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Abstract

As the oil and shipping industry are interested in operating in arctic waters, the need for
ice intelligence gathering is rising. The thesis describes the implementation and results of
a path planning framework for an UAV used for ice intelligence purposes. The framework
produces paths based on optimization of a non-linear problem, using the IPOPT library
in C++. A model for information uncertainty is implemented, and optimal paths based
on minimizing the total information uncertainty are compared to optimal paths based on
minimizing distance between UAV and target. Both o� line and o� line path planning
is tested with single and multiple targets.

It was found that minimizing information uncertainty can work very well for path
planning for ice berg surveillance, or for surveillance of a small search grid. Minimizing
information uncertainty generally gave better results than minimizing distance between
the UAV and given targets.

The implementation should be made more robust, and interfaces towards other UAV
systems has to be made before the path planning platform has any practical use.
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Sammendrag

Ettersom både olje- og shippingindustrien øker aktiviteten i farvann med mye is, har
bedre metoder for overvåkning av is blitt etterspurt. Denne masteroppgaven presenterer
implementasjon og resultater med et rammeverk for optimal ruteplanlegging for en UAV
brukt til overvåkning av isfjell. Rammeverket baserer seg på optimalisering og bruker
IPOPT, et bibliotek til C++, for å løse et ulineært optimaliseringsproblem. En modell
for informasjonsusikkerhet i et gitt punkt er implementert, og optimale ruter basert på
minimering av totalt usikkerhet blir sammenliknet med ruter basert på minimering av
total avstand mellom UAV og punktet. Tester er utført med et og �ere punkter som skal
overvåkes, og rammeverket er utvidet til også å oppdatere rutene, som en modellprediktiv
regulator.

Det ble funnet at minimering av usikkerhet kan fungere meget godt til ruteplanlegging
for isfjellovervåkning, eller for overvåkning av et mindre søkeområde de�nert av et sett
punkter. Minimering av informasjonsusikkerheten i gitte punkter fungerte generellt bedre
enn minimering av avstand til gitte mål. Denne implementasjonen trenger tiltak for å
bli mer robust, og også tilknytningsmuligheter til andre UAV-sytemer før det evt kan
brukes i praksis.
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Nomenclature

Abbreviations are listed in table 1. Abbrevatios will also be explained in the text where
�rst used.

Abbrevations Full expression w/explantion

GCS Ground Control Station
IPOPT Interior point optimiser. A algorithm/software library for solving NLPs.
MUMPS Multifrontal massively parallel sparse direct solver. Software package for

solving linear systems.
LP Linear Program. De�nes a liner optimization problem.
NLP Nonlinear Program. De�nes a non linear optimization problem.
ODE Ordinary Di�erential Equation.
SQP Sequential Quadratic Program.
UAS Unmaned Aircraft System.
UAV Unmaned Aereal Vehicle.
QP Quadratic Program. De�nes a quadratic optimization problem.

Table 1: Abbreviations

Symbols and notations are explained in table 2. Symbols and naming is also explained
where �rst used. 0-indexing of all variables is chosen, due to the equations and variables
are to be implemented in c++. C++ uses 0-indexing of all arrays and matrices.

1
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Symbols Explanation

ds defect vector of segment s. Dimension is [n, 1]
dsi i-th element of vector ds

g vector of constraints. Dimentions is [n× S, 1]
gi i-th element of vector g
m number of inputs in a state space model
n number of states in a state-space model.

Also a given node in collocation scheme
ni a given node, the i-th. Nodes are zero-indexed; i ∈ [0, S].
N Total number of nodes. N = S − 1.
S Total number of segments
s a given segment. Segments are zero-indexed; s ∈ [0, S − 1].

u input vector of a state space model. Dimention is [m, 1]
uj input vector of the j-th node.
ui i-th element of vector u. Inputs are 0-indexed for consistancy with a

c++ implementation; i ∈ [0,m− 1]
x state vector of a state-space model.

Also optimization variable vector in IPOPT library.
xj state vector at the j-th node
xi i-th state in a state space model / element of x-vector. States are 0-

indexed; i ∈ [0, n− 1].
(Note that state variables are normally 1-indexed in the litterature, but
0 indexing is chosen, such that the naming will be consistent with a c++
implementation.)

y dual optimization variable vector
yi i-th element of vector y
z (primal) Optimimization variable vector.
zi i-th element of z vector. z is zero-indexed: i ∈ [0, (n+m) ∗ S − 1]

Table 2: Nomenclature: symbols, naming and syntax.



Chapter 1

Background

In 2008, a study performed by the United States Geological Survey (USGS), estimated
that there could be 90 billion barrels of oil, 4.7x1013 cubic meters of natural gas, and
yet another 44 billion barrels of natural gas liquids in the areas north of the arctic circle
[27]. At the time, these resources counted for about 22 % of the undiscovered, technically
recoverable oil and gas resources in the world, with most of these located o�shore.

With continuously high oil prices, and the world still being dependent on fossil fuels
for years to come, it is no surprise that many of the worlds leading oil companies are
turning their attention to the north. However, in these areas they are met with new
challenges such as very low temperatures and extreme weather conditions, remoteness
from any existing infrastructure and aids available for clean-up after spills, and last but
not least; drift ice[20].

At the Marine Technology Society's Dynamic Positioning Committee's DP conference
in Huston, Texas in October 2009, several papers regarding DP in the icy, arctic waters
where published [2]. This re�ects the interest for development and ongoing research in
this �eld.

The Norwegian University of Science and Technology, NTNU, also participates in
a research project related to Dynamic Position in the arctics, with partners such as
Kongsberg Maritime, Statoil and DNV[4].

1.1 Dynamic positioning in sea ice

Station keeping is essential for any vessel performing a drilling operation. Using dynamic
positioning is a popular method to obtain this. The Norwegian classi�cation society, DNV
de�nes the a dynamically positioned vessel as[14]:

...a free-�oating vessel which maintains it position (�xed location or prede-
termined track) exclusively by means of thrusters.

Traditionally, dynamic positioning (DP) is understood as using thrusters, and some-
times also the vessels rudders and propellers (if present) to control the horizontal move-
ments; surge, sway and yaw, of a vessel. More recently there has also been suggested to

3



4 CHAPTER 1. BACKGROUND

extend the DP system to give additional damping in the vessels roll and pitch movements
[14]. This is favorable, as it not only is important for a drilling vessel to hold it's position
above a well on the ocean �oor, but also to have only small movements in roll and pitch
to avoid too much stress on the drilling string. See also Figure 1.1 for the de�nition of a
ships axis.

Figure 1.1: De�nition of ship axis; surge, sway, heave, and rotation about these axis;
roll, pitch, yaw. Illustration from Fossen[14].

Using a DP system is usually more convenient than anchoring, which demands use of
specialized vessels for handling the anchors. But as position holding in ice only recently
has become an issue, there is no commercial DP system available which is able to cope
with the disturbances from ice[26].

An impact with an ice berg, or huge thick �akes of ice will produce a huge peak in
the forces acting on a hull. Todays vessels does not have enough power available from
their thrusters to counter the forces in such a collision.

A steady stream of smaller pieces of ice will act more like a disturbance caused by
heavy currents, such that huge peaks are avoided. But this is also a challenge as the
forces will still be signi�cant. Still, small chunks are considered easier to handle than
large �akes.

Adding to the complexity of the problem with ice is that ice drift is di�cult to predict
accurately. As of this, the moment of impact and the direction of forces is hard to predict.
It is also important to be aware that collisions with, and pressure from ice could be strong
enough to make dangerous structural damages to hulls, and even sink �oating structures.
Pressure from surrounding ice could also push a hull upwards, possibly causing instability,
or damage to rudders, propellers and truster if they are hit by ice.

The mentioned observations draws out two possible solutions to cope with the sea ice,
one not excluding the other. This is making DP systems more responsive, and keeping
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dangerous ice away from the vessels. For instance: In a paper, Jenssen et.al [21] points
at the need to make current DP systems more reactive, as ice loads to a vessels hull will
be highly varying, with sudden high peaks. That current commercial DP systems are
by now not responsive enough, is illustrated by the need to use manual joystick control
of the DP system in the IODP 3021 core drilling expedition in 2004. The paper also
concludes that more responsive DP systems will have to be combined with additional ice
management.

To help the DP system, ice management involving ice breakers to break the ice into
smaller pieces before it reaches the vessel is a feasible solution[21][26][24][20].

During a drilling maneuver, the tolerance of drift is often as little as a radius of 5
meter. Stability and station keeping is very important.

1.2 Ice management

Ice management can be de�ned as [17]:

Ice management is the sum of all activities where the objective is to reduce
or avoid actions from any kind of ice features. This will include, but is not
limited to:

� Detection, tracking and forecasting of sea ice, ice ridges and ice bergs

� Threat evaluation

� Physical ice management such as ice breaking and ice berg towing

� Procedures for disconnection of o�shore structures applied in search for
or production of hydrocarbons

As mentioned, breaking up ice is only a part of ice management. Ice management
is a complete system to deal with the ice; from planning and safety/operation manuals,
to monitoring ice and predicting the ice drift through observations, measurements and
weather data, to directing the ice breakers[24]. Figure 1.2 illustrates a possible realization
of a sector based ice management system. Three ice breakers assists a drilling vessel using
DP for station keeping.

Through monitoring and forecasting ice movements, the ice breakers are working in
their individual sectors of a funnel shaped area, reaching out from the drilling vessel
heading for the opposite direction direction of the ice drift. The biggest ice breaker
works furthest out, to break up the biggest �akes of ice, which can be as big as a county.
One by one, the ice breakers will break �akes of ice into smaller chunks, until the chunks
are small enough for the drilling vessel to handle. As mentioned previously, it is essential
that the ice chunks are as small as possible when reaching the position holding vessel for
todays DP system to have a chance at working.

Rohlen describes brie�y how this kind of ice management has been applied during
two drilling expeditions; The Arctic Coring Expedition, drilling at 87.54 degrees north in
August 2004, and the Kanumas Expedition drilling at 77 degrees north in July 2008[24].
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Figure 1.2: Illustration of a possible ice management system with three ice breakers
assisting a DP vessel, as proposed by Rohlen[24]. Image is copied from Rohlen's presen-
tation.

In the latter expedition, they were actually able to use the drilling vessels DP 80 percent
of the time, in what was considered to be light ice conditions. But the conclusion is
still that to enable position holding using dynamic positioning in arctic waters, DP
systems must be more robust for ice pressure. Ice management must be implemented
as discussed[21][24]. And for ice management to be e�ective, good measurements of the
current ice conditions are a must, along with the need to predict changes in it. Knowledge
of the ice �ow is essential to direct ice breakers in the most e�cient way.

It should also be noted that ice management not only applies to assisting DP vessels,
but it can be used to assist any vessel or installation dealing with ice. Another upcoming
area for ice management could for instance be assisting freight vessels and tankers wanting
to travel through the North-West Passage.

1.3 Sensor platforms for ice monitoring purposes

So how do one keep track of ice? As already discussed, detection, tracking and forecasting
of ice is an important part of ice management in order to direct ice breakers or to know
when it is time to shut down drilling operations. Because of the highly complex behavior
of ice drift, one has not been able to create highly accurate models or estimators for
ice, neither for movement or thickness. This means that without good real time data to
correct the estimates, the estimators will drift away from the correct states. There are
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several ways to obtain these real time data.

In Figure 1.2, it is proposed to use transponders placed on ice �akes to monitor
ice drift. These could be placed using helicopters. Measurement using radars mounted
on vessels is another option, as well as using observations from vessels, helicopters or
scout planes, or even using images and radar data from surveillance satellites. Haugen
et.al. [17] gives a short evaluation of the available sensor platforms for ice monitoring.
It is shown that unmanned aerial vehicles, UAVs, can be particularly useful as sensor
platforms in an ice observation system in connection with ice management.

1.3.1 Unmanned Aerial Vehicle, UAV

An UAV is de�ned as a

powered, aerial vehicle that does not carry a human operator, uses aerody-
namic forces to provide vehicle lift, can �y autonomously or be piloted re-
motely, can be expendable or recoverable, and can carry a lethal or nonlethal
payload [3].

There are many di�erent UAVs, ranging from cheap and simple radio controlled heli-
copters, to extremely sophisticated autonomous planes used as sensor and weapon plat-
forms. With the resent years technological advances, UAVs can replace human operated
helicopters and surveillance planes, performing task that are �to dull, dirty or dangerous�
for humans.

Along with the UAV, especially the autonomous ones, the term Unmanned Aircraft
System is often used. It can be de�ned as:

...UAS is a system, which includes the unmanned aircraft / UAV, the launch
and retrieval system, the ground control station (GCS) and the communica-
tion channel between the unmanned aircraft and GCS [25]

UAVs are �exible on areas such as geographical coverage and resolution. For Ice moni-
toring purposes, an UAV could be equipped with photo/video cameras, Thermal/Infrared
sensors,laser scanners, laser altimeters, radar altimeters etc. A �exible platform such as
an UAV can provide data from areas both in the immediate proximity of the ice man-
agement vessels, or from far away [17].

Using an autonomous UAV in an ice observation system could increase the systems
e�ciency, as it could minimize the need for human participation in both planning and
execution of a �ight. A fully autonomous UAV should be able to take o�, land and follow
a �ight path automaticly.

To operate an UAV, one will typically have the following systems

� Guidance system

� Control system (Autopilot)

� Navigation/Observer system
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How these are interconnected is shown in Figure 1.3. The guidance system will typically
produce the �ight trajectory, and send set points to the control system. The trajectory
should re�ect the purpose of the �ight, UAV capabilities and so forth. The control
system (autopilot) will compare the given set points to the measurements of its position,
velocities, etc. given from the Navigation/Observer system, and calculate outputs given
to the UAV's actuators (motors, rudders, etc). The navigation system is made up of the
devices performing measurements of the UAV states, and any �lters or observers used to
provide estimates of the states.

Figure 1.3: Interconnection between guidance system, autopilot and navigation system
for an UAV.

1.4 UAV/UAS path planning

Whether or not the AUV is autonomous, it is obvious that it should follow some �ight
trajectory that gives good sensor coverage of a speci�c target or an area of interest.
This path planning could be posted as a a mathematical problem, and a solution that is
optimal and �best possible� in some sense could be computed.

Aspects to consider in this computation are what maneuvers the AUV is physically
capable of and how it a�ects its performance and �ight economy. One must also consider
sensor coverage; namely what one want to gather information of, and what UAV behavior
will give the best information gathering.

1.4.1 O� line path planning

In o� line path planning, the guidance system produces a �ight trajectory once, prior to
the �ight. An o� line trajectory generation will typically be done by a GCS, and the path
information is transfered to the autopilot. In later sections, a theoretical background for
path planning using optimization theory will be given, and an implementation will be
described and discussed.

1.4.2 On line path planning

In an on line path planning scheme, the trajectory is recalculated or updated during
the �ight, according to UAV's behavior, or as new information that might change the
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�ight objective is gathered. On line path planning using optimization falls under the
domain of Model Predictive Control, which will be presented in later chapters. A simple
implementation will also be described. An o� line trajectory generation will typically be
done by a GCS, while an on line could be done either by an onboard computer or a GCS
which then transfers the path to the UAV.

1.5 Previous work

This thesis is a continuation of a 7.5 credits fall project. In the fall project a simple
framework for optimal path planning was implemented in MATLAB, using the fmincon
algorithm for sequential quadratic programming. The fall project was limited to o�
line path planning, minimizing the distance between an UAV and a single target. A
collocation method was used to discretize the system.

1.6 Scope of thesis

The formal Project Descripiton Sheet given by the supervisor for this thesis is included
on the �rst page of this document. The scope of the thesis is to:

� Give a brief overview over the challenges with DP in ice, and how UAVs can be of
help in this regard.

� Describe how NLP and collocation can be used for o� line and on line path planning.

� Implement a framework for UAV path-planning based on NLPs and collocation,
using a NLP solver of choice.Discuss numerical e�ciency, especially exploitation of
problem structure, and make implementation. Illustrate and discuss optimization
solutions.

� Use the framework to suggest and make test implementation of solutions (including
objective functions) for ice intelligence purposes. Discuss di�erent objectives, like
ice berg tracing (one or more ice bergs), and �zone surveillance.�

� Suggest and test on line/recursive path planning based on the implemented frame-
work.

1.7 Contribution

There has been developed many path planning schemes, and some of these are also based
on optimization. As optimization using nonlinear programming with collocation methods
has seen limited use in UAV application [10], it is of interest to see how such an approach
performs when computing an optimal path.

The contribution of this report is to describe how nonlinear programming and collo-
cation can be used to calculate optimal paths for ice intelligence purposes. Two di�erent
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principles for designing objective functions for surveillance, namely distance minimizing
and information uncertainty minimizing will be tested and discussed.

Using a model for information uncertainty is a new approach, and it's performance in
an path planning for surveillance is of interest. Some similar models for probability and
uncertainty has been used in other work, but not in connection with path planning as in
this implementation. Therefore, giving examples of using this information uncertainty
model for both o� and on line path planning with single and multiple targets is the main
contribution of this thesis.

MPC controllers are increasingly popular in the process industry, but is not so com-
mon for recursive path planning. Two concepts for on line path planning and MPC
control is tested and discussed. The thesis contributes with demonstrations and discus-
sions of possible uses.



Chapter 2

Theory

2.1 Optimization

In a mathematical context, optimization is to maximize or minimize a function, where
this function has a set of variables which in turn is subject to a set of constraints. More
practically put, is to �nd a best possible solution to a some function describing a systems
behavior, within the systems constraints. This will require[9]:

� An objective function, which gives a scalar quanti�cation of the systems perfor-
mance.

� A predictive model, to describe the behavior of the system, and to express the
limitations or constraints of the system.

� A set of variables that appear in the predictive model.

The concept of optimization is to �nd the combination of values for these variables that
satis�es the constraints given by the predictive model and at the same time maximizes
or minimizes the objective function. The general optimization problem with constraints
can be expressed as follows[22]:

min
z
f(z) (2.1)

s.t.

{
ci(z) = 0 iεE
ci(z) ≤ 0 iεI

f(z) is the objective function, which is also called the cost function when it is minimized,
as in the general statement. s.t. stands for "subject to". ci(z) are the constraints. The
constraints can be either equality or inequality constraints. The indexes i are either in set
E , which are the equality constraints, or in I, which are the inequality constraints. z is
the vector of the optimization variables, such as all system states, any control variables,
etc.

11
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2.1.1 Optimization Algorithms

There is no single, general algorithm which can solve the general optimization problem
proposed in equation (2.1). Over the years, there has been developed a variety of algo-
rithms, each suitable to solve a special version of this problem. Which algorithm to use,
depends on the stated problem. Some algorithms works only for unconstrained problems.
When both objective function and constraints are linear in z, an algorithm based on Lin-
ear Programming will typically be used. If the object function is quadratic in z and
the constraint are linear, one will typically use a Quadratic Programming algorithm[22].
When the optimization problem is stated with nonlinear objective function and/or non-
linear constraints, Nonlinear Programming (NLP) is used. Good textbooks on optimiza-
tion describing the mentioned algorithms and necessary theory are Nocedal and Wright's
Numerical Optimization[22] and Biegler's Nonlinear Programming[9].

There are several NLP methods available. Sequential Quadratic Programming (SQP)
and Interior Point methods are the most popular. This is because they are the most
powerful algorithms for large scale nonlinear programming, and can handle signi�cant
non-linearities in the constraints and objective functions[22].

2.2 Interior Point methods

Interior point methods (sometimes called barrier methods) is an alternative to the SQP
methods. A general �rule-of-thumb� based on numerical experience is that Interior Point
methods tend to be faster than SQP methods when the non-linear problems are large
and particularly when the problem has a large number of free variables [22]. The IPOPT
library for c++ implements a Dual-Primal Interior Point method, for which the basis
is outlined in the following. The interior point method solves the NLP by computing
approximate solutions for a sequence of barrier problems [7]. The key advantage of the
algorithm is that it is not needed to make decisions about active sets, which the SQP
(Active Set) algorithms does [9]. On the other hand, Interior Point methods might be
less robust[22].

2.2.1 The primal-dual barrier approach

Any general, nonlinear problem can be rewritten to the following, introducing slack
variables if necessary:

min
z
f(z) (2.2)

s.t.

{
c(z) = 0

z ≥ 0
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The solution to this general problem is found by solving a sequence of barrier problems

min
z
f(z)− µ

n∑
i=1

ln(z) (2.3)

s.t.
{
c(z) = 0 (2.4)

The barrier function

ϕµ := f(z)− µ
n∑
i=1

ln(z) (2.5)

is introduced because it quickly increases to in�nity as z approaches the boundary of
the feasible region. The algorithm is thereby given a stronger incentive to stay within
the feasible region, as the search directions will be forced inwards[22]. The logarithmic
term is preferred, because it can be di�erentiated twice quite easily. On the other hand,
it might cause di�culties if the optimal point is on the edge of the feasible region, or
if iterates in infeasible points are given. Modern interior-point algorithms has built-in
functionality to handle these di�culties.

µ is the barrier parameter. It is a positive parameter which will be decreasing in the
series of barrier problems. As µ converges to zero, the minima of ϕµ, (2.4) converges to
the solution of (2.2). Note that due to the logarithmic expression, z > 0 must also be
satis�ed.

If c(z) = 0 in (2.4) satis�es the LICQ condition (linear independence of active con-
straint gradients), the solution of (2.4) with µ > 0 will satisfy the �rst order conditions[9][7]

∇f(z) +∇c(z)λ− µZ−1e = 0 (2.6)

c(z) = 0 (2.7)

where e is a column vector of ones; e := [1, 1, 1, . . . , 1]T and Z is the diagonal matrix made
up of the vector z; Z := diag(z). λ are the Lagrange multipliers of the Lagrange function
L(z, λ). Because of the extremely nonlinear behavior of the barrier function, ϕµ, solving
the barrier problem directly has proven di�cult. It has been fruitful to expand it to also
include the dual variables of the problem. This is done by de�ning the dual variables y
and the equation Zy = µe to reform the primal system, (2.7) to the primal-dual system

∇f(z) +∇c(z)λ− y = 0 (2.8)

c(z) = 0 (2.9)

Zy − µe = 0 (2.10)

This substitution and linearization reduces the nonlinearity of the barrier terms, and is
also a relaxation to the KKT conditions for (2.2). Note that for µ, z ≥ 0 and y ≥ 0 the
primal-dual system (2.10) are the KKT conditions (First Order Necessary Conditions)
for the original problem, (2.2).

These equations form the base for the solution of the NLP. In general, an interior point
method will use a Newton's method to solve a series of the barrier problems (2.4) via the
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primal-dual system (2.10). IPOPT in particular uses a damped Newton's method. The
barrier problem is solved for a �xed value of the barrier parameter µ. µ is then decreased,
and continuous solving the next barrier problem from the solution of the previous one.

2.2.2 Solution of the barrier Problem

The solution to the j-th barrier problem is found by applying a Newton's method to the
primal-dual system (2.11). Search directions for z, dzk, for λ, d

λ
k , and for y, dyk, are found

by solving Wk Ak −I
ATk 0 0
Yk 0 Zk

dzkdλk
dyk

 = −

∇f(zk) +Akλk − yk
c(zk)

ZkYke− µje

 (2.11)

Ak denotes the Jacobian of the constraints;

Ak := ∇c(zk) (2.12)

Wk denotes the Hessian of the Lagrange function of the original problem, (2.2);

Wk := ∇2
zzL(zk, λk, yk) (2.13)

L(z, λ, y) := f(z) + c(z)Tλ− y (2.14)

As (2.11) is nonsymmetrical, it is not solved directly. The smaller symmetrical system[
Wk + Z−1k Ak

ATk 0

] [
dxk
dλk

]
= −

[
∇ϕµj +Akλk

c(zk)

]
(2.15)

is solved instead.Symmetric matrices are represented more e�ciently, and reduces com-
putational time due to reasons discussed in chapter 2.7. It is equivalent to (2.11), and is
derived by eliminating the last block. The last search direction, dyk is then found

dyk = µjY
−1
k e− yk − Z−1k Ykd

z
k (2.16)

It should be noted that it in some cases is necessary to modify (2.11) some. If Ak does
not have full rank, the system becomes singular, and a solution to (2.11) cannot be
found. Also, for most line-search methods, the top-left block in (2.11) projected onto the
null-space of Ak must be positive de�nit. This is to ensure some descent properties of
the line-search[7]. In the IPOPT algorithm it is done by always solving[

Wk + Z−1k + δw(I) Ak
ATk −δcI

] [
dxk
dλk

]
= −

[
∇ϕµj +Akλk

c(zk)

]
(2.17)

where δw, δc > 0 instead of (2.11).
When search directions are calculated from (2.17) and (2.16), the next iterates for

the barrier problem are given

zk+1 := zk + αkd
z
k (2.18)

λk+1 := λk + αkd
λ
k (2.19)

yk+1 := yk + αyk + dyk (2.20)
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where the step lengths are αk, α
y
k ∈ (0, 1]. Note that in some algorithms αk = αyk, but in

IPOPT they are allowed to have di�erent values. This is because it is the authors of the
IPOPT algorithms experience that this is more e�cient [7].

2.2.3 Line-search �lter for step lenght calculation

In IPOPT, the step length for the dual variable y is de�ned

αyk := max{α ∈ (0, 1] s.t. yk + αdyk ≥ (1− τj)zk } (2.21)

for some τj ∈ (0, 1).
The step length for the variables z and λ, αk are calculated uses a backtracking

line-search �lter method. The basic idea is to �nd an αk ∈ (0, αmaxk ]. Starting with
the maximum step length as a candidate, the step length is decreased (backtracked) and
tested until a step length giving acceptable next iterates are found. With a �lter method,
which is a fairly new approach, trial points are accepted if they improve the objective
function or improve the constraint violation. Traditionally, these two measures has been
combined in a single merit function. The �lter method has an advantage, as it can be
used to guarantee global convergence of the NLP[7].

2.2.4 Termination of Newton's method and interior point algorithm

Generally, the optimal solution to the barrier problem is found when the Newton's method
is unable to �nd a better iterate point, and the KKT-conditions for the barrier problem
are satis�ed at that point. To increase the speed of the algorithm, it can be useful to stop
the Newtons's method when some measurement of the of the optimality error (�Deviation
from optimal point�) is less than an acceptable limit. Based on the primal-dual equations
(2.10), the optimality error is de�ned (in IPOPT) as

Eµ(z, λ, y) := max{||∇f(z) +∇c(z)− y||∞
sd

, ||c(z)||∞,
||ZY e− µe||∞

sc
} (2.22)

with some scaling parameters sd, sc > 1 determined by the IPOPT algorithm.
If the approximate solution to the Barrier problem has an error less than the limit,

Eµ(z∗,j+1, λ∗,j+1, y∗,j+1) ≤ κεµj (2.23)

with some constant κε > 0, the optimal solution to the j-th barrier problem is considered
to be found. The interior point algorithm will reduce the barrier parameter, such that
µj+1 < µj . Then the next barrier problem will be solved, again using the Newton's
method, starting at the (approximated) optimal solution of the previous barrier problem.

This will continue, until an approximate solution, satisfying

E0(z∗,j+1, λ∗,j+1, y∗,j+1) ≤ εtol (2.24)

with some error tolerance εtol for the optimal solution of the original problem is found.
Note that the test for an overall optimal solution (2.24) is (2.23) with µ = 0. Gener-
ally will a larger error tolerance reduce the number of iteration, thereby reducing the
computational time.
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2.2.5 Interior Point algorithm summarized

A general Interior Point algorithm is outlined below:

General Line Search Interior Point Algorithm

Chose a feasible initial point (z0, λ0, y0) and set j ← 0
repeat until the convergence test for original problem (2.24) is satis�ed

calculate the barrier parameter, µj
set k ← 0, initalize the Newton's Method for solving the j-th Barrier Problem
repeat until the convergence test for Barrier Problem (2.23) is satis�ed

compute search directions (dzk, d
λ
k , d

y
k) using (2.17) and (2.16)

do a (backtracking �lter) line-search to �nd acceptable step lengths αk, α
y
k

calculate next barrier problem iterates (zk+1, λk+1, yk+1) using (2.20)
update �inner loop� counter k ← k + 1

end (repeat)

Update �outer loop� counter j ← j + 1
set start point for next barrier problem = the solution of the previous

end (repeat)

zk is the optimal solution

Naturally, the Primal-Dual Interior Point algorithms implemented in IPOPT and
elsewhere is a bit more involved, but the basics has been outlined above. For a detailed
introduction to interior point algorithms i general, there are several good textbooks avail-
able [22] and [9]. For details speci�c to the IPOPT algorithm the implementation paper is
recommended reading [7]. The IPOPT algorithm takes advantage of some clever heuris-
tics to accelerate the algorithm, and also some advanced methods for handling infeasible
start points and iterates, minimize constraint violations, scaling problem statements,
etc[7].

2.3 Direct transcription

It should be noted that the IPOPT algorithm implemented later on, is a simultaneous
approach, direct transcription method. That means that the system to be used as con-
tstraints in the optimization is discretized for the whole optimization horizon, and it is
assumed that the derivatives also are given for the whole horizon. As will be shown, this
demands implementation of very large matrices, and the problem size is very large.

There are other approaches to optimization as well, for instance the sequential ap-
proach, where only inputs are discretized, and the system is simulated after the inputs are
optimized to see if the system behaviour is as wanted. There are also multiple shooting
methods, where the ODE system model is partitioned into smaller time elemtents, which
are integrated separately in each elements[9]. As discussion of other methods than the
implemented method with direct transcripton is beyond the scope if this thesis, it is left
to the interested reader to go to the litterature [9] for a discussion of the alternatives.
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2.4 Optimal path

In the context of UAVs and path planning, f(z) should quantify the purpose of the �ight,
and the constraints should include a discretization of the UAV model. By using the UAV
model as a constraint, the solution will be a path that the UAV is capable of �ying.

An objective function could be as simple as the sum of the distance from the UAV to
a known target, such as an iceberg, if the mission goal is to stay close to the iceberg in
order to monitor it. Then the optimal solution will be the one who minimizes the UAVs
distance to the iceberg. The cost function could also contain some expression of fuel
consumption, in order to �nd an economic path as well. In fact the cost function could
express several goals with di�erent weights, in order to �nd the overall optimal solution.

It is also possible do a more advanced path planning, and and not only use a model
for the UAV, but also model onboard surveillance equipment, sensor coverage or the
uncertainty of the ice situation in a given area.

The constraints, g(z) will be the UAV model itself, to ensure the optimal path is
possible to follow for the UAV. Other constraints can also be added if necessary, such as
limitations in speed, height, turning radiuses, start and ending positions, and limitations
on �ight area.

The optimization variable vector,z, includes all the UAVs states and control inputs at
all times. When an optimal solution is found, one can read out the optimal position for
the UAV at each time step. These positions will then be the way points in the optimal
�ight trajectory for the UAV. Since also the UAV's control inputs are present in z, there
is an possibility to use the result of the optimization as an autopilot for the UAV, and
not only path planning. Controllers (autopilots) using optimization are called Model
Predictive Control.

2.5 Model Predictive Control

When calculating an optimal path with the UAV model as constraint, one has also
calculated the UAV inputs necessary to follow the optimal path. This opens for using
the result of the optimization as a controller for the UAV, or autopilot to use the term
from the aviation industry.

Using optimization with a predictive system model is called Predictive Control, or
Model Predictive Control (MPC). There are several good textbooks available, giving
an introduction to MPC [18] [9]. MPC is increasingly popular due to the optimal con-
trol based on models of system behavior and also the ability handling of constraints in
actuators and output using constraints.

The key concept in MPC is that the optimization is repeated, in case some unforeseen
disturbance, or inaccuracy of model drives the process out of the optimal trajectory cal-
culated in the previous iteration. The MPC should gather updated system information,
solve the optimization problem again, and apply the updated solution to the process.
The principle could be summarized
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General Principle of MPC

De�ne objective, constraints and start point
repeat

Solve optimization problem, over horizon of k time steps
Apply/export solution for the next ts time steps at time step t = ts
restart timer; t = 0
Get updated measurements/state estimates. Update system model.
Update objective, constraints, start point, k and ts if necessary

end (repeat)

It is most common to used a �xed prediction horizon, k steps long. This method
is known as the receding horizon or sliding window strategy. The number of steps ts
passing by before the next solution is applied depends of the time it takes to calculate
the updated optimization problem, and could also be considered as a tuning factor.

Linear MPC is most popular, because solving an LP is faster and simpler than an
NLP. The downside is that most processes are non-linear, and linearized models are less
accurate. However, Non-linear MPC (NMPC) is increasingly popular due to development
of good algorithms and increasing availability of computational power in computers and
microcontrollers.

At the present, MPC is mostly used in the process industry where it is typically used
to calculate optimal trajectories to lead a process to a already determined set point. The
typical position of the MPC controller in the control hierarchy is shown in Figure 2.1.
Most often the MPC controllers do not control the systems actuators directly. Instead it

Figure 2.1: Typical control hierarchy when using Model Predictive Control

is used to give set points to standard controllers, such as P, PI and PID controllers. This
is practice relates to the conservatism in the business, (�why change controllers that is
known to work�), and also the fact that in the beginning, optimization algorithms were
slow, safety features weres less developed and tested, and computers could be unstable.
The traditional use of an MPC controller in an UAV setting is shown in Figure 2.2.
Using only the calculated optimal path , and not applying the calculated optimal inputs,
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Figure 2.2: MPC controller as guidance system

is equal to using the MPC controller as a Guidance System. Path information, typically
in the form of way points, are given to the UAVs control system (autopilot)[14]. Note:
Only if the path is updated during a �ight, it can be called MPC. If the path is only
calculated once, prior to the �ight, it is not MPC, but simple o� line path planning.

Developments of better algorithms, research on stability and safety and faster, more
powerful computers opens for applying calculated optimal inputs directly to actuators[18].
This possible future trend of MPC controller usage is shown in Figure 2.3. In an UAV

Figure 2.3: Possible future trend for controller hierarchy when using Model Predictive
Control

setting, this will be equal to let the MPC controller act both as Guidance and Control
system, illustrated in Figure 2.4 This latter version is implemented and evaluated in the

Figure 2.4: MPC controller as both guidance system and UAV controller

following chapters.
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When optimization is preformed repeatidly to compute updated paths for an UAV, it
is in principle an MPC controller usedonly as a guidance system. That is also called on
line path planning. Therefore, the terms MPC and on line path planning are sometimes
used interchangeably. It should be clear from the context wheter the MPC is ment to
controll is used as Guidance, or both Guidance and Controll system

2.5.1 Safety and stability

The basis of the MPC controller is to solve an optimization problem over and over. An
important tuning parameter, in addition to objective function weights, is the choice of
prediction horizon, namely the choice for how many time steps ahead the process should
be optimized.

It is crucial for the reliability of the MPC controller that it always �nds a optimal
solution. Therefor, cases such as if disturbances makes the process states drift outside
constraints must be handled. It is important that the MPC controller don't produces
infeasible solution. It should also be taken measures to ensure that a feasible solution,
or an alternative, is found before it is time to apply the next set of inputs on actuators.

Speed-ups like �hot start�, which is a technique where the solution of the previous
optimization problem, or a modi�cation of it, is applied as a start point for the next is
an advantage. Handling of failing actuators and other errors should also be thought of.
These advanced topics are not within the scope of this thesis, but are covered extensively
in the literature[18].
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2.6 Methods for discretization and simulation of ODEs

In the optimization, it is wanted to include a model of the system, which describes the
systems behaviour over a given time horizon. The optimization algorithm works with
discrete time variables, while physical systems typically is modeled with continous time
Ordinary Di�eretial Equations, ODEs. Hence the need for discretization algorithms,
which is equal to numerical ODE solving. There are many good textbooks on discretiza-
tion/numerical integration[23].

An ODE is de�ned

dx(t)

d t
= f(x(t), u(t), t) (2.25)

x(0) = x(0) (2.26)

x(t) being the systems states, u(t) being the system inputs.
Most common are the one-step methods, either explicit

x(n+1) = x(n) + hθ(x(n)) (2.27)

or implicit
x(n+1) = θ(x(n), x(n+1), t(n), t(n+1), h) (2.28)

given a known initial value, x(0). h is the step lengt, whis is the time between to discrete
points; tn+1 = tn + h. The superscripts within paranthesis speci�es the discrete time.
In the implementation of an NLP in later sections a Collocation method will be use for
discretization.

2.6.1 The Collocation Method

The basic idea of collocation is that the solution to an ODE, can be approximated with
a set of piecewise continuous polynomials, if f(x(t), u(t), t) is smooth. x or x(t) denotes
state variables, u or u(t) denotes system inputs.

The solution to (2.26), the systems trajectory, x(t) on a given time horizon is divided
into S segments. All segments are T seconds long. Segment i starts node i, and ends in
node i + 1. The function value in node i is denoted x(i), and x(i+1) in the next node.
Note that the ending node of a segment is the starting node of the next segment. As of
this, we see that there will be N = S+1 nodes. Furthermore, the center of each segment
is de�ned as the collocation point of the segment. The function value in the collocation
point is denoted x(ci).

By choosing values for the system variables in each node such that the derivative of the
approximating polynomial is equal to a the value of f(x, u, t) in (2.26) in the collocation
point, it is assumed that the nodes gives an accurate, discrete solution to (2.26). This
opens for using the collocation method for numerical integration (simulation) and for
discretization.

In the following, a simpli�ed derivation av the collocation methods equations will
be given. One can use several polynomials of di�erent representations and order, as
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discussed in [9]. In the following, 3rd order polynomials represented as a power series
are chosen, as they are known to give a good result [16][12][10]. The derivation will be
done for the �rst segment, starting at t = 0, ending in t = T . One will get the same
result of deriving with a general segment, starting at t = ti, ending in t = ti+1 = ti + T .
Note that the segment length T is the same as the general step length h in the previously
mentioned one-step methods, eqs. (2.27) and (2.28).

Again, on a given segment in time, the solution to (2.26) can be approximated by the
3rd order polynomial:

x(t) = C0 + C1t+ C2t
2 + C3t

3 (2.29)

The state values in the nodes in the beginning and end of a T seconds long segment
de�ned by (2.29), is then:

x(0) = x(0) = C0 (2.30)

x(1) = x(T ) = C0 + C1T + C2T
2 + C3T

3 (2.31)

Then the derivatives of the function values in the nodes are

ẋ(0) =
dx

d t
|t=0 = C1 + 2C2(0) + 3C3(0)

2 = C1 (2.32)

ẋ(1) =
dx

d t
|t=T = C1 + 2C2T + 3C3T

2 (2.33)

Note that nodes i and i+1 also is referred to as the left and right nodes of a segment in
the literature. De�nitions of nodes and their derivatives can be put on a matrix form to
derive a solution for the constants C0, C1, C2, C3.

x(0)

ẋ(0)

x(1)

ẋ(1)

 =


1 0 0 0
0 1 0 0
1 T T 2 T 3

0 1 2T 3T 2



C0

C1

C2

C3

 (2.34)

Solving for the constants:
C0

C1

C2

C3

 =


1 0 0 0
0 1 0 0
−3
T 2

−2
T

3
T 2

−1
T

2
T 3

1
T 2

−2
T 3

1
T 2



x(0)

ẋ(0)

x(1)

ẋ(1)

 (2.35)

De�ning a collocation point, placed in the middle of the segment, at x(T2 ), inserting
S = T

2 in (2.29), and using the expressions for the C's given by eq. (2.35) the Hermite
interpolated state vector at the collocation point is:

xc =
(x(0) + x(1))

2
+
T

8
(f(x(0), u(0))− f(x(1), u(1))) (2.36)

f(x(0), u(0)) and f(x(1), u(1)) are then eq. (2.26) evaluated in nodes to the left and right
of the collocation point.
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The slope of xc, ẋc is found by di�erentiating (2.29) with respect to t. Incerting t =
T
2

along with the expressions for the C's eq. (2.35), one can derive

ẋ(ci) = − 3

2T
(x(1) − x(0))− (f(x(0), u(0))− f(x(1), u(1)))

4
(2.37)

Now, if the valus in x(0) and x(0) are to satisfy the solution to the ODE, they must
satisfy

ẋ(ci) = ẋ(
T

2
) (2.38)

where x(ci) is found using eq. (2.36). Note it is assumed that f(x(T2 ), u(
T
2 ,

T
2 )) is correctly

approximated with f(x(c), u(c), T2 ) such that

ẋ(ci) = f(x(ci), u(ci)) (2.39)

uci is the linearly interpolated vector

u(ci) =
u(i+1) − u(i)

2
(2.40)

Eq. (2.38) is solved for x(1), showing the implicit one step method

x(n+1) = x(n)+
3

2T

(
−f(x

(n))− f(x(n+1))

4
− f

(
x(n) + x(n+1)

2
+
T

8
(f(x(n))− f(x(n+1)))

))
(2.41)

The collocation leads to a fairly involved expression, but it can luckily be reformulated
for use in NLP formulations. It should also be noted that there are collocation methods
where di�erent polinnomial approximations, and more collocation points are used than
in the one presented above[9].

2.6.2 Adaption of the Collocation Method for use in a NLP formulation

By expanding the collocation method, it can be left to the NLP-solver to �nd the values
for all xi that satis�es the solution of the ODE. A defect vector, d(i), measuring the defect
(error) between the approximation and the system in the collocation point is introduced:

ẋ(ci) = f(x(ci), u(ci))− d(i) (2.42)

d(i) = f(x(ci), u(ci))− ẋ(ci) (2.43)

For the approximation to be accurate, the defect vector, d, should should be zero
(or su�ciently small). As of this, one has to choose state and input variables in all the
nodes x()i, u(i), such that d(i) = 0 for all segments. Then the approximated system
trajectory made up of all x(i)'s will be a good, discrete approximation to the solution of
the time-continuous model, (2.26)

By this, there will be a defect vector for all S segment the system is deiscretized over,

giving the constraint g(z) = [d(0), d(1),
. . . , d(S−1)]
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Figure 2.5: Collocation with Hermite polynomials, illustrated. Copied from [12]

2.6.3 Stability and Accuracy of the Collocation Method

It can be shown that all collocation methods are Implicit Runge Kutta methods, and
that they are A-stable[9]. The A-stability is desirable, as the step length does not a�ect
the stability properties of the solver.

A-stability means that a system modeled with stable ODE, will also be stable after
beeing discretized, even if it has got system dynamics signi�cantly faster than the step
length used in the discretization [23]. However; the discretized system might become
a subject to aliasing, that is that fast dynamics is lost, or downsampled such that it
appears with a slower frequency. As of this, is should be notet that shorter segments
give higher accuracy.

For formal de�nitions and a more comprehensive introduction to stability of discreti-
sation methods (ODE solvers) and aliasing, see [23].
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2.7 Matrix operations and representation

As the section describing the Interior Point algorithm shows, there will be preformed
a great deal of matrix operations. E�cient algorithms for these is essential to speed
up optimization algorithms. Especially methods for matrix multiplication and solving
linear systems with matrices can be computationally expensive [11]. In the Interior
Point Algorithm, calculating the steps with the Newton's method on the primal-dual
system, eq. (2.11) needs to solved e�ciently, since these steps will be calculated a great
number of times[22][9]. E�cient matrix multiplication algoriths is often based on matrix
decomposition and factoization.

MUMPS, the linear solver used in the implementation discussed later, solves systems
on the form Ax = b. A must be a square matrix, wich is eiter symmetric and positive
de�nite, symmetric or non-symmetric[1]. MUMPS uses the LU-factorization

A = LU (2.44)

where L is a lower triangular matrix and U is an upper triangular matrix. If the matrix
is symmetric, such as the Newton's method eq. (2.17), the factorization

A = LDLT (2.45)

where D is a block diagonal matrix. For these factorizations to work, the A matrix
must be non-singular, Algorithms for matrix multiplication, factorization and linear sys-
tem solving are discussed in detail in textbooks both on optimization[9][22] and those
for algorithms and datastructures[22]. Most importantly, algorithms such as the one
implemeted in MUMPS takes advantage of the sparsity of the matrices.

2.7.1 Compact representation of sparse matrices

A matrix with i rows and j columns contains i × j elements. In a NLP with many op-
timization variables, the matrices such as the Hessian becomes very large. If all matrix
elements are to be stored, it will use a signi�cant amount of memory. Therefore, alter-
natives to the standard representation using an [i, j] array has been developed[5]. These
are helpfull when the matrix is sparse; that is a signi�cant number of the elements in the
matrix are zero. That is the case for the constraint Jacobian and Lagrange Hessian of
the implemented problem, discussed in chapter 3.6. The idea of the sparse formats is to
only store the positions and values of the non-zero elements of the matrix, which reduces
used computer data storage. This will also save time, as there will be far less read/write
operations.

An example is the �Triplet Format for Sparce Matrices.� This method is used by the
IPOPT c++ library[8], which is used to solve an NLP in Chapter 3. The Triplet format
represents the nonzeros with three vectors. Vector �iRow� holds the row indexes of the
nonzeros, �iCol� holds the column indices, and �values� holds the values of the nonzeros.
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This representation is best explained with an example. Consider the sparse matrix
a 0 b 0
0 c 0 0
0 0 d 0
0 0 0 0

 (2.46)

If all elements are to be stored using the standard, dense format, 4 × 4 = 16 elements
are stored the computer memory. Many of the elements being zeros. The vactors of
the triplet format will store (2.46) as shown in 2.1 The example has 4 nonzeroes, giving

row column value

iRow[0]=0 jCol[0]=0 values[0]= a
iRow[1]=0 jCol[1]=2 values[1]= b
iRow[2]=1 jCol[2]=1 values[2]= c
iRow[3]=2 jCol[2]=0 values[3]= d

Table 2.1: Example of triplet format for sparse matrix representation, in C++ syntax

3 × 4 = 12 elements stored in computer memory when using the triple format. It is
obvious that this can save a lot of memory for representing large, sparse matrices.

If it in addition is known that a given matrix is symetric, only the elements on the
diagonal and the lower left corner is needed to represent it[8]. This will further reduce the
number of stored elemtents. IPOPT takes advantage of this [8]. This property gives the
incentive to seek to reshape matrices to become symmetric. That is done in the Interior
Point algorithm presented previosly, where the Newton's method for the primal-dual
system was reformulated from eq. (2.11) to eq. (2.15).

An other great advantage is that the sparse format, by de�ning the location of the
non-zeros, helps the matrix multiplication algorithms and system solving algorithms to
avoid unnecessary calculations. For instance, in a general matrix multiplication,

A×B = C (2.47)

the elemets in C are given

Cij =
m∑
k=1

AikBkj (2.48)

subscripts denoting the elements position in the matrix, and m being the number of
elements in a column in A. For sparse matrises, in a great deal of these summations and
multiplications either Aik or Bkj will be a zero. The sparse matrix format helps avoiding
these unnecessary computations.



Chapter 3

Implementation

In this chapter, how a program for UAV path planning using optimization was imple-
mented is outlined. The optimization problem itself is solved with a program written in
C++, which uses a Primal-Dual Filter Line-Search Interior Point method, made available
through the IPOPT C++ library. IPOPT uses the following problem formulation:

min
z
f(z) (3.1)

s.t.

{
gL ≤ g(z) ≤ gU

zL ≤ z ≤ zU

Setting up the mathematical functions needed to de�ne and solve the NLP is mostly done
via MATLAB scripts, and are then imported to the C++ program. An other MATLAB
script is used to create plots to visualize the solution of the optimization afterwards. A
matlab script simulating the result is also implemented, as a basis give investigate the
accuracy of collocation method.

For more details on the use of IPOPT, the IPOPT tutorial[8], the IPOPT implemen-
tation paper[7] and the IPOPT wiki[6] is recommended reading. C++ source code and
MATLAB scripts used in this implementation is well commented, and availible on the
appendix CD.

3.1 Naming, numbering and organization of optimization
Variables

In chapter 2.2, z was used to denote the optimization variables. It should be noted that
the IPOPT library naming convention uses x as the optimization variables. Therefore is
x used as the optimization variable in the C++ source code. In this chapter, describing
the implementation, z is still used as the optimization variable, in order to easier separate
optimization variables from states in the state-space models.

From the collocation, it is seen that the �rst segment of the discretized system intro-
duces two nodes. For each new segment after that, a single node is added. Given that

27
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the number of segments in the NLP is S, the number of nodes is N , and the number of
optimization variables is Z, it follows that

N = S + 1 (3.2)

Z = N × (n+m) (3.3)

n is the number of states in the discretized state-space model for the system, and m is
the number inputs. To separate the states variables in the di�erent nodes, x(j) is denotes

the state vector j-th node.x
(j)
i is the i-th state variable in the state vector of the j-th

node. The same notation is used for the input vectors of the state-space models.
The optimization variables, being all states and inputs in all nodes are then organized

as follows in the optimization variable vector:

z := [x(0), u(0), x(1), u(1), . . . , x(nN−1), u(nN−1)]T (3.4)

zi denotes the i-th element of the z vector. Note that all vectors and matrixes are asumed
zero-indexed, that is that the �rst element in a vector is element 0, and that the top left
element in a matrix has position (0,0). This notation is used because C++ uses zero
indexing.

3.1.1 MATLAB to C++ translation

It should be noted that variables in c++ is organized in arrays, where the �rst array
element is read using for example � readvariable = x[0]�. Tha MATLAB scripts symbol-
icaly calculates the mathematical function used in C++, and writes these to text �les,
that is included by the C++ program. However, the symbolic library is unable to work
with variable names such as �x[0]� so that the corresponding variable is nemed �x0� in
MATLAB and the text �les. To resolve this, the #de�ne statement in C++ is used to
rename all variables in the text �les, for instance �#de�ne x0 x[0]� .

3.2 IPOPT - an open source Interior Point optimizer

IPOPT, short for Interior Point Optimizer, is a software package for large-scale non-linear
optimization. It solves NLPs using the Primal Dual Filter Line-Search Method outlined
in section 2.2. It is designed particularly for optimizing large, sparse NLPs, and uses the
Triplet format for sparse matrices presented in chapter 2.7.1 [8].

IPOPT is written in C++ and is released as an open source code. It is available
from the COIN-OR initiative under the Eclipse Public License (EPL). One is free to use
IPOPT for both non-commercial and commercial purposes, and one can freely to make
changes to the source code[6].

The IPOPT distribution can be used to compile a library, which can be linked to C,
C++ or Fortran code. Interfaces to the AMPL modeling environment and MATLAB
and R programming environments are also available. To compile this library, some third
party packages for BLAS (Basic Linear Algebra), LAPACK (Linear Algebra Package)
and a Symmetric Inde�nite Linear Solver is needed[8].
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In the following implementation, the precompiled library available from the IPOPT
homepage[6] has been used. It is compiled for use with the Microsoft Visual Basic 2008
programming environment and compiler for C++. The library contains the MUMPS
solver for linear algebra.

When using the POPT library, one need a object (class in c++), holding the infor-
mation needed to solve the NLP. In the source code provided on the appendix cd, this
object is implemented as the �Short_NLP.c� �le. This object is sent to the �IpoptSolu-
tionFactory� available through the IPOPT library, in which the problem is solved. The
NLP information is implemented using several methods in the object, listed below. The
NLP information comes �rst, then method name..

� Objective function, f(x), values - eval_f(...);

� Objective function Jacobians values, ∇f(x) - eval_grad_f(...);

� Constraint functions, g(x) values - eval_g(...);

� Constraint function bounds - get_bounds_info(....)

� Constraint functions jacobian, ∇g(x), values - eval_jac_g(...);

� Sparsity structure of constraint Jacobian - eval_jac_g(...);

� Number of nonzeros of constraint Jacobian - get_NLP_info(...);

� Upper and lower bounds for optimization variables - get_bounds_info(...);

� Lagrange function Hessian, ∇2f(x)− λ∇2g(x), values - eval_h(...);

� Lagrange function Hessian sparsity structure - eval_h(...);

� Number of nonzeros in Hessian of Lagrange function - get_NLP_info(...);

� optimization starting point - get_starting_point(...);

The methods takes in zk, that is the value of all optimization variables in point k. The
methods will calculate the value(s) of the corresponding function, array or matrix for the
given iteration point.

Due to the use of collocation, a structure that will help implement these methods
appears.

3.3 MUMPS

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is a package for solving
large sparse systems of linear algebraic equations. It is compiled with, and accessed
trough the IPOPT library. It is optimized to solve large sparse systems on the form
Ax = b with respect to the vector x
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3.4 System models

System models are

...beyond the scope of this thesis. weather, fuel consumption, ice models, measure-
ment equipment/sensor coverage models

It is 4 from the UAV model, eq: 3.5 pluss the number of uncertainty models used. m
is always 2, because only the UAV model has inputs.

3.4.1 UAV model

Obviously, it should be possible for the UAV to follow the calculated optimal path. To
ensure this, the state-space model for the UAV is given as a constraint to the NLP.It is
discretized using the collocation method presented in chapter 2.6.1. The defect vectors
from the collocation will be the equality constraints g(x) = 0 in the optimization problem.

In the remainder of the thesis, the following UAV model is used:

ẋ0 = x2 cos(x3)

ẋ1 = x2 sin(x3)

ẋ2 = u0

ẋ3 =
g tan(u1)

x2

(3.5)

where x1 is the position of the UAV, measured in meters north. x1 is the position of the
UAV, measured in meters east. x2 is the speed in meters pr. second, x3 is the heading
given in radians. u0 is the input acceleration, u1 is the commanded banking angle.

Eq. (3.5) is a simpli�ed model of a UAV, based on a remote controlled model
airplane[10]. Only 2 of the model airplanes 6 degrees of freedom is modeled. These
are the yaw (heading, x3) and surge (speed, x2). As the speeds and positions are given
relative to some earth �xed reference point, it is assumed that the plane do not drift due
to wind. As of this, it is also assumed that the speed, x2 is the ground speed, and that it
is equal to the wind speed. Furthermore, it is assumed that the UAV �ies at a constant
altitude, since there is no state describing the attitude of the UAV. A more accurate
and detailed model would require more di�erential equations and variables in the model,
causing a bigger NLP, which would be slower to solve. Textbooks on vessel and air plane
modeling are [14] and [13].

More details on how the state-space model is implemented as a constraint follows in
chapter 3.6.1.

In addition to the state-space model of the UAVs dynamics and positions, some
bounds on the individual states and inputs are also given. The state-space model de-
scribes how states and inputs a�ect each other, while the variable bounds captures impor-
tant properties such as maximum and minimum speed, turning radiuses and acceleration.
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parameter description value

Vmin Stall speed 11.2m/s

Vmax Maximum speed 26.8m/s

amax Maximum acceleration 3.0m/s2

amin Maximum deceleration −3.0m/s2
φmax Maximum bank angle 30 ◦

φmin Minimum bank angle −30 ◦

Table 3.1: Parameter values of the given UAV constraints

These parameter bounds are :

Vmin ≤ x2 ≤ Vmax
amin ≤ u0 ≤ amax
φmin ≤ u3 ≤ φmax

(3.6)

These parameters are based on motor capabilities, aerodynamical features of the plane,
etc. Values are given in table 3.1

The bounds are collected in two vectors corresponding to zL and zL in IPOPTs NLP
formulation, eq. (3.1). Values for the unconstrained variables has to be present in the
vectors, and are implemented as +/− 2 × 10−19, which is interpreted as +/- in�nity in
the IPOPT algorithm.

The variable bounds for the optimization variables of the �rst node of the collocation
is hardcoded in the get_variable_bounds(...) method in the NLP object. Loops are used
to copy/expand them to cover the variables for all the nodes.

3.4.2 Information uncertainty model

In a context where an UAV is used for information gathering, it can be thought of as
the UAV should minimize the uncertainty of the information on the situation in a given
area. To include minimizing this uncertainty, a model for the information uncertainty
could be added to the previously described UAV model. Such a model could be:

U̇(t) = U(α− β(t)) + γ

β(t) = b× e−k(
√

(TN−x0(t))2+(TE−x1(t))2)

P (0) = P 0

(3.7)

α, γ, b and k being tuning parameters, TN and TE are the north and east position
coordinates of some point of interest or target the uncertainty is related to. x0 and x1
are states de�ned in the UAV model, eq. (3.5), namely the north and east position
coordinate of the UAV.
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The model for the uncertainty P is inspired by the general linear system ẋ = Ax
which is stable as long as A, corresponding to (α − β), is negative (or has negative
eigenvalues). Such a systems has an exponential response, and will never go below zero.
This is suitable because uncertainty could be great, or none, bot not negative. U ≤ 0.
The exponential term, β is inspired by the bell curve, also called the Gauss curve, known
from the normal distribution of probability. β will be zero when the UAV position (x1, x0)
is far from the target (TE , TN ). β will grow exponentially as the UAV approaches the
target. k and b are tuning variables. −β is plotted in �gure 3.1. A bigger k will make

Figure 3.1: The negative Bell curve, −fbell, with target at (100,100). Tuning variable
k=0.05.

the �bell� or �funnel� shape more narrow. b decides the value of the bell function at the
target. The slope of U , −βU , is clearly descending much faster directly above the target
even than in positions close to the target. It seems reasonable that this shape could be
exploited, so that in order for uncertainty to be reduced as much as possible, it will be
favourable to go directly to the target.

α and γ are tuning parameters, ment to make the uncertainty U increase whenever
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the UAV is not close to the target.

If there are several points of interest, there can be de�ned an uncertainty model
for each of the targets. As will be shown in the following, the uncertainty model is
not necessary to include in the discretized system model for all the objective functions
implemented later on. But when used, the state vector for the system will be

x(j) =



x0
x1
x2
x3
U0
...

UTG−1


(3.8)

at the j-th node, with TG targets.

It is thought that this uncertainty model might introduce som �memory� to the sys-
tem. If the uncertainty in a target can be brought to (almoast) zero when the UAV �ies
directly above the target, and the uncertainty does increased only slowly, or not at all,
as the UAV �ies away, it might be possible to �nd objective functions giving optimal
paths that visits targets in turns. The idea is to introduce a functionality where path
�remembers� where it has been, so that it is more optimal to visit a previously not visited
target, than returning ta an already visited target. It is thought that this can be done
by �nding a parameter set where U̇ is negative when the UAV position is close to the
target positions, and most negative when the UAV is directly at the target.

As this uncertainty model not has been seen used in a path planning application
before, the value og the parameters involved is a subject to experimentation to �nd
results.

3.5 Implemented objective functions

The objective function is minimized by IPOPT, within the constraints given by the
system models given in the previous section. Several di�erent objective functions have
been implemented and tested. The implemented objective functions, and the motivation
for using them are presented in the following. The results of obtained by using them are
given in chapter 4.

3.5.1 Minimization of quadratic distance

The perhaps simplest objective function is based on the assumption that UAV proximity
to a speci�ed target will produce useful information. Assuming this target has coordi-
nates (TN , TE) specifying it's north and east positions, such an objective function on
continuous-time form is:
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fQ(t) =

∞∫
0

(x0(t)− TN )2 + (x1(t)− TE)2 dt (3.9)

Since the UAV model is discretized over S segments, so must the objective. The integral
changes to a sum, n denoting the node number:

fQ =

N−1∑
n=1

(x
(n)
0 − TN )2 + (x

(n)
1 − TE)2 (3.10)

Because most states the 0-th node will be given �xed values, to have a known start point
for the �ight, the node is not included in the objective. The optimal solution will be
the one minimizing the sum of distances between the UAV and Target at each node. It
is expected that the optimal behavior with such an objective function is that the UAV
will seek to �y towards the Target as fast as possible, and then stay as close as possible
to it during the rest of the �ight. It is however di�cult to foresee of this objective
will encourage the UAV to repeatingly �y directly above the target, or circle around it.
Note that it is assumed that the target is stationary. Also, when using this objective
function, it is not necessary to include the uncertainty model in the system model, as
the uncertainty states is not used in the objective.

This quadric distance minimizer can also be expanded to include multiple targets. As-
suming there are TG targets subject to surveillance, all given di�erent positions (T tgN , T

tg
E )

a quadratic function for distance minimizing is

fQTG
=

N−1∑
n=0

TG−1∑
tg=0

(x
(n)
0 − T (tg)

N )2 + (x
(n)
1 − T (tg)

E )2 (3.11)

It is seen that the gradient of this function is large, when far way from the target.
This should make it easy for the interior point algorithm to �nd a gradient necessary to
�nd a good search direction from points far away from the target.

3.5.2 Minimization of the distance norm

Using a distance norm is based on the same assumption as the quadratic distance, namely
that minimizing a measure of distance between the UAV and targets will draw the path
close to, or directly above the target. For minimizing the total 2-norm distance the
following function is de�ned:

fNTG
=

N−1∑
n=0

TG−1∑
tg=0

√
(x

(n)
0 − T (tg)

N )2 + (x
(n)
1 − T (tg)

E )2 (3.12)

While fQTG
has a exponential shape, fNTG

has a linear shape, which should give a
gradient towards the target(s) both close to, and far way from the target. Since fNTG

's
gradient is steep all the way to the target, it might help provoke the optimal path to pass
closer to the targets than fQTG

, who's gradient is more �at close to the target(s).
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Figure 3.2: Quadratic distance minimizing with target at (100,100).

3.5.3 Minimization of distance using an exponential function

If passing directly over a target is necessary to acquire information about it, it should be
re�ected by the objective function. An exponential function, inspired by the �bell curve�
or the Gauss curve can be used to favor paths that passes directly over the target. The
the negative bell function

fbell = −e−k
√

(x0−TN )2+(x1−TE)2 (3.13)

is much more negative whenever the UAV position (x1, x0) is at the target position
(TE , TN ), than if the UAV is only close to the target. (See plot of bell curve in the
previous section, �gure 3.1.) It seems reasonable to belive this could be explioted to
provoce IPOPT to �nd paths that goes directly above the target most optimal. Using
this exponential function in the objective function gives

f(x(t)) = −
∞∫
0

e−k
√

(x0(t)−TN )2+(x1(t)−TE)2 dt (3.14)

in the continuous time domain. Discretized for use in IPOPT it will be

fExp Dist(x) = −
N−1∑
n=1

e−k
√

(x
(n)
0 −TN )2+(x

(n)
1 −TE)2 (3.15)

A possible disadvantage with this function, is that far from the target the gradient is
zero, making it di�cult for the interior point algorithm to �nd good search directions.
With this objective function, it is not necessary to include the uncertainty model in the
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system model that is discretized. It can also be expanded to include multiple targets.

fETG
(x) = −

N−1∑
n=1

TG−1∑
tg=0

e−k
(tg)

√
(x

(n)
0 −T

(tg)
N )2+(x

(n)
1 −T

(tg)
E )2 (3.16)

3.5.4 Minimizing information uncertainty

With the previous presented objective function, it has not been necessary to include the
uncertainty model, eq. (3.7) in the discretized system model. Only the UAV model,
eq. (3.5) has been necessary. When the uncertainty model is implemented, an objective
function minimizing the information uncertainty related to a given target is possible.
Aan objective function for minimizing the total uncertainty across a given time horizon
is

fU (x) =

∞∫
0

P dt (3.17)

On discrete form the integral of P becomes the sum of P in all nodes over the optimization
horizon.

fU (x) =

N−1∑
n=0

P (n) (3.18)

For multiple targets, multiple uncertainty models are implemented in the discretized
system model; one for each target. The objective function is expanded to

fUTG
(x) =

N−1∑
n=0

TG−1∑
tg=0

P (n)(tg) (3.19)

meaning that all uncertainties for all TG targets in all N nodes are summed, and will be
minimzed in the optimization.

3.5.5 Additional objectives

It is also possible to combine di�erent objectives in an objective function, and give
di�erent weights to the terms. The size of the weighting parameters, W , re�ects the
importance of minimizing the term.

Fuel consumption should be considered when calculating the optimal path. A good
�ight economy, reduces fuel costs, and makes it possible to stay in the air for a longer
period of time. Assuming the fuel consumption increases with the use of acceleration,
the term

facc(x) =Wacc

∞∫
0

u0(t)
2 dt (3.20)
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where Wacc is the weighting term and u0 is the commanded acceleration, is added to the
objective function. It will be implemented on the discrete form

facc(x) =Wacc

N−1∑
n=1

(u
(n)
0 )2 (3.21)

It can also be wise to add a term punishing use of the UAV rudder. It is assumed
that less movement will reduce wear on hinges and actuators. Such a term is

frud(x) =Wrud

∞∫
0

u1(t)
2 dt (3.22)

where Wrud is the wheighting term and u1 is the commanded banking angle, is added to
the objective function. It will be implemented on the discrete form

frud(x) =Wrud

N−1∑
n=1

(u
(n)
1 )2 (3.23)

3.5.6 Combined objectives in implemented functions

The term for punishing fuel consumption, eq. 3.21, and get smoother �ights, eq. 3.23
are added to the objectives for distance minimizing or uncertainty minimizing. All ob-
jectives are given wheigths, re�ecting their importance. The objective functions that are
implemented in the path planning framework are:

fQuadratic =WT × fQTG
+Wa × fa +Wr × fr (3.24)

fNorm =WT × fNTG
+Wa × fa +Wr × fr (3.25)

fExponential =WT × fETG
+Wa × fa +Wr × fr (3.26)

fUncertainty =WT × fUTG
+Wa × fa +Wr × fr (3.27)

(3.28)

The will be used in turns, testing one at a time, and for 1, 2 and 4 targets.

3.6 Structure of Implemented Functions, Constraints and
Derivatives

3.6.1 Structure of the constraints

The equality constraints, g(z) = 0, in the optimization are all the defect vectors, com-
ing from the collocation method used to discretize the state-space model of UAV and
information uncertainty. To make g(z) = 0 equal to the IPOPT constraint de�nition
gL ≤ g(z) ≤ gU , the constraints bounds are implemented as null-vectors; gL = gU = 0.
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The constraint g(z), is a column vector with the defect vectors d(s1), from all the
segments the system is discretized over with the collocation method. This gives the
following de�nition:

g(z) = [d(0), d(1), . . . , d(S−1)]T (3.29)

To implement the constraints, it is taken advantage of a structure given by the collo-
cation method. Using MATLAB, the defect vector for the �rst segment d(0), is calculated
symbolicly. As will be shown, it is not necessary to calculate the following defect vec-
tors. d(0) can be �reused�, by replacing the variables in the expression. As this structure
appears also when the Jacobian and Hessian of the constraints are calculated, an expla-
nation of the structure follows here.

The �rst segment, s0, stretches from the �rst node, n0, to the second node, n1. For
s0, n0 will be the �left� node, and n1 is the �right� node. For s1, n1 becomes the 'left'
node while n2 is the 'right' node. Since the collocation of both segments comes from the
same ODE, the equations for d(0) and d(1) are alike, only that all optimization variable
indexes are shifted with a value of n+m in the latter defect vector.

d0 = d(x(0), u(0), x(1), u(1)) (3.30)

d1 = d(x(1), u(1), x(2), u(2)) (3.31)

ds = d(x(s), u(s), x(s+1), u(s+1)) (3.32)

The calculation of d(0) is done by a MATLAB script. The script then translates the
code for d(0) to a string with C++ syntax. The code for g(z) = [d(0), d(1), . . . , d(S−1)]T is
then written to a text �le. A loop with a search-and-replace routine replaces the variables
names in d(0), such that g(z) is written correctly. The constraint vector is made up of
S defect vectors. Each defect vector has n functions, making g(z) a vector with S × n
elements.

A example of this pattern is shown in �gure 3.3. In the �gures, the variable names
follows the IPOPT naming convention, so it corresponds to the naming in the code
provided in the appendix.

3.6.2 Structure of constraints Jacobian

IPOPT needs the values of the Jacobian of the Constraint vector. The constraints Jaco-
bian is de�ned

Jg(z) =



∂g1(z)
∂z1

∂g1(z)
∂z2

. . . ∂g1(z)
∂zN×(n+m)

∂g2(z)
∂z1

∂g2(z)
∂z2

. . . ∂g2(z)
∂zN×(n+m)

...
...

. . . vdots
∂gS×(n+m)(z)

∂z1

∂gS×(n+m)(z)

∂z2
. . .

∂gS×n+(z)
∂zN×(n+m)


(3.33)
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Figure 3.3: Example of constraint vector structure

Again, there is a structure that can be exploited when implementing this. Using MAT-
LABs ability to di�erentiate exact using its Symbolic Toolbox, only the Jacobian of the
�rst segments constraints, ∇zd(0) = ∇z[g0, g1, . . . , gn−1]T needs to be calculated. gi(z) is
the i-th element of the g vector.

∇zd(0) = Jd(0) is the top left block of Jg(z). Jg(z) will be a diagonal matrix, with
blocks, ∇zd(0), ∇zd(1),∇zd(2) and so on along its diagonal.

All defect vectors are calculated from the same ODE, which makes all blocks Jd(s)
equal, only with variables �shifted� one node to the right for each segment. That means
that the indexes of the optimization variables in the expressions in the block increases
with (n+m) for each block. In the s-th block, s× (n+m) is added to the index of the
variables of the �rst block.

The index of the top left corner of the blocks changes with n positions for the column
index, and (n +m) positions for the row index. With the top left indexes [0, 0] for the
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0th block, the top left corner of the s-th Jacobian block has index

IrowJb(s) = IrowJb(0) + s× n (3.34)

IcolJb(s) = IcolJb(0) + s× (n+m) (3.35)

Figure 3.4 shows this structure.

Figure 3.4: Block structure of Constraints Jacobian

Similar to the method used setting up the constraints, the exact expression for Jd(0)
is calculated using a matlab script. The code for the block is translated to C++ syntax,
and written to a text �le. Using a loop with a search-and-replace function, all variable
indexes from the 0th block is increased with the term s× (n+m), and position indexes
updated according to eq. (3.35).

The matrix is implemented in the previously discussed sparsity format.

3.6.3 Structure of Lagrange function Hessian

Also the Hessian of the Lagrange functions, W , is needed to solve the problem, as it
appears in the primal-dual system, eq. 2.15 used to �nd search directions for the Interior
Point algorithm. It is implemented with a scaling parameter σf . This is due to IPOPTs
problem scaling ability, and the second derivatives checker. As of this, the Lagrange
Hessian in point zk is de�ned

Wk = σf∇2
zzf(zk) +

(S−1)×n∑
i=0

λ(i)∇2
zzgi(zk) (3.36)
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gi(z) is the i-th element of g(z). Note that the �rst n elements in g(z) are the elements
in d(0). Written as a matrix, the Hessian is de�ned

W =



∂2L(z)
∂z21

∂2L(z)
∂z1∂z2

. . . ∂2L(z)
∂z1∂zN×(n+m)

∂2L(z)
∂z2∂z1

∂2L(z)
∂z22

. . . ∂2L(z)
∂z2∂zN×(n+m)

...
...

. . .
...

∂2L(z)
∂zN×(n+m)∂z1

∂2L(z)
∂zN×(n+m)∂z2

. . . ∂2L(z)
∂z2

N×(n+m)


(3.37)

A block structure similar to the structure in the Jacobian appears. The key is to see that
the �rst n elements in g(z) are actually the elements in d(0) which is the defect vector
of the �st segment. These n elements, which are functions, appears also in the second
term of Wk, twice di�erentiated. They only variables from the two �rst nodes. The next
n elements, gn to g2n−1 comes from d(1), which contains the same functions as d(0), only
with variables from the second and third node.

Because of this, it is only necessary to di�erentiate d(0) symbolicaly to �nd the exact
Hessians. The second derivatives of the next defect vecors is found by simply replacing
variables in the expressions for ∇2

zzd
(0).

W is a matrix with blocks on its diagonal, each block being the second derivatives of
a defect vector from the collocation. There will be S Hessian blocks. The de�nition for
the sth Hessian block at point zk is

W
(s)
k = σf∇2

zzf(zk) +

s+(n−1)∑
i=s

λ(i)∇2
zzgi(zk) (3.38)

De�ning a vector holding the Lagrange multipliers related to the n constraints (the defect
vector) of a segment:

λ(s)vec = [λs, λs+1, . . . , λs+n−1] (3.39)

the expression for the s-th Hessian block can be rewritten to

W
(s)
k = σf∇2

zzf(zk) + λ(s)vec∇z(∇zd(s)(zk)) (3.40)

This time, the setting up the Jacobian with the block structure is a bit more involved, as
the blocks will overlap each other. This is because both segment s=0, and segment s=1
contains variables from node 1. Remember from the collocation that the �right� node of
a segment becomes the �left� of the next.

The block structure is shown in Figure 3.5.

Each Hessina block, W (s) has dimention (2 × (n +m) , 2 × (n +m)). Because the
lower right quarter of a block is overlapped by the upper left quarter of the next, the
index of the top left element in the s-th block is given (assuming zero-indexing)

Irow
W (s) = Icol

W (s) = s× (n+m) (3.41)
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Figure 3.5: Block structure of Lagrange function Hessian

In the implementation, the objective function Hessian and the constraint Hessian for
the �rst block are calculated separately. They are then added to create the Lagrange
Function Hessian for the �rst block. It is found using a MATLAB script, using symbolic
di�ernetiation. THe expression for the block is translated to C++ syntax and written to
a a text �le with C++ syntax. This generalization where the �rst block is reused to �nd
all blocks are done in the C++ program. If the whole Hessian Matrix was written to a
text �le, it could be more than 10 MB for this implementation, and then it would take
hours to compile the c++ program, when such a big �le was to be included. Each block
turns out to be quite dense, but Wk is sparse, as it's elements are on the block diagonal.
Due to the mentioned overlapping of blocks, the indexes of where in the matrix functions
in a block is appended to functions from the previous block has to be known.

The Hessian matrix is implemented using the sparse matrix format. It is also noted
that the Hessian matrix is symmetric. IPOPT knows this, and therefore only the lower
left triangle, including the diagonal is written.

3.7 Implementation of MPC controller/On line path plan-
ner

The MPC controller was implemented by expanding the framework for o� line path
planning with a for loop. In this for loop, the object holding the NLP information
was sent to the method for solving the NLP repeatedly. A very useful feature in the



3.8. IMPLEMENTATION OF SIMULATIONS 43

IPOPT framework is that the object with the NLP information has a method called
�nalize_solution(...) which is called after an optimal solution to the NLP is found. In
this method, all functionality for printing results are put, together with the functionality
for updating the NLP information, making it ready for the next MPC iteration.

3.7.1 Path start point

The optimal UAV starts at node 0. Therefore is most variables in node 0 given bounds,
where the upper bound is identical to the lower. These bounds de�ne the start position
of the uav path, the start heading, the start speed and the start uncertainties. Only
inputs are left with the variable bounds given by the UAV model. This becase the inputs
in node 0 will a�ect the states in node 1. In the MPC controller the start point for the
next optimization is set in the �nalize_solution(...) method.

3.7.2 Scenario 1 - Updated target info

In the �rst test scenario for online path planning/MPC, it is assumed that the target
information is given by an outside source. A new path is planned when new target info-
mation is recieved. In each optimization it will be assumed that the target is stationary,
such that the previously discussed objective functions and uncertainty model is used.

The point is to see how the �ewn UAV path turns out when the target information is
frequently updated, to see if this principle can be used for tracking of moving ice bergs.

New target information is simulated by letting the �nalize_solution(...) method
update the target positins.

3.7.3 Scenario 2 - Wind disturbance

In the second scenario, it is assumed that the UAV is subject to a wind disturbance.
The disturbance drives the UAV of the �rst calculated optimal path, and a new path
is calculated, so that the UAV will have a new optimal path to lead it to the target
ice bergs. The wind disturbance is simulated in the �nalize_solution(...) method, by
altering the UAV position variables.

3.8 Implementation of simulations

The optimization of the optimal path will also calculate the inputs necessary for �ying
it. In order to investigate the accuracy of the collocation method, a RK4 method has
been written in MATLAB for comparison. The RK4-method takes the calculated UAV
acceleration and bank angle inputs, and simulates a �ight. The same state-space-model
for the UAV is used in the collocation and the RK4 simulation. AS the RK4 method will
is implemented with the possibility to use much shorter step lengths than the T used in
the collocation, it will use a �rst-order-hold (FOH) on the input between nodes. This is
because the collocation also uses FOH on inputs between nodes.
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3.9 Generating initial points for IPOPT

Because it was not found time to code a simulator using collocation as an implicit ODE
solver, deined in eq. 2.41, start are generated with the easier-to-implement RK4 method.
Given a de�ned start point for the path (the state variables in node 0, x(0)), the path
�ewn with this start point, with only zeros as inputs, u(i) = 0, is used as an initial point
for the IPOPT algorithm.

As previously discussed , collocation are implicit RK methods. The used RK4 method
is explicit, and of a di�erent order. As of this, the given start point is slightly infeasible.
IPOPT has built-in-functionality for handeling this.

3.9.1 Hot Start

In the MPC controller used in the wind disturbance scenario, a �hot start� functionality
is implemented. This is a functionality where the optimal path found by the optimization
is used as the initial point in the next MPC iteration. It is assumed that the two optimal
paths will be quite similar, so that fewer iterations and less computational time is needed
to solve the next optimization.



Chapter 4

Results

In this section the results from using the implemented path planning framework will be
presented and discussed.

4.1 Software and hardware

The C++ programs with the optimization algorithm implemented are written and com-
piled using Microsoft Visual Studio 2008. It is run on a Dell Optiplex 780 PC, with an
Intel Core2 Duo 3.00 GHz CPU, and 4.00 GB RAM. The PC runs the Microsoft Win-
dows 7 32-bit Enterprise Service Pack 1 operating system. MATLAB R2010b is used to
run the scripts setting up mathematical functions and plots. It should also be noted that
when solving the di�erent optimization problems, the default values in IPOPT for error
and infeasibility tolerances was used.

4.2 Note to plots

In the following, multiple plots of the results are presented. Since the IPOPT optimizes
state variables of a discrete-time model, all states are plotted vs time using zero-order-
hold, or a �stair plot� as it is called in MATLAB. The exception being the plots of UAV

paths, where the east positions x
(n)
0 , are plotted vs north positions x

(n)
1 .

Common for all plots is that a circle on the line corresponds to a node (de�ned in the
collocation). Remembering that theres a node in each end of a segment, and a segment
is T segments long, the circles in the plots are placed T seconds apart.

4.3 Test cases

4 di�erent objective functions are tested, all in di�erent versions depending on the number
of targets de�ned. The imagined test scenario is that the targets speci�ed either in the
objective functions or by the uncertainty functions represents ice bergs with a known
position. Even though no choice has been made of what kind of surveillance equipment is

45
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installed onboard the UAV, it is assumed that �ying directly above the target(s) as many
times as possible is bene�cial. When testing di�erent weights and tuning parameters,
the goal has been to �y above each target at least once.

When introducing multiple targets, each target could also be thought of as repre-
senting the center coordinate of a set of frames in a search grid. In a more general
surveillance mission it could be bene�ting to de�ne a search grid, and have the UAV
visiting the centers of each grid at least once in order to investigate the ice condition in
that general area. When tuning optimization with many targets, weights and parameters
making the path pass directly above the targets (grid frame centers) are wanted.
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4.4 Optimal Path with minimization of distance to single
target

In this section the results from the �rst implemented optimal path planner is presented.
The used objective function is the simple quadratic distance minimizer (3.11), with added
punishing terms on acceleration and rudder inputs.

fmin =Wt× fQ1 +Wa × fa +Wr × fr (4.1)

The uncertainty model is not included in the discretized system model, as its states
is not used in the objective. Only the UAV model, eq. [?] is used in the discretized
system, making up the constraints. The targets position is (100, 100), and the wheights
in the optimization are The size of the wheighting term re�ecs the individual terms

Wt 10.0
Wr 5.0
Wa 120.0

Table 4.1: Objective function wheights - Quadratic Distance Minimizing, single target

importance. It should however be noted that the sum of accelertion and rudder inputs
are very low compared to the sum of distances between UAV and target. Therefore might
Wa seem very big compared to Wt, even though the UAV being close to the target is
most important. Any lower values of Wa resulted in rapid oscillations in the acceleration
input, where the input was alternating between max and minimum at every other time
step for parts of the �ight. The punishment for using that input was increased until
the inputs became smoother, which is favourable as it will decrease wear end tear of the
system.

It took the implemented framework 0.733 seconds to �nd the optimal path. The
initial point of the optimization was a straight path with minimum speed, in direction 1
(radian). That is roughly a north-east direction in the plots were the x-axis is the east

positions, x
(i)
1 and the y-axis is the north positions x

(i)
0 .

With these wheights, the optimal path is seen in Figure 4.1a. The optimal path
resembles a ��gure 8� shape, and passes over the target twice. It is seen that is more
optimal for the �ight to end directly on top of the target, than �ying directly to it in the
beginning. The path actually loops around the target at �rst, before it passes above it
after about 17,5 seconds, and then again after 30 seconds.

4.4.1 Feasibility of path

From the UAV model it is seen that the UAV speed is a�ecting the change in heading.
Slower speed enables tighter turns. It is seen in from �g. 4.2b that the UAV at �rst
speeds up to fast minimize the distance to the target in the beginning of the �ight. Then
the UAV slows down in order to perform turns as tight as possible, in order to stay close
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(a) 30 sec. optimal Path with quadratic disatance minimizing to a single target

(b) Optimal path and path simulated with RK4 using inputs from optimal path

Figure 4.1: Optimal paths, quadratic distance minimizing and single target
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(a) Optimal UAV inputs for 30 sec �ight with quadratic distance minimizing to a single target

(b) UAV speed and heading during 30 sec �ight with quadratic disatance minimizing to a single
target

Figure 4.2: Other data, quadratic distance minimizing and single target
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to the target. For most of the �ight the speed is 11.2m/s which is the lowest allowed
speed.

One can also see that graphs for acceleration in �g. 4.2a and speed in �g. 4.2b
corresponds well. The UAV is accelerating the �rst 5 seconds, and in the same time
the speed is increasing. Both graphs for commanded bank angle and the UAV heading
corresponds well to what is seen in the ploted path. First turning one way, then the
other is seen in the ��gure 8� shape of the path.

The graphs of inputs are consistent with the plotted path and the plots of UAV speed
and direction. This indicates that the UAV model has been implemented correctly. All
variables are within the variable bouds given with the UAV model. It seems reasonable
that the implementation results in paths the UAV is capable of �ying.

To further very that the result is correct, the calculated inputs were used as inputs
in a simulation with an RK4, with the same UAV model used in the collocation. The
simulated path as ploted along with the optimal path in �gure 4.2b. The two paths are
quite similar. Some di�erence is expected as the collocation method is implcit, while the
RK4 method is explicit, nad they ar of di�erent order. In the RK4 method, the step
length is also T/10 which should make it a more accurate simulation. Accuracy of the
discretization given by the cvollocation method is discussed further later on. The likeness
of the two paths further supports that the framework is implemented correctly, and that
the paths are optimal and feasibe, so they can be followd by the UAV.

4.4.2 Usefullness of distance minimizing in target surveillance

It is also clear that using an objective function based on minimizing the distance between
a UAV and a target can give paths that goes directly (or very close) to the target. It
should be noted that with di�erent wheights in the objective, the optimal path sometimes
goes in a circle around the target, with the target in the centre of the circle. In those
cases the target is not �ewn across.

It was also seen that the results when minimizing the distance norm, or the exponen-
tial distance, the results were so similar to the quadratic distance minimizing presented
here, that it was not found necessary to show plots of these when only a single target is
used.

4.5 Step lenghts and accuracy of the Collocation Method

To investigate how accurate the collocation method discretizes, the inputs calculated
for the optimal path, are used as inputs in a simulation. For the simulations, the RK4
method presented in the implementation chapter, chapter 3, is used with step lenght
h = 0.1 × T . As the RK4 method is known to give accurate approximation of ODE's
when using short step lengths, it is concidered to represent the �real world� behaviour of
an UAV using the calculated inputs.

First, 30 segments long optimization is done with a short step length, T = 0.5 seconds.
This gives step length h = 0.05 in the RK4 method. The result of this optimization is
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shown in �g. 4.3a. Beneath, in �g. 4.3a, the optimal path and simulation is calculated
with T = 2.0seconds and h = 0.2 is shown.

From the �gure it is seen that the simulated path runs closer to the calculated optimal
path. With T = 0.5 the deviation is approximatly 1-2 meters at the �nal node. It is seen
that for T = 2 the di�erence between the optimal path and the simulated path is bigger.
The di�erence does also grow bigger during the �ight. The shape of the optimal path
with the longer step length is more complicated, as the UAV has time to circle over the
target, which contributes to the big di�erence of accuracy at the last nodes of the paths.
With step the longer step length, the biggest deviation is approximetly 20 meters.

4.5.1 Segment length vs path lenght

Figure 4.3 also illustrates an other important aspect when choosing step lengths. For
shorter step lengths, more segments are needed to calculate a path of the same length.
More segments gives more nodes, meaning more variables in the optimization problem.
Hence there is a trade-o� between accuracy and problem size, as bigger optimization
problem is typically slower to solve.

4.5.2 Solution times with varying T

It was also noted that the step lengths are in�uencing the computational time of the
IPOPT algortihm. Computational times and number of iterations in the algorithm for
di�erent values of T is avalible in table 4.2. Table 4.2 shows a clear trend that longer

Segments, S Segment lenght, T Iterations CPU Time (sec)

30 0.5 145 0.421
30 1.0 193 0.733
30 2.0 266 0.857
30 5.0 370 1.325

Table 4.2: Computational times for di�erent Segment lengts, 30 segments

step lenghts gives longer computational times. Having showed that shorter steps gives a
more accurate, this seem to make it easier for the algorithm to �nd god Newton steps.
However, the picture is a little more complex. Becuse of the RK4 method used to generate
the start point of the algorithm, longer steps will gives more infeasible start point, which
could make it slower to return to feasible points. Longer steps will also give more complex
UAV dynamics, seen from 4.3. With longer step lengts, there will be time for the UAV
to perform more and longer turns, in which it could be di�coult to �nd good Newton
steps for next iterates.

Wheights will also in�uence computational times, at is in�uences what search direc-
tions, and step lengths that are accepted before �nding the optimal path.
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(a) Optimal and simulated UAV path with shorter step lenght; T=0.5

(b) Optimal and simulated UAV path with longer step length; T=2.0

Figure 4.3: E�ects of step length
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4.6 Exact vs approximated Hessian

The IPOPT library comes with an option of using an approximation instead of the exact
Hessian. The Hessian is then approximated with the Quasi Newton BFGS method. Since
the expressions in the Hessian can be quite complexe, and it proved time consuming to
implement it correctly, it is of interest to see what di�erence using an exact Hessian
makes. In table 4.3, computational times are compared for optimizations, using the
quadratic distance minimization objective on 1 and 4 targets.

S T Targets Iterations CPU Time (sec) Comments

60 1.0 1 145 0.847 BFGS, acceptable solution
60 1.0 1 307 1.567 Exact Hessian,Optimal Solution
60 1.0 4 644 4.103 BFGS, acceptable solution
60 1.0 4 306 1.530 Exact Hessian, optimal solution

Table 4.3: CPU times for quadratic distance minimizing. Exact and approx Hessians

IPOPT detects if the algoithm is unable to decrease the infeasibility su�cently to
�nd the optimal solution. If the error is below a given value (the aceptable error), the
iterations stops, and the algorithm calls it an acceptable solution[8].

For the simplest optimization; distance minimizing to a single target, using the BFGS
approximation gave a little shorter CPU time. It was however often unable to �nd the
optimal solution, and terminated at only acceptable points instead. Such an example
is given in table 4.3 For more complex optimization problem, such as multiple targets,
or unsing the uncertainty model, an exact Hessian was necessary to �nd the optimal
point, and it was also able to �nd the optimal point with much fever iterations than the
BFGS. There were also clear visible di�erences between the optimal and the acceptable
soultions. In the acceptable solutions, the paths tended to go a bit to the side of the
targets, instead of directy across them.

4.7 Stopping criterions

That stoping at acceptable points might be faster than �nding optimal solution does
also serve as a remainder that size of error and infeasibility tolerances, determining the
termination of solving the individual barrier problems or the overall NLP, will a�ect
computational times. If less accuracy is needed, larger errors can be tolerated, leading
to fewer iterations and less CPU time.

A possible problem arises if one is to increase the infeacibility tolreance. The optimiza-
tion variables includes both UAV position, and it's heading. For the UAV an accuracy
of +/- 1 meter might be acceptable, but +/- 1 radians is very much. IPOPT uses the
max norm when checking for constraint infeacibility, so one must set the infeacability
tolerence according to the most sensitive state values.

No choise has been made on what an acceptable level of accuracy is for the cases in
this thesis. Therefore has the defalt IPOPT values for termination been used.
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4.8 Optimal path with multiple stationary targets and dis-
tance minimizing

In this section, the three objective functions for minimizing distanze to multiple targets
are tested. Since the slope of the objective functions have di�erent shapes close to the
targets, it will be of interest to see how di�erent the calculculated optimal paths will be.

Using multiple targets is interesting for several reasons. Each target could represent
an object, such as ice berg, needed to be investigated in order to establish it's exact size,
position and direction. An other use is to let the targets be either centers or crnesr of a
search grid quadrant, and see if this will produce a path making the UAV �y through all
search grids. This could be useful in surveillance missions where theres no known object
to investigate, and a more general search through a de�ned area is wanted. It should be
noted that when tuning parameters, the objective in mind has been to �y diractly above
the targets.

All minimizing objectives are combined with objectives for minimizing controll e�orts,
for en economic �ight, giving the following used objective functions.

fQuadratic =WT × fQTG
+Wa × fa +Wr × fr (4.2)

fNorm =WT × fNTG
+Wa × fa +Wr × fr (4.3)

fExponential =WT × fETG
+Wa × fa +Wr × fr (4.4)

fQTG
, fNTG

and fETG
were de�ned in Eqs. (3.11), (3.12) and (3.16).

4.8.1 Surveillance of 2 targets

The results of the optimization with 2 targets are shovn in �g. 4.4.
It is interesting to see that neither of the used objective functions made it beni�tial

to �y above the target in the beginning of the �ight. This comes from the use of suming
up of all distances, so that it's not necessary to �y the shortest possible way to a target
�rst. The quadratic distance minimization in �g. 4.4a and the norm distance minimizer,
�g. 4.4b both �nds a ��gure 8� shape optimal, but �ewn in opposite directions. In both
cases the UAV circles around the targets, insted of passing directly above it. In this case
it is clear that the objective function is not redused enough when �ying directly above
it, than circle around it.

The exponenial objective in �g. 4.4c is signi�cantly di�erent. It is seen that it has
found it optimal to �rst �y towards the second target, and then �y directly above the
southenrmost target twice. It seems that the idea of using an objective inspired by the
inverted bell curve is indeed making it beni�tial to pass above the target. However, it
was found more beni�cial to pass the same target twice, than �y above both targets.

All in all, with neither of the distance minimizers did the optimal path go directly
above both targets. Only with the exponential functions were a single target �ewn
above. It was a little surporising to see that both with the quadratic distance and norm
disatance objectives, completely around the targets. The poor results can come from a
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(a) Minimizing quadratic distance to 2 targets

(b) Minimizing Distance Norm to 2 targets

(c) Minimizing Exponential Distance Norm to 2 targets

Figure 4.4: Surveillance of 2 Targets using distance minimizing
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combination of reasons. Since it is the total distance between UAV and targets over the
whole optimization that is minimized, it is no explicitly given in the objective function
that the path has to pass directly above the targets. Even though it was found that with
a single target, optimal paths would go directly above targets, a combination of target
distances and the turning capabilities of the UAV makes passing targets non-optimal
with these objective functions.

Speed, direction and input graphs vere much the same a for a single target, and
was not found necessary to present here. The UAV would typically accelerate in the
beginning, then decelerate down to minimum speed at the turns, in order to perform
turns as tight as possible.

4.8.2 Surveillance of 4 targets

The three distance minimizing objective functions were also implemeted with four targets.
Calculated paths are seen in �g. 4.5. The most obvious is that all paths are much closer
to visitng all targets when theres 4 than 2 of them. It seems that the combination of path
length/optimization horizon, target patterns UAV turning raduis and objective function
wheights this time made the optimal paths come much closer to the targets.

4.8.3 Evaluation of distance minimizing, parameteres and tuning

Concidering that it is wanted that a optimal path passes directly above all targets, none
of these were perfect results. There was not found time to experiment further with target
positions and segment lengths, but it seems reasonable that these also will have to be
concidered, when searching for objectives that will make optimal paths visit all targets.

A challenge with the objective functions is that it can be found more optimal to
�y close to a target twice, than directly above it once. Since boolean variables are not
availible, it is hard to �nd a formulation that makes it unnecessary to return to a target
once visited.

For the minimization of qudratic distance to targets, typical wheigst were Wt = 10,
Wr = 5 and Wa = 120. With the distance norm the wheigths are typically Wt = 10,
Wr = 1 andWa = 100. Again; Wa might seem big compared to the others, but the sum
of all acceleration inputs squared are much smaller than the sum of all distences, so the
large wheight is necessary to avoid heavy ocillations on the acceleration input. With the
exponential function, typical wheights were Wt = 100, Wa = 1, Wr = 1 and k = 0.007.
When there were multiple targets, the targets were all given the same values for Wt and
k.

4.8.4 Computational time with 4 targets

Typical computation times for the three di�erent distance minimizing objective function
with four targets are shown in table 4.4. It is noted that optimizing the simplest objective
function took the longest time to calculate. The quadratic objective is said to be the
simplest of the three, because the fN =

√
fQ, and fE = e−k×fN .
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(a) Minimizing quadratic distance to 4 targets

(b) Minimizing Distance Norm to 4 targets

(c) Minimizing Exponential Distance Norm to 4 targets

Figure 4.5: Surveillance of 4 Targets using distance minimizing
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S T Targets Iterations Time Hessian Solution Minimizer

60 1 4 176 0.820 Exact Optimal Exponential
60 1 4 258 1.139 Exact Optimal Norm
60 1 4 306 1.530 Exact Optimal Quadratic

Table 4.4: Comparing of distance minimizers computional time
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4.9 Minimizing Information Uncertainty

In these optimizations both the UAV model, eq. (3.5), and the uncertainty model, eq
(3.7), are used in the discretized system model. Unce the information uncertainty at given
target locations are included in the discretized system model, it is sought to minimize
the toal information uncertainty. This gives rise to the tested objective function

fUncertainty =WT × fUTG
+Wa × fa +Wr × fr (4.5)

See implementation chapter for details.

4.9.1 Uncertainty model on single Target

Figure 4.6 shows the optimal path with a single target, where the objective is to minimize
the overal uncertainty. A segment length of T = 1 seconds is used. The used wheigts and
parameters are as follows: k = 0.05, b = 5.0,U (0) = 100, γ = 100, WT = 100, Wa = 10,
Wr = 1.

It is seen that the UAV path leads almost directly to the target and circles back to it,
as opposed to the the distance minimizations in �gs 4.1a and 4.3a where the path �looped
around� the target at �rst. It is clear that the objective function with the uncertainty
model gives the optimization a clear insentive to �y directly above the target, instead of
circeling around it.

As for the other paths, the UAV accelerates maximum in the beginning to decrease
distance between UAV and target fast. Before reaching tha target , the UAV decelerates
to minimum speed, in order to perform sharper turnes. Even though a plot of inputs is
not included here, the distance between the nodes (circles in the graph) in that path plot
gives an indication of the speed. The longer the distance, the higher the speed.

Comparing the path, �g. 4.6b, and the plot of the corresponding target uncertainty,
�g. 4.6b, it is seen that the uncertainty behaves as anticipated. Because of the γ part
the uncertainty rises in the beginning. This is as wanted; the uncertainty of the situation
in a given target should rise whenever it is not observed. It is seen that the uncertainty
rises slover as the UAV comes closer to the target, until the uncertainty �attens, and
starts to decrease after 6 seconds. At that point the UAV is approxiamtly in position
(80,70). After 10 seconds, the UAV passes above the target, and the uncertainty starts
to rise. For repetition, the uncertainty model is

U̇ = U × (α− β) + γ

β = b× e−k||UAVpos−Target||2

It should be noted that in order to �nd satisfying paths, α had to be zero. With the chosen
values for k and γ, it looks like the uncertainty is reduced when the UAV approaches the
target, and starts to rise again the second the UAV passes it. This comes from comes from
the large γ values used. With lower γ values, the uncertainty will continue to be reduced
for a little while after the UAV has passed the target. This is because the P × (−β)
part of the uncertainty model is negative also close to the target. However, a large γ
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(a) Optimal Path

(b) Developement of the uncertainty

Figure 4.6: Surveillance of a target, minimizing uncertainty
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was necesarry to get the path to go above the targets. A to large, or to small made the
paths go further way from the target. Typical tuning valus were 0.01 < k < 0.05 and
100 < γ < 150. THat the uncertainty rose again after tha target was visited the �rst
time, mande it favourable for the UAV to visit the target once again.

4.9.2 Uncertainty model on two targets

When introducing a second target, the systems is expanded with an additional uncer-
tainty model. There is now two uncertainty models in the system, one for each target.
The �rst target is still positioned in (100, 100), while the second is in 100, 150. Both of
the uncertainty models has the same parameters as in the previous example, and also
the objective function wheights are the same. The optimal path with two targets and
the corresponding uncertainties are plotted in �gure 4.7. Also with two targets the op-
timal path passes (almost) directly above the two targts. The last node of the path is
only a few meters away from the target. Since the goal is to get the path to �y directly
above the targets, this is a good result, compared to the distance minimizing objective
functions seen in �g. 4.4. With quadratic and norm distance minimization, the optimal
path circled around, the targets. The exponential distance minimizer only �ew above
one of the targets, where the uncertainty minimizer �ies above both.

Again the results give a curve for uncertainties, �g. 4.7b that increases when the
UAV is far away from the target, or heading away from them after beeing close. The
uncertainty is reduces as the UAV closes in on the target. It is seen that the two uncer-
tainty graphs oscilates as the UAV is close or distant, and they are a bit �phase shifted�.
This is as expected, since the UAV alternates between wich target it is closer to.

It is interesting to see that the UAV �rst �ies close to the �rst target, reducing
the uncertainty there, before �ying to the second target, and then back again to the
�rst. From a surveilance-point of view it seems reasonable to go back and forth between
targets, to minimize the overall uncertainty.

4.9.3 Uncertainty model on target grids

It is already seen that using the uncertainty model calculates optimal paths passing
over two given targets. Now, results of optimizations with four and then nine targets
are given in �gure 4.8. When introducing grids, it is still thought that the target is an
iceberg needed to be directly over�own in order to inverstigate it, for instance to assess it's
size. Parameters and whights are chosen to obtain paths passing directly above as many
targets as possible. With 4 targets in a 2-by-2 grid, the optimal path using uncertainty
models shown in �g 4.8a takes on a �sideways �gure 8� shape, where all targets are closely
�ewn by at least twice. The �ight ends in the south-eastern node, wich is visited three
times. Again it is seen that the optmimal goes almost straight towards the target closest
to the UAV startpoint, before entering a circeling pattern where all targets are visited in
turns.

With 9 targets in a 3-by-3 grid it was more di�coult to �nd parameters and wheigths
making the optimal path visit all targets. The targets are so spread out that if the UAV
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(a) Optimal Path

(b) Developement of the uncertainty

Figure 4.7: Surveillance of two targets, minimizing uncertainty
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(a) Optimal Path in 2-by-2 grid

(b) Optimal path in 3-by-3 grid

Figure 4.8: Surveillance of grids, minimizing uncertainty
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is to visit one of the corner targets, the uncertainty have time to grow large again on the
opposite side. In most cases the Optimal path would make the UAV spend most of its
time circeling the center target, and not come close to the corner targets, except for the
down-left target. It was in most cases �own above when the path entered the grid area.

The best optimal path found, that being the one path closest to all targets, is pre-
sented in �gure 4.8b. The pathe starts out with something similar to a �letter s� shape
along the rows of targets without passing above them. After reachin the pint closest to
the top right node, it circles around the middle target. The path only comes close to the
leover left and middle target, and the lower right target is not closed in on at all.

An important reoccuring feature when using minimization of total uncertainty for
path planning, is that these paths seems to go directly towards and above the targets,
in the cases with 1, 2 and 4 targets. Aslo with 9 targets, the target closest to the path's
starting point is �ewn above when entering the grid. With distance minimizing, it was
more di�coult to �nd parameteres that made the path �y close to the target. This is
clearest in the case for 2 targets.

A clear result is that is it easier to tune the uncertainty model and the uncertainty
minimizing objective function to create optimal paths visiting all targets, than the case
is for optimal paths based only on distance minimizing.

4.9.4 Robustnes and tuning of uncertainty model parameters

If setting the parameter k too big, it seems to become di�coult for the IPOPT algorithm
to �nd good search direction. A bigger k makes the �bell curve� more narrow, and
it becomes more beni�cial to �y directly above or very close to the speci�ed targets.
However, far from the targets, both the bell curve and its gradient is zero. With a
narrow bell shape, and a start point for the IPOPT algorithm that is well away from the
targets, the targets might become �invisible� to IPOPT, and the optimization algorithm
is unable to �nd a feasible, optimal path.

In the �rst tests, a simulation of a �ight straight north was used us a start point for
the IPOPT algorithm. In combination with a big value for the k parameters, the IPOPT
algorithm was unable to �nd good search directions. The results were meaningless, very
infeasible paths.

To help this, a straigth �igth in direction 1 (radian) was introduced as startpoint for
the optimization. This helped the algorithm discover the targets, as the initial point is
a path passing close to the targets. When selecting the size of the k parameter, there is
a trade-o�. Bigger k makes it more more beni�cial to �y close to the the targets. At the
same time will a bigger k make the algorithm less robust.

It was also noted that when using a lower value for γ and k, the optimal paths for
surveilance of a single or two targets was more similar to the behavoiur of the paths
based on distance minimicing. The UAV tended to circle around the targets, much as in
�gures 4.4a and 4.4b, instead of �ying directly above therm.
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4.9.5 Memory in grids

When the uncertainty model vas �rst introduced, it was mentioned that the uncertainty
model could introduce some sense of �memory� in the optimization. During test with
minimizing the total uncertainty for multiple targets, it was sought to �nd a parameter
set that would make the target uncertainty very low when visited, and then make the
uncertainty rise only very slowly, or not at all. It was hoped that this wold make it
unnecessary for the path to seek back towards targets, after they �rst was visited, possibly
making the optimal path �y directly above a target at a time. The surch for such a
parameter set was not succesfull, as seen from the path with 9 targets, �g. 4.8b. In order
to reduce U only when very close to the targets and then not rise afterwards, k needs to
be big and γ small, but such a combination was not found. It cannot be concluded that
it is impossible, but it is di�coult due to the previosly dicussed robustness issue.

4.9.6 Computational times, uncertainty Model

S T Targets Iterations Time Wheights

30 1 1 102 0.366 Wa=10, Wr=1 , Wu=100,α=0,b=5,k=0.05 γ=100
30 1 2 134 0.645 Wa=10, Wr=1 , Wu=100,α=0,b=5,k=0.03,γ=100
30 1 2 247 1.047 Wa=10, Wr=1 , Wu=100,α=0,b=5,k=0.02,γ=100
60 1 2 266 1.799 Wa=10, Wr=1 , Wu=100,α=0,b=5,k=0.02,γ=100
30 1 4 90 0.495 Wa= 1, Wr=0.1, Wu=10,α=0,b=5,k=0.02,γ=100
60 1 4 243 2.239 Wa= 1, Wr=0.1, Wu=10,α=0,b=5,k=0.02,γ=100
60 1 9 332 6.642 Wa= 1, Wr=0.1, Wu=10,α=0,b=5,k=0.03,γ=150

Table 4.5: CPU times, minimizing information uncertainty

Table 4.5 shows the CPU time and the number of iterations used to calculate the opi-
mal paths for various number of targets and semgnets. Since the system model includes
more variables needed to be optimized, it is expected that using the uncertainty modell
wil give longer computational times than was the case when only the UAV model was
used. For instance; �nding the path with 4 targets gives 4 UAV states, 2 UAV inputs,
and 4 uncertainty states pr node in the optimization. For 60 segments, that gives a total
of (4 + 2 + 4)× 61 = 610 optimization variables. Solving the same problem, minimizing
distance instead of uncertainty gives only (4 + 2)× 61 = 366 optimization variables. In
table 4.4 it was shown that the minimizing the quadratic distance to 4 targets tok 0.820
seconds for a path with 60 segments of 1 seconds length, while using uncertainty models
it took 2.239 seconds to calculate the path.

Although it is seen that also objective function wheigts, and values for k and γ has
an in�uence (see entries 2 and 3 in the table, how changing only k from 0.03 to 0.02
increases CPU time with 0.4 seconds), the general trend is that optimizing using the
uncertainty model is slower than not unsing it, especially when the 2-by-2 and 3-by-3
target grids were intruduced.
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4.10 Results from MPC / On line path planing

A couple of di�erent test scenarios is set up to explore di�erent uses of MPC/on line path
planning. The results are given in the following section. For the MPC controller tests,
two targets and the uncertainty models will be used. The optimization will be done for
a 30 segments long horizon, with a segment length of 1 second.

4.10.1 Updated target info

In the �rst test scenario it is assumed that target positions are given by a source outside
the MPC controller. The optimal path is recalculated when the MPC receives updated
info. In each of the solved optimization problems, it will be assumed that the target is
stationary, as in the previous examples. The point is to see how the �ewn path turns out
to be if the target position is frequently updated.

4.10.2 Update every 1 second

In the �rst test, the target info is updated every second. The segment length is also
a second. Therefore is the UAVs position, speed,and heading in node 1 of the �rst
optimization is used path start point, node 0, in the next optimization.



4.10. RESULTS FROM MPC / ON LINE PATH PLANING 67

(a) First calculated and �ewn paths

(b) Distance from UAV to targets

Figure 4.9: NMPC Updating path and target every second
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Target 0 starts at coordinate (100, 100). At each update, it is moved 2 meters north
and 1 meter left, which simulates a linear drift in north-northeastern direction of approx-
imately 2.26 m/s. Target 1 starts in position (100, 150) and is moved 2 m north and 2
m east at each iteration, simulating a northeastern drift at approx. 2.8 m/s.

The results of this �rst case is given in �gure 4.9. In �gure 4.9a, the optimal path
calculated at the �rst NMPC iteration, when the targets are thought to be stationary
at coordinates (100,100) and (100,150) are plotted in red. The actually �own path is
plotted in blue. The positions of the targets are plotted in magenta.

To more easily see the distance between the UAV the targets when using the updated
(�ewn) path, the distances is plotted vs time in �gure 4.9b.

As seen, the �ewn path is almost identical to the �rst calculated for �rst 8 seconds,
but after that, they di�er. As before, the �rst calculated path seeks to �y close to the
target, passing it in approx. 10 meters distance, before it passes directly above the
second targets, and turns back to end the path very close to the �rst target. It seems
that the start of the optimal paths in the �rst 7 iterations are similar; that all these
optimizations gives path in the same general direction, passing a few meters away from
Target 0. However, after �rst passing Target 0, the smooth ��gure 8� shape seen in the
�rst calculated path, and in most of the previous results, does not appear. The path does
a left-right-left turn, while �ying in parallel with both targets, as if it keeps changing
mind of what is the optimal direction. When put in a position in the middle of the two
targets, the path planning seems to become �indecisive�, what targets the path should go
to �rst seems to change at almost every iteration. After 12-13 seconds, when the UAV
paths crosses Target 1's (the northernmost target) position, the smooth turn indicates
that all consecutive iterations of the MPC �nds continuing this turn optimal. After the
turn, at 25 seconds, when the UAV path again is between the two targets, the �indecisive�
behavior appears again.

4.10.3 Changing shape of optimal paths

This can be interpreted to mean that for the �rst part of the �ight, while the UAV is
far away from the targets, optimal paths will be quite similar, even if the start point
of the path moves with a few meters. In proximity of a target, particularly when being
between them, and the UAV direction on the starting node of the path does not point
near any of the targets, even a small change in the UAV position of the �rst node will
give completely di�erent �ight paths.

The result is that �own path does not come very close to any of the targets. The
closest it gets to Target 0 is approximately 10 meters, after 8 seconds �ight. It seems that
the optimal paths keeps planning to visit Target 0 quite late in the path, and because
the path is continuously recalculated, the UAV never gets there. The �own path is closer
to Target 1, as the distance is down to 5 meters after 13 seconds. On closer inspection
it is seen that the node 13 of the path is on the south side of Target 1's path , and the
14th node is on the north side, so with a higher plot resolution, the displayed distance
would be lower, since to UAV would be closer to the target between nodes 13 and 14.

The result demonstrate a concept that is both the strength, but sometimes also the
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downside of MPC control. Because the MPC plans ahead for the whole horizon, there is
a possibility that the optimization will �nd it best to pass targets close at the end of the
horizon. This could mean the �own path never will come very close to any of the de�ned
targets, since they can be approached from any direction.

It was in the earlier results noted that the uncertainty minimizing scheme for optimal
path planning tended to �nd optimal paths that would pass either close or directly above
the nearest targets at the �rst opportunity, and go to the next target. This seems to be
a helpful feature, when the targets are tracked. At least when the path is recalculated
in a point where one target is clearly closer than the other.

4.10.4 Flight planning memory

With the uncertainty model in the MPC scheme, the optimization is actually �remem-
bering� where it has been. This is because the value of the uncertainty at the node the
UAV was in when the path is recalculated is used values for node 0 in the next iteration.
So when the UAV has been closer to one of the targets, the start uncertainty, uncertainty
in node 0, will be signi�cantly lower.

4.10.5 Parameter tuning

As has been noted earlier, parameters in the uncertainty model, objective function
weights, segment length and optimization horizon will in�uence what the optimal paths
will look like. Planning shorter path, where theres only time to visit the targets once,
might help creating �own paths closer to the targets.

4.10.6 Update every 10 seconds

In �gure 4.10, the path is updated every 10 seconds instead. The target drifts speed and
directions is as above, Target 0 drifting north-northeast at 2.26 m/s, and Target 0 drifting
northeast at 2.8 m/s. Now their positions are only updated every 10 seconds. Here, the
UAV is given more time to close in on the targets before the path is recalculated. It is
in �gure 4.10a seen that the UAV comes as close as 2 meters away from the last known
location of both targets. In �gure 4.10b it is seen that the UAV will be closest to Target
1 after 13 seconds. However, that target information is by then 3 seconds old, and the
target moves with a speed of 2.8 m/s. That means the drifting ice berg the target is
meant to represent could be as much as 2 + 3× 2.8 = 10.4 meters away.
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(a) First calculated, and �ewn paths

(b) Distanze from UAV to targets

Figure 4.10: NMPC Updating path and targets every 10th second
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The UAV path is closest to Target 0's last known position after 23 seconds. Here it
is 2 meters away from the assumed Target 0 position. Again, the Target position was
updated at time = 20 seconds, so the ice berg Target 0 is meant to represent, might
have drifted away during the 3 seconds that have passed. In worst case the target will
be 2 + 3× 2.26 = 8.78 meters away.

From the graphs it is seen that a lower update frequency of target position helps the
path come closer to the assumed target positions. However because the ice bergs drifts
continuously, the worst case minimum distance to the targets were quite similar when
updating position every 1 and 10 seconds. Because the path is updated more slowly, the
�own UAV path is more smooth than the �own path in the example with updates every
second.

4.10.7 Wind disturbance

In section 4.5 it was seen that paths based on the discretized system might not be
identical to the paths �own in reality if the calculated optimal inputs are used on an
UAV. Neither does the optimization consider disturbances, such as wind. Also, system
models are often inaccurate simpli�cations. As of this, it will probably be necessary
to update the optimal path and inputs during a �ight, in order to �y across the given
target positions if the inputs found in the optimization is to be applied directly to the
UAV actuators. The MPC controller is chosen to update/recalculate the path every 2
seconds. This is because optimization with two targets and 30 segments in most cases
has taken anywhere from 0.5 to 1.5 seconds, depending on parameters and start point.
As discussed in the MPC CHAPTER, it is essential that the optimization is done when
it is supposed to be applied.

In this case, a NMPC controller is applied to the UAV, and the UAV is exposed to
a constant wind, of 5 m/s from the north. Since the speed in the UAV model is wind
speed, and it is assumed zero wind when deriving UAV ground position relative to a
given point on the ground, the UAV will drift of the optimal path when exposed to wind.

This is shown in �gure 4.11. The optimal path calculated in the �rst NMPC itera-
tion is plotted in red. It has the now familiar ��gure 8� shape, passing directly above
both targets. Plotted in green is the path �own by the UAV with inputs from the �rst
optimization, and the wind disturbance applied. For each node/second, the UAV north
coordinate moves 4 meters further south than the optimization calculated. Quite frankly -
the result is bad. At the point the UAV is supposed to �y above the northernmost target,
it approximately 10 meters south of the southern target, and it ends up 30s∗5ms = 150m
south of where it is supposed to end.

The UAV path �own when using the MPC controller is plotted with blue in �gure
4.11. It is seen that as long as Target 0 is closest to the UAV, the �own path is similar
to the �rst calculated path. The path is just a little more south, because of the wind
disturbance that made the start point of the �rst recalculation be 10 meters south of
the anticipated position from the �rst calculation. As has been common when using the
uncertainty model, the path goes close to Target 0 at the �rst opportunity, and goes to
Target 1, where information uncertainty is grown higher.
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Figure 4.11: Wind disturbance: NMPC Updating path every 2nd second

Then a bit of this previously discussed �indecisive� behavior, as the path is straight
for some time. This could indicate a right turn being a�ected by the wind, until making
a left turn becomes more optimal. That the left turn becomes so wide is also because of
the wind that blows the UAV southwards.

All in all, the last 22 seconds of the �ight is very di�erent from the originally calculated
path. The �own path is very far from any targets,where it is unable to reduce the
information uncertainty.

4.11 Hot Start and algorithm initial point

In connection with the planning of the optimal paths using the uncertainty model it was
mentioned that the optimization was more robust when the start point for the algorithm
is a path passing not far from the targets. If the algorithm is given a start point close
to the optimal point, it should also be able to �nd the optimal point in fewer iteration,
saving computational time. In connection with MPC, there is an idea to use the optimal
solution found in an iteration as a starting point for the next. This is called hot start.
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It is possible to pass on the optimal values for Lagrange multipliers and dual variables
as start points for the next.

It was tried to �nd a solution for using hot start on the MPC controller used in the
case with the wind disturbance. Since the start node of the optimal path - the UAV
position,speed,and heading in node 0 - moves for each iteration, a hot start solution
where the optimal values from node 2 where mowed forward to become the values in
node 0 in the

Figure 4.12: Development in computational times with Hot Start MPC
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It is seen that the calculation times and number of iteration drops signi�cantly after
the �rst iteration of the MPC controller. The �rst NLP is solved in about a second,
the next in 0.7, then 0.35 and then 0.174 second is the lowest. However, after the �fth
optimization, the start point for the next optimization became very infeasible, and the
algorithm was unable to �nd good search direction. An optimal solution was not found,
and no valid start point was given to the following iterations. More practically put; the
MPC controller crashed. The large infeasibility is caused by state xn0 being updated to
be correct for the wind in�uence, but the uncertainty models were not. That caused the
infeasible hot start point, because xn0 is a variable in the target information uncertainty
model as well.

However, this issue was not resolved due to time constraints.
The outtakes from the log �le, �gure 4.12, still shows that with smart initial points

for the algorithm, the solution time of the NLP solved at each MPC iteration can be
reduced signi�cantly.

It also serves as an example of how important it is for a controls system to have a
solution in hand if the UAV suddenly is unable to �nd feasible solution. Having controllers
that are known to crash from time to time is simply unacceptable.

It was also seen in the results from comparing discretization with collocation and
RK4, that there is a di�erence when using them. As stated previously, the initial point
of the IPOPT algorithm is found by simulating a straight �ight, given as start position,
start speed and heading. All inputs in the simulation is zero. Nine targets, U(0) =
100, γ = 150, primal variable infeasibility = in the 103 area. Infeasibility grows with
these parameters. With none, typically around 100. The IPOPT algorithm was able
to handle these infeasible initial points. In the case where the MPC controller was
unable to �nd an optimal point, the primal infeasibility was in the 1022 area. Even with
increasingly infeasible hot start point, the computational time was sinking during the
�rst few optimizations of the MPC controller.
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4.12 Comparing with previous work

As mentioned in the introduction, the master thesis is a continuation of a previous fall
project [15]. In the fall project, collocation was used to discretize the same UAV model as
used here. Optimal paths for surveillance of a single target was found using the fmincon
NLP solver implemented in MATLAB. The objective function for minimizing quadratic
distance was used, the same as eq. 4.1, only without punishing use of rudder.

Unlike IPOPT, fmincon only needed the objective function and the constraint func-
tions de�ned. It calculates gradients and Hessians needed to solve the NLP with a SQP
algorithm by itself [19]. The Hessian is approximated with a quasi newton method.
Neither did the fmincon take advantage of sparse matrices. A comparison of the compu-
tational times are given in table 4.6.

Solver Type S T Targets CPU Time (s)

fmincon SQP 30 1 1 13.980
IPOPT IP 30 1 1 0.733
fmincon SQP 60 1 1 250.000
IPOPT IP 60 1 1 1.567

Table 4.6: Comparing performance of IPOPT and fmincon algorithms

The time measurements are done on the the same computer, but it should be noted
that both target position and objective weights are di�erent. In both cases the NLP
solvers default values for terminating the optimization was used. It is seen that IPOPT
is signi�cantly faster; about 20 times faster with 30 segments and about 160 times faster
with 60 segments. That IPOPT is faster is not surprising, for several reasons.

Most important is that c++ programs compiled for release runs a lot faster than
matlab scripts. There are other other factors as well. In the theory section it was
mentioned that Interior Point methods tend to solve large NLPs faster. Also important
is the use of exact Hessian and sparse matrices in IPOPT which greatly reduces the
number calculations when working with matrices. It is di�cult to say what makes the
biggest di�erence, since theres so many factors involved. It was noted that fmincon
typically used 2000+ iterations to solve the problems where IPOPT uses less than 300,
which gives an indication that much is gained by using an interior point method with
exact Hessian. It was shown in table 4.3 that exact Hessians gave fewer iteration than
Quasi Newton approximation in large problems. That fmincons calculation times is
near 20 times doubled when gong from 30 to 60 segments, while IPOPT only doubles
it's time is also an indication that sparsity format saves a lot of time. As the number
of optimization variables increases, the number of zeros in the Hessian matrices grows
exponentially. That gives an exponential increase in unnecessary 0 × 0 multiplications
performed by the fmincon algorithm as well. With the sparsity format and nonzeros on
the block diagonal, the number of matrix elements and calculations will roughly grow
linearly.

It should also be noted that the shape of the calculated paths were much the same, as
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is expected when the same UAV model and type of objective function is used. The UAV
is accelerating towards the target, before it slows down and enters a ��gure 8� circling
pattern at the the minimum speed.

However, it is left no doubt that a lot of computational time is saved by going from
fmincon in MATLAB to IPOPT library in c++ as the base for the path planning frame-
work.



Chapter 5

Conclusion

In this �nal chapter, a conclusion based on the previously presented and the discussed
results is given. Some ideas for and pointer s for further work based on the results and
conclusion is also given.

5.1 Conclusion

The framework with IPOPT and collocation is successfully implemented, and well suited
to be used for path planning. Problem structure is exploited to initialize and solve
the problem e�ciently However, it lacks interfaces to other systems, like control and
navigation systems, so it is not ready for practical use.

Planing paths using minimizing of information uncertainty in given targets in order
to surveillance them proved very good in the cases with 1, 2 and 4 targets. The optimal
path went above, or very close to the targets, which is the desired behavior. Minimizing
uncertainty gave better results than the di�erent versions of minimizing distance between
the UAV and the given target(s). A trade o� is that the problems with the uncertainty
model has more variables, and therefore takes a bit longer to solve.

An important remark must be made about the uncertainty model. Good results were
heavily dependent on parameter values and the initial point of the algorithm. Optimizing
with the uncertainty model is not robust, which makes it less suitable for on line path
planning /MPC, unless these issues can be resolved.

To use multiple targets to de�ne a zone/grid to investigate, a 2-by-2 grid was the
upper limit to where all grid centers (targets) were visited. In the 3-by-3 grid, the outer
targets were not visited. It cannot be said for certain that this is a general limit since 50
meters between each node was the only distance tested.

On line path planning failed to produce �own UAV path very close to the targets. It
seems that optimizing paths for stationary targets recursively is not a good way to track
two moving targets, even if the path is updated very often.

On line path planning for surveillance of a stationary target while the UAV being
subject to a constant wind disturbance produced a �ewn path were the UAV wold come
near to, bunt not directly on top of both targets. It was not an very satisfying results,
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and it is concluded that making a controller that tracks the �rst calculated optimal path
might perform better.

5.2 Further work

While the results found in this thesis answers several questions, there are several things
to investigate further. Suggestions for further work are:

� Expand the framework to �nd optimal paths where a moving target is considered.
The path planning minimizing information uncertainty has not been tested for such
circumstances yet.

� Test the path planning with grids/multiple targets with di�erent target distances
to see if the results with multiple targets in this thesis can be generalized.

� generate feasible start points using the same collocation method as used for dis-
cretization.

� Develop interfaces for the o�-line path planning to other equipment to enable �real
life� use and testing.

� Expand the MPC / on line path planner with a working Hot Start function, and
safety/robustness/real time features in order to use it safely.
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