
L1 Adaptive Control of the Inner Control 
Loops of an F-16 Aircraft

Øystein Hov Holhjem

Master of Science in Engineering Cybernetics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology





“There is an art, it says, or rather, a knack to flying. The knack
lies in learning how to throw yourself at the ground and miss.
(...) Clearly, it is this second part, the missing, which presents
the difficulties.”

From “Life, the Universe and Everything”
Douglas Adams, Pan Books, 1982
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Problem description

Candidate: Øystein Hov Holhjem

Title: L1 Adaptive Control of the Inner Control Loops of an F-16 Aircraft.

Problem formulation: L1 adaptive control is a new and promising field of study. This mas-
ter’s thesis aims at getting a good understanding of of the theory of L1 adaptive control, and
document this. The goal of the master’s thesis is a simulator based testing of the L1 adaptive
control strategy on aircraft with strong nonlinearities.

The task consists of the following subtasks:

• Develop a linear mathematical model for the longitudinal and the lateral modes of a
suitable aircraft as a basis for the control design.

• Choose a control architecture and a problem formulation for the adaptive control.
Evaluate which architectures of L1 adaptive control are suitable for control of the inner
loops of an autopilot with regards to uncertainties and modelling errors (parametric,
unmatched, actuator dynamics, etc.).

• Test controllers for longitudinal and lateral inner loop with simulations with realistic
unmatched modelling errors, actuator dynamics and disturbances etc. Emphasis on
simulations where the controller is implemented in discreet time with realistic values
for the sampling frequencies.

• Compare the results of the L1 adaptive controller with results from MRAC and PID for
chosen scenarios.

Supervisor: Tor Arne Johansen, NTNU

Co-advisor: Åge Skullestad, KDS
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Abstract

This report is written as a master’s thesis given at NTNU, and in collaboration with Kongs-
berg Defence System. This text investigates the use of L1 adaptive control for multi-variable
systems with unknown nonlinear unmatched uncertainties and unmodeled actuator dy-
namics, particularly for the inner longitudinal and lateral loops of a nonlinear F-16 aircraft
model.

Chapter 1 gives an introduction to the report by introducing the basic principles of aircraft
control and specifying the goals of the text. Chapter 2 introduces the theory of linear aircraft
modelling, which specifies the starting point for the L1 adaptive control design. Chapter
3 presents the L1 adaptive control theory considered in this text, together with the main
theoretical results. Chapter 4 presents the simulations results and the discussion, together
with the specific L1 adaptive control design used in the simulations. Chapter 5 concludes
this report and points toward possible future work.

The L1 adaptive control theory has proven to give good results. This was also found in this
report. The controller handles unmatched nonlinearities and disturbances very well and
manages to track the reference signal. For the longitudinal controller, this has also been
shown through simulations on a realistic nonlinear F-16 model. Compared to the MRAC-
formulation we see that the introduction of the filter in the L1 adaptive control formulation
gives great improvements with regards to performance. The results of this text shows how
the L1 adaptive controller manages to separate adaptation from control and thus be able
to introduce fast adaptation without introducing high gain feedback. This text also dis-
cusses how implementation issues like limited sampling rate affects the performance of the
L1 adaptive controller, and shows how this can be handled by a proper redesign of the ar-
chitecture.

The results of the L1 adaptive controller for the longitudinal mode are compared to a simple
PID-controller. We actually see that the PID-controller performs almost as good as the L1
adaptive controller for the simple longitudinal system.
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Sammendrag

Denne rapporten er skrevet som en masteroppgave gitt ved NTNU og i samarbeid med
Kongsberg Defence System. Denne teksten undersøker bruken av L1 adaptiv regulering for
multivariable systemer med ukjente ulineære umatchede usikkerheter, og umodellert aktu-
atordynamikk. Dette er spesefikt undersøkt med tanke på bruk for de indre langsgående og
laterale sløyfene av en ulineær F-16 flymodell.

Kapittel 1 gir en introduksjon til rapporten ved å forklare de grunnleggende prinsippene
for flykontroll og ved å spesifisere målene med teksten. Kapittel 2 introduserer teorien om
lineær flymodellering, som angir utgangspunktet for designet av en L1 adaptiv regulator.
Kapittel 3 presenterer teorien bakL1 adaptiv regulering som behandles i denne teksten, sam-
men med de viktigste teoretiske resultatene. Kapittel 4 presenterer simulerings resultatene
og diskusjonen, sammen med det konkrete L1 adaptiv reguleringsdesignet som benyttes i
simuleringene. Kapittel 5 konkluderer denne rapporten og peker mot mulig fremtidig ar-
beid.

L1 adaptiv reguleringsteorien har vist seg å gi gode resultater. Dette ble også funnet i denne
rapporten. Regulatoren håndterer umatchede ulineariteter og forstyrrelser meget godt og
klarer å følge referansesignalet. For den langsgående kontrolleren har dette også blitt vist
gjennom simuleringer på en realistisk ulineær F-16 modell. Sammenlignet med MRAC-
formuleringen ser vi at innføringen av filteret i L1 adaptiv reguleringsformuleringen gir
store forbedringer med hensyn til ytelse. Resultatene av denne teksten viser hvordan L1
adaptiv regulatoren klarer å skille adapsjonen fra reguleringen og dermed kan introdusere
rask adapsjon uten å resultere i tilbakekobling med stor forsterkning (high gain feedback).
Denne teksten drøfter også hvordan implementasjonsvansker som begrenset samplings-
frekvens påvirker ytelsen til L1 adaptiv regulatoren, og viser hvordan dette kan håndteres
av et redesign av arkitekturen.

Resultatene av L1 adaptive regulering for langsgående sløyfen er sammenlignet med en
enkel PID-regulator. Vi ser faktisk at PID-regulatoren resulterer i nesten like god regulering
som L1 adaptiv regulatoren for det enkle langsgående systemet.
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Chapter 1
Introduction

1.1 Background

This master’s thesis is written in collaboration with Kongsberg Defence System (KDS). The
work done in this text is a continuation of the work done in my project report [1]. The project
report concerned modelling of an RC-plane and developing an L1 adaptive controller for the
pitch of this aircraft. The system considered included constant matched parameter uncer-
tainty, and the control goal was to design an L1 adaptive controller who compensated for the
modelling error and produced a desired response. This master thesis takes the principles of
L1 adaptive control further to include unmatched uncertainties for multi-variable nonlinear
systems, and unmodeled actuator dynamics. The models considered in this master thesis is
obtained from a nonlinear F-16 model implemented in Simulink and Matlab. This model is
developed at the University of Minnesota and introduced in section 2.5.

1.2 Historical perspective

Ever since man invented the float regulator to keep track of time in the antiquity, automatic
control systems have been used to make life easier. Together with the industrial revolution
around 1750, new self-driven machines was invented, and the need for automatic control
of for instance temperature, pressure and liquid level was introduced. Now, we use auto-
matic controllers in our everyday life without even thinking about it. Examples of this are
the thermostat of our coffee machine, the ABS-brakes in our car or the water system in our
WC. The developments within control theory have made us able to achieve things not be-
fore possible, and made lot of processes more cost efficient.

In aviation, automatic control also plays an important role. Ever since the Wright broth-
ers had the world’s first controlled, powered flight in December 1903, the goals for flying
faster, higher, longer, and making more and more challenging manoeuvres has demanded
new and better control systems. In addition, safety plays an important role, which demands
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robust and polite control systems. In 1912 the Sperry Gyroscope Company developed the
first aircraft autopilot, and by 1914 the "Sperry Aeroplane Stabilizer" was so good that a pub-
lic flying demonstration was given where the mechanic was walking along the wing while
the pilot raised his hands from the controls [2]. The principles of these first autopilots where
simple. A gyroscope was used as the reference for the plane‘s orientation, and any offset
detected from the desired heading was fed back to the control surfaces to counter the error.
More on the principles of gyroscopes in section 1.3.1. World War I (1914-1918) led to great
improvements in aircraft design. The planes designed at this time however, was designed
so that the pilots was capable of controlling the planes without the help of automatic control
systems. Thus, the developments within automatic control at this time was not that great.

In the 1930s, automatic control was mostly practically-oriented without many theoretical
tools, and the design methods consisted mostly of "trial and error" [3]. Further, the devel-
opments within automatic control was divided between different disciplines that had little
or no communication between them. This prevented a unified theoretical foundation for
automatic control. Similar to World War I, World War II also led to developments within
automatic control and aviation. For instance, the developments within servomechanisms
for positioning of canons was adapted to control the control surfaces of the aircraft. The war
also helped the different disciplines within automatic control meet and create a universal
vocabulary and a unified fundamental theory. One slowly moved away from the "trial and
error" methods, and towards theoretical research based on mathematics. The developments
of computers made it possible to make calculations much faster than before, and made the
theoretical analysis easier. In October 1947, the American rocket-powered X-1 became the
first manned aircraft to brake the sound barrier. At this time automatic control was well
established as a discipline, while interest in adaptive control grew significantly in the mid-
1950s [4].

The design of autopilots for high-performance aircraft was one of the primary motivations
for active research on adaptive control in the early 1950s [5]. However, a crash of the X-15 test
vehicle on November 15, 1967 [6], which was partially because of the adaptive system, gave
adaptive flight control a bad reputation [7]. The work on adaptive control continued mostly
in other disciplines and it would take about two decades before problems associated with
adaptive control were reasonably well understood and adaptive techniques were finding use
in industry [4]. The interest for adaptive flight control reappeared in the new century. The
first result on L1 adaptive control, which is inspired by flight control, was presented in [8] in
2006. Since then, a large number of flight tests have been performed, showing great promise
for the L1 adaptive control theory [7]. However, since the 1960s, lot of research has been
performed on other areas of automatic control, and led to the flight control systems most
commonly used today. Only time will tell if L1 adaptive control becomes an alternative to
the current state of the art.
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1.3 Principles of aircraft control

As a background to the theory presented in this text, this section presents the basic principles
of aircraft control.

1.3.1 Sensors

To be able to control anything, we need information about the state of the controlled object.
This is in itself a separate field of study and is not a focus of this master thesis. In this master
thesis, it is assumed that more or less correct measurements of the states is provided, but
how this is achieved is ignored. However, to give an understanding of how these measure-
ments can be achieved, a short general introduction to the different sensors is given in this
section.

The choices of sensors depend highly on the considered system, and which states we need
information about. In aircraft control, common states we need information about are the
attitude, rate of rotation, velocity and position. Common sensors used on aircraft are ac-
celerometers and gyroscopes. An accelerometer is a sensor which senses proper accelera-
tion. These measurements are fed to a computer which based on the previous known speed,
can calculate the new speed. This principle is called dead reckoning. This can again be used
to calculate position and orientation. The gyroscope measures the orientation. It consists
of a fast spinning rotor, which due to the principles of angular momentum wants to keep
its initial attitude. Thus, as this rotor continues to spin in its initial plane, we can measure
the orientation of the aircraft relative to this. These measurements are combined with the
measurements from the accelerometers to calculate the orientation and rotation rates. The
combination of the accelerometers, the gyroscopes, and the computer calculating the desired
states are called an inertial measurement unit, or IMU.

To get the position of the aircraft, it is also common to use a GPS. This gives the absolute
position of the aircraft based on measuring the distance to 3 or more satellites. To find the
altitude of aircraft it is common to use measurements of the air pressure. The lower the air
pressure, the higher the altitude.

1.3.2 Actuators

To be able to control the orientation of the aircraft, one need actuators or control surfaces to
apply the desired forces on the aircraft. This section gives a short introduction to the control
surfaces used on the aircraft considered in the text, and an intuitive explanation on how they
affect the aircraft.

Figure 1.1 shows an aircraft with its main control surfaces. These are the ailerons, which
are mainly used to get a roll motion, the elevator which are mainly used to get a pitching
motion, and the rudder, which are mainly used to get a yaw motion.
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Figure 1.1: Aircraft with control surfaces, from [9].

The right and left aileron moves in opposite directions to create a rolling motion. If for
instance the left aileron moves up and the right moves down (see the upper left picture in
figure 1.2), the left wing get less lift while the right wing gets more lift. Thus, a moment is
induced, forcing the aircraft to roll to the left.

Figure 1.2: Aircraft response to control surfaces, from [9].

The elevator is mainly used to create a pitching motion. If the elevator is moved upwards,
a down force is created, and equivalently if the elevator is moved downwards, a force is
created upwards (see the bottom left picture in figure 1.2). Since the elevator is located
behind the center of gravity, we have a moment arm, and a pitching motion is induced.
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The rudder is mainly used to create a yaw motion. Just like the elevator, the force created by
the deflection in the rudder together with the moment arm creates a moment which makes
the aircraft turn in a yawing motion (see the picture to the right in figure 1.2).

1.3.3 Automatic control

As mentioned, this text concerns the newly developed L1 adaptive control of aircraft. To
understand this control strategy, it is important to have a good understanding of automatic
feedback control in general, and the principles of adaptive control. This section thus intro-
duces the basic principles of automatic feedback control and adaptive control.

Principles of feedback control

Figure 1.3 shows the principal components of a feedback control system. In all control sys-
tems, we have a controller. This is typically implemented in a computer. This controller
gives an output to the actuators which affects the system in the desired way. On an aircraft,
these actuators are typically the control surfaces described in section 1.3.2. The controller
also needs to know something about the state of the system. Typical states of an aircraft in-
cludes velocity, attitude and position. Without this, it would be very difficult to know what
the right control would be. This information is given by the measurement sensors available.
On an aircraft, these are typically the ones described in section 1.3.1. These measurements
are feed back to the controller through the feedback connection. The controller also takes
a reference as an input which includes information about the desired output of the system.
The reference is compared to the measurements and based on the error between reference
and measurements, new actions from the controller are produced.

Figure 1.3: Feedback control system.

To be able to get the best possible control result, good information about the system response
is important. That is, the response of the states, to the output from the controller. This can
be expressed mathematically by a differential equation. Let x be the states of the system, u
be the controller output and t be the time. Then the relationship between the states and the
input can be expressed as

ẋ = f(x,u, t), (1.1)

where f( · ) is an arbitrary function mapping x, u and t to ẋ. The difficulty lies in identifying
the function f( · ). Chapter 2 concerns the modelling of aircraft. When a good model is
obtained, this can be used to simulate the feedback control system on a computer. Thus,
we are able to test the controller without the need to implement it on the real system. If
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the model is a good approximation of the real system, one would expect to get a similar
responce on the real system as in the simulation. The mathematical model can also be used
directly in the design of the controller to give the desired response.

Principles of adaptive control

As described, an important part of the control design is to identify the controlled system.
However, it is impossible to develop models who incorporate all the dynamics of the real
system. Systems may also include highly nonlinear dynamics. This may imply that a math-
ematical model describes the system well for some combination of states, while it gives a
completely wrong dynamic response in a different combination of states. This effect is true
for aircraft. As described, the way we control an aircraft is by moving the control surfaces.
The desired forces is obtained by changing the flow of the air around the aircraft. Thus, it
is easy to understand that the forces acting on the aircraft is highly dependent on the speed
relative to the air. The difficulty appear since this dependency in nonlinear. Thus, one single
controller based on linear theory, soon to be introduced, can not be used for the entire flight
envelope. The flight also experience nonlinear dependencies to air pressure and different
flight conditions. This is where the adaptive controller has its strengths. The controller can
be designed for a single flight condition, and adapt to the changes in the system on-line.

Figure 1.4 shows the basic components of an adaptive control system. It uses the control sig-
nal together with the system output to change the control-parameters based on an adaptive
law. Thus, as the system dynamics change, the controller adapt to this change, to give the
best possible control.

Figure 1.4: Adaptive control system.

1.3.4 Autopilots

Figure 1.3 shows a general feedback control loop. When considering aircraft control, it is
common to separate the controller in an inner and an outer control loop. The inner control
loop typically controls the actuators to achieve a given attitude reference, while the outer
control loop specifies the desired attitude references based on desired waypoints or desired
manoeuvres. A simple example of an outer loop controller is an altitude controller. If the
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measured altitude is lower than the desired altitude, the outer reference controller would de-
mand a larger pitch angle from the inner loop controller, and visa versa. The outer loop can
also be replaced by the pilot who directly through the steering, demands a given response
of the aircraft.

The principles of this separation in shown in figure 1.5. Further it is common to decouple
the control of the inner loop between the so called longitudinal and lateral modes. This
decoupling is explained in more detail in chapter 2, but in simple words we design one
controller to control the pitch angle, the longitudinal controller, and one controller to control
the roll and yaw angles, the lateral controller. This is also shown in figure 1.5. It is in these
inner loops we experience the nonlinear aerodynamic effects, and thus it is here it is relevant
to implement the L1 adaptive control law. Therefore, these inner loop controllers are the
focus of this text. In this text we will test how well the inner loops react to given references,
but the logic behind these reference signals is not a concern in this text.

Figure 1.5: Aircraft control system.

1.3.5 Current state of the art in aircraft control

As discussed, we know that since the dynamics of the aircraft is changing nonlinearly de-
pendent of the altitude speed and flight condition, it is advantageous with a controller that
can adapt to this changes. However, as mentioned in section 1.2 research on automatic flight
control since the crash of X-15 has mostly been on other areas than adaptive control. And
apparently, as we can see, these control systems seem to work pretty well. This section in-
troduces the concepts of the current state of the art within aircraft control, and discusses the
pros and cons of these techniques.

Linear design with gain scheduling

The state of the art within aircraft control can mostly be divided between two main cate-
gories: linear control design with gain scheduling [10], and nonlinear control design. Most
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aircraft control systems used today are based on linear system design in combination with
gain scheduling [2]. With this strategy, the aircraft dynamics are linearised at given op-
erating points and flight conditions, that is, different combination of states and manoeu-
vres. Then, different linear controllers are designed for each of these modes. A gain sched-
uler changes between the different controllers based on auxiliary measurements. Figure 1.6
shows the structure of a gain scheduled controller.

Figure 1.6: Controller with gain scheduling.

The advantage to gain scheduling is that one can use linear control theory for nonlinear
systems. Linear control are a well established field and consists a lot of design techniques
including PID-control [11], pole-placement [12] and LQG/LQR [2] [13] [14]. Further, the
stability analysis is easily performed for linear systems. A different advantage is that sched-
uler can change between the different controllers quickly, and thus respond to the changing
environment fast. However, frequent and rapid changes of the controllers may lead to in-
stability, and thus there is a limit to how often and how fast the changes can be performed
[5].

One disadvantage of gain scheduling is that it takes a lot of time to develop the controller.
One have to identify and linearise the system for all the different combinations of states
and manoeuvres the aircraft can encounter, and design and analyse the controller for all
these cases. Thus, the implementation of a gain scheduled controller is costly. Also, com-
pared to an adaptive system, the control strategy and controller gains are computed off-line.
Thus, there are no feedback in the control loop to compensate for incorrect schedules. Un-
predictable changes in the system dynamics may lead to deterioration or even to complete
failure [5].

Nonlinear design

Nonlinear control strategies are based on the complete nonlinear model of the system, and
the goal is to make one universal controller which is valid for all the flight conditions. Ex-
amples of such control strategies are sliding mode control [10] [14], backstepping [10] [14],
passivity-based control[10] and nonlinear MPC [13]. Feedback-linearisation [10] [14] is also
an important nonlinear control strategy. The strategy involves inverting the nonlinearities
of the real system through feedback, such that the resulting systems becomes linear. Thus,
one may design the controller using classical linear design strategies.
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Developing good nonlinear mathematical models is a difficult and time consuming process.
Also, as mentioned, it is almost impossible to find models who incorporate all the dynamics
of a system. Thus, nonlinear control strategies who are based on mathematical models will
not perform as good in practice as in theory. If the mathematical model is used directly in
the control design, as with feedback-linearisation or nonlinear MPC, the modelling errors
may cause performance degradation or even instability. A different problem with nonlinear
controllers are that the implementation involves intensive on-line computations due to the
complex models. If the computations can not be performed fast enough the control will lag
behind and be useless in a real implementation.

1.4 Principles of L1 adaptive control

Since we already have plenty of well working control strategies for aircraft, one may ask
oneself why we need a new control strategy for this purpose. However, as discussed in the
previous section, the current state of the art have different limitations and challenges. This
chapter has also argued for the need of an adaptive controller due to the changing system
dynamics. However, the different adaptive controllers designed up until now, have not
been able to prove robustness a priori. Further, the tuning of adaptive systems represents a
great challenge and has mostly relied on heavy Monte Carlo simulations or trial-and-error
methods. Up until now this has largely remained an open question in the literature [7]. This
is where the L1 adaptive control theory finds its strength, by decoupling adaptation from
robustness, and proving robustness in the presence of fast adaptation. The authors of [7]
promise:

“The architectures of L1 adaptive control theory have guaranteed transient per-
formance and guaranteed robustness in the presence of fast adaptation, with-
out introducing or enforcing persistence of excitation, without any gain schedul-
ing in the controller parameters, and without resorting to high-gain feedback.
(...) These features of L1 adaptive control theory were verified-consistently with
theory-in a large number of flight tests and mid- to high-fidelity simulation en-
vironments.”

1.5 Goals of the report

The journey from the the sketch board to a finished fully automatic aircraft includes plenty
of steps. Before we even start thinking about any control system, choices about the material,
the shape of the aircraft, control surfaces and much more has to be made. All of these choices
affects the system we are to control. Further, as have been discussed, proper measurement
tools need to be designed and implemented to get the desired feedback information. All
these issues are important for the resulting aircraft, and are in them selves separate fields of
study.
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In this text, the focus is on the design of the inner loop control systems for the longitudinal
and the lateral modes. The controllers are to be designed based on a given system, while
the design of the system, the aircraft, is of no concern. Further, we assume full state mea-
surements without considering the design of the IMU. The goal of this text is to investigate
and get a good understanding of the newly developed L1 adaptive control theory. The goal
is to achieve a control strategy with an associated problem formulation which puts as few
limitations to the considered systems as possible. This is achieved by the final problem
formulation considered in this text, considering MIMO systems with unmatched nonlinear
uncertainties and unmodeled actuator dynamics.

Further, the goal of this text is to design and simulate an L1 adaptive controller for the
longitudinal and the lateral modes of an F-16 model. As opposed to the current state of the
art presented in section 1.3.5, we want to design a single L1 adaptive controller based on one
linearised model for the longitudinal and the lateral modes of the F-16 model, which is able
to handle all the changing dynamics during a flight, on-line. The results are to be compared
with the simulation results of a basic PID-controller. Further, the goal is to investigate and
test the L1 adaptive control theory with regards to realistic implementation issues, with
special focus on the issue of limited sampling rate.

Since the goal is to base the L1 adaptive controller on a linear aircraft model, the linear
aircraft modelling theory is of interest. This is covered in chapter 2. This chapter is mainly
based on the project report [1], with some corrections.
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Chapter 2
Aircraft modelling

As discussed, system modelling is an important part of the control design process. This
chapter presents the theory of aircraft modelling, and results in the final linear models con-
sidered in the remainder of the text. To be able to identify the different parameters, wind
tunnel tests are needed. Since this identification is not the focus of this thesis, the numerical
values for the aircraft model considered obtained from a nonlinear F-16 model, implemented
in Matlab. This model is developed at the University of Minnesota, and further introduced
in section 2.5. The theory presented in this chapter is mainly based on [15], [2] ,[16], [17],
[18] and [19].

This chapter is mostly taken from my project report [1] with some minor corrections. An
important change is however done in this text due to the formulation in the nonlinear model,
namely the choice of states. I refer to section 2.4.8 for a discussion on this topic.

2.1 Kinematics

Classical mechanics are usually divided in two branches: kinematics and kinetics. Kinemat-
ics is the branch which studies the motion of bodies without considering the forces acting
on them. This section concerns the kinematics for aircraft.

2.1.1 Reference systems

When deriving the equations of motion of the aircraft, well defined reference systems are
required. This section explains the different reference systems used in the remainder of the
text.
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NED

The North-East-Down (NED) reference system (xn, yn, zn) is located at the surface of the
earth. xn points toward the north pole, yn points toward east and zn downward. The aircraft
considered in this text only travels within a radius of a couple of hundred meters. Thus the
surface of the earth can be assumed flat, and therefore the NED reference frame is assumed
inertial such that Newton’s laws apply.

BODY

The BODY reference system (xb, yb, zb) is fixed to the aircraft. The position of the aircraft
is expressed relative to the NED frame, while the attitude of the aircraft is expressed as the
orientation of the aircraft BODY axis system relative to the NED frame.

The origin of the BODY reference system is located in the lift center of the aircraft. Since the
lift center is not a static point in the aircraft, we have assumed its location to middle of the
aircraft at one fourth of the mean aerodynamic chord(MAC) of the aircraft wings, measured
from the leading edge of the wing. For more information about this assumption see [15] and
[2]. This point on the wing is called the aerodynamic center or the quarter chord of the wing.
The MAC is defined as c̄ = S

b
, where S is the wing area and b is the wing span.

xb is pointing forward in the aircraft, yb pointing out of the right wing and zb downward out
of the belly of the aircraft. See figure 2.1 for an illustration of the BODY axis.

Wind axes

It is the movement of the air around the aircraft that creates the aerodynamic forces and
moments. The WIND axes system is a body-fixed reference system that aligns with the
movement of the aircraft relative to the air, see figure 2.2. In aerodynamics it is normal to
calculate everything in the WIND axes system. In figure 2.2 from [16], we can find α and β,
corresponding to the angle of attack and the side-slip angle respectively.

Angle of attack and side-slip angle are defined as:

tan(α) = W

U
(2.1)

sin(β) = V

VT
(2.2)

and VT is the length of the velocity vector i.e:

VT =
√
U2 + V 2 +W 2 (2.3)

The WIND axes is later used to calculate the linear models of the aircraft motion.
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Figure 2.1: Illustration showing the states of an aircraft.

2.1.2 State vector

Before stating the equations of motions it is useful to define the state vectors.

The position and orientation vector, η, for a body, {b}, relative to the NED frame is defined
as

η :=



xn

yn

zn,−h
Φnb

Θnb

Ψnb


=



north
east

down
roll

pitch
yaw


The velocity vector, ν, in a general body reference frame is defined as (see figure 2.1):

ν :=



U
V
W
P
Q
R


=



axial velocity
lateral velocity
normal velocity

roll rate
pitch rate
yaw rate


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Figure 2.2: Body fixed coordinate systems.

The force and moment vector, τ , in a general body reference frame is defined as (see figure
2.1):

τ :=



X
Y
Z
L
M
N


=



axial force
lateral force
normal force
roll moment

pitching moment
yawing moment



We now relate the different reference frames to each other, which are used to calculate atti-
tude.

2.1.3 Transformation between BODY and NED

The relationship between a vector, pn, in NED and a vector, pb, in BODY is given by:

pn = Rn
b pb
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where Rn
b is the Euler angle rotation matrix from BODY to NED, and given by:

Rn
b =

cΨnbcΘnb −sΨnbcΦnb + cΨnbsΘnbsΦnb sΨnbsΦnb + cΨnbcΦnbsΘnb

sΨnbcΘnb cΨnbcΦnb + sΨnbsΘnbsΦnb −cΨnbsΦnb + sΨnbcΦnbsΘnb

−sΘnb cΘnbsΦnb cΘnbcΦnb


where s · = sin( · ) and c · = cos( · ).

This gives the relationship between the translation motion in BODY and NED:ẋ
n

ẏn

żn

 = Rn
b

U
b

V b

W b


For rotation motion, the relationship between BODY and NED is given byΦ̇nb

Θ̇nb

Ψ̇nb

 =

1 sΦnbtΘnb cΦnbtΘnb

0 cΦnb −sΦnb

0 sΦnb/cΘnb cΦnb/cΘnb


P

b

Qb

Rb


where t · = tan( · ).

2.1.4 Transformation between BODY and WIND axes

The relationship between a vector, pw, in the WIND axes and a vector, pb, in BODY is given
by:

pw = Rw
b pb

where Rw
b is the rotation matrix from BODY to WIND axes, and given by:

Rw
b =

 cαcβ sβ sαcβ
−cαsβ cβ −sαsβ
−sα 0 cα


This gives the relationship between the velocity, [U b, V b, W b]T in BODY and the velocity, vw
in the WIND axes: UV

W

 = (Rw
b )Tvw = (Rw

b )T
VT0

0

 =

VT cosα cos β
VT sin β

VT sinα cos β


Thus,

U b = VT cosα cos β
V b = VT sin β (2.4)

W b = VT sinα cos β
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2.2. RIGID BODY KINETICS

2.2 Rigid body kinetics

The derivation of the equations of motions for a general body starts with Euler’s first and
second axioms:

nd
dt
−→p b = −→f b

−→p b = m−→v nb (2.5)
nd
dt
−→
h b = −→mb

−→
h b = Icg

−→ω nb (2.6)

where
−→
f b and −→mb are the forces and moments acting on the body’s center of gravity, −→ω nb is

the angular velocity of the body with respect to NED. nd/dt means the time differentiation
in the NED frame.
Following the derivation in [14], the aircraft rigid body kinetics can be expressed as

m(ν̇1 + S(ν2)ν1) = τ 1 (2.7)
ICGν̇2 − S(ICGν2)ν2 = τ 2 (2.8)

where ν1 = [U , V , W ]T , ν2 = [P , Q, R]T , τ 1 = [X , Y , Z]T , τ 2 = [L, M , N ]T and S is a skew
symmetric matrix. The resulting 6 degree of freedom(DOF) model is written

MRBν̇ + CRBν = τRB (2.9)

where

MRB =
[
mI3x3 03x3
03x3 ICG

]
(2.10)

is the rigid body inertia matrix, and

CRB =
[
mS(ν2) 03x3

03x3 −S(ICGν2)

]
(2.11)

In these equations it is assumed that the body reference system is located at the center of
gravity. In our model, this is not the case (see section 2.1.1). The arm between center of grav-
ity and the coordinate origin is small, thus the resulting error is small. The equations could
be corrected by introducing the transformation matrix, but for simplicity and since the error
will be small, we assume the origin of the body reference system to be at center of gravity
when deriving the rigid body kinetics.

Assuming xz-plane symmetry (Ixy = Iyz = 0) the inertia matrix is defined

ICG :=

Ixx 0 −Ixz
0 Iyy 0
Ixz 0 Izz

 (2.12)
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2.2. RIGID BODY KINETICS

where Ixx, Iyy and Izz are the moments of inertia about the body x, y and z axes, and Ixz is
the product of inertia defined as

Ixx :=
∫
V

(y2 + z2)ρmdV

Iyy :=
∫
V

(x2 + z2)ρmdV

Izz :=
∫
V

(x2 + y2)ρmdV

Ixz :=
∫
V

(xz)ρmdV

The forces and moments acting on the body can be expressed as

τRB = −g(η) + τ (2.13)

where τ includes the aerodynamic, control and propulsion forces and moments defined as

τ := τ a + τ c + τ p, (2.14)

and g(η) is the force of gravity. The gravity force is given in the body reference frame by

g(η) = (Rn
b )T



0
0
mg
0
0
0


=



mg sin(Θ)
−mg cos(Θ) sin(Φ)
−mg cos(Θ) cos(Φ)

0
0
0


(2.15)

The 6-DOF model can now be written in matrix form:

MRBν̇ + CRBν + g(η) = τ (2.16)

or in component form as in [17]:

m(U̇ +QW −RV + g sin(Θ)) = X

m(V̇ + UR−WP − g cos(Θ) sin(Φ)) = Y

m(Ẇ + V P −QU − g cos(Θ) cos(Φ)) = Z (2.17)

IxxṖ − Ixz(Ṙ + PQ) + (Izz − Iyy)QR = L

IyyQ̇− Ixz(P 2 −R2) + (Ixx − Izz)PR = M

IzzṘ− IxzṖ + (Iyy − Ixx)PQ+ IzzQR = N

In the next chapter we will derive the aerodynamic forces and moments. These forces and
moments are derived in the WIND axes. To be able to combine the equations of motion with
the aerodynamics, the equations of motion need to be derived for the WIND axes, or the
aerodynamic forces need to be rotated to the BODY axes through Rw

b .
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In this text the models will be expressed in the WIND axes. Since the equations in (2.17)
are derived for a general body, they still hold for the WIND axes. In the remainder of the
text all the forces, moments and velocities will be in the WIND axes. Thus we make the
following definition for the rest of the text:

ν =



U
V
W
P
Q
R


:=



Uw

V w

Ww

Pw

Qw

Rw


(2.18)

τ =



X
Y
Z
L
M
N


:=



Xw

Y w

Zw

Lw

Mw

Nw


(2.19)

2.3 Aerodynamics

In this section we will make a short introduction to aerodynamics. We will define the aero-
dynamic forces and moments.

2.3.1 Forces and moments

The aerodynamic forces and moments are usually written as a product of dynamic pressure
1
2ρV

2
T , reference area Sref and/or reference length lref and dimensionless coefficients C. The

reference area is usually the wing area and the reference length is almost always the wing
mean aerodynamic chord (MAC) [15]. The only unknowns are the dimensionless coeffi-
cients which are nonlinear functions of the velocity, the rates and the attitude. These can not
be found analytically, but are normally estimated by wind tunnel testing, physical experi-
ments, approximated calculation etc. Due to nonlinearities, these coefficients are difficult to
compute correctly. The aerodynamic forces and moments can be written as [20]

−X
Y
−Z
L
M
N


=



Drag
Sideforce
Lift

Roll moment
P itch moment
Y aw moment


= 1

2ρV
2
T Sref



CD
Cy
CL
Cllref
Cmlref
Cnlref


where the coefficients are for drag, side force, lift, roll-, pitch- and yaw moment respectively.
Further, the coefficients can be split into contribution from control surfaces, rates, speeds
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2.4. LINEAR MODELS

and so forth. The most dominating contributions are [18]

CD = CD0 + C2
L

πeA
+ CDuu+ CDδE δE

CL = CL0 + CLαα + CLuu+ CLδE δE

Cy = Cy0 + Cyββ + CyδRδR

Cl = Cl0 + Clββ + Clpp+ Clrr + ClδRδR + ClδAδA

Cm = Cm0 + Cmuu+ Cmαα + Cmα̇α̇ + Cmqq + CmδE δE

Cn = Cn0 + Cnββ + Cnpp+ Cnrr + CnδRδR + CnδAδA

Where A is the aspect ratio of the wings, and e is Oswald’s efficiency factor. The coefficients
will be affected by several other factors, but the effects above are the ones we have taken
into account.

We have used the following notation for the coefficients, given a force/moment a and a
state b: Cab is change in coefficient Ca due to change in b, that is Cab = δCa

δb
, where b could be

velocities, rates, angle of attack, side-slip angle etc.

2.4 Linear models

This section concerns the derivations of the linear models used in the remainder of the text.
The starting point for this linearisation is the results from section 2.2 and 2.3. The linearisa-
tion of the kinetics follows the derivations in [17], while the linearisation of the aerodynamic
forces and moments, aerodynamic control and thrust follows the derivations in [15]. Fur-
ther, the constant dimensionless coefficients for our given case are found together with the
final system matrices.

2.4.1 Trimmed flight condition

An aircraft is said to be in trim if it is in a steady state, that is the moments are balanced and
the forces are constant. There are several steady states, but in this text only one is considered,
namely the steady straight flight condition. Steady straight flight is when a aircraft keeps
its attitude and altitude constant. Thus, the lift must equal the weight, and the thrust must
equal the drag. Further, the control surfaces must be trimmed for the specific altitude and
speed such that the moments are zero. The forces and moments acting on the aircraft are
thus

X0 = −mg sin(Θ)
Y0 = mg cos(Θ) sin(Φ)
Z0 = mg cos(Θ) cos(Φ)
L0 = M0 = N0 = 0
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We are later going to linearise for these equilibrium forces and moments. For symmetric
flight we have a roll angle equal to zero, and we get

X0 = −mg sin(Θ)
Y0 = 0
Z0 = mg cos(Θ)
L0 = M0 = N0 = 0

See [16] and [2] for more information.

2.4.2 Linearisation of the kinetics

The states are linearised about the trimmed flight conditions. The trimmed flight condition
of interest is described in section 2.4.1. The states are written as a sum of a nominal value
and a perturbation:

Total state = nominal value + perturbed state

This gives the following definitions:

τ := τ 0 + δτ =



X0
Y0
Z0
L0
M0
N0


+



δX
δY
δZ
δL
δM
δN


(2.20)

ν := ν0 + δν =



U0
V0
W0
P0
Q0
R0


+



u
v
w
p
q
r


(2.21)

Φ
Θ
Ψ

 :=

Φ0
Θ0
Ψ0

+

φθ
ψ

 (2.22)

Expressing the forces and moments, velocities and angles as defined above in (2.16), the
aircraft’s equilibrium point (ν̇ = 0) will satisfy:

CRB(ν0)ν0 + g(η0) = τ0 (2.23)
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or on component form:

m(Q0W0 −R0V0 + g sin(Θ0)) = X0

m(U0R0 − P0W0 − g cos(Θ0) sin(Φ0)) = Y0

m(P0V0 −Q0U0 − g cos(Θ0) cos(Φ0)) = Z0 (2.24)
(Izz − Iyy)Q0R0 − P0Q0Ixz = L0

(P 2
0 −R2

0)Ixz + (Ixx − Izz)P0R0 = M0

(Iyy − Ixx)P0Q0 +Q0R0Ixz = N0

The linearised equations are found by substituting (2.20), (2.21) and (2.24) into (2.17). By
neglecting higher order terms of the perturbed states, setting sin( · ) = · and cos( · ) = 1,
where · is a perturbed state, and assuming steady straight flight (see section 2.4.1) we get
the following linearised 6 DOF equations:

m(u̇+Q0w +W0q −R0v − V0r + g cos(Θ0)θ) = δX

m(v̇ + U0r +R0u−W0p− P0w − g cos(Θ0) cos(Φ0)φ+ g sin(Θ0) sin(Φ0)θ) = δY

m(ẇ + V0p+ P0v − U0q −Q0u+ g cos(Θ0) sin(Φ0)φ+ g sin(Θ0) cos(Φ0)θ) = δZ (2.25)
Ixxṗ− Ixz ṙ + (Izz − Iyy)(Q0r +R0q)− Ixz(P0q +Q0p) = δL

Iyy q̇ + (Ixx − Izz)(P0r +R0p)− 2Ixz(R0r + P0p) = δM

Izz ṙ − Ixzṗ+ (Iyy − Ixx)(P0q +Q0p) + Ixz(Q0r +R0q) = δN

Where the forces/moments consist of aerodynamic forces/moments, control forces/moments
and propulsion forces/moments:

δX = Xa +Xc +Xp

δY = Ya + Yc + Yp

δZ = Za + Zc + Zp (2.26)
δL = La + Lc + Lp

δM = Ma +Mc +Mp

δN = Na +Nc +Np

For aircrafts it is common to decouple the 6 DOF model in two 3 DOF models, longitudinal
and lateral. The main assumptions are that the aircraft’s body is much longer than its height
and width, and that the forward velocity is much larger than the vertical and transverse ve-
locity. For our aircraft, these assumptions hold quite good. In the longitudinal model, only
the the states u, w, q and θ are considered, while the states v, p, r and φ is assumed negli-
gible. For the lateral model the opposite assumptions are made. This gives the following
equations:

Longitudinal model

m(u̇+Q0w +W0q + g cos(Θ0)θ) = δX

m(ẇ − U0q −Q0u+ g sin(Θ0) cos(Φ0)θ) = δZ

Iyy q̇ = δM

θ̇ = q
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In trim the rates are zero, and the downward equilibrium velocity is zero in WIND, Q0 = W0
= 0. The equilibrium pitch angle is also zero in WIND Θ0 = 0, because we are in trim and
we are flying parallel to the earth. For steady straight flight the equilibrium roll angle Φ0 =
0. Inserting these values in the equations above, and solving for u̇, ẇ, q̇ and θ̇ gives:

u̇ = δX

m
− gθ (2.27)

ẇ = δZ

m
+ U0q (2.28)

q̇ = δM

Iyy
(2.29)

θ̇ = q (2.30)

Lateral model

m(v̇ + U0r −W0p− g cos(Θ0) cos(Φ0)φ) = δY

Ixxṗ− Ixz ṙ + (Izz − Iyy)Q0r − IxzQ0p = δL

Izz ṙ − Ixzṗ+ (Iyy − Ixx)Q0p+ IxzQ0r = δN

φ̇ = p

In trim we have zero equilibrium pitch rate and zero downward equilibrium velocity in
WIND, Q0 = W0 = 0. As above Θ0 = Φ0 = 0 for trim. Inserting these value in the equations
above, and solving for ṗ and ṙ, we get:

v̇ = δY

m
− U0r + gφ (2.31)

ṗ =
(
δL

Ixx
+ δN

Izz

Ixz
Ixx

)( 1
1− I2

xz

IxxIzz

)
(2.32)

ṙ =
(
δN

Izz
+ δL

Ixx

Ixz
Ixx

)( 1
1− I2

xz

IxxIzz

)
(2.33)

φ̇ = p (2.34)

In the following we will assume that
(

1
1− I2xz

IxxIzz

)
= 1, because Ixz is small.

2.4.3 Linearisation of the aerodynamic forces and moments

In linear aerodynamic theory it is assumed that the aerodynamic forces and moments are
only dependent on perturbation of rates and velocity, and their derivatives. The alignment
of the WIND axis system with respect to the body axis system changes as a function of the
trim condition. When an aircraft is disturbed from its trim condition, the WIND axis rotate
with the airframe and consequently, the perturbed X axis may or may not be parallel to
the relative wind while the aircraft motion is being disturbed. For perturbations around
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an equilibrium velocity, the aerodynamic derivatives can be expressed as a Taylor series
expansion. For example, the aerodynamic term Xa in the axial force may be expressed [15]:

Xa = Xa0 +
(
∂X

∂u
u+ ∂2X

∂u2
u2

2! + ∂3X

∂u3
u3

3! + ∂4X

∂u4
u4

4! + ...
)

+
(
∂X

∂v
v + ∂2X

∂v2
v2

2! + ∂3X

∂v3
v3

3! + ∂4X

∂v4
v4

4! + ...
)

+
(
∂X

∂w
w + ∂2X

∂w2
w2

2! + ∂3X

∂w3
w3

3! + ∂4X

∂w4
w4

4! + ...
)

+
(
∂X

∂p
p+ ∂2X

∂p2
p2

2! + ∂3X

∂p3
p3

3! + ∂4X

∂p4
p4

4! + ...
)

+
(
∂X

∂q
q + ∂2X

∂q2
q2

2! + ∂3X

∂q3
q3

3! + ∂4X

∂q4
q4

4! + ...
)

+
(
∂X

∂r
r + ∂2X

∂r2
r2

2! + ∂3X

∂r3
r3

3! + ∂4X

∂r4
r4

4! + ...
)

+
(
∂X

∂u̇
u̇+ ∂2X

∂u̇2
u̇2

2! + ∂3X

∂u̇3
u̇3

3! + ∂4X

∂u̇4
u̇4

4! + ...
)

+
(
∂X

∂v̇
v̇ + ∂2X

∂v̇2
v̇2

2! + ∂3X

∂v̇3
v̇3

3! + ∂4X

∂v̇4
v̇4

4! + ...
)

+
(
∂X

∂ẇ
ẇ + ∂2X

∂ẇ2
ẇ2

2! + ∂3X

∂ẇ3
ẇ3

3! + ∂4X

∂ẇ4
ẇ4

4! + ...
)

+
(
∂X

∂ṗ
ṗ+ ∂2X

∂ṗ2
ṗ2

2! + ∂3X

∂ṗ3
ṗ3

3! + ∂4X

∂ṗ4
ṗ4

4! + ...
)

+
(
∂X

∂q̇
q̇ + ∂2X

∂q̇2
q̇2

2! + ∂3X

∂q̇3
q̇3

3! + ∂4X

∂q̇4
q̇4

4! + ...
)

+
(
∂X

∂ṙ
ṙ + ∂2X

∂ṙ2
ṙ2

2! + ∂3X

∂ṙ3
ṙ3

3! + ∂4X

∂ṙ4
ṙ4

4! + ...
)

+ series terms in higher order derivatives (2.35)

where Xa0 is a constant aerodynamic force acting on the aircraft.

Since we assume that the aircraft is in trim, the constant aerodynamic force is equal to the
constant contribution from the gravity force specified in 2.4.1. Trim also imply that the
constant aerodynamic moments are zero. Therefore, the constant aerodynamic forces and
moments will be omitted from the derivation, together with the constant contribution from
gravity.

We assume that the velocity and rate perturbations are small, such that only the first term in
each of the series is significant, and higher order derivatives can be neglected. This simpli-
fies (2.35) to

Xa = ∂X

∂u
u+ ∂X

∂v
v + ∂X

∂w
w + ∂X

∂p
p+ ∂X

∂q
q + ∂X

∂r
r

+ ∂X

∂u̇
u̇+ ∂X

∂v̇
v̇ + ∂X

∂ẇ
ẇ + ∂X

∂ṗ
ṗ+ ∂X

∂q̇
q̇ + ∂X

∂ṙ
ṙ
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In our work we use the American normalized form, which means both sides of the equation
is divided by mass/inertia:

Xa

m
= ∂X

∂u

u

m
+ ∂X

∂v

v

m
+ ∂X

∂w

w

m
+ ∂X

∂p

p

m
+ ∂X

∂q

q

m
+ ∂X

∂r

r

m

+ ∂X

∂u̇

u̇

m
+ ∂X

∂v̇

v̇

m
+ ∂X

∂ẇ

ẇ

m
+ ∂X

∂ṗ

ṗ

m
+ ∂X

∂q̇

q̇

m
+ ∂X

∂ṙ

ṙ

m

From now on we use the notation

Xu = ∂X

∂u

1
m
, (2.36)

where Xu is called "aerodynamic derivative". This gives the aerodynamic forces and mo-
ments a more compact form.

Similar to the axial force, this assumptions can be made for all forces and moments. Ex-
pressed by the aerodynamic derivatives, the forces and moments become:

Xa

m
= Xuu+Xvv +Xww +Xpp+Xqq +Xrr +Xu̇u̇+Xv̇v̇ +Xẇẇ +Xṗṗ+Xq̇ q̇ +Xṙṙ

Ya
m

= Yuu+ Yvv + Yww + Ypp+ Yqq + Yrr + Yu̇u̇+ Yv̇v̇ + Yẇẇ + Yṗṗ+ Yq̇ q̇ + Yṙṙ

Za
m

= Zuu+ Zvv + Zww + Zpp+ Zqq + Zrr + Zu̇u̇+ Zv̇v̇ + Zẇẇ + Zṗṗ+ Zq̇ q̇ + Zṙṙ

La
Ixx

= Luu+ Lvv + Lww + Lpp+ Lqq + Lrr + Lu̇u̇+ Lv̇v̇ + Lẇẇ + Lṗṗ+ Lq̇ q̇ + Lṙṙ

Ma

Iyy
= Muu+Mvv +Mww +Mpp+Mqq +Mrr +Mu̇u̇+Mv̇v̇ +Mẇẇ +Mṗṗ+Mq̇ q̇ +Mṙṙ

Na

Izz
= Nuu+Nvv +Nww +Npp+Nqq +Nrr +Nu̇u̇+Nv̇v̇ +Nẇẇ +Nṗṗ+Nq̇ q̇ +Nṙṙ

According to [15] and [16], the following derivatives are negligible Xu̇, Xq, Xẇ, Xq̇, Zu̇, Zẇ,
Zq̇, Mu̇, Mq̇, Yu̇, Yẇ, Yv̇, Yp, Yṗ, Yr, Yṙ, Lu̇, Lv̇, Lṗ, Lṗ, Lṙ, Nu̇, Nv̇, Nṗ, Nq̇ and Nṙ .

[15] states that Xẇ could give a contribution, but we were unable to find a values for this
derivative due to insufficient knowledge about the drag acting on the aircraft. Zq is negligi-
ble according to [16].

As for the kinetics, we decouple the system in a lateral and a longitudinal model, assuming
negligibly small aerodynamic coupling derivatives.

Longitudinal

In the longitudinal model, movement is described by the forces in WIND x-axis and z-axis,
as well as the moment about the y-axis. The lateral motion is assumed not to affect this
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movement. Thus, the aerodynamic forces and moments involving v, p, r and their deriva-
tives are neglected. We get

Xv = Xp = Xr = Zv = Zp = Zr = Mv = Mp = Mr = 0
Xv̇ = Xṗ = Xṙ = Zv̇ = Zṗ = Zṙ = Mv̇ = Mṗ = Mṙ = 0

The longitudinal aerodynamic forces and moments are

Xa

m
= Xuu+Xww (2.37)

Za
m

= Zuu+ Zww (2.38)

Ma

Iyy
= Muu+Mww +Mẇẇ +Mqq (2.39)

where

Xu = ρVT0Sref
2m (−CD − CDu) Mu = ρVT0Sref lref

2Iyy
(Cmu + Cm)

Xw = ρVT0Sref
2m (CL − CDα) Mw = ρVT0Sref lref

2Iyy
Cmα

Zu = ρVT0Sref
2m (−CL − CLu) Mẇ = −

ρVT0Sref l
2
ref

4Iyy
Cmα̇

Zw = ρVT0Sref
2m (−CLα − CD) Mq =

ρVT0Sref l
2
ref

4Iyy
Cmq

Here, the dimensionless coefficients, C, are constants, identified by for instance wind tunnel
tests. More on this topic in section 2.4.7.

Lateral

In the lateral model, movement is described by the force in WIND y-axis as well as the
moments about the x-axis and z-axis. The lateral motion is assumed independent of the
longitudinal motion. Thus, the aerodynamic forces and moments from u, w, q and their
derivatives are neglected in the lateral model. This leads to

Yu = Yw = Yq = Lu = Lw = Lq = Nu = Nw = Nq = 0
Yu̇ = Lẇ = Nẇ = 0

We get

Ya
m

= Yvv (2.40)

La
Ixx

= Lvv + Lpp+ Lrr (2.41)

Na

Izz
= Nvv +Npp+Nrr (2.42)
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where

Yv = ρVT0Sref
2m Cyδβ Nv = ρVT0Sref lref

2Izz
Cnv

Lv = ρVT0Sref lref
2Ixx

Clv Np =
ρVT0Sref l

2
ref

4Izz
Cnp

Lp =
ρVT0Sref l

2
ref

4Ixx
Clp Nr =

ρVT0Sref l
2
ref

4Izz
Cnr

Lr =
ρVT0Sref l

2
ref

4Ixx
Clr

Here, the dimensionless coefficients, C, are constants, identified by for instance wind tunnel
tests. More on this topic in section 2.4.7.

2.4.4 Aerodynamic control

The aircraft’s aerodynamic controls are the elevator, aileron and rudder. The forces and mo-
ments created by the control deflections are due to changes in aerodynamic condition of
the aircraft. Similar to the aerodynamic derivatives in 2.4.3, we introduce the "aerodynamic
control derivatives". The assumptions stated above about the aerodynamic forces and mo-
ments apply to the control terms, [15]. Further, according to [15] and [16], aerodynamic
derivatives where first or higher order derivatives of the aerodynamic controls are present,
are negligible. We continue using American normalized form for the control derivatives and
get:

Xc

m
= XδAδA +XδEδE +XδRδR

Yc
m

= YδAδA + YδEδE + YδRδR

Zc
m

= ZδAδA + ZδEδE + ZδRδR

Lc
Ixx

= LδAδA + LδEδE + LδRδR

Mc

Iyy
= MδAδA +MδEδE +MδRδR

Nc

Izz
= NδAδA +NδEδE +NδRδR

Since aileron and rudder do not usually cause longitudinal motion and in addition, due to
airframe symmetry, elevator do not cause lateral motion, XδA , XδR , YδA , XδE , ZδA , ZδR , LδE ,
MδA , MδR , NδE and ZδE are zero or negligible. This gives the longitudinal control derivative
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model

Xc

m
= XδEδE (2.43)

Zc
m

= ZδEδE (2.44)

Mc

m
= MδEδE, (2.45)

where

XδE = −ρV
2
T0Sref
2m CDδE MδE = −ρV

2
T0Sref lref

2Iyy
CmδE (2.46)

ZδE = −ρV
2
T0Sref
2m CLδE

The lateral control derivative model becomes

Yc
m

= YδRδR (2.47)

Lc
Ixx

= LδAδA + LδRδR (2.48)

Nc

Ixx
= NδAδA +NδRδR, (2.49)

where

YδR = ρV 2
T0Sref
2m CyδR NδA = ρV 2

T0Sref lref
2Izz

CnδA

LδA = ρV 2
T0Sref lref

2Ixx
ClδA NδR = ρV 2

T0Sref lref
2Izz

CnδR (2.50)

LδR = ρV 2
T0Sref lref

2Ixx
ClδR

The dimensionless coefficients, C, in (2.46) and (2.50) are constants, identified by for instance
wind tunnel tests. More on this topic in section 2.4.7.

2.4.5 Thrust

In our model we have for simplicity neglected actuator dynamics. The thrust on our aircraft,
δT , has a value between 0 and 1. We have assumed that the thrust only acts in BODY x-axis,
and we need to rotate this to WIND.

The the thrust is not necessarily perfectly aligned level with the center of gravity, and will
therefore give a small pitch moment. We have chosen to neglect this effect. We have also for
simplicity assumed that the thruster has zero mass. For more information see [16].
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The thrust forces in BODY becomes

Xb
p

m
= Xb

δT
δT = T

m
δT

Y b
p

m
=
Zb
p

m
=
Lbp
m

=
M b

p

m
=
N b
p

m
= 0

where T is the maximum thrust force from the propeller. The thrust derivatives in WIND
becomes

XδT

YδT
ZδT

 = Rw
b

X
b
p

Y b
p

Zb
p



=

 cαcβ sβ sαcβ
−cαsβ cβ −sαsβ
−sα 0 cα



T
m

0
0



=


T
m
cαcβ

− T
m
cαsβ

− T
m
sα

 (2.51)

LδTMδT

NδT

 =

0
0
0

 (2.52)

In steady straight flight, β = 0. This gives the contribution from thrust:

Xp

m
= T

m
cosα = XδT δT

Yp
m

= 0
Zp
m

= − T
m

sinα = ZδT δT (2.53)

Lp
m

= 0
Mp

m
= 0

Np

m
= 0
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2.4.6 Total models

Longitudinal

The resulting equations for the longitudinal model from (2.27)-(2.30) (2.37)-(2.39), (2.43)-
(2.45) and (2.53) are

u̇ = Xuu+Xww − gθ +XδEδE +XδT δT

ẇ = Zuu+ Zww + U0q + ZδEδE + ZδT δT

q̇ = M̃uu+ M̃ww + M̃qq + M̃δEδE

θ̇ = q

where we have substituted the equation for ẇ into q̇ and

M̃u = Mu +MẇZu M̃q = Mq + U0Zu

M̃w = Mw +MẇZu M̃Θ = −gMw sin(Θ0) cos(Φ0)
M̃δE = MδE +MẇZδE

M̃Θ is not present in the equations above, since Θ0 = 0 in WIND. On vector form we have
u̇
ẇ
q̇

θ̇

 =


Xu Xw 0 −g
Zu Zw U0 0
M̃u M̃w M̃q 0
0 0 1 0



u
w
q
θ

+


XδE XδT

ZδE ZδT
M̃δE 0

0 0


[
δE
δT

]
(2.54)

in short

ν̇ long = Alongν long + Blongulong (2.55)

Lateral

From (2.31)-(2.34), (2.40)-(2.42) and (2.47)-(2.49) we get the lateral model

v̇ = Yvv − U0r + gφ+ YδRδR

ṗ = L
′

vv + L
′

pp+ L
′

rr + L
′

δA
δA + L

′

δR
δR

ṙ = N
′

vv +N
′

pp+N
′

rr +N
′

δA
δA +N

′

δR
δR

φ̇ = p

where the primed stability derivatives are defined as

L
′

v = Lv + IBNv N
′

v = Nv + IALv

L
′

p = Lp + IBNp N
′

p = Np + IALp

L
′

r = Lr + IBNr N
′

r = Nr + IALr

L
′

δA
= LδA + IBLδA N

′

δA
= NδA + IANδA

L
′

δR
= LδR + IBLδR N

′

δR
= NδR + IANδR
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and IA = Ixz
Ixx

and IB = Ixz
Izz

. On matrix form we have


v̇
ṗ
ṙ

φ̇

 =


Yv 0 −U0 g
L
′
v L

′
p L

′
r 0

N
′
v N

′
p N

′
r 0

0 1 0 0



v
p
r
φ

+


0 YδR
L
′
δA

L
′
δR

N
′
δA

N
′
δR

0 0


[
δA
δR

]
(2.56)

in compact form

ν̇ lat = Alatν lat + Blatulat (2.57)

2.4.7 Dimensionless aerodynamic coefficients

For each aerodynamic derivative, we need to find one or more dimensionless coefficients to
calculate them. As mentioned in section 2.3, the aerodynamic coefficients are usually found
by wind tunnel tests. I did not have this opportunity and this identification is not the focus
of this text, thus the numerical values are obtained from the nonlinear model described
in section 2.5. As mentioned in section 2.3, the dimensionless coefficients are nonlinear
functions, but in linear aerodynamic theory they are assumed constant.

2.4.8 Simplifications and change of states

As mentioned in the beginning of this chapter, the nonlinear F-16 model assumes different
states than the ones the previous derivations have been performed for. This gives some
changes in the system matrices.

First, for simplicity, we assume that an external simple speed regulator keeps U = VT con-
stant, and thus u constant and equal to zero. In this way u can be decoupled from the
equations, and the resulting longitudinal system becomes:

ẇq̇
θ̇

 =

Zw U0 0
M̃w M̃q 0
0 1 0


wq
θ

+

ZδEM̃δE

0

 δE
This is a normal assumption to make, and the possible error imposed by this will hopefully
be corrected by the adaptive controller.

For the lateral model, the goal is to control both roll and yaw. Thus the new state ψ needs to
be included. In the flight condition considered, ψ will just be the integral of r, and no other
states are affected by this.

The nonlinear model expects the states α and β instead of w and v respectively. In this
context, α and β means the perturbed angle of attack and side-slip angle. From 2.1 and 2.2
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together with the mentioned assumptions, we get

tan(α) = w

U0
≈ α, sin(β) = v

U0
≈ β (2.58)

⇓

α̇ = ẇ

U0
, β̇ = v̇

U0
(2.59)

This gives the final linear longitudinal model

α̇q̇
θ̇

 =

Zα/U0 1 0
M̃α M̃q 0
0 1 0


αq
θ

+

ZδE/U0
M̃δE

0

 δE, (2.60)

where Zα = ZwU0 and M̃α = M̃wU0, and the final lateral model


β̇
ṗ
ṙ

φ̇

ψ̇

 =


Yβ/U0 0 −1 g/U0 0
L
′
β L

′
p L

′
r 0 0

N
′
β N

′
p N

′
r 0 0

0 1 0 0 0
0 0 1 0 0




β
p
r
φ
ψ

+


0 YδR/U0
L
′
δA

L
′
δR

N
′
δA

N
′
δR

0 0
0 0


[
δA
δR

]
, (2.61)

where Yβ = YvU0, L′β = L
′
vU0 and N ′β = N

′
vU0. Now, the goal is that an L1 adaptive controller

based on this single linearised model will be able to adapt to the different model changes,
and be able to control the aircraft satisfactory for all the different operating points and flight
conditions.

2.5 F-16 model

This section introduces the F-16 model used in this text. This model is described in detail
in [21]. It is based on the F-16 model from [2] and implemented in Matlab/Simulink. The
Matlab and Simulink files have been downloaded from the home pages of the University of
Minnesota.

The nonlinear F-16 model can be used directly to test the nonlinear response. Further it
includes easy tools to linearise and identify the model parameters and trim values for the
different manoeuvres, speed and altitude. It is important to point out that the units used
in the F-16 model are a bit different than the ones used in my project report. The difference
is that distance and speed is given in ft and ft/s respectively, instead of m and m/s. This
will however not effect any dynamics of the system. Also, the states are defined in BODY,
and not in WIND as in the derivations in this chapter. This does not change anything in the
design of the L1 adaptive controller, but is important to state.
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The linearisation was performed by the F-16 model by specifying the desired altitude and
speed. I chose

U0 = 500 [ft/s]
Altitude = 15000 [ft] (2.62)

The linearisation resulted in the following trimmed states and control:

Φ0 = 0 [deg]
Θ0 = 4.46 [deg]
Ψ0 = 0 [deg]
α0 = 4.46 [deg]
β0 = 0 [deg]
P0 = Q0 = R0 = 0 [deg/s]
δE0 = −2.46 [deg]
δA0 = δR0 = 0 [deg],

Thrust0 = 2120.6 [lbs],

the following longitudinal model:α̇q̇
θ̇

 =

−0.6398 0.9378 −0.0000
−1.5679 −0.8791 0

0 1.0000 0


αq
θ

+

−0.0777
−6.5121

0

 δE, (2.63)

and the lateral model:
β̇
ṗ
ṙ

φ̇

ψ̇

 =


−0.2022 0.0783 −0.9919 0.0641 0
−22.9219 −2.2542 0.5408 0 0

6.0052 −0.0404 −0.3146 0 0
0 1.0000 0.0781 0 0
0 0 1.0030 0 0




β
p
r
φ
ψ

+


0.0099 0.0290
−26.4872 3.2579
−1.3965 −2.6855

0 0
0 0


[
δA
δR

]
.

(2.64)

We see that this linearisation gives a bit different result than we would have expected from
(2.60) and (2.61). This error may be due to assumptions made during the derivation in this
chapter and due to the change of reference system.
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Chapter 3
Theory of L1 adaptive control

This chapter concerns the theoretical background of L1 adaptive control. The full state-
feedback control architectures for different problem formulations are presented as well as
the corresponding main theoretical results. The proofs are mostly excluded, but can be
found in [7]. This chapter also discusses advantages of the L1 formulation as well as de-
sign challenges.

An ideal adaptive controller would be one that needed no a priori knowledge about the con-
trolled system, introduced no restrictions on the system, would identify the system perfectly
on-line, and based on this, control the system perfectly. However, this ideal controller does
not exist. We do need some information about the system structure and some assumptions
have to be made. Despite this, adaptive controllers may be very helpful. The goal of this text
is to design a single L1 adaptive controller based on the single linearised system developed
in chapter 2, that will be able to adapt to the different model changes, and be able to control
the aircraft satisfactory for all the different operating points and flight conditions. That is,
an L1 adaptive controller based on the linear identified system on the form

ẋ(t) = Aidx(t) + Bidu(t), (3.1)

is designed to control a general unknown system on the form

ẋ = fx(t,x(t)) + fu(t,x(t),u(t)). (3.2)

Thus, the error between the systems in (3.1) and (3.2) has to be identified on-line and cor-
rected for by the controller. This chapter will show that by imposing some minor assump-
tions, this goal is possible.

The theory presented in this text is a continuation of the theory presented in my project
report [1]. This text, takes the principles of L1 adaptive control further by removing the
assumptions made on the system structure in [1], and thus be able to control systems on
the form in (3.2). The final goal of this chapter is an L1 adaptive controller which can cope
with unmatched uncertainties for multi-variable nonlinear systems, and unmodeled actua-
tor dynamics. To better understand the final architecture and the final theoretical results, the
problem formulation is extended step by step to include more and more uncertainties. Thus
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the problem formulation imposes fewer and fewer limitations to the considered system. For
each problem formulation, the corresponding L1 adaptive control architecture and the theo-
retical results are presented. This is also the way I have worked my way through the theory.
The architectures and the resulting theoretical results are mainly obtained from [7].

3.1 Main theoretical results for systems with unknown con-
stant parameters.

Some of the theoretical results from my project report [1] is of important for this text. To
make this text easier to read, to and be able to refer to these results, they are included in this
section. The control architecture is not included. For more information about L1 adaptive
controller for systems with unknown constant parameters, see [1], [7] and [8]. The different
parameters and symbols used in this section will be defined in the subsequent sections.

Consider the reference system

ẋref (t) = Aidxref (t) + B
(
θTxref (t) + uref (t)

)
,xref (0) = x0,

uref (s) = −C(s)
(
θTxref (s)− kgr(s)

)
−KT

mxref (s), (3.3)

yref (s) = CTxref (s).

This system defines the best theoretically possible control for the L1 adaptive controller de-
scribed in [1], namely when the unknown parameter θ is known.

In [1], subject to theL1-norm condition, the following relationship between the implementable
L1 adaptive coontroller and the non-implementable reference system was found

‖xref − x‖L∞ ≤
γ1√

Γ
, ‖uref − u‖L∞ ≤

γ2√
Γ
, (3.4)

lim
t→∞
‖xref (t)− x‖ = 0, lim

t→∞
‖xref (t)− u‖ = 0, (3.5)

where

γ1 := ‖C(s)‖L1

1− ‖G(s)‖L1L

√
θmax

λmin(P ) ,

γ2 := ‖H1(s)‖L1

√
θmax

λmin(P ) + ‖C(s)θT + KT
m‖L1γ1.

H1(s) is defined by

H1(s) := C(s) 1
cT0H(s)c

T
0 , (3.6)

where c0 ∈ Rn makes H1 proper and BIBO stable.
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Consider the LTI design system

xdes(s) = C(s)kgH(s)r(s) + xin(s), (3.7)

udes(s) = kgC(s)r(s)− C(s)θTxdes(s)−KT
mxdes(s), (3.8)

ydes(s) = CTxdes(s), (3.9)

where xin(s) := (sI−Am)−1x0, implying that xin(t) is exponentially decreasing. This system
was introduced to investigate the performance of the L1 adaptive controller. As opposed
to the reference system (3.3), the output of the design system does not depend upon the
unknown parameter θ, and is therefore used for introducing the transient specifications.
In [1], subject to the L1-norm condition, the following relationship between the reference
system and the design system was found:

‖ydes − yref‖L∞ ≤
λ

1− λ‖C
T‖1 (‖kgH(s)C(s)‖L1‖r‖L∞ + |xin‖L∞) , (3.10)

‖xdes − xref‖L∞ ≤
λ

1− λ (‖kgH(s)C(s)‖L1‖r‖L∞) + |xin‖L∞) , (3.11)

‖udes − uref‖L∞ ≤
λ

1− λ‖C(s)θT + KT
m‖L1

· (‖kgH(s)C(s)‖L1‖r‖L∞ + |xin‖L∞) (3.12)

3.2 SISO systems with matched unknown parameters and
disturbance, and uncertain system input gain

In this section the L1 adaptive control strategy and the theoretical results for systems with
matched unknown time-varying parameters and disturbances together with uncertain sys-
tem input gain is presented. Compared to the system considered in my project report [1],
this is a step towards the final goal of controlling systems on the general form of (3.2). To get
a better insight to the L1 adaptive control strategy, an introduction through model reference
adaptive control (MRAC) is given.

3.2.1 Problem formulation

In this section we consider systems on the form

ẋ(t) = Amx(t) + B
(
ωuad(t) + θT (t)x(t) + σ(t)

)
, x(0) = x0 (3.13)

y(t) = CTx(t),

where x(t) ∈ Rn is the measured system state vector, uad(t) ∈ R is the control signal, y(t) ∈
R is the regulated output, B, C ∈ Rn are known constant vectors, Am is a known n × n
Hurwitz matrix specifying the desired closed-loop dynamics, (Am,B) is controllable, ω ∈ R
is an unknown constant with known sign, θ(t) ∈ Rn is a vector of time-varying unknown
parameters, and σ(t) ∈ R models disturbances.
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Assumptions

To prove the theoretical results of this section, some assumptions to the systems in (3.13)
have to be made.

Assumption 3.2.1 (Uniform boundedness of unknown parameter). Let

θ(t) ∈ Θ, |σ(t)| ≤ ∆0, ∀ t ≤ 0,

where Θ is a known convex compact set and ∆0 ∈ R+ is a known conservative bound.
Assumption 3.2.2 (Uniformly boundedness of the rate of variation of parameters). Let θ(t)
and σ(t) be continuously differentiable with uniformly bounded derivatives:

‖θ̇(t)‖ ≤ dθ <∞, |σ̇(t)| ≤ dσ <∞, ∀t ≥ 0.

Assumption 3.2.3 (Partial knowledge of uncertain system input gain). Let

ω ∈ Ω0 := [ωl0, ωu0],

where 0 < ωl0 < ωu0 are given known lower and upper bounds on ω.

3.2.2 Limitations in the problem formulation

Compared to (3.2) we see that the formulation (3.13) still puts some limitations on the sys-
tems considered. This section concerns this limitations and names the assumptions needed
to get from (3.2) to (3.13).

By looking at (3.13) we see that a linear time-varying system is assumed. This brings us to
the first assumption:

Assumption 3.2.4 (Linear time-varying system). The functions fx(t,x(t)), fu(t,x(t)) : R ×
Rn → Rn are linear and time-varying, according to

fx(t,x(t)) = Areal(t)x(t)
fu(t,x(t),u(t)) = Breal(t)(u(t) + σ1(t))

where Areal(t) ∈ Rn×n is the real unknown time-varying system matrix, Breal(t) ∈ Rn is the real
unknown time-varying input vector, and σ1(t) ∈ R is the input disturbance.

This gives the real system:

ẋ(t) = Areal(t)x(t) + Breal(t)(u(t) + σ1(t)), x(0) = x0 (3.14)

y(t) = CTx(t),

where x(t) ∈ Rn is the measured system state vector, u(t) ∈ R is the control signal, y(t) ∈ R
is the regulated output, and C ∈ Rn is the known constant output vector.
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Through modelling and system identification, as described in chapter 2, the identified sys-
tem (3.1) is found. We define the identified system matrix Aid, and we define the identified
input vector Bid. However, as described, the identified system matrix and input vector can
not be assumed to be the correct unknown system matrix and input vector for all the flight
conditions. To get from (3.14) to (3.13), we need to introduce some additional assumptions
on the system.

Assumption 3.2.5 (Linear relationship between Breal and Bid). The input vector Breal(t) is
constant, that is Breal(t) ≡ Breal, and there exist a constant vector Bid ∈ Rn and a constant scalar
ω ∈ R such that

Breal = Bidω.

ω is also assumed to belong to the set Ω0 := [ωl0 , ωu0 ], where 0 < ωl0 < ωu0 .

The next assumption is similar to that in [8].

Assumption 3.2.6 (Matched modelling error). There exist a matrix Aid ∈ Rn×n and a vector
θ1(t) ∈ Rn of ideal parameters such that (Aid,Breal) is controllable and

Areal(t)−Aid = Brealθ
T
1 (t).

θ1(t) is also assumed to belong to the compact convex set Θ1, that is θ1(t) ∈ Θ1.

By substituting for Areal in (3.14) using assumption 3.2.6, we get

ẋ(t) = Aidx(t) + Breal

(
u(t) + θT1 (t)x(t) + σ1(t)

)
, x(0) = x0 (3.15)

y(t) = CTx(t).

To get the desired system matrix Am, we need to design a state feedback vector that achieves
this. However, since the real input vector is unknown, we want to design the feedback vector
based on the identified input vector. Since (Aid,Breal) is controllable and Bid = Breal/ω,
(Aid,Bid) is also controllable, and there exist a vector Km ∈ Rn such that Am = Aid−BidKT

m

is Hurwitz. Thus, we introduce the control structure

u(t) = um(t) + uad(t), um(t) = −KT
mx(t), (3.16)

where Km ∈ Rn makes Am := Aid − BidKT
m Hurwitz and specifies the desired closed loop

dynamics, and uad is the adaptive component. Substituting for Breal and u(t) in (3.15) using
assumption 3.2.5 and (3.16), we get

ẋ(t) = Aidx(t) + Bidω
(
−KT

mx(t) + uad + θT1 (t)x(t) + σ1(t)
)

=
(
Aid −BidKT

mω
)

x(t) + Bid

(
ωuad + ωθT1 (t)x(t) + ωσ1(t)

)
=
(
Aid −BidKT

m + BidKT
m −BidKT

mω
)

x(t) + Bid

(
ωuad + ωθT1 (t)x(t) + ωσ1(t)

)
= Amx(t) + BidKT

m (1− ω) x(t) + Bid

(
ωuad + ωθT1 (t)x(t) + ωσ1(t)

)
y(t) = CTx(t), x(0) = x0.
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By defining

θT (t) := KT
m(1− ω) + ωθT1 (t), (3.17)

σ(t) := ωσ1(t), (3.18)

we get

ẋ = Amx(t) + Bid

(
ωuad(t) + θT (t)x(t) + σ(t)

)
, x(0) = x0 (3.19)

y = CTx(t),

which has the same structure as (3.13).

This derivation shows that when the identified input vector is equal to the real input vector,
that is ω = 1, the feedback um imposes no error on θ. Further we can see that um is not
actually needed. Omitting um would result in a larger modelling error, which would have
to be taken care of by the adaptive part of the controller, uad. However, a larger modelling
error will be disadvantageous for the design of the controller.

This derivation may also justify the use of the estimate of the unknown constant gain, ω̂, in
the design of the feedback signal. By designing

um = − 1
ω̂

KT
mx (3.20)

This design would make the error caused by the feedback signal equal to KT
m(1− ω

ω̂
) ≈ 0 for

ω̂ ≈ ω.

3.2.3 Model Reference Adaptive Control with state predictor

The theory of L1 adaptive control is based on the theory of indirect model reference adap-
tive control (MRAC). To better understand the L1-theory, this section will include a short
summary of the indirect MRAC theory, based on that in [7] and [22].

Consider the system in (3.13):

ẋ(t) = Amx(t) + B
(
ωu(t) + θTx(t) + σ(t)

)
, x(0) = x0 (3.21)

y(t) = CTx(t),

The control objective is to make the output y(t) track a given uniformly bounded piecewise
continuous input signal r(t). This will be achieved by using the ideal controller

uid(t) = 1
ω

(
−θT (t)x(t)− σ(t) + kgr(t)

)
, (3.22)

where

kg := 1
CTA−1

m B
. (3.23)

38



3.2. SISO SYSTEMS WITH MATCHED UNKNOWN PARAMETERS AND DISTURBANCE, AND UNCERTAIN SYSTEM INPUT
GAIN

This choice of controller, uid, makes y(t) track steps in r(t) with zero steady-state error, and
provides perfect cancellation of the uncertainty in (3.13). This gives the ideal system

ẋm(t) = Amxm(t) + Bkgr(t), xm(0) = x0 (3.24)

ym(t) = CTxm(t),

However, since the controller (3.22) uses the unknown parameters ω, θ(t) and σ(t), this con-
troller is not implementable. Thus, adaptation is needed to find the desired control input
u(t).

A state predictor of (3.13) is given by:

˙̂x(t) = Amx̂(t) + B
(
ω̂u(t) + θ̂T (t)x(t) + σ̂(t)

)
, x̂(0) = x0, (3.25)

ŷ(t) = CT x̂(t),

where x̂ ∈ Rn is the state of the predictor. The predictor has the same structure as (3.13) with
the unknown parameters ω, θ(t) and σ(t) replaced by their estimates ω̂, θ̂(t) and σ̂(t). The
prediction error dynamics is obtained by subtracting (3.13) from (3.25):

x̃(t) = Amx̃(t) + B
(
ω̃(t)u+ θ̃T (t)x(t) + σ̃(t)

)
, x̃(0) = 0, (3.26)

where x̃(t) := x̂(t)− x(t), ω̃(t) := ω̂(t)− ω, θ̃(t) := θ̂(t)− θ(t) and σ̃(t) := σ̂(t)− σ(t). As we
can see, (3.26) is independent of u. The adaptive law for the unknown parameters are given
by

˙̂ω(t) = ΓProj(ω̂(t),−x̃T (t)PBu(t)), ω̂(0) = ω̂0 ∈ Ω,
˙̂
θ(t) = ΓProj(θ̂(t),−x̃T (t)PBx(t)), θ̂(0) = θ̂0 ∈ Θ, (3.27)
˙̂σ(t) = ΓProj(σ̂(t),−x̃T (t)PB), σ̂(0) = σ̂ ∈ ∆,

where Γ ∈ (0,∞) is the adaptation gain, Proj( · , · ) is the projection operator and defined
in [7], appendix B. The projection operator ensures that the estimated parameters are kept
within the known conservative bounds. ω̂0, θ̂0 and σ̂0 is the best possible guess on the
estimates. P = PT > 0 solves the algebraic Lyapunov equation

AT
mP + PAm = −Q (3.28)

for arbitrary Q = QT > 0. Consider the Lyapunov function candidate:

V
(
x̃(t), ω̃(t), θ̃(t), σ̃(t)

)
= x̃T (t)Px̃(t) + 1

Γ

(
ω̃2(t) + θ̃T (t)θ̃(t) + σ̃2(t)

)
. (3.29)

The time-derivative V̇ (t) of V
(
x̃(t), ˜θ(t)

)
along the system trajectories (3.26)-(3.27) is, [22]

V̇ (t) = −x̃T (t)Qx̃(t)− 2
Γ

(
θ̃
T (t)θ̇T (t) + σ̃(t)σ̇(t)

)
. (3.30)
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From this inequality, we obtain the uniform bound, [22]

‖x̃(t)‖ ≤ γ0√
Γ
, ∀ t ≥ 0, (3.31)

where

γ0 :=
√

θmi
λmin(P ) , θmi := 4θ2

max + 4σ2
b + (ωmax − ωmin)2 + 4λmax(P )

λmin(Q) (θmaxdθ + σbdσ), (3.32)

and

θmax := max
θ∈Θ
‖θ‖, (3.33)

However, since we have not specified u(t) we can not conclude convergence of x̃(t) to zero.
x and x̂ may both diverge at the same rate.

Based on the ideal controller (3.22), by replacing the real unknown parameters with the
estimated ones, we get the controll law

u(t) = 1
ω̂

(
−θ̂

T (t)x(t)− σ̂(t) + kgr(t)
)
, (3.34)

with the estimates updated according to (3.27). If we substitute this in (3.25), we get

˙̂x(t) = Amx̂(t) + Bkgr(t), x̂(0) = x0, (3.35)

ŷ(t) = CT x̂(t),

which replicates the bounded ideal system (3.24). Since x(t) = x̂(t)− x̃(t) and x̂(t) replicates
the bounded ideal system (3.24), x(t) is uniformly bounded. The architecture of the MRAC
with state predictor is given in figure 3.1 from [22].

Figure 3.1: Closed loop MRAC architecture with state predictor, from [22].
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3.2.4 Why L1 adaptive control?

From (3.31) we get the upper bound on the prediction error

‖x̃‖ ≤
√

θmi
λmin(P )Γ , ∀ t ≥ 0. (3.36)

This shows that the tracking error can be arbitrary reduced by increasing the adaptation
gain. This holds for all t ≥ 0, also in the transient phase. However, from the choice of control
law (3.27) and (3.34) we see that large adaptive gains introduce high-gain feedback control,
which may lead poor robustness and rapid oscillations on the control signal. Another prob-
lem with the MRAC structure is when the adaptation is within the same frequency range
as the closed loop dynamics. Then these two processes may interfere and it is difficult to
know if errors in the parameters are handled by the adaptation or by the controller. Thus,
the tuning of MRAC represents a major challenge.

The idea of the L1 controller is to decouple adaptation from control. Then it is possible
to introduce high adaptation gain to give fast adaptation of the unknown parameters. The
robustness is resolved via conventional methods from classical and robust control. In this
way, the L1 adaptive controller approximates a non-adaptive linear controller. The next
sections show these theoretical results.

3.2.5 L1 adaptive control architecture

Consider the system in (3.13). The control objective is to design a full-state feedback L1
adaptive controller to ensure that y(t) tracks a given piecewise-continuous reference signal
r(t) with quantifiable performance bounds.

State predictor

Just as in the MRAC design, we consider the following state predictor:

˙̂x(t) = Amx̂(t) + B
(
ω̂(t)uad + θ̂T (t)x(t) + σ̂(t)

)
, x̂(0) = x0 (3.37)

ŷ(t) = CT x̂(t).

This has the same structure as (3.13) with the unknown parameters replaced by the adaptive
estimates.
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Adaptation laws

The estimates are again updated according to

˙̂ω(t) = ΓProj(ω̂(t),−x̃T (t)PBuad(t)), ω̂(0) = ω̂0 ∈ Ω,
˙̂
θ(t) = ΓProj(θ̂(t),−x̃T (t)PBx(t)), θ̂(0) = θ̂0 ∈ Θ, (3.38)
˙̂σ(t) = ΓProj(σ̂(t),−x̃T (t)PB), σ̂(0) = σ̂ ∈ ∆,

where x̃(t) := x̂(t) − x(t), Γ ∈ R+ is the adaptation rate, and P = P T > 0 is the solution
of the algebraic Lyapunov equation (3.28) for arbitrary Q = QT > 0. When the projection
operator is to be implemented, we replace the sets Ω0 and ∆0 by Ω := [ωl, ωu] and ∆, defined
by

∆0 < ∆, 0 < ωl < ωl0 < ωu0 < ωu. (3.39)

This definition is made due to the extra error a time delay would impose on the system, and
is used in [7] in the time-delay analysis. [7] derives an analytical expression, amongst others
dependent on the time delay, to find a conservative bound, ∆. This is however beyond the
scope of this text, and the projection bounds are assumed chosen large enough to include all
possible error. See [7] for more on this topic.

Control law

Just as in the MRAC control design, we want the control signal to compensate for the un-
certainties, ω, θ and σ, and track the reference, r(t), with zero steady-state error. As in the
design presented in [1], we want to filter the input signal to decouple adaptation from con-
trol. Intuitively, it would be reasonable to suggest a control law where the lowpass filter is
directly applied to the control signal, that is:

uf (s) = Cf (s)u(s),

where u(s) is the Laplace transform of

u(t) = 1
ω̂(t)(kgr(t)− θ̂

T
x(t)− σ̂(t)), (3.40)

and Cf (s) is a lowpass filter. However, in the presence of the unknown input gain, this can
not be done directly. The following explanation to why this is problematic follows that in
[22]. Let cf (t) be the impulse response of Cf (s). Then

uf (t) = cf (t) ∗ u(t) = cf (t) ∗
(kgr(t)− θ̂x(t)− σ̂(t)

ω̂(t)

 , (3.41)

where ∗ is the convolution operator. Substituting for uad in the predictor (3.37), using (3.41),
we get

˙̂x(t) = Amx̂(t) + B

ω̂(t)cf (t) ∗
(kgr(t)− θ̂

T
x(t)− σ̂(t)

ω̂(t)

+ θ̂T (t)x(t) + σ̂(t)
 (3.42)
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As we can see from this expression, ω̂ can not be cancelled due to the convolution operator.
Since we introduce fast adaptation, ω̂ may change rapidly which may result in unpredictable
consequences on the systems performance [22].

Instead, the the L1 adaptive control law is given as

uad(s) = −kD(s) (η̂(s)− kgr(s)) , (3.43)

where r(s) and η̂ are the Laplace transforms of r(t) and η̂(t) := ω̂(t)uad(t) + θ̂T (t)x(t) + σ̂(t)
respectively, kg := −1/(CTA−1

m B, k > 0 is a feedback gain and D(s) a strictly proper transfer
function leading to a strictly proper stable

C(s) := ωkD(s)
1 + ωkD(s) ∀ ω ∈ Ω0, (3.44)

with DC gain C(0) = 1. In the approach presented in (3.43) ω̂ can be viewed as a time-
varying gain of the filter (3.44), which compensates for ω̂ in (3.42).

The choice D(s) = 1/s and k>0 results in the exponentially stable strictly proper transfer-
function

C(s) = ωk

s+ kω
, (3.45)

similar to the filter considered in the project report. As in [1], we define

L := max
θ∈Θ
‖θ‖1, H(s) := (sI−Am)−1B, G(s) := H(s)(1− C(s)). (3.46)

The L1 adaptive controller is defined by combining the feedback controller defined in (3.16),
the predictor (3.37), the adaptation rule (3.38) and the adaptive control law (3.43) subject to
the L1-norm condition

λ := ‖G(s)‖L1‖L‖ < 1. (3.47)

The architecture of the L1 adaptive controller for systems with uncertain input gain is found
in figure 3.2 from [22].

3.2.6 Theoretical results

The following part presents the main theoretical results for the L1 adaptive controller con-
sidered in this section. The proofs are mostly omitted in this text, but can be found in [7].

Prediction error

Subtracting the system dynamics (3.13) from the predictor (3.37), we get the prediction error

˙̂x(t) = Amx̂(t) + B(ω̃(t)u(t) + θ̃T (t)x(t) + σ̃(t)), x̃(0) = 0, (3.48)

where θ̃(t) := θ̂(t) − θ(t), σ̃ := σ̂(t) − σ(t), and ω̃(t) := ω̂(t) − ω. The following result holds
for the prediction error, [7]
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Figure 3.2: L1 adaptive control architecture, from [22].

Lemma 3.2.1. The prediction error x̃(t) is uniformly bounded,

‖x̃‖L∞ ≤
√

θm
λmin(P)Γ , (3.49)

where

θm := 4 max
θ∈Θ
‖θ‖2 + 4∆2 + (ωu − ωl)2 + 4λmax(P)

λmin(Q)

(
dθ max

θ∈Θ
‖θ‖+ dσ∆

)
. (3.50)

We can see that by increasing the adaptation gain, the bound on the prediction error can be
made arbitrarily small.

Performance

To investigate the best theoretically possible control for the L1 adaptive controller, we again
introduce the reference system. This is the non-adaptive version of the L1 adaptive con-
troller, where all uncertainties are assumed known. In this case, the controller (3.43) takes
the form:

uref (s) = −kD(s)(ηref (s) + ωuref (s)− kgr(s)), (3.51)

where r(s) and ηref (s) are the Laplace transforms of r(t) and ηref (t) := θT (t)xref (t) + σ(t)
respectively. Solving for uref (s) gives

uref (s) = kD(s)
1 + kD(s)ω (kgr(s)− ηref (s)) (3.52)

= 1
ω
C(s)(kgr(s)− ηref (s)), (3.53)

where C(s) is defined in (3.44). By this, we see that the control formulation (3.43) and the
definition (3.44) of the filter can resolves the problem imposed by the convolution in (3.42).
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Further, we see that the reference controller equals the filtered version of the ideal MRAC-
controller. However, as opposed to the idel MRAC-controlelr, the reference controller only
compensates for the uncertainties within the bandwidth of C(s).

We now consider the reference system

ẋref (t) = Amxref (t) + B
(
ωuref (t) + θT (t)xref (t) + σ(t)

)
,xref (0) = x0,

uref (s) = C(s)
ω

(kgr(s)− ηref (s)) , (3.54)

yref (t) = CTxref (t).
In the frequency domain, the closed loop reference system can be written as

xref (s) = H(s)C(s)kgr(s) +G(s)ηref (s) + xin, (3.55)

where xin(s) := (sI−Am)−1x0 is the Laplace transform of the ideal response tue to the initial
condition x0. We also recognise H(s) as the transfer function from uref to xref and G(s) as
the transfer function from the uncertainties ηref to xref . From (3.55) we get the upper bound

‖xref τ‖L∞ = ‖H(s)C(s)kg‖L1‖r‖L∞ + ‖G(s)‖L1‖ηref τ‖L∞ + ‖xin‖L∞ . (3.56)

An upper bound on ηref is given by

‖ηref τ‖L∞ ≤ L‖xref τ‖L∞ + ‖στ‖L∞ = L‖xref τ‖L∞ + ∆, (3.57)

where L is defined in (3.46). Now, assuming that the L1-norm condition (3.47) holds, we get
by substituting an solving for ‖xref τ‖L∞ :

‖xref τ‖L∞ = ‖H(s)C(s)kg‖L1‖r‖L∞ + ‖G(s)‖L1∆ + ‖xin_L∞
1− ‖G(s)‖L1L

. (3.58)

This result motivates the need for the L1-norm condition, since it is the key to prove stability
of the reference system. This result also proves the following following result, [7]

Lemma 3.2.2. If k and D(s) verify the L1-norm condition in (3.47), the closed-loop reference system
in (3.54) is BIBS stable with respect to r(t) and x0

Further, the following theorem from [7] gives the relationship between the nonimplementable
reference system and the implementable L1 adaptive controller.

Theorem 3.2.1. Given the system in (3.13) and the L1 adaptive controller defined via (3.37), (3.38),
and (3.43), subject to the L1-norm condition in (3.47), we have

‖xref − x‖L∞ ≤
γ1√

Γ
, ‖uref − u‖L1 ≤

γ2√
Γ
, (3.59)

where

γ1 := ‖C(s)‖L1

1− ‖G(s)‖L1L

√
θm

λmin(P ) ,

γ2 :=
∥∥∥∥∥C(s)
ω

∥∥∥∥∥
L1

Lγ1 +
∥∥∥∥∥H1(s)

ω

∥∥∥∥∥
L1

√
θm

λmin(P ) , (3.60)

and H1(s) = C(s) 1
cT0 H(s)c

T
0 was defined in (3.6)
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We see that by increasing the adaptation gain Γ, the system controlled by the L1 adaptive
controller can get its states and the control input arbitrarily close to the reference system’s
states and control input. Since the reference system represents the best possible performance
possible, we thus conclude that a high adaptation gain is desired.

Robustness

In linear system theory, the two most common measures of robustness is the phase margin
and the gain margin. These stability margins can be found from the bode plot of the system.
Equivalently to the phase and gain margin, we can measure the robustness of a system by
the time delay margin. The time delay margin is defined as the amount of delay the system
can tolerate before it becomes unstable.

When the adaptation gain Γ is large, the L1 adaptive controller defined in section 3.2.5 ap-
proximates the non-adaptive reference system (3.54). Thus, in the case of fast adaptation, we
can study the robustness of the L1 controller by studying (3.54), but since this is a nonlinear
closed-loop system, linear theory can not be used. However, [7] states that the following
loop transfer function can be used to study the robustness of (3.54):

Lo(s) = C(s)
1− C(s)(1 + θT H̄(s)), (3.61)

where

H̄(s) := (sI−Am −BθT )−1B

The time delay margin of (3.61) is given by

T = φm
ωgc

, (3.62)

where φm is the phase margin, found from the bode plot, and ωgc is the gain crossover fre-
quency. This time delay gives a guaranteed lower bound on the time delay margin of the
reference system (3.54). Equivalent to Corollary 2.2.1 in [7] we can state the following:

Corollary 3.2.1. Subject to (3.47), and τ < T , if Γ and ∆ are selected appropriately large, the closed
loop system in (3.13), with the input from the controller defined by (3.37), (3.38) and (3.43) delayed
by τ seconds, is stable.

Thus, as long as the time delay is smaller than the time delay margin found from (3.61), the
L1 adaptive controller provides a stable system.

3.3 Design challenges: Trade-off between robustness and per-
formance

The previous section presented the L1 adaptive control strategy and the corresponding the-
oretical results. This chapter sums up the main design challenges. Further, we will see
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that the design of an L1 adaptive controller imposes a trade-off between robustness and
performance. The reason for including this section before the final control architecture is
introduced, it that it is easier to understand the theory behind the principles when consid-
ering the more simpler systems, while the same principals are valid for the more advanced
architectures.

From theorem 3.2.1 we know that by increasing the adaptation gain, the controlled system
can follow the reference system arbitrarily close. Thus, the adaptation gain should be chosen
as large as the cpu and sample rate permits. The case of a limited sampling rate is investi-
gated in chapter 4. By choosing a large adaptation gain, the control objective is reduced to
the selection of km and C(s) such that the reference system has the desired response.

To further investigate the separation effect of the filter and its relationship to the adaptation
gain Γ we consider the following. From (3.21) and (3.43) it follows that

x(s) = kgH(s)C(s)r(s) +H(s)θTx(s)−H(s)C(s)η̂(s) + xin(s), (3.63)

and the state predictor can be rewritten as

x̂(s) = kgH(s)C(s)r(s) +H(s)(1− C(s))η̂(s) + xin(s) (3.64)

This shows that the low-frequency part of the parameter estimate C(s)η̂(s) goes to the sys-
tem state, while the high-frequency part (1 − C(s))η̂(s) goes to the state predictor. Since
we only want the system to affected by the low frequency part of the parameter estimate,
we need to chose Γ large enough to produce frequencies beyond the bandwidth of C(s).
The same goes for the control input, defined by (3.43), in which we want to compensate for
the low-frequency component of the parameter update. Choosing Γ too low, will make the
update frequencies lie inside the bandwidth of C(s), and may introduce oscillations in the
control input.

Further, the results from [1], given in (3.10)-(3.12), show that by minimising λ := ‖G(s)‖L1L,
the difference between the reference system and the design system can be made arbitrarily
small. Since C(s) is a low-pass filter and H(s) is a low-pass system, G(s) = H(s)(1 − C(s))
can be viewed as a cascade of a low-pass system H(s) and a high-pass system (1 − C(s)).
Thus, either decreasing the bandwidth of H(s) or increasing the bandwidth of C(s) may
make ‖H(s)(1−C(s))‖L1 arbitrary small, and make the controlled system follow the design
system. The control objective is now reduced to the selection of km and C(s) such that
C(S)CTH(s), which is independent of the uncertainties, has the desired transient and steady
state performance, while simultaneously keeping the value of λ small. In general, km is
selected such that Am specifies the desired closed loop response, while C(s) is designed
such that the uncertainties within the desired frequencies are compensated for, and such
that the controller reacts fast enough to track the desired reference signals.

As we can see, choosing a large bandwidth for the filter C(s) is beneficial for performance.
Another proof of this is by considering the reference control signal in (3.54). Letting k →∞
we get C(s) → 1 and thus the reference controller perfectly cancels the uncertainties, and
becomes the ideal system in (3.24). However, for C(s) = 1, H1(s) is improper, and thus its
L1-norm does not exist. This implies that the bound on the controller in theorem 3.2.1 is lost,
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and we get the same problems as discussed in section 3.2.4. Further, from (3.61) we see that
increasing the bandwidth of C(s)makes the time delay margin go to zero.

As we can see, the choice of the filter C(s) controls the trade-off between robustness and
performance. The optimal design of C(s) with respect to robustness and performance is
the main design challenge of the L1 adaptive control theory. There is different methods for
optimizing C(s) based on robustness and performance specifications. [7] chapter 2.6 and
[23] concerns and provide design guidelines for this topic. However, this problem is still
largely open and hard to address [7].

3.4 SISO systems with matched nonlinear uncertainties

In this section the L1 adaptive control strategy and the theoretical results for systems with
nonlinear matched uncertainties are presented. This a new step towards the final goal of
controlling systems on the general form of (3.2). In the design and theoretical analysis of
the L1 adaptive controller considered in this section, a lot of definitions are made, and it is
challenging to get a good grip on the results. Thus, a section summing up the main results
is included. As before, the L1 adaptive controller consists of a state predictor, an adaptive
law and a control law, subject to an L1-norm condition.

3.4.1 Problem formulation

In this section we consider systems on the form:

ẋ(t) = Amx(t) + B(ωuad(t) + f(t,x(t))), x(0) = x0 (3.65)

y(t) = CTx(t),

where x(t) ∈ Rn is the measured system state; Am ∈ Rn×n is a known Hurwitz matrix spec-
ifying the desired-closed loop dynamics; B,C ∈ Rn are known constant vectors; uad(t) ∈ R
is the control input; ω ∈ R is an unknown constant parameter with known sign, represent-
ing uncertainty in the system input gain; f(t,x) : R × Rn → R is an unknown nonlinear
map continuous in its arguments; and y(t) ∈ R is the regulated output. The initial states are
assumed to be inside an arbitrarily large known set, that is ‖x0‖∞ ≤ ρ0 < ∞ with known
ρ0 > 0.

Assumptions

To prove the theoretical results of this section, some assumptions to the systems in (3.65)
have to be made.

Assumption 3.4.1 (Partial knowledge of uncertain system input gain). Let

ω ∈ Ω := [ωl, ωu],
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where 0 < ωl < ωu are given known conservative lower and upper bounds on ω.
Assumption 3.4.2 (Uniform boundedness of f(t,0)). There exist B > 0 such that

|f(t, 0)| ≤ B, ∀ t ≥ 0.

Assumption 3.4.3 (Semiglobal uniform boundedness of partial derivatives). For arbitrary
δ > 0 there exist dfx(δ) > 0 and dft(δ) > 0 independent of time, such that for arbitrary ‖x‖∞ ≤ δ,
the partial derivatives of f(t, x) are piecewise-continuous and bounded,∥∥∥∥∥δf(t, x)

δx

∥∥∥∥∥
1
≤ dfx(δ),

∣∣∣∣∣δf(t, x)
δt

∣∣∣∣∣ ≤ dft(δ),

3.4.2 Limitations in the problem formulation

Compared to (3.2) we see that the formulation (3.104) still puts some limitations on the sys-
tems considered. This section concerns this limitations and names the assumptions needed
to get from (3.2) to (3.104).

Now, as we consider systems with nonlinear dynamics with respect to time and state, we do
not have to assume a linear function fx( · ), we do however need to assume a linear function
fu( · ):
Assumption 3.4.4 (Linear time-varying input function). The function fu(t,x(t),u(t)) : R ×
Rn → Rn is linear and time-varying, according to

fu(t,x(t),u(t)) = Breal(t)(u(t) + σ1(t))

where Breal(t) ∈ Rn is the real unknown time-varying input vector, and σ1(t) ∈ R is the input
disturbance.

This gives the new real system

ẋ(t) = fx(t,x(t)) + Breal(t)(u(t) + σ1(t)) (3.66)

y(t) = CTx(t),

where x(t) ∈ Rn is the measured system state vector, u(t) ∈ R is the control signal, y(t) ∈ R
is the regulated output, Breal(t) ∈ Rn is the real unknown time-varying input vector, C ∈ Rn

is the known constant output vector, fx(t,x(t)) : R × Rn → Rn is the unknown nonlinear
map, and σ(t) ∈ R is the unknown input disturbance.

Through modelling and system identification, as described in chapter 2, the identified lin-
earised system (3.1) is found. Again, we define the identified system matrix Aid, and we
define the identified input vector Bid. As discussed, we know that the identified system ma-
trix and input vector will not be able to model the nonlinear system correctly. To get from
(3.66) to (3.65), we again need to make some additional assumptions.
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Assumption 3.4.5 (Linear relationship between Breal and Bid). The input vector Breal(t) is
constant, that is Breal(t) ≡ Breal, and there exist a constant vector Bid ∈ Rn and a constant scalar
ω ∈ R such that

Breal = Bidω.

ω is also assumed to belong to the set Ω := [ωl, ωu], where 0 < ωl < ωu.
Assumption 3.4.6 (Matched modelling error). There exist a matrix Aid ∈ Rn×n and a non-
linear function f1(t,x(t)) : R × Rn → R, continuous in its arguments, such that (Aid,Breal) is
controllable, and

fx(t,x(t))−Aidx = Brealf1(t,x(t)).

By substituting for fx in (3.66) using assumption 3.4.6, we get

ẋ(t) = Aidx + Breal (u(t) + f1(t,x(t)) + σ1(t)) , x(0) = x0 (3.67)

y(t) = CTx(t),
As before, and based on the same argumentation, we introduce the control structure

u(t) = um(t) + uad(t), um(t) = −KT
mx(t), (3.68)

where Km ∈ Rn makes Am := Aid − BidKT
m Hurwitz and specifies the desired closed loop

dynamics, and uad is the adaptive component. Substituting for Breal and u(t) in (3.67) using
assumption 3.4.5 and (3.68), we get

ẋ(t) = Aidx(t) + Bidω
(
−KT

mx(t) + uad + f1(t,x(t)) + σ1(t)
)

=
(
Aid −BidKT

mω
)

x(t) + Bid (ωuad + ωf1(t,x(t)) + ωσ1(t))
= Amx(t) + BidKT

m (1− ω) x(t) + Bid (ωuad + ωf1(t,x(t)) + ωσ1(t))
y(t) = CTx(t), x(0) = x0.

By defining

f(t,x(t)) := ωf1(t,x(t)) + KT
m(1− ω)x(t) + ωσ1(t), (3.69)

we get

ẋ(t) = Amx(t) + Bid (ωuad + f(t,x(t))) ,x(0) = x0 (3.70)

y(t) = CTx(t),
which has the same structure as (3.65).

3.4.3 L1 adaptive control architecture

Consider the system in (3.66):

ẋ(t) = Amx(t) + B(ωuad(t) + f(t,x(t))), x(0) = x0 (3.71)

y(t) = CTx(t),
As before, the control objective is to design a full-state feedback L1 adaptive controller
which ensure that y(t) tracks a given bounded piecewise-continuous reference signal r(t)
with quantifiable performance bounds.
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State predictor

Again we need to specify a state predictor as a reference to the system responce. To be able
to find adaptive laws for systems specified by (3.65) we need to parametrize the nonlinear
function f(t,x(t)). We consider the following state predictor:

˙̂x = Amx̂(t) + B(ω̂(t)uad(t) + θ̂(t)‖x(t)‖∞ + σ̂), x̂0 = x0,
ŷ = CT x̂(t), (3.72)

where ω̂ ∈ R, and σ̂ ∈ R are adaptive estimates. This semi-linear formulation is similar
to the linear formulation considered in the previous section. The reason for this choice of
predictor will be clear shortly.

Adaptive Laws:

Similar to the previous section, the estimates are updated according to

˙̂ω(t) = ΓProj(ω̂(t),−x̃T (t)PBuad(t)), ω̂(0) = ω̂0 ∈ Ω,
˙̂
θ(t) = ΓProj(θ̂(t),−x̃T (t)PB‖x(t)‖∞), θ̂(0) = θ̂0 ∈ Θ, (3.73)
˙̂σ(t) = ΓProj(σ̂(t),−x̃T (t)PB), σ̂(0) = σ̂ ∈ ∆,

where x̃ := x̂(t)− x(t), Γ ∈ R+ is the adaption gain, while P = PT > 0 is the solution to the
agebraic Lyapunov equation AT

mP + PAm = −Q, for arbitrary Q = QT > 0. The projection
operator ensures that ω̂(t) ∈ Ω, θ̂(t) ∈ Θ := [−θb, θb], |σ̂(t)| ≤ ∆, where θb and ∆ are defined
as

θb := dfx(ρ), ∆ := B + ε, (3.74)

where ρ is defined in (3.79) and ε > 0.

Control law

As before, we want the control signal to compensate for the uncertainties and track the
reference r(t) with zero steady-state error. Similar to (3.43) the control law is given by

uad(s) = −kD(s)(η̂(s)− kgr(s)), (3.75)

where η̂(s) and r(s) are the Laplace transforms of η̂(t) := ω̂(t)uad + θ̂(t)‖x(t)‖∞ + σ̂(t) and
r(t) respectively, and kg := −1/CTA−1

m B. As in the previous section, k > 0 is a feedback gain
and D(s) is a strictly proper transfer function leading to a strictly proper stable

C(s) := ωkD(s)
1 + ωkD(s) ∀ ω ∈ Ω0, (3.76)

with DC gain C(0) = 1.
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L1-norm condition

Now the sufficient L1-norm condition for stability is presented. This require some defini-
tions.

Since Am is Hurwitz, ‖xin‖L∞ ≤ ρin [7], where ρin := ‖s(sI − Am)−1‖L∞ρ0, xin(s) := (sI −
Am)−1x0 as before, and ρ0 is previously defined as the bound on x0. Further, we define

Lδ := δ̄(δ)
δ
dfx(δ̄(δ)), δ̄(δ) := δ + γ̄1, (3.77)

where dfx( · ) was introduced in assumption 3.4.2 and γ̄ > 0 is an arbitrary positive constant.

To be able to prove stability and the performance bounds, k and D(s) also need to ensure
that for a given ρ0, there exist ρr > ρin, such that the following L1-norm condition can be
met:

‖G(s)‖L1 <
ρr − ‖H(s)C(s)kg‖L1‖r‖L∞ − ρin

Lρrρr +B
, (3.78)

where G(s) := H(s)(1− C(s)), H(s) := (SI− Am)−1b.

The L1 adaptive controller is defined by combining the feedback controller defined in (3.68),
the predictor (3.72), the adaptation rule (3.73) and the adaptive control law (3.75) subject to
the L1-norm condition in (3.78).

3.4.4 Theoretical results

The following part presents the main theoretical results for the L1 adaptive controller con-
sidered in this section. The proofs are ommitted in this text, but can be found in [7].

Definitions

Before we continue, we make some definitions to make the following text easier to read. Let

ρ := ρr + γ̄1, (3.79)

where ρr and γ̄1 were introduced in (3.78) and (3.77) respectively, and we let γ1 be given by

γ1 := ‖C(s)‖L1

1− ‖G(s)‖L1Lρr
γ0 + β, (3.80)

where β and γ0 are arbitrary small positive constants such that γ1 ≤ γ̄1. Further, let

ρu := ρur + γ2, (3.81)
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where ρur and γ2 are defined as

ρur :=
∥∥∥∥∥C(s)
ω

∥∥∥∥∥
L1

(|kg|‖r‖L∞ + Lρrρr +B). (3.82)

γ2 :=
∥∥∥∥∥C(s)
ω

∥∥∥∥∥
L1

Lρrγ1 +
∥∥∥∥∥H1(s)

ω

∥∥∥∥∥
L1

γ0, (3.83)

where H1(s) = C(s) 1
cT0 H(s)c

T
0 was defined in (3.6).

Equivalent semi-linear time-varying system

Next we show how the nonlinear system can be transformed to an equivalent semi-linear
time varying system. This result supports the choice of state predictor and adaptation laws.
Subject to assumption 3.4.2 and 3.4.3, the following holds, [7]

Lemma 3.4.1. Let x(t) be a continuous and (piecewise)-differentiable function of t for t ≥ 0. If
‖xτ‖L∞ ≤ ρ and ‖ẋτ‖L∞ ≤ dx for τ ≥ 0, where ρ and dx are some positive constants, then there
exist continuous θ(t) and σ(t) with (piecewise)-continuous derivative, such that for all t ∈ [0, τ ]

f(t,x(t)) = θ(t)‖x(t)‖∞ + σ(t), (3.84)

where

|θ(t)| < θρ, |θ̇| < dθ,
|σ(t)| < σb, |σ̇| < dσ,

(3.85)

with θρ := dfx(ρ), σb := B + ε, where ε > 0 is an arbitrary constant, and dθ, dσ are computable
bounds.

Since

‖x0‖∞ ≤ ρ0 < ρ, u(0) = 0,

and x(t), u(t) are continuous, there will always exist τ such that

‖xτ‖L∞ ≤ ρ, ‖uτ‖L∞ ≤ ρu (3.86)

Thus, it follows from Lemma 3.4.1 that the system in (3.71) can be rewritten over t ∈ [0, τ ]
for arbitrary τ ≥ 0 as a semi-linear time-varying system:

ẋ = Amx(t) + B(ωu(t) + θ(t)‖x(t)‖∞ + σ(t)), x(0) = x0,
y = CTx(t), (3.87)

with the unknown parameters bounded according to

|θ(t)| < θb, |σ| < ∆, ∀t ∈ [0, τ ]. (3.88)

|θ̇(t)| < dθ(ρ, ρu), |σ̇| < dσ(ρ, ρu), ∀t ∈ [0, τ ], (3.89)

where dθ(ρ, ρu) > 0 and dσ(ρ, ρu) > 0 being the bounds specified by Lemma 3.4.1.
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Prediction error

From (3.72) and (3.87) we get that over [0, τ ] the prediction error dynamics can be written as

˙̃x(t) = Amx̃(t) + B
(
ω̃(t)u(t) + θ̃(t)‖x(t)‖∞ + σ̃(t)

)
, x̃(0) = 0, (3.90)

where

ω̃(t) := ω̂(t)− ω, θ̃(t) := θ̂(t)− θ(t), σ̃(t) := σ̂ − σ(t) (3.91)

The following result hold for the prediction error, [7]

Lemma 3.4.2. For the system in (3.90), if u(t) is continuous, and moreover the following bounds
hold:

‖xτ‖L∞ ≤ ρ, ‖uτ‖L∞ ≤ ρu, (3.92)

then

‖x̃τ‖L∞ ≤

√√√√ θm(ρ, ρu)
λmin(P )Γ (3.93)

where

θm(ρ, ρu) := 4θ2
b + 4∆2 + (ωu − ωl)2 + 4λmax(P )

λmin(q) (θbdθ(ρ, ρu) + ∆dσ(ρ, ρu)). (3.94)

Performance

Again, we consider the reference system which specifies the best theoretically possible L1
adaptive control result.

ẋref (t) = Amxref (t) + B (ωuref (t) + f(t,xref (t))) , xref (0) = x0,

uref (s) = C(s)
ω

(kgr(s)− ηref (s)) , (3.95)

yref (t) = CTxref (t)

where ηref (s) is the Laplace transform of the signal ηref (s) := f(t, xref (t)). The following
result holds for the stability of the reference system [7]

Lemma 3.4.3. For the closed-loop reference system in (3.95), subject to the L1-norm condition in
(3.78), if

‖x0‖∞ ≤ ρ0

then

‖xref‖L∞ < ρr, (3.96)
‖uref‖L∞ < ρur, (3.97)

where ρr and ρur were introduced in (3.78) and (3.82) respectively.
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The following theorem is the main theoretical result of this section, and gives the relation-
ship between the adaptation gain, the prediction error, and the performance of the controller
relative to the reference system. The proof is found in [7].

Theorem 3.4.1. Consider the closed-loop reference system in (3.95) and the closed-loop system con-
sisting of the system in (3.71) and L1 adaptive controller in (3.72), (3.73) and (3.75) subject to the
L1-norm condition (3.78). If the adaptive gain is chosen to verify the design constraint

Γ ≥ θm(ρ, ρu)
λmin(P )γ2

0
, (3.98)

then we have

‖x̃‖L∞ ≤ γ0, (3.99)
‖xref − x‖L∞ ≤ γ1, (3.100)
‖uref − u‖L∞ ≤ γ2, (3.101)

where γ1 and γ2 are as defined in (3.80) and (3.83), respectively.

Remarks

First, consider the L1-norm condition in (3.78). This slightly more complex formulation,
as compared to the L1- norm condition in (3.47), is due to the assumption of semiglobal
boundedness of the partial derivatives of f(t,x(t)) in assumption 3.4.2. If f(t,x(t)) has a
uniform bound for the partial derivative with respect to x, that is, ‖ δf

δx‖ ≤ dfx = L for all
x ∈ R, then

lim
ρr→∞

ρr − ‖H(s)C(s)kg‖L∞ − ρin
Lρr +B

= 1
L
. (3.102)

Thus, the L1-norm condition in (3.78) changes to

‖G(s)‖L1L < 1, (3.103)

which is the same as the L1-norm condition (3.47), considered in the previous section.

From theorem 3.4.1 we see that we can achieve an arbitrarily small prediction error γ0 by
increasing the adaptation gain Γ. From (3.80) and (3.83) we see that by minimising γ0, we
can achieve arbitrarily small performance bounds γ1 and γ2 simultaneously. Thus, we can
achieve arbitrary close tracking performance for both the output and the input signal simul-
taneously, both in transient and steady-state, by increasing the adaptation gain.

The theory on L1 adaptive control include no analytical bound on the time delay-margin for
nonlinear systems, such as the result presented in the previous section. By letting k →∞ and
thus C(s) → 1, we again see that the reference controller cancels the uncertainties perfectly,
and equals the ideal system. However as before, setting C(s) = 1 takes away the uniform
bound on the control signal.
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3.5 MIMO systems with unmatched nonlinear uncertainties

In this section, the L1 adaptive control strategy and the theoretical results for general nonlin-
ear systems are presented. This is the final goal for theL1 adaptive control design considered
in this text. The design and the theory presented in this section is quite similar to the design
and theory presented in the previous section. Until now, all the uncertainties considered
has been assumed matched. This assumption imposes major limitations to the systems con-
sidered. This section shows how the L1 adaptive controller can be redesigned to cope with
unmatched uncertainties. Further, the design is made for multivariable systems, which is
important for the lateral model. With this design we will see that we only need to make
some minor assumptions on the system in (3.2), and we thus achieve the final goal of this
text. The problem formulation considered in this section is not explicitly described in [7],
but is based on the theory presented there. All the results presented in this section can be
reformulated without any loss of generality, such that the proofs in [7] can be used.

3.5.1 Problem formulation

In this section, we consider systems on the form:

ẋ(t) = Amx(t) + Bmωuad(t) + f(t,x(t)), x(0) = x0 (3.104)

y(t) = CTx(t),

where x(t) ∈ Rn is the measured system state; Am ∈ Rn×n is a known Hurwitz matrix
specifying the desired-closed loop dynamics; Bm ∈ Rn×m is a known full-rank constant
matrix, (Am,Bm) is observable; C ∈ Rn×m is a known full-rank constant matrix, (Am,C)
is observable; uad(t) ∈ Rm is the control input (m ≤ n); ω ∈ Rm×m is the uncertain system
input gain matrix; f(t,x) : R × Rn → Rn is an unknown nonlinear map continuous in its
arguments; and y(t) ∈ Rm is the regulated output. The initial states are assumed to be inside
an arbitrarily large known set, that is ‖x0‖∞ ≤ ρ0 <∞with known ρ0 > 0.

Again we consider the system (3.2), now for multiple inputs and outputs. First, we need to
make a minor assumptions on fu( · ).

Assumption 3.5.1 (Linear relationship with respect to u). The function fu(t,x(t),u(t)) : R×
Rn × Rm → Rn is linear and time-varying with respect to u, according to

fu(t,x(t),u(t)) = Breal(t,x(t))u(t),

where Breal(t,x(t)) ∈ Rn×m is the real unknown time-varying input vector.

If the controller can deal with time-varying Breal-matrix, most cases are probably covered
by this formulation. The new real system formulation becomes:

ẋ(t) = fx(t,x(t)) + Breal(t,x(t))u(t) (3.105)

y(t) = CTx(t),
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where x(t) ∈ Rn is the measured system state vector, u(t) ∈ Rm is the control signal, y(t) ∈
Rm is the regulated output, Breal(t,x(t)) ∈ Rn×m is the real unknown input vector, C ∈ Rn×m

is the known constant output vector, and fx(t,x(t)) : R×Rn → Rn is the unknown nonlinear
map.

Through modelling and system identification, as described in chapter 2, The linearised sys-
tem (3.1) is found. Again, we define the identified system matrix Aid, and we define the
identified input vector Bid. We need that (Aid,Bid) is controllable. As before, the identified
system matrix and input vector will not be able to model the nonlinear system correctly.
However, unlike the previous sections we do not need to make any assumptions to get from
the real system (3.105) to the starting point for the L1 theory (3.104). It is sufficient with some
definitions. First we define:

f̃x(t,x(t)) := fx(t,x(t))−Aidx, (3.106)

B̃(t,x(t)) := Breal(t,x(t))−Bidω, (3.107)

where f̃ : R×Rn → Rn is an unknown nonlinear function, B̃ ∈ Rn×m is an unknown matrix,
and ω ∈ Rm×m is an unknown matrix. We see that the use of ω is not really necessary. It
could be set to 1, and it would only change the value of B̃.

Substituting for fx and Breal in (3.105) using these definitions, we get

ẋ(t) = Aidx(t) + Bidωu(t) + f̃x(t,x(t)) + B̃(t,x(t))u(t) (3.108)

y(t) = CTx(t)
As before, we introduce the control structure

u(t) = um + uad, um(t) = −KT
mx(t), (3.109)

where Km ∈ Rn×m makes Am := Aid−BidKT
m Hurwitz and specifies the desired closed loop

dynamics, and uad is the adaptive component. Substituting for u(t) in (3.108) using (3.109),
we get

ẋ(t) = Aidx(t) + Bidω(uad −KT
mx(t)) + f̃x(t,x(t)) + B̃(t,x(t))(uad −KT

mx(t))
= Amx(t) + Bidωuad + BidKT

m(I− ω)x(t) + f̃x(t,x(t))
+ B̃(t,x(t))(uad −KT

mx(t))
y(t) = CTx(t), x(0) = x0

By defining

f(t,x(t)) := BidKT
m(I− ω)x(t) + f̃x(t,x(t)) + B̃(t,x(t))(uad −KT

mx(t)), (3.110)

we get

ẋ(t) = Amx(t) + Bidωuad + f(t,x(t)), x(0) = x0 (3.111)

y(t) = CTx(t), (3.112)

which has the same structure as (3.104). Considering the definition of f in 3.110, we see
a possible problem due to the dependency of uad. uad is dependent on the input r(t) and
nonlinearly on the states x(t). This should thus not be a problem, but it may be difficult to
find the limits for this function.
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Reformulation

(3.104) can be written as

ẋ(t) = Amx(t) + Bm(ωuad(t) + f1(t,x(t))) + Bumf2(t,x(t)) x(0) = x0 (3.113)

y(t) = CTx(t),

where Bum ∈ Rn×n−m is a constant matrix such that BT
mBum = 0 and rank([Bm,Bum]) = n;

and f1 : R× Rn → Rm and f2 : R× Rn → R(n−m) such that[
f1(t,x(t))
f2(t,x(t))

]
=
[
BmBum

]−1
f(t,x(t)). (3.114)

In this way, f1( · ) represents the matched component of the unknown nonlinearities, while
Bumf2( · ) represents the unmatched uncertainties.

Assumptions

The assumptions needed to prove the theoretical results are almost the same as those for the
case of matched uncertainties. However, some adjustments must be done since we consider
a MIMO-system, and one new assumption is made due to the unmatched uncertainties.

Assumption 3.5.2 (Partial knowledge of uncertain system input gain). The system input
gain matrix ω is assumed to be an unknown (nonsingular strictly row-diagonally dominant matrix
with sgn(ωii) known. Also, we assume that there exists a known compact convex set Ω such that
ω ∈ Ω ⊂ Rm×m.
Assumption 3.5.3 (Boundedness of fi(t,0)). There exist Bi0 > 0 such that ‖fi(t, 0)‖∞ ≤ Bi0,
holds for all t ≥ 0, and for i = 1, 2.
Assumption 3.5.4 (Semiglobal uniform boundedness of partial derivatives). For i = 1, 2
and arbitrary δ > 0 there exist dfxi(δ) > 0 and dfti(δ) > 0 independent of time, such that for all
‖x‖∞ < δ, the partial derivatives of fi(t, x) are piecewise-continuous and bounded:∥∥∥∥∥δfi(t,x)

δx

∥∥∥∥∥
∞
≤ dfxi(δ),

∥∥∥∥∥δfi(t,x)
δt

∥∥∥∥∥
∞
≤ dfti(δ), (3.115)

where the first is a matrix induced∞-norm, while the second is a vector∞-norm.
Assumption 3.5.5 (Stability of matched transmission zeros). The transmission zeros of the
transfer matrix Hm(s) = C(sI−Am)−1BmKg(s) lie in the open left half plane.

3.5.2 L1 adaptive control architecture

Consider the system in (3.113). The control objective is to design a full-state feedback L1
adaptive controller which ensures that y(t) tracks the output response of a desired system
M(s) defined as

M(s) := C(sI−Am)−1BmKg(s), (3.116)
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where Kg(s) is a feedforward prefilter, to a given bounded piecewise-continuous reference
signal r(t) in both transient and steady-state, while all other signals remain bounded.

The slight change in control objective is due to the consideration of MIMO-systems. Thus
it may be impossible to achieve tracking of all the references simultaneously. Now, the
prefilter Kg has to be defined to give the desired properties, and different design methods
from multivariable control theory may be used. In this text, the constant matrix

Kg = −(CA−1
m Bm)−1 (3.117)

is used. This gives the diagonal elements of the desired transfer matrix DC gain equal to one,
and the off-diagonal elements have zero DC gain. Before continuing, it is useful to include
the following definitions:

Hxm(s) := (sIn −Am)−1Bm, (3.118)
Hxum(s) := (sIn −Am)−1Bum, (3.119)

Hm(s) := CTHxm(s) = CT (sIn −Am)−1Bm, (3.120)

Hum(s) := CTHxum(s) = CT (sIn −Am)−1Bum. (3.121)

In this section, the subscripts m and um refers to matched and unmatched respectively. We
see that Hxm and Hm are the transfer functions from the matched input signals to the states
and output respectively, while Hxum and Hum are the transfer functions from the unmatched
input signals to the states and output respectively.

State predictor

As before, we need to specify a state predictor. Similar to the state predictor in the previous
section, we parametrize the nonlinear functions f1 and f2, and consider the following state
predictor:

˙̂x(t) = Amx̂(t) + Bm(ω̂u(t) + θ̂1(t)‖xt‖∞ + σ̂1(t)) + Bum(θ̂2(t)‖xt‖∞ + σ̂2(t)), (3.122)

ŷ(t) = CT x̂(t),

where ω̂ ∈ Rm×m, θ̂1(t) ∈ Rm, σ̂1(t) ∈ Rm, θ̂2(t) ∈ Rn−m, and σ̂2(t) ∈ Rn−m are the adaptive
estimates.

Adaptive laws

The following adaptive laws are similar to the ones considered in the previous section. How-
ever, now we need to update the estimates for both the matched and the unmatched part of
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the uncertainties. The estimates are updated according to

˙̂ω(t) = ΓProj(ω̂(t),−(x̃T (t)PBm)TuT (t)), ω̂(0) = ω̂0

˙̂
θ1(t) = ΓProj(θ̂1(t),−(x̃T (t)PBm)T‖xt‖∞), θ̂1(0) = θ̂10

˙̂σ1(t) = ΓProj(σ̂1(t),−(x̃T (t)PBm)T ), σ̂1(0) = σ̂10 (3.123)
˙̂
θ2(t) = ΓProj(θ̂2(t),−(x̃T (t)PBum)T‖xt‖∞), θ̂2(0) = θ̂20

˙̂σ2(t) = ΓProj(σ̂2(t),−(x̃T (t)PBum)T ), σ̂2(0) = σ̂20

where x̃ := x̂(t)− x(t), Γ ∈ R+ is the adaption gain, while P = PT > 0 is the solution to the
agebraic Lyapunov equation AT

mP + PAm = −Q, for arbitrary Q = QT > 0. The projection
operator ensures that ω̂(t) ∈ Ω, ‖θ̂(t)‖∞ ≤ θbi, |σ̂i(t)| ≤ ∆i, where θbi and ∆i are defined as

θbi := Liρ, ∆i := Bi0 + εi, i = 1, 2, (3.124)

where Liδ is defined in (3.132), ρ is defined in (3.137), and εi > 0.

Control law

As always, we want the control signal to compensate for the uncertainties and track the
reference r(t) with zero steady-state error. Similar to (3.75) the control law is given by

uad(s) = −KD(s)η̂(s), (3.125)

where η̂ is the Laplace transform of the signal

η̂(t) := ω̂(t)u(t) + η̂1(t) + η̂2m(t)− rg(t) (3.126)

with rg(s) := Kg(s)r(s), η̂2m(s) := H−1
m (s)Hum(s)η̂2(s), and with η̂1 and η̂2 being defined as

η̂i(t) := θ̂i(t)‖x(t)‖∞ + σ̂i(t), i = 1, 2. The prefilter Kg(s) is given in (3.117).

Compared to the control law in the previous section, η(s) is defined a bit different. This is
due to the unmatched uncertainties. The purpose of the controller is to compensate for the
uncertainties. However, the control signal can not compensate for the unmatched uncer-
tainties directly. This can be solved by inverting the matrices, or by consider the transfer
matrices. Here, the latter solution is used. By saying that we only want the control signal to
compensate for the part of the unmatched uncertainties which affects the output, the goal
becomes:

y

u
(s)u(s) = y

η2
(s)η̂2(s) (3.127)

Using the definitions in (3.120) and (3.121) we get

Hm(s)u(s) = Hum(s)η̂2(s) (3.128)
u(s) = H−1

m (s)Hum(s)η̂2 (3.129)
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This derivation explains the choice of η2m. This is also the reason for the need of assumption
3.5.5. Similar to before, K ∈ Rm×m is the feedback gain matrix, and D(s) is a m ×m strictly
proper transfer matrix, which lead, for all ω ∈ Ω, to a strictly proper stable

C(s) := ωKD(s)(Im + ωKD(s))−1, (3.130)

with DC-gain C(0) = Im. Due to the unmatched uncertainties, the choice of D(s) also needs
to ensure that C(s)H−1

m (s) is a proper stable transfer matrix. Similar to before, a simple of
D(s) might be D(s) = 1

s
Im. This choice results in a strictly proper C(s) on the form

C(s) = ωK(sIm + ωK)−1 (3.131)

L1-norm condition

Now, the sufficient L1-norm condition is presented. Again, this require some definitions,
similar to the ones in the previous section.

Let xin(t) be the signal with Laplace transform xin(s) := (sIn −Am)−1x0 and ρin := ‖s(sI −
Am)−1‖L1ρ0. Since Am is Hurwitz and x0 is bounded, then we have from [7] that ‖xin‖L∞ ≤
ρin.

Further, for every δ > 0, we define

Liδ := δ̄(δ)
δ
dfxi(δ̄(δ), δ̄(δ) := δ + γ̄1, (3.132)

where dfxi( · ) was introduced in assumption 3.5.4 with γ̄ being an arbitrary small positive
constant.

To be able to prove stability and the performance bounds, K and D(s) also need to ensure
that for a given ρ0, there exist ρr > ρin, such that the following L1-norm condition can be
met:

‖Gm(s)‖L1 + ‖Gum(s)‖L1l0 <
ρr − ‖Hxm(s)C(s)Kg(s)‖L1‖r‖L∞ − ρin

L1ρrρr +B0
, (3.133)

where

Gm(s) := Hxm(s)(Im − C(s)), (3.134)

Gum(s) :=
(
In −Hxm(s)C(s)H−1

m (s)C
)
Hxum(s), (3.135)

while

l0 := L2ρr
L1ρr

, B0 := max
{
B10,

B20

l0

}
. (3.136)

TheL1 adaptive controller is defined by combining the feedback controller defined in (3.109),
the predictor (3.122), the adaptation rule (3.123) and the adaptive control law (3.125) subject
to the L1-norm condition in (3.133).
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3.5.3 Theoretical results

The following part presents the main theoretical results for the L1 adaptive controller con-
sidered in this section. The proofs are ommitted in this text, but can be found in [7].

Definitions

Before we continue, we make some definitions to make the following text easier to read. Let

ρ := ρr + γ̄1, (3.137)

where ρr and γ̄1 were defined in (3.133) and (3.132) respectively, and let γ1 be given by

γ1 := ‖Hxm(s)C(s)H−1
m (s)C‖L1

1− ‖Gm(s)‖L1L1ρr − ‖Gum(s)‖L1L2ρr
γ0 + β, (3.138)

where γ0 and β are arbitrarily small positive constants such that γ1 ≤ γ̄1. Next, let

ρu := ρur + γ2, (3.139)

where ρur and γ2 are defined as

ρur :=
∥∥∥ω−1C(s)

∥∥∥
L1

(L1ρrρr +B10) +
∥∥∥ω−1C(s)H−1

m (s)Hum(s)
∥∥∥
L1

(L2ρrρr +B20)

+
∥∥∥ω−1C(s)Kg(s)

∥∥∥
L1
‖r‖L∞ ,

γ2 :=
(∥∥∥ω−1C(s)

∥∥∥
L1
L1ρrρr +

∥∥∥ω−1C(s)H−1
m (s)Hum(s)

∥∥∥
L1
L2ρr

)
γ1

+
∥∥∥ω−1C(s)H−1

m (s)C
∥∥∥
L1
γ0 (3.140)

Equivalent semi-linear timevarying system

Based on the same argumentation as in the previous section, the system in (3.104) can be
rewritten over t ∈ [0, τ ] for arbitrary τ ≥ 0 as a semi-linear time-varying system:

ẋ = Amx(t) + Bm(ωu(t) + θ1(t)‖x(t)‖∞ + σ1(t))
+ Bum(θ2(t)‖x(t)‖∞ + σ2(t)), x(0) = x0, (3.141)

y = CTx(t),

with the unknown parameters bounded according to

|θi(t)| < θbi = θbi(ρr), |σi| < ∆i = ∆i(ρr), ∀t ∈ [0, τ ]. (3.142)

|θ̇i(t)| < dθi(ρr), |σ̇i| < dσi(ρr), ∀t ∈ [0, τ ], (3.143)

where dθi(ρ, ρu) > 0 and dσi(ρ, ρu) > 0 being the bounds specified by Lemma 3.4.1.
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Prediction error

From (3.122) and (3.142) we get that over [0, τ ] the prediction error dynamics can be written
as

˙̃x(t) = Amx̃(t) + Bm (ω̃(t)u(t) + η̃1(t)) + Bumη̃2(t), x̃(0) = 0, (3.144)

where η̃i(t) := η̂(t)− ηi(t) with ηi := θi(t)‖x(t)‖∞ + σi(t), i = 1, 2.

The following result hold for the prediction error, [7]

Lemma 3.5.1. Let the adaptive gain be lower bounded by

Γ >
θm(ρr)

λmin(P )γ2
0
, (3.145)

where

θm(ρr) := 4
(

max
ω∈Ω

tr(ωTω) +
(
θ2
b1 + σ2

b1

)
m+

(
θ2
b2 + σ2

b2

)
(n−m)

)
(3.146)

+ 4λmax(P )
λmin(Q) ((θb1dθ1 + σb1dσ1)m+ (θb1dθ1 + σb1dσ1) (n−m)) , (3.147)

and the projection be confined to the bounds

ω̂(t) ∈ Ω, ‖θ̂i(t)‖∞ ≤ θbi , ‖σ̂i(t)‖∞ ≤ σbi , i = 1, 2. (3.148)

Given the system in (3.113) and the L1 adaptive controller defined by combining (3.122), (3.123) and
(3.125) subject to the L1-norm condition in (3.133), if

‖xτ‖L∞ ≤ ρ, ‖uτ‖L∞ ≤ ρu, (3.149)

then

‖x̃τ‖L∞ < γ0, (3.150)

where γ0 was introduced in (3.138).

Performance

Again, we consider the reference system which specifies the best theoretically possible L1
adaptive control result. Consider the reference system given by

ẋref (t) = Amxref (t) + Bm (ωuref (t) + f1(t,xref (t)))
+ Bumf2(t,xref (t)), xref (0) = x0,

uref (s) = ω−1C(s)
(
Kgr(s)− η1ref (s)−H−1

m (s)Hum(s)η2ref (s)
)
, (3.151)

yref (t) = CTxref (t)

where η1ref (s) and η2ref (s) are the Laplace transforms of the signals ηiref (s) := f1(t, xref (t)), i =
1, 2. The following result holds for the stability of the reference system [7]
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Lemma 3.5.2. For the closed-loop reference system in (3.151), subject to the L1-norm condition in
(3.133), if

‖x0‖∞ ≤ ρ0

then

‖xref‖L∞ < ρr, (3.152)
‖uref‖L∞ < ρur, (3.153)

where ρr and ρur were introduced in (3.78) and (3.82) respectively.

The following theorem is the main theoretical result of this section, and gives the relation-
ship between the adaptation gain, the prediction error, and the performance of the controller
relative to the reference system. The proof is found in [7].

Theorem 3.5.1. Let the adaptive gain be lower bounded as in (3.145) and the projection be confined
to the bounds in (3.148). Given the closed-loop system in (3.113) with the L1 adaptive controller
defined by combining (3.122), (3.123) and (3.125) subject to the L1-norm condition in (3.133), and
the closed loop reference system in (3.151), if

‖x0‖∞ ≤ ρ0,

then we have

‖x‖L∞ < ρ, (3.154)
‖u‖L∞ < ρu, (3.155)
‖x̃‖L∞ ≤ γ0, (3.156)

‖xref − x‖L∞ ≤ γ1, (3.157)
‖uref − u‖L∞ ≤ γ2, (3.158)
‖yref − y‖L∞ ≤ ‖C‖∞γ1, (3.159)

where γ1 and γ2 were defined in (3.138) and (3.140), respectively.

Remarks

From theorem 3.5.1 we again see that we can achieve an arbitrarily small prediction error γ0
by increasing the adaptation gain Γ. From (3.138) and (3.140) we see that by minimising γ0,
we can again achieve arbitrarily small performance bounds γ1 and γ2 simultaneously. Thus,
since the bounds are specified for the L∞-norm of the signals, we can achieve arbitrary
close tracking performance for both the output and the input signal simultaneously, both in
transient and steady-state, by increasing the adaptation gain.

In this section we have only considered the response of the L1 adaptive controller relative to
the reference system. In section 3.3 we considered the design system, which opposed to the
reference system was not dependent on the uncertainties. We saw that it was beneficial to
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minimise λ to get the desired performance. We now consider the ideal control signal for the
system in (3.113),

uid = −ω−1
(
η1(s) +H−1

m (s)Hum(s)η2(s)−Kg(s)r(s)
)
, (3.160)

which results in the desired ideal output responce

yid = Hm(s)Kg(s)r(s) (3.161)

by canceling the uncertainties perfectly. Similar to the result in section 3.1 where we saw
that it was beneficial with respect to performance, to minimise λ, the output response yref
can be made as close as possible to (3.161) by minimising (‖Gm(s)‖L1 + ‖G(um(s)‖L1l0) [7].
We saw in section 3.3 that by increasing the bandwidth of the filter C(s), λ could be made
arbitrarily small. However, in the general case with unmatched uncertainties, the design of
K and D(s) which satisfy (3.133) is an open problem [7]. [7] allso note that the presence of
unmatched uncertainties may limit the choise of the desired state matrix Am.

3.6 Systems with unmodeled actuator dynamics

This section extends the problem formulations considered, by introducing unmodeled ac-
tuator dynamics. This section will not cover all the theoretical results, but will discuss the
assumptions and the design changes needed to cope with this extension. This section covers
the design for SISO-systems, but may be extended to MIMO-systems. For more details on
the subject, see [7].

3.6.1 Problem formulation

The extension covered in this section can be made for all the problem formulations described
earlier. The change is that ωuad(t) is exchanged by µ(t) and

µ(s) = F (s)u(s), (3.162)

where µ ∈ Rm is the output of the unmodeled actuator system, u(t) ∈ Rm is the control in-
put, and F (s) is an unknown BIBO-stable transfer function with known sign of its DC gain.
We further need to make some assumptions on F (s)

Assumption 3.6.1 (Partial knowledge of actuator dynamics). There exists LF > 0 verifying
‖F (s)‖L1 ≤ LF . Also, we assume that there exist known constants ωl, ωu ∈ R satisfying

0 < ωl ≤ F (0) ≤ ωu, (3.163)

where we have assumed, without loss of generality, that F (0) > 0. Finally, we assume that we know
a set F∆ of all admissible actuator dynamics.

The control objective is the same as for the different problem formulations considered.
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3.6.2 Control architecture

The extension of considering actuator dynamics does not change the architectures directly,
but it imposes some new limitations. The most important is the filter C(s), which now is
defined as

C(s) := kF (s)D(s)
1 + kF (s)D(s) (3.164)

Now, k and D(s) need to imply that this new C(s) is a strictly proper and stable transfer
function with DC gain C(0) = 1 for all F (s) ∈ F∆. For the proofs of stability, this new filter
need to ensure that the L1-norm condition, dependent on the given problem formulation
considered, holds.

Equivalent linear time-varying system

To be able to find adaptation laws for the systems with unmodeled actuator dynamics, we
want, similar to the case with nonlinear systems, an equivalent linear time-varying system
for the actuator dynamics. From [7] we get the following result.

Lemma 3.6.1. Consider the system in (3.162). If for some τ > 0

‖uτ‖L∞ ≤ ρu, ‖u̇τ‖L∞ ≤ du, (3.165)

then there exist ω and differentiable σ(t) over t ∈ [0, τ ], such that

µ(t) = ωu(t) + σµ(t), (3.166)

where

ω ∈ (ωl, ωu), |σµ(t)| ≤ ∆µ, |σ̇µ(t)| ≤ dσµ , (3.167)

with ∆µ := ‖F (s)− (ωl + ωu)/2‖L1ρu, and dσµ := ‖F (s)− 8ωl + ωu)/2‖L1du.

New modelling error

One point not considered in [7] is the extra error caused by the filtering of um := −kmx. To
get the desired system Am we need to use this feedback signal, and if a system has unmod-
eled actuator dynamics, this has to affect the feedback signal um as well as uad. We will now
show how this affects the modelling error.

Similar to before, we separate the control signal between the feedback control part and the
adaptive control part. We define

µ(s) := µad(s) + µm(s) := F (s)uad(s) + F (s)um(s), (3.168)
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where uid and um are introduced in (3.109). From lemma 3.6.1, considering the same as-
sumptions, we get that the system can be written as

µ(t) = ωum(t) + σµm + ωuad(t) + σµad = ωu+ σµ(t) (3.169)

where σµ := σµm + σµad , and the bounds on ω, σµm and σµad are given by lemma 3.6.1. This
extra modelling error must be considered in the design. To see how this effects the modelling
error, we first redefine

B̃(t,x(t)) := Breal(t,x(t))−Bid, (3.170)

and consider this combined with (3.106) and (3.105), with u(t) exchanged with µ(t), to get:

ẋ(t) = Aidx(t) + Bidµ(t) + f̃x(t,x(t)) + B̃(t,x(t))µ(t)
ẋ(t) = Aidx(t) + Bid(ωum(t) + ωuid(t) + σµ(t)) + f̃x(t,x(t))

+ B̃(t,x(t))(ωum(t) + ωuid(t) + σµ(t))
ẋ(t) = Aidx(t) + Bid(−ωKmx(t) + ωuid(t) + σµ(t)) + f̃x(t,x(t))

+ B̃(t,x(t))(−ωKmx + ωuid(t) + σµ(t))
ẋ(t) = Amx(t) + Bid(ωuid(t) + σµ(t)) + BidKT

m(1− ω)x(t) + f̃x(t,x(t))
+ B̃(t,x(t))(−ωKmx + ωuid(t) + σµ(t))

y(t) = CTx(t).

By defining

f(t,x(t)) := Bid(KT
m(1− ω)x(t) + σµ(t)) + f̃x(t,x(t))

+ B̃(t,x(t))(ωuad − ωKT
mx(t) + σµ(t)), (3.171)

we get

ẋ(t) = Amx(t) + Bidωuad + f(t,x(t)), x(0) = x0 (3.172)

y(t) = CTx(t), (3.173)

which has the same structure as (3.104), only for SISO systems. Comparing (3.171) with
(3.110), we see that we get an extra error Breal(t,x(t))σµ. As mentioned in section 3.5.1, ω
was not really needed and could be put to 1, so we also get an extra error due to ω.

Thus, with unmodeled dynamics, we can estimate and predict the system just as before.
However, the projection bounds on σ̂ must consider the new modelling error given in (3.171),
with the bounds on σ specified by lemma 3.6.1.
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Chapter 4
Simulation results and discussion

This chapter presents the simulation results performed in this text. The control design of the
L1 adaptive controller for the SISO longitudinal and the MIMO lateral modes are presented,
and simulations are performed. To investigate the performance and robustness of the L1
adaptive controller, two different cases for each of the longitudinal and the lateral modes,
including different nonlinear unmatched uncertainties and unmodelled actuator dynamics,
are simulated. All the simulations are performed using the same control design. Consider-
ing the scope of this report, these cases are not based on any nonlinear aircraft modelling.
Instead, the basis for the systems considered are the linearised models and trim conditions
presented in section 2.5 and elaborated in section 4.1, with additional nonlinear dynamics
and disturbances, and unmodelled actuator dynamics added to these linear systems. These
nonlinear effects are chosen more or less randomly to test the robustness and performance
of the controller. In this way we have full knowledge of the unmodelled dynamics and are
able to see how the different modelling errors affect the performance and robustness of the
controllers. However, after these cases are presented and discussed, simulations of the lon-
gitudinal mode on the realistic nonlinear F-16 model are performed and discussed, without
any retuning of the controller.

As a reference to the performance of the L1 adaptive controller, this chapter presents sim-
ulations for the longitudinal system where the control signal is produced from MRAC and
PID control and compare the results to the results from the L1 controller.

Lastly, this chapter discusses how implementation issues not considered in the theory chap-
ter of this text, affects the performance of the L1 adaptive controller. Specifically the case of
limited sampling rate is simulated and discussed, and a redesign of the control architecture
designed to handle this case is presented.

4.1 Simulation values

This section presents the parameters used in all of the simulations.
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Linearised modelled dynamics

The considered model in this text is the one presented in section 2.5. One design change is
however made. In the linearising of the nonlinear F-16 model, the angles [θ, φ, ψ] was con-
sidered as the euler angles. As mentioned, the control goal is that the L1 adaptive controller
controls the inner control loops, while an outer controller sets the desired references to the
L1 controller. Thus, we want the outer controller to find the desired references based on the
position and the attitude (euler angles), while the references sent to the inner L1 controllers
are relative to the BODY-frame. Thus, we redefine the angles considered by the L1 adaptive
controllers as the integral of its associated rate. The models then become:

α̇q̇
θ̇

 =

−0.6398 0.9378 −0.0000
−1.5679 −0.8791 0

0 1 0


αq
θ

+

−0.0777
−6.5121

0

 δE, (4.1)


β̇
ṗ
ṙ

φ̇

ψ̇

 =


−0.2022 0.0783 −0.9919 0.0641 0
−22.9219 −2.2542 0.5408 0 0

6.0052 −0.0404 −0.3146 0 0
0 1 0 0 0
0 0 1 0 0




β
p
r
φ
ψ

+


0.0099 0.0290
−26.4872 3.2579
−1.3965 −2.6855

0 0
0 0


[
δA
δR

]
. (4.2)

By definition, we will thus have no modelling error in the states [θ, φ, ψ]. The modelling
error induced by the difference between the redefined [θ, φ, ψ] and the real euler angles, will
be handled by the adaptation in the L1 adaptive controller.

To make the text easier to read, we repeat the trim values from section 2.5:

U0 = 500 [ft/s]
Altitude = 15000 [ft]

Φ0 = 0 [deg]
Θ0 = 4.46 [deg]
Ψ0 = 0 [deg]
α0 = 4.46 [deg]
β0 = 0 [deg]
P0 = Q0 = R0 = 0 [deg/s]
δE0 = −2.46 [deg]
δA0 = δR0 = 0 [deg],

Thrust0 = 2120.6 [lbs].
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The eigenvalues are

λlong =

−0.7594 + j1.2067
−0.7594− j1.2067

0

 , (4.3)

λlat =


0

−0.3177 + j2.7404
−0.3177− j2.7404

−2.1198
−0.0158

 , (4.4)

where λlong and λlat denote the eigenvalues for the longitudinal and the lateral model re-
spectively.

Unmodeled actuator dynamics

To further test the performance of the L1 adaptive controller, unmodeled actuator dynamics
is considered. This models the response of the control surfaces to the control signal from the
controller. The actuator dynamic may also model the effect that a sudden deflection in one
control surface will not give an instant responding force. This effect is however something
that could be modelled and considered in the design of the desired system response Am. In
ether way, the introduction of the unmodeled actuator dynamic is a good way to test the per-
formance and robustness of the L1 adaptive controller and will also prevent unrealistically
fast control.

The actual actuator dynamic considered in this text is given by the first order low-pass filter

F (s) = 20.2
s+ 20.2 (4.5)

This is used for all the control surfaces and is the actuator dynamic considered in the F-16
model [21]. Further, a limitation in the control surfaces are given according to

|δE| ≤ 25◦ (4.6)
|δA| ≤ 21.5◦ (4.7)
|δR| ≤ 30◦ (4.8)

(4.9)

4.2 L1 adaptive control design for the longitudinal system

This section presents the control design used for the simulations considering the longitu-
dinal system in this chapter. The controller is designed based on the linearised model in
section 4.1, and the control laws are kept unchanged for all the considered cases. The L1
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adaptive controller is defined by combining the feedback controller defined in (3.109), the
predictor (3.122), the adaptation rule (3.123) and the adaptive control law (3.125). The pa-
rameters used and the design of the different control elements are presented in following of
this section. The implementation of the L1 adaptive controller for the longitudinal system
can be found in Appendix A.

4.2.1 Design of the feedback gain Km

The design of the feedback vector Km to get the desired closed loop dynamics specified
by Am can be performed in different ways. This design challenge is not a big part of the
theory presented in [7], or any other papers considering L1 adaptive control theory. Some of
the strengths of L1 adaptive control is the way that we can choose the desire response and
robustness specifications based on classical control theory, while ignoring the part about
modelling errors. After the desired response is specified, the adaptive part of the controller
is designed to handle the errors. However, the choice of Am affects G(s) and thus the norm
in the L1-norm condition, which puts the limits on the adaptive part of the controller.

In this text the design of the feedback gain Km is done through LQR-design. This design
method calculates the optimal gain vector (or matrix) Km such that the feedback law u =
−Kmu minimizes the cost function

J =
∫

xTQx + uTRu dt

subject to the system dynamics ẋ = Aidx + Bidu. In this way we can calculate the optimal
control by weighting each state and control input through the matricesQ andR respectively.
For more theory on the topic of LQR-design, see [2] [13] [14].

By using LQR-design, the design parameters are the matrices Q and R. The choice of these
matrices can be done by trial and error, but by considering the control goal, we can get a
good first guess. The goal is to control θ. Thus it is important to weight this state pretty high.
Further, it may be a goal that the rate do not get to high. In this case one would give some
weight on q. Considering the angle of attack, α, this is unimportant in this context. Further,
the available actuator does not affect this state much. Simulations performed, where there
were any weight on α, show that this ruins the control of θ.

One other fact to take into consideration, is the presence of the actuator dynamics. This
puts a limit to how fast the response can be made, and thus to high weight on θ may cause
instability in the presence of the actuator dynamics. This effect was examined through the
Bode plot of the transfer function from the reference r to the output y. For this analysis, we
assume that we have a good insight in the actuator dynamics even though we have not used
it directly in the model. The transfer function is

y

r
(s) = C (sIn − (Aid −BidF (s)Km))−1 kgBidF (s) (4.10)
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Following the discussion above, and by some trial and error, I chose

Q =

0 0 0
0 0 0
0 0 30


R = 10

Using the lqr-function in matlab, this resulted in the feedback vector

Km =

 0.2130
−0.5643
−1.7321

 , (4.11)

which again resulted in the system matrix

Am =

−0.6232 0.8939 −0.1346
−0.1808 −4.5535 −11.2793

0 1.0000 0

 , (4.12)

with the eigenvalues

λm =

 −0.6094
−2.2837 + j2.5060
−2.2837− j2.5060


This resulted in the bode plot in figure 4.1 of

y

r
(s) in 4.10, where the filter F (s) in (4.5) was

considered.
We see that we get a gain margin of 17.7 dB and a phase margin of 180 degrees, which are
acceptable margins [11].

4.2.2 Specifying the projection bounds

This part requires some knowledge of the system considered. Since we specify the error in
the considered cases, we can chose conservative bounds based on that. The kind of uncer-
tainties considered in the simulations are

f̃x(t,x(t)) = A∆(t)x(t) + σ(t), (4.13)

B̃(t,x(t)) = B̃(t) (4.14)

Further, the unmodeled actuator dynamics causes an extra unknown error since

µ(t) = ωu+ σµ(t) (4.15)

From (3.171) and the results above, we get that the modelling error becomes

f(t,x(t)) = BidKT
m(1− ω)x(t) + A∆(t)x(t) + σ(t) + (Bid + B̃(t))σµ(t)

+ B̃(t)(ωuad − ωKT
mx(t)) (4.16)
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Figure 4.1: Bode plot of
y

r
(s) = C (sIn − (Aid −BidF (s)Km))−1 kgBidF (s)

Specifying ∆i

From (4.16) we have

f(t, 0) = σ(t) + (Bid + B̃)σµad(t) + B̃ωuad(t) (4.17)

where σ is the only signal we have knowledge about. From (3.114) we have that[
f1(t,x(t))
f2(t,x(t))

]
=
[
Bm Bum

]−1
f(t,x(t)). (4.18)

In the cases considered in this text, σmax := ‖σ(t)‖∞ = 10π/180 ≈ 0.175. We find a lower
bound on the error:

‖f1(t, 0)‖∞ ≥

∥∥∥∥∥∥∥
1 0 0

0 0 0
0 0 0

 [Bm Bum

]−1

∥∥∥∥∥∥∥
∞

σmax (4.19)

‖f2(t, 0)‖∞ ≥

∥∥∥∥∥∥∥
0 0 0

0 1 0
0 0 1

 [Bm Bum

]−1

∥∥∥∥∥∥∥
∞

σ(t)max (4.20)

This gives

‖f1(t, 0)‖∞ ≥ 0.0268 (4.21)
‖f2(t, 0)‖∞ ≥ 0.1766 (4.22)
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Based on this, and proven to give good results through simulations, the projection bounds
defined in (3.124) is chosen as

∆1 = 0.1 (4.23)
∆2 = 0.3 (4.24)

Specifying θbi

From (4.16) we have

δf(t,x)
δx

= BidKT
m(1− ω) + A∆(t)− B̃ωKT

m + B̃ω
δuad
δx

+ (Bid + B̃(t))δσµ
δx

, (4.25)

for all ‖x‖∞ < ∞. We known that F (0) = 1, thus ω = 1. Further, from the cases considered
we have that

max
A∆(t)

∥∥∥∥∥∥∥
1 0 0

0 0 0
0 0 0

 [Bm Bum

]−1
A∆

∥∥∥∥∥∥∥
∞

= 1.54 (4.26)

max
A∆(t)

∥∥∥∥∥∥∥
0 0 0

0 1 0
0 0 1

 [Bm Bum

]−1
A∆

∥∥∥∥∥∥∥
∞

= 0.43 (4.27)

and

max
B̃(t)

∥∥∥∥∥∥∥
1 0 0

0 0 0
0 0 0

 [Bm Bum

]−1
B̃KT

m

∥∥∥∥∥∥∥
∞

= 0.87 (4.28)

max
B̃(t)

∥∥∥∥∥∥∥
0 0 0

0 1 0
0 0 1

 [Bm Bum

]−1
B̃KT

m

∥∥∥∥∥∥∥
∞

= 0 (4.29)

The last addends B̃
δuad
δx

and B̃(t))δσµ
δx

we have no control over. Thus we get

L1 =
∥∥∥∥∥δf1(t,x)

δx

∥∥∥∥∥
∞
≥ 2.41 (4.30)

L2 =
∥∥∥∥∥δf1(t,x)

δx

∥∥∥∥∥
∞
≥ 0.43 (4.31)

Bases on these calculations, we choose a conservative bound on the projection bound, de-
fined in (3.124), as

θb1 = 3, (4.32)
θb2 = 1 (4.33)

75



4.2. L1 ADAPTIVE CONTROL DESIGN FOR THE LONGITUDINAL SYSTEM

Specifying Ω

In the cases considered in the simulations, we know that F (0) = 1. However, it may be
beneficial to let some of the error B be taken care of by ω̂. Further it is interesting to see how
this adaptation affect the control. In the simulations considered, the bounds on ω are given
as

Ω = [0.5, 2]. (4.34)

Initial conditions

The initial conditions for the estimates have to be specified. The only requirement from the
L1 theory is that the initial values are chosen within the specified projection bounds. For
all the simulations performed for the longitudinal system the initial guess is that there is no
modelling error, that is:

θ̂10 = 0 (4.35)

θ̂20 =
[
0
0

]
(4.36)

σ̂10 = 0 (4.37)

σ̂20 =
[
0
0

]
(4.38)

ω̂0 = 1 (4.39)

4.2.3 Designing the filter C(s)

The design of k and D(s) to specify the desired filter C(s) := kD(s)F (s)/(1 + kD(s)F (s))
is the most challenging part of the L1 adaptive control design. We know that C(s) has to
be a BIBO-stable strictly proper filter with DC-gain C(0) = 0. Further, for the theoretical
results to be valid, C(s) has to verify the L1-norm condition (3.133). Other than this, the
filter may be chosen freely. There exist no concrete guidelines to how this filter should be
designed, and as mentioned in section 3.5, the design of k and D(s) which satisfy the L1-
norm condition in (3.133) is still an open problem. We know from the theory that minimising
(‖Gm(s)‖L1+‖G(um(s)‖L1l0) is good for performance, while increasing the bandwidth ofC(s)
affects the robustness.

One simple choice of D(s) that is mentioned in [7], is

D(s) = 1
s
. (4.40)

This is the one considered in this text, and has proven to give good results for this system.
Other choices of D(s) inspired by the ones mentioned in [7] has been tested. This were
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D(s) = s+ 0.1
s(s+ 9) and D(s) = 1

s( s
90 + 1)( s

300 + 1)( s2

1402 + 1.8s
140 + 1)

. Neither of them seemed to

give any better simulation results nor improve the L1-norm in the L1-norm condition.

Now the feedback gain k, which specifies the bandwidth, has to be chosen. As we have
discussed, the purpose of the filter is to separate robustness from adaptation. That is,
make the controller compensate for the uncertainties within the bandwidth of C(s) while
the higher frequencies are used in the adaptation. Thus, high adaptation gain will not
ruin the robustness of the system. For the given choice of D(s), we consider the plot of
‖Gm(s)‖L1L1 + ‖G(um(s)‖L1L2 versus k. This can be seen in figure 4.2. The values for L1
and L2 used in the plot are found in (4.30) and (4.31) respectively. As we can see, up until

Figure 4.2: L1-norm condition as a function of k.

about k = 150, increasing k decreases the value of ‖Gm(s)‖L1L1 + ‖G(um(s)‖L1L2. However,
the plot level off and it does not look like it is possible to satisfy the L1-norm condition by
increasing k.

Figure 4.3 shows the control input for case 2, described in section 4.3.3, with k = 150. We
see that a too high value on k makes the controller compensate for undesired frequencies
and thus start to oscillate rapidly, and makes the system unstable. Thus, there is no point
checking the L1-norm conditions for higher values of k. A good starting point for the design
of the bandwidth ofC(s) is by considering the bandwidth and the bode-plot of

y

r
(s) in figure

4.1. We want the bandwidth of C(s) to be larger than the bandwidth of the system to get the
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Figure 4.3: Control input, case 2, with k = 150, and reference r1.

desired response. Through lots of simulations the choice according to

k = 30 (4.41)

seems to give good results, even though the L1-norm condition is not met. This choice
results in the filter

C(s) = 606s+ 12240
s3 + 40.4s2 + 1014s+ 12240 (4.42)

with the bode plot given in figure 4.4. Compared to the bode plot of
y

r
(s), we see that

the bandwidth of C(s) is large enough to make the controller compensate for the desired
frequencies.

4.2.4 Choosing the adaptation gain Γ

From the theoretical results, we know that a large adaptation gain as possible is beneficial for
good performance. We also want the update frequencies of the uncertainties to lie outside
of the bandwidth of C(s) to prevent oscillations in the control signal. For the simulations
performed in this text, when not considering limited sampling frequencies, the value

Γ = 10000 (4.43)

is used. The update gain when considering limited sampling frequencies is considered later
in this chapter.
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Figure 4.4: Bode plot of C(s)

4.3 Simulation results and discussion for the longitudinal
system

In this section, the simulation results of the L1 adaptive controller for the longitudinal sys-
tem are presented. It would be impossible to consider and simulate all the different nonlin-
ear effects the aircraft could encounter. However, in this section we present two different
cases which together gives a good insight in the robustness and the performance of the L1
adaptive controller. All the simulations presented in this section are performed with the
solver ODE45 and a relative tolerance of 10−3. Implementation issues like limited sampling
time and measurement errors are considered in section 4.8.

The simulations in this section are performed for two types of reference inputs:

r10(t) =
{

5◦ , 5 s < t < 25 s
0◦ , otherwise (4.44)

r20(t) = 5◦ sin π4 t (4.45)

Further, to prevent to aggressive change, the reference signals are filtered:

ri(s) = Fr(s)ri0, (4.46)

where Fr(s) = 5
s+ 5
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4.3.1 Design system

First, as a reference to the best possible control result one could hope for, the ideal case
with no modelling error is presented. This represents the design system. The simulation is
performed by setting the adaptation gain to zero, and removing all error. The resulting plots
for the system output, the control signal together with the real control input, and the states
are shown in figures 4.5, 4.6 and 4.7 respectively.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.5: System output in the case of no modelling error.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.6: Control input in the case of no modelling error.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.7: System states in the case of no modelling error.
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4.3.2 Simulation case 1

As the aircraft flies and the angle of attack α change, a normal effect is that the coefficient
Cmα change. This is due to the change of center of pressure on the aircraft. To imitate this
affect and test how this affects the control and the robustness of the aircraft, a simulation is
performed where an extra error is put on M̄α. A sinusoidal error is added to this parameter
according to:

f(t,x(t)) = A∆(t)x, (4.47)

where

A∆(t) =


0 0 0

10 sin π2 t 0 0
0 0 0

 (4.48)

This error is highly nonlinear, and makes the system change between being stable and being
unstable. Further, the amplitude of the sinusoidal is much larger than the initial value on
M̄α. The resulting plots for the system output, the control signal together with the real
control input, the prediction estimates, and the states together with the state estimates are
shown in figures 4.8, 4.9, 4.10 and 4.11 respectively.

As a reference, the output of a simulation where the adaptation gain is zero is shown in
figure 4.12.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.8: System output of the L1 adaptive controlled longitudinal system, for simulation
case 1.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.9: L1 adaptive control input to the longitudinal system, for simulation case 1.
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(a) Adaptive estimates with reference r1

(b) Adaptive estimates with reference r2

Figure 4.10: Adaptive estimates for the L1 adaptive controlled longitudinal system, for sim-
ulation case 1.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.11: Real and predicted states of the L1 adaptive controlled longitudinal system, for
simulation case 1.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.12: System output of the L1 adaptive controlled longitudinal system, for simulation
case 1, without adaptation.
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4.3.3 Simulation case 2

The simulation case now presented is designed to put the L1 adaptive controller to the test.
The system considered in the following simulation is given as

ẋ(t) = (Aid + A∆(t))x(t) + B(t)µ(t) + σ(t), (4.49)

where

A∆(t) =

0 0.5 sin
(
π

3 t+ π

5

)
0

0 6 0
0 0 0

 , (4.50)

B(t) =
(

1 + 0.5 sin
(
π

5 t−
π

9

))
Bid, (4.51)

σ(t) =


5π
180 sin

(
π

3.5t+ π

7

)
10π
180 sin

(
π

6 t+ π

3

)
0

 (4.52)

The resulting plots for the system output, the control signal together with the real control
input, the prediction estimates, and the states together with the state estimates are shown in
figures 4.13, 4.14, 4.15 and 4.16 respectively.

As a reference, it is interesting to see how the controller performs without the adaptation.
However, since element (2, 2) in A∆ makes the total feedback system unstable, the output
of a simulation where the adaptation gain is zero is done with element (2, 2) in A∆ equal to
zero. This simulation is shown in figure 4.17.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.13: System output of the L1 adaptive controlled longitudinal system, for simulation
case 2.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.14: L1 adaptive control input to the longitudinal system, for simulation case 2.
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(a) Adaptive estimates with reference r1

(b) Adaptive estimates with reference r2

Figure 4.15: Adaptive estimates for the L1 adaptive controlled longitudinal system, for sim-
ulation case 2.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.16: Predicted and real system states of the L1 adaptive controlled longitudinal sys-
tem, for simulation case 2.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.17: System output of the L1 adaptive controlled longitudinal system, for simulation
case 2, without adaptation.
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4.3.4 MRAC control of simulation case 2

As explained in chapter 3, the developments of L1 adaptive control is based on the theory
of model reference adaptive control. Since we have argued how L1 adaptive control is sup-
posed to be a better control strategy than MRAC, it is interesting to perform simulations
where an MRAC strategy is used. This section presents this results. The simulations are per-
formed for case 2, described in section 4.3.3. As we will see, one simulation case is enough
to show the effect of the filtering in the L1 adaptive control formulation.

The design of the model reference adaptive controller is identical to the L1 adaptive control
design presented in section 3.5.2 and 4.2 except for some important points:

No filter

Most importantly is the point that the control signal is no longer filtered. Thus, D(s) and the
feedback gain k is removed such that the adaptive control signal is defined as

uad = 1
ω̂

(kgr − η̂1 − η̂2m) . (4.53)

Handling of the unmatched uncertainties

One other point is that η2m, as defined in (3.126), can no longer be implemented. This is
because H−1

m is not proper. Thus, the compensation for the unmatched uncertainties must
be done by using vector inversion. Our goal is that the control cancels the effect of the
unmatched uncertainties. Thus we want:

Bmum = Bumη̂2 (4.54)
⇓ (4.55)

um = B†mBumη̂2, (4.56)

where † denotes the left matrix inverse. Thus, for the MRAC, we redefine

η̂2m := B†mBumη̂2. (4.57)

Tuning of Γ

The adaptation gain Γ must be tuned since we no longer has a output filter C(s). Through
simulations for Case 2, it was found that the system was stable for

Γ ≥ 118. (4.58)

For the simulations performed, Γ = 1000 has been used.
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New projection bounds

Finally, the projection bounds have been changed. This is because the bounds specified for
the L1 adaptive controller seems to be very conservative, and actually makes the MRAC-
controller unstable. The bounds used was found more or less by coincidence, but seem to
work well. The bounds are chosen as

θbi = 0.1, i = 1, 2, (4.59)
∆i = 0.3, i = 1, 2. (4.60)

Except for these changes, the design is unchanged.

The resulting plots for the system output, the control signal together with the real control
input, the prediction estimates, and the states together with the state estimates are shown in
figures 4.18, 4.19, 4.20 and 4.21 respectively.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.18: MRAC controlled system output of simulation case 2.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.19: MRAC control input of simulation case 2.
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(a) Adaptive estimates with reference r1

(b) Adaptive estimates with reference r2

Figure 4.20: Adaptive estimates for MRAC controlled system, simulation case 2.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.21: MRAC controlled system states of simulation case 2.
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4.3.5 Discussion

In this section the simulation results for the longitudinal system, presented in section 4.3
and section 4.3.4 are discussed. Two different cases are presented which shows the response
and robustness of the L1 adaptive controller.

Design system

Section 4.3.1 presents the simulation results for the design system. That is the system results
when the modelling errors are equal to zero. The actuator dynamics are however included.
This controller is not implementable, but represents the goal of the L1 adaptive controller
and is the basis for the design of Km. From figure 4.5 (a) we see that the output gets a small
overshoot before it settles after approximately 2 seconds. Due to the actuator dynamics, we
can not make the system more aggressive without loose robustness. Further, figure 4.5 and
4.7 shows the control signals and the system states for the non-implementable system.

Simulation case 1

Section 4.3.2 presents the simulation results for the first case. This case is designed to test
the response of the L1 adaptive controller for the nonlinear effect that a changing α has on
the system matrix. The modelling error is implemented as a sinusoidal change on element
(2, 1) on the system matrix. Compared to the identified system matrix in (4.1), we see that
the amplitude of the error is more than six times the initial value. Thus, this presents a major
change in the system response. We also note that when the sinusoidal is at its peak, such
that the error in element (2, 1) equals 10, the eigenvalues of A becomes

λ =

−3.5740
2.0552
0.0000

 .
This means that the real system changes between being stable and being unstable as the time
goes. Lastly, we note that this represents an unmatched uncertainty.

As we can see from figure 4.8, the L1 adaptive controller handles this nonlinear modelling
error really well, both for the filtered step in reference, and for the sinusoidal reference sig-
nal. Compared to the design system in figure 4.5, where the modelling error is set to zero,
we see that we achieve almost the same result for the L1 controlled system in Case 1. The
most notable difference is with reference r1, where the output of the L1 controlled system os-
cillates a few more timed before it settles on the desired angle. This oscillation has however
a max peak of less than half a degree, and is thus a really good result. Comparing figure 4.7
and figure 4.11, we see that the response of system states becomes quite similar for the ideal
case and the L1 controlled system in Case 1.
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Further, in figure 4.12 we see the response of the system output without adaptation, that is
when Γ = 0. We see that the output gets an overshoot of about 3 degrees for both of the
reference signals. This shows how well the adaptation works to compensate for the error.
The L1 adaptive controller senses the model error and adapts fast to this change to correct
the control input and give close to the desired response.

Comparing the control signals of the ideal system in figure 4.6 with the control signals of the
L1 controlled system 4.9, we notice some clear differences. We see how the control signal
from the L1 adaptive controller constantly has to work to compensate for the modelling
error. This is especially clear for the simulation with reference r2, where the input signal
looks like a simple sinusoidal curve for the ideal case, while the control signal for the L1
adaptive control gets a more complex shape. Comparing the control signal u with the real
control input µ we see that µ lags a little behind u. This is equivalent to a time delay, which
we know is bad for the robustness. We see that the choice of Km together with the adaptation
makes the L1 adaptive controller robust enough to cope with this.

Figure 4.10 shows the adaptive estimates during the simulation of case 2. For both the
reference signals, we see that ω̂ is kept almost constant to 1 through the simulation. We
know that F (0) = 1, so we see that the prediction of ω is good. Comparing the estimates of
σ and θ with each other, we see that they have almost the exact same shape. Considering the
adaptation laws in (3.123), this is not a very surprising result. The only difference between
them is that the adaptation law for θ̂ is multiplied by the∞-norm of x. Thus, only a scalar
number differ the adaptation rates of θ̂ and σ̂. This suggests that it may be sufficient to only
adapt σ̂, and let this take care of all the modelling error. In section 4.8 considering the case
of limited sampling time, we will see that this actually is the case, and discuss this topic
further.

From the plot of the system states and the predicted states in figure 4.11 we can see no error
between the real and the predicted states. It therefore seems like the adaptation gain is
chosen large enough to compensate for the modelling errors.

Simulation case 2

Section 4.3.3 presents the simulation results for the second case. This case is designed to
put the L1 adaptive controller to the test. In this case we have included a sinusoidal error
with an amplitude of 0.5 in element (1, 2) of the system matrix, and a constant error of 6 on
element (2, 2). Further, a sinusoidal gain is multiplied with the input vector, and sinusoidal
disturbance is applied to α and q. All the sinusoidal signals have different frequencies and
phase shift. Thus, the system will experience nonlinear modelling errors and nonlinear
disturbances. Further, due to the error in element (2, 2) of the system matrix, the system
with the feedback loop through Km is unstable. We note that the modelling errors and
disturbances considered in Case 2 are unmatched uncertainties.

From figure 4.13 we see that the L1 adaptive controller again gives a really good result. Even
when the system with feedback is unstable, the L1 adaptive controller compensates for this
and keeps the system stable. Further, the nonlinear modelling error and disturbances are
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quickly compensated for, and we see almost no effect from them on the system output.
Figure 4.17 shows the system output when there is no adaptation and the error on element
(1, 2) is sat to zero. The reason for setting the specific error to zero is because it makes the
feedback system unstable. This figure shows how the changing nonlinear modelling errors
affects the output, when the adaptation is turned off. For the simulation with reference r1,
we see that the output oscillates around the reference, and is unable to achieve tracking. For
the simulation with reference r2 we see that the result is a bit better, but compared to the L1
adaptive controller performs poorly. This again proves the good result of the L1 adaptive
controller.

Similar to Case 1 we see from figure 4.14 how the controller have to work to compensate for
the disturbances. Even when the output is kept constant, the controller changes dependent
on the disturbances.

Considering the adaptive estimates in figure 4.15 we see that this time ω̂ wanders more off
the right value than before. Again we notice some similarities in the estimates of θ̂ and σ̂.
However, with the exception of the sudden steps in θ̂, this estimate is kept quite constant. It
looks like σ̂ takes care of most of the adaptation.

MRAC-control

To investigate the effect of the filter C(s), a simulation with an MRAC-controller has been
performed for Case 2. The design and the resulting plots are presented in section 4.3.4. First
of all, we see from figure 4.18 that the MRAC-controller manages to keep the system stable,
but the performance of the MRAC-controller is far from the performance of the L1 controller.
The most distinct difference between MRAC andL1 adaptive control can be seen from figure
4.19 and 4.20, which shows the control input and the estimates respectively. We see that the
estimates is almost constantly oscillating between one end of the projection bound to the
other end of the projection bound. This again goes directly back to the control signal which
also oscillates rapidly. This is consistent with the problems of MRAC pointed out in section
3.2.4. We also see from figure 4.21 that the predicted states differ from the real states.

General remarks

As discussed in section 4.2.3, the L1-norm condition is not verified. Thus, none of the the-
oretical results can be proven to hold. Since we for real implementations can have no exact
knowledge about the uncertainties, the L1-norm condition is impossible to prove to be ver-
ified in practice. However, as we have seen in the simulations presented, the L1 adaptive
controller manages to give a robust response and a good performance for different types of
uncertainties and disturbances, without any retuning, and without persistence of excitation.
This imply that the L1-norm condition is quite conservative. From figure 4.10 and figure
4.15 we also see that the estimated values of θ are never near the bounds found in (4.33)
and (4.33). This further imply that the bounds specified in the theory are chosen very con-
servative and thus contribute to making the L1-norm condition conservative. We have thus
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shown that even though the L1-norm condition is not met, following the design strategies
presented in chapter 3, we can achieve the same results as the ones proved in theory.

As mentioned in section 4.1, the model used in the simulations include a limitation in the
control surfaces. As we can see from the presented simulations of the L1 adaptive controller,
the control signal have never been near this limitation. What has been experienced through
simulations is that L1 adaptive control does not work well when the control input is satu-
rated. What happens when the control signal is saturated is that the we get an error between
the predicted state and the real state due to the error between the assumed output and the
real output. This error causes the estimated values of ω and σ to change. As the estimations
are updated, the adaptive controller wants to compensate for this modelling error, and thus
increases the control signal. This increase again makes the prediction error larger. Thus, we
see that we get a wind-up situation. To prevent this from happening the feedback vector
Km must be designed such that the control is not to aggressive. It is also important that the
changes in the reference r is not to quick. Keeping this in mind, as have been done for the
designs considered in this text, the L1 adaptive controller works well with control limits.

4.4 L1 adaptive control design for the lateral system

This section presents the control design used in the simulations of the lateral system in this
chapter. Again, the controller is designed based on the linearised model in section 4.1, and
the control laws are kept unchanged for the considered cases. The L1 adaptive controller
is defined by combining the feedback controller defined in (3.109), the predictor (3.122),
the adaptation rule (3.123) and the adaptive control law (3.125). The parameters used and
the design of the different control elements are presented in the following of this section.
The implementation of the L1 adaptive controller for the lateral system can be found in
Appendix 2.

4.4.1 Design of the feedback gain Km

As for the longitudinal system, we again choose to use LQR-design when specifying the
feedback matrix. Compared to for instance pole placement, we get much better control
on which states are important to control. In this case these states are of course the output
states φ and ψ. Thus we want to weight these states relatively high. Again, we need to
take into consideration the actuator dynamics. By some trial and error, considering both the
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robustness and the desired response, the I chose

Q =


0 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 125 0
0 0 0 0 125

 (4.61)

R =
[
5 0
0 5

]
(4.62)

Using the lqr-function in Matlab, this resulted in the feedback matrix

Km =


0.3241 −1.8649
−1.4370 0.2411
−0.3482 −1.9091
−4.9169 0.8030
−1.0851 −4.8808

 (4.63)

which again resulted in the system matrix

Am =


−0.1514 0.0855 −0.9332 0.0894 0.1522
−8.2619 −41.1021 −2.4633 −132.8518 −12.8408
1.4497 −1.3998 −5.9279 −4.7099 −14.6227

0 1.0000 0 0 0
0 0 1.0000 0 0

 (4.64)

with the eigenvalues

λ =


−37.6475
−0.1229

−2.9324 + j2.7157
−2.9324− j2.7157

−3.5461

 (4.65)

The bode plots of
y

r
(s) in (4.10) can be seen in figure 4.22. We see that the choice of Km gives

a gain margin for the response from r1 to y1 of 15.2 dB and a phase margin of 165 degrees,
for the response from r2 to y2 we get a gain margin of 18.2 dB and a phase margin of 180
degrees, for the response from r1 to y2 we get a gain margin of 27.4 dB and an infinite phase
margin, and for the response from r2 to y1 we get a gain margin of 35.4 dB and an infinite
phase margin. These are acceptable margins [11].
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(a) Bode plot from reference r1 to output y1. (b) Bode plot from reference r1 to output y2.

(c) Bode plot from reference r2 to output y1. (d) Bode plot from reference r2 to output y2.

Figure 4.22: Bode plot of
y

r
(s) = C (sIn − (Aid −BidF (s)Km))−1 kgBidF (s)
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4.4.2 Specifying the projection bounds

Again, we need some knowledge about the uncertainties to find the projection bounds. The
kind of uncertainties considered in the following simulations are

f̃x(t,x(t)) = A∆x(t) + σ(t), (4.66)

B̃(t,x(t)) = B̃ (4.67)

Further, the unmodeled actuator dynamics causes an extra unknown error since

µ(t) = ωu+ σµ(t) (4.68)

From (3.171) and the results above, we get that the modelling error becomes

f(t,x(t)) = BidKT
m(I− ω)x(t) + A∆x(t) + σ(t) + (Bid + B̃)σµ(t)

+ B̃ω(uad −KT
mx(t)) (4.69)

Specifying ∆1

From (4.69) we have

f(t, 0) = σ(t) + (Bid + B̃)σµ(t) + B̃ωuad(t) (4.70)

where σ is the only signal we have knowledge about. From (3.114) we again have that[
f1(t,x(t))
f2(t,x(t))

]
=
[
Bm Bum

]−1
f(t,x(t)). (4.71)

In the cases considered in this text, σmax := ‖σ(t)‖∞ = 50π/180 ≈ 0.873. We find a lower
bound on the error:

‖f1(t, 0)‖∞ ≥

∥∥∥∥∥∥∥
1 0 0

0 0 0
0 0 0

 [Bm Bum

]−1

∥∥∥∥∥∥∥
∞

σmax (4.72)

‖f2(t, 0)‖∞ ≥

∥∥∥∥∥∥∥
0 0 0

0 1 0
0 0 1

 [Bm Bum

]−1

∥∥∥∥∥∥∥
∞

σmax (4.73)

This gives

‖f1(t, 0)‖∞ ≥ 0.3247 (4.74)
‖f2(t, 0)‖∞ ≥ 0.8820 (4.75)

Based on this, and proven to give good results through simulations, the projection bound
defined in (3.124) is chosen as

∆1 = 0.6 (4.76)
∆2 = 1.2. (4.77)
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Specifying θbi

From (4.69) we have

δf(t,x)
δx

= BidKT
m(I− ω) + A∆ − B̃KT

m + (Bid + B̃)δσµ
δx

+ B̃
δuad
δx

, (4.78)

for all ‖x‖∞ < ∞. We known that F (0) = I, thus ω = I. Further, from the cases considered
we have that

max
A∆

∥∥∥∥∥∥∥∥∥∥∥∥


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


[
Bm Bum

]−1
A∆

∥∥∥∥∥∥∥∥∥∥∥∥
∞

= 4.8070 (4.79)

max
A∆

∥∥∥∥∥∥∥∥∥∥∥∥


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


[
Bm Bum

]−1
A∆

∥∥∥∥∥∥∥∥∥∥∥∥
∞

= 0.1470 (4.80)

and

max
B̃

∥∥∥∥∥∥∥∥∥∥∥∥


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


[
Bm Bum

]−1
B̃KT

m

∥∥∥∥∥∥∥∥∥∥∥∥
∞

= 1.4391 (4.81)

max
B̃

∥∥∥∥∥∥∥∥∥∥∥∥


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


[
Bm Bum

]−1
B̃KT

m

∥∥∥∥∥∥∥∥∥∥∥∥
∞

= 0.0075 (4.82)

The last addends (Bid + B̃)δσµ
δx

+ B̃
δuad
δx

we have no control over. Thus we get

L1 =
∥∥∥∥∥δf1(t,x)

δx

∥∥∥∥∥
∞
≥ 6.2461 (4.83)

L2 =
∥∥∥∥∥δf1(t,x)

δx

∥∥∥∥∥
∞
≥ 0.1545 (4.84)

Bases on these calculations, we choose a conservative bound on the projection bound, de-
fined in (3.124), as

θbi = 8 (4.85)
θbi = 1. (4.86)
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Specifying Ω

In the cases considered in the simulations, we know that F (0) = I. However, it may be
beneficial to let some of the error in B be taken care of by ω̂. Further it is interesting to see
how this adaptation affect the control. In the simulations considered, the bounds on ω are
given as

ω̂ ∈
[

[0.5, 2] [−0.3, 0.3]
[−0.3, 0.3] [0.5, 2]

]
= Ω. (4.87)

Initial conditions

The initial conditions for the estimates have to be specified. The only requirement from the
L1 theory is that the initial values are chosen within the specified projection bounds. For all
the simulations performed for the lateral system the initial guess is that there is no modelling
error, that is:

θ̂10 =
[
0
0

]
(4.88)

θ̂20 =

0
0
0

 (4.89)

σ̂10 =
[
0
0

]
(4.90)

σ̂20 =

0
0
0

 (4.91)

ω̂0 =
[
1 0
0 1

]
(4.92)

4.4.3 Designing the filter C(s)

The same guidelines for the design of C(s) holds for the MIMO lateral system as for the
SISO longitudinal system. Similar to the longitudinal controller, we chose D(s) according to

D(s) = Im
1
s

(4.93)

We consider the feedback gain K = Imk. For the given choice of D(s), we consider the plot
of ‖Gm(s)‖L1L1 + ‖G(um(s)‖L1L2 versus k. This can be seen in figure 4.23. The values for
L1 and L2 used in the plot are the ones found in (4.83) and (4.84) respectively. As we can
see the value of ‖Gm(s)‖L1L1 is actually increasing as k increases. This is a bit strange result
compared to the L1 theory. This may be due to numerical errors in the computations. Some
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problems occurred in the computations when the systems became large. Thus, the Matlab
function balred() was used to reduce the order of the systems. This may have given bad
results in the computation of the L1-norms. It does however not seems like it is possible to
meet the L1-norm condition, and thus the design must be based on a different analysis.

Figure 4.23: L1-norm condition as a function of k.

Figure 4.24 shows the system output and the control input for a simulation of case 1, de-
scribed in section 4.5.2, with K = Im12.5. We see that the system becomes unstable, and
that the response of the control signals u1 and u2 are to fast for the real inputs µ1 and µ2 to
keep up. Thus we know that we need to choose a smaller value for k to keep the system
stable. However, considering the system output of the simulation of case 2, described in
section 4.5.3, with the same K = Im12.5, we see that the response is very good, and actually
better than the one achieved with the actual choice of K, seen in figure 4.35. Based on lots
of simulations, the choice

K =
[
2.5 0
0 2.5

]
(4.94)

seems to give good results, even though the L1-norm condition is not met. This choice
results in the filter

C(s) = Im
50.5s2 + 1020s

s4 + 40.4s3 + 458.5s2 + 1020s (4.95)
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(a) System output (b) Control input

Figure 4.24: Simulation of case 1 with K = Im12.5, and reference r1.

Figure 4.25: System output of simulation case 2, with K = Im12.5, and reference r1.

with the bode plot given in figure 4.26. Compared to the bode-plot of the bode plot of
y

r
(s)

in figure 4.22 we see that the bandwidth of C(s) is a bit low to be able to compensate for the
desired frequencies. This is the result we see by comparing the plots of case 2 with k = 12.5,
in figure 4.25, with simulations of the same case and k = 2.5, in figure 4.35. However as
shown, increasing k makes the controller lose the robustness needed to control case 1.
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Figure 4.26: Bode plot of C(s).

4.4.4 Choosing the adaptation gain Γ

Again, we know that a large as possible adaptation gain is beneficial for performance. The
adaptation gain considered in the simulation is

Γ = 20000 (4.96)
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4.5 Simulation results and discussion for the lateral system

In this section, the simulation results of the L1 adaptive controller for the lateral system are
presented. Is before, it would be impossible to consider and simulate all the different non-
linear effects the aircraft could encounter. Two different cases are chosen and presented,
which try to give a good insight in the robustness and the performance of the L1 adap-
tive controller. All the simulations presented in this section are performed with the solver
ODE45 and a relative tolerance of 10−9. Implementation issues like limited sampling time
and measurement errors are considered in section 4.8.

The simulations in this section are performed for two types of reference inputs:

r10(t) =



[
5◦
0◦
]

, 5 s < t < 25 s[
0◦
0◦
]

, otherwise
(4.97)

r20(t) =
[
5◦ sin π

4 t
0◦

]
(4.98)

Further, to prevent to aggressive change, the reference signals are filtered:

ri(s) = Fr(s)ri0, (4.99)

where Fr(s) = 3
s+ 3 .

4.5.1 Design system

First, as a reference to the best possible control result one could hope for, the ideal case
with no modelling error is presented. This represents the design system. The simulation is
performed by setting the adaptation gain to zero, and removing all error. The resulting plots
for the system output, the control signal together with the real control input, and the states
are shown in figures 4.27, 4.28 and 4.29 respectively.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.27: System output in the case of no modelling error.

(a) Control signal and real control input with reference
r1

(b) Control signal and real control input with reference
r2

Figure 4.28: Control input in the case of no modelling error.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.29: System states in the case of no modelling error.
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4.5.2 Simulation case 1

As mentioned, the goal is to show the robustness and the performance of the L1 adaptive
controller. Two cases are chosen for this purpose. The system considered in this case is given
as

ẋ(t) = (Aid + A∆)x(t) + (Bid + B∆)µ(t) + σ, (4.100)

where

A∆ =


0 0 0 0 0
0 10 5 0 0
0 14 0 0 0
0 0 0 0 0

 , (4.101)

B∆ =


0 0
5 0
0 0
0 0
0 0

 (4.102)

σ =



0
30π
180
0
0
0

 (4.103)

The resulting plots for the system output, the control signal together with the real control
input, the prediction estimates, and the states together with the state estimates are shown in
figures 4.30, 4.31, 4.32 and 4.33 respectively.

As a reference, it is interesting to see how the controller performs without the adaptation.
This simulation is shown in figure 4.34.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.30: System output of the L1 adaptive controlled lateral system, for simulation case
1.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.31: Control input to the L1 adaptive controlled lateral system, for simulation case
1.
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(a) Adaptive estimates with reference r1

(b) Adaptive estimates with reference r2

Figure 4.32: Adaptive estimates for the L1 adaptive controlled lateral system, for simulation
case 1.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.33: Predicted and real system states of the L1 adaptive controlled lateral system, for
simulation case 1.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.34: System output of the L1 adaptive controlled lateral system, for simulation case
1, without adaptation.
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4.5.3 Simulation case 2

In the simulation case 2, we consider timevarying disturbances. The system considered in
this case is given as

ẋ(t) = Aidx(t) + Bidµ(t) + σ(t), (4.104)

where

σ(t) =



3π
180 sin

(
π

7 t−
π

7

)
50π
180 sin

(
π

4 t−
π

9

)
5π
180 sin

(
π

5 t−
π

3

)
0
0


(4.105)

The resulting plots for the system output, the control signal together with the real control
input, the prediction estimates, and the states together with the state estimates are shown in
figures 4.35, 4.36, 4.37 and 4.38 respectively.

As a reference, it is interesting to see how the controller performs without the adaptation.
This simulation is shown in figure 4.39.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.35: System output of the L1 adaptive controlled lateral system, for simulation case
2.

(a) Control signal with reference r1 (b) Control signal with reference r2

Figure 4.36: Control input to the L1 adaptive controlled lateral system, for simulation case
2.
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(a) Adaptive estimates with reference r1

(b) Adaptive estimates with reference r2

Figure 4.37: Adaptive estimates for the L1 adaptive controlled lateral system, for simulation
case 2.
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(a) System states with reference r1

(b) System states with reference r2

Figure 4.38: Predicted and real system states of the L1 adaptive controlled lateral system, for
simulation case 2.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.39: System output of the L1 adaptive controlled lateral system, for simulation case
2, without adaptation.
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4.5.4 Discussion

In this section the simulation results for the lateral system, presented in section 4.5 are dis-
cussed. Again, two different cases are presented which shows the responce and robustness
of the L1 adaptive controller.

Design system

Section 4.5.1 presents the simulation results for the design system. That is the system results
when the modelling errors are equal to zero. The actuator dynamics are however included.
This controller is not implementable, but represents the goal of the L1 adaptive controller
and is the basis for the design of Km. Figure 4.27 shows the best possible output with the
chosen Km and C(s). We see that we do not achieve perfect tracking of both roll and yaw,
but not far from it. To be able to achieve a better tracking, we would need a more aggres-
sive controller, but due to the actuator dynamics this would make the controller loose its
robustness.

Simulation case 1

Section 4.5.2 presents the simulation results for the L1 adaptive controller for Case 1. This
case introduce constant modelling error in the state matrix. This error reduces the stability in
roll, and increases the coupling between roll and yaw. Further a constant error in the input
matrix is introduced, which decreases the effect of δA to roll. Lastly, a constant disturbance
on to the roll rate is introduced. All the modelling errors and the disturbance are unmatched.

Figure 4.30 shows the output response of the L1 adaptive controller for Case 1. Compared to
the output of the design system in figure 4.27, we see that theL1 adaptive controller manages
to control the roll angle really well. Due to the extra coupling between roll and yaw, we see
that when we change the roll angle, we get an unwanted yaw angle with a maximum of
little over one degree. In figure 4.34 we see the output of Case 1 without adaptation in the
controller. Here we see that we get an unwanted yaw angle of about three times the size as
compared to the L1 adaptive controller. Further, we see that due to the constant disturbance
in roll, the roll angle gets a stationary deviation in roll, which the L1 adaptive controller
manages to correct for.

Considering the plots of the control inputs in figure 4.31 we notice a bit different signal as
compared to the case with no model error in figure 4.28. We also see that the real control
input lags a little behind the control signal, just as for the longitudinal system.

Considering the plots of the states and the state predictions in figure 4.33, we see that the
predictions follow the real states. We can thus conclude that the adaptation gain is large
enough and the estimates capture the uncertainties. However, even though the estimates
capture the uncertainties and the predicted states follow the real states, we see that we are
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not able to get the same response as the design system. This has to do with the relationship
between the reference system and the design system, as discussed in section 3.3 and in the
remarks of section 3.5.3. The bandwidth of C(s) is not large enough to let uad respond fast
enough to the modelling errors. However, as we can see from figure 4.24, increasing the
bandwidth makes the system unstable.

Figure 4.32 shows the estimates used in the L1 adaptive controller. Considering ω̂ it looks
like this estimate takes care of some of the modelling error in B. Considering θ̂ we see
that the estimates are far from the projection bounds specified in (4.85) and (4.86). Again is
seems like these bounds are very conservative. Similar to the simulations of the longitudinal
system, we notice the same similarity in the shapes of θ̂ and σ̂.

Simulation case 2

Section 4.5.3 presents the simulation results for the second case. This case include no mod-
elling error in neither A nor B, but presents sinusoidal unmatched disturbances on β, roll
and yaw. All the sinusoidal signals have different frequencies and phase. Thus, this case
tests the L1 adaptive controller’s response to external disturbance.

Figure 4.35 shows the output response of the L1 adaptive controller for Case 2. We see that
the controller manages to follow the reference quite well. Compared to the design system,
we see how the disturbances affects the output. However, this deviation from the response
of the design system is less than a half degree for both yaw and roll. Compared to the output
response when there is no adaptation in figure 4.39, we see that the adaptation manages to
reduce the effect to about one half.

The plot of the control inputs in figure 4.36 shows how the controller have to work to counter
the effect of the disturbances. We see that the rudder angle gets larger than 20 degrees to
counter the disturbances.

Considering the plot of the states and the predicted state in figure 4.38, we again see that
the predictions follow closely to the real states. This again shows that the adaptation gain
is chosen large enough. In figure 4.25 we can see the response of the L1 adaptive controller
for Case 2 with a larger bandwidth of the filter C(s). We see that the response in this case is
almost identical to the design system response. This again indicates that the chosen band-
width is too small to let uad respond fast enough to the disturbances, and a larger bandwidth
of C(s) would better the performance of the L1 adaptive controller when the system is af-
fected by disturbances.

Considering the plots of the estimates in figure 4.37 we notice that even though we have no
error in the input matrix, ω deviates from its initial condition as the time passes. However,
this is a very small deviation. Again we notice that the shapes of θ̂ and σ̂ are very similar,
and that the projection bounds specified by the theory seems to be very conservative.
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General remarks

Just as the case for the longitudinal system, the L1 adaptive controller for the lateral system
can not verify the L1-norm condition. However, as we have seen, the L1 adaptive controller
improve the performance in cases of uncertainties and disturbances as compared to a con-
stant feedback.

What has been experienced through lots of simulations is that the designed L1 adaptive
controller for the lateral system does not cope with instabilities as good as the L1 controller
designed for the longitudinal system. While the L1 controller for the longitudinal system
managed to handle modelling errors that made the feedback control unstable, this was not
achieved for the lateral system. The choice D(s) = I1/s, used in this text, is most likely
not the optimal choice for this system. With this choice an optimal bandwidth of C(s) for
some cases makes the system unstable for other cases. Without the actuator dynamics, it
would be much easier to design the controller. This is because the control signal could have
a much more aggressive response without causing instability. Thus, one could increase the
bandwidth of C(s) without problems. However, the implemented actuator dynamics makes
the system more realistic, and shows some of the design challenges experienced with a real
implementation.

4.6 Alternative control

As a reference to the result of the L1 adaptive controller, we want to consider a more tradi-
tional control law. This is done for the longitudinal system. For this purpose we consider
a PID-controller with anti windup. Unlike the state feedback LQR-controller considered
earlier, the PID controller is not model based. Thus, changes in the considered model does
not necessarily ruin the PID-controller’s performance. Further, the integral term makes the
PID-controller able to correct for disturbances, which the the LQR-controller considered is
not.

4.6.1 PID control design

The PID-controller was designed using the PID tuning tool in Simulink. This tool automat-
ically linearises the system and produces the optimal control parameters for the linearised
system based on the desired response time. The control law of the PID-controller is given as

u(s) =

P + I
1
s

+D
N

1 +N
1
s

 e(s), (4.106)

where, P is the proportional gain, I is the integral gain,D is the derivative gain,N is the filter
coefficient, and e(t) = y(t) − r(t) is the tracking error. By considering the system without
modelling errors, the tuning was performed by trying different response times and testing
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for the different cases. What seemed to give the best result was a response time of 0.0334
seconds, which resulted in the following parameters:

P = −45.1631278872384,
I = −15.7728902394785,
D = −28.7327844651241,
N = 6841.43177754918.

4.6.2 Simulations

The PID-controller was tested for the same cases as the longitudinal L1 adaptive controller
and for the case on no modelling error. The resulting plots are shown in figures 4.40 - 4.45.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.40: PID-controlled longitudinal system output, with no modelling error.

(a) Control input with reference r1 (b) Control input with reference r2

Figure 4.41: PID control input to the longitudinal system, with no modelling error.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.42: System output of the PID-controlled longitudinal system, for simulation case 1.

(a) Control input with reference r1 (b) Control input with reference r2

Figure 4.43: Control input to the PID-controlled longitudinal system, for simulation case 1.
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(a) System output with reference r1 (b) System output with reference r2

Figure 4.44: System output of the PID-controlled longitudinal system, for simulation case 2.

(a) Control input with reference r1 (b) Control input with reference r2

Figure 4.45: Control input to the PID-controlled longitudinal system, for simulation case 2.
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4.6.3 Discussion

As mentioned, unlike the LQR-design, the PID control design is not model based. The con-
trol parameters must be design such that the PID-controller has desired robustness specifi-
cations. That is, the parameters are chosen such that the system is kept stable within a given
set of modelling error. As we can see from the plots above, the PID-controller manages to
keep the system stable for all of the given cases, and thus the chosen parameters gives the
desired robustness.

From figure 4.40 and 4.41 we see the response of the PID-controller when there is no mod-
elling error. We see that the controller makes the output follow changes in the reference
really good. As we can see from figure 4.40 (b) with reference r2 we achieve almost perfect
tracking. Considering the output of Case 1 in figure 4.42, we see that we get almost the same
result. However, considering the control signals, we see how the controller for case 1 has
to work to compensate for the changing model dynamics. From figure 4.44 and 4.45 we see
the response for Case 2. Now we see that the output with reference r1 gets an overshoot
to almost twice the desired reference value. Further, it takes about 18 seconds before the
desired constant value is achieved. With reference r2 however, we again see that we achieve
almost perfect tracking.

The interest now lies in the comparison of the PID-controller to the L1 adaptive controller.
From the plots above, we see that the PID-controller is quite aggressive. This is due to the
nature of the PID-formulation. To increase the robustness of the PID-controller, it needs to
be more aggressive. However, a too aggressive controller makes the system unstable again.
The L1 adaptive controller however, specifies the desired response without considering the
possible model changes. This makes the PID- controller able to track the changes in reference
good, but considering the control signals we see rapid changes which bounces between the
saturations.

For the case with no model error and Case 1, we see that the output response of the PID
controller is quite similar to the response of theL1 adaptive controller. We do however notice
that due to the integral part, the PID-controller uses some time to reach the desired step, for
reference r1. For Case 2, we see that the performance of the PID-controller is poor compared
to the L1 adaptive controller. It gets a large overshoot and uses about 18 seconds before the
desired constant value is achieved. For the same case, the L1 adaptive controller manages
to suppress the disturbances much better and achieves the desired constant value just as
fast as the design system. We also see that this is achieved for the L1 adaptive controller
with a maximum control angle of 8 degrees, while the PID-controller hits the saturation of
25 degrees.

As we have seen, the PID controller manages to compensate for modelling errors and dis-
turbances. However, while the PID-controller only compensates for tracking error on the
output, the L1 adaptive controller detects the model changes for each of the states, and can
immediately calculate the correct control to compensate for exactly this disturbance. The
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effect of this design differences was evident for simulation Case 2.

4.7 Simulation of the nonlinear F-16 model

This section presents the simulations performed on the full nonlinear F-16 model presented
in section 2.5. The same controllers presented in the previous sections are the one used
in the simulations, without any retuning. Due to the scope of this report, the simulations
performed are done for the pitch control only. However, since the nonlinear F-16 model is
a full 6 DOF model, the L1 adaptive controller for the lateral mode was used to keep the
references in roll and yaw equal to zero. The reference on pitch was chosen such that the
aircraft would experience quite large change in alpha. Further, the thrust was reduced to
1000 [lbs] such that the aircraft would experience a change in speed. All of these choices
was made to try to challenge the pitch controller. The reference used in the simulation is
given by:

r0(t) =


60◦ , 3 s < t < 8 s
−30◦ , 25 s < t < 35 s

0◦ , otherwise
(4.107)

Further, to prevent to aggressive change in the reference, it is filtered:

r(s) = Fr(s)ri0, (4.108)

where Fr(s) = 10
s+ 10 , and the rate of change has got the limit

−10◦/s ≤ ṙ(t) ≤ 20◦/s. (4.109)

4.7.1 Simulations

The simulations are performed with the fixed-step solver Bogacki-Shampine and a step size
of 0.0001. Besides the nonlinearities included in the F-16 model introduced in section 2.5,
the simulations include no disturbances nor measurement errors. The purpose of the sim-
ulations presented is to test the different control strategies response to the nonlinearities
presented in the F-16 model. Beside the known linearisation of the F-16 model for the given
trim conditions, the model is treated as a black box. In this way we test the goal of the L1
adaptive controller, namely that it can be based in a single linearisation, and perform well
for the entire flight envelope.

L1 adaptive control

The simulation results of the pitch control of the nonlinear F-16 model, with the L1 adaptive
controller are shown in figure 4.46.
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(a) System output and reference r (b) Longitudinal states

(c) Elevator input (d) Prediction estimates

(e) Flight path (f) Aircraft velocity

Figure 4.46: Simulation of the nonlinear F-16 model, with L1 adaptive controlled pitch.

132



4.7. SIMULATION OF THE NONLINEAR F-16 MODEL

L1 without adaptation

As before, it is interesting to see the effect of the nonlinearities on the system when the
adaptation is turned off. The simulation results of the pitch control of the nonlinear F-16
model, with the L1 controller without adaptation are shown in figure 4.47.

(a) System output and reference r (b) Elevator input

Figure 4.47: Simulation of the nonlinear F-16 model, with L1 adaptive controlled pitch, with-
out adaptation.

PI control

As a reference to the L1 adaptive controller it is interesting to see how the PID-controller
designed in the previous section performes for the nonlinear F-16 model. The simulation
result is shown in figure 4.48

4.7.2 Discussion

From figure 4.46 (a) we see that the L1 adaptive controller manages to control the pitch of
the aircraft really well. We see that the output has a delay with respect to the reference.
This is, as we know due to the formulation of Am. Other than this, we see that the output
hits the reference when it flattens out with almost no overshoot. The output settles on the
correct value in about 3 seconds. From figure 4.46 (b) we see that the predicted and the real
states are as good as equal, and from figure 4.46 (c) we see how the estimates change to keep
them so. Thus, we see that the adaptation gain is chosen satisfactory. From figure 4.46 (f)
we see that the aircraft experience a drastic loss in speed, and from figure 4.46 (b) we see
that it experience a high alpha of over 32 degrees. As we know, the L1 adaptive controller
is designed based on the single linearising point presented in 4.1. As we can see from the
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(a) System output and reference r (b) Elevator input

Figure 4.48: Simulation of the nonlinear F-16 model, with PID controlled pitch.

plots, the L1 adaptive controller manages to compensate for the model changes due to the
low speed and the high α, and give the desired response.

Considering the output of the system when the adaptation is turned off, in figure 4.47, we
see that the system is still kept stable. However, we see that the output experiences over-
shoot with a maximum of over 4 degrees. Further, the settling time is about 5 seconds,
and the controller does not manage to hit the correct constant references. This shows the
improvements of the adaptation in the L1 adaptive controller.

Considering figure 4.48 we see the response of the PID controller for the simulation on the
nonlinear F-16 model. As we can see, despite the nonlinearities, the PID-controller manages
to track the reference really good. We see that the output get some small overshoots of be-
tween 1 to 1.5 degrees, but the controller manages to reduce the error to less than 0.2 degrees
in about 1.5 seconds, and is thus just as quick as the L1 adaptive controller. Thus we see that
for the performance of the pitch control of the nonlinear F-16 model, there is no advantage of
the L1 adaptive controller over the simple PID-controller. However, considering the control
input of the two controllers, we again see some distinct differences. As before, we see that
the PID control input is really aggressive. The control signal oscillates rapidly and hits the
saturation often.
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4.8 Implementation issues and assumptions made

For the design presented in this text, some assumptions have been made implicitly, which
may not always be possible to meet when implementing the controller on a real system. This
section discusses these implementation issues and emphasize the case of limited sampling
rate, which is in particular an important issue concerning L1 adaptive control.

4.8.1 Control redesign for limited sampling rate

The reason why the case of limited sampling rate is important to discuss when considering
L1 adaptive control, is due to the high adaptation gain considered in the formulation of the
controller. When we combine the adaptation law defined in (3.123), where Γ is chosen as a
large value, with a limited sampling rate, the result is most likely adaptive estimates which
bounces between the projection bounds, which quickly makes the system unstable. This has
been experienced through simulations and can be seen in figure 4.49. This is because the
real prediction error will not be updated before the adaptive estimate already has gone far
beyond the real value, due to the fast adaptation. Thus, the adaptation gain needs to be
tuned dependent on the sampling rate. Further, the adaptation law and the state predictor
have to be redesigned. This section present how this redesign can be performed. The result-
ing simulations of the longitudinal system for Case 2, with this redesign implemented for
sample rates of 20 Hz and 100 Hz are presented in section 4.8.2.

The design presented in this section is inspired by the design for piecewise constant adap-
tion laws presented in [7]. However, we consider a different adaptation law than in the book.
This section presents no theoretical results, but present the design changes done to cope with
the case of limited sampling frequency. The goal is to get the same result as for the theory
presented in chapter 3. See [7] for theoretical results and for the different adaptation law.

When we have a limited sampling rate
1
Ts

, where Ts is the sampling time, we need to make

some adjustments to theL1 adaptive controller defined in 3.5.2. We still design the controller
as if it is continuous, but since the measurements are sampled, we need to discretize the
adaptation law. We also make a change to the state predictor. As we have seen from the
simulations of both the longitudinal and the lateral systems, it looks like the estimate θ is
redundant. To simplify, we thus remove this estimate. In the derivations of the modelling
error we have also seen that ω is redundant. A change in the real input gain would only
change the value of σ. Thus, to make the system even simpler we just consider σ̂ and let
this estimate take care off all the modelling error and disturbances.
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State predictor

Based on the discussion above, we consider the state predictor:

˙̂x = Am + Bm(ω0uad(t) + σ̂1(t)) + Bumσ̂2(t), (4.110)
ŷ = Cx̂, (4.111)

where ω0 ∈ Rm×m is an initial guess of the real ω, and σ̂1 ∈ Rm and σ̂1 ∈ Rn−m are the
adaptive estimates.

Adaptation law

For the derivation of the discrete adaptation law, we use the continuous adaptation law as a
starting point, without considering the projection operator:

˙̂σ1(t) = −ΓBT
mPx̃(t)

˙̂σ2(t) = −ΓBT
umPx̃(t)

⇓
˙̂σ(t) = −ΓBTPx̃(t) (4.112)

where σ̂ :=
[
σ̂1
σ̂2

]
, and B := [Bm,Bum]. By assuming

x̃(iTs + t) ≡ x̃(iTs), t ∈ [iTs, (i+ 1)Ts), (4.113)

where Ts is the sampling time, we can integrate both sides of (4.112) and get

σ̂((i+ 1)Ts) = −
∫ (i+1)Ts

Ts
ΓBTPx̃(τ) dτ + σ̂(iTs)

= −ΓTsBTPx̃(Ts) + σ̂(Ts) (4.114)

Based on this, we specify the new adaptation law:

σ̂(t) = σ̂((i+ 1)Ts), t ∈ [iTs, (i+ 1)Ts), (4.115)

where σ̂((i+ 1)Ts) is given in (4.114).

Control law

The control law is the same as before except that ω̂ and θ̂ are no longer considered:

u(s) = −KD(s)η̂(s), (4.116)

where η̂(s) is the Laplace transform of the signal

η̂ := ω0u(t) + η̂1(t) + η̂2m(t)− rg(t), (4.117)

where rg(s) := Kg(s)r(s), η̂2m := H−1
m (s)Hum(s)η̂2(s), and η̂i := σ̂i, i = 1, 2.
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Control parameters

The feedback gain Km and the filter C(s) is exactly the same as for the case with continuous
measurements. The initial guess of ω is chosen as ω0 = 1. The adaptation gain Γ needs to
be tuned for the different sampling rates. The simulations presented are performed for two
different sampling times: Ts1 = 0.05 and Ts2 = 0.01. Through simulations we found that
with the sampling time Ts1, the system was stable for

293 ≤ Γ1 ≤ 397, (4.118)

and with the sampling time Ts2, the system was stable for

413 ≤ Γ2 ≤ 7580. (4.119)

We want the adaptation gain to be as high as possible to get as fast adaptation as possible.
However, when the adaptation gain is close to its maximum value, the control signal oscil-
lates rapidly. Further, the margins were only tested for Case 2, so for other cases, these may
change. For the simulations presented in this section the following adaptation gains were
used

Γ1 = 380, (4.120)
Γ2 = 7400. (4.121)

The control redesign of the adaptation law and the predictor for systems with limited sam-
pling rate is shown in Appendix A.

4.8.2 Simulation with limited sample rate

This section presents the simulations for the case of limited sampling rate. All the simula-
tions are performed for Case 2 of the longitudinal system, with reference r1. The result of
the simulation with the L1 adaptive controller with a sampling rate or 20 Hz, without any
redesign, but with a reduced Γ = 380, is presented in figure 4.49. The resulting plots for
the system output, the control signal together with the real control input, the prediction es-
timates, and the states together with the state estimates for the redesigned L1 controller, are
shown in figures 4.50, 4.51, 4.52 and 4.53 respectively.
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(a) System output with sample rate of 20 Hz (b) Adaptive estimates with sample rate of 20 Hz

Figure 4.49: Simulation of the original L1 adaptive control design for simulation case 2 of
the longitudinal system, with a limited sample rate of 20 Hz.

(a) System output with sample rate of 20 Hz (b) System output with sample rate of 100 Hz

Figure 4.50: System output of the L1 adaptive controlled longitudinal system, for simulation
case 2, with limited sampling rate and reference r1.

138



4.8. IMPLEMENTATION ISSUES AND ASSUMPTIONS MADE

(a) Control signal with sample rate of 20 Hz (b) Control signal with sample rate of 100 Hz

Figure 4.51: Control input to the L1 adaptive controlled longitudinal system, for simulation
case 2, with limited sampling rate and reference r1.

(a) Adaptive estimates with sample rate of 20 Hz (b) Adaptive estimates with sample rate of 100 Hz

Figure 4.52: Adaptive estimates of the L1 adaptive controlled longitudinal system, for sim-
ulation case 2, with limited sampling rate and reference r1.
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(a) System states with sample rate of 20 Hz

(b) System states with sample rate of 100 Hz

Figure 4.53: Predicted and real system states of the L1 adaptive controlled longitudinal sys-
tem, for simulation case 2, with limited sampling rate and reference r1.
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4.8.3 Discussion

As discussed, an important issue with regards to implementing the L1 adaptive controller
on a real system, is the case of limited sampling rate. Why this is a problem can be seen in
figure 4.49, where the original design is simulated with a limited sampling rate of 20 Hz.
Even though the adaptation gain is limited to the same value as we use in the redesigned
controller for a sample rate of 20 Hz, we see that the system becomes unstable. We also see
that the adaptive estimates σ̂ hits the saturation bounds very quickly. This shows that the
original design with the projection based adaptation, used to get the theoretical results, is
no good in practice. The resulting plots for the redesign presented in section 4.8.1 are shown
in figures 4.50 - 4.53. We see that even with a sampling rate as low as 20 Hz the redesigned
L1 adaptive controller manages to keep the system stable. At some points we see that we
get some rapid oscillations on the adaptive estimates and on the control signal. These are
however bounded, and does not make the system unstable. Considering the real and the
predicted states in figure 4.53 (a), we see that the predicted states follow the real states quite
good.

As we can see from the simulation results with a sampling frequency of 100 Hz, we get al-
most the identical result as for the continuous case, presented in figures 4.13 - 4.16. This
shows that by increasing the sampling rate, we can get the same results as for the contin-
uous case. Thus, since no other control parameters but the adaptation gain are changed in
these simulations, we can design the filter and the desired system response based on the
principles as presented in chapter 3, and adjust Γ to the available sample rate. [7] presents
an alternative adaptation law directly dependent on the available sampling rate. This has
not been considered in this text.

The simulations above also shows that the adaptive estimate σ̂ alone captures all the un-
certainties and disturbances. This confirms the points made earlier, that both ω̂ and θ̂ are
redundant. Without considering how the modelling error occurred: if it is a nonlinear de-
pendence on the states, if there are unmodelled dynamics or unmodelled actuator dynamics,
or if the errors are due to an external disturbance, due to the fast adaptation, σ̂(t) takes care
of all the modelling errors and makes uad do the necessary corrections. The state predic-
tor considered in this section is the one successfully used in the implemented L1 adaptive
controller in the test flights of NASA’s GTM (AirSTAR) and the Boeing X-48B.

An other assumption made in the design of the L1 adaptive controller is that we have perfect
state measurements. This is however not an unrealistic assumption since full state feedback
has been used in the implementations mentioned. If we should experience measurement
errors, the L1 adaptive controller is not made to correct for this. A bias in the measurement
would result in a bias in the output. The biggest challenge with regards to the measurements
is a measurement delay. This is again related to the fast adaptation. If we have a measure-
ment delay, the adaptive estimates is based on the wrong state measurement, and the fast
adaptation may lead to instability. Thus the L1 adaptive controller has to be designed with
this in mind. Simulations of the L1 adaptive controller with a sample rate of 100 Hz, without

141



4.8. IMPLEMENTATION ISSUES AND ASSUMPTIONS MADE

any retuning, showed that the system was stable for a measure delay of 1,6 ms, but unstable
for larger measurement delays.
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Chapter 5
Conclusion

This master’s thesis has considered control design of the inner loop of an aircraft control
system. The goal has been to design a single controller based on a linearised model of
the aircraft, to give satisfactory robustness and performance specifications for the complete
flight envelope. Thus, the theory of linear aircraft modelling has been presented. Further,
the numerical values for this model has been obtained from a nonlinear F-16 model.

Further, the L1 adaptive control architecture for MIMO systems with nonlinear unmatched
uncertainties and unmodeled actuator dynamics has been presented. This has been pre-
sented through a step by step expansion of the problem formulations considered. Through
the theoretical results, not proven in this text, we have seen how the filter C(s) decou-
ples adaptation from the control and that fast adaptation thus is possible. Further it was
proven that a large adaptation gain as possible is beneficial since it decreases the perfor-
mance bounds. By choosing the feedback matrix Km to specify the the desired performance,
the control problem was reduced to the proper selection of D(s) and K to get the desired
trade-off between robustness and performance.

The final L1 adaptive control architecture was used to design one L1 adaptive controller for
the SISO longitudinal system, and one for the MIMO lateral system. We saw that it was hard
to verify the L1-norm condition required to prove the theoretical results. However, even
though the L1-norm condition was not met, we saw that by considering the same design
strategies discussed in the theory, the L1 adaptive controller managed to give good tracking,
and suppress the unmatched nonlinear modelling errors and disturbances. This was true for
both the longitudinal and the lateral systems, however, for the lateral system it was shown
likely that a different filter D(s) would give an even better result. To see the effect of the
filter C(s) the MRAC formulation was considered. This resulted in heavy oscillations in
both the adaptation estimates, and the control input, which clearly shows the benefits of the
L1 adaptive control formulation.

As a comparison, a simple PID-controller was tested for the longitudinal system. The re-
sult showed that the PID controller performed poorer than the L1 adaptive controller for
the steps in reference, but actually better than the L1 adaptive controller for the sinusoidal
reference. The greatest performance improvement of the L1 adaptive controller over the
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PID-controller was in the case with a step response and large disturbances. It seems like the
fact that the L1 adaptive controller can detect prediction errors and correct for them directly,
instead of compensating for tracking error, is very beneficial in these cases.

Further, the longitudinal controllers was tested on the nonlinear "black box" F-16 model
without any retuning. Again we saw that both the L1 adaptive controller and the PID-
controller performed really well. Based only on the nonlinearities presented in the F-16
model, without disturbances, we can not conclude that the L1 adaptive controller is a bet-
ter choice for the longitudinal system, especially considering the extra design challenges it
presents. However, considering the control signals of the two controllers, we have seen that
the PID-controller is much more aggressive. This is a great advantage of theL1 adaptive con-
troller, that we can specify the desired performance and aggressiveness without considering
the modelling error it has to handle.

Lastly the implementation issues with regards to L1 adaptive control was considered. We
saw that by redesigning the L1 adaptive control architecture and retuning the adaptation
gain, we achieved almost the same result for limited sampling rate as for the continuous
formulation. Further we saw that by increasing the sampling rate, we could increase the
adaptation which we know is beneficial. However, a direct relationship between the sam-
pling rate and the adaptation gain was not found. What was also seen is that the single
prediction estimate σ manages to capture all the nonlinearities and disturbances, due to the
fast adaptation.

The L1 adaptive control strategy has proven to give good results. The positive effects of
the filter C(s) are clear, and the opportunity to introduce fast adaptation without imposing
high gain feedback has been shown very positive. However, for the simple longitudinal
system it seems like a simple PID-controller gives almost as good result. Some differences
has however been seen in favor of the L1 adaptive controller. This is mainly the possibility
of specifying the desired system response without considering the modelling error, and the
ability to sense the modelling error and disturbance at the state it affects the system, and take
the correcting action based on this information. For a more complex system this difference
in the formulations probably makes the performance error more evident. The difference in
performance between the L1 adaptive controller and a PID-controller for the lateral system
is impossible to guess. However, the fact that the L1 adaptive controller can be designed for
the complete multi-variable system is probably beneficial compared to the PID-controller.

5.1 Future work

Since we in this text only got the time to test the nonlinear F-16 controller for the pitch
control, future work should include tests for the complete 6DOF nonlinear model.

Through this master’s thesis, a good understanding of the principles of L1 adaptive control
and the effects of the filter C(s) has been achieved. However, the design of D(s) and K
need to be made specific for the different systems considered. The lack of a general design
strategy is what makes the design of the L1 adaptive controller hard. Due to the scope of
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this text, much research on the specific filter design for each of the systems considered was
not included. This should be a focus in a future work.
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Appendix A
Simulink diagrams

Figure A.1: Simulink implementation of the L1 adaptive control structure.
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Figure A.2: Simulink implementation of controller.

Figure A.3: Simulink implementation of the state predictor.
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Figure A.4: Simulink implementation of the adaptive law.

Figure A.5: Simulink implementation of the state predictor with limited sampling rate.

Figure A.6: Simulink implementation of the adaptive law with limited sampling rate.
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