
Motion Planning and Control of Robot
Manipulators

Sergey Pluzhnikov

Embedded Computing Systems

Supervisor: Geir Mathisen, ITK
Co-supervisor: Aksel Transeth, SINTEF

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

Master’s thesis

Motion Planning and Control of

Robot Manipulators

Student: Pluzhnikov Sergey

Academic supervisor: Geir Mathisen

Spring Semester

2012

MASTER THESIS

Kandidatens navn: Sergey Pluzhnikov

Fag: Engineering cybernetics

Oppgavens tittel (norsk): Bevegelsesplanlegging og regulering av

robotmanipulatorer

Oppgavens tittel (engelsk): Motion planning and control of robot

manipulators

Bakgrunn:

Robot motion planning systems can be used to

plan collision-free paths between start and end

robot manipulator configurations. Many motion

planners assume that the robot manipulator

works in a static environment. However, many

situations (such as e.g. working close to

humans) require that the robot can account for

dynamic environments. A motion planner with

online-planning capabilities is the topic of this

thesis assignment.

Tasks:

1. Perform a literature survey on

 State-of-the-art sample-based and feedback-based motion planning

techniques.

 Pay particular attention to relevant aspects of the methods proposed by

[1], [2] and [3].

-

Fakultet for informasjonsteknologi,

matematikk og elektroteknikk

Institutt for teknisk kybernetikk

NTNU

Norges teknisk-naturvitenskapelige

universitet

2. Develop an online motion planner for robot manipulators as a combined

approach based on [1], [2] and [3]. Employ the methods from [1] and [3] for

offline processing and online collision checking. Employ the methods from [2]

for online motion control with task constraints.

3. Implement the motion planner in simulation for a Schunk LWA robot

manipulator arm.

4. Analyse the behaviour and performance of the implemented system.

 Create a test suite which demonstrates key functionality of the motion

planner.

[1] T. Kunz, U. Reiser, M. Stilman, A. Verl, "Real-time path planning for a robot arm in

changing environments", Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,

2010.

[2] Y. Yang and O. Brock, “Elastic roadmaps – motion generation for autonomous

mobile manipulation”, Autonomous Robots 28, 2010.

[3] P. Leven and S. Hutchinson, "A framework for real-time path planning in changing

environments", The international journal of robotics research, 2002.

Oppgaven gitt: 09.01.2012

Besvarelsen leveres: 04.06.2012

Besvarelsen levert: Utført ved Institutt for teknisk kybernetikk

Veileder: Forsker Aksel A. Transeth, SINTEF Anvendt Kybernetikk

Trondheim, den 09.01.2012

Geir Mathisen

Faglærer

1

Abstract

When a robot performs a task in an unstructured dynamic environment, it has to

account for many factors. It should not only keep the track of where it is and how it

should move, but also ensure that the kinematic, dynamic and task specific limitations

are observed. It is also important that the robot can effectively avoid collisions with

static and moving obstacles. In the current thesis we present design and

implementation of an algorithm capable to face all these challenges. The system

combines principles of dynamic roadmaps and elastic roadmaps frameworks, both of

which are the state-of-art approaches to motion planning problem.

The suggested solution is presented in the context of a broad overview of the

literature in motion planning domain focusing on methodology of sample-based and

feedback planning in dynamic environments. The implemented algorithm is applied to

a 7-degree-of-freedom manipulator and is demonstrated and analyzed through a

variety of simulated test scenarios. The result is an extensible and future-oriented

planning system that can plan and execute movement between a starting and target

position while preserving task constraints and reacting to environment changes in real

time.

2

Table of contents
List of Figures.. 5

List of Tables ... 7

1. Introduction.. 9

1.1. Motivation ... 9

1.2. Background .. 9

1.3. Contribution ... 10

1.4. Outline ... 11

2. Literature survey... 13

2.1. Combinatorial roadmaps .. 13

2.2. Sample-based planning .. 14

2.3. Feedback planning.. 19

2.4. Planning in dynamic environments ... 22

2.4.1. Motion planners for environments, where future locations of

moving obstacles are known ... 23

2.4.2. Anytime planning .. 23

2.4.3. Combination of global planning with local replanning 23

2.4.4. Planning in velocity space.. 26

2.4.5. Optimization planners ... 27

2.4.6. Path and trajectory deformation ... 27

2.4.7. Partial motion planner (PMP) .. 29

2.4.8. Real-Time Adaptive Motion Planning (RAMP) 30

2.5. Elastic roadmaps .. 31

2.6. Dynamic roadmaps (DRM) .. 34

2.7. Summary .. 37

3. Design... 38

3.1. General description of the proposed framework .. 38

3.2. Offline preprocessing ... 40

3.2.1. Roadmap generation ... 40

3.2.2. Grid resolution choice ... 41

3.2.3. Inverse kinematics solver (IKS) .. 41

3

3.2.4. Mapping configuration to workspace .. 44

3.3. Graph search and obstacle handling ... 45

3.3.1. Obstacle handling ... 45

3.3.2. Graph search ... 45

3.3.3. Goal point updating and failure detection ... 47

3.4. Task-level controller ... 47

3.4.1. Task-level controller .. 48

3.4.2. Jacobian computation ... 51

3.4.3. Joint-space inertia matrix computation ... 53

3.5. Task hierarchy and design of individual tasks .. 58

3.5.1. Task prioritization in the task-level controller 58

3.5.1. Some notes on the implementation of tasks 58

3.5.2. Design of tasks .. 59

3.5.3. Summary of tasks .. 65

3.6. Robot simulation model ... 67

4. Implementation .. 68

4.1. Class diagram ... 68

4.2. Representation of robot model .. 70

4.3. Roadmap representation, graph search and data storing 70

4.4. RobotController class .. 71

4.5. Implementation of task-level controller .. 72

4.6. Visualization of the model .. 74

4.6.1. ROS messaging mechanism ... 74

4.6.2. Communication with rviz module .. 75

5. Simulation and results .. 76

5.1. Timing characteristics ... 76

5.2. Experiment 1. Simple point-to-point task.. 77

5.3. Experiment 2. More complex point-to-point task 79

5.4. Experiment 3. A point-to-point task with feasible task constraints 81

5.5. Experiment 4. A point-to-point task with unfeasible task constraints 83

5.6. Experiment 5. Obstacle avoidance .. 84

4

5.7. Experiment 6. A point-to-point task with task constraints in presence

of obstacles .. 86

5.8. Experiment 7. A point-to-point movement with fixed orientation in

presence of obstacles ... 88

5.9. Experiment 8. A point-to-point task in presence of moving obstacles 90

5.10. Experiment 9. Framework limitations ... 92

5.11. Experiment 10. Graph search limitations .. 92

6. Discussion ... 94

6.1. Framework completeness .. 95

6.2. Other factors limiting performance of the framework 97

7. Future work .. 99

8. Conclusion .. 100

9. References .. 101

Appendix A. Contents of the digital attachment .. 106

5

List of Figures
Fig. 1. Manipulator LWA3 with 7 degrees of freedom from Schunk GmbH,

Germany. [5] .. 12

Fig. 2. Shortest-path roadmap example. [6].. 14

Fig. 3. Example of space vertical decomposition. [6] ... 14

Fig. 4. Example of sampling-based roadmap construction. [6] 15

Fig. 5. Example of exploiting information about workspace for planning in

configuration space. [13] ... 16

Fig. 6. Rapidly-exploring dense tree construction algorithm. 17

Fig. 7. RDT construction example.[17] .. 17

Fig. 8. Grid structure of KPIECE approach. [21] ... 19

Fig. 9. Attractive, repulsive and resulting potential functions. [6] 20

Fig. 10. Iterative construction of a navigation function using the wavefront

method. [24] .. 21

Fig. 11. Composing a navigation function out of multiple local potential

functions. [24] ... 21

Fig. 12. Environment example (a) and the path found (b) for the framework,

presented in[25]. ... 22

Fig. 13. Work of PRM-based planner for dynamic environment. [28] 24

Fig. 14. Lazy Reconfiguration Forest working principle. [29] 25

Fig. 15. Representation of trajectories of dynamic obstacles in state-time

space. [30] ... 26

Fig. 16. a) A precomputed roadmap and path in state-time space for the

framework described in [30] .. 26

Fig. 17. A linear velocity obstacle. [33] ... 27

Fig. 18. Reactive Deforming Roadmaps (RDR). (a) [39] .. 28

Fig. 19. Local path modification in presence of obstacles in elastic strips

framework.[40] .. 28

Fig. 20. Partial Motion Planning iterative cycle. [41] ... 29

Fig. 21. A template task for RAMP. [42] .. 31

Fig. 22. Example of milestone placement in elastic roadmaps. [43] 32

Fig. 23. Example of elastic roadmaps functionality. [43] 34

Fig. 24. Mapping a configuration and an edge to workspace for a 2-DOF

planar robot. [44]... 35

6

Fig. 25. The model of the robot and its approximation for inverse kinematics

solver. .. 43

Fig. 26. An example of configuration of a manipulator and its mapping to

workspace cells. ... 44

Fig. 27. Algorithm to define task-consistency of a node. 46

Fig. 28. Instantaneous linear velocity of operational point caused by the

change of joint coordinates for a revolute joint. ... 53

Fig. 29. Composite-Rigid-Body Algorithm for calculating JSIM of a non-

branching robot. .. 57

Fig. 30. Approximation of the robot’s links with spheres for obstacle

avoidance. ... 61

Fig. 31. Algorithm for online collision avoidance... 61

Fig. 32. Dependence of the absolute value of force repulsing a sphere from

a cell on the distance between them.. 63

Fig. 33. Simplified class diagram of the offline part of the framework. 68

Fig. 34. Simplified class diagram of the online part of the framework. 69

Fig. 35. Adjacency list representation of an undirected graph. [53] 70

Fig. 36. Simplified main loop of the RobotController class. 72

Fig. 37. The most important members of the abstract Behavior class. 72

Fig. 38. The most important members of TaskLevelController class. 73

Fig. 39. Schematic representation of publish/subscribe communication. 75

Fig. 40. The course of the experiment 1.. ... 78

Fig. 41. Change of x, y and z coordinates of the end effector in time during

the experiment 1. .. 79

Fig. 42. The course of the experiment 2. .. 80

Fig. 43. The course of the experiment 3. .. 82

Fig. 44. The setup of the experiment 4. .. 83

Fig. 45. The course of the experiment 5. .. 85

Fig. 46. The course of the experiment 6. .. 87

Fig. 47. The course of the experiment 7. .. 89

Fig. 48. The course of the experiment 8. .. 91

Fig. 49. The setup of the experiment 9. .. 92

Fig. 50. The setup of the experiment 10. .. 93

7

List of Tables
Table 1. Some elements of spatial algebra and their compact representation. 54

Table 2. Effective representation of spatial algebra formulae. 55

Table 3. Individual characteristics of different tasks. ... 66

Table 4. Time required to perform the main processes of the proposed

framework. .. 77

Table 5. Comparison of the suggested solution with DRM and Elastic

roadmaps frameworks. .. 95

8

9

1. Introduction

1.1. Motivation
Nowadays more and more robots face the task of working in unstructured dynamic

environments. The robots leave specially designated perfectly known working areas

and fulfil their tasks in places that have not been specially prepared. This can be a

living room in a flat for an assistant robot or a factory floor where a robot has to

manoeuvre among people and machines. Operation in such environments is a

challenge for modern systems because of their complexity and inherent uncertainty.

According to [1], the main difficulties that a robot faces while working in human

environments are the following:

 In unstructured environments, a robot can only possess partial knowledge of

its surroundings, objects can change their state unbeknownst to the robot,

and manipulation tasks may require the end effector to move on a

constrained trajectory rather than simply to reach a specific location;

 Complex task requirements impose strict requirements for high-frequency

feedback;

 Perception systems of robots have to address an intractable amount of

information acquired by multiple sensor modalities;

 Interpretation of the acquired information is complex task as the sensors

provide ambiguous and redundant information and introduce uncertainty due

to noise;

 In order to avoid collisions robots must solve the high-dimensional problem of

distinguishing between objects and free space, calculating how far away

objects are, figuring out how they are positioned etc.

In such situation adequate motion planning becomes a crucial requirement for robot

operation in dynamic environments.

1.2. Background
This section gives a short introduction to the most important background of the

thesis. Much more details will be presented in the further chapters.

The goal of the current project is to design and implement a framework that would

allow performing motion planning and control of a manipulator in a dynamic

environment while preserving task constraints. An example of manipulation task

suitable for the framework is movement of a glass of water from one point to another

while keeping it upright. Another situation when such framework is needed is when a

camera is installed at manipulator’s end effector and it should aim at the same object

10

during movement. Thus, not only position of the end effector, but also its orientation

should be considered throughout planning and path following. A task may also

constrain position of the end effector, e.g. it can be required to keep the end effector

at a specified height above the ground.

To the author’s best knowledge, the only planners that consider task constraints

(constrains on position and/or orientation of robot’s end effector) are elastic stripes

and elastic roadmaps (refer to the Literature survey, sections 2.4.6 and 2.5 for more

details). Both frameworks utilize task-level controller - a convenient and powerful tool

for generating multi-objective behaviour for robotic systems designed by Khatib and

Sentis ([2], [3]). Therefore, it looks logical to use the task-level controller for the

current project as well.

Last semester in a specialization project the elastic roadmaps framework for a mobile

manipulator was implemented ([4]) and several drawbacks inherent to the approach

were identified as a result of the project (see chapter 2.5). To avoid these

shortcomings it was decided to modify some of the framework’s functionality. A

possibility studied in this project is the integration of the task-level controller into a

conventional motion planner to provide fulfilling of task constraints throughout path

execution. It is also important that the resulting framework would preserve the

opportunity to specify manipulation tasks directly in workspace coordinates,

assuming that the configuration space is usually out of interest of robot end users. As

an appropriate candidate for this goal the dynamic roadmaps (detailed description is

given in section 2.6) were chosen.

1.3. Contribution
In the current thesis, a broad overview of motion planning methods focusing on

sample-based and feedback planning as well as planning in dynamic environments is

presented first. Then we demonstrate how dynamic roadmaps and elastic roadmaps

can be merged together. The resulting motion planning and control framework allows

performing of complex manipulation tasks with consideration of positional and

orientation task constraints during the path execution. The proposed solution exploits

the data computed in the offline stage to perform planning and to recognize quickly

configurations of the robot that are in collision with obstacles. The planner identifies a

path for the end effector that can be followed in at least approximately task-

consistent manner. The computed path then is executed with the help of a task-level

controller.

The resulting framework was specially designed to control a 7-degree-of-freedom

manipulator (Fig. 1). It was implemented in C++ and its performance was tested in

multiple scenarios. The results of the simulations demonstrated that the suggested

system was capable to solve certain complex manipulation tasks in dynamic

11

environments. However, the cost for maintaining task constraints is the completeness

of the proposed method. This issue was thoroughly analyzed and some

measurements addressing this problem were suggested.

Some components of the task-level controller were adopted from the project finished

last semester ([4]), but a fair amount of design efforts were still needed to adapt it to

the current project. More specific details about this topic will be given in the further

chapters of the report.

1.4. Outline
The structure of the current thesis is the following: a comprehensive literature survey

of motion planning techniques with the focus on sampling-based and feedback

planning in static and dynamic environments is given first; then the elastic roadmaps

and the dynamic roadmaps are described in details; chapter 3 presents the overall

structure and the design of components of the proposed solution; chapter 4 gives

some details about the implementation of the framework; in chapter 5 simulation

results are presented; chapter 6 discusses the overall performance of the

implemented system; topics for future work are suggested in chapter 7.

12

Fig. 1. Manipulator LWA3 with 7 degrees of freedom from Schunk GmbH, Germany, which is considered
in the current project. [5]

13

2. Literature survey
Planning collision-free motions for robots from an initial to a goal position in static

and dynamic environments is a fundamental robotic task. Usually the goal position as

well as location and dimensions of obstacles are defined in low-dimensional

operational space, whereas a feasible path has to provide a complete specification of

the location of every point on the robot geometry or, equally, a trajectory of a robot

in configuration space. This space represents the set of all transformations that can be

applied to a robot given its kinematics. A robot with complex geometric shape is

mapped to a point in configuration space. The main difficulty of motion planning

arises from the fact that dimension of configuration space is equal to the number of

degrees of freedom of a robot, which can be quite big for modern systems. This

increases computational requirements for planning and motivates development of

heuristic planning algorithms.

This literature survey gives an overview of methods used for motion planning and

control. First, it focuses on classical approaches designed for static environments,

including the sample-based and feedback ones, and then demonstrates, how these

methods are expanded and augmented to handle dynamic environments. In the end,

the detailed description of frameworks that this project focuses on is presented.

Part of this survey uses material from the term project completed last semester [4].

Namely, section 2.1 remains almost unchanged; sections 2.2 and 2.3 were augmented

with a few more advanced approaches; section 2.4 was completely elaborated and

description of only five planners was taken from last semester’s report; section 2.5

was changed to be more relevant to the current project; section 2.6 is new.

2.1. Combinatorial roadmaps
The first attempts to solve motion planning problem aimed only for 2-dimensional

configuration space where strictly deterministic approaches exploiting geometrical

properties of the workspace can be applied. Such methods build combinatorial

roadmaps that discretely and completely capture all information needed to perform

planning [6]. One such approach is called shortest-path roadmap and it is illustrated

with Fig. 2. The graph nodes are located at obstacle vertices and an edge exists in the

roadmap if and only if a pair of vertices is mutually visible. Here feasible paths may

actually touch obstacles, which must be considered during obstacle modelling.

Another technique called vertical cell decomposition is demonstrated in Fig. 3. In this

case, the collision-free configuration space is decomposed into cells shaped as

triangles or trapezoids. Roadmap vertices are created in the middle of each cell and in

the centre of each boundary between the cells. A collision-free path can be easily

14

computed with any graph-search algorithm. The cell decomposition is performed with

“sectioning” the space with vertical planes.

The main advantage but also the main weakness of combinatorial techniques is their

completeness, i.e. if a path exists, it will be found. Unfortunately, when applied to

high-dimensional configuration spaces, the methods become highly ineffective due to

combinatorial state explosion. However, some ideas first introduced in combinatorial

methods may be a part of more complex algorithms.

Fig. 2. Shortest-path roadmap example. [6]

Fig. 3. Example of space vertical decomposition.

[6]

2.2. Sample-based planning
Sample-based planning methods were designed in the 90s to overcome state

explosion problems. Today these methods are by far the most common choice for

industrial-grade problems. Sampling-based approaches usually achieve resolution

completeness, meaning that they will find a solution if one exists, but may run forever

if one does not, or probabilistic completeness, meaning that the probability tends to

one that a solution is found if one exists (otherwise, it may still run forever) [7].

Sample-based planners can be classified in two types: multi-query and single-query

planners. This section presents core functionality of both approaches.

Multi-query planners totally conform to their name: at the beginning a roadmap

representing connectivity of configuration space is generated and later multiple path-

search requests can be processed on its base. The roadmap is generated according to

the following procedure:

 a sample configurations is chosen;

 if a robot with this configuration does not collide with obstacles it is added to

a graph containing other collision-free configurations as nodes and paths

between them as edges;

 a simple local planner tries to connect new placements to other nodes that

are within some small region around the new one.

15

This algorithm is illustrated in Fig. 4. The process goes until connectivity of the

configuration space is fully represented. To find a motion between a start

configuration and a goal configuration, both are added to the graph and a path search

across the graph is performed. This approach is called probabilistic roadmap (PRM).

Fig. 4. Example of sampling-based roadmap construction. The process goes incrementally by attempting
to connect each new sample (α(i)) to the vertices in the roadmap within a certain distance from the new

sample. [6]

The main difference between the methods is in how new sample configurations are

chosen. The first version of PRM ([8]) used random selection of samples which, of

course, was not very effective because a lot of samples did not introduce new

information about connectivity of configuration space. To reduce the number of

samples and at the same time to improve roadmap quality other approaches were

suggested. For example, it was proposed in [9] to put samples close to obstacles,

which is similar to shortest-path roadmaps (see chapter 2.1). An approach given in

[10], on the contrary, suggests to place samples as far from all obstacles as possible,

so the probability of collisions is minimized. A more deterministic sampling technique,

when samples can be placed only into vertices of a predefined grid, is described in

[11]. A comparison of several multi-query methods is presented in [12]. It is shown

that the best performance was demonstrated by a method combining probabilistic

and deterministic approaches for sample-placement. Other multi-query methods

suggest decomposing the general planning problem into low-dimensional workspace

problem and configuration space problem. This allows to define obstacle-free regions

in the space, which do not require many sample points to represent connectivity

within them (Fig. 5). These measures reduce the number of samples and therefore

lower the computational cost of the planning process.

16

Fig. 5. Example of exploiting information about workspace for planning in configuration space. Each
sphere represents a collision-free subspace and only few samples should be placed in each sphere to

describe its connectivity. [13]

Sample-based methods of another type, single-query planners, do not build roadmap

representing the whole space but generate a new tree-like graph every time they

search for a solution. Targeting time efficiency, these graphs grow with the sole goal

of connecting the initial and final configurations of one given problem. The method of

rapidly-exploring dense tree (RDT) or rapidly-exploring random tree (RRT) originally

presented in [14] demonstrates good performance and is widely used in various

robotic applications. Pseudo-code algorithm of tree generation is represented in Fig.

6. After the initialisation (step 1) the algorithm works incrementally. In step 3 a

random collision-free configuration is chosen and in step 4 an already existing graph

vertex qnear closest to this new sample is found. In step 5 NEW_CONF function selects

a new configuration qnew by moving from qnear an incremental distance Δq in the

direction of qrand. In steps 6 and 7 a new node and an edge are added to the graph. To

ensure that the tree would finally converge to the goal, the goal configuration is

chosen as qrand with a certain rate or probability. Fig. 7 illustrates how the algorithm

explores the space.

Several variations of the method may be distinguished: unidirectional (with only one

tree), bidirectional [14] (two trees, one growing from start configuration, another

from goal configuration) and multidirectional [15](more than two trees). Usually a

path found by PRM or RRT has a lot of unnecessary curves and requires smoothing.

Despite generally good results of RRT, authors of [16] claim, that the standard RRT

method usually converges to a non-optimal solution under moderate practical

constraints. To avoid this, a more advanced RRT* algorithm is suggested. In this

version planning algorithm accounts not only for distance between vertices, but

mainly for the cost of the path leading from the initial node to the new one. More

specifically, the new vertex is connected not to the nearest vertex (as in line 7 in Fig.

17

6), but to the vertex, that incurs the minimum accumulated cost from the initial

configuration up until qnew and lies within some region close to the new node. RRT*

also extends the new vertex to the vertices in this region in order to “rewire” the

vertices that can be accessed through qnew with smaller cost. It was proven that with

these small, but crucial alterations the path found converges to an optimal solution

and no path smoothing is required.

Fig. 6. Rapidly-exploring dense tree construction algorithm. Here G is the graph storing the
configurations. Other notations are explained in the text.

Fig. 7. RDT construction example. [17]

One interesting modification of RRT is presented in [18]. This method also builds a

tree-like graph to explore configuration space of the robot, but a new node is chosen

not randomly. Instead, some predefined motion primitives are used to form a new

sample configuration, which is then assigned a cost value. The cost depends on

closeness to obstacles and length of the path needed to reach this configuration from

the initial one. The motion primitives can be of three types:

BUILD_RDT(qinit, G, Δq)

1. G.init(qinit);

2. for k = 1 to K

3. qrand ← RAND_CONF();

4. qnear ← NEAREST_VERTEX(qrand,G);

5. qnew ←NEW_CONF(qnear, Δq);

6. G.add_vertex(qnew);

7. G.add_edge(qnear,qnew);

8. Return G

18

 When the end effector is far from its goal position, the motion primitive is just

bending one or two joints by a predefined angle. At this time the main goal of

motion is coming to the region close to the desired position of the end

effector, therefore, the actuated joints are the ones close to the root and the

step size is quite big (8° in case of one-joint motion).

 When the end effector is close to its goal position (within 10 cm region), a

motion primitive based on inverse kinematics is calculated. It moves the end

effector directly to goal position.

 When the end effector is at its goal position, then a motion primitive that

drives it to a desired orientation is computed based on inverse kinematics.

As some of the motion primitives are not taken from predefined set, but are

calculated directly during the planning process, the method is called planning with

adaptive motion primitives. The path is constructed out of configurations with the

lowest cost.

A different way to tackle dynamic constraints (including nonholonomic) during motion

planning can be found in [19] and [20]. The methods are specially designed for

systems with complex dynamics that are described by physical models instead of

equations of motion. This is exploited during construction of the search tree. A new

sample configuration qrand is not selected explicitly; instead, some control law (e.g. a

vector of motor torques) is chosen randomly from a bounded region and applied to

one of the nodes, already present in the tree. Then robot’s forward dynamics is

simulated in accordance with this control law until a collision occurs, a state-

constraint is violated, or a maximum number of steps is exceeded. In the latter case a

new vertex in the tree is formed.

However, usually integrating equations of dynamics of complex systems is

computationally demanding. Therefore, the search should be guided to reduce the

amount of calculation. Authors of [19] use deterministic approach to choose which

vertex should be expanded. For this matter the whole configuration space is

discretized into multilayer grid (Fig. 8,a), each cell of which is a polytope of fixed size.

The cells are instantiated only when they are needed, so there is no need to store the

whole grid structure all the time. A cell at every level stores its coverage rating.

Additionally, the cells are classified as exterior if they are not completely surrounded

by other already explored cells or interior otherwise. To ensure good space coverage

the vertex to be expanded is more likely to be selected from a cell that is exterior and

has low coverage rating (Fig. 8,b). Because of this mechanism the framework is called

Planning by Interior-Exterior Cell Exploration (KPIECE).

19

a)

b)

Fig. 8. Grid structure of KPIECE approach. a) Multilayer grids for space discretization. [19] b)
Representation of a tree of motions and its corresponding discretization. Cells are distinguished into

interior (red) and exterior (blue). [21]

Authors of [20] also use forward simulation of system dynamics for planning.

However instead of forming the complex grid structures they exploit symbolic action

planner (usually applied in artificial intelligence domain) to guide the search and to

identify the regions of the space that planner should explore further.

2.3. Feedback planning
Feedback planning is one more approach that proved to be applicable in a vast variety

of tasks. Feedback planners explicitly account for the fact that the information

available during planning may be imprecise, that the environment may change during

motion execution and that motion execution results in uncertainty about the state of

the robot. Such planners produce not a specific path but construct a potential

function defined in the permissible state space of the robot that determines

appropriate motion commands. The robot motion is generated by moving in the

direction where the potential function descends.

The classical potential field method (PFM) uses an analogy in which a robot is a

particle that moves in the configuration space under the influence of a force field. The

field has two components: attractive component that attracts the particle to the goal

destination and a repulsive component pushing the particle away from obstacles (see

Fig. 9). To apply the method to robots with several links Khatib proposed in [22] to

calculate resulting forces for multiple points of the robot. Another extension of the

method considers the current speed of the operating point and the maximum

acceleration it can exercise. If the point moves fast, the region where the repulsive

force acts is enlarged so there is enough space for the robot to slow down and avoid

collision.

20

Fig. 9. Attractive, repulsive and resulting potential functions. [6]

Simple implementation of PFM has a set of problems inherent to the very nature of

the method. In [23] the following problems are mentioned:

 Trap situations due to local minima (when obstacles form a dead end and the

goal is behind them);

 No passage between closely spaced obstacles;

 Oscillations in the presence of obstacles (if a goal is behind an obstacle the

robot, while moving along it, tries to go in that direction but is pushed back by

the repulsive force; when the robot leaves the region of action of the

repulsive force, it turns towards the obstacle again and the process repeats);

 Oscillations in narrow passages (the same effect as in previous case but with

even greater oscillations).

To avoid these effects the same authors proposed to use vector field histogram (VFH)

method [24]. The planning strategy has two stages. First is to calculate obstacle

density in all directions in polar (or spherical) coordinates where the robot is in

centre. The directions with low obstacle density become candidates for continuing

movement. In the second stage one of the candidate directions is chosen to move

towards the goal.

Another technique minimizing negative effects of simple PFM is the construction of a

navigation function – a potential function (or a vector field) free of local minima (

[25]). Such function may have a specific global construction algorithm or be composed

of several local potential functions (see Fig. 10 and Fig. 11).

21

Fig. 10. Iterative construction of a navigation function using wavefront method. The point in the middle is
the goal point. At the first step the function is constructed in the visibility region of the goal point. Then the
corners of obstacles iteratively become intermediate waypoints and propagate the the global function to

regions not visible from the goal point. [25]

(a)

(b) (c)

Fig. 11. Composing a navigation function out of multiple local potential functions. a) Each local function
has a goal in the region of the next function in the cascade. The global goal is in the region of the last

function in cascade. b) Configuration space is divided in regions with probabilistic sampling before forming
the vector field. c) After the goal point is introduced, local potential functions are computed and united into

a global navigation function. [25]

An interesting extension for potential-field planning was proposed in [26]. This

approach allows to specify complex motion tasks like ``Visit area π2, then area π3, then

area π4 and, finally, return to and stay in region π1 while avoiding areas π2 and π3” (Fig.

12). The properties of the regions, such as reachability, desired order etc. are coded

Goal point

22

with Linear Temporal Logic (LTL) language, which incorporates Boolean algebra with

temporal information. Each area within workspace generates a potential field that

corresponds to the complex goal. The fields can be switched during the task

execution, e.g. area π2 is attracting the robot at the beginning of the task and

becomes repulsive in the end. Thus, the framework generates a hybrid LTL controller

that is capable to drive a robot through a complex, multiple-staged task.

a) b)

Fig. 12. Environment example (a) and the path found (b) for the framework, presented in [26].

2.4. Planning in dynamic environments
All methods described before have a common drawback - they are designed to work

in static environments and are not suitable to handle moving obstacles. These

methods compute data (a roadmap, a tree or a navigation function) about the whole

configuration space at once and if an obstacle has moved the whole process must be

repeated, which, of course, requires a lot of computation and may take inadmissibly

long time, especially when computed in configuration space. Within a dynamic

environment however, the system has the obligation to make a decision within a

bounded time, otherwise it might be in danger by the sole fact of being passive. This

limited available time for the system to make a decision, i.e. plan a motion, depends

on the nature and dynamicity of the environment and is a hard real-time constraint.

Therefore, special measures are required to tackle this complex task.

In this section the following groups of motion planners are presented:

 Motion planners for environments, where future locations of moving

obstacles are known;

 Anytime planning;

 Combination of global planning with local replanning;

 Planning in velocity space

 Optimization-based planners;

 Path and trajectory deformation;

23

 Partial motion planning (PMP);

 Real-time adaptive motion planner (RAMP).

2.4.1. Motion planners for environments, where future locations of
moving obstacles are known

Dynamic environments can be classified into two groups: when the future locations of

moving obstacles are known and when they cannot be predicted. In the first case the

two common approaches to plan movement are to add a time-dimension to the

configuration space or to separate spatial and temporal planning problems (velocity

tuning).

An example of the second technique is presented in [27]. It was developed for robot

movement in such environments, as factory floors, where multiple robots are

constrained to move along prespecified path networks (for instance, along lines

painted on the floor). Thus, geometrically a robot moves along edges of precomputed

or externally loaded roadmap, which allows avoidance of static obstacles. Moving

obstacles, i.e. other robots moving along the same paths, are avoided only in time by

tuning robot’s velocities.

2.4.2. Anytime planning
Planning in absolutely unstructured and unspecified environment is much more

challenging. Up-to-date there is no universal solution to this problem, and a variety of

different approaches have been proposed. Many of them try to adapt RRT-search to

dynamic environments, and it can be found in many complex motion planning

environments.

Planning with RRT may take arbitrary time and thus the real-time constraint imposed

by dynamic environment may be violated. Such situation can be avoided with Anytime

RRT* presented in [28]. The planner quickly finds a feasible, but not optimal (from

time, energy consumption or smoothness point of view) solution and allows the robot

start executing the path. While it is moving along the first piece of the path, the

remainder is optimized according to data loaded at the beginning of planning or

acquired during movement. Such strategy results in an almost optimal solution, as

path execution often takes considerable amount of time.

Nowadays, there is already a bunch of planners exploiting this general idea, and the

whole family is called anytime planners.

2.4.3. Combination of global planning with local replanning
Another concept that simplifies motion planning in dynamic environments is that

usually only a part of a path is invalidated by an obstacle, and therefore only this part

needs replanning, which can be done quickly.

24

An extension for a PRM-planner exploiting this concept is described in [29]. At the

beginning a classical PRM-roadmap for static objects is created and stored. Then a

moving object may invalidate some of its edges and vertices. When the roadmap

receives a query, a path within static roadmap is calculated and analyzed. Depending

on position of movable object several scenarios are possible:

 the obstacle has not invalidated edges in the path from the initial position to

the goal. No special measures assumed;

 the obstacle invalidated some edges in the path. The planner tries to connect

pieces of the path with a local rapidly-exploring tree. If the local “detour” of

the obstacle is found it is incorporated into the path.

 the obstacle invalidated some edges in the path and the local method was

unsuccessful. The global sampling (as during initial roadmap generation)

starts to augment the roadmap with new vertices and edges.

Such scheme combining local and global planning allows maintaining roadmap in

actual state. The idea of the method is illustrated in Fig. 13.

Fig. 13. Work of PRM-based planner for dynamic environment. A static roadmap is first computed in the
configuration space of the robot (1). Processing the planning queries, a solution path can be found directly
inside this roadmap (2) or via a RRT-like technique to reconnect edges broken by dynamic obstacles (3).

If the existing roadmap does not permit to find a solution, new nodes are inserted and the roadmap is
reinforced with new samples (4). [29]

25

A well-known approach adapting RRT to dynamic environment is called lazy

reconfiguration forest (LRF) [30]. Forest-based planners maintain multiple trees

instead of just a single tree. These planners plant several tree roots throughout

configuration space and grow an RRT from each one until they are united into one

tree. The LRF method first builds a tree to find an initial path. If an obstacle interferes

with it, the interfered branch is not disregarded completely but is divided in several

parts by the obstacle. One node from each of these parts becomes a root for a new

tree and these trees start growing trying to reach each other so that the path could be

reconstructed (see Fig. 14).

a b c d

Fig. 14. Lazy Reconfiguration Forest working principle. An obstacle moves left toward the initial tree (a).
Portions of the tree become invalid due to the obstacle. These portions are removed and the sub-trees not
invalidated by the obstacle become new trees in the forest (b). The structures grow incrementally toward a
sample configuration; two trees are merged, eliminating one root (c). The forest structure is united to form

a path (d). [30]

An interesting approach for 2D planning is presented in [31]. It combines many ideas

presented before. A roadmap of static environment is generated or loaded. Then it is

augmented with time dimension to handle known moving obstacles. The path search

is performed in state-time space (see Fig. 15 and Fig. 16) allowing to avoid dynamic

obstacles (waiting at the same state is also allowed). If the framework detects that

the identified path is not collision-free anymore, it tries to replan but only within the

precomputed roadmap. To minimize replanning efforts Anytime D* search algorithm

is used. It is a modification of A* graph search algorithm that, firstly, works as anytime

method and, secondly, searches a solution not from the initial state, but from the goal

one. In A* search the cost values of the roadmap vertices become out-of-date with

robot movement as the initial state changes all the time. The latter property of D*

algorithm allows to avoid renewal of cost values of roadmap vertices, since the goal

point is static, and, thus, to reuse the data computed in previous iterations for path

optimisation and replanning.

26

Fig. 15. Representation of trajectories of dynamic obstacles in state-time space. Vertical axis – time,
horizontal plane – states. From left to right: a known trajectory; a trajectory of a static obstacle; an

extrapolated trajectory based on previous motion; a worst-case trajectory based on current position and
maximum velocity. [31]

a)

b)

Fig. 16. a) A precomputed roadmap with dynamic obstacles (red). b) A path in state-time space (black).
Blue is the goal configuration, yellow - extrapolated trajectories of the dynamic obstacles. [31]

2.4.4. Planning in velocity space
One more method of handling moving obstacles is to use velocity space for planning.

An obstacle with known dimensions and velocity can be represented in velocity space

as some region (a cone, if it moves straight (Fig. 17)). The task of a planner in this

case is to choose such velocity vector, so that it drives robot towards goal and its end

is not located within obstacle regions (in this case a collision would occur sometime in

the future). Choosing one vector most probably will not be enough to reach the goal.

Therefore, frameworks presented in [32] and [33] iteratively build tree of velocity

vectors until one of the branches reaches a goal region. Each iteration movement of

the robot and the obstacles is simulated in velocity space, then a new vector is

chosen. Such planners cannot guarantee, that a global navigation task will be fulfilled,

and require a global planner, that would define subtasks, feasible for iterative

planning. A strong side of these planners can be demonstrated by a fact, that they

may solve a task of crossing a street with car traffic, which is likely to end in a collision

when solved with methods accounting for spatial information only.

27

Fig. 17. A linear velocity obstacle. B(t0) – obstacle borders; blue cone – set of robot’s velocities that would
cause a collision if the obstacle was static; orange cone – set of robot’s velocities that would cause a

collision if the obstacle moved with the speed vb; va1 – admissible robot’s velocity vector, va2 –
inadmissible robot’s velocity vector. [34]

2.4.5. Optimization planners
There are also approaches that treat motion planning as an optimization task. One of

them is CHOMP - Covariant Hamiltonian Optimization for Motion Planning [35]. It

uses a two-stage procedure. First, a naive, probably not collision-free, initial trajectory

from the initial position to the goal is created. During the second stage a modified

version of gradient descent on the cost function is used to optimize the path with

respect to being close to obstacles and path smoothness. It is one of few approaches

that considers path’s smoothness directly during planning and not while modifying

previously found path. The way, the method handles dynamic obstacles is

straightforward: it just continues optimization of already existing solution with

respect to new data.

In [36] CHOMP is transformed into an anytime planner. It supplies robot with a

suboptimal solution if the optimization task has not been solved within time budget

and updates the trajectory during robot’s movement.

2.4.6. Path and trajectory deformation
Another way to handle dynamic environment is not recomputing the paths, but

deforming them when an obstacle approaches. This approach was first implemented

in elastic bands [37]. The framework fully corresponds to its name as visually the path

looks as an elastic band deformed by a moving obstacle. Each piece of the path is

formed by two forces: an external force pushes it away from obstacles while internal

force tries to make the path shorter. A similar approach applied to a nonholonomic

28

mobile manipulator is described in [38]. The authors of [39] complement elastic bands

with time dimension: now the trajectory can be deformed not only geometrically, but

also in time. This allows, for example, to stop the robot for a while to let an obstacle

pass by and then continue motion along the same path.

Even broader expansion of elastic bands, Reactive Deforming Roadmaps, is presented

in [40]. Possible robot motions are described in a roadmap, each edge of which may

be deformed by an approaching obstacle. Likewise, the roadmap vertices (also called

dynamic milestones) may move if an obstacle comes too close (Fig. 18). In this way

the whole roadmap reacts to changes in the environment and tries to adapt to them.

The authors focus in their paper on planning for multiple robots in 2D space.

Fig. 18. Reactive Deforming Roadmaps (RDR). (a) The RDR contains a set of dynamic milestones and
reactive links. (b) As the obstacle O moves, the dynamic milestones move as well and the reactive links of
the roadmap deform to avoid the obstacle boundary. (c) If a path link deforms too much or is too close to

the obstacle O, the link is removed. [40]

Elastic strips [41] is the first method from described before, that incorporates task-

specific constraints important for realization of mobile manipulation tasks along with

reactive obstacle avoidance. Thus, a robot tries to fulfil certain manipulation task (e.g.

following a line with end effector or keeping upright orientation of the end effector)

while avoiding moving obstacles (Fig. 19). In order to improve efficiency of the

framework, most of the computation is performed in the workspace rather than in

the configuration space.

Fig. 19. Local path modification in presence of obstacles in elastic strips framework. [41]

29

A common drawback of path-deforming approaches is that at some point the changes

in environment could affect the trajectory so intensively that local path modifications

without global replanning may lead to invalid or arbitrarily bad motions.

2.4.7. Partial motion planner (PMP)
An interesting approach to satisfying hard real-time constraint during planning is

presented in [42]. The authors of the paper argue that when obstacles move on their

free will, as it happens in many real-life applications, their future behaviour is only

partially predictable. Thus, it is likely that the model of the future that has been

obtained will have limited validity duration. In such situation it is better to iterate a

partial motion planning process taking as input a regularly updated predicted model

of the future than to construct a global plan every time. From this assumption they

develop a partial motion planner that works according to the following algorithm (Fig.

20):

1. An updated model of the future B(ti,∞)is acquired.

2. The state-time space is explored using a RRT rooted at the state s(ti+1) ,

where ti+1= ti+δc.

3. At time ti+1, the current iteration is over, the best safe partial trajectory ϕi in

the tree is selected according to a given criterion and is fed to the robot that

will execute it from now on. ϕi is defined over [ti+1, ti+1 + δhi] with δhi the

trajectory duration.

4. Repeat the steps 1-3 every iteration until the goal is reached.

With this scheme a new best partial path is always generated within available time δc.

Fig. 20. Partial Motion Planning iterative cycle. [42]

Partial planning by its nature has to face safety issue: since PMP has no control over

the duration of the partial trajectory is there a guarantee that the robot will never

end up in a critical situations yielding an inevitable collision? To provide positive

answer for this question, the authors introduce concept of inevitable collision states

30

(ICS) - the states for which no matter what the future control law applied to the

system, a collision with the obstacle occurs. Thus, if a partial plan is ICS-free, it is

ensured that it is safe. It is also shown that for a car-like robot computation of ICS can

be simplified greatly.

2.4.8. Real-Time Adaptive Motion Planning (RAMP)
A common approach to increasing reliability of a system is redundancy when the most

critical components of the system have a backup that can come into operation quickly

in case of failure of the currently active instance. A similar idea is exploited in RAMP

approach presented in [43]. If a path may be invalidated by an obstacle, it is

reasonable to have several paths ready, so that the obstructed one can be

immediately substituted. RAMP is designed for mobile manipulators (a manipulator

on a mobile base) and provides reasonable results even in this high-dimensional

configuration space.

The framework simultaneously maintains and updates multiple trajectories in state-

time space going from the current robot position to the goal region. The exact goal

configuration for each trajectory is randomly chosen from the goal region, which

facilitates homotopic variety of the trajectories (Fig. 21). The trajectories are planned

with an anytime planner, so most of them are not optimal and/or even infeasible at

the beginning. According to the anytime planning concept, trajectory updating and

optimization go simultaneously with robot movement. Optimization process has

stochastic nature. Each iteration one of multiple possible operations is applied to one

of the paths. The set of operation includes, but is not limited to adding or deleting a

milestone configuration, substituting a milestone configuration with another,

stopping the base or manipulator of the robot for a while etc. If the new trajectory

has lower cost value (infeasibility is also a cost penalty), one of present trajectories of

same homotopic class (not exactly one with the lowest cost) is substituted. The

stochastic nature of trajectory optimization and maintenance allows to preserve

trajectories of different nature and to be ready to big changes in the environment.

31

Fig. 21. A template task for RAMP. A population of trajectories is required as doors can close and open
unexpectedly. The initial trajectory set has a good diversity to cover the environment. The trajectories

going through the same gate belong to one homotopic class. The figure indicates base trajectories only.
[43]

2.5. Elastic roadmaps
Elastic roadmaps is a state-of-art approach for planning within unstructured

environment. It is a comprehensive approach for motion generation that combines

together planning and control. It allows to perform mobile manipulation tasks in

dynamic environments and to satisfy various constraints with different feedback

frequency requirements. As a reference scenario for mobile manipulation the authors

in [44] chose inspecting a pipe when a robot moves along it while keeping the end

effector (with an inspecting tool installed) in proximity to the pipe and avoiding

obstacles on the way. The whole framework combines sample-based and feedback

planning and works according to the following algorithm.

1. A manipulation task is specified in operational space. As an example, it can be

following a line with the end effector or keeping the end effector in proximity

to a wall.

2. Obstacle-related milestones are created. A milestone is a virtual robot that

has a specific task. The milestones are placed near features (a corner or the

middle point of an edge; see Fig. 22) of obstacles and their primary task is to

stay in proximity with the feature while trying to fulfil manipulation task

specified in step 1 and avoiding obstacles. Thus, if an obstacle moves the

corresponding milestones move along with it. The placement of milestones

depends only on workspace information.

32

Fig. 22. Example of milestone placement in elastic roadmaps framework. [44]

3. A roadmap is generated. The roadmap contains the information about

milestones and connectivity between them. Two milestones have an edge

between them if their corresponding characteristic points satisfy visibility

criterion (e.g. can be connected by a straight line that does not intersect the

obstacles). Thus, the roadmap is a graph representing connectivity of the

workspace.

4. A path is determined in the roadmap. The start and the goal configurations

are added to roadmap as milestones and an appropriate path is found with a

graph search algorithm. The vertices of the graph (milestones) contain

information whether a milestone is able to perform the manipulation task

from step 1. It is assumed that if two milestones have an edge between them

and both satisfy task constraints, movement from one to another is possible

without violation of the task. The path is computed only through milestones

fulfilling the manipulation task. Therefore, manipulation task is accomplished

along the whole path.

5. A robot moves along the path. As the path is specified only in the workspace,

a navigation function with the sink at the next milestone in the path is

formed. When the milestone is reached, the new navigation function leading

to the next milestone is computed. The robot’s motion along the navigation

function is controlled by a task-level controller which allows performing of

several prioritized tasks at the same time.

Thus, elastic roadmaps form a hybrid controller switching between navigation

functions and a trajectory in configuration space is never computed explicitly. This

allows updating the path in dynamic environment with a rate sufficient for mobile

manipulation tasks. An example of framework’s functionality is presented in the Fig.

23. To reduce the amount of computation milestone placement, checking

connectivity between them, path generation and modification is performed strictly in

operational space. The transition from operational to configuration space is done

separately for each milestone via task-level controllers. The task-level controller is

one of the key components of the current project and its functionality is presented in

details in section 3.4.

33

The framework provides generality in task constraints specification but it is not

complete, i.e. it may propose an infeasible path or fail following a feasible path. The

authors of the framework realize that and introduce failure detection mechanism to

increase system’s completeness. They identify three types of failures. Failures of the

first type appear when the robot cannot find a motion between two milestones

connected in the roadmap. It can be a consequence of a mistake in connectivity

controller, as it only checks visibility between some points of two milestones but does

not takes in account geometric dimensions of the links. In this case, the framework

should detect that no progress has been done for some time, invalidate the current

edge between milestones and find a new path. Failures of the second type

correspond to violation of manipulation task: when a robot or any of milestones in

the path are not task-consistent any more, the framework tries to find a new path. If

the new task-consistent path has not been found the robot should recover as soon as

possible to the task-consistent configuration or to the closest task-consistent

milestone. If these recovery strategies still do not allow finding new path, a failure of

the third type is generated. It corresponds to incompleteness of the method and, in

this case, the task cannot be solved with elastic roadmaps.

There are several factors that limit application of the framework. The first is its

completeness. It is caused by the core algorithm of the system: place milestones

wisely and hope, that the task-level controller finds a feasible path between them.

The failure detection mechanism described in the previous paragraph tries to

minimize this drawback but it is impossible to eliminate it completely. The second

limitation is that the obstacles in the framework have to be always represented with

their bounding boxes, which is essential for milestone placement. Such

representation may conceal shape and structure of compound obstacles and result in

a suboptimal path or inability of the framework to solve certain tasks. If we divide an

obstacle into multiple objects for better representation of its shape, the number of

obstacle-related milestones increases greatly which in turn leads to a boost of

computational requirements since each milestone is controlled with a complex task-

level controller. One the more factor that may also affect performance of the system

is visibility criterion, as it considers only some reference points of the robot and not

its body in whole.

34

(a) The initial desired motion is indicated by the
red dashes. It directly connects the current
position of the actual robot to the milestone at
the goal location. The robot on the right starts
moving into robot’s path, as indicated by the
arrow.

(b) A new motion is selected from the elastic
roadmap. It goes through two more milestones,
indicated by the transparent robots and
circumnavigates the moving obstacle.

(c) Due to the motion of the three robots
(indicated by the arrow), a new motion is shown.
It goes through three milestones of the roadmap
(not shown) before reaching the goal position

(d) As the three robots continue their motion,
another robot starts to move (again indicated
by the arrows). Yet another motion is selected
from the elastic roadmap.

Fig. 23. Example of elastic roadmaps functionality. The robot performs a task that requires the end-
effector to traverse a line in space. Multiple moving obstacles obstruct robot’s path. Elastic roadmaps

generate collision-free and task-consistent motion. [44]

2.6. Dynamic roadmaps (DRM)
In this section we discuss a framework for real-time path planning originally

presented by Leven and Hutchinson in [45] and later refined by Kunz et al. in [46]. This

approach is based on PRM method but it introduces a number of improvements that

aim at handling unstructured dynamic environments. The key idea exploited is that

the cost of planning can be divided over many planning episodes. This provides a

justification for spending extensive amounts of time during a preprocessing stage,

provided the resulting representation can be used to generate plans very quickly

during a query stage. Therefore, the method has two stages: offline precomputation

and online path search.

35

It is assumed during offline precomputation that no obstacles are present in the

robot’s workspace. Two tasks are performed in this stage. First, a probabilistic

roadmap is generated in configuration space. After the roadmap is formed, it is

mapped to 3D workspace. To do this the workspace is divided in cubic cells within a

grid with constant step size. Each node (configuration) and edge of the roadmap are

examined to define which workspace grid cells it intersects with (Fig. 24). This

information is then stored in the workspace cells. Thus, each cell contains a list of

roadmap nodes and edges that are in collision with the cell.

Fig. 24. Mapping a configuration and an edge to workspace for a 2-DOF planar robot. [45]

The data stored by the cells is then used during online planning. When an obstacle

comes into robot’s workspace, it occupies some of its cells. All nodes and edges

colliding with these cells become invalid, as they would also collide with the obstacle.

Thus, these parts of the graph are removed from the roadmap and are not considered

during path search.

Since there is no time limit on precomputation part mapping of configurations and

edges may take arbitrary long time. Kunz et al. use a brute approach to map a

configuration. A big number of points is uniformly distributed within the robot’s body

and for each of them a cell containing the point is defined. The method, used by

Leven and Hutchinson is more accurate: they directly compute a set of grid cells that

represents a polyhedron. The latter method is quicker and more precise, but harder

to implement. To map an edge, the configuration corresponding to its midpoint is

voxelized first. Then the edge is recursively subdivided in two parts and the process

repeated until no new occupied cells are added anymore. The cells that are occupied

by the two endpoint configurations of the path segment are not considered for the

set of cells occupied by the path segment.

36

The framework works in configuration space only, so the authors have to pay big

attention to such issues as selection of sampling techniques, so that whole

configuration space is sampled, and choosing appropriate distance metric to define

which nodes should be connected with edges. Another matter that comes into play is

size of the roadmap and cells’ data. In Kunz’s implementation several hundred

megabytes was needed to store the data for 7-DOF manipulator and it took

approximately 20 hours to finish the offline stage. Most of the time was spent on

collision checks of roadmap edges.

On other hand, performance of the online planner benefits significantly from using

the precomputed data. It can compute an obstacle-free path within hundreds

milliseconds and is capable to handle moving obstacles. The research presented in

[47] compared performance of DRM and RRT. Three testing scenarios were studied: a

planar hand with 4 DOF, a planar two-handed robot with 7 DOF and a Robonaut

humanoid model with 17 DOF. The test results demonstrate, that in the first two

scenarios planning with DRM was much faster (more than 4 times faster in 4 out of 5

tests), than RRT. Moreover, for the robot with 7 DOF DRM was able to solve more

tasks, than RRT. However, for the Robonaut scenario the approach was not so

effective and quite big part of the tasks was not solved. This can be explained by the

assumption, that the used roadmaps were not capable of adequately covering the

free configuration space with such big number of dimensions. One more observation

made by the researchers is that DRM is effective in finding path to extreme postures

as they store complete data about environments with complex configurations.

The current project originates from a semester project that focused on mobile

manipulation ([4]). In this context it is worth mentioning a method that expands DRM

into this domain. The main challenge of using DRM for mobile manipulation is

increased and potentially unlimited configuration space. In this case, it is impossible

to describe it with sampling. The authors of [48] suggest a multilayer structure. The

top-level planner is a simple RRT algorithm that finds new collision-free nodes in

configuration space and determines the global path. The nodes of the graph serve as

subgoals for local DRM-planner that may quickly react to moving obstacles and find

the actual detailed path from one subgoal to another in the configuration space. In

this case, the top-level planner does not need to check edges for collisions, since it is

done on the lower level.

In conclusion, it would be reasonable to compare the frameworks that are the key

components of the current project. Elastic roadmap is a universal and powerful

approach that allows handling of dynamic environments and preserving task-

constraints throughout the path execution. It mostly works within operational space

and is applicable to robots with various structures, including mobile ones. However,

the very nature of the framework makes it incomplete and it may provide non-

37

optimal solutions in cluttered environments with complex-shaped obstacles. DRM, on

the contrary, is probabilistically complete and demonstrates good performance in

situations, when extreme configurations should be used. On the other hand, it does

not consider task constraints and can be applied only to robots with limited

workspace.

2.7. Summary
In the survey an overview of various methods for motion planning and control was

given. At the beginning classical methods, such as combinatorial roadmaps, were

presented. Then basic algorithms and their more advanced versions for sample-based

and feedback planning in static environments were explained in details. After that, a

variety of methods applied to planning in dynamic environments was reviewed.

In the end, the key components of the current project were discussed. It was shown

that elastic roadmaps framework combines features of sampling-based and feedback

motion planning and uses both global replanning and local path modification to

maintain a task-consistent path in dynamic environments. It was also demonstrated

that dynamic roadmaps (DRM) allow quick planning even in environment with moving

obstacles due to a special mapping technique. DRM does not consider task constraints

and is only capable to find an obstacle-free path from one configuration to another.

38

3. Design
This chapter explains all basic features of the proposed framework. First, a general

concept of the suggested solution is explained; then the details about design of offline

preprocessor and graph search algorithm are presented; section 3.4 describes

functionality of the task-level controller and computation algorithms for some of its

secondary elements; in section 3.5 we overview the task hierarchy for the current

implementation of the task-level controller and design of each task; section 3.6 gives

description of simple simulation model used to transform computed generalized

forces to a new configuration.

The general structure of the task-level controller and some of its tasks were designed

during the specialization project last semester. The description of its functionality and

implementation details (section 3.4) were taken from the report to that project ([4])

and adapted to be more relevant to the current framework. Section 3.5 mostly refers

only to the current project.

3.1. General description of the proposed framework
As already stated above, the aim of the current project is to design a motion planner

that would be capable to handle dynamic environments and to satisfy task constraints

during robot movement. For this goal we combine features of elastic roadmaps and

DRM in one framework.

In most cases end user of a robot would specify a task in operational space; therefore

constraints imposed by the task are also specified in operational space. Talking about

task constraints, we first of all mean that position and/or orientation of the end

effector of manipulator cannot change arbitrary during its motion. Here are some

examples of tasks and corresponding task constraints: carrying a glass of water while

keeping it upright and above a certain level above the ground; painting something on

a wall with a sprayer while preserving a certain distance from the wall and aiming

with sprayer at it; pipe inspection with a videocamera when the pipe should always

stay within camera’s view and, possibly, at a certain distance to be always in focus.

Like DRM, the proposed framework has two stages: offline preprocessing and online

planning. In the offline stage a roadmap covering robot’s workspace is generated and

mapped to workspace cells with technique, similar to one used in DRM.

The main difference at the offline stage is that the roadmap is generated not in

configuration, but in operational space. The workspace is discretized with a 3D grid.

Each node of the grid represents a possible position of the end effector and stores

information about six configurations. All configurations refer to the same position of

the end effector, but the corresponding orientations are different. The six

39

orientations coincide with the positive and negative directions of the axes of the

inertial frame (i.e. correspond to the “up”, “down”, “right”, “left”, “forward” and

“backward” directions when viewed from the inertial coordinate frame). In fact, for

almost every node some of orientations are infeasible. In this case a flag that the

corresponding configuration does not exist is stored in the node. In such manner we,

firstly, identify, which positions the end effector may occupy, and, secondly, represent

roughly, which orientations are feasible at these positions. The nodes that have at

least one feasible configuration are included into the roadmap. An edge in the graph

exists between any two adjacent nodes.

Apart from forming a grid for the end-effector position, the workspace is discretized

one more time into cells that are used for mapping configurations to the operational

space. This mechanism is absolutely identical to the one used in DRM. After mapping

each workspace cell stores which configurations (stored in roadmap nodes) it collides

with.

At the end of the offline stage the roadmap and the data structure aggregating the

cells are stored on the hard drive.

The online planning stage consists of two processes that run simultaneously. The first

one handles obstacle movement and performs graph search. When a new obstacle

arrives or already identified obstacle moves, it is mapped to the cells of the

workspace, and all configurations that collide with these cells are invalidated

according to the precomputed data.

The graph search establishes the actual path from the initial node, which is the closest

node to the current position of the end effector, to the goal one. During the search

each node is tested for task consistency. If position of the end effector is constrained,

the position of the node is checked. If the task constraint is applied to the orientation

of the end effector, first the desired orientation vector is computed for the node.

Then we determine, the projections on which axes of the inertial coordinate frame

are dominant for this vector, and check if the corresponding configurations exist

within the node and if it is valid (i.e. collision-free). Thus we approximately verify

whether the node is task-consistent or not. Only nodes with valid task-consistent

configurations can be included in the path. The result of the graph search is a

sequence of nodes’ positions that lead to the goal point. With a dense enough grid of

nodes we can ensure that the found collision-free path can be followed by the end

effector in approximately task-consistent manner.

The other process running online is the task level controller. It is a structure that

actually controls the robot in accordance with a set of prioritized tasks (they are also

called behaviours in this report) that act in the nullspaces of each other. The set

includes several safety behaviours, e.g. avoiding joint limits and avoiding obstacles, a

40

behaviour controlling robot’s end effector orientation and a behaviour that moves the

end effector towards the goal position specified by the planner. The structure of the

task-level controller ensures, that orientation constraints will be preserved during the

path execution if the safety behaviours allow. The planner supplies the path-following

behaviour with a new goal as soon as the previous one was reached.

To sum up, by exploiting the data obtained during offline stage the planner is able to

quickly find a path of the end effector in the operational space that can be followed in

obstacle-free and approximately task-consistent manner. During the path execution

the task-level controller tries to exactly satisfy the task constraints and tries to follow

the found path while avoiding collisions with obstacles and inadmissible

configurations. The details of the framework and main design decisions are discussed

in the following sections.

3.2. Offline preprocessing

3.2.1. Roadmap generation
Operational space of a manipulator has six dimensions: three coordinates of the

position of the end effector and three angles representing its orientation. In the

offline stage we discretize the operational space to form the roadmap, identify which

regions of the space (both in position and orientation) are reachable and then use this

information during motion planning and control.

As position and orientation dimensions of the operational space have different

nature, they need to be treated separately. To discretize the position dimensions, a

3D grid is formed, each vertex of which corresponds to a possible position of the end

effector. In our project the grid has fixed step size, but there no obvious restrictions

to use grid with variable node density.

A space of orientations of an object with fixed position is a spatial angle of 4 (in this

case we assume, that orientation is considered only as direction of Z-axis of end

effector’s coordinate frame; directions of corresponding X and Y axes are not

important as they may be easily adjusted by the last revolute joint of the manipulator

when the Z-axis is oriented as desired (Fig. 25)). The space is approximated with six

directions: up, down, forward, backward, left and right when observed from the

inertial coordinate frame. Thus, we can say, that in preprocessing stage the

orientation space of each node of position grid is discretized into six states. It will be

shown in the section 3.3.2 that more states are used during the graph search and

planning and the orientation space is not discretized at all during path execution.

Thereby we can represent the whole 6D operational space of a robot as a grid,

corresponding to the positions of the end effector, where each node of the grid

contains a set of possible orientations of the end effector. Thus, a grid node may

41

potentially contain 6 points of the six-dimensional operational space. In reality for the

vast majority of the nodes some of these points are not reachable due to kinematic

limitations. This is checked by solving an inverse kinematics problem.

The grid described above forms a graph that is used as roadmap in planning. The

edges in the graph exist between all neighbouring nodes that contain at least one

valid configuration since they are close to each other in operational space. All edges

have the same weights equal to 1.

3.2.2. Grid resolution choice
One of the factors that affect grid resolution is the fact that we do not check the

edges between the nodes for collisions. It does not make any sense really, as each

node contains six configurations and it is impossible to predict offline, connections

between which of them are going to be used during motion.

However, we would like to guarantee at least up to a certain degree that there are no

obstacles between two adjacent nodes. For this matter we consider two

configurations that are contained in the neighbouring nodes and correspond to the

same orientation of the end effector. If there is no gap between the two

configurations, it is most likely that no obstacle will obstruct the direct path between

them and thus we increase the probability that the task-level controller is able to

perform such movement basing only information about the state of the end effector.

Thus the grid step size should be less than geometrical dimensions of the end effector

since it is usually the smallest part of manipulator and it covers the biggest distance

while moving from one node to another. This gives the upper bound for the grid

resolution.

The lower bound should be defined from task accuracy specifications. It is also

obvious, that the smaller the resolution is, the bigger the roadmap graph (and also

files, storing the roadmap and it’s mapping to the workspace) is.

In the current project the diameter of manipulator’s end effector is 7,5 cm. The grid

resolution was chosen to be 5 cm for the roadmap and 3cm for workspace cells.

3.2.3. Inverse kinematics solver (IKS)
The IKS play a great role in the framework. Firstly, it defines which positions and

orientations are achievable by the robot. Secondly, the results produced by IKS are

used in mapping configurations to workspace.

The algorithm of IKS assumes making a very important design decision related to

redundancy resolution. In this project we work with 7-DOF manipulator from Schunk

GmbH, Germany (Fig. 1 and Fig. 25). As the operational space may at most have 6

dimensions, the manipulator is redundant and some measures need to be assumed.

42

Usually redundancy is solved by specification of a secondary task for the robot. Such

task can have a goal of avoiding singular configurations and joint limits, optimizing

joint torques or providing decoupled force/position control of the robot. In the

current implementation the secondary task is to provide, that configurations

corresponding to neighbouring nodes are also close in configuration space. This is

extremely important, as during the planning stage we do not form a full path in

configuration space, but specify some waypoints that should be followed by the end

effector. Thus, if two configurations corresponding to the neighbouring waypoints are

far away from each other in configuration space, the assumption, that the task-level

controller may solve the task of waypoint following, is likely to fail. It is also important

to notice, that joints 1, 3, 5 and 7 of the manipulator that is considered in the project

have limits more than π in both direction. Because of that the situations when a robot

has to rotate 360° to get to the adjacent node can be excluded from our consideration

during offline preprocessing.

In our project we define the secondary inverse kinematics task as keeping the angle

value of the joint 3 at zero and assigning only positive angle values to the joint 4. The

first rule transforms our redundant robot into classical 6-DOF PUMA-like manipulator,

for which inverse kinematics may be easily solved. The second rule may be justified by

the assumption that the most obstacles do not fly in the air, but stand on the ground.

With the constraints specified above we explore configurations that approach

obstacles “from the top” for which the probability to go around the obstacles

standing on the ground is high. These kinematics restrictions are valid only during

offline stage. The robot may use all its DOF during actual moving.

Imposing the constraints on two of the robot’s joints limits the part of configuration

space that is explored during preprocessing stage. This is an unavoidable drawback of

the proposed framework and it will be discussed more in section 6.

43

a) b)

Fig. 25. The model of the robot (a) and its approximation for inverse kinematics solver (b). The point
marks the origin of the inertial frame. The points .. denote origins of coordinate frames attached to

robot links. The rotation axes of the joints go through these points and coincide with main axes of
cylindrical links of the model in the figure (a), i.e corresponds to the red link, to the orange link, –
to the yellow one etc. The axis coincides with the main axis of the violet link and represents orientation

of the end effector.

With the assumptions presented before solving inverse kinematics becomes an easy

task. The robot now can be modelled as 4 links, 3 of which are connected with

revolute joints, and the last one (the end effector) is attached with a spherical joint

(Fig. 25). The input for an inverse kinematics task is the position of the end effector

(point) and its orientation as a unit vector of Z-axis of end-effector’s

coordinate frame . From these we can easily find the desired coordinates of the

point :

 .

Now we should check whether this point is reachable. If , then the

point is too far and no solution exist. In the opposite case by applying cosine theorem

to the triangle we can obtain rotation angles of the 1st, 2nd and 4th joints:

44

As because of the assumption made before, now only the angles of the 5th and

6th joints need to be computed to provide the desired orientation of the end effector.

This task can be easily mapped to finding Euler angles and that would rotate

the coordinate frame to the frame , where and are

arbitrary directed. The solution of this task is well known and we obtain, that

 ,

where
 is the vector observed from the coordinate frame .

After the desired angle values have been found, they should be validated against

admissible joint limits. If the test has been successfully passed, the calculated joint

values are returned as output of IKS. In case of a fail the inverse kinematics task is

considered as unsolvable.

3.2.4. Mapping configuration to workspace
To map a configuration to workspace we used the same method, as Kunz et al. in [46].

First a big number of points is distributed uniformly within the body of the robot links.

Then it is computed which cell collides with each point in the current configuration of

the robot. The links of the manipulator are approximated with cylinders.

Fig. 26. An example of configuration of a manipulator and its mapping to workspace cells (cell size –
3x3x3 cm; robot’s body is sampled with 4525 points).

To provide good coverage of robot’s body, the sampling points are located within

vertices of a grid. Kunz et al. demonstrate, that there is no much improvement if the

grid resolution is less than

, where is the size of workspace cells. In this project the

45

same estimate was used and it appears to be enough to map the whole manipulator

to the workspace cells (Fig. 26).

3.3. Graph search and obstacle handling
In this chapter the functionality of the graph search algorithm is presented. The graph

search runs online and guides the functioning of the task-level controller.

3.3.1. Obstacle handling
The first thing that is done after the planner starts is checking for obstacles. In this

work we do not consider how the information about obstacle location is obtained. In

general, obstacles can be detected with a set of videocameras or a laser range finder.

The only data that is required for our framework is the cells of the workspace

occupied by obstacles. Based on this information the configurations stored in the

roadmap that collide with these cells are invalidated and thus are excluded from the

search.

If an obstacle moves, only those cells that change their state with respect to the

previous position are checked. If a newly invalidated cell collides with a configuration

contained in a node that is present in the currently executed path, the whole path is

invalidated and the graph search restarts.

3.3.2. Graph search
After currently blocked parts of the roadmap have been invalidated and the start and

goal positions of the end effector have been connected to the roadmap, we can do

the actual search for a path. A well-known A* search algorithm [49] is used to search

the graph. It is a heuristic graph search algorithm: an A* search is “guided” by a

heuristic function. A heuristic function h(v) is the one which estimates the cost from a

non-goal state (v) in the graph to some goal state. Intuitively, A* follows paths

(through the graph) to the goal that are estimated by the heuristic function to be the

best. As heuristic function in this project the distance from the current node to the

goal end effector position was used. Thus, since all edges have the same weights, the

A* search finds the shortest path from the initial node to the goal one.

Each node considered by the search algorithm is examined to be valid and task-

consistent. It is done according to the algorithm presented in Fig. 27.

The position constraints are checked first. If the node’s position satisfies them,

taskConsistent is initialized with true value. Then the desired orientation vector D

is computed based on the task for the end effector. It is normalized so that |D|=1.

Then we define in which directions along the axes of the inertial coordinate frame this

vector mostly extends and check if the configurations corresponding to these

directions within the current node exist (i.e. a valid solution was found by the inverse

kinematics solver in the offline stage) and do not collide with the obstacles. If this is

46

true, then it is assumed that the robot can at least approximately fulfil the task

constraints when coming to this node.

Fig. 27. Algorithm to define task-consistency of a node.

For a normalized vector D the minimum possible value of the prevailing component in

the vector is found when the vector has all three components equal. Then

 . In all other cases, at least one of the components

would be more than this value. Thus, the threshold parameter t from Fig. 27 should

be no greater than this value (otherwise, some desired orientation vectors would not

be tested and a task-inconsistent node could be included in the path). In the current

project t=0.55.

To sum up, with the proposed algorithm the planner searches for a collision-free path

of the end effector in the workspace that can be followed in approximately task-

consistent manner.

bool examineNode (node n)

{

bool taskConsistent = CheckPosition(n);

If (OrientationTaskSet == true)

{

Vector3 D = CalculateDesiredOrientation(n);

if (D.x > t)

taskConsistent = taskConsistent and n.configuration(1).exist and n.configuration(1).valid;

if (D.x < -t)

taskConsistent = taskConsistent and n.configuration(2).exist and n.configuration(2).valid;

if (D.y > t)

taskConsistent = taskConsistent and n.configuration(3).exist and n.configuration(3).valid;

if (D.y < -t)

taskConsistent = taskConsistent and n.configuration(4).exist and n.configuration(4).valid;

if (D.z > t)

taskConsistent = taskConsistent and n.configuration(5).exist and n.configuration(5).valid;

if (D.z < -t)

taskConsistent = taskConsistent and n.configuration(6).exist and n.configuration(6).valid;

return taskConsistent;

}

}

47

3.3.3. Goal point updating and failure detection
After a valid, approximately task-consistent path has been found, it needs to be

followed by manipulator. It is done with a common waypoint guidance procedure.

The position of first node in the path is fed to the task-level controller (assuming, that

it already tries to fulfil orientation constraints). The robot starts moving and when the

end effector comes close to the first node, the goal position is updated and the robot

moves to the next node. The circle of acceptance is set to , where is the

grid resolution. This process is repeated until the end effector comes to the last point

in the path.

There might be situations when the task level controller fails to execute the path. In

this case failure detection mechanism, similar to one implemented in elastic

roadmaps, activates. If the system detects that no progress has been made towards

the goal, the current goal node is considered as invalid and the planner tries to find a

new path around it. This is the failure of the first type. If no new path found, it means

that the planner cannot solve prescribed task. This can refer either to framework’s

incompleteness (in this case a valid solution can be found with a different approach)

or to the fact, that the task is impossible for the robot. To increase the probability to

find a valid path again, the nodes which were invalidated in previous runs are

revalidated after several unsuccessful replanning attempts. This allows to react to

changes in the environment and to find a path that was blocked by obstacles before

and becomes free after the obstacle moves.

In elastic roadmaps failures of one more type are considered when the task

constraints are violated during path following. In the current implementation of our

framework this situation is not identified as a failure. This feature can be easily

integrated later and its necessity should be defined by system designer.

3.4. Task-level controller
Task-level controller is the key component of the framework. It is a convenient and

powerful tool for generating multi-objective behaviour for robotic systems using

nullspace projections. Instead of specifying explicit joint trajectories, task-level control

permits control of the manipulator in operational space, greatly facilitating

programming and task specification for kinematically redundant robots.

This part of the thesis and the implementation of the task-level controller are mostly

taken from the last semester project [4]. However, the set of behaviours and their

hierarchy (chapter 3.5) were changed and redesigned to satisfy the needs of the

current framework.

In this section, we, first, present principles of the task-level controller functioning and

then give algorithms to compute Jacobian and joint-space inertia matrix required for

controller operation.

48

3.4.1. Task-level controller
Dynamics of a robot in configuration space is described by the following equation:

 ,

where is a vector of joint generalized forces whose components represent torques

for revolute joints and forces for translation joints, – a vector of joint coordinates,

 – joint-space inertia matrix (analogue of mass in the 2nd Newton law), –

a vector representing Coriolis and centrifugal forces appearing due to simultaneous

movement of several joints, – gravity force vector, – a vector of external

forces including friction. For simplification it will be assumed from now on that there

are no external forces acting on the system. Therefore, if we have a vector of desired

joint accelerations , by applying a generalized force vector

we can provide dynamically-consistent control of the robot and achieve that

 . This is called feedback linearization as all the system nonlinearities

represented with the matrices and are compensated with the feedback law.

It is possible to map this control law from configuration to operational space. For this

we need to choose an operational point in operational space . It can be an end

effector of a manipulator or any point of the robot whose coordinates we want to

control. After choosing it we can derive a Jacobian of this point

.

Jacobian is a matrix representing how change of joint coordinates affects the

coordinates of the operational point in operational space. So, if the robot has a task

that is formulated in operational space with respect to an operational point, a desired

acceleration vector corresponding to this task can be derived. The desired

acceleration can be achieved if the generalized force vector is computed in

accordance with the following equations:

 ,

 ,

where is operational-space force acting at the operating point to provide ;

 and are the inertia matrix, the vector of velocity-product term and the vector

of gravitational forces respectively mapped to operational space. The mapping is

performed by the following formulae:

 ,

49

It is necessary to mention that all these parameters differ for different operational

points.

If a robot has several tasks that should be performed simultaneously, a generalized

force vector is computed for every task and these vectors must be combined

into one resulting vector. Simple summing of the vectors does not provide good

results as tasks may contradict each other and result in a faulty movement. A method

of cascading multiple tasks using nullspaces presented in [3] is used in the suggested

framework and implements the core functionality of the task-level controller. The

work in [3] extends approach from [2], where only two tasks were combined.

A nullspace of a Jacobian is the space orthogonal to the one spanned by Jacobian and

will be of rank , where is the number of degrees if freedom of

a robot. The nullspace is represented with square matrix of size

which is used to project generalized forces from tasks with lower priorities to the

nullspace of the task with highest priority. In other words, in case of two tasks (a

primary and a secondary) the generalized force vector
 will

be consistent with the primary task for any arbitrary generalized force vector from the

secondary task. Therefore, the robot would try to accomplish the secondary task

while preserving full execution of the primary task. The term
 is the

projection of secondary-task generalized force vector to the nullspace of the primary

task.

The presented technique can be expanded to cascade multiple tasks:

 .

This equation ensures that the generalized force vector from the tasks with lower

priority will be consistent with all tasks with higher priority. The index means

that the term is consistent with all tasks preceding the task . The task with highest

priority is not projected to any nullspace and is executed without any changes.

A nullspace of an individual task is calculated with the following equations:

 .

50

Here is identity matrix of the same size as is dynamically-consistent

generalized inverse of ; the current representation corresponds to the

solution that minimizes the robot’s instantaneous kinetic energy.

Projection of a generalized force vector into a nullspace not only makes the vector

task-consistent, but also scales it considerably, which can significantly impair task

performance. To avoid this the generalized force vector of a task should be defined

with the following algorithm:

The terms and are calculated with the formulas given

above substituting with .

A problem may arise while calculating

. The

nullspace matrix in many cases can be not full-rank. Therefore, the task-

consistent Jacobian can also lose rank and the matrix inversion computing

 may become impossible. This basically means that the task is not feasible

within the current architecture. However, usually the secondary tasks do not have to

be fulfilled completely as they have some supporting function, so the part of the task

that is feasible should still be used. The feasible movement can be found with

singular-value decomposition (SVD) of
 and analysis of its singular values.

With SVD the matrix can be factorized into the following form:

 ,

where is a diagonal matrix of non-zero eigenvalues, and and are

matrices corresponding to non-zero and zero eigenvectors, respectively. As some

eigenvalues are zero, it is not possible to fully control . However, by choosing the

control input

we accomplish dynamic decoupling in the controllable directions according to the

projection , where defines these directions.

51

In [3] it is also shown that a nullspace resulting from several cascaded tasks can be

calculated as follows:

Therefore, .

To summarize all these calculations, here is the overall algorithm how the tasks

should be iteratively combined one after another:

1) Initialize the task-level controller; initial nullspace

2) Choose the task;

3) Determine the task Jacobian and the desired acceleration vector ;

4) Get the nullspace resulting from all tasks with higher priority ;

5) Calculate and (should be computed using SVD-

method);

6) Calculate ;

7) Calculate the nullspace that combines the nullspace from all the higher-

priority tasks and the nullspace from the current task (

 ;

8) Repeat steps (2)-(7) for all tasks;

9) Sum up the resulting generalized force vectors

 .

3.4.2. Jacobian computation
Task-level controller uses Jacobian matrices to calculate generalized torque vectors

and nullspaces of tasks. The algorithm for Jacobian computation is presented in this

section.

Jacobian of a robot is a matrix representing interdependency between velocities in

operational and configuration spaces. Linear and angular velocities of an operational

point can be expressed through joint velocities with the following equation:

In general case

52

Thus for one operational point maximal size of is 6xn, where n is number of joints.

The top 3 rows correspond to linear velocities, the bottom 3 rows – to angular

velocities. Each column of Jacobian corresponds to one joint and shows how the

coordinates of the operational point change if this joint moves. Therefore it is

convenient to compute Jacobian column by column considering the joints separately.

Each column then can be represented as

 .

Exact formulae for computation of
 depend on type of joints. The robot at hand has

only revolute joints, and they will be discussed in details. The formulas given in the

remaining of this section and their mathematical proof is given in [50].

In Denavit-Hartenberg notation revolute joint can rotate around z-axis of

coordinate frame. In this case the orientation of the operational point is affected

directly and
 . Change of linear coordinates depends on the position of the

operational point relative to the rotation axis: the further it is from the axis, the

bigger linear velocity the operational point can reach. Thus

where and are the positions of the operational point and the origin of

coordinate frame viewed from the world coordinate frame (Fig. 28.b).

If the operational point is such, that it cannot be affected by a joint (for instance, it is

closer to the root of manipulator’s kinematic chain than the joint), the corresponding

column of Jacobian is set to zero.

53

Fig. 28. Instantaneous linear velocity of operational point caused by the change of joint coordinates for a

revolute joint (is perpendicular to the plane formed by and).

3.4.3. Joint-space inertia matrix computation
JSIM is a symmetric positive-definite matrix and it represents inertia properties of the

robot. For instance, full kinetic energy of a robot can be specified as

 .

The general formula to compute JSIM is

Here and are the mass and the inertia tensor of i-th link of the robot; and

are the submatrices of the Jacobian corresponding to linear and angular velocities of

the operational point respectively; the index i here means that the operational point

coincides with the origin of the coordinate frame connected to the i-th link of the

robot; is the transform matrix representing transformation from global coordinate

frame to the coordinate frame connected to the i-th link of the robot [50].

It is obvious that calculation of JSIM is computationally intensive as multiple Jacobians

and transform matrices need to be computed. To reduce the number of operations

required for dynamics representation of a robot special a framework using spatial

algebra notation was presented by Roy Featherstone in [51]. Part of this framework is

the Composite-Rigid-Body Algorithm for JSIM calculation which is used in the current

implementation. In this section we give a very short introduction into the spatial

algebra first and then present the algorithm itself.

Spatial algebra quantities
A body in 3D space has 6 degrees of freedom, but traditionally linear and angular

parameters are analyzed separately. Spatial algebra uses 6-dimentional vectors and

matrices to represent different properties of rigid bodies. Some of them are

summarized in Table 1.

zi-1

δqr

δx

Oi-1

A

O0

54

Symbol Definition Full representation Compact

representation

 Velocity of a rigid body

 Acceleration of a rigid

body ()

 Spatial inertia of a rigid

body around point O.

 Coordinate transform

from frame A to frame B.

Table 1. Some elements of the spatial algebra and their compact representation.

Velocity of a rigid body can be expressed as a pair of 3D vectors and which

specify the body’s angular velocity and the linear velocity of a body-fixed point

currently coinciding with point O (location of the point O is specified in the fixed

coordinate frame). These two vectors are united to form the spatial velocity vector .

Spatial acceleration is defined as the rate of change of spatial velocity. Unfortunately,

this means that spatial acceleration differs from the classical textbook definition of

rigid-body acceleration, which shall be called as classical acceleration. Essentially, the

difference can be summarized as follows:

where is the spatial acceleration, is the classical acceleration, is the derivative

of taking O to be fixed in space, and is the derivative of taking O to be fixed

in the body. Mathematically the difference is expressed with the equation

 .

The practical difference is that spatial accelerations are easier to use. For example, if

the bodies B1 and B2 have velocities of and respectively, and is the relative

velocity of B2 with respect to B1, then .The relationship between their

spatial accelerations is obtained simply by differentiating the velocity formula:

 . Thus, spatial accelerations are composed

by addition, exactly like velocities, and there are no Coriolis or centrifugal terms to

worry about.

Spatial inertia around point O is a 6x6 square matrix and is computed according Table

1. Here is the mass of the body; is a 3D vector from O to the centre of mass C;

55

 is an auxiliary vector without specific physical meaning;

 is the rotational inertia tensor of the rigid body around O; –

rotational inertia tensor of the rigid body around the centre of mass; is a skew-

symmetric matrix formed from the 3D vector according to the following equation:

 .

It can be shown that for any 3D vector the following is true: .

Coordinate transform from frame A to frame B is a 6x6 square matrix and it is

computed according to the Table 1. Here
 is 3x3 rotation matrix transforming

coordinates from frame A to frame B;
 Is a 3D vector defining location of the

origin of the frame B relative to the origin of the frame A, expressed in coordinates of

A.

Spatial algebra formulae
As can be seen from Table 1, some of spatial quantities have compact representation,

so it is not necessary to store 36 elements of 6x6 spatial matrices, but only 12 and 13

elements to represent coordinate transform and spatial inertia respectively. This also

simplifies operations with these quantities greatly. The compact representation of

spatial arithmetic formulae is given in Table 2.

Expression Meaning Compact value

 Expressing in coordinates of

another frame

 Coordinate transform inversion

 Combining two coordinate

transforms

 Summing inertias around the

same point O from several

bodies

 Expressing spatial inertia in

coordinates of another frame

Table 2. Effective representation of spatial algebra formulae.

Composite-Rigid-Body Algorithm
Composite-Rigid-Body Algorithm is used to effectively calculate JSIM. Generally

speaking it can be applied to a kinematic tree with multiple branches (for example, a

56

humanoid robot with several limbs). Fig. 29 represents pseudocode for the algorithm

when applied to a robot without kinematic branching.

The following notations are used in the algorithm:

 – number of joints;

 – spatial inertias of separate links given about the origins of coordinate

frames attached to the respective links;

 – coordinate transforms from the frame attached to the link to a

frame attached to the link preceding the link ;

 – a matrix representing unconstrained degrees of freedom of joint . For

example, for a revolute joint rotating around z-axis

 ; for a spherical joint allowing rotation around

three axes

; for a prismatic joint moving

along z-axis ; for cylindrical joint (rotation

around z-axis and movement along z-axis)

;

 – inertia of a composite rigid body formed by the rigid assembly of the

joint and all the links that are closer to the end of kinematic branch than the

joint ;

 – local variable.

So the algorithm iteratively calculates spatial inertias of composite rigid bodies

composed of several links (for instance, if the composite body consists of

the two last links of the robot and it is assumed that they do not move relative to

each other) and expresses the inertia in coordinates of corresponding frame. Then

with the help of matrices the exact terms of spatial inertia matrix corresponding to

unconstrained degrees of freedom of respective joints are chosen to be components

of JSIM.

Although this algorithm requires more design efforts (developing background for

implementation of spatial algebra), it provides better performance as all the

calculations can be performed in compact and effective form.

57

Fig. 29. Composite-Rigid-Body Algorithm for calculating JSIM of a non-branching robot.

 ;

for to do

 ;

end for;

for to do

 ;

 ;

if then

while do

 --;

 ;

 ;

end while;

end for;

58

3.5. Task hierarchy and design of individual tasks

3.5.1. Task prioritization in the task-level controller
The task-level controller in our implementation has the following task hierarchy

(notation is taken from [44]):

 .

Here the notation means that has higher priority than . is a

task that prevents reaching joint limits by the robot; it has the highest priority in all

task-level controllers and is executed under any circumstances. provides

obstacle avoidance; represents the main manipulation task; is

responsible for global robot motion towards the next end effector waypoint;

is a secondary task specifying desired configuration of the robot; is the lowest-

priority task and constrains all degrees of freedom unaffected by all other tasks.

The two tasks with the highest priority provide that the manipulator operates safely.

Prioritization of and depend on the decision of the system designer or

on the manipulation task of the robot. provides correspondence between

offline roadmap generation and online path following.

3.5.1. Some notes on the implementation of tasks
Some tasks may require that not all joints should be affected. For example,

 is not always active but only when a joint is close to its limit and only this

joint should be affected while the others may move arbitrary. In this case we may

assume that the task works in configuration space and, therefore, no for

operation point can be computed. Instead the desired acceleration is computed in

configuration space (instead of) and directly transformed to a generalized

force vector as . The task Jacobian, required for

computing the nullspace of the task, is formed from the end effector Jacobian. Only

the columns corresponding to the joints that are directly controlled by the task are

used; columns corresponding to other joints are set to zero. Based on the task

Jacobian the matrices , and the resulting nullspace are computed

in the same way as for operational-space tasks.

A manipulation task working in operation space usually specifies not all coordinates,

but only some of them. For instance, obstacle avoidance does not restrict operation

point orientation. A task Jacobian at most can have 6 rows (3 for linear and 3 for

angular coordinates). To match a task Jacobian to its task, only the rows of Jacobian

corresponding to operational coordinates that are of interest for current task should

be used in computations while others may be disregarded.

59

There can be periods of time when a task is inactive and it does not need to move its

operation point (or joints in configuration space) or produce any activity. In this case

its resulting generalized force vector is set to zero and the overall nullspace

remains unchanged (). Activation or deactivation of a task may be done

either inside or outside of the task. For example, is always turned on, but it

is active only when at least one of the robot joints is close to its limit. In this case it is

activated internally after checking current values of the joint angles. Similarly,

 needs to check if the robot collides with obstacles first and make a decision

about activating itself. On other hand, does not check anything internally and

can be activated or deactivated only from outside.

The core feature of each task is determination of or . In the current project it

is computed with simple PD-controllers according to the following equations:

Here and are actual coordinates and velocity of the operational point; , –

desired coordinates and velocity of the operational point; and – gain

coefficients. The velocity vector is in fact controlled to be pointed toward the goal

position while its magnitude is limited to . It is equivalent to building a

potential field with an attraction point at and going to it in the shortest way. For

tasks acting in configuration space is computed in a similar way substituting

operational-space coordinate vectors with joint-space ones.

3.5.2. Design of tasks
Each task has the following specific features: task’s goal; which space, operational or

configuration, it operates in; operation point; when the task is active; affected joints;

algorithm to define (or). In this subsection design decision concerning each

task individually will be presented.

The tasks and are similar to ones implemented last semester. The

tasks , , and were designed during the current project.

60

Avoiding joint limits ()
Operational or configuration space: Configuration space

Affected joints: All joints that are currently close to their limits

Activated: When a joint is within certain range from its maximal or minimal limit.

Working algorithm:

 if

 if

inac ve for the joint else

where is a range where a joint is considered to be close to its maximal or minimal

limit, is the number of a joint. Value of is defined based on maximum velocity and

acceleration of joint’s actuator, so that a joint is able to stop before it reaches its

physical limit. Such realisation of decreases the admissible range of angle

values but allows preventing mechanical damage of robot links and actuators.

Obstacle avoidance ()
Operational or configuration space: Operational space

Operation point: End points of manipulator segments

Affected joints: All joints preceding the operation point

Activated: When robot is within certain distance from an obstacle.

Working algorithm:

In the current project for collision avoidance the robot is divided in four segments:

segment 0 – links 1 and 2, segment 1 – links 3 and 4, segment 2 – links 5 and 6,

segment 3 – link 7 (Fig. 30). The segment 0 is stationary and no collision avoidance

measures can be taken. The overall obstacle avoidance task in fact can be divided in

several subtasks each responsible for its segment, i.e. each subtask tries to move the

corresponding segment away from obstacles. The subtasks are prioritized as

 , so that segment 1 has the highest priority. At

first it may seem strange to have different priorities for different parts of the robot.

This does not mean, however, that certain parts are more likely to collide. This is

because higher-priority subtasks affect only part of robot joints, meaning that the

nullspace for lower-priority subtasks will remain unaffected for all other joints. For

instance, if both segments 1 and 3 are close to obstacles, will define

movement of joints 1 and 2, while may use all other degrees of freedom

61

(and joints 1 and 2 if they move in the appropriate direction) to prevent a collision of

segment 3.

It is very costly to analyze precisely collisions of rigid bodies online. An appropriate

approximation of robot’s links is needed. In the current framework each segment is

represented as a set of spheres located on the main axes of the links of the robot (Fig.

30). An obstacle object within the framework stores the cells that it occupies. Thus, to

provide obstacle avoidance we need to ensure that centres of the spheres are far

away enough from the cells occupied by obstacles. It is done with the algorithm in Fig.

31.

Fig. 30. Approximation of the robot’s links with spheres for obstacle avoidance. Left – robot model, right –
spheres used in online collision avoidance (grey – segment 1, yellow – segment 2, blue – segment 3).

Fig. 31. Algorithm for online collision avoidance

for each obstacle

for each cell

if (CheckCellClose ())

for each sphere

if Distance (Center () - Center ()) < AllowedRange

 CalculateForce (,)

end

end

end

for each segment

for each sphere

end

end

CalculateReferenceAcceleration ()

62

Some comments on the algorithm:

 The operating point for the segment 1 is the origin of joint 4, for the segment

2 – the origin of joint 6, for the segment 3 – the end effector (points ,

and in Fig. 25).

 Function CheckCellClose ()) returns true if the cell is within 0,3 m from

operating points of the 1st and the 2nd segments or within 0,2 m from

operating point of the 3rd segment. This quick check allows to filter out not

obstacle-free cells that currently far from the robot and cannot obstruct

robot’s movement.

 The variable AllowedRange should consider the size of cells and the safety

distance defined by the designer.

 The function CalculateForce(,) defines a virtual force that drives the

sphere from the cell . The force is always directed from the center of

to the center of and its absolute value is calculated as

 ,

where is the distance between the centres of and , is the desired

safety distance, size – constant considering size of the

cells. The graphical representation of is depicted in Fig. 32.

 When summing up the forces from spheres within one segment we do not

consider the location of spheres within the segment. Thus, we constrain only

position of the operating point and not the orientation of the link it is

attached to. Such solution allows to avoid imposing too many constraints on

the operating point and to leave more freedom for lower-priority tasks.

 The resulting force actually represents where the operating point should

move to get away from obstacles. Thus, we may say, that

 where is some scaling coefficient. If we define

 , the corresponding desired acceleration ,

torque vector and resulting nullspace may be computed with the

procedure described in section 3.5.1.

63

Fig. 32. Dependence of the absolute value of force repulsing a sphere from a cell on the distance

between them (C=size).

End effector task ()
Operational or configuration space: Configuration space

Affected joints: Joints 5 and 6

Activated: When a task for the end effector is specified.

Working algorithm:

In this task we consider only orientation of the end effector. Positional constraints for

the end effector are fulfilled during graph search stage. Two manipulation tasks

involving orientation task constraints are modelled in the current project: preserving

constant orientation of the end effector (e.g. while carrying a glass of water) and

aiming with the end effector at the same point in the space throughout movement.

Although the tasks are specified in the operational space, it was easier to implement

the end effector task in the configuration space. We assume that orientation

constraints may be satisfied only by the movement of the joints close to the end

effector. Thus, we find the desired angle values for joints 5 and 6 with the same

algorithm as implemented in inverse kinematics solver:

 ,

where
 is the vector of desired orientation of the end effector

observed from the coordinate frame . If the task is to aim at a point we

need first to calculate as

64

Where point O is the centre of the inertial frame, is the current position of the end

effector.

End effector movement ()

Operational or configuration space: Operational space

Operation point: End effector

Affected joints: All

Activated: When a goal point is updated by the planner.

Working algorithm:

This task moves the end effector towards the point specified by planner. If we assume

that the goal point is given by , then the algorithm from subsection 3.5.1 can be

used directly:

 .

Secondary configuration task ()

Operational or configuration space: Configuration space

Affected joints: Joints 3 and 4

Activated: Always.

Working algorithm:

This task tries to ensure that the current configuration is subject to the same

constraints, as configurations found in preprocessing stage during inverse kinematics

solving (see subsection 3.2.2). More specifically, it tries to keep the angle value of the

joint 3 at zero and prevents assignment of negative angle values to the joint 4.

Therefore we impose a soft constraint on the robot’s configuration during movement

to provide correspondence between offline preprocessing and online movement.

65

Mathematically the algorithm can be written as follows:

 if

inac ve for the joint if

Vector of desired acceleration is then found with a standard procedure.

Task constraining all available degrees of freedom ()

Operational or configuration space: Configuration space

Affected joints: All

Activated: Always.

Working algorithm:

This is the lowest-priority task and it affects all joints all the time so the robot never

has unconstrained degrees of freedom (the nullspace of the current task is zero). To

achieve this tries to stop all joints that move freely in the nullspace of all higher-

priority tasks. Thus, the vector of desired joint velocities , and ,

where is the vector of actual joint velocities.

3.5.3. Summary of tasks
The tasks described previously are summarized in the Table 3.

66

Notation Goal Type Activation condition Operational point Affected joints Desired position

 Avoid joint limits C When a joint is within

certain range from its

maximal or minimal

limit.

– Only those joints

that are close to

their respective joint

limits

 if
 ;

 if
 .

 Avoid obstacles O When robot is within

certain distance from an

obstacle.

End of the segment

that is close to an

obstacle

All joints preceding

the operational

point.

Determined by the direction of

the repulsive force.

 End effector

orientation task.

Currently 2 options

are available:

 Keeping

constant

orientation

 Aiming at a

certain point of

the workspace

C Activated when a task is

specified.

– Joints 5 and 6

 ,

 Moving the end

effector to the

desired goal point.

O Activated by the path

planner

End effector All Specified by the planner

 Posture specification C Always active – Joints 3 and 4

 if

inac ve for the joint if

 Constraining all free

degrees of freedom.

C Always active – All (then

Table 3. Individual characteristics of different tasks. In Type column C corresponds to tasks working in configuration space, O – in operational space. The tasks
are listed according to their priorities (higher priority first).

67

3.6. Robot simulation model
As already explained in chapter 3.4.1, a dynamic model of a robot is represented with

the following equation:

The term can relate, for example, to the friction in the actuators and gear units.

The generalized force vector is generated by the task-level controller and now the

task is to compute how the robot configuration changes when is applied to the

robot’s actuators. This task is known as forward dynamics calculation.

From the last equation we can derive that . The joint-

space inertia matrix is always invertible. At the current stage of the project the

terms and are not considered yet and their calculation should be

implemented in future work. Therefore the only term left is

 .

The state of a robot is described with a pair of vectors of space variables ,

where corresponds to the configuration variables and corresponds to their

velocities . Thus, system description in state-space is

 .

Considering the previous equations we obtain that

This state-space model represents continuous-time system. However, computer

simulation can be performed only in discrete time. To define new state of the system

after a time step the Newton integration method is used:

Another aspect of robot simulation is physical limitations: the values of torques,

accelerations and velocities provided by the actuators cannot exceed some certain

values. Therefore, and get bounded after their values are computed in our

simulation model.

68

4. Implementation
This chapter reveals some implementation details of the current project. It describes

the structure of the proposed framework and the tools used during implementation.

4.1. Class diagram
The framework is implemented in C++. Fig. 33 and Fig. 34 show simplified class

diagram of the offline and online parts of the framework. Functionality of most of the

classes is clear from their names and is presented in details in the Design chapter

(Chapter 3). For other classes the necessary comments are presented further.

Fig. 33. Simplified class diagram of the offline part of the framework. Black-headed arrows represent
“contain” relationship, white-headed arrows represent “derived from” relationship. The blue-coloured

classes run as separate threads.

main()

formRoadmap ();

IKSolver

SolveIKTask();

(1)

TransformHandler (abstract)

updateConfiguration();

getOrigins()

getTransforms

ConfToCellsMapper

mapConfigurationToCells ();

mapNodeToCells ();

(1)

(1)

SchunkTransformHandler

TransformHandler (abstract)

updateConfiguration();

getOrigins()

getTransforms

SchunkTransformHandler (1)

69

Fig. 34. Simplified class diagram of the online part of the framework. Black-headed arrows represent
“contain” relationship, white-headed arrows represent “derived from” relationship. The blue-coloured

classes run as separate threads. Behaviours represent the tasks for the task-level controller.

Planner

run()

setGoal ();

findPath();

ObstacleHandler

AddObstacle();

MoveObstacle();

DeleteObstacle();

(n) Obstacle

RobotController

run()

updateConfiguration();

(1)

RobotVisualPublisher

PublishJointState();

(1)

TransformHandler (abstract)

updateConfiguration();

getOrigins()

getTransforms

TaskLevelController

getTorque ();

convertGammaToConfiguration ();

(1)

(1)

SchunkTransformHandler

Behavior (abstract)

getTorque();

(k)

AvoidanceBehavior

EndEffectorBehavior

GlobalBehavior

RedundancyResolutionBehavior

KinematicBehavior

(1)

70

4.2. Representation of robot model
The model of the robot is stored in the TransformHandler class. Basically, it is a set of

coordinate transforms that represent positions of the robot joints. The coordinate

transforms for this and all other classes are implemented with the help of Bullet

Physics Engine [52]. All other classes refer to TransformHandler when they need some

data about the current state of the robot, e.g. position of origins of joint coordinate

frames, orientation of joint axes or coordinate transforms from inertial frame to one

of joint’s frames.

The TransformHandler class is abstract and the exact coordinate transforms for a

specific robot are performed in the derived classes, such as SchunkTransformHandler.

This is done to provide a general interface to robot’s model that can be used when

applying the framework to another model of the robot. SchunkTransformHandler

class additionally stores such data as joint limits and mass parameters of the links.

4.3. Roadmap representation, graph search and data storing
 For effective handling of graphs the Boost Graph Library (BGL) [53] was used. BGL

includes a set of template classes that allow fast creation and maintenance of graphs

of various types as well as templates for graph-exploring algorithms, such as sorting of

nodes, path search etc.

The roadmap created in the current project is an instance of bidirectional

adjacency_list class, where each vertex contains a list of outgoing edges (Fig. 35).

Fig. 35. Adjacency list representation of an undirected graph. [53]

The A* graph search algorithm is also implemented with BGL. To customize it for the

specific needs a concept of visitor functions is used in BGL. Visitors are called

whenever a certain point in the algorithm is reached. Out of eight visitors accessible

for A* search the following ones were used in this project:

 examine_vertex – called when a new vertex is reached for the first time

during the search. At this moment the vertex is tested for task consistency.

71

 examine_edge – called for all edges outgoing from the node checked in

examine_vertex function. In this function if the node was task-

inconsistent the weights of the edges are raised to some big value (the

value is more than the number of nodes in the graph), so that they become

an undesirable choice for being included in the path.

 finish_vertex – called when the goal vertex has been reached. At this

point an exception is thrown to identify the end of search. When the

exception is caught, we check the path cost that is the sum of edge weights

when going from start vertex to the goal one. If the path cost is higher than

 , it means that one of task-inconsistent nodes was included in the path

or, in other words, that no task-consistent path has been found. Thus in this

case the graph search is considered as unsuccessful. Otherwise, the path

found is stored by the planner. After each graph search the edge weights

changed in examine_edge function need to be restored to their initial

values, so that they do not affect next search attempts.

One more important issue is how to store and load the created roadmap and its

mapping to workspace cells. This is done using the Boost Serialization library [54]. This

library provides methods to serialize a linked data structure and to store it into a file,

from where it can later be loaded and deserialized. The Boost Serialization library

serializes an object by serializing all its fields, recursively following pointers to other

objects. It detects an object that has already been serialized and, thus, can handle

circular pointer structures like our roadmap.

The size of the file containing roadmap (grid resolution 5 cm) is 5 MB. The size of the

file containing mapping of configurations to the work cells (workspace grid resolution

3 cm) is 270 MB.

4.4. RobotController class
The RobotController class is just a container that stores the task-level controller and

the model of the robot and provides communication between them and the planner.

It runs in a separate thread and its main goal is just asking for new torque vector from

the task-level controller and updating the model according to it (Fig. 36). It also

updates the visual model as described in section 4.5.

72

Fig. 36. Simplified main loop of the RobotController class.

4.5. Implementation of task-level controller
All the robot’s tasks (or behaviours) have a lot of common functionality, therefore it is

reasonable to have a general Behaviour class implementing it and derive individual

behaviours from this class. The general class is abstract and it has the structure given

in Fig. 37.

Fig. 37. The most important members of the abstract Behaviour class.

Beside constructor and destructor, the main externally accessible function of the class

is getTorque(), which returns generated by the task. This process is divided

into three subfunctions:

 calculateReferenceAcceleration calculates . This function is purely virtual
as each behaviour has its own rules how to do it. This function also computes
the task Jacobian. The exact functionality of this function for different tasks
corresponds to section 3.5.2.

class Behaviour

{

 public:

 Behaviour();

 ~Behaviour();

 virtual const forceVector& getTorque()

 {

 calculateReferenceAcceleration();

 calculateNextTaskNullspace();

 TransformRefAccelerationToTorques();

return myTorques;

 }

 protected:

 virtual void calculateReferenceAcceleration() = 0;

 Eigen::MatrixXd calculateOperationPointJacobian(uint OPIndex);

 void calculateNextTaskNullspace();

 void TransformRefAccelerationToTorques();

 forceVector myTorques;

};

while(true)

{

 newGamma = myTLC->getTorque();

 newConfiguration = myTLC->

convertGammaToConfiguration(newGamma);

 myTransformhandler->setConfiguration(newConfiguration);

 rvizPublisher->PublishJointState(newConfiguration);

 loop_rate.sleep();

}

73

 calculateNextTaskNullspace takes the nullspace resulting from the higher-
priority tasks, calculates and the resulting nullspace.

 TransformRefAccelerationToTorques computes from and

 and transforms it into .

The tasks acting in configuration space compute instead of and thus do not

require the last step. Therefore, getTorque() function is also virtual and if required, it

can be reduced only to calculateReferenceAcceleration and

calculateNextTaskNullspace functions. Transformation of into can be

done after the calculation of reference acceleration in the first of the two functions.

The Behaviour class also has calculateOperationPointJacobian function. It has one

argument that is the number of the coordinate frame whose origin is an operation

point for the task. The function uses coordinates of this origin and calculates its full

Jacobian according to algorithm from section 3.4.2. The resulting matrix is used to

define the task Jacobian of behaviour.

All matrix calculation including inversion and SVD factorization are implemented with

the help of Eigen C++ libraries – a comprehensive set of tools for linear algebra

calculations [55].

With architecture of behaviours described above the class implementing the task-

level controller has a simple structure (see Fig. 38).

Fig. 38. The most important members of TaskLevelController class.

The dynamic list myBehaviours stores all behaviours the task-level controller has to

maintain. The order of the behaviours in the list corresponds to their priorities: the

closer it is to the beginning of the list, the higher priority it has. Which behaviours are

included is defined in the owning RobotController class.

class TaskLevelController

{

 public:

 TaskLevelController();

 ~TaskLevelController();

 forceVector getTorque();

 Configuration convertGammaToConfiguration(forceVector

gamma);

 protected:

 void computeInertiaMatrices();

 std::list<Behaviour*> myBehaviours;

 Eigen::MatrixXd H;

 Eigen::MatrixXd H_inverse;

 Eigen::MatrixXd N;

};

74

The getTorque function incorporates the main functionality of the class. It iterates

through all the behaviours and sums up the generalized force vectors

consistent with task hierarchy. The resulting generalized force vector is returned to

the caller, which is usually an instance of the RobotController class. Throughout

interaction with the behaviours the matrix N stores intermediate value of the

behaviours’ nullspace.

The function convertGammaToConfiguration implements the robot simulation model

described in chapter 3.6. It is called for simulating robot movement in accordance

with some torque vector calculated before. It also updates joint velocities vector,

which is later used in computation of torques of behaviours.

The function computeInertiaMatrices computes joint-space inertia matrix and its

inverse according to Composite-Rigid-Body algorithm (see chapter 3.4.3). It exploits

three classes representing spatial 6D vector, spatial inertia and spatial coordinate

transform to implement the spatial algebra operations. All computations with the

spatial entities are, of course, performed in compact form.

4.6. Visualization of the model
For visualisation of the robot we use rviz module of the Robot Operating System (ROS)

[56]. To explain the visualization process some introduction into ROS messaging

mechanism needs to be presented.

4.6.1. ROS messaging mechanism
ROS is an open-source, meta-operating system for robots. It provides services one

would expect from an operating system, including hardware abstraction, low-level

device control, implementation of commonly-used functionality, message-passing

between processes and package management. It also provides tools and libraries for

obtaining, building, writing, and running code, also across multiple computers. ROS

works on top of UNIX-based operating systems and is partially compatible with

Windows. Full support of C++ and Python is provided.

One of the most powerful and easy-to-use services of ROS is communication between

processes. More specifically, communication is performed between ROS nodes –

some executables running as separate processes on one or several computers. Two

mechanism of message passing are used: request/response and publish/subscribe.

The latter mechanism is used in this project and, therefore, is presented in details.

When a ROS node starts, it registers its name at the Master node, which is the core of

ROS. Then a node announces that it is going to publish (or subscribe) to a specific

topic with a predefined name. If another node announces subscription (or publishing)

to the same topic, the Master node informs each node about another and the nodes

may start communication. The message passing goes not through the Master node,

75

but through peer-to-peer connection between nodes; the Master node just helps

publishers and subscribers to find each other.

Each topic has a predefined format of permissible messages and the format must be

preserved by the publishers. The communication process is completely asynchronous.

What is more, a topic may have several publishers and/or subscribers (Fig. 39). In this

case whichever publisher posts a message, all subscribers receive it and they cannot

distinguish who they receive it from.

Fig. 39. Schematic representation of publish/subscribe communication.

4.6.2. Communication with rviz module
As previously mentioned rviz is a module of ROS. It is used to visualize robots and

their environments. It updates picture in accordance with messages published on

some predefined topics. The planner itself works as a ROS node which updates

configuration of visualization robot model and publishes some markers (objects for

simple geometrical shapes) to represent obstacles and some additional objects. Rviz

also contains convenient tools to adjust the visualized scene, such as moving and

rotating the viewpoint, turning on and off visualization of some objects etc.

As ROS is specifically design to handle robotic systems, the visualization model can be

easily constructed with a special version of XML language - Unified Robot Description

Format (URDF). The model consists of a set of bodies representing robot links and a

set of coordinate transforms for robot’s joints. The model used in the current project

was designed by SINTEF for their internal projects.

The visualization robot model defined in an .urdf file is first loaded to ROS Parameter

server. When rviz starts, it loads the model and then it requires only joint angles

published by the planner to update the image.

Publisher

Master

Publisher

Subscriber

Subscriber

/topic

76

5. Simulation and results
To verify the functionality of the proposed framework it was tested under various

conditions. Each test scenarios (experiments) were carried out by simulating

behaviour of the 7-DOF Schunk manipulator (Fig. 1) controlled by the designed

framework. The simulation model or the robot is presented in the Chapter 3.6.

For each experiment a global task (i.e. moving the end effector from one point to

another) and end effector orientation task can be specified. Moreover, it is possible to

add obstacles to each of the test scenarios. At the current stage of the project, an

obstacle can be represented as a rectangular or spherical object. Obstacle movement

is modelled by discrete changing of its position (no real notion of velocity is used).

With the simulations we want to demonstrate the capabilities of the planner (graph

search, replanning, failure detection) and the task-level controller (how separate

behaviours perform and how the prioritization mechanism works). For this goal a set

of various tasks has been designed for experiments 1 to 8. The complexity of tasks

gradually increases starting from a simple point-to-point task and finishing with point-

to-point movement under orientation constraints in the presence of obstacles. The

experiments 9 and 10 reveal the limitations imposed on the framework’s functionality

by simplifications and decisions made during design process.

It is necessary to say, that in all experiments the structure of the framework remains

the same, e.g. the task-level controller has the same setup as described in Chapter 0,

all behaviours are always on etc. Only the tasks and/or obstacles change from one

experiment to another.

5.1. Timing characteristics
The simulation was performed on computer with Intel Core i5 (2,26 GHz) processor

with 4 GB of RAM.

The times required to perform some of the main processes of the proposed

framework are summarized in Table 4.

77

Process Average time,

seconds

Calculations during one control cycle (including

computation of the torque vector by the task-

level controller and movement simulation)

0,003-0,006

Path search (successful) 0,014-0,027

Path search (unsuccessful) 0,047

Obstacle movement (the big spherical obstacle

from the Experiment 5)

0,025-0,027

Table 4. Time required to perform the main processes of the proposed framework.

5.2. Experiment 1. Simple point-to-point task
Goal of the experiment: To demonstrate basic functionality of the planner and the

task-level controller

Scenario: The robot is set to move its end effector from one point to another. No task

constraints are specified. The environment is obstacle-free.

Results: The course of the scenario execution is shown in Fig. 40. The graphs

demonstrating the change of the position of the end effector is shown in Fig. 41.

The framework easily deals with this simple task.

When no task constraints are specified, any node that contains at least one obstacle-

free configuration can be included into the path. The graph search algorithm finds the

shortest path leading to the desired position of the end effector and the task-level

controller is able to guide the robot from one node to another. The graphs on Fig. 41

show that the end effector moves towards the goal position located at the point

A(0.2;0.4;0.2) without big deviations or oscillations.

78

Fig. 40. The course of the experiment 1. The red point is the goal, the green points mark the path found
by planner.

79

Fig. 41. The change of x, y and z coordinates of the end effector in time during the experiment 1. The
graphs were obtained with rosbag tool – one of multiple ROS utilities.

5.3. Experiment 2. More complex point-to-point task
Goal of the experiment: Demonstration of failure detection and joint limit avoidance.

Scenario: The robot is set to move its end effector from one point to another. The

starting point is located in front of the robot while the goal point is located behind it.

No task constraints are specified. The environment is obstacle-free.

Results: The course of scenario execution is shown in Fig. 42. A video recording of the

experiment can be found in the digital attachments and on

http://youtu.be/w4Als_PjKsY.

During execution of this scenario several replanning attempts were needed (pay

attention to different paths in Fig. 42 b-d, f). Replanning occurs when the planner

detects that no progress towards the goal waypoint has been made during a certain

amount of time. In Fig. 42 b this situation is caused by reaching the joint limits by the

robot. The task-level controller cannot find a solution to this situation and an external

assistance (i.e. replanning) is needed. At first, the planner suggests a similar path that

goes a bit lower than the original one, but it led to one more joint-limit issue (Fig. 42

c). The problem was finally solved when the planner suggested the path that goes to

the side from the initial one (Fig. 42 d). The task-level controller then is able to find a

solution and follow it avoiding collision with the base of the robot.

http://youtu.be/w4Als_PjKsY

80

a) b)

c) d)

e) f)

g)

Fig. 42. The course of the experiment 2. The red point is the goal, the green points mark the path found
by planner.

Although no task constraints are explicitly included in this experiment, the simulation

demonstrates how positional task constraints can be integrated into the framework.

As can be seen in Fig. 42 b-e, the path found during the graph search goes around the

81

base of the manipulator. The reason for this is that the nodes in this region (though

they exist in the roadmap and store some configurations computed during

preplanning) are considered as task-inconsistent for any task and thus the planner

avoids including them into the path.

5.4. Experiment 3. A point-to-point task with feasible task
constraints

Goal of the experiment: Demonstration of path following with preserving orientation

task constraints (aiming with the end effector at a fixed point in space).

Scenario: The robot needs to move its end effector from one point to another and to

try to keep such orientation of the end effector, that it is aimed towards a point fixed

in 3D space throughout the movement. The environment is obstacle-free.

Results: The course of scenario execution is shown in Fig. 43. A video recording of the

experiment can be found in the digital attachments and on

http://youtu.be/raPfsC3mu1I.

From the figures it is clearly seen that all tasks are successfully completed. The

scenario execution goes in two phases. The initial configuration of the robot (Fig. 43

a) is task-inconsistent and in the first phase the manipulator comes to a task-

consistent configuration. During this time it already starts moving towards the goal

point (Fig. 43 b). After the end effector reached its desired orientation, the rest of the

path is followed in task-consistent manner (Fig. 43 c-f).

http://youtu.be/raPfsC3mu1I

82

a) b)

c) d)

e) f)

Fig. 43. The course of the experiment 3. The red point is the goal, the green points mark the path found
by planner, the yellow sphere (radius 2,5 cm) marks the point which the end effector should aim at. The

coordinate frame attached to the end effector is shown so the following the task constraints is clearly seen
(X-axis is red, Y-axis is green, Z-axis is blue). It may seem that the path waypoints go in pairs in the

figures. This is just a visual effect; the path goes directly to the goal point and no mirroring or doubling of
the waypoints occurs.

83

5.5. Experiment 4. A point-to-point task with unfeasible task
constraints

Goal of the experiment: Testing detection of unfeasible task constraints.

Scenario: The robot has to repeat point-to-point motion as in the previous

experiment but with different task-constraints. It should keep the end effector

oriented in the positive direction of the Z-axis (upright orientation) during the task

execution. The environment is obstacle-free.

Results: The setup of the experiment is shown in Fig. 44.

Fig. 44. The setup of the experiment 4. The red point is the goal for the end effector.

Scenario execution again goes in two steps: finding an initial task-consistent

configuration and the following the path in task-consistent manner. However, neither

of the steps is successful and the planner cannot find a feasible path.

The failure of the first step is caused by the structure of the end-effector behaviour

() of the task-level controller. It affects only the joints 5 and 6, but the latter one

reaches its limit in the configuration shown in Fig. 44. The other joints are not

affected by the behaviour and a task-consistent configuration cannot be reached.

In the current project task-inconsistency of the initial configuration is not considered

as a failure and the planner still tries to find a feasible task-consistent path to the

goal. However, as the initial position of the end effector cannot be mapped to any

task-consistent node, no feasible path can be found. In this case we can say that it is

impossible to preserve the orientation constraints along the path with the limitations

imposed on possible configurations in the Chapter 3.2.2 (i.e.). The

framework cannot solve this task and this meets its expected behaviour.

84

5.6. Experiment 5. Obstacle avoidance
Goal of the experiment: Demonstration of online reactive obstacle avoidance.

Scenario: The robot has neither point-to-point task, nor orientation constraints. A

spherical-shaped obstacle moves in such way that it may collide with the robot.

Results: The course of scenario execution is shown in Fig. 45. A video recording of the

experiment can be found in the digital attachments and on

http://youtu.be/sfBvIBbMWKg.

As no task is specified for the robot, the planner is inactive and obstacle avoidance is

performed only by the means of task-level controller, namely by the collision-avoiding

behaviour . The safety distance where activates is 3 cm.

The obstacle movement is modelled by changing its position by 5 cm every half a

second. Thus we can say that it moves with the speed of 0,1 m/s. However, as the

movement is discrete, it may come too close to the robot at some points of time (as

in Fig. 45 b).

The figures above clearly demonstrate that the obstacle avoidance task may

effectively prevent collisions with obstacles moving in the robot’s workspace.

http://youtu.be/sfBvIBbMWKg

85

a) b)

c) d)

e)

Fig. 45. The course of the experiment 5.

86

5.7. Experiment 6. A point-to-point task with task
constraints in presence of obstacles

Goal of the experiment: This experiment demonstrates the main functionality of the

proposed framework and tests task-consistent movement of the robot in presence of

obstacles.

Scenario: The same, as in experiment 4, but in presence of a static obstacle

obstructing the straight path.

Results: The course of scenario execution is shown in Fig. 46. A video recording of the

experiment can be found in the digital attachments and on http://youtu.be/UYl4MN-

SeN8.

Fig. 46 demonstrates that the test scenario is successfully completed. Compared to

the path used in Experiment 4, the robot made a big detour around the obstacle. At

some point (Fig. 46 d) the orientation task constraints were violated during the path

execution. However, this happened not because of inappropriate planning. The real

cause for it is that the behaviour controlling end effector’s orientation was too slow to

react to the change of end effector’s position due to other behaviours. In the current

implementation task violation is not considered as a failure and the scenario

execution continued. The correct orientation was reached again soon (Fig. 46 e) and

the rest of the path was executed in task-consistent manner.

For crucial tasks violation of task constraints may be considered as a failure. In this

case the framework should stop following the path, wait until the task constraints are

satisfied and continue after that. The way how the framework treats violation of task

constraints depends only on designer’s decision.

Note also, that all degrees of freedom (including the joint 2 (yellow link in the figures))

are used and the soft constraint imposed by low-priority task is violated at

some part of the path. However it is satisfied wherever it is possible.

http://youtu.be/UYl4MN-SeN8
http://youtu.be/UYl4MN-SeN8

87

a) b)

c) d)

e) f)

Fig. 46. The course of the experiment 6. The red point is the goal, the green points mark the path found
by planner, the yellow sphere (radius 2,5 cm) marks the point which the end effector should aim at. The

coordinate frame attached to the end effector is shown so the following the task constraints is clearly seen
(X-axis is red, Y-axis is green, Z-axis is blue).

88

5.8. Experiment 7. A point-to-point movement with fixed
orientation in presence of obstacles

Goal of the experiment: This experiment demonstrates how the framework copes

with the second type of task constraints, when the end effector should preserve fixed

orientation.

Scenario: The robot needs to move its end effector from one point to another while

keeping the end effector oriented in the negative direction of the Z-axis (downright

orientation) along the way. A static spherical obstacle obstructs the direct path.

Results: The course of scenario execution is shown in Fig. 47. A video recording of the

experiment can be found in the digital attachments and on

http://youtu.be/aN2MGxaN0YA.

The framework was capable to ensure successful execution of the test scenario. At

first, a task-consistent initial configuration was found, and the rest of the path was

followed in task-consistent manner. A replanning event was needed in the middle of

the path (Fig. 47 d) as obstacle avoidance behaviour contradicted the task following

the path. As has higher priority, no progress towards the waypoint was

made during some time, which triggered a replanning attempt.

This experiment also demonstrates that representation of obstacles as a set of

occupied workspace cells is more effective than approximating them with a bounding

box (as it is done in elastic roadmap framework). In the current setup, the robot

moves diagonally in the last part of the path which would be impossible if the sphere

was approximated with one big cube.

http://youtu.be/aN2MGxaN0YA

89

a) b)

c) d)

e) f)

Fig. 47. The course of the experiment 7. The red point is the goal, the green points mark the path found
by planner (in figures (d), (e) and (f) the real path is the one, going above; the lower one is shown due to

an error in visualization).

90

5.9. Experiment 8. A point-to-point task in presence of
moving obstacles

Goal of the experiment: To demonstrate replanning capabilities in presence of

moving obstacles.

Scenario: The robot needs to move its end effector from one point to another. A

spherical obstacle moves in such way that it obstructs the direct path that was

unobstructed at the beginning. No orientation task constraints are specified.

Results: The course of scenario execution is shown in Fig. 48. A video recording of the

experiment can be found in the digital attachments and on

http://youtu.be/Jj_2VnOCWcA.

The spherical obstacle continuously obstructs the paths found by the planner (Fig. 48

a-d). The framework quickly responses to the changes in the environment and

suggests new paths. During this period a few replanning events needed due to

reaching the joint limits (same as in Experiment 2). After the obstacle finally stops

(Fig. 48 e), the robot continues execution of the last found path. Several replanning

attempts needed to finish the path and avoid collision with the obstacle (Fig. 48 f,g).

This experiment shows interaction between the planner and the task-level controller.

When the controller gets stuck due to reaching joint limits or trying to go around an

obstacle, the planner finds an alternative path that possibly can guide the task-level

controller out of the inappropriate state.

http://youtu.be/Jj_2VnOCWcA

91

a) b)

c) d)

e) f)

g)

Fig. 48. The course of the experiment 8. The red point is the goal, the green points mark the path found
by planner.

92

5.10. Experiment 9. Framework limitations
Goal of the experiment: To demonstrate limitations imposed by the structure of the

suggested framework.

Scenario: The robot needs to move its end effector from one point to another. The

goal point is located close to the bottom side of an obstacle. The orientation task is to

point in the positive direction of X-axis.

Results: The setup of the experiment is shown in Fig. 49.

Fig. 49. The setup of the experiment 9. The red point is the goal for the end effector.

The framework cannot find a solution in the presented scenario although it is obvious

that a feasible solution exist if the 4-th joint is assigned a negative value and the goal

point can be reached “from the bottom”). The false negative occurs due to

assumptions made during preprocessing stage (i.e. constraints on the joints 3 and 4).

This problem will be discussed in more details in the next chapter.

5.11. Experiment 10. Graph search limitations
Goal of the experiment: To demonstrate limitations imposed by the structure of the

suggested framework.

Scenario: The robot needs to move its end effector from one point to another and try

to keep such orientation of the end effector that it points at the same point in 3D

space throughout movement. The starting configuration is different from the one

used in most of previous experiments. The environment is obstacle-free.

Results: The setup of the experiment is shown in Fig. 50.

93

Fig. 50. The setup of the experiment 10. The red point is the goal for the end effector. The yellow sphere
(radius 2,5 cm) marks the point which the end effector should aim at. The coordinate frame attached to
the end effector is shown so the following the task constraints is clearly seen (X-axis is red, Y-axis is

green, Z-axis is blue).

The initial configuration satisfies task constraints and from the previous experiment

we can suppose, that a task-consistent path exists. However, the framework cannot

find it. The reason for this is that the initial position of the end effector is considered

as task-inconsistent by the planner. In the current setup, to be task-consistent the

node corresponding to the initial configuration should contain at least two

configurations: one corresponding to end effector oriented in the direction of X-axis

(red line at the robot’s base) and one corresponding to end effector oriented in the

direction of Y-axis (green line at the robot’s base). This comes from the algorithm

which is used for task-consistency check of nodes (see chapter 3.3.2). However, due

to the assumptions made for the offline-stage inverse kinematics solver (chapter

3.2.2), no configuration corresponding to the Y-axis has been found. Therefore, the

initial configuration cannot be mapped to a task-consistent node and the framework

fails to find an appropriate solution.

94

6. Discussion
The goal of this project was development of a framework that could provide task-

consistent movement of a manipulator in unstructured dynamic environment. In this

chapter we will discuss how designed system corresponds to this goal and identify the

main shortcomings of the proposed solution.

As it was demonstrated with simulations in the previous chapter, the overall

performance of the proposed framework meets the requirements set at the

beginning of the project. To be more specific, the system possesses the following

features:

 It can handle both positional and orientation task constraints and considers

them during path planning as well as while executing the path.

 Combination of a planner, based on Dynamic roadmaps (DRM), and reactive

obstacle avoidance () provide broad capabilities to prevent collisions

with arbitrary moving obstacles of complex shape.

 The path planner is able to identify collision-free paths of the end effector

that can be at least approximately followed in task-consistent manner.

 The task-level controller itself may solve simple local tasks.

 The guidance of the task-level controller by the path planner, that has a global

overview of the workspace, allows solving of complex tasks and finding

alternative solutions when the task-level controller gets stuck and cannot

move towards next waypoint because of obstacles or joint limits.

 The behaviour provides coherence between online and offline

stages.

 Fulfilment of real-time constraints imposed by dynamic environments is

ensured by the fact that search space is bounded. Because of that the path

search does not exceed some finite time. This time depends on size of the

roadmap which is reduced significantly by storing six configurations in one

node of the roadmap as this minimizes number of states within search space

compared to classical DRM. The time needed for replanning determines

system capabilities in the context of fast moving obstacles.

 From the implementation point of view the framework is reasonably

structured and can be integrated into a more complex system with the help of

ROS tools.

The proposed framework is based on DRM and Elastic roadmaps and, therefore, it

inherits some features of both. A short comparison of the three frameworks is

summarized in Table 5. The initial motivation for this project was to compensate the

drawbacks of Elastic roadmaps by introducing offline stage. Namely, we wanted to

95

improve obstacle representation and to reduce framework incompleteness. The first

task is completed successfully whereas the latter issue requires more discussion.

Criterion Suggested

framework

DRM Elastic

roadmaps

Handling dynamic

environments

Yes Yes Yes

Task are specified in

operational space

Yes No Yes

Handling task-

constraints

Yes No Yes

Preprocessing stage Yes Yes No

Obstacle

representation

As a set of

workspace cells

As a set of

workspace cells

As bounding

box

Method

completeness

Incomplete Probabilistically

complete

Incomplete

Workspace size Limited

workspace

Limited

workspace

Unlimited

workspace

Table 5. Comparison of the suggested solution with DRM and Elastic roadmaps frameworks.

6.1. Framework completeness
The main factor limiting the system’s performance is its incompleteness. It can be

divided in two parts. The first one is inherited from the Elastic roadmaps; the second

part is a distinctive feature of the suggested design.

The authors of Elastic roadmaps discuss the incompleteness of their approach as

follows: “... The elastic roadmap framework is inherently incomplete and may fail even

when a valid path exists... It does not possess any of the completeness properties of

sampling-based planners. ... The elastic roadmap framework explicitly addresses task

constraints and feedback requirements of a specific application and permits the

execution of motion in dynamic environments under these constraints. It is able to do

so precisely because it sacrifices completeness.” [44] The inherited incompleteness

may reveal itself in situations when the task-level controller cannot move towards

next waypoint (or milestone as denoted in Elastic roadmaps) and the guiding planner

cannot find an alternative solution. Although such cases are not absolutely impossible

in the proposed framework, they are more rare, than in Elastic roadmap. The reason

for this is the thorough workspace exploration during the preprocessing stage

employed by the framework presented in this report. Using this information during

planning and trying to keep configurations close to the ones used in offline

computations we increase the completeness of our method compared to Elastic

roadmaps, where only a few samples of the workspace (obstacle-related milestones)

are used for planning.

96

A possible improvement that would help to avoid situations that are hard to solve for

the task-level controller is to include data about manipulability into the roadmap. For

instance, each node would have a manipulability index that is calculated based on the

number of configurations stored by in the node and manipulability indices of each

one of them. The manipulability index of a configuration can be expressed as a

distance measure of the configuration from the singular ones and it is usually

computed from the eigenvalues of the manipulator’s Jacobian matrix [57]. Using this

data, the planner would include the nodes with high manipulability index into the

path and the task-level controller would have more options to follow it locally while

satisfying all constraints. For example, in the experiment 2 it would mean that the

path would avoid nodes, where the manipulator is close to its joint limits, and would

prefer the path where the end effector sweeps an arc from the initial to the goal

point.

However, how the experiments 9 and 10 demonstrated, another source of

incompleteness was introduced during the design of the suggested framework. It is

the constraints used for inverse kinematics solving in the offline stage. In the current

implementation we assumed that the angle of the 3rd joint is kept at zero and that the

4th joint may be assigned only positive values. These constraints bound the explored

part of the 7D configuration space to one half of 6D plane, which of course reduces

performance during path planning as many feasible task-consistent configurations are

taken out of consideration.

One approach that could improve this situation is to create a second set of nodes that

would correspond to configurations subjected to different constraints. For example,

we could create a grid where the inverse kinematics would be solved with the same

constraint for the 3rd joint, while the 4th joint would be assigned only negative values.

This grid would correspond to all configurations approaching the goal point “from

below” (e.g. to solve the task in experiment 9). Thus we would have two independent

grids that need to be connected. Two nodes belonging to different grids and

corresponding to the same position would contain similar configurations when the

angle of the 4th joint is close to zero. Thus we can insert edges between such nodes

and, therefore, connect the two grids and extend the part of configuration space

explored in the offline stage. In this case we will have 4D roadmap: three dimensions

refer to spatial location of the robot’s end effector while the fourth dimension

corresponds to the configuration type. Such roadmap would also require some

changes in planner and the task-level controller. For the planner this would mean that

the goal point can be mapped to two nodes. Thus the planner would have to find a

path to each of them and then to choose the shorter one. For the task-level controller

the main changes will be done inside . It would have to change its objective

depending on configuration type of the next node in the path. It could be also useful

97

to disable during transition between grids, so has more freedom to

change the configuration.

In a similar way more grids can be built, for example for constraints like

 and . However, this would lead to some negative

consequences. Consider grids referring to different configuration types are used for

roadmap construction. Then, the planning time would increase as the search space

increases by times and several paths should be estimated. Additionally the file that

stores roadmap mapping to workspace cells would increase by times. Even for one

grid it has size of hundreds of megabytes (270 MB for the roadmap grid resolution of

5 cm and workspace cell size of 3 cm for the current manipulator) and it takes about

30 seconds to load it at the start of the framework. This would considerably increase

the amount of time needed for obstacle handling affecting frequency characteristics

of the system. This trade-off between framework completeness and timing

parameters should be considered by system designers based on the requirements and

types of possible tasks.

One more approach that would help solving the task in the experiment 10 is to store

more samples of possible orientations of the end effector within one node. This

would increase the probability that if the planner finds a path, it would be possible to

maintain task constraints along it. The cost of this improvement is the increased

amount of time needed for obstacle handling.

6.2. Other factors limiting performance of the framework
Apart from framework incompleteness, the following factors may limit its application

in real life:

 Each behaviour within the task-level controller basically forms a potential

field in operational or configuration space and the controller combines them

according to their priorities. Thus, the task-level controller faces all problems

inherent to general potential-field methods (see Section 2.3). Among them

are the local minima problem (when the controller gets stuck at some point)

and oscillations at the border where certain behaviour activates. For example,

if drives the robot towards an obstacle, would counteract

this movement. But as soon as the robot is far enough from the obstacle,

 becomes inactive and pulls the manipulator into the danger

zone again. A similar situation occurs with behaviour avoiding joint limits

(). The guidance from the planner helps to resolve the situation,

but the oscillations cannot be fully compensated.

 As no explicit trajectory is specified in the configuration space, the planner

has no notion of time. Thus it is hard to include time-varying task constraints

into the framework. For instance, if the task is to follow a moving object with

98

a videocamera, replanning is needed every time the object moves as its

movement cannot be considered during the graph search.

 It is quite hard to map the suggested framework to robots with even bigger

redundancy degree, than the manipulator considered in this project. In this

case too many assumptions need to be done during the preprocessing stage

and system incompleteness would increase greatly (although, the task-level

controller would still provide at least partial functionality). On other hand, the

method becomes almost exact when applied to non-redundant robots.

 The suggested framework does not consider velocities of obstacles, only their

locations. Thus, to avoid fast moving obstacles the safety distance set for

 should be increased. Another way to handle such obstacles is to

model them differently. For instance, a certain zone, whose size depend on

the velocity of the obstacle, located in the direction of its movement should

be also considered as occupied by this obstacle. In this case the robot would

have more time and space to go from the obstacle’s path and thus to avoid

the collision.

99

7. Future work
Beside the major improvements described in section 6.1 (storing manipulability data

within nodes, augmenting roadmap with more nodes and storing more configurations

within one node) the following directions can be considered for future work:

 Modification of , so that it works not in configuration, but in operational

space;

 Computation of Coriolis and gravity terms for the robot’s dynamics model;

 Friction modelling and compensation;

 Design of interfaces to robot sensors (for instance, a laser range scanner or

videocameras to detect obstacles) using ROS communication tools;

 Design of a GUI for specification of manipulation tasks;

 Application of the framework to mobile manipulation with special

consideration of interaction with the mobile platform.

100

8. Conclusion
The current project was devoted to design of a framework that could provide task-

consistent movement of a 7-degree-of-freedom manipulator in unstructured dynamic

environments. An extensive literature survey of motion planning techniques with a

focus on sample-based and feedback planning, as well as planning in dynamic

environments has been conducted. A solution based on two state-of-art approaches,

namely dynamic roadmaps and elastic roadmaps, was proposed and implemented.

The suggested framework uses information acquired during offline preprocessing

stage to handle dynamic obstacles effectively and to guide task-consistent motion of

the robot controlled by a task-level controller. During the project the offline

preprocessor and online planner were designed from a scratch. General architecture

and two of the behaviours of the task-level controller were adopted from a project

conveyed last semester whereas the remaining behaviours and their prioritization

scheme were designed during the current project. The framework was implemented

in C++ and simulated with a model of a 7-DOF manipulator. The results of simulation

demonstrated that the framework is capable to solve complex manipulation tasks in

dynamic environments. The suggested framework is incomplete by design and several

methods that could compensate for this drawback were proposed.

101

9. References
[1] D. Katz, J. Kenney and O. Brock, How Can Robots Succeed in Unstructured

Environments?, Workshop on Robot Manipulation: Intelligence in Human
Environments at Robotics: Science and Systems, Zurich, Switzerland, June 2008.

[2] O. Khatib, A unified approach for motion and force control of robot
manipulators: The operational space formulation, IEEE journal of robotics and
automation, vol. RA-3, no. 1, pp. 43-53, February 1987.

[3] L. Sentis and O. Khatib, Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives, International journal of humanoid robotics, vol.
2, no. 4, pp. 505-518, 2005.

[4] S. Pluzhnikov, Motion planning and control of nonholonomic mobile robot
manipulators, Specialization project report, NTNU, Department of Engineering
Cybernetics, 2011.

[5] Schunk GmbH. [Online]. http://www.schunk-modular-robotics.com

[6] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin: Springer,
2008.

[7] S. LaValle, Motion Planning , IEEE Robotics & Automation Magazine, vol. 18, no.
1, pp. 79 - 89, March 2011.

[8] L. Kavraki, P. Svestka, J. Latombe and M. Overmars, Probabilistic roadmaps for
path planning in high-dimentional configuration spaces, IEEE transactions on
robotics and automatisation, vol. 12, no. 4, pp. 566-580, August 1996.

[9] N. Amato., O. Bayazit, L. Dale, C. Jones and D. Vallejo, OBPRM: an obstacle-based
PRM for 3D workspaces, Proceedings of the third workshop on the algorithmic
foundations of robotics on Robotics: the algorithmic perspective, pp. 155-168,
1998.

[10] C. Holleman and L. Kavraki, A framework for using the workspace medial axis in
PRM planners, IEEE Int. Conf. Robot. Autom., pp. 1018-1023, 1999.

[11] S. LaValle, M. Branicky and S. Lindermann, On the relationship between classical
grid search and probabilistic roadmaps, Proceedings of I. J. Robotic Res., pp. 673-
692, 2004.

[12] R. Geraerts and M. Overmars, A Comparative Study of Probabilistic Roadmap
Planners, Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR'02),
pp. 43-57, 2002.

[13] Y. Yang and O. Brock, Efficient motion planning based on disassembly,
Proceedings of Robotics: Science and systems, 2005.

http://www.schunk-modular-robotics.com/

102

[14] S. LaValle and J. Kuffner, "Rapidly-exploring random trees: progress and
prospects", in Algorithmic and Computational Robotics: New Direction., 2001, pp.
293–308.

[15] K. Bekris, B.Y. Chen, A. Ladd, E. Plaku and L. Kavraki, Multiple query probabilistic
roadmap planning using single query primitives, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 656 - 661, 2003.

[16] S. Karaman and E. Frazzoli, Incremental Sampling-based Algorithms for Optimal
Motion Planning, Robotics: Science and Systems (RSS), June 2010.

[17] S. LaValle. The RRT Page. [Online]. http://msl.cs.uiuc.edu/rrt/index.html

[18] B. Cohen, G. Subramania, S. Chitta and M. Likhachev, Planning for Manipulation
with Adaptive Motion Primitives, Proceedings of IEEE International Conference on
Robotics and Automation ICRA '11. , pp. 5478-5485, 2011.

[19] I. Sucan and L. Kavraki, Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration, Algorithmic Foundation of Robotics VIII (Proceedings of Workshop on
the Algorithmic Foundations of Robotics), vol. 57, pp. 449-464, 2009.

[20] E. Plaku and G. Hager, Sampling-based Motion and Symbolic Action Planning with
Geometric and Differential Constraints, IEEE International Conference on Robotics
and Automation, pp. 5002-5008, 2010.

[21] R. Rusu, I.A. Sucan, B. Gerkey, S. Chitta, M. Beetz and L. Kavraki, Real-time
perception-guided motion planning for a personal robot, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4245 - 4252, 2009.

[22] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,
IEEE International Conference on Robotics and Automation, pp. 500-505, 1985.

[23] Y. Koren and J. Borenstein, Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation, Proceedings of the IEEE Conference on
Robotics and Automation, pp. 1398-1404, April 1991.

[24] J. Borenstein and Y. Koren, Real-time Obstacle Avoidance for Fast Mobile Robots
in Cluttered Environments, IEEE International Conference on Robotics and
Automation, pp. 572-577, May 1990.

[25] S. LaValle, Planning Algorithms. Cambridge: Cambridge University Press, 2006.

[26] G. Fainekosa, A. Girard, H. Kress-Gazit and G. Pappas, Temporal logic motion
planning for dynamic robots, Automatica, vol. 45, no. 2, pp. 343–352, February
2009.

[27] J. van der Berg and M. Overmars, Roadmap-Based Motion Planning in Dynamic
Environments, IEEE Transactions on Robotics, vol. 21, no. 5, pp. 885-897, 2005.

http://msl.cs.uiuc.edu/rrt/index.html

103

[28] S. Karaman, M.R. Walter, A. Perez, E. Frazzoli and S. Teller, Anytime Motion
Planning using the RRT*, IEEE International Conference on Robotics and
Automation, pp. 1478 - 1483 , 2011.

[29] L. Jaillet and T. Siméon, A PRM-based Motion Planner for Dynamically Changing
Environments, International Conference on Intelligent Robots and Systems, pp.
1606-1611, 2004.

[30] R. Gayle, K.R. Klingler and P.G. Xavier, Lazy Reconfiguration Forest (LRF) - An
Approach for Motion Planning with Multiple Tasks in Dynamic Environments,
2007 IEEE International Conference on Robotics and Automation, pp. 1316 - 1323,
2007.

[31] J. van den Berg, D. Ferguson and J. Kuffner, Anytime Path Planning and
Replanning in Dynamic Environments, Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, pp. 2366-2371, May 2006.

[32] D. Vasquez, F. Large, T. Fraichard, C Laugier and I. Rhone-Alpes, High-speed
Autonomous Navigation with Motion Prediction for Unknown Moving Obstacles,
IEEE/RSJ international Conference on Intelligent Robots and Systems, pp. 82-87,
2004.

[33] E. Owen and L. Montano, Motion planning in dynamic environments using the
velocity space, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2833 - 2838 , 2005.

[34] Z. Shiller, F. Large, S. Sekhavat and C. Laugier, "Motion Planning in Dynamic
Environments", in Autonomous Navigation in Dynamic Environments., 2007, pp.
107-119.

[35] N. Ratliff, M. Zucker, A. Bagnell and S. Srinivasa, CHOMP: Gradient optimization
techniques for efficient motion planning, Proceedings of IEEE International
Conference on Robotics and Automation ICRA'09, pp. 489 - 494, May 2009.

[36] C. Park, J. Pan and D. Manocha, ITOMP: Incremental Trajectory Optimization for
Real-time Replanning in Dynamic Environments, International Conference on
Automated Planning and Scheduling (ICAPS), 2012.

[37] S. Quinlan and O. Khatib, Elastic bands: connecting path planning and control,
Proceedings to IEEE Int. Conf.Robot. Autom. (ICRA), vol. 2, pp. 802-807, 1993.

[38] N. Y. Ko, R. Simmons and D.J. Seo, Trajectory modification using elastic force for
collision avoidance of a mobile manipulator, Proceedings of the 9th Pacific Rim
international conference on Artificial intelligence, pp. 190-199, 2006.

[39] V. Delsart and T. Fraichard, Navigating Dynamic Environments Using Trajectory
Deformation, IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 226-233, 2008.

104

[40] R. Gayle, A. Sud, M.C. Lin and D. Manocha, Reactive Deformation Roadmaps:
Motion Planning of Multiple Robots in Dynamic Environments, IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3778-3783, 2007.

[41] O. Brock and O. Khatib, Elastic strips: a framework for motion generation in
human environments, International Journal of Robotics Research, vol. 21, no. 12,
pp. 1031-1052, December 2002.

[42] S. Petti and T. Fraichard, Safe Motion Planning in Dynamic Environments,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
2210 - 2215 , 2005.

[43] J. Vannoy and J. Xiao, Real-Time Adaptive Motion Planning (RAMP) of Mobile
Manipulators in Dynamic Environments With Unforeseen Changes, IEEE
Transactions on Robotics, vol. 24, no. 5, pp. 1199-1212, October 2008.

[44] Y. Yang and O. Brock, Elastic roadmap – motion generation for autonomous
mobile manipulation, Autonomous Robots, vol. 28, no. 1, pp. 113-130, January
2010.

[45] P. Leven and S. Hutchinson, A Framework for Real-time Path Planning in
Changing Environments, The International Journal of Robotics Research, vol. 21,
no. 12, pp. 999-1030, December 2002.

[46] T. Kunz, U. Reiser, M. Stilman and A. Verl, Real-Time Path Planning for a Robot
Arm in Changing Environments, IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, Taipei, Taiwan, 2010.

[47] M. Kallmann and M. Mataric, Motion Planning Using Dynamic Roadmaps,
International Conference on Robotics & Automation, pp. 4399-4404, April 2004.

[48] H. Liu, W. Wan and H. Zha, A Dynamic Subgoal Path Planner for Unpredictable
Environments, IEEE International Conference on Robotics and Automation, pp.
994-1001, May 2010.

[49] K. Beevers and J. Peng, A* graph search within the BGL framework, Boost Graph
Library 1.33.0, October 2003.

[50] M. Spong, S. Hutchinson and M. Vidyasagar, Robot Dynamics and Control, 2nd
ed. New York: John Wiley and Sons, 2006.

[51] R. Featherstone, Rigid Body Dynamics Algorithms. New York: Springer, 2008.

[52] Bullet Dynamics Engine. [Online]. http://bulletphysics.com/

[53] Boost Graph Library (BGL). [Online].
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html

[54] Boost Serialization Library. [Online].
http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html

http://bulletphysics.com/
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_49_0/libs/serialization/doc/index.html

105

[55] Eigen Libraries. [Online]. http://eigen.tuxfamily.org/

[56] Robot Operating System (ROS). [Online]. www.ros.org

[57] B. Bayle, J.-Y. Fourquet and M. Renaud, Manipulability of wheeled mobile
manipulators: Application to motion generation, International journal of robotics
research, vol. 22, no. 7-8, pp. 565-581, 2003.

http://eigen.tuxfamily.org/
www.ros.org

106

Appendix A. Contents of the digital attachment
The digital attachments enclosed contain the following materials:

 Sources/ – the source files of the framework (C++)

 Videos/ – video recordings of the experiments described in Chapter 5 (they

are also available on YouTube)

 Thesis.pdf – a pdf-version of the current report.

	Title Page
	masteroppgave.pdf

