapter 2.5). To avoid these 

shortcomings it was decided to modify some of the framework’s functionality. A 

possibility studied in this project is the integration of the task-level controller into a 

conventional motion planner to provide fulfilling of task constraints throughout path 

execution. It is also important that the resulting framework would preserve the 

opportunity to specify manipulation tasks directly in workspace coordinates, 

assuming that the configuration space is usually out of interest of robot end users. As 

an appropriate candidate for this goal the dynamic roadmaps (detailed description is 

given in section 2.6) were chosen. 

1.3. Contribution 
In the current thesis, a broad overview of motion planning methods focusing on 

sample-based and feedback planning as well as planning in dynamic environments is 

presented first. Then we demonstrate how dynamic roadmaps and elastic roadmaps 

can be merged together. The resulting motion planning and control framework allows 

performing of complex manipulation tasks with consideration of positional and 

orientation task constraints during the path execution. The proposed solution exploits 

the data computed in the offline stage to perform planning and to recognize quickly 

configurations of the robot that are in collision with obstacles. The planner identifies a 

path for the end effector that can be followed in at least approximately task-

consistent manner. The computed path then is executed with the help of a task-level 

controller.  

The resulting framework was specially designed to control a 7-degree-of-freedom 

manipulator (Fig.  1). It was implemented in C++ and its performance was tested in 

multiple scenarios. The results of the simulations demonstrated that the suggested 

system was capable to solve certain complex manipulation tasks in dynamic 
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environments. However, the cost for maintaining task constraints is the completeness 

of the proposed method. This issue was thoroughly analyzed and some 

measurements addressing this problem were suggested.  

Some components of the task-level controller were adopted from the project finished 

last semester ( [4]), but a fair amount of design efforts were still needed to adapt it to 

the current project. More specific details about this topic will be given in the further 

chapters of the report. 

1.4. Outline 
The structure of the current thesis is the following: a comprehensive literature survey 

of motion planning techniques with the focus on sampling-based and feedback 

planning in static and dynamic environments is given first; then the elastic roadmaps 

and the dynamic roadmaps are described in details; chapter 3 presents the overall 

structure and the design of components of the proposed solution; chapter 4 gives 

some details about the implementation of the framework; in chapter 5 simulation 

results are presented; chapter 6 discusses the overall performance of the 

implemented system; topics for future work are suggested in chapter 7. 
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Fig.  1. Manipulator LWA3 with 7 degrees of freedom from Schunk GmbH, Germany, which is considered 
in the current project. [5]  
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2. Literature survey 
Planning collision-free motions for robots from an initial to a goal position in static 

and dynamic environments is a fundamental robotic task. Usually the goal position as 

well as location and dimensions of obstacles are defined in low-dimensional 

operational space, whereas a feasible path has to provide a complete specification of 

the location of every point on the robot geometry or, equally, a trajectory of a robot 

in configuration space. This space represents the set of all transformations that can be 

applied to a robot given its kinematics. A robot with complex geometric shape is 

mapped to a point in configuration space. The main difficulty of motion planning 

arises from the fact that dimension of configuration space is equal to the number of 

degrees of freedom of a robot, which can be quite big for modern systems. This 

increases computational requirements for planning and motivates development of 

heuristic planning algorithms. 

This literature survey gives an overview of methods used for motion planning and 

control. First, it focuses on classical approaches designed for static environments, 

including the sample-based and feedback ones, and then demonstrates, how these 

methods are expanded and augmented to handle dynamic environments. In the end, 

the detailed description of frameworks that this project focuses on is presented. 

Part of this survey uses material from the term project completed last semester [4]. 

Namely, section 2.1 remains almost unchanged; sections 2.2 and 2.3 were augmented 

with a few more advanced approaches; section 2.4 was completely elaborated and 

description of only five planners was taken from last semester’s report; section 2.5 

was changed to be more relevant to the current project; section 2.6 is new. 

2.1. Combinatorial roadmaps 
The first attempts to solve motion planning problem aimed only for 2-dimensional 

configuration space where strictly deterministic approaches exploiting geometrical 

properties of the workspace can be applied. Such methods build combinatorial 

roadmaps that discretely and completely capture all information needed to perform 

planning [6]. One such approach is called shortest-path roadmap and it is illustrated 

with Fig.  2. The graph nodes are located at obstacle vertices and an edge exists in the 

roadmap if and only if a pair of vertices is mutually visible. Here feasible paths may 

actually touch obstacles, which must be considered during obstacle modelling. 

Another technique called vertical cell decomposition is demonstrated in Fig.  3. In this 

case, the collision-free configuration space is decomposed into cells shaped as 

triangles or trapezoids. Roadmap vertices are created in the middle of each cell and in 

the centre of each boundary between the cells. A collision-free path can be easily 
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computed with any graph-search algorithm. The cell decomposition is performed with 

“sectioning” the space with vertical planes. 

The main advantage but also the main weakness of combinatorial techniques is their 

completeness, i.e. if a path exists, it will be found. Unfortunately, when applied to 

high-dimensional configuration spaces, the methods become highly ineffective due to 

combinatorial state explosion. However, some ideas first introduced in combinatorial 

methods may be a part of more complex algorithms. 

 
Fig.  2. Shortest-path roadmap example. [6] 

 
Fig.  3. Example of space vertical decomposition. 

[6] 

2.2. Sample-based planning 
Sample-based planning methods were designed in the 90s to overcome state 

explosion problems. Today these methods are by far the most common choice for 

industrial-grade problems. Sampling-based approaches usually achieve resolution 

completeness, meaning that they will find a solution if one exists, but may run forever 

if one does not, or probabilistic completeness, meaning that the probability tends to 

one that a solution is found if one exists (otherwise, it may still run forever) [7]. 

Sample-based planners can be classified in two types: multi-query and single-query 

planners. This section presents core functionality of both approaches. 

Multi-query planners totally conform to their name: at the beginning a roadmap 

representing connectivity of configuration space is generated and later multiple path-

search requests can be processed on its base. The roadmap is generated according to 

the following procedure:   

 a sample configurations is chosen; 

 if a robot with this configuration does not collide with obstacles it is added to 

a graph containing other collision-free configurations as nodes and paths 

between them as edges; 

 a simple local planner tries to connect new placements to other nodes that 

are within some small region around the new one. 
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This algorithm is illustrated in Fig.  4. The process goes until connectivity of the 

configuration space is fully represented. To find a motion between a start 

configuration and a goal configuration, both are added to the graph and a path search 

across the graph is performed. This approach is called probabilistic roadmap (PRM). 

 

Fig.  4. Example of sampling-based roadmap construction. The process goes incrementally by attempting 
to connect each new sample (α(i)) to the vertices in the roadmap within a certain distance from the new 

sample. [6] 

 

The main difference between the methods is in how new sample configurations are 

chosen. The first version of PRM ([8]) used random selection of samples which, of 

course, was not very effective because a lot of samples did not introduce new 

information about connectivity of configuration space. To reduce the number of 

samples and at the same time to improve roadmap quality other approaches were 

suggested. For example, it was proposed in [9] to put samples close to obstacles, 

which is similar to shortest-path roadmaps (see chapter 2.1). An approach given in 

[10], on the contrary, suggests to place samples as far from all obstacles as possible, 

so the probability of collisions is minimized. A more deterministic sampling technique, 

when samples can be placed only into vertices of a predefined grid, is described in 

[11]. A comparison of several multi-query methods is presented in [12]. It is shown 

that the best performance was demonstrated by a method combining probabilistic 

and deterministic approaches for sample-placement. Other multi-query methods 

suggest decomposing the general planning problem into low-dimensional workspace 

problem and configuration space problem. This allows to define obstacle-free regions 

in the space, which do not require many sample points to represent connectivity 

within them (Fig.  5). These measures reduce the number of samples and therefore 

lower the computational cost of the planning process. 
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Fig.  5. Example of exploiting information about workspace for planning in configuration space. Each 
sphere represents a collision-free subspace and only few samples should be placed in each sphere to 

describe its connectivity. [13] 

Sample-based methods of another type, single-query planners, do not build roadmap 

representing the whole space but generate a new tree-like graph every time they 

search for a solution. Targeting time efficiency, these graphs grow with the sole goal 

of connecting the initial and final configurations of one given problem. The method of 

rapidly-exploring dense tree (RDT) or rapidly-exploring random tree (RRT) originally 

presented in [14] demonstrates good performance and is widely used in various 

robotic applications. Pseudo-code algorithm of tree generation is represented in Fig.  

6. After the initialisation (step 1) the algorithm works incrementally. In step 3 a 

random collision-free configuration is chosen and in step 4 an already existing graph 

vertex qnear closest to this new sample is found. In step 5 NEW_CONF function selects 

a new configuration qnew by moving from qnear an incremental distance Δq in the 

direction of qrand. In steps 6 and 7 a new node and an edge are added to the graph. To 

ensure that the tree would finally converge to the goal, the goal configuration is 

chosen as qrand with a certain rate or probability. Fig.  7 illustrates how the algorithm 

explores the space. 

Several variations of the method may be distinguished: unidirectional (with only one 

tree), bidirectional [14] (two trees, one growing from start configuration, another 

from goal configuration) and multidirectional [15](more than two trees). Usually a 

path found by PRM or RRT has a lot of unnecessary curves and requires smoothing. 

Despite generally good results of RRT, authors of [16] claim, that the standard RRT 

method usually converges to a non-optimal solution under moderate practical 

constraints. To avoid this, a more advanced RRT* algorithm is suggested. In this 

version planning algorithm accounts not only for distance between vertices, but 

mainly for the cost of the path leading from the initial node to the new one. More 

specifically, the new vertex is connected not to the nearest vertex (as in line 7 in Fig.  
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6), but to the vertex, that incurs the minimum accumulated cost from the initial 

configuration up until qnew and lies within some region close to the new node. RRT* 

also extends the new vertex to the vertices in this region in order to “rewire” the 

vertices that can be accessed through qnew with smaller cost. It was proven that with 

these small, but crucial alterations the path found converges to an optimal solution 

and no path smoothing is required. 

 

Fig.  6. Rapidly-exploring dense tree construction algorithm. Here G is the graph storing the 
configurations. Other notations are explained in the text. 

 

Fig.  7. RDT construction example. [17] 

One interesting modification of RRT is presented in [18]. This method also builds a 

tree-like graph to explore configuration space of the robot, but a new node is chosen 

not randomly. Instead, some predefined motion primitives are used to form a new 

sample configuration, which is then assigned a cost value. The cost depends on 

closeness to obstacles and length of the path needed to reach this configuration from 

the initial one. The motion primitives can be of three types: 

BUILD_RDT(qinit, G, Δq)  

1. G.init(qinit); 

2. for k = 1 to K 

3.  qrand ← RAND_CONF(); 

4.  qnear ← NEAREST_VERTEX(qrand,G); 

5.  qnew ←NEW_CONF(qnear, Δq); 

6.  G.add_vertex(qnew); 

7.  G.add_edge(qnear,qnew); 

8. Return G 
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 When the end effector is far from its goal position, the motion primitive is just 

bending one or two joints by a predefined angle. At this time the main goal of 

motion is coming to the region close to the desired position of the end 

effector, therefore, the actuated joints are the ones close to the root and the 

step size is quite big (8° in case of one-joint motion). 

 When the end effector is close to its goal position (within 10 cm region), a 

motion primitive based on inverse kinematics is calculated. It moves the end 

effector directly to goal position. 

 When the end effector is at its goal position, then a motion primitive that 

drives it to a desired orientation is computed based on inverse kinematics. 

As some of the motion primitives are not taken from predefined set, but are 

calculated directly during the planning process, the method is called planning with 

adaptive motion primitives. The path is constructed out of configurations with the 

lowest cost. 

A different way to tackle dynamic constraints (including nonholonomic) during motion 

planning can be found in [19] and [20]. The methods are specially designed for 

systems with complex dynamics that are described by physical models instead of 

equations of motion. This is exploited during construction of the search tree. A new 

sample configuration qrand is not selected explicitly; instead, some control law (e.g. a 

vector of motor torques) is chosen randomly from a bounded region and applied to 

one of the nodes, already present in the tree. Then robot’s forward dynamics is 

simulated in accordance with this control law until a collision occurs, a state-

constraint is violated, or a maximum number of steps is exceeded. In the latter case a 

new vertex in the tree is formed.  

However, usually integrating equations of dynamics of complex systems is 

computationally demanding. Therefore, the search should be guided to reduce the 

amount of calculation. Authors of [19] use deterministic approach to choose which 

vertex should be expanded. For this matter the whole configuration space is 

discretized into multilayer grid (Fig.  8,a), each cell of which is a polytope of fixed size. 

The cells are instantiated only when they are needed, so there is no need to store the 

whole grid structure all the time. A cell at every level stores its coverage rating. 

Additionally, the cells are classified as exterior if they are not completely surrounded 

by other already explored cells or interior otherwise. To ensure good space coverage 

the vertex to be expanded is more likely to be selected from a cell that is exterior and 

has low coverage rating (Fig.  8,b). Because of this mechanism the framework is called 

Planning by Interior-Exterior Cell Exploration (KPIECE). 
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a) 

 
b) 

Fig.  8. Grid structure of KPIECE approach. a) Multilayer grids for space discretization. [19] b) 
Representation of a tree of motions and its corresponding discretization. Cells are distinguished into 

interior (red) and exterior (blue). [21] 

Authors of [20] also use forward simulation of system dynamics for planning. 

However instead of forming the complex grid structures they exploit symbolic action 

planner (usually applied in artificial intelligence domain) to guide the search and to 

identify the regions of the space that planner should explore further. 

2.3. Feedback planning 
Feedback planning is one more approach that proved to be applicable in a vast variety 

of tasks. Feedback planners explicitly account for the fact that the information 

available during planning may be imprecise, that the environment may change during 

motion execution and that motion execution results in uncertainty about the state of 

the robot. Such planners produce not a specific path but construct a potential 

function defined in the permissible state space of the robot that determines 

appropriate motion commands. The robot motion is generated by moving in the 

direction where the potential function descends. 

The classical potential field method (PFM) uses an analogy in which a robot is a 

particle that moves in the configuration space under the influence of a force field. The 

field has two components: attractive component that attracts the particle to the goal 

destination and a repulsive component pushing the particle away from obstacles (see 

Fig. 9). To apply the method to robots with several links Khatib proposed in [22] to 

calculate resulting forces for multiple points of the robot. Another extension of the 

method considers the current speed of the operating point and the maximum 

acceleration it can exercise. If the point moves fast, the region where the repulsive 

force acts is enlarged so there is enough space for the robot to slow down and avoid 

collision. 
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Fig. 9. Attractive, repulsive and resulting potential functions. [6] 

Simple implementation of PFM has a set of problems inherent to the very nature of 

the method. In [23] the following problems are mentioned: 

 Trap situations due to local minima (when obstacles form a dead end and the 

goal is behind them); 

 No passage between closely spaced obstacles; 

 Oscillations in the presence of obstacles (if a goal is behind an obstacle the 

robot, while moving along it, tries to go in that direction but is pushed back by 

the repulsive force; when the robot leaves the region of action of the 

repulsive force, it turns towards the obstacle again and the process repeats); 

 Oscillations in narrow passages (the same effect as in previous case but with 

even greater oscillations). 

To avoid these effects the same authors proposed to use vector field histogram (VFH) 

method [24].  The planning strategy has two stages. First is to calculate obstacle 

density in all directions in polar (or spherical) coordinates where the robot is in 

centre. The directions with low obstacle density become candidates for continuing 

movement. In the second stage one of the candidate directions is chosen to move 

towards the goal. 

Another technique minimizing negative effects of simple PFM is the construction of a 

navigation function – a potential function (or a vector field) free of local minima ( 

[25]). Such function may have a specific global construction algorithm or be composed 

of several local potential functions (see Fig.  10 and Fig.  11). 
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Fig.  10. Iterative construction of a navigation function using wavefront method. The point in the middle is 
the goal point. At the first step the function is constructed in the visibility region of the goal point. Then the 
corners of obstacles iteratively become intermediate waypoints and propagate the the global function to 

regions not visible from the goal point. [25] 

 
(a) 

 
(b)    (c) 

Fig.  11. Composing a navigation function out of multiple local potential functions. a) Each local function 
has a goal in the region of the next function in the cascade. The global goal is in the region of the last 

function in cascade. b) Configuration space is divided in regions with probabilistic sampling before forming 
the vector field. c) After the goal point is introduced, local potential functions are computed and united into 

a global navigation function. [25] 

An interesting extension for potential-field planning was proposed in [26]. This 

approach allows to specify complex motion tasks like ``Visit area π2, then area π3, then 

area π4 and, finally, return to and stay in region π1 while avoiding areas π2 and π3” (Fig.  

12). The properties of the regions, such as reachability, desired order etc. are coded 

 

Goal point 
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with Linear Temporal Logic (LTL) language, which incorporates Boolean algebra with 

temporal information. Each area within workspace generates a potential field that 

corresponds to the complex goal. The fields can be switched during the task 

execution, e.g. area π2 is attracting the robot at the beginning of the task and 

becomes repulsive in the end. Thus, the framework generates a hybrid LTL controller 

that is capable to drive a robot through a complex, multiple-staged task. 

  

a) b) 

Fig.  12. Environment example (a) and the path found (b) for the framework, presented in [26]. 

2.4. Planning in dynamic environments 
All methods described before have a common drawback - they are designed to work 

in static environments and are not suitable to handle moving obstacles. These 

methods compute data (a roadmap, a tree or a navigation function) about the whole 

configuration space at once and if an obstacle has moved the whole process must be 

repeated, which, of course, requires a lot of computation and may take inadmissibly 

long time, especially when computed in configuration space. Within a dynamic 

environment however, the system has the obligation to make a decision within a 

bounded time, otherwise it might be in danger by the sole fact of being passive. This 

limited available time for the system to make a decision, i.e. plan a motion, depends 

on the nature and dynamicity of the environment and is a hard real-time constraint. 

Therefore, special measures are required to tackle this complex task. 

In this section the following groups of motion planners are presented: 

 Motion planners for environments, where future locations of moving 

obstacles are known; 

 Anytime planning; 

 Combination of global planning with local replanning; 

 Planning in velocity space 

 Optimization-based planners; 

 Path and trajectory deformation; 
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 Partial motion planning (PMP); 

 Real-time adaptive motion planner (RAMP). 

2.4.1. Motion planners for environments, where future locations of 
moving obstacles are known 

Dynamic environments can be classified into two groups: when the future locations of 

moving obstacles are known and when they cannot be predicted. In the first case the 

two common approaches to plan movement are to add a time-dimension to the 

configuration space or to separate spatial and temporal planning problems (velocity 

tuning).  

An example of the second technique is presented in [27]. It was developed for robot 

movement in such environments, as factory floors, where multiple robots are 

constrained to move along prespecified path networks (for instance, along lines 

painted on the floor). Thus, geometrically a robot moves along edges of precomputed 

or externally loaded roadmap, which allows avoidance of static obstacles. Moving 

obstacles, i.e. other robots moving along the same paths, are avoided only in time by 

tuning robot’s velocities. 

2.4.2. Anytime planning 
Planning in absolutely unstructured and unspecified environment is much more 

challenging. Up-to-date there is no universal solution to this problem, and a variety of 

different approaches have been proposed. Many of them try to adapt RRT-search to 

dynamic environments, and it can be found in many complex motion planning 

environments. 

Planning with RRT may take arbitrary time and thus the real-time constraint imposed 

by dynamic environment may be violated. Such situation can be avoided with Anytime 

RRT* presented in [28]. The planner quickly finds a feasible, but not optimal (from 

time, energy consumption or smoothness point of view) solution and allows the robot 

start executing the path. While it is moving along the first piece of the path, the 

remainder is optimized according to data loaded at the beginning of planning or 

acquired during movement. Such strategy results in an almost optimal solution, as 

path execution often takes considerable amount of time.  

Nowadays, there is already a bunch of planners exploiting this general idea, and the 

whole family is called anytime planners. 

2.4.3. Combination of global planning with local replanning 
Another concept that simplifies motion planning in dynamic environments is that 

usually only a part of a path is invalidated by an obstacle, and therefore only this part 

needs replanning, which can be done quickly.  
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An extension for a PRM-planner exploiting this concept is described in [29]. At the 

beginning a classical PRM-roadmap for static objects is created and stored. Then a 

moving object may invalidate some of its edges and vertices. When the roadmap 

receives a query, a path within static roadmap is calculated and analyzed. Depending 

on position of movable object several scenarios are possible: 

 the obstacle has not invalidated edges in the path from the initial position to 

the goal. No special measures assumed; 

 the obstacle invalidated some edges in the path. The planner tries to connect 

pieces of the path with a local rapidly-exploring tree. If the local “detour” of 

the obstacle is found it is incorporated into the path. 

 the obstacle invalidated some edges in the path and the local method was 

unsuccessful. The global sampling (as during initial roadmap generation) 

starts to augment the roadmap with new vertices and edges. 

Such scheme combining local and global planning allows maintaining roadmap in 

actual state. The idea of the method is illustrated in Fig.  13. 

 

Fig.  13. Work of PRM-based planner for dynamic environment. A static roadmap is first computed in the 
configuration space of the robot (1). Processing the planning queries, a solution path can be found directly 
inside this roadmap (2) or via a RRT-like technique to reconnect edges broken by dynamic obstacles (3). 

If the existing roadmap does not permit to find a solution, new nodes are inserted and the roadmap is 
reinforced with new samples (4). [29] 
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A well-known approach adapting RRT to dynamic environment is called lazy 

reconfiguration forest (LRF) [30]. Forest-based planners maintain multiple trees 

instead of just a single tree. These planners plant several tree roots throughout 

configuration space and grow an RRT from each one until they are united into one 

tree. The LRF method first builds a tree to find an initial path. If an obstacle interferes 

with it, the interfered branch is not disregarded completely but is divided in several 

parts by the obstacle. One node from each of these parts becomes a root for a new 

tree and these trees start growing trying to reach each other so that the path could be 

reconstructed (see Fig.  14). 

 

    
a b c d 

Fig.  14. Lazy Reconfiguration Forest working principle. An obstacle moves left toward the initial tree (a). 
Portions of the tree become invalid due to the obstacle. These portions are removed and the sub-trees not 
invalidated by the obstacle become new trees in the forest (b). The structures grow incrementally toward a 
sample configuration; two trees are merged, eliminating one root (c). The forest structure is united to form 

a path (d). [30] 

An interesting approach for 2D planning is presented in [31]. It combines many ideas 

presented before.  A roadmap of static environment is generated or loaded. Then it is 

augmented with time dimension to handle known moving obstacles. The path search 

is performed in state-time space (see Fig.  15 and Fig.  16) allowing to avoid dynamic 

obstacles (waiting at the same state is also allowed). If the framework detects that 

the identified path is not collision-free anymore, it tries to replan but only within the 

precomputed roadmap. To minimize replanning efforts Anytime D* search algorithm 

is used. It is a modification of A* graph search algorithm that, firstly, works as anytime 

method and, secondly, searches a solution not from the initial state, but from the goal 

one. In A* search the cost values of the roadmap vertices become out-of-date with 

robot movement as the initial state changes all the time. The latter property of D* 

algorithm allows to avoid renewal of cost values of roadmap vertices, since the goal 

point is static, and, thus, to reuse the data computed in previous iterations for path 

optimisation and replanning. 
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Fig.  15. Representation of trajectories of dynamic obstacles in state-time space. Vertical axis – time, 
horizontal plane – states. From left to right: a known trajectory; a trajectory of a static obstacle; an 

extrapolated trajectory based on previous motion; a worst-case trajectory based on current position and 
maximum velocity. [31] 

 
a) 

 
b) 

Fig.  16. a) A precomputed roadmap with dynamic obstacles (red). b) A path in state-time space (black). 
Blue is the goal configuration, yellow - extrapolated trajectories of the dynamic obstacles. [31] 

2.4.4. Planning in velocity space 
One more method of handling moving obstacles is to use velocity space for planning. 

An obstacle with known dimensions and velocity can be represented in velocity space 

as some region (a cone, if it moves straight (Fig.  17)). The task of a planner in this 

case is to choose such velocity vector, so that it drives robot towards goal and its end 

is not located within obstacle regions (in this case a collision would occur sometime in 

the future). Choosing one vector most probably will not be enough to reach the goal. 

Therefore, frameworks presented in [32] and [33] iteratively build tree of velocity 

vectors until one of the branches reaches a goal region. Each iteration movement of 

the robot and the obstacles is simulated in velocity space, then a new vector is 

chosen. Such planners cannot guarantee, that a global navigation task will be fulfilled, 

and require a global planner, that would define subtasks, feasible for iterative 

planning. A strong side of these planners can be demonstrated by a fact, that they 

may solve a task of crossing a street with car traffic, which is likely to end in a collision 

when solved with methods accounting for spatial information only. 
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Fig.  17. A linear velocity obstacle. B(t0) – obstacle borders; blue cone – set of robot’s velocities that would 
cause a collision if the obstacle was static; orange cone – set of robot’s velocities that would cause a 

collision if the obstacle moved with the speed vb; va1 – admissible robot’s velocity vector, va2 – 
inadmissible robot’s velocity vector. [34] 

2.4.5. Optimization planners  
There are also approaches that treat motion planning as an optimization task. One of 

them is CHOMP - Covariant Hamiltonian Optimization for Motion Planning [35]. It 

uses a two-stage procedure. First, a naive, probably not collision-free, initial trajectory 

from the initial position to the goal is created. During the second stage a modified 

version of gradient descent on the cost function is used to optimize the path with 

respect to being close to obstacles and path smoothness. It is one of few approaches 

that considers path’s smoothness directly during planning and not while modifying 

previously found path. The way, the method handles dynamic obstacles is 

straightforward: it just continues optimization of already existing solution with 

respect to new data. 

In [36] CHOMP is transformed into an anytime planner. It supplies robot with a 

suboptimal solution if the optimization task has not been solved within time budget 

and updates the trajectory during robot’s movement. 

2.4.6. Path and trajectory deformation 
Another way to handle dynamic environment is not recomputing the paths, but 

deforming them when an obstacle approaches. This approach was first implemented 

in elastic bands [37]. The framework fully corresponds to its name as visually the path 

looks as an elastic band deformed by a moving obstacle. Each piece of the path is 

formed by two forces: an external force pushes it away from obstacles while internal 

force tries to make the path shorter. A similar approach applied to a nonholonomic 
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mobile manipulator is described in [38]. The authors of [39] complement elastic bands 

with time dimension: now the trajectory can be deformed not only geometrically, but 

also in time. This allows, for example, to stop the robot for a while to let an obstacle 

pass by and then continue motion along the same path. 

Even broader expansion of elastic bands, Reactive Deforming Roadmaps, is presented 

in [40]. Possible robot motions are described in a roadmap, each edge of which may 

be deformed by an approaching obstacle. Likewise, the roadmap vertices (also called 

dynamic milestones) may move if an obstacle comes too close (Fig.  18). In this way 

the whole roadmap reacts to changes in the environment and tries to adapt to them. 

The authors focus in their paper on planning for multiple robots in 2D space.  

 

Fig.  18. Reactive Deforming Roadmaps (RDR). (a) The RDR contains a set of dynamic milestones and 
reactive links. (b) As the obstacle O moves, the dynamic milestones move as well and the reactive links of 
the roadmap deform to avoid the obstacle boundary. (c) If a path link deforms too much or is too close to 

the obstacle O, the link is removed. [40] 

Elastic strips [41] is the first method from described before, that incorporates task-

specific constraints important for realization of mobile manipulation tasks along with 

reactive obstacle avoidance. Thus, a robot tries to fulfil certain manipulation task (e.g. 

following a line with end effector or keeping upright orientation of the end effector) 

while avoiding moving obstacles (Fig.  19). In order to improve efficiency of the 

framework, most of the computation is performed in the workspace rather than in 

the configuration space. 

 

Fig.  19. Local path modification in presence of obstacles in elastic strips framework. [41]  
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A common drawback of path-deforming approaches is that at some point the changes 

in environment could affect the trajectory so intensively that local path modifications 

without global replanning may lead to invalid or arbitrarily bad motions. 

2.4.7. Partial motion planner (PMP) 
An interesting approach to satisfying hard real-time constraint during planning is 

presented in [42]. The authors of the paper argue that when obstacles move on their 

free will, as it happens in many real-life applications, their future behaviour is only 

partially predictable. Thus, it is likely that the model of the future that has been 

obtained will have limited validity duration. In such situation it is better to iterate a 

partial motion planning process taking as input a regularly updated predicted model 

of the future than to construct a global plan every time. From this assumption they 

develop a partial motion planner that works according to the following algorithm (Fig.  

20): 

1. An updated model of the future B(ti,∞)is acquired. 

2. The state-time space is explored using a RRT rooted at the state s(ti+1) , 

where ti+1= ti+δc. 

3. At time ti+1, the current iteration is over, the best safe partial trajectory ϕi in 

the tree is selected according to a given criterion and is fed to the robot that 

will execute it from now on. ϕi is defined over [ti+1, ti+1 + δhi ] with δhi the 

trajectory duration. 

4. Repeat the steps 1-3 every iteration until the goal is reached. 

With this scheme a new best partial path is always generated within available time δc. 

 

Fig.  20. Partial Motion Planning iterative cycle. [42] 

Partial planning by its nature has to face safety issue: since PMP has no control over 

the duration of the partial trajectory is there a guarantee that the robot will never 

end up in a critical situations yielding an inevitable collision? To provide positive 

answer for this question, the authors introduce concept of inevitable collision states 
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(ICS) - the states for which no matter what the future control law applied to the 

system, a collision with the obstacle occurs. Thus, if a partial plan is ICS-free, it is 

ensured that it is safe. It is also shown that for a car-like robot computation of ICS can 

be simplified greatly. 

2.4.8. Real-Time Adaptive Motion Planning (RAMP) 
A common approach to increasing reliability of a system is redundancy when the most 

critical components of the system have a backup that can come into operation quickly 

in case of failure of the currently active instance. A similar idea is exploited in RAMP 

approach presented in [43]. If a path may be invalidated by an obstacle, it is 

reasonable to have several paths ready, so that the obstructed one can be 

immediately substituted. RAMP is designed for mobile manipulators (a manipulator 

on a mobile base) and provides reasonable results even in this high-dimensional 

configuration space. 

The framework simultaneously maintains and updates multiple trajectories in state-

time space going from the current robot position to the goal region. The exact goal 

configuration for each trajectory is randomly chosen from the goal region, which 

facilitates homotopic variety of the trajectories (Fig.  21). The trajectories are planned 

with an anytime planner, so most of them are not optimal and/or even infeasible at 

the beginning. According to the anytime planning concept, trajectory updating and 

optimization go simultaneously with robot movement. Optimization process has 

stochastic nature. Each iteration one of multiple possible operations is applied to one 

of the paths. The set of operation includes, but is not limited to adding or deleting a 

milestone configuration, substituting a milestone configuration with another, 

stopping the base or manipulator of the robot for a while etc. If the new trajectory 

has lower cost value (infeasibility is also a cost penalty), one of present trajectories of 

same homotopic class (not exactly one with the lowest cost) is substituted. The 

stochastic nature of trajectory optimization and maintenance allows to preserve 

trajectories of different nature and to be ready to big changes in the environment. 
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Fig.  21. A template task for RAMP.  A population of trajectories is required as doors can close and open 
unexpectedly. The initial trajectory set has a good diversity to cover the environment. The trajectories 

going through the same gate belong to one homotopic class. The figure indicates base trajectories only. 
[43] 

2.5. Elastic roadmaps 
Elastic roadmaps is a state-of-art approach for planning within unstructured 

environment. It is a comprehensive approach for motion generation that combines 

together planning and control. It allows to perform mobile manipulation tasks in 

dynamic environments and to satisfy various constraints with different feedback 

frequency requirements. As a reference scenario for mobile manipulation the authors 

in [44] chose inspecting a pipe when a robot moves along it while keeping the end 

effector (with an inspecting tool installed) in proximity to the pipe and avoiding 

obstacles on the way. The whole framework combines sample-based and feedback 

planning and works according to the following algorithm. 

1. A manipulation task is specified in operational space. As an example, it can be 

following a line with the end effector or keeping the end effector in proximity 

to a wall.  

2. Obstacle-related milestones are created. A milestone is a virtual robot that 

has a specific task. The milestones are placed near features (a corner or the 

middle point of an edge; see Fig.  22) of obstacles and their primary task is to 

stay in proximity with the feature while trying to fulfil manipulation task 

specified in step 1 and avoiding obstacles. Thus, if an obstacle moves the 

corresponding milestones move along with it. The placement of milestones 

depends only on workspace information.  
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Fig.  22. Example of milestone placement in elastic roadmaps framework. [44] 

3. A roadmap is generated. The roadmap contains the information about 

milestones and connectivity between them. Two milestones have an edge 

between them if their corresponding characteristic points satisfy visibility 

criterion (e.g. can be connected by a straight line that does not intersect the 

obstacles). Thus, the roadmap is a graph representing connectivity of the 

workspace.  

4.  A path is determined in the roadmap. The start and the goal configurations 

are added to roadmap as milestones and an appropriate path is found with a 

graph search algorithm. The vertices of the graph (milestones) contain 

information whether a milestone is able to perform the manipulation task 

from step 1. It is assumed that if two milestones have an edge between them 

and both satisfy task constraints, movement from one to another is possible 

without violation of the task. The path is computed only through milestones 

fulfilling the manipulation task. Therefore, manipulation task is accomplished 

along the whole path. 

5. A robot moves along the path. As the path is specified only in the workspace, 

a navigation function with the sink at the next milestone in the path is 

formed. When the milestone is reached, the new navigation function leading 

to the next milestone is computed. The robot’s motion along the navigation 

function is controlled by a task-level controller which allows performing of 

several prioritized tasks at the same time. 

Thus, elastic roadmaps form a hybrid controller switching between navigation 

functions and a trajectory in configuration space is never computed explicitly. This 

allows updating the path in dynamic environment with a rate sufficient for mobile 

manipulation tasks. An example of framework’s functionality is presented in the Fig.  

23. To reduce the amount of computation milestone placement, checking 

connectivity between them, path generation and modification is performed strictly in 

operational space. The transition from operational to configuration space is done 

separately for each milestone via task-level controllers. The task-level controller is 

one of the key components of the current project and its functionality is presented in 

details in section 3.4. 
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The framework provides generality in task constraints specification but it is not 

complete, i.e. it may propose an infeasible path or fail following a feasible path. The 

authors of the framework realize that and introduce failure detection mechanism to 

increase system’s completeness. They identify three types of failures. Failures of the 

first type appear when the robot cannot find a motion between two milestones 

connected in the roadmap. It can be a consequence of a mistake in connectivity 

controller, as it only checks visibility between some points of two milestones but does 

not takes in account geometric dimensions of the links. In this case, the framework 

should detect that no progress has been done for some time, invalidate the current 

edge between milestones and find a new path. Failures of the second type 

correspond to violation of manipulation task: when a robot or any of milestones in 

the path are not task-consistent any more, the framework tries to find a new path. If 

the new task-consistent path has not been found the robot should recover as soon as 

possible to the task-consistent configuration or to the closest task-consistent 

milestone. If these recovery strategies still do not allow finding new path, a failure of 

the third type is generated. It corresponds to incompleteness of the method and, in 

this case, the task cannot be solved with elastic roadmaps. 

There are several factors that limit application of the framework. The first is its 

completeness. It is caused by the core algorithm of the system: place milestones 

wisely and hope, that the task-level controller finds a feasible path between them. 

The failure detection mechanism described in the previous paragraph tries to 

minimize this drawback but it is impossible to eliminate it completely. The second 

limitation is that the obstacles in the framework have to be always represented with 

their bounding boxes, which is essential for milestone placement. Such 

representation may conceal shape and structure of compound obstacles and result in 

a suboptimal path or inability of the framework to solve certain tasks. If we divide an 

obstacle into multiple objects for better representation of its shape, the number of 

obstacle-related milestones increases greatly which in turn leads to a boost of 

computational requirements since each milestone is controlled with a complex task-

level controller. One the more factor that may also affect performance of the system 

is visibility criterion, as it considers only some reference points of the robot and not 

its body in whole. 
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(a) The initial desired motion is indicated by the 
red dashes. It directly connects the current 
position of the actual robot to the milestone at 
the goal location. The robot on the right starts 
moving into robot’s path, as indicated by the 
arrow. 

 
(b) A new motion is selected from the elastic 
roadmap. It goes through two more milestones, 
indicated by the transparent robots and 
circumnavigates the moving obstacle. 

 
(c) Due to the motion of the three robots 
(indicated by the arrow), a new motion is shown. 
It goes through three milestones of the roadmap 
(not shown) before reaching the goal position 

 
(d) As the three robots continue their motion, 
another robot starts to move (again indicated 
by the arrows). Yet another motion is selected 
from the elastic roadmap. 

Fig.  23. Example of elastic roadmaps functionality. The robot performs a task that requires the end-
effector to traverse a line in space. Multiple moving obstacles obstruct robot’s path. Elastic roadmaps 

generate collision-free and task-consistent motion. [44] 

2.6.  Dynamic roadmaps (DRM) 
In this section we discuss a framework for real-time path planning originally 

presented by Leven and Hutchinson in [45] and later refined by Kunz et al. in [46]. This 

approach is based on PRM method but it introduces a number of improvements that 

aim at handling unstructured dynamic environments. The key idea exploited is that 

the cost of planning can be divided over many planning episodes. This provides a 

justification for spending extensive amounts of time during a preprocessing stage, 

provided the resulting representation can be used to generate plans very quickly 

during a query stage. Therefore, the method has two stages: offline precomputation 

and online path search. 
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It is assumed during offline precomputation that no obstacles are present in the 

robot’s workspace. Two tasks are performed in this stage. First, a probabilistic 

roadmap is generated in configuration space. After the roadmap is formed, it is 

mapped to 3D workspace. To do this the workspace is divided in cubic cells within a 

grid with constant step size. Each node (configuration) and edge of the roadmap are 

examined to define which workspace grid cells it intersects with (Fig.  24). This 

information is then stored in the workspace cells. Thus, each cell contains a list of 

roadmap nodes and edges that are in collision with the cell. 

 

Fig.  24. Mapping a configuration and an edge to workspace for a 2-DOF planar robot. [45] 

The data stored by the cells is then used during online planning. When an obstacle 

comes into robot’s workspace, it occupies some of its cells. All nodes and edges 

colliding with these cells become invalid, as they would also collide with the obstacle. 

Thus, these parts of the graph are removed from the roadmap and are not considered 

during path search.  

Since there is no time limit on precomputation part mapping of configurations and 

edges may take arbitrary long time. Kunz et al. use a brute approach to map a 

configuration. A big number of points is uniformly distributed within the robot’s body 

and for each of them a cell containing the point is defined. The method, used by 

Leven and Hutchinson is more accurate: they directly compute a set of grid cells that 

represents a polyhedron. The latter method is quicker and more precise, but harder 

to implement. To map an edge, the configuration corresponding to its midpoint is 

voxelized first. Then the edge is recursively subdivided in two parts and the process 

repeated until no new occupied cells are added anymore. The cells that are occupied 

by the two endpoint configurations of the path segment are not considered for the 

set of cells occupied by the path segment. 
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The framework works in configuration space only, so the authors have to pay big 

attention to such issues as selection of sampling techniques, so that whole 

configuration space is sampled, and choosing appropriate distance metric to define 

which nodes should be connected with edges. Another matter that comes into play is 

size of the roadmap and cells’ data. In Kunz’s implementation several hundred 

megabytes was needed to store the data for 7-DOF manipulator and it took 

approximately 20 hours to finish the offline stage. Most of the time was spent on 

collision checks of roadmap edges. 

On other hand, performance of the online planner benefits significantly from using 

the precomputed data. It can compute an obstacle-free path within hundreds 

milliseconds and is capable to handle moving obstacles. The research presented in 

[47] compared performance of DRM and RRT. Three testing scenarios were studied: a 

planar hand with 4 DOF, a planar two-handed robot with 7 DOF and a Robonaut 

humanoid model with 17 DOF. The test results demonstrate, that in the first two 

scenarios planning with DRM was much faster (more than 4 times faster in 4 out of 5 

tests), than RRT. Moreover, for the robot with 7 DOF DRM was able to solve more 

tasks, than RRT. However, for the Robonaut scenario the approach was not so 

effective and quite big part of the tasks was not solved. This can be explained by the 

assumption, that the used roadmaps were not capable of adequately covering the 

free configuration space with such big number of dimensions. One more observation 

made by the researchers is that DRM is effective in finding path to extreme postures 

as they store complete data about environments with complex configurations. 

The current project originates from a semester project that focused on mobile 

manipulation ( [4]). In this context it is worth mentioning a method that expands DRM 

into this domain. The main challenge of using DRM for mobile manipulation is 

increased and potentially unlimited configuration space. In this case, it is impossible 

to describe it with sampling. The authors of [48] suggest a multilayer structure. The 

top-level planner is a simple RRT algorithm that finds new collision-free nodes in 

configuration space and determines the global path. The nodes of the graph serve as 

subgoals for local DRM-planner that may quickly react to moving obstacles and find 

the actual detailed path from one subgoal to another in the configuration space. In 

this case, the top-level planner does not need to check edges for collisions, since it is 

done on the lower level. 

In conclusion, it would be reasonable to compare the frameworks that are the key 

components of the current project. Elastic roadmap is a universal and powerful 

approach that allows handling of dynamic environments and preserving task-

constraints throughout the path execution. It mostly works within operational space 

and is applicable to robots with various structures, including mobile ones. However, 

the very nature of the framework makes it incomplete and it may provide non-
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optimal solutions in cluttered environments with complex-shaped obstacles. DRM, on 

the contrary, is probabilistically complete and demonstrates good performance in 

situations, when extreme configurations should be used. On the other hand, it does 

not consider task constraints and can be applied only to robots with limited 

workspace. 

2.7. Summary 
In the survey an overview of various methods for motion planning and control was 

given. At the beginning classical methods, such as combinatorial roadmaps, were 

presented. Then basic algorithms and their more advanced versions for sample-based 

and feedback planning in static environments were explained in details. After that, a 

variety of methods applied to planning in dynamic environments was reviewed. 

In the end, the key components of the current project were discussed. It was shown 

that elastic roadmaps framework combines features of sampling-based and feedback 

motion planning and uses both global replanning and local path modification to 

maintain a task-consistent path in dynamic environments. It was also demonstrated 

that dynamic roadmaps (DRM) allow quick planning even in environment with moving 

obstacles due to a special mapping technique. DRM does not consider task constraints 

and is only capable to find an obstacle-free path from one configuration to another. 
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3. Design 
This chapter explains all basic features of the proposed framework. First, a general 

concept of the suggested solution is explained; then the details about design of offline 

preprocessor and graph search algorithm are presented; section 3.4 describes 

functionality of the task-level controller and computation algorithms for some of its 

secondary elements; in section 3.5 we overview the task hierarchy for the current 

implementation of the task-level controller and design of each task; section 3.6 gives 

description of simple simulation model used to transform computed generalized 

forces to a new configuration. 

The general structure of the task-level controller and some of its tasks were designed 

during the specialization project last semester. The description of its functionality and 

implementation details (section 3.4) were taken from the report to that project ( [4]) 

and adapted to be more relevant to the current framework. Section 3.5 mostly refers 

only to the current project. 

3.1. General description of the proposed framework 
As already stated above, the aim of the current project is to design a motion planner 

that would be capable to handle dynamic environments and to satisfy task constraints 

during robot movement. For this goal we combine features of elastic roadmaps and 

DRM in one framework. 

In most cases end user of a robot would specify a task in operational space; therefore 

constraints imposed by the task are also specified in operational space. Talking about 

task constraints, we first of all mean that position and/or orientation of the end 

effector of manipulator cannot change arbitrary during its motion. Here are some 

examples of tasks and corresponding task constraints: carrying a glass of water while 

keeping it upright and above a certain level above the ground; painting something on 

a wall with a sprayer while preserving a certain distance from the wall and aiming 

with sprayer at it; pipe inspection with a videocamera when the pipe should always 

stay within camera’s view and, possibly, at a certain distance to be always in focus.  

Like DRM, the proposed framework has two stages: offline preprocessing and online 

planning. In the offline stage a roadmap covering robot’s workspace is generated and 

mapped to workspace cells with technique, similar to one used in DRM.  

The main difference at the offline stage is that the roadmap is generated not in 

configuration, but in operational space. The workspace is discretized with a 3D grid. 

Each node of the grid represents a possible position of the end effector and stores 

information about six configurations. All configurations refer to the same position of 

the end effector, but the corresponding orientations are different. The six 
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orientations coincide with the positive and negative directions of the axes of the 

inertial frame (i.e. correspond to the “up”, “down”, “right”, “left”, “forward” and 

“backward” directions when viewed from the inertial coordinate frame). In fact, for 

almost every node some of orientations are infeasible. In this case a flag that the 

corresponding configuration does not exist is stored in the node. In such manner we, 

firstly, identify, which positions the end effector may occupy, and, secondly, represent 

roughly, which orientations are feasible at these positions. The nodes that have at 

least one feasible configuration are included into the roadmap. An edge in the graph 

exists between any two adjacent nodes. 

Apart from forming a grid for the end-effector position, the workspace is discretized 

one more time into cells that are used for mapping configurations to the operational 

space. This mechanism is absolutely identical to the one used in DRM. After mapping 

each workspace cell stores which configurations (stored in roadmap nodes) it collides 

with. 

At the end of the offline stage the roadmap and the data structure aggregating the 

cells are stored on the hard drive. 

The online planning stage consists of two processes that run simultaneously. The first 

one handles obstacle movement and performs graph search. When a new obstacle 

arrives or already identified obstacle moves, it is mapped to the cells of the 

workspace, and all configurations that collide with these cells are invalidated 

according to the precomputed data.  

The graph search establishes the actual path from the initial node, which is the closest 

node to the current position of the end effector, to the goal one. During the search 

each node is tested for task consistency. If position of the end effector is constrained, 

the position of the node is checked. If the task constraint is applied to the orientation 

of the end effector, first the desired orientation vector is computed for the node. 

Then we determine, the projections on which axes of the inertial coordinate frame 

are dominant for this vector, and check if the corresponding configurations exist 

within the node and if it is valid (i.e. collision-free). Thus we approximately verify 

whether the node is task-consistent or not. Only nodes with valid task-consistent 

configurations can be included in the path. The result of the graph search is a 

sequence of nodes’ positions that lead to the goal point. With a dense enough grid of 

nodes we can ensure that the found collision-free path can be followed by the end 

effector in approximately task-consistent manner. 

The other process running online is the task level controller. It is a structure that 

actually controls the robot in accordance with a set of prioritized tasks (they are also 

called behaviours in this report) that act in the nullspaces of each other. The set 

includes several safety behaviours, e.g. avoiding joint limits and avoiding obstacles, a 
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behaviour controlling robot’s end effector orientation and a behaviour that moves the 

end effector towards the goal position specified by the planner. The structure of the 

task-level controller ensures, that orientation constraints will be preserved during the 

path execution if the safety behaviours allow. The planner supplies the path-following 

behaviour with a new goal as soon as the previous one was reached. 

To sum up, by exploiting the data obtained during offline stage the planner is able to 

quickly find a path of the end effector in the operational space that can be followed in 

obstacle-free  and approximately task-consistent manner. During the path execution 

the task-level controller tries to exactly satisfy the task constraints and tries to follow 

the found path while avoiding collisions with obstacles and inadmissible 

configurations. The details of the framework and main design decisions are discussed 

in the following sections. 

3.2.  Offline preprocessing 

3.2.1. Roadmap generation 
Operational space of a manipulator has six dimensions: three coordinates of the 

position of the end effector and three angles representing its orientation. In the 

offline stage we discretize the operational space to form the roadmap, identify which 

regions of the space (both in position and orientation) are reachable and then use this 

information during motion planning and control. 

As position and orientation dimensions of the operational space have different 

nature, they need to be treated separately. To discretize the position dimensions, a 

3D grid is formed, each vertex of which corresponds to a possible position of the end 

effector. In our project the grid has fixed step size, but there no obvious restrictions 

to use grid with variable node density. 

A space of orientations of an object with fixed position is a spatial angle of 4  (in this 

case we assume, that orientation is considered only as direction of Z-axis of end 

effector’s coordinate frame; directions of corresponding X and Y axes are not 

important as they may be easily adjusted by the last revolute joint of the manipulator 

when the Z-axis is oriented as desired (Fig.  25)). The space is approximated with six 

directions: up, down, forward, backward, left and right when observed from the 

inertial coordinate frame. Thus, we can say, that in preprocessing stage the 

orientation space of each node of position grid is discretized into six states. It will be 

shown in the section 3.3.2 that more states are used during the graph search and 

planning and the orientation space is not discretized at all during path execution. 

Thereby we can represent the whole 6D operational space of a robot as a grid, 

corresponding to the positions of the end effector, where each node of the grid 

contains a set of possible orientations of the end effector. Thus, a grid node may 
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potentially contain 6 points of the six-dimensional operational space. In reality for the 

vast majority of the nodes some of these points are not reachable due to kinematic 

limitations. This is checked by solving an inverse kinematics problem.  

The grid described above forms a graph that is used as roadmap in planning. The 

edges in the graph exist between all neighbouring nodes that contain at least one 

valid configuration since they are close to each other in operational space. All edges 

have the same weights equal to 1. 

3.2.2. Grid resolution choice 
One of the factors that affect grid resolution is the fact that we do not check the 

edges between the nodes for collisions. It does not make any sense really, as each 

node contains six configurations and it is impossible to predict offline, connections 

between which of them are going to be used during motion.  

However, we would like to guarantee at least up to a certain degree that there are no 

obstacles between two adjacent nodes. For this matter we consider two 

configurations that are contained in the neighbouring nodes and correspond to the 

same orientation of the end effector. If there is no gap between the two 

configurations, it is most likely that no obstacle will obstruct the direct path between 

them and thus we increase the probability that the task-level controller is able to 

perform such movement basing only information about the state of the end effector. 

Thus the grid step size should be less than geometrical dimensions of the end effector 

since it is usually the smallest part of manipulator and it covers the biggest distance 

while moving from one node to another. This gives the upper bound for the grid 

resolution. 

The lower bound should be defined from task accuracy specifications. It is also 

obvious, that the smaller the resolution is, the bigger the roadmap graph (and also 

files, storing the roadmap and it’s mapping to the workspace) is. 

In the current project the diameter of manipulator’s end effector is 7,5 cm. The grid 

resolution was chosen to be 5 cm for the roadmap and 3cm for workspace cells. 

3.2.3. Inverse kinematics solver (IKS) 
The IKS play a great role in the framework. Firstly, it defines which positions and 

orientations are achievable by the robot. Secondly, the results produced by IKS are 

used in mapping configurations to workspace. 

The algorithm of IKS assumes making a very important design decision related to 

redundancy resolution. In this project we work with 7-DOF manipulator from Schunk 

GmbH, Germany (Fig.  1 and Fig.  25). As the operational space may at most have 6 

dimensions, the manipulator is redundant and some measures need to be assumed. 
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Usually redundancy is solved by specification of a secondary task for the robot. Such 

task can have a goal of avoiding singular configurations and joint limits, optimizing 

joint torques or providing decoupled force/position control of the robot. In the 

current implementation the secondary task is to provide, that configurations 

corresponding to neighbouring nodes are also close in configuration space. This is 

extremely important, as during the planning stage we do not form a full path in 

configuration space, but specify some waypoints that should be followed by the end 

effector. Thus, if two configurations corresponding to the neighbouring waypoints are 

far away from each other in configuration space, the assumption, that the task-level 

controller may solve the task of waypoint following, is likely to fail. It is also important 

to notice, that joints 1, 3, 5 and 7 of the manipulator that is considered in the project 

have limits more than π in both direction. Because of that the situations when a robot 

has to rotate 360° to get to the adjacent node can be excluded from our consideration 

during offline preprocessing. 

In our project we define the secondary inverse kinematics task as keeping the angle 

value of the joint 3 at zero and assigning only positive angle values to the joint 4. The 

first rule transforms our redundant robot into classical 6-DOF PUMA-like manipulator, 

for which inverse kinematics may be easily solved. The second rule may be justified by 

the assumption that the most obstacles do not fly in the air, but stand on the ground. 

With the constraints specified above we explore configurations that approach 

obstacles “from the top” for which the probability to go around the obstacles 

standing on the ground is high. These kinematics restrictions are valid only during 

offline stage. The robot may use all its DOF during actual moving.  

Imposing the constraints on two of the robot’s joints limits the part of configuration 

space that is explored during preprocessing stage. This is an unavoidable drawback of 

the proposed framework and it will be discussed more in section 6. 
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a) b) 

Fig.  25. The model of the robot (a) and its approximation for inverse kinematics solver (b). The point   
marks the origin of the inertial frame. The points   ..    denote origins of coordinate frames attached to 

robot links. The rotation axes of the joints go through these points and coincide with main axes of 
cylindrical links of the model in the figure (a), i.e     corresponds to the red link,    to the orange link,   – 
to the yellow one etc. The axis    coincides with the main axis of the violet link and represents orientation 

of the end effector. 

With the assumptions presented before solving inverse kinematics becomes an easy 

task. The robot now can be modelled as 4 links, 3 of which are connected with 

revolute joints, and the last one (the end effector) is attached with a spherical joint 

(Fig.  25). The input for an inverse kinematics task is the position of the end effector 

(point            ) and its orientation as a unit vector of Z-axis of end-effector’s 

coordinate frame        . From these we can easily find the desired coordinates of the 

point   :  

                                . 

Now we should check whether this point is reachable. If                          , then the 

point is too far and no solution exist. In the opposite case by applying cosine theorem 

to the        triangle we can obtain rotation angles of the 1st, 2nd and 4th joints:  
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As      because of the assumption made before, now only the angles of the 5th and 

6th joints need to be computed to provide the desired orientation of the end effector. 

This task can be easily mapped to finding Euler angles     and   that would rotate 

the coordinate frame          to the frame         , where    and    are 

arbitrary directed. The solution of this task is well known and we obtain, that  

                     

              , 

where   
  is the vector         observed from the coordinate frame         . 

After the desired angle values have been found, they should be validated against 

admissible joint limits. If the test has been successfully passed, the calculated joint 

values are returned as output of IKS. In case of a fail the inverse kinematics task is 

considered as unsolvable. 

3.2.4. Mapping configuration to workspace 
To map a configuration to workspace we used the same method, as Kunz et al. in [46]. 

First a big number of points is distributed uniformly within the body of the robot links. 

Then it is computed which cell collides with each point in the current configuration of 

the robot. The links of the manipulator are approximated with cylinders. 

 

Fig.  26. An example of configuration of a manipulator and its mapping to workspace cells (cell size – 
3x3x3 cm; robot’s body is sampled with 4525 points).  

To provide good coverage of robot’s body, the sampling points are located within 

vertices of a grid. Kunz et al. demonstrate, that there is no much improvement if the 

grid resolution is less than 
 

  
, where   is the size of workspace cells. In this project the 
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same estimate was used and it appears to be enough to map the whole manipulator 

to the workspace cells (Fig.  26).  

3.3. Graph search and obstacle handling 
In this chapter the functionality of the graph search algorithm is presented. The graph 

search runs online and guides the functioning of the task-level controller. 

3.3.1. Obstacle handling 
The first thing that is done after the planner starts is checking for obstacles. In this 

work we do not consider how the information about obstacle location is obtained. In 

general, obstacles can be detected with a set of videocameras or a laser range finder. 

The only data that is required for our framework is the cells of the workspace 

occupied by obstacles. Based on this information the configurations stored in the 

roadmap that collide with these cells are invalidated and thus are excluded from the 

search. 

If an obstacle moves, only those cells that change their state with respect to the 

previous position are checked. If a newly invalidated cell collides with a configuration 

contained in a node that is present in the currently executed path, the whole path is 

invalidated and the graph search restarts. 

3.3.2. Graph search 
After currently blocked parts of the roadmap have been invalidated and the start and 

goal positions of the end effector have been connected to the roadmap, we can do 

the actual search for a path. A well-known A* search algorithm [49] is used to search 

the graph. It is a heuristic graph search algorithm: an A* search is “guided” by a 

heuristic function. A heuristic function h(v) is the one which estimates the cost from a 

non-goal state (v) in the graph to some goal state. Intuitively, A* follows paths 

(through the graph) to the goal that are estimated by the heuristic function to be the 

best. As heuristic function in this project the distance from the current node to the 

goal end effector position was used. Thus, since all edges have the same weights, the 

A* search finds the shortest path from the initial node to the goal one. 

Each node considered by the search algorithm is examined to be valid and task-

consistent. It is done according to the algorithm presented in Fig.  27. 

The position constraints are checked first. If the node’s position satisfies them, 

taskConsistent is initialized with true value. Then the desired orientation vector D 

is computed based on the task for the end effector. It is normalized so that |D|=1. 

Then we define in which directions along the axes of the inertial coordinate frame this 

vector mostly extends and check if the configurations corresponding to these 

directions within the current node exist (i.e. a valid solution was found by the inverse 

kinematics solver in the offline stage) and do not collide with the obstacles. If this is 
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true, then it is assumed that the robot can at least approximately fulfil the task 

constraints when coming to this node. 

 

Fig.  27. Algorithm to define task-consistency of a node. 

For a normalized vector D the minimum possible value of the prevailing component in 

the vector is found when the vector has all three components equal. Then 

                    
 

  
      . In all other cases, at least one of the components 

would be more than this value. Thus, the threshold parameter t from Fig.  27 should 

be no greater than this value (otherwise, some desired orientation vectors would not 

be tested and a task-inconsistent node could be included in the path). In the current 

project t=0.55. 

To sum up, with the proposed algorithm the planner searches for a collision-free path 

of the end effector in the workspace that can be followed in approximately task-

consistent manner. 

bool examineNode (node n) 

{ 

bool taskConsistent = CheckPosition(n); 

If (OrientationTaskSet == true) 

{ 

Vector3 D = CalculateDesiredOrientation(n); 

if (D.x > t) 

taskConsistent = taskConsistent and n.configuration(1).exist and n.configuration(1).valid; 

if (D.x < -t) 

taskConsistent = taskConsistent and n.configuration(2).exist and n.configuration(2).valid; 

if (D.y > t) 

taskConsistent = taskConsistent and n.configuration(3).exist and n.configuration(3).valid; 

if (D.y < -t) 

taskConsistent = taskConsistent and n.configuration(4).exist and n.configuration(4).valid; 

if (D.z > t) 

taskConsistent = taskConsistent and n.configuration(5).exist and n.configuration(5).valid; 

if (D.z < -t) 

taskConsistent = taskConsistent and n.configuration(6).exist and n.configuration(6).valid; 

return taskConsistent; 

} 

} 
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3.3.3. Goal point updating and failure detection 
After a valid, approximately task-consistent path has been found, it needs to be 

followed by manipulator. It is done with a common waypoint guidance procedure. 

The position of first node in the path is fed to the task-level controller (assuming, that 

it already tries to fulfil orientation constraints). The robot starts moving and when the 

end effector comes close to the first node, the goal position is updated and the robot 

moves to the next node. The circle of acceptance is set to       , where   is the 

grid resolution. This process is repeated until the end effector comes to the last point 

in the path. 

There might be situations when the task level controller fails to execute the path. In 

this case failure detection mechanism, similar to one implemented in elastic 

roadmaps, activates. If the system detects that no progress has been made towards 

the goal, the current goal node is considered as invalid and the planner tries to find a 

new path around it. This is the failure of the first type. If no new path found, it means 

that the planner cannot solve prescribed task. This can refer either to framework’s 

incompleteness (in this case a valid solution can be found with a different approach) 

or to the fact, that the task is impossible for the robot. To increase the probability to 

find a valid path again, the nodes which were invalidated in previous runs are 

revalidated after several unsuccessful replanning attempts. This allows to react to 

changes in the environment and to find a path that was blocked by obstacles before 

and becomes free after the obstacle moves.  

In elastic roadmaps failures of one more type are considered when the task 

constraints are violated during path following. In the current implementation of our 

framework this situation is not identified as a failure. This feature can be easily 

integrated later and its necessity should be defined by system designer. 

3.4. Task-level controller 
Task-level controller is the key component of the framework. It is a convenient and 

powerful tool for generating multi-objective behaviour for robotic systems using 

nullspace projections. Instead of specifying explicit joint trajectories, task-level control 

permits control of the manipulator in operational space, greatly facilitating 

programming and task specification for kinematically redundant robots.  

This part of the thesis and the implementation of the task-level controller are mostly 

taken from the last semester project [4]. However, the set of behaviours and their 

hierarchy (chapter 3.5) were changed and redesigned to satisfy the needs of the 

current framework. 

In this section, we, first, present principles of the task-level controller functioning and 

then give algorithms to compute Jacobian and joint-space inertia matrix required for 

controller operation.  
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3.4.1. Task-level controller 
Dynamics of a robot in configuration space is described by the following equation: 

                              , 

where   is a vector of joint generalized forces whose components represent torques 

for revolute joints and forces for translation joints,   – a vector of joint coordinates, 

     – joint-space inertia matrix (analogue of mass in the 2nd Newton law),         – 

a vector representing Coriolis and centrifugal forces appearing due to simultaneous 

movement of several joints,      – gravity force vector,      – a vector of external 

forces including friction. For simplification it will be assumed from now on that there 

are no external forces acting on the system. Therefore, if we have a vector of desired 

joint accelerations      , by applying a generalized force vector  

                             

we can provide dynamically-consistent control of the robot and achieve that 

          . This is called feedback linearization as all the system nonlinearities 

represented with the matrices     and   are compensated with the feedback law. 

It is possible to map this control law from configuration to operational space. For this 

we need to choose an operational point in operational space     . It can be an end 

effector of a manipulator or any point of the robot whose coordinates we want to 

control. After choosing it we can derive a Jacobian of this point 

   
     

  
. 

Jacobian is a matrix representing how change of joint coordinates affects the 

coordinates of the operational point in operational space. So, if the robot has a task 

that is formulated in operational space with respect to an operational point, a desired 

acceleration vector       corresponding to this task can be derived. The desired 

acceleration can be achieved if the generalized force vector is computed in 

accordance with the following equations: 

         
   , 

                   , 

where     is operational-space force acting at the operating point to provide      ; 

      and    are the inertia matrix, the vector of velocity-product term and the vector 

of gravitational forces respectively mapped to operational space. The mapping is 

performed by the following formulae: 

       
    

    , 
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It is necessary to mention that all these parameters differ for different operational 

points. 

If a robot has several tasks that should be performed simultaneously, a generalized 

force vector         is computed for every task and these vectors must be combined 

into one resulting vector. Simple summing of the vectors does not provide good 

results as tasks may contradict each other and result in a faulty movement. A method 

of cascading multiple tasks using nullspaces presented in [3] is used in the suggested 

framework and implements the core functionality of the task-level controller. The 

work in [3] extends approach from [2], where only two tasks were combined.  

A nullspace of a Jacobian is the space orthogonal to the one spanned by Jacobian and 

will be of rank               , where      is the number of degrees if freedom of 

a robot. The nullspace is represented with square matrix   of size           

which is used to project generalized forces from tasks with lower priorities to the 

nullspace of the task with highest priority. In other words, in case of two tasks (a 

primary and a secondary) the generalized force vector                 
      will 

be consistent with the primary task for any arbitrary generalized force vector from the 

secondary task. Therefore, the robot would try to accomplish the secondary task 

while preserving full execution of the primary task. The term      
      is the 

projection of secondary-task generalized force vector to the nullspace of the primary 

task. 

The presented technique can be expanded to cascade multiple tasks: 

          
        

        
            

                      

                       . 

This equation ensures that the generalized force vector from the tasks with lower 

priority will be consistent with all tasks with higher priority. The index         means 

that the term is consistent with all tasks preceding the task  . The task with highest 

priority is not projected to any nullspace and is executed without any changes. 

A nullspace of an individual task is calculated with the following equations: 

                        . 
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Here   is identity matrix of the same size as         is dynamically-consistent 

generalized inverse of   ; the current representation             corresponds to the 

solution that minimizes the robot’s instantaneous kinetic energy. 

Projection of a generalized force vector into a nullspace not only makes the vector 

task-consistent, but also scales it considerably, which can significantly impair task 

performance. To avoid this the generalized force vector of a task should be defined 

with the following algorithm: 

                       

                                                   

                     
            

The terms                       and            are calculated with the formulas given 

above substituting    with           . 

A problem may arise while calculating                        
            

  
  

. The 

nullspace matrix          in many cases can be not full-rank. Therefore, the task-

consistent Jacobian            can also lose rank and the matrix inversion computing 

           may become impossible. This basically means that the task is not feasible 

within the current architecture. However, usually the secondary tasks do not have to 

be fulfilled completely as they have some supporting function, so the part of the task 

that is feasible should still be used. The feasible movement can be found with 

singular-value decomposition (SVD) of           
   and analysis of its singular values. 

With SVD the matrix can be factorized into the following form: 

          
              

            
                

     

 
  

     
 

     
  , 

where       is a diagonal matrix of non-zero eigenvalues, and       and       are 

matrices corresponding to non-zero and zero eigenvectors, respectively. As some 

eigenvalues are zero, it is not possible to fully control      . However, by choosing the 

control input 

                            
  

  
                             

we accomplish dynamic decoupling in the controllable directions according to the 

projection                , where       defines these directions. 
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In [3] it is also shown that a nullspace resulting from several cascaded tasks can be 

calculated as follows: 

                                       

   

   

 

Therefore,                               . 

To summarize all these calculations, here is the overall algorithm how the tasks 

should be iteratively combined one after another: 

1) Initialize the task-level controller; initial nullspace       

2) Choose the task; 

3) Determine the task Jacobian    and the desired acceleration vector      ; 

4) Get the nullspace resulting from all tasks with higher priority         ; 

5) Calculate            and            (           should be computed using SVD-

method); 

6) Calculate           ; 

7) Calculate the nullspace that combines the nullspace from all the higher-

priority tasks and the nullspace from the current task (         

                      ; 

8) Repeat steps (2)-(7) for all tasks; 

9) Sum up the resulting generalized force vectors               
 

   
 . 

3.4.2. Jacobian computation 
Task-level controller uses Jacobian matrices to calculate generalized torque vectors 

and nullspaces of tasks. The algorithm for Jacobian computation is presented in this 

section. 

Jacobian of a robot is a matrix representing interdependency between velocities in 

operational and configuration spaces. Linear and angular velocities of an operational 

point can be expressed through joint velocities with the following equation: 

 
  
  
         

In general case  
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Thus for one operational point maximal size of   is 6xn, where n is number of joints. 

The top 3 rows correspond to linear velocities, the bottom 3 rows – to angular 

velocities. Each column of Jacobian corresponds to one joint and shows how the 

coordinates of the operational point change if this joint moves. Therefore it is 

convenient to compute Jacobian column by column considering the joints separately. 

Each column then can be represented as   
   

  
 

  
 
 . 

Exact formulae for computation of   
  depend on type of joints. The robot at hand has 

only revolute joints, and they will be discussed in details. The formulas given in the 

remaining of this section and their mathematical proof is given in [50]. 

In Denavit-Hartenberg notation revolute joint   can rotate around z-axis of     

coordinate frame. In this case the orientation of the operational point is affected 

directly and   
      . Change of linear coordinates depends on the position of the 

operational point relative to the rotation axis: the further it is from the axis, the 

bigger linear velocity the operational point can reach. Thus  

  
                  

where     and      are the positions of the operational point and the origin of     

coordinate frame viewed from the world coordinate frame (Fig.  28.b). 

If the operational point is such, that it cannot be affected by a joint (for instance, it is 

closer to the root of manipulator’s kinematic chain than the joint), the corresponding 

column of Jacobian is set to zero. 
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Fig.  28. Instantaneous linear velocity of operational point caused by the change of joint coordinates for a 

revolute joint (   is perpendicular to the plane formed by      and                    ). 

3.4.3. Joint-space inertia matrix computation 
JSIM is a symmetric positive-definite matrix and it represents inertia properties of the 

robot. For instance, full kinetic energy of a robot can be specified as  

  
 

 
      . 

The general formula to compute JSIM is 

            
        

       
    

 

 

   

 

Here    and    are the mass and the inertia tensor of i-th link of the robot;     and     

are the submatrices of the Jacobian corresponding to linear and angular velocities of 

the operational point respectively; the index i here means that the operational point 

coincides with the origin of the coordinate frame connected to the i-th link of the 

robot;    is the transform matrix representing transformation from global coordinate 

frame to the coordinate frame connected to the i-th link of the robot [50]. 

It is obvious that calculation of JSIM is computationally intensive as multiple Jacobians 

and transform matrices need to be computed. To reduce the number of operations 

required for dynamics representation of a robot special a framework using spatial 

algebra notation was presented by Roy Featherstone in [51]. Part of this framework is 

the Composite-Rigid-Body Algorithm for JSIM calculation which is used in the current 

implementation. In this section we give a very short introduction into the spatial 

algebra first and then present the algorithm itself. 

Spatial algebra quantities 
A body in 3D space has 6 degrees of freedom, but traditionally linear and angular 

parameters are analyzed separately. Spatial algebra uses 6-dimentional vectors and 

matrices to represent different properties of rigid bodies. Some of them are 

summarized in Table 1. 

zi-1 

δqr 

δx 

Oi-1 

A 

O0 
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Symbol Definition Full representation Compact 

representation 

  Velocity of a rigid body    
 
  
         

  Acceleration of a rigid 

body (    ) 
   

  
   
      

 
    

  
         

   Spatial inertia of a rigid 

body around point O. 
    

        

        
  

          

  
  Coordinate transform 

from frame A to frame B. 
  

 

  
  

  

  
     

     
   

   
    

   

Table 1. Some elements of the spatial algebra and their compact representation. 

Velocity of a rigid body can be expressed as a pair of 3D vectors   and    which 

specify the body’s angular velocity and the linear velocity of a body-fixed point 

currently coinciding with point O (location of the point O is specified in the fixed 

coordinate frame). These two vectors are united to form the spatial velocity vector  . 

Spatial acceleration is defined as the rate of change of spatial velocity. Unfortunately, 

this means that spatial acceleration differs from the classical textbook definition of 

rigid-body acceleration, which shall be called as classical acceleration. Essentially, the 

difference can be summarized as follows: 

   
  
   
      

  
    

  

where   is the spatial acceleration,   is the classical acceleration,     is the derivative 

of    taking O to be fixed in space, and      is the derivative of    taking O to be fixed 

in the body. Mathematically the difference is expressed with the equation 

      
 

    
 . 

The practical difference is that spatial accelerations are easier to use. For example, if 

the bodies B1 and B2 have velocities of    and    respectively, and      is the relative 

velocity of B2 with respect to B1, then           .The relationship between their 

spatial accelerations is obtained simply by differentiating the velocity formula: 
 

  
                          . Thus, spatial accelerations are composed 

by addition, exactly like velocities, and there are no Coriolis or centrifugal terms to 

worry about. 

Spatial inertia around point O is a 6x6 square matrix and is computed according Table 

1. Here   is the mass of the body;   is a 3D vector from O to the centre of mass C; 
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     is an auxiliary vector without specific physical meaning;           

           is the rotational inertia tensor of the rigid body around O;      – 

rotational inertia tensor of the rigid body around the centre of mass;      is a skew-

symmetric matrix formed from the 3D vector   according to the following equation: 

      

      
      
      

 . 

It can be shown that for any 3D vector   the following is true:          . 

Coordinate transform from frame A to frame B is a 6x6 square matrix and it is 

computed according to the Table 1. Here   
  is 3x3 rotation matrix transforming 

coordinates from frame A to frame B;   
  Is a 3D vector defining location of the 

origin of the frame B relative to the origin of the frame A, expressed in coordinates of 

A. 

Spatial algebra formulae 
As can be seen from Table 1, some of spatial quantities have compact representation, 

so it is not necessary to store 36 elements of 6x6 spatial matrices, but only 12 and 13 

elements to represent coordinate transform and spatial inertia respectively. This also 

simplifies operations with these quantities greatly. The compact representation of 

spatial arithmetic formulae is given in Table 2. 

Expression Meaning Compact value 

   Expressing   in coordinates of 

another frame 

               

    Coordinate transform inversion          

     Combining two coordinate 

transforms 
            

     

        Summing inertias around the 

same point O from several 

bodies 

                         

     Expressing spatial inertia in 

coordinates of another frame 

                  

      
           

           

Table 2. Effective representation of spatial algebra formulae. 

Composite-Rigid-Body Algorithm 
Composite-Rigid-Body Algorithm is used to effectively calculate JSIM. Generally 

speaking it can be applied to a kinematic tree with multiple branches (for example, a 
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humanoid robot with several limbs). Fig.  29 represents pseudocode for the algorithm 

when applied to a robot without kinematic branching. 

The following notations are used in the algorithm: 

   – number of joints; 

    – spatial inertias of separate links given about the origins of coordinate 

frames attached to the respective links; 

     
  – coordinate transforms from the frame attached to the link   to a 

frame attached to the link preceding the link  ; 

    – a matrix representing unconstrained degrees of freedom of joint  . For 

example, for a revolute joint rotating around z-axis 

              ; for a spherical joint allowing rotation around 

three axes        
      
      
      

 

 

; for a prismatic joint moving 

along z-axis              ; for cylindrical joint (rotation 

around z-axis and movement along z-axis)       
      
      

 
 

; 

   
  – inertia of a composite rigid body formed by the rigid assembly of the 

joint   and all the links that are closer to the end of kinematic branch than the 

joint  ;  

   – local variable. 

So the algorithm iteratively calculates spatial inertias of composite rigid bodies 

composed of several links (for instance, if       the composite body consists of 

the two last links of the robot and it is assumed that they do not move relative to 

each other) and expresses the inertia in coordinates of corresponding frame. Then 

with the help of matrices    the exact terms of spatial inertia matrix corresponding to 

unconstrained degrees of freedom of respective joints are chosen to be components 

of JSIM. 

Although this algorithm requires more design efforts (developing background for 

implementation of spatial algebra), it provides better performance as all the 

calculations can be performed in compact and effective form.  
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Fig.  29. Composite-Rigid-Body Algorithm for calculating JSIM of a non-branching robot. 

  

                 
     

     

   ; 

for     to   do 

  
    ; 

end for; 

for   to     do 

    
   ; 

      
  ; 

if     then 

     
      

       
   

     
   

while     do 

       
 

   

 --; 

        ; 

       
 ; 

end while; 

end for; 

 

 

 



58 
 

3.5. Task hierarchy and design of individual tasks 

3.5.1. Task prioritization in the task-level controller 
The task-level controller in our implementation has the following task hierarchy 

(notation is taken from [44]): 

                                                  . 

Here the notation       means that    has higher priority than   .            is a 

task that prevents reaching joint limits by the robot; it has the highest priority in all 

task-level controllers and is executed under any circumstances.            provides 

obstacle avoidance;       represents the main manipulation task;         is 

responsible for global robot motion towards the next end effector waypoint;          

is a secondary task specifying desired configuration of the robot;       is the lowest-

priority task and constrains all degrees of freedom unaffected by all other tasks. 

The two tasks with the highest priority provide that the manipulator operates safely. 

Prioritization of       and         depend on the decision of the system designer or 

on the manipulation task of the robot.          provides correspondence between 

offline roadmap generation and online path following. 

3.5.1. Some notes on the implementation of tasks 
Some tasks may require that not all joints should be affected. For example,  

           is not always active but only when a joint is close to its limit and only this 

joint should be affected while the others may move arbitrary. In this case we may 

assume that the task works in configuration space and, therefore, no       for 

operation point can be computed. Instead the desired acceleration is computed in 

configuration space (      instead of      ) and directly transformed to a generalized 

force vector as                            . The task Jacobian, required for 

computing the nullspace of the task, is formed from the end effector Jacobian. Only 

the columns corresponding to the joints that are directly controlled by the task are 

used; columns corresponding to other joints are set to zero. Based on the task 

Jacobian the matrices           ,             and the resulting nullspace are computed 

in the same way as for operational-space tasks.  

A manipulation task working in operation space usually specifies not all coordinates, 

but only some of them. For instance, obstacle avoidance does not restrict operation 

point orientation. A task Jacobian at most can have 6 rows (3 for linear and 3 for 

angular coordinates). To match a task Jacobian to its task, only the rows of Jacobian 

corresponding to operational coordinates that are of interest for current task should 

be used in computations while others may be disregarded. 
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There can be periods of time when a task is inactive and it does not need to move its 

operation point (or joints in configuration space) or produce any activity. In this case 

its resulting generalized force vector            is set to zero and the overall nullspace 

remains unchanged (        ). Activation or deactivation of a task may be done 

either inside or outside of the task. For example,            is always turned on, but it 

is active only when at least one of the robot joints is close to its limit. In this case it is 

activated internally after checking current values of the joint angles. Similarly, 

           needs to check if the robot collides with obstacles first and make a decision 

about activating itself. On other hand,       does not check anything internally and 

can be activated or deactivated only from outside.  

The core feature of each task is determination of       or      . In the current project it 

is computed with simple PD-controllers according to the following equations: 

      
  

  
         

         
    

       
  

                     

Here   and    are actual coordinates and velocity of the operational point;     ,       – 

desired coordinates and velocity of the operational point;    and    – gain 

coefficients. The velocity vector    is in fact controlled to be pointed toward the goal 

position      while its magnitude is limited to     . It is equivalent to building a 

potential field with an attraction point at      and going to it in the shortest way. For 

tasks acting in configuration space       is computed in a similar way substituting 

operational-space coordinate vectors with joint-space ones. 

3.5.2. Design of tasks 
Each task has the following specific features: task’s goal; which space, operational or 

configuration, it operates in; operation point; when the task is active; affected joints; 

algorithm to define      (or     ). In this subsection design decision concerning each 

task individually will be presented. 

The tasks         and             are similar to ones implemented last semester. The 

tasks      ,           ,          and       were designed during the current project. 
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Avoiding joint limits (          ) 
Operational or configuration space: Configuration space 

Affected joints: All joints that are currently close to their limits 

Activated: When a joint is within certain range    from its maximal or minimal limit. 

Working algorithm:  

 

            
      if         

    
            

      if         
    

inac ve for the joint    else                         

  

where    is a range where a joint is considered to be close to its maximal or minimal 

limit,   is the number of a joint. Value of    is defined based on maximum velocity and 

acceleration of joint’s actuator, so that a joint is able to stop before it reaches its 

physical limit. Such realisation of            decreases the admissible range of angle 

values but allows preventing mechanical damage of robot links and actuators. 

Obstacle avoidance (          ) 
Operational or configuration space: Operational space 

Operation point:  End points of manipulator segments 

Affected joints: All joints preceding the operation point 

Activated: When robot is within certain distance from an obstacle. 

Working algorithm: 

In the current project for collision avoidance the robot is divided in four segments: 

segment 0 – links 1 and 2, segment 1 – links 3 and 4, segment 2 – links 5 and 6, 

segment 3 – link 7 (Fig.  30). The segment 0 is stationary and no collision avoidance 

measures can be taken. The overall obstacle avoidance task in fact can be divided in 

several subtasks each responsible for its segment, i.e. each subtask tries to move the 

corresponding segment away from obstacles. The subtasks are prioritized as  

                                , so that segment 1 has the highest priority. At 

first it may seem strange to have different priorities for different parts of the robot. 

This does not mean, however, that certain parts are more likely to collide. This is 

because higher-priority subtasks affect only part of robot joints, meaning that the 

nullspace for lower-priority subtasks will remain unaffected for all other joints. For 

instance, if both segments 1 and 3 are close to obstacles,            will define 

movement of joints 1 and 2, while            may use all other degrees of freedom 
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(and joints 1 and 2 if they move in the appropriate direction) to prevent a collision of 

segment 3. 

It is very costly to analyze precisely collisions of rigid bodies online. An appropriate 

approximation of robot’s links is needed. In the current framework each segment is 

represented as a set of spheres located on the main axes of the links of the robot (Fig.  

30). An obstacle object within the framework stores the cells that it occupies. Thus, to 

provide obstacle avoidance we need to ensure that centres of the spheres are far 

away enough from the cells occupied by obstacles. It is done with the algorithm in Fig.  

31. 

 

Fig.  30. Approximation of the robot’s links with spheres for obstacle avoidance. Left – robot model, right –
spheres used in online collision avoidance (grey – segment 1, yellow – segment 2, blue – segment 3). 

 

Fig.  31. Algorithm for online collision avoidance 

for each obstacle    

for each cell        

if (CheckCellClose (  )) 

for each sphere    

if Distance (Center (  ) - Center (  )) < AllowedRange 

          CalculateForce (  ,   ) 

end 

end 

end 

 

for each segment    

for each sphere        
                        

end 

end 

CalculateReferenceAcceleration () 

 



62 
 

Some comments on the algorithm: 

 The operating point for the segment 1 is the origin of joint 4, for the segment 

2  – the origin of joint 6, for the segment 3 – the end effector (points   ,    

and   in Fig.  25).  

 Function CheckCellClose (  )) returns true if the cell    is within 0,3 m from 

operating points of the 1st and the 2nd segments or within 0,2 m from 

operating point of the 3rd segment. This quick check allows to filter out not 

obstacle-free cells that currently far from the robot and cannot obstruct 

robot’s movement.  

 The variable AllowedRange should consider the size of cells and the safety 

distance defined by the designer. 

 The function CalculateForce(  ,   ) defines a virtual force that drives the 

sphere    from the cell   . The force is always directed from the center of    

to the center of    and its absolute value is calculated as 

     

 

 
                                

 

   
 

 

 
                

                          

 , 

where   is the distance between the centres of    and   ,   is the desired 

safety distance,   size             – constant considering size of the 

cells. The graphical representation of     is depicted in Fig.  32. 

 When summing up the forces from spheres within one segment we do not 

consider the location of spheres within the segment. Thus, we constrain only 

position of the operating point and not the orientation of the link it is 

attached to. Such solution allows to avoid imposing too many constraints on 

the operating point and to leave more freedom for lower-priority tasks. 

 The resulting force actually represents where the operating point should 

move to get away from obstacles. Thus, we may say, that               

          where   is some scaling coefficient. If we define 

         
     

               
 , the corresponding desired acceleration      , 

torque vector    and resulting nullspace   may be computed with the 

procedure described in section 3.5.1. 
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Fig.  32. Dependence of the absolute value of force repulsing a sphere from a cell on the distance 

between them (C=size     ). 

End effector task (     ) 
Operational or configuration space: Configuration space 

Affected joints: Joints 5 and 6 

Activated: When a task for the end effector is specified. 

Working algorithm: 

In this task we consider only orientation of the end effector. Positional constraints for 

the end effector are fulfilled during graph search stage. Two manipulation tasks 

involving orientation task constraints are modelled in the current project: preserving 

constant orientation of the end effector (e.g. while carrying a glass of water) and 

aiming with the end effector at the same point in the space throughout movement.  

Although the tasks are specified in the operational space, it was easier to implement 

the end effector task in the configuration space. We assume that orientation 

constraints may be satisfied only by the movement of the joints close to the end 

effector. Thus, we find the desired angle values for joints 5 and 6 with the same 

algorithm as implemented in inverse kinematics solver: 

                        

                 , 

where   
                   is the vector of desired orientation of the end effector 

observed from the coordinate frame         . If the task is to aim at a point   we 

need first to  calculate    as  
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Where point O is the centre of the inertial frame,   is the current position of the end 

effector. 

End effector movement (       ) 

Operational or configuration space: Operational space 

Operation point: End effector 

Affected joints: All 

Activated: When a goal point is updated by the planner. 

Working algorithm: 

This task moves the end effector towards the point specified by planner. If we assume 

that the goal point is given by      , then the algorithm from subsection 3.5.1 can be 

used directly: 

      
  

  
          

         
    

       
  

                    . 

Secondary configuration task (        ) 

Operational or configuration space: Configuration space 

Affected joints: Joints 3 and 4 

Activated: Always. 

Working algorithm: 

This task tries to ensure that the current configuration is subject to the same 

constraints, as configurations found in preprocessing stage during inverse kinematics 

solving (see subsection 3.2.2). More specifically, it tries to keep the angle value of the 

joint 3 at zero and prevents assignment of negative angle values to the joint 4. 

Therefore we impose a soft constraint on the robot’s configuration during movement 

to provide correspondence between offline preprocessing and online movement. 
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Mathematically the algorithm can be written as follows: 

 

                                             

 
          if                       

inac ve for the joint    if     
 
  

Vector of desired acceleration       is then found with a standard procedure. 

Task constraining all available degrees of freedom (     ) 

Operational or configuration space: Configuration space 

Affected joints: All 

Activated: Always. 

Working algorithm: 

This is the lowest-priority task and it affects all joints all the time so the robot never 

has unconstrained degrees of freedom (the nullspace of the current task is zero). To 

achieve this       tries to stop all joints that move freely in the nullspace of all higher-

priority tasks. Thus, the vector of desired joint velocities        , and            , 

where    is the vector of actual joint velocities. 

3.5.3. Summary of tasks 
The tasks described previously are summarized in the Table 3. 
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Notation Goal Type Activation condition Operational point Affected joints Desired position 

           Avoid joint limits C When a joint is within 

certain range    from its 

maximal or minimal 

limit.  

– Only those joints 

that are close to 

their respective joint 

limits 

            
     

 if         
    ; 

            
     

 if          
    . 

           Avoid obstacles O When robot is within 

certain distance from an 

obstacle.  

End of the segment 

that is close to an 

obstacle 

All joints preceding 

the operational 

point. 

Determined by the direction of 

the repulsive force. 

      End effector 

orientation task. 

Currently 2 options 

are available: 

 Keeping 

constant 

orientation 

 Aiming at a 

certain point of 

the workspace 

C Activated when a task is 

specified. 

– Joints 5 and 6                         

                 , 

 

        Moving the end 

effector to the 

desired goal point. 

O Activated by the path 

planner 

End effector All Specified by the planner 

         Posture specification  C Always active – Joints 3 and 4 

 

                                             

 
          if                       

inac ve for the joint    if     
 
  

      Constraining all free 

degrees of freedom. 

C Always active – All               (then          

Table 3. Individual characteristics of different tasks. In Type column C corresponds to tasks working in configuration space, O – in operational space. The tasks 
are listed according to their priorities (higher priority first).
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3.6. Robot simulation model 
As already explained in chapter 3.4.1, a dynamic model of a robot is represented with 

the following equation: 

                               

The term      can relate, for example, to the friction in the actuators and gear units. 

The generalized force vector   is generated by the task-level controller and now the 

task is to compute how the robot configuration changes when    is applied to the 

robot’s actuators. This task is known as forward dynamics calculation. 

From the last equation we can derive that                     . The joint-

space inertia matrix   is always invertible. At the current stage of the project the 

terms        and   are not considered yet and their calculation should be 

implemented in future work. Therefore the only term left is 

       
   . 

The state of a robot is described with a pair of vectors of space variables         , 

where    corresponds to the configuration variables   and    corresponds to their 

velocities   . Thus, system description in state-space is 

 
      
       

 . 

Considering the previous equations we obtain that 

 
              

      
   

  

This state-space model represents continuous-time system. However, computer 

simulation can be performed only in discrete time. To define new state of the system 

after a time step   the Newton integration method is used: 

 
                        

                         
  

Another aspect of robot simulation is physical limitations: the values of torques, 

accelerations and velocities provided by the actuators cannot exceed some certain 

values. Therefore,      and    get bounded after their values are computed in our 

simulation model.  
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4. Implementation 
This chapter reveals some implementation details of the current project. It describes 

the structure of the proposed framework and the tools used during implementation. 

4.1. Class diagram 
The framework is implemented in C++. Fig.  33 and Fig.  34 show simplified class 

diagram of the offline and online parts of the framework. Functionality of most of the 

classes is clear from their names and is presented in details in the Design chapter 

(Chapter 3). For other classes the necessary comments are presented further. 

 

Fig.  33. Simplified class diagram of the offline part of the framework. Black-headed arrows represent 
“contain” relationship, white-headed arrows represent “derived from” relationship. The blue-coloured 

classes run as separate threads.  

 

main() 

 

formRoadmap (); 

IKSolver 

SolveIKTask(); 

(1) 

TransformHandler (abstract) 

updateConfiguration(); 

getOrigins() 

getTransforms 

ConfToCellsMapper 

mapConfigurationToCells (); 

mapNodeToCells (); 

(1) 

(1) 

SchunkTransformHandler 

TransformHandler (abstract) 

updateConfiguration(); 

getOrigins() 

getTransforms 

SchunkTransformHandler (1) 



69 
 

 

Fig.  34. Simplified class diagram of the online part of the framework. Black-headed arrows represent 
“contain” relationship, white-headed arrows represent “derived from” relationship. The blue-coloured 

classes run as separate threads. Behaviours represent the tasks for the task-level controller. 

Planner 

run() 

setGoal (); 

findPath(); 

 
ObstacleHandler 

AddObstacle(); 

MoveObstacle(); 

DeleteObstacle(); 

 

(n) Obstacle 

RobotController 

run() 

updateConfiguration(); 

(1) 

RobotVisualPublisher  

PublishJointState(); 

(1) 

TransformHandler (abstract) 

updateConfiguration(); 

getOrigins() 

getTransforms 

TaskLevelController  

getTorque (); 

convertGammaToConfiguration (); 

(1) 

(1) 

SchunkTransformHandler 

Behavior (abstract) 

getTorque(); 

(k) 

AvoidanceBehavior 

EndEffectorBehavior 

GlobalBehavior 

RedundancyResolutionBehavior 

KinematicBehavior 

(1) 
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4.2. Representation of robot model 
The model of the robot is stored in the TransformHandler class. Basically, it is a set of 

coordinate transforms that represent positions of the robot joints. The coordinate 

transforms for this and all other classes are implemented with the help of Bullet 

Physics Engine [52]. All other classes refer to TransformHandler when they need some 

data about the current state of the robot, e.g. position of origins of joint coordinate 

frames, orientation of joint axes or coordinate transforms from inertial frame to one 

of joint’s frames.  

The TransformHandler class is abstract and the exact coordinate transforms for a 

specific robot are performed in the derived classes, such as SchunkTransformHandler. 

This is done to provide a general interface to robot’s model that can be used when 

applying the framework to another model of the robot. SchunkTransformHandler 

class additionally stores such data as joint limits and mass parameters of the links.  

4.3. Roadmap representation, graph search and data storing 
 For effective handling of graphs the Boost Graph Library (BGL) [53] was used. BGL 

includes a set of template classes that allow fast creation and maintenance of graphs 

of various types as well as templates for graph-exploring algorithms, such as sorting of 

nodes, path search etc.  

The roadmap created in the current project is an instance of bidirectional 

adjacency_list class, where each vertex contains a list of outgoing edges (Fig.  35). 

 

 

Fig.  35. Adjacency list representation of an undirected graph. [53] 

The A* graph search algorithm is also implemented with BGL. To customize it for the 

specific needs a concept of visitor functions is used in BGL. Visitors are called 

whenever a certain point in the algorithm is reached. Out of eight visitors accessible 

for A* search the following ones were used in this project: 

 examine_vertex – called when a new vertex is reached for the first time 

during the search. At this moment the vertex is tested for task consistency. 
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 examine_edge – called for all edges outgoing from the node checked in 

examine_vertex function. In this function if the node was task-

inconsistent the weights of the edges are raised to some big value      (the 

value is more than the number of nodes in the graph), so that they become 

an undesirable choice for being included in the path. 

 finish_vertex – called when the goal vertex has been reached. At this 

point an exception is thrown to identify the end of search. When the 

exception is caught, we check the path cost that is the sum of edge weights 

when going from start vertex to the goal one. If the path cost is higher than 

    , it means that one of task-inconsistent nodes was included in the path 

or, in other words, that no task-consistent path has been found. Thus in this 

case the graph search is considered as unsuccessful. Otherwise, the path 

found is stored by the planner.  After each graph search the edge weights 

changed in examine_edge function need to be restored to their initial 

values, so that they do not affect next search attempts. 

One more important issue is how to store and load the created roadmap and its 

mapping to workspace cells. This is done using the Boost Serialization library [54]. This 

library provides methods to serialize a linked data structure and to store it into a file, 

from where it can later be loaded and deserialized. The Boost Serialization library 

serializes an object by serializing all its fields, recursively following pointers to other 

objects. It detects an object that has already been serialized and, thus, can handle 

circular pointer structures like our roadmap. 

The size of the file containing roadmap (grid resolution 5 cm) is 5 MB. The size of the 

file containing mapping of configurations to the work cells (workspace grid resolution 

3 cm) is 270 MB.  

4.4. RobotController class 
The RobotController class is just a container that stores the task-level controller and 

the model of the robot and provides communication between them and the planner. 

It runs in a separate thread and its main goal is just asking for new torque vector from 

the task-level controller and updating the model according to it (Fig.  36). It also 

updates the visual model as described in section 4.5. 
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Fig.  36. Simplified main loop of the RobotController class. 

4.5. Implementation of task-level controller 
All the robot’s tasks (or behaviours) have a lot of common functionality, therefore it is 

reasonable to have a general Behaviour class implementing it and derive individual 

behaviours from this class. The general class is abstract and it has the structure given 

in Fig.  37. 

 

Fig.  37. The most important members of the abstract Behaviour class. 

Beside constructor and destructor, the main externally accessible function of the class 

is getTorque(), which returns            generated by the task. This process is divided 

into three subfunctions: 

 calculateReferenceAcceleration calculates      . This function is purely virtual 
as each behaviour has its own rules how to do it. This function also computes 
the task Jacobian. The exact functionality of this function for different tasks 
corresponds to section 3.5.2. 

class Behaviour  

{ 

 public: 

   Behaviour(); 

   ~Behaviour(); 

   virtual const forceVector& getTorque() 

   { 

 calculateReferenceAcceleration(); 

 calculateNextTaskNullspace(); 

 TransformRefAccelerationToTorques(); 

return myTorques; 

   } 

 

 protected: 

   virtual void calculateReferenceAcceleration() = 0; 

   Eigen::MatrixXd calculateOperationPointJacobian(uint OPIndex); 

   void calculateNextTaskNullspace(); 

   void TransformRefAccelerationToTorques(); 

   forceVector myTorques; 

}; 

while(true) 

{ 

  newGamma = myTLC->getTorque(); 

  newConfiguration = myTLC-> 

convertGammaToConfiguration(newGamma); 

  myTransformhandler->setConfiguration(newConfiguration); 

  rvizPublisher->PublishJointState(newConfiguration); 

  loop_rate.sleep(); 

} 
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 calculateNextTaskNullspace takes the nullspace resulting from the higher-
priority tasks, calculates            and the resulting nullspace. 

 TransformRefAccelerationToTorques computes            from       and 

           and transforms it into           . 

The tasks acting in configuration space compute        instead of       and thus do not 

require the last step. Therefore, getTorque() function is also virtual and if required, it 

can be reduced only to calculateReferenceAcceleration and 

calculateNextTaskNullspace functions. Transformation of       into            can be 

done after the calculation of reference acceleration in the first of the two functions. 

The Behaviour class also has calculateOperationPointJacobian function. It has one 

argument that is the number of the coordinate frame whose origin is an operation 

point for the task. The function uses coordinates of this origin and calculates its full 

Jacobian according to algorithm from section 3.4.2. The resulting matrix is used to 

define the task Jacobian of behaviour. 

All matrix calculation including inversion and SVD factorization are implemented with 

the help of Eigen C++ libraries – a comprehensive set of tools for linear algebra 

calculations [55]. 

With architecture of behaviours described above the class implementing the task-

level controller has a simple structure (see Fig.  38).  

 

Fig.  38. The most important members of TaskLevelController class. 

The dynamic list myBehaviours stores all behaviours the task-level controller has to 

maintain. The order of the behaviours in the list corresponds to their priorities: the 

closer it is to the beginning of the list, the higher priority it has. Which behaviours are 

included is defined in the owning RobotController class.  

class TaskLevelController  

{ 

  public: 

    TaskLevelController(); 

    ~TaskLevelController(); 

    forceVector getTorque(); 

    Configuration convertGammaToConfiguration(forceVector 

gamma); 

  protected: 

    void computeInertiaMatrices(); 

    std::list<Behaviour*> myBehaviours; 

    Eigen::MatrixXd H; 

    Eigen::MatrixXd H_inverse; 

    Eigen::MatrixXd N; 

}; 
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The getTorque function incorporates the main functionality of the class. It iterates 

through all the behaviours and sums up the generalized force vectors            

consistent with task hierarchy. The resulting generalized force vector is returned to 

the caller, which is usually an instance of the RobotController class. Throughout 

interaction with the behaviours the matrix N stores intermediate value of the 

behaviours’ nullspace. 

The function convertGammaToConfiguration implements the robot simulation model 

described in chapter 3.6. It is called for simulating robot movement in accordance 

with some torque vector calculated before. It also updates joint velocities vector, 

which is later used in computation of torques of behaviours. 

The function computeInertiaMatrices computes joint-space inertia matrix and its 

inverse according to Composite-Rigid-Body algorithm (see chapter 3.4.3). It exploits 

three classes representing spatial 6D vector, spatial inertia and spatial coordinate 

transform to implement the spatial algebra operations. All computations with the 

spatial entities are, of course, performed in compact form. 

4.6. Visualization of the model 
For visualisation of the robot we use rviz module of the Robot Operating System (ROS) 

[56]. To explain the visualization process some introduction into ROS messaging 

mechanism needs to be presented. 

4.6.1. ROS messaging mechanism 
ROS is an open-source, meta-operating system for robots. It provides services one 

would expect from an operating system, including hardware abstraction, low-level 

device control, implementation of commonly-used functionality, message-passing 

between processes and package management. It also provides tools and libraries for 

obtaining, building, writing, and running code, also across multiple computers. ROS 

works on top of UNIX-based operating systems and is partially compatible with 

Windows. Full support of C++ and Python is provided. 

One of the most powerful and easy-to-use services of ROS is communication between 

processes. More specifically, communication is performed between ROS nodes – 

some executables running as separate processes on one or several computers. Two 

mechanism of message passing are used: request/response and publish/subscribe. 

The latter mechanism is used in this project and, therefore, is presented in details. 

When a ROS node starts, it registers its name at the Master node, which is the core of 

ROS. Then a node announces that it is going to publish (or subscribe) to a specific 

topic with a predefined name. If another node announces subscription (or publishing) 

to the same topic, the Master node informs each node about another and the nodes 

may start communication. The message passing goes not through the Master node, 
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but through peer-to-peer connection between nodes; the Master node just helps 

publishers and subscribers to find each other. 

Each topic has a predefined format of permissible messages and the format must be 

preserved by the publishers. The communication process is completely asynchronous. 

What is more, a topic may have several publishers and/or subscribers (Fig.  39). In this 

case whichever publisher posts a message, all subscribers receive it and they cannot 

distinguish who they receive it from. 

 

Fig.  39. Schematic representation of publish/subscribe communication. 

4.6.2. Communication with rviz module 
As previously mentioned rviz is a module of ROS. It is used to visualize robots and 

their environments. It updates picture in accordance with messages published on 

some predefined topics. The planner itself works as a ROS node which updates 

configuration of visualization robot model and publishes some markers (objects for 

simple geometrical shapes) to represent obstacles and some additional objects. Rviz 

also contains convenient tools to adjust the visualized scene, such as moving and 

rotating the viewpoint, turning on and off visualization of some objects etc.  

As ROS is specifically design to handle robotic systems, the visualization model can be 

easily constructed with a special version of XML language - Unified Robot Description 

Format (URDF). The model consists of a set of bodies representing robot links and a 

set of coordinate transforms for robot’s joints. The model used in the current project 

was designed by SINTEF for their internal projects. 

The visualization robot model defined in an .urdf file is first loaded to ROS Parameter 

server. When rviz starts, it loads the model and then it requires only joint angles 

published by the planner to update the image. 

Publisher 

Master 

Publisher 

Subscriber 

Subscriber 

/topic 
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5. Simulation and results 
To verify the functionality of the proposed framework it was tested under various 

conditions. Each test scenarios (experiments) were carried out by simulating 

behaviour of the 7-DOF Schunk manipulator (Fig.  1) controlled by the designed 

framework. The simulation model or the robot is presented in the Chapter 3.6.  

For each experiment a global task (i.e. moving the end effector from one point to 

another) and end effector orientation task can be specified. Moreover, it is possible to 

add obstacles to each of the test scenarios. At the current stage of the project, an 

obstacle can be represented as a rectangular or spherical object. Obstacle movement 

is modelled by discrete changing of its position (no real notion of velocity is used). 

With the simulations we want to demonstrate the capabilities of the planner (graph 

search, replanning, failure detection) and the task-level controller (how separate 

behaviours perform and how the prioritization mechanism works). For this goal a set 

of various tasks has been designed for experiments 1 to 8. The complexity of tasks 

gradually increases starting from a simple point-to-point task and finishing with point-

to-point movement under orientation constraints in the presence of obstacles. The 

experiments 9 and 10 reveal the limitations imposed on the framework’s functionality 

by simplifications and decisions made during design process. 

It is necessary to say, that in all experiments the structure of the framework remains 

the same, e.g. the task-level controller has the same setup as described in Chapter 0, 

all behaviours are always on etc. Only the tasks and/or obstacles change from one 

experiment to another. 

5.1. Timing characteristics 
The simulation was performed on computer with Intel Core i5 (2,26 GHz) processor 

with 4 GB of RAM. 

The times required to perform some of the main processes of the proposed 

framework are summarized in Table 4. 
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Process Average time, 

seconds 

Calculations during one control cycle (including 

computation of the torque vector by the task-

level controller and movement simulation) 

0,003-0,006 

Path search (successful) 0,014-0,027 

Path search (unsuccessful) 0,047 

Obstacle movement (the big spherical obstacle 

from the Experiment 5) 

0,025-0,027 

Table 4. Time required to perform the main processes of the proposed framework. 

5.2. Experiment 1. Simple point-to-point task 
Goal of the experiment: To demonstrate basic functionality of the planner and the 

task-level controller 

Scenario: The robot is set to move its end effector from one point to another. No task 

constraints are specified. The environment is obstacle-free.  

Results: The course of the scenario execution is shown in Fig.  40. The graphs 

demonstrating the change of the position of the end effector is shown in Fig.  41. 

The framework easily deals with this simple task.  

When no task constraints are specified, any node that contains at least one obstacle-

free configuration can be included into the path. The graph search algorithm finds the 

shortest path leading to the desired position of the end effector and the task-level 

controller is able to guide the robot from one node to another. The graphs on Fig.  41 

show that the end effector moves towards the goal position located at the point 

A(0.2;0.4;0.2) without big deviations or oscillations. 
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Fig.  40. The course of the experiment 1. The red point is the goal, the green points mark the path found 
by planner. 
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Fig.  41. The change of x, y and z coordinates of the end effector in time during the experiment 1. The 
graphs were obtained with rosbag tool – one of multiple ROS utilities. 

5.3. Experiment 2. More complex point-to-point task 
Goal of the experiment: Demonstration of failure detection and joint limit avoidance. 

Scenario: The robot is set to move its end effector from one point to another. The 

starting point is located in front of the robot while the goal point is located behind it. 

No task constraints are specified. The environment is obstacle-free.  

Results: The course of scenario execution is shown in Fig.  42. A video recording of the 

experiment can be found in the digital attachments and on 

http://youtu.be/w4Als_PjKsY. 

During execution of this scenario several replanning attempts were needed (pay 

attention to different paths in Fig.  42 b-d, f). Replanning occurs when the planner 

detects that no progress towards the goal waypoint has been made during a certain 

amount of time. In Fig.  42 b this situation is caused by reaching the joint limits by the 

robot. The task-level controller cannot find a solution to this situation and an external 

assistance (i.e. replanning) is needed. At first, the planner suggests a similar path that 

goes a bit lower than the original one, but it led to one more joint-limit issue (Fig.  42 

c). The problem was finally solved when the planner suggested the path that goes to 

the side from the initial one (Fig.  42 d). The task-level controller then is able to find a 

solution and follow it avoiding collision with the base of the robot.  

http://youtu.be/w4Als_PjKsY
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a)  b)  

c)  d)  

e)  f)  

g)  

Fig.  42. The course of the experiment 2. The red point is the goal, the green points mark the path found 
by planner. 

Although no task constraints are explicitly included in this experiment, the simulation 

demonstrates how positional task constraints can be integrated into the framework. 

As can be seen in Fig.  42 b-e, the path found during the graph search goes around the 
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base of the manipulator. The reason for this is that the nodes in this region (though 

they exist in the roadmap and store some configurations computed during 

preplanning) are considered as task-inconsistent for any task and thus the planner 

avoids including them into the path.  

5.4. Experiment 3. A point-to-point task with feasible task 
constraints 

Goal of the experiment: Demonstration of path following with preserving orientation 

task constraints (aiming with the end effector at a fixed point in space). 

Scenario: The robot needs to move its end effector from one point to another and to 

try to keep such orientation of the end effector, that it is aimed towards a point fixed 

in 3D space throughout the movement. The environment is obstacle-free.  

Results: The course of scenario execution is shown in Fig.  43. A video recording of the 

experiment can be found in the digital attachments and on 

http://youtu.be/raPfsC3mu1I. 

From the figures it is clearly seen that all tasks are successfully completed. The 

scenario execution goes in two phases. The initial configuration of the robot (Fig.  43 

a) is task-inconsistent and in the first phase the manipulator comes to a task-

consistent configuration. During this time it already starts moving towards the goal 

point (Fig.  43 b). After the end effector reached its desired orientation, the rest of the 

path is followed in task-consistent manner (Fig.  43 c-f). 

 

http://youtu.be/raPfsC3mu1I
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a)  b)  

c)  d)  

e)  f)  

Fig.  43. The course of the experiment 3. The red point is the goal, the green points mark the path found 
by planner, the yellow sphere (radius 2,5 cm) marks the point which the end effector should aim at. The 

coordinate frame attached to the end effector is shown so the following the task constraints is clearly seen 
(X-axis is red, Y-axis is green, Z-axis is blue). It may seem that the path waypoints go in pairs in the 

figures. This is just a visual effect; the path goes directly to the goal point and no mirroring or doubling of 
the waypoints occurs. 
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5.5. Experiment 4. A point-to-point task with unfeasible task 
constraints 

Goal of the experiment: Testing detection of unfeasible task constraints. 

Scenario: The robot has to repeat point-to-point motion as in the previous 

experiment but with different task-constraints. It should keep the end effector 

oriented in the positive direction of the Z-axis (upright orientation) during the task 

execution. The environment is obstacle-free.  

Results: The setup of the experiment is shown in Fig.  44. 

 

Fig.  44. The setup of the experiment 4. The red point is the goal for the end effector.  

Scenario execution again goes in two steps: finding an initial task-consistent 

configuration and the following the path in task-consistent manner. However, neither 

of the steps is successful and the planner cannot find a feasible path.  

The failure of the first step is caused by the structure of the end-effector behaviour 

(     ) of the task-level controller. It affects only the joints 5 and 6, but the latter one 

reaches its limit in the configuration shown in Fig.  44. The other joints are not 

affected by the behaviour and a task-consistent configuration cannot be reached. 

In the current project task-inconsistency of the initial configuration is not considered 

as a failure and the planner still tries to find a feasible task-consistent path to the 

goal. However, as the initial position of the end effector cannot be mapped to any 

task-consistent node, no feasible path can be found. In this case we can say that it is 

impossible to preserve the orientation constraints along the path with the limitations 

imposed on possible configurations in the Chapter 3.2.2 (i.e.          ). The 

framework cannot solve this task and this meets its expected behaviour. 



84 
 

5.6. Experiment 5. Obstacle avoidance 
Goal of the experiment: Demonstration of online reactive obstacle avoidance. 

Scenario: The robot has neither point-to-point task, nor orientation constraints. A 

spherical-shaped obstacle moves in such way that it may collide with the robot.  

Results: The course of scenario execution is shown in Fig.  45. A video recording of the 

experiment can be found in the digital attachments and on 

http://youtu.be/sfBvIBbMWKg. 

As no task is specified for the robot, the planner is inactive and obstacle avoidance is 

performed only by the means of task-level controller, namely by the collision-avoiding 

behaviour           . The safety distance where            activates is 3 cm. 

The obstacle movement is modelled by changing its position by 5 cm every half a 

second. Thus we can say that it moves with the speed of 0,1 m/s. However, as the 

movement is discrete, it may come too close to the robot at some points of time (as 

in Fig.  45 b). 

The figures above clearly demonstrate that the obstacle avoidance task may 

effectively prevent collisions with obstacles moving in the robot’s workspace. 

http://youtu.be/sfBvIBbMWKg
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a)  b)  

c)  d)  

e)  

Fig.  45. The course of the experiment 5. 
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5.7. Experiment 6. A point-to-point task with task 
constraints in presence of obstacles 

Goal of the experiment: This experiment demonstrates the main functionality of the 

proposed framework and tests task-consistent movement of the robot in presence of 

obstacles. 

Scenario: The same, as in experiment 4, but in presence of a static obstacle 

obstructing the straight path. 

Results: The course of scenario execution is shown in Fig.  46. A video recording of the 

experiment can be found in the digital attachments and on http://youtu.be/UYl4MN-

SeN8. 

Fig.  46 demonstrates that the test scenario is successfully completed. Compared to 

the path used in Experiment 4, the robot made a big detour around the obstacle. At 

some point (Fig.  46 d) the orientation task constraints were violated during the path 

execution. However, this happened not because of inappropriate planning. The real 

cause for it is that the behaviour controlling end effector’s orientation was too slow to 

react to the change of end effector’s position due to other behaviours. In the current 

implementation task violation is not considered as a failure and the scenario 

execution continued. The correct orientation was reached again soon (Fig.  46 e) and 

the rest of the path was executed in task-consistent manner.  

For crucial tasks violation of task constraints may be considered as a failure. In this 

case the framework should stop following the path, wait until the task constraints are 

satisfied and continue after that. The way how the framework treats violation of task 

constraints depends only on designer’s decision. 

Note also, that all degrees of freedom (including the joint 2 (yellow link in the figures)) 

are used and the soft constraint imposed by low-priority task          is violated at 

some part of the path. However it is satisfied wherever it is possible.  

 

http://youtu.be/UYl4MN-SeN8
http://youtu.be/UYl4MN-SeN8


87 
 

a)  b)  

c)  d)  

e)  f)  

Fig.  46. The course of the experiment 6. The red point is the goal, the green points mark the path found 
by planner, the yellow sphere (radius 2,5 cm) marks the point which the end effector should aim at. The 

coordinate frame attached to the end effector is shown so the following the task constraints is clearly seen 
(X-axis is red, Y-axis is green, Z-axis is blue). 
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5.8. Experiment 7. A point-to-point movement with fixed 
orientation in presence of obstacles 

Goal of the experiment: This experiment demonstrates how the framework copes 

with the second type of task constraints, when the end effector should preserve fixed 

orientation. 

Scenario: The robot needs to move its end effector from one point to another while 

keeping the end effector oriented in the negative direction of the Z-axis (downright 

orientation) along the way. A static spherical obstacle obstructs the direct path. 

Results: The course of scenario execution is shown in Fig.  47. A video recording of the 

experiment can be found in the digital attachments and on 

http://youtu.be/aN2MGxaN0YA. 

The framework was capable to ensure successful execution of the test scenario. At 

first, a task-consistent initial configuration was found, and the rest of the path was 

followed in task-consistent manner. A replanning event was needed in the middle of 

the path (Fig.  47 d) as obstacle avoidance behaviour contradicted the task following 

the path. As            has higher priority, no progress towards the waypoint was 

made during some time, which triggered a replanning attempt. 

This experiment also demonstrates that representation of obstacles as a set of 

occupied workspace cells is more effective than approximating them with a bounding 

box (as it is done in elastic roadmap framework). In the current setup, the robot 

moves diagonally in the last part of the path which would be impossible if the sphere 

was approximated with one big cube. 

 

http://youtu.be/aN2MGxaN0YA
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a)  b)  

c)  d)  

e)  f)  

Fig.  47. The course of the experiment 7. The red point is the goal, the green points mark the path found 
by planner (in figures (d), (e) and (f)  the real path is the one, going above; the lower one is shown due to 

an error in visualization).  
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5.9. Experiment 8. A point-to-point task in presence of 
moving obstacles 

Goal of the experiment: To demonstrate replanning capabilities in presence of 

moving obstacles. 

Scenario: The robot needs to move its end effector from one point to another. A 

spherical obstacle moves in such way that it obstructs the direct path that was 

unobstructed at the beginning. No orientation task constraints are specified. 

Results: The course of scenario execution is shown in Fig.  48. A video recording of the 

experiment can be found in the digital attachments and on 

http://youtu.be/Jj_2VnOCWcA. 

The spherical obstacle continuously obstructs the paths found by the planner (Fig.  48 

a-d). The framework quickly responses to the changes in the environment and 

suggests new paths. During this period a few replanning events needed due to 

reaching the joint limits (same as in Experiment 2). After the obstacle finally stops 

(Fig.  48 e), the robot continues execution of the last found path. Several replanning 

attempts needed to finish the path and avoid collision with the obstacle (Fig.  48 f,g). 

This experiment shows interaction between the planner and the task-level controller. 

When the controller gets stuck due to reaching joint limits or trying to go around an 

obstacle, the planner finds an alternative path that possibly can guide the task-level 

controller out of the inappropriate state. 

http://youtu.be/Jj_2VnOCWcA
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a)  b)  

c)  d)  

e)  f)  

g)  

Fig.  48. The course of the experiment 8. The red point is the goal, the green points mark the path found 
by planner.  
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5.10. Experiment 9. Framework limitations 
Goal of the experiment: To demonstrate limitations imposed by the structure of the 

suggested framework. 

Scenario: The robot needs to move its end effector from one point to another. The 

goal point is located close to the bottom side of an obstacle. The orientation task is to 

point in the positive direction of X-axis.  

Results: The setup of the experiment is shown in Fig.  49. 

 

Fig.  49. The setup of the experiment 9. The red point is the goal for the end effector. 

The framework cannot find a solution in the presented scenario although it is obvious 

that a feasible solution exist if the 4-th joint is assigned a negative value and the goal 

point can be reached “from the bottom”). The false negative occurs due to 

assumptions made during preprocessing stage (i.e. constraints on the joints 3 and 4). 

This problem will be discussed in more details in the next chapter. 

5.11. Experiment 10. Graph search limitations 
Goal of the experiment: To demonstrate limitations imposed by the structure of the 

suggested framework. 

Scenario: The robot needs to move its end effector from one point to another and try 

to keep such orientation of the end effector that it points at the same point in 3D 

space throughout movement. The starting configuration is different from the one 

used in most of previous experiments. The environment is obstacle-free. 

Results: The setup of the experiment is shown in Fig.  50. 
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Fig.  50. The setup of the experiment 10. The red point is the goal for the end effector. The yellow sphere 
(radius 2,5 cm) marks the point which the end effector should aim at. The coordinate frame attached to 
the end effector is shown so the following the task constraints is clearly seen (X-axis is red, Y-axis is 

green, Z-axis is blue). 

The initial configuration satisfies task constraints and from the previous experiment 

we can suppose, that a task-consistent path exists. However, the framework cannot 

find it. The reason for this is that the initial position of the end effector is considered 

as task-inconsistent by the planner. In the current setup, to be task-consistent the 

node corresponding to the initial configuration should contain at least two 

configurations: one corresponding to end effector oriented in the direction of X-axis 

(red line at the robot’s base) and one corresponding to end effector oriented in the 

direction of Y-axis (green line at the robot’s base). This comes from the algorithm 

which is used for task-consistency check of nodes (see chapter 3.3.2). However, due 

to the assumptions made for the offline-stage inverse kinematics solver (chapter 

3.2.2), no configuration corresponding to the Y-axis has been found. Therefore, the 

initial configuration cannot be mapped to a task-consistent node and the framework 

fails to find an appropriate solution.  
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6. Discussion 
The goal of this project was development of a framework that could provide task-

consistent movement of a manipulator in unstructured dynamic environment. In this 

chapter we will discuss how designed system corresponds to this goal and identify the 

main shortcomings of the proposed solution. 

As it was demonstrated with simulations in the previous chapter, the overall 

performance of the proposed framework meets the requirements set at the 

beginning of the project. To be more specific, the system possesses the following 

features: 

 It can handle both positional and orientation task constraints and considers 

them during path planning as well as while executing the path.  

 Combination of a planner, based on Dynamic roadmaps (DRM), and reactive 

obstacle avoidance (          ) provide broad capabilities to prevent collisions 

with arbitrary moving obstacles of complex shape.  

 The path planner is able to identify collision-free paths of the end effector 

that can be at least approximately followed in task-consistent manner. 

 The task-level controller itself may solve simple local tasks. 

 The guidance of the task-level controller by the path planner, that has a global 

overview of the workspace, allows solving of complex tasks and finding 

alternative solutions when the task-level controller gets stuck and cannot 

move towards next waypoint because of obstacles or joint limits.  

 The behaviour          provides coherence between online and offline 

stages. 

 Fulfilment of real-time constraints imposed by dynamic environments is 

ensured by the fact that search space is bounded. Because of that the path 

search does not exceed some finite time. This time depends on size of the 

roadmap which is reduced significantly by storing six configurations in one 

node of the roadmap as this minimizes number of states within search space 

compared to classical DRM. The time needed for replanning determines 

system capabilities in the context of fast moving obstacles. 

 From the implementation point of view the framework is reasonably 

structured and can be integrated into a more complex system with the help of 

ROS tools. 

The proposed framework is based on DRM and Elastic roadmaps and, therefore, it 

inherits some features of both. A short comparison of the three frameworks is 

summarized in Table 5. The initial motivation for this project was to compensate the 

drawbacks of Elastic roadmaps by introducing offline stage. Namely, we wanted to 
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improve obstacle representation and to reduce framework incompleteness. The first 

task is completed successfully whereas the latter issue requires more discussion. 

Criterion Suggested 

framework 

DRM Elastic 

roadmaps 

Handling dynamic 

environments 

Yes Yes Yes 

Task are specified in 

operational space 

Yes No Yes 

Handling task-

constraints 

Yes No Yes 

Preprocessing stage Yes Yes No 

Obstacle 

representation 

As a set of 

workspace cells 

As a set of 

workspace cells 

As bounding 

box 

Method 

completeness 

Incomplete Probabilistically 

complete 

Incomplete 

Workspace size Limited 

workspace 

Limited 

workspace 

Unlimited 

workspace 

Table 5. Comparison of the suggested solution with DRM and Elastic roadmaps frameworks. 

6.1. Framework completeness 
The main factor limiting the system’s performance is its incompleteness. It can be 

divided in two parts. The first one is inherited from the Elastic roadmaps; the second 

part is a distinctive feature of the suggested design. 

The authors of Elastic roadmaps discuss the incompleteness of their approach as 

follows: “... The elastic roadmap framework is inherently incomplete and may fail even 

when a valid path exists... It does not possess any of the completeness properties of 

sampling-based planners. ... The elastic roadmap framework explicitly addresses task 

constraints and feedback requirements of a specific application and permits the 

execution of motion in dynamic environments under these constraints. It is able to do 

so precisely because it sacrifices completeness.” [44] The inherited incompleteness 

may reveal itself in situations when the task-level controller cannot move towards 

next waypoint (or milestone as denoted in Elastic roadmaps) and the guiding planner 

cannot find an alternative solution. Although such cases are not absolutely impossible 

in the proposed framework, they are more rare, than in Elastic roadmap. The reason 

for this is the thorough workspace exploration during the preprocessing stage 

employed by the framework presented in this report. Using this information during 

planning and trying to keep configurations close to the ones used in offline 

computations we increase the completeness of our method compared to Elastic 

roadmaps, where only a few samples of the workspace (obstacle-related milestones) 

are used for planning. 
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A possible improvement that would help to avoid situations that are hard to solve for 

the task-level controller is to include data about manipulability into the roadmap. For 

instance, each node would have a manipulability index that is calculated based on the 

number of configurations stored by in the node and manipulability indices of each 

one of them. The manipulability index of a configuration can be expressed as a 

distance measure of the configuration from the singular ones and it is usually 

computed from the eigenvalues of the manipulator’s Jacobian matrix [57]. Using this 

data, the planner would include the nodes with high manipulability index into the 

path and the task-level controller would have more options to follow it locally while 

satisfying all constraints. For example, in the experiment 2 it would mean that the 

path would avoid nodes, where the manipulator is close to its joint limits, and would 

prefer the path where the end effector sweeps an arc from the initial to the goal 

point. 

However, how the experiments 9 and 10 demonstrated, another source of 

incompleteness was introduced during the design of the suggested framework. It is 

the constraints used for inverse kinematics solving in the offline stage. In the current 

implementation we assumed that the angle of the 3rd joint is kept at zero and that the 

4th joint may be assigned only positive values. These constraints bound the explored 

part of the 7D configuration space to one half of 6D plane, which of course reduces 

performance during path planning as many feasible task-consistent configurations are 

taken out of consideration. 

One approach that could improve this situation is to create a second set of nodes that 

would correspond to configurations subjected to different constraints. For example, 

we could create a grid where the inverse kinematics would be solved with the same 

constraint for the 3rd joint, while the 4th joint would be assigned only negative values. 

This grid would correspond to all configurations approaching the goal point “from 

below” (e.g. to solve the task in experiment 9). Thus we would have two independent 

grids that need to be connected. Two nodes belonging to different grids and 

corresponding to the same position would contain similar configurations when the 

angle of the 4th joint is close to zero. Thus we can insert edges between such nodes 

and, therefore, connect the two grids and extend the part of configuration space 

explored in the offline stage. In this case we will have 4D roadmap: three dimensions 

refer to spatial location of the robot’s end effector while the fourth dimension 

corresponds to the configuration type. Such roadmap would also require some 

changes in planner and the task-level controller. For the planner this would mean that 

the goal point can be mapped to two nodes. Thus the planner would have to find a 

path to each of them and then to choose the shorter one. For the task-level controller 

the main changes will be done inside         . It would have to change its objective 

depending on configuration type of the next node in the path. It could be also useful 
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to disable         during transition between grids, so          has more freedom to 

change the configuration. 

In a similar way more grids can be built, for example for constraints like    

         and             . However, this would lead to some negative 

consequences. Consider   grids referring to different configuration types are used for 

roadmap construction. Then, the planning time would increase as the search space 

increases by   times and several paths should be estimated. Additionally the file that 

stores roadmap mapping to workspace cells would increase by   times. Even for one 

grid it has size of hundreds of megabytes (270 MB for the roadmap grid resolution of 

5 cm and workspace cell size of 3 cm for the current manipulator) and it takes about 

30 seconds to load it at the start of the framework. This would considerably increase 

the amount of time needed for obstacle handling affecting frequency characteristics 

of the system. This trade-off between framework completeness and timing 

parameters should be considered by system designers based on the requirements and 

types of possible tasks. 

One more approach that would help solving the task in the experiment 10 is to store 

more samples of possible orientations of the end effector within one node. This 

would increase the probability that if the planner finds a path, it would be possible to 

maintain task constraints along it. The cost of this improvement is the increased 

amount of time needed for obstacle handling. 

6.2. Other factors limiting performance of the framework 
Apart from framework incompleteness, the following factors may limit its application 

in real life: 

 Each behaviour within the task-level controller basically forms a potential 

field in operational or configuration space and the controller combines them 

according to their priorities. Thus, the task-level controller faces all problems 

inherent to general potential-field methods (see Section 2.3). Among them 

are the local minima problem (when the controller gets stuck at some point) 

and oscillations at the border where certain behaviour activates. For example, 

if         drives the robot towards an obstacle,            would counteract 

this movement. But as soon as the robot is far enough from the obstacle, 

           becomes inactive and         pulls the manipulator into the danger 

zone again. A similar situation occurs with behaviour avoiding joint limits 

(          ). The guidance from the planner helps to resolve the situation, 

but the oscillations cannot be fully compensated. 

 As no explicit trajectory is specified in the configuration space, the planner 

has no notion of time. Thus it is hard to include time-varying task constraints 

into the framework. For instance, if the task is to follow a moving object with 
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a videocamera, replanning is needed every time the object moves as its 

movement cannot be considered during the graph search. 

 It is quite hard to map the suggested framework to robots with even bigger 

redundancy degree, than the manipulator considered in this project. In this 

case too many assumptions need to be done during the preprocessing stage 

and system incompleteness would increase greatly (although, the task-level 

controller would still provide at least partial functionality). On other hand, the 

method becomes almost exact when applied to non-redundant robots.  

 The suggested framework does not consider velocities of obstacles, only their 

locations. Thus, to avoid fast moving obstacles the safety distance set for  

           should be increased. Another way to handle such obstacles is to 

model them differently. For instance, a certain zone, whose size depend on 

the velocity of the obstacle, located in the direction of its movement should 

be also considered as occupied by this obstacle. In this case the robot would 

have more time and space to go from the obstacle’s path and thus to avoid 

the collision. 
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7. Future work 
Beside the major improvements described in section 6.1 (storing manipulability data 

within nodes, augmenting roadmap with more nodes and storing more configurations 

within one node) the following directions can be considered for future work: 

 Modification of      , so that it works not in configuration, but in operational 

space; 

 Computation of Coriolis and gravity terms for the robot’s dynamics model; 

 Friction modelling and compensation; 

 Design of interfaces to robot sensors (for instance, a laser range scanner or 

videocameras to detect obstacles) using ROS communication tools; 

 Design of a GUI for specification of manipulation tasks; 

 Application of the framework to mobile manipulation with special 

consideration of interaction with the mobile platform. 
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8. Conclusion 
The current project was devoted to design of a framework that could provide task-

consistent movement of a 7-degree-of-freedom manipulator in unstructured dynamic 

environments. An extensive literature survey of motion planning techniques with a 

focus on sample-based and feedback planning, as well as planning in dynamic 

environments has been conducted. A solution based on two state-of-art approaches, 

namely dynamic roadmaps and elastic roadmaps, was proposed and implemented. 

The suggested framework uses information acquired during offline preprocessing 

stage to handle dynamic obstacles effectively and to guide task-consistent motion of 

the robot controlled by a task-level controller. During the project the offline 

preprocessor and online planner were designed from a scratch. General architecture 

and two of the behaviours of the task-level controller were adopted from a project 

conveyed last semester whereas the remaining behaviours and their prioritization 

scheme were designed during the current project. The framework was implemented 

in C++ and simulated with a model of a 7-DOF manipulator. The results of simulation 

demonstrated that the framework is capable to solve complex manipulation tasks in 

dynamic environments. The suggested framework is incomplete by design and several 

methods that could compensate for this drawback were proposed. 



101 
 

9. References 
[1] D. Katz, J. Kenney and O. Brock, How Can Robots Succeed in Unstructured 

Environments?, Workshop on Robot Manipulation: Intelligence in Human 
Environments at Robotics: Science and Systems, Zurich, Switzerland, June 2008. 

[2] O. Khatib, A unified approach for motion and force control of robot 
manipulators: The operational space formulation, IEEE journal of robotics and 
automation, vol. RA-3, no. 1, pp. 43-53, February 1987. 

[3] L. Sentis and O. Khatib, Synthesis of whole-body behaviors through hierarchical 
control of behavioral primitives, International journal of humanoid robotics, vol. 
2, no. 4, pp. 505-518, 2005. 

[4] S. Pluzhnikov, Motion planning and control of nonholonomic mobile robot 
manipulators, Specialization project report, NTNU, Department of Engineering 
Cybernetics, 2011. 

[5] Schunk GmbH. [Online]. http://www.schunk-modular-robotics.com 

[6] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin: Springer, 
2008. 

[7] S. LaValle, Motion Planning , IEEE Robotics & Automation Magazine, vol. 18, no. 
1, pp. 79 - 89, March 2011. 

[8] L. Kavraki, P. Svestka, J. Latombe and M. Overmars, Probabilistic roadmaps for 
path planning in high-dimentional configuration spaces, IEEE transactions on 
robotics and automatisation, vol. 12, no. 4, pp. 566-580, August 1996. 

[9] N. Amato., O. Bayazit, L. Dale, C. Jones and D. Vallejo, OBPRM: an obstacle-based 
PRM for 3D workspaces, Proceedings of the third workshop on the algorithmic 
foundations of robotics on Robotics: the algorithmic perspective, pp. 155-168, 
1998. 

[10] C. Holleman and L. Kavraki, A framework for using the workspace medial axis in 
PRM planners, IEEE Int. Conf. Robot. Autom., pp. 1018-1023, 1999. 

[11] S. LaValle, M. Branicky and S. Lindermann, On the relationship between classical 
grid search and probabilistic roadmaps, Proceedings of I. J. Robotic Res., pp. 673-
692, 2004. 

[12] R. Geraerts and M. Overmars, A Comparative Study of Probabilistic Roadmap 
Planners, Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR'02), 
pp. 43-57, 2002. 

[13] Y. Yang and O. Brock, Efficient motion planning based on disassembly, 
Proceedings of Robotics: Science and systems, 2005. 

http://www.schunk-modular-robotics.com/


102 
 

[14] S. LaValle and J. Kuffner, "Rapidly-exploring random trees: progress and 
prospects", in Algorithmic and Computational Robotics: New Direction., 2001, pp. 
293–308. 

[15] K. Bekris, B.Y. Chen, A. Ladd, E. Plaku and L. Kavraki, Multiple query probabilistic 
roadmap planning using single query primitives, IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 656 - 661, 2003. 

[16] S. Karaman and E. Frazzoli, Incremental Sampling-based Algorithms for Optimal 
Motion Planning, Robotics: Science and Systems (RSS), June 2010. 

[17] S. LaValle. The RRT Page. [Online]. http://msl.cs.uiuc.edu/rrt/index.html 

[18] B. Cohen, G. Subramania, S. Chitta and M. Likhachev, Planning for Manipulation 
with Adaptive Motion Primitives, Proceedings of IEEE International Conference on 
Robotics and Automation ICRA '11. , pp. 5478-5485, 2011. 

[19] I. Sucan and L. Kavraki, Kinodynamic Motion Planning by Interior-Exterior Cell 
Exploration, Algorithmic Foundation of Robotics VIII (Proceedings of Workshop on 
the Algorithmic Foundations of Robotics), vol. 57, pp. 449-464, 2009. 

[20] E. Plaku and G. Hager, Sampling-based Motion and Symbolic Action Planning with 
Geometric and Differential Constraints, IEEE International Conference on Robotics 
and Automation, pp. 5002-5008, 2010. 

[21] R. Rusu, I.A. Sucan, B. Gerkey, S. Chitta, M. Beetz and L. Kavraki, Real-time 
perception-guided motion planning for a personal robot, IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), pp. 4245 - 4252, 2009. 

[22] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, 
IEEE International Conference on Robotics and Automation, pp. 500-505, 1985. 

[23] Y. Koren and J. Borenstein, Potential Field Methods and Their Inherent 
Limitations for Mobile Robot Navigation, Proceedings of the IEEE Conference on 
Robotics and Automation, pp. 1398-1404, April 1991. 

[24] J. Borenstein and Y. Koren, Real-time Obstacle Avoidance for Fast Mobile Robots 
in Cluttered Environments, IEEE International Conference on Robotics and 
Automation, pp. 572-577, May 1990. 

[25] S. LaValle, Planning Algorithms. Cambridge: Cambridge University Press, 2006. 

[26] G. Fainekosa, A. Girard, H. Kress-Gazit and G. Pappas, Temporal logic motion 
planning for dynamic robots, Automatica, vol. 45, no. 2, pp. 343–352, February 
2009. 

[27] J. van der Berg and M. Overmars, Roadmap-Based Motion Planning in Dynamic 
Environments, IEEE Transactions on Robotics, vol. 21, no. 5, pp. 885-897, 2005. 

  

http://msl.cs.uiuc.edu/rrt/index.html


103 
 

[28] S. Karaman, M.R. Walter, A. Perez, E. Frazzoli and S. Teller, Anytime Motion 
Planning using the RRT*, IEEE International Conference on Robotics and 
Automation, pp. 1478 - 1483 , 2011. 

[29] L. Jaillet and T. Siméon, A PRM-based Motion Planner for Dynamically Changing 
Environments, International Conference on Intelligent Robots and Systems, pp. 
1606-1611, 2004. 

[30] R. Gayle, K.R. Klingler and P.G. Xavier, Lazy Reconfiguration Forest (LRF) - An 
Approach for Motion Planning with Multiple Tasks in Dynamic Environments, 
2007 IEEE International Conference on Robotics and Automation, pp. 1316 - 1323, 
2007. 

[31] J. van den Berg, D. Ferguson and J. Kuffner, Anytime Path Planning and 
Replanning in Dynamic Environments, Proceedings of the 2006 IEEE International 
Conference on Robotics and Automation, pp. 2366-2371, May 2006. 

[32] D. Vasquez, F. Large, T. Fraichard, C Laugier and I. Rhone-Alpes, High-speed 
Autonomous Navigation with Motion Prediction for Unknown Moving Obstacles, 
IEEE/RSJ international Conference on Intelligent Robots and Systems, pp. 82-87, 
2004. 

[33] E. Owen and L. Montano, Motion planning in dynamic environments using the 
velocity space, IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), pp. 2833 - 2838 , 2005. 

[34] Z. Shiller, F. Large, S. Sekhavat and C. Laugier, "Motion Planning in Dynamic 
Environments", in Autonomous Navigation in Dynamic Environments., 2007, pp. 
107-119. 

[35] N. Ratliff, M. Zucker, A. Bagnell and S. Srinivasa, CHOMP: Gradient optimization 
techniques for efficient motion planning, Proceedings of IEEE International 
Conference on Robotics and Automation ICRA'09, pp. 489 - 494, May 2009. 

[36] C. Park, J. Pan and D. Manocha, ITOMP: Incremental Trajectory Optimization for 
Real-time Replanning in Dynamic Environments, International Conference on 
Automated Planning and Scheduling (ICAPS), 2012. 

[37] S. Quinlan and O. Khatib, Elastic bands: connecting path planning and control, 
Proceedings to IEEE Int. Conf.Robot. Autom. (ICRA), vol. 2, pp. 802-807, 1993. 

[38] N. Y. Ko, R. Simmons and D.J. Seo, Trajectory modification using elastic force for 
collision avoidance of a mobile manipulator, Proceedings of the 9th Pacific Rim 
international conference on Artificial intelligence, pp. 190-199, 2006. 

[39] V. Delsart and T. Fraichard, Navigating Dynamic Environments Using Trajectory 
Deformation, IEEE/RSJ International Conference on Intelligent Robots and 
Systems, pp. 226-233, 2008. 



104 
 

[40] R. Gayle, A. Sud, M.C. Lin and D. Manocha, Reactive Deformation Roadmaps: 
Motion Planning of Multiple Robots in Dynamic Environments, IEEE/RSJ 
International Conference on Intelligent Robots and Systems, pp. 3778-3783, 2007. 

[41] O. Brock and O. Khatib, Elastic strips: a framework for motion generation in 
human environments, International Journal of Robotics Research, vol. 21, no. 12, 
pp. 1031-1052, December 2002. 

[42] S. Petti and T. Fraichard, Safe Motion Planning in Dynamic Environments, 
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 
2210 - 2215 , 2005. 

[43] J. Vannoy and J. Xiao, Real-Time Adaptive Motion Planning (RAMP) of Mobile 
Manipulators in Dynamic Environments With Unforeseen Changes, IEEE 
Transactions on Robotics, vol. 24, no. 5, pp. 1199-1212, October 2008. 

[44] Y. Yang and O. Brock, Elastic roadmap – motion generation for autonomous 
mobile manipulation, Autonomous Robots, vol. 28, no. 1, pp. 113-130, January 
2010. 

[45] P. Leven and S. Hutchinson, A Framework for Real-time Path Planning in 
Changing Environments, The International Journal of Robotics Research, vol. 21, 
no. 12, pp. 999-1030, December 2002. 

[46] T. Kunz, U. Reiser, M. Stilman and A. Verl, Real-Time Path Planning for a Robot 
Arm in Changing Environments, IEEE/RSJ International Conference on Intelligent 
Robots and Systems, 2010, Taipei, Taiwan, 2010. 

[47] M. Kallmann and M. Mataric, Motion Planning Using Dynamic Roadmaps, 
International Conference on Robotics & Automation, pp. 4399-4404, April 2004. 

[48] H. Liu, W. Wan and H. Zha, A Dynamic Subgoal Path Planner for Unpredictable 
Environments, IEEE International Conference on Robotics and Automation, pp. 
994-1001, May 2010. 

[49] K. Beevers and J. Peng, A* graph search within the BGL framework, Boost Graph 
Library 1.33.0, October 2003. 

[50] M. Spong, S. Hutchinson and M. Vidyasagar, Robot Dynamics and Control, 2nd 
ed. New York: John Wiley and Sons, 2006. 

[51] R. Featherstone, Rigid Body Dynamics Algorithms. New York: Springer, 2008. 

[52] Bullet Dynamics Engine. [Online]. http://bulletphysics.com/ 

[53] Boost Graph Library (BGL). [Online]. 
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html 

[54] Boost Serialization Library. [Online]. 
http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html 

http://bulletphysics.com/
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html


105 
 

[55] Eigen Libraries. [Online]. http://eigen.tuxfamily.org/ 

[56] Robot Operating System (ROS). [Online]. www.ros.org 

[57] B. Bayle, J.-Y. Fourquet and M. Renaud, Manipulability of wheeled mobile 
manipulators: Application to motion generation, International journal of robotics 
research, vol. 22, no. 7-8, pp. 565-581, 2003. 

 

http://eigen.tuxfamily.org/
www.ros.org


106 
 

Appendix A. Contents of the digital attachment 
The digital attachments enclosed contain the following materials: 

 Sources/ – the source files of the framework (C++) 

 Videos/ – video recordings of the experiments described in Chapter 5 (they 

are also available on YouTube) 

 Thesis.pdf – a pdf-version of the current report. 
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