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Abstract

Horizontal wells with multistage hydraulic fracturing are today the most
important drilling technology for shale gas extraction. Considered unprof-
itable before, the production has now become economically profitable due to
advances in technology. Shales main characteristics is its low permeability,
making the gas challenging and expensive to extract. Hydraulic fracturing
stimulates the wells by creating additional conductivity, making the gas flows
from storage pores to the well. This flow only possible in a short time scale,
and states the need for multistage fracturing. Shale gas flow therefore ex-
hibits a high initial peak, followed by a rapid decline in production rates.
The use of shut-ins of shale gas wells allows for pressure build-up and may
prevent liquid loading, as a means of boosting production.

Shut-ins are used as on/off control variables in short-term model-based opti-
mization of multiple shale gas wells with the objective of tracking a reference
rate, while at the same time avoiding liquid loading. Previous work have
focused on open-loop optimization. Here, an open-loop formulation is com-
pared to a closed-loop formulation, in the form of mixed integer model pre-
dictive control. Both formulations are implemented in IBM ILOG CPLEX,
with and without disturbances.

Optimal production settings are solved in the presence of global constraints
on production rates and minimal shut-in time. This allows for shut-ins with
variable periods. The implementation is sensitive to initial conditions, hori-
zons and weighting factors. The closed-loop formulation shows the best abil-
ity to reduce the effects of disturbances.





Sammendrag

Horisontale brønner med multiple hydrauliske oppsprekninger er per i dag
den viktigste teknologien ved drilling av nye brønner for skifergass-utvinnelse.
P̊a grunn av store teknologiske fremskritt de siste årene, har denne pros-
essen, som før ble betraktet som ulønnsom, n̊a blitt meget lønnsom. Hoved-
karakteristikken til skifergass er lav permeabilitet, hvilket gjør gassen svært
vanskelig og dyr å utvinne. Hydraulisk oppsprekning stimulerer reservoaret
ved å danne porer med høyere permeabilitet hvor gassen kan strømme fra.
Siden gasstrømningen kun er gyldig i f̊aminutter, f̊ar skifergass-strømning en
karakteristisk høy initiell produksjon, hvorfra strømningen raskt avtar. Ned-
stegning av brønnene brukes for å bygge opp trykket i brønnen og unng̊a
væskeopphopning, hvilket medfører høyere produksjon.

Av/p̊a- ventiler kan brukes som binær-variable i kortsiktig modell-basert op-
timering av flere skifergass-brønner, med m̊al å følge en gitt referanse og
unng̊a væske-opphopninger. Tidligere arbeid har fokusert p̊a åpen sløyfe-
optimering. I denne rapporten sammenliknes en åpen sløyfe-formulering med
en lukket sløyfe-formulering. Lukket sløyfe-formuleringen implementeres som
en mikset heltall modellbasert prediktiv regulator. Begge formuleringene im-
plementeres i IBM ILOG CPLEX, b̊ade med og uten forstyrrelser.

Optimale produksjonssettinger løses basert p̊a globale beskrankninger p̊a
produksjonsrate og minimal nedstegningstid. Implementeringen viser seg å
være sensitiv i forhold til initial-betingelser, horisonter og vektinger. Lukket
sløyfe-formuleringen viser best evne til å redusere effektene av forstyrrelser.
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Chapter 1

Introduction

This chapter gives a brief background of shale gas properties and recovery
techniques as it appears today. In addition, a short presentation of produc-
tion optimization is included.

This chapter is to a large extent based on the introductory chapter in Nordsveen
(2011).

1.1 Background

Shale gas has become one of the most rapidly growing forms of natural gas,
and the potential of shale gas has been well known for a long time. The
success started in the Barnett field, the most developed shale basin in the
U.S. The U.S has serveral reservoirs, spread over large fields, see figure 1.1.
Economist (2011) reports estimated recoverable reserves to be 862 trillion
cubic feet, based on information from America’s Energy Information Admin-
istration. There are also a considerable amount of shale gas reserves even
in Europe, estimated to be 639 trillion cubic feet. Europe has traditionally
not been a significant exporter of shale gas, mainly because of geologically
challenges, and thus also higher costs of extraction. In 2008, 100 rigs were
operating in Europe, in contrast to 1600 in America (Economist, 2011).

The extraction of the gas has been limited by the technology. The major
challenges with shale are its low permeability, that is, its ability to transmit
fluid. Shale is characterized as tight reservoir, and the extraction of the gas
is therefore complex and cost expensive.
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Figure 1.1: U.S shale gas basins. Source: US Department of Energy

1.2 Shale gas characteristics

Shales are special in the sense that it can store large amounts of gas within
it. Three different storage mechanisms exists

• Within natural micro-fractures

• Within minute rock pores

• As adsorbed gas

The main characteristics of shale gas is its low permeability, ranging from
10−3 − 10−6 mD. This makes transmition of fluid difficult.

The tightness of shale formations makes it possible to produce gas only when
extensive network of fractures exists. The gas will then flow into these frac-
tures, and into the producing well. However, this flow is only valid in the
range of minutes (Carlson and Mercer, 1991), causing additional complexity
in gas production, espescially when there is insufficient fractures in the for-
mations. Additional conductivity is thus needed. This is done by stimulating
the reservoir by hydraulic fracturing, creating large and complex networks of
fractures.

Shale gas has traditionally been modelled as dual-porosity models, a concept
first introduced by Warren and Root (1963). The concept builds on an ide-
alized model of matrix blocks which supplies interconnected set of fractures
with fluid. Figure 1.2, taken from Carlson and Mercer (1991), shows two ex-
amples of idealized fractured reservoirs, compared to an actual reservoir. The
upper left shows vertical fractures, the upper right is with cubical elements.
The matrices can store large quantities of gas, but cannot transort the gas for
long distances. The fractures can transport the gas, but has limited storage
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Figure 1.2: Ideal dual-porosity-models. Source: Carlson and Mercer (1991)

capabilities.

The chemical composition of shale gas is mainly methane, and thus emits less
carbon dioxide than traditional fossil fuel like oil and coal. Emission of ni-
trogen oxides (NOx) and sulphur dioxide (SO2). Shale gas is thus considered
to be central in reduction of greenhouse gases.

1.3 Recovery techniques

Traditionally, shale gas wells has been vertically drilled, with one well site
per reservoir. In the past few year, much effort has been put into recovery
techniques, bringing along improved downhole technology and reduced costs.
This has made horizontal well drilling the prefered drilling technology. The
use of hydraulic fracturing to stimulate the reservoirs are also beeing deployed
extensively.

1.3.1 Horizontal drilling

Due to improved downhole technology and reduced costs, horizontal drilling
has now become the the preferred method of choice when drilling new wells.
In the Barnett shale basin, more than 90% of all new wells now exert hori-
zontal drilling (Jenkins and Boyer, 2008). The advantages are obvious; the
wellbore is exposed to a significantly larger area of the reservoir than tradi-
tional vertical drilling. However, this comes at a price. Drilling of horizontal
wells can be as much as 300 percent more costly than vertical drilling on the
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same target reservoir (Helms, 2008). Horizontal drilling is hence only applied
when the economical benefits are ensured. Karcher et al. (1986) reported that
the productivity could increase by as much as 10 times or more, due to the
increased areal sweep efficiency, and thus can be more economically benefi-
cial. In conventional reservoirs with high permeabilities, a vertical well could
produce nearly the same amount of gas as a horizontal well, only at a lower
cost. In unconventional reservoirs with low permeabilities, a horizontal well
has the ability to produce as much as 2.5 to 7 times more gas than vertical
wells (Helms, 2008).

Horizontal wells are drilled with a hydraulic motor mounted directly above
the drill bit, which can be controlled from the surface. Without rotating the
drill pipe, the drill bit can be rotated by the motor. This ”steerable” motor
is responsible for drilling in the desirable direction, and can both be steered
from vertical to horizontal direction, and to left and right. The curved section
of the drill string has typically a radius of 300-500 ft (Helms, 2008). The drill
string contains various sensors that transmit sensor reading of among others
pressure and temperature at the bottom hole, and azimuth1 and inclination2

of the drill string.

1.3.2 Hydraulic fracturing

Because of the low permeability in shale formations, additional permeability
needs to be created by stimulating the existing networks of natrual fractures
in the shale (Ridley, 2011). This is done by hydraulic fracturing (”fracking”).
Fracking is done on-site by the use of, among others, truck-mounted pumps
and fracturing fluid (Guo et al., 2007). Figure 1.3 shows an example of
equipment layout on-site when drilling unconventional wells.

When a new well is drilled, it is cased and cemented, whereas the casing
is perforated with explosive charges. Water is then mixed with sand, and
pumped with high pressure through the perforations. The mixing of sand
prevents the fractures from closing. The process usually takes 3-10 days, and
creates channels in which the gas can flow into the wellbore.

1The horizontal angle measured clockwise from north
2The angle relative to the vertical
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Figure 1.3: An example of equipment layout in hydraulic fracturing treat-
ment. Source: http://fracfocus.org/

1.4 Production optimization

Production optimization is the complex task of maximizing the production
over a the long term, whilst minimizing the production costs. Usually this is
based on the net present value (NPV), and imposes great challenges, as sev-
eral engineering disciplines are involved, and the interaction between several
operational parameters. To achieve and maintain a profitable production,
evaluation and monitoring of the whole production system is essential; pro-
duction equipment, production history, reservoir, fluids, wellbore etc (O’How
and Kubat, 1996). This is dependent of data collection and expertise in fields
ranging from engineering, politics, economics and psychology (Saputelli et al.,
2003).

Figure 1.4 shows a typical layout for the hierarchy in the oil and gas industry
(Saputelli et al., 2003). The complexity of an automation process is divided
into different layers, making the problem tasks more manageable. In the
upper levels, the whole project is managed through capacity and operational
planning, while the well control and manipulation of critical variables are
handled in the lower levels. Decisions in higher levels will eventually affect
the lower levels. The main question is how to operate the reservoir in the
best fashion, based on control elements in the production facilities.

Traditionally, mathematical models and field data are used in the open-loop
optimization. In the recent years, more intelligent models have come to life,
including real-time model-based field management with feedback (Giorgio
et al., 2012; Saputelli et al., 2003).
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Figure 1.4: The hierarchy in a field operation. From Saputelli et al. (2003)

1.5 Scope

The main objective of this thesis is to study the introduction of model pre-
dictive control into shale gas production. The intention is to compare and
analyse the potential of MPC over open-loop control. The main control vari-
abel are the on/off valve used to switch a well, making it a mixed integer
problem. Short-term tracking performance of a reference rate is used as a
means of comparing both strategies.

1.6 Report outline

• Chapter 2 gives an introduction to mixed integer linear programming
and model predictive control, two important subjects throughout this
thesis.

• Chapter 3 presents the reservoir model developed in Nordsveen (2011),
some further modelling results of the model and a litterature review of
possible gas metering.

• In chapter 4, the open-loop and closed-loop production optimization
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problems are described

• Chapter 5 discuss implementation strategies for solving both the open-
loop and closed-loop problems in CPLEX

• Chapter 6 presents results from the simulations, with discussion in
chapter 7
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Chapter 2

Theory

This chapter is ment to give the reader an introduction to important concepts
in mixed integer linear programming (MILP) and model-based predictive con-
trol. First, MILPs and solution methods are presented, along with available
solution software. Second, a brief presentation of the general receding horizon
idea in MPC is given.

2.1 Mixed integer linear programming

Linear programming is a class of mathematical programs with certain prop-
erties; they have linear objective functions and linear constraints (both equal-
ities and inequalities). The development of linear programming and the sim-
plex method (the solution method), made way for formulating and analyzing
large models in efficient and systematic ways. However, linear programs im-
poses restrictions on the variables, namely the assumption of divisibility. The
divisibility assumption allows linear programs to have any values, including
noninteger values. In certain problems, only integer values makes sense for
the decision variables. Imposing this restriction to the decision variables
makes the problem an integer linear program. Further, if only some deci-
sion variables are allowed to have integer values, the problem is referred to
as a mixed integer linear program. Integer linear programs leads to more
demanding solution procedures.

Following the notation in Pochet and Wolsey (2006), any mixed integer linear
program (MILP) may be written as

Z(X) = min {cx+ fy : (x, y) ∈ X} (2.1)
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where min means that this is a minimization problem, and x and y denotes
the continuous and integer variables, respectively. X denotes the set of fea-
sible solutions. It is described by a number of nonnegative linear constraints
on x and y. Mathematically, this is written as

X =
{

(x, y) ∈ Rn
+ × Zp+ : Ax+By ≥ b

}
(2.2)

where p and n denotes the dimensions. Often, the integers y is in the binary
domain. In this case, Z→ {0, 1}. Note that if (x, y) ∈ Zp only, the problem
is reduced to a pure integer problem. If the set X is empty, then Z(X) = +∞
by convention.

2.1.1 Linear relaxations

Generations of relaxation is a key issue in MILPs. Or, more correctly, it plays
an important role in solving MILPs in the sense of optimization algorithms.
Several methods for relaxation is possible (Floudas, 1995);

• Omitting one or several constraints in P

• Setting coefficients of binary variables in the objective function equals
to zero

• Replacing integrality conditions on the binary variables

The relaxation most often used is the last one; replacing the integrality con-
dition, that is, y ∈ {0, 1} → y ∈ [0, 1]. This form of relaxation leads to a
linear program relaxation.

The principle is as follows; Say for instance that PX is an extended feasible
set, or a formulation, of (2.2), that is

PX = {(x, y) ∈ R× [0, 1] : Ax+By ≥ b} (2.3)

and X ⊆ PX . Then, X includes all the points in PX where y is an integer.
This is written as X = PX ∩ (Rn×Zp). A linear relaxation of (2.1) will thus
be

Z(PX) = min {cx+ fy : (x, y) ∈ PX} (2.4)
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As X is a subset of PX , and (2.4) is a minimization problem, (2.4) defines a
lower bound on the optimal objective value; namely Z(PX) ≤ Z(X). This
holds in general. An upper bound Z(X) ≤ Z is achieved by any feasible
solution.

2.1.2 Solving MILP models

Although MILPs falls under the linear program category, integer program
problems are NP-hard, and no efficient algorithm exists which solves every
problem. However, by the use of relaxations, most MILPs today are success-
fully solved by incorporating linear program algorithms, such as the simplex
method into the solution steps. These solution methods falls into one of the
following categories (Gunnerud, 2011)

• Cutting plane methods

• Enumerative methods

Pure cutting plane methods will not be paid much attention here. Instead, an
introduction to branch-and-bound and branch-and-cut algorithms are given.
Branch-and-cut is a hybrid solution method, consisting of both cutting planes
and branch-and-cut methods. Information about cutting plane methods can
be found in Wolsey (1998), Avriel (2003) and Cornuejols (2008).

Branch-and-bound solution algorithm

The branch-and-bound is the most used algorithm for solving integer pro-
grams. The algorithm is characterized as a divide-and-conquer algorithm,
based on multi-branched recursion; it recursively breaks down a problem
into sub-problems, until the sub-problems are easy enough to solve. The
solutions are then combined to give the solution of the entire problem.

The algorithm is initialized by solving a linear relaxation of (2.1). This step
creates a first upper bound on the solution. If y∗ 6= Z, the solution is not
feasible, as it contains noninteger variables. Thus, two new constraints arises:
y ≤ by∗c and y ≥ dy∗e. The solutions between these two constraints must
be removed.

The removal of the solutions is done by branching the variable, based on some
branching rule. The set PX is then replaced by two disjoint set. The linear
relaxation will thus always give a lower upper bound solution compared to
the step before. The two disjoint sets are then analyzed separately.
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Each new subproblem is solved by the simplex method, which obtain new
bounds on the solution. Which set to be chosen first is a matter of the
chosen search strategy; either depth-first-, breadth-first-, best-bound search,
or a combination of these. More information about each type is found in
Pochet and Wolsey (2006).

Several cases may arise when solving each new subproblem. The relaxation
may have no feasible solution, Z ≤ Z∗, Z ≥ Z∗, where Z∗ is the best solution
so far, or the solution is optimal, that is, the solution has integer values for
the integer-restricted variables. The algorithm terminates when there is no
new subproblems.

Branch-and-cut solution algorithm

As mentioned, the branch-and-cut-algorithm is a hybrid solution strategy
available for MILPs, as it combines a cutting plane with a branch-and-bound
algorithm. It is initialized in the same matter as the branch-and-bound algo-
rithm. If the initial solution contains fractional solutions for one or more of
the integer variables, a cutting plane algorithm is called. This algorithm is
calling a separation algorithm to repeatedly generate valid inequalities that is
needed; that is, it generates contraints which are satisfied by all feasible inte-
ger points, but violated by the current (fractional) solution. It will eventually
start branching the solution space into subspaces by the branch-and-bound
algorithm.

2.1.3 Solution software

A number of commercial solver packages are available for MILPs. The
most prominent and most used solvers are CPLEX1 and Xpress2. They
are both state-of-the-art and highly efficient. Alternative solvers are Gurobi
and MOSEK. They all have the advantage of having support for different
programming languages, including Matlab through the toolbox YALMIP3.

1from IBM R©
2from FICO

TM

3See Löfberg (2004)
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2.2 Model predictive control

Throughout the history, the ideas behind Model Predictive Control has been
know under several names; Model predictive heuristic control, dynamic ma-
tric control, adaptive predictive control, to name a few (see Richalet et al.
(1978), Cutler and Ramaker (1980) and Martin-Sanchez (1976)). They all
shared the essential features of MPC; an internal model, computations of
control signal by optimization based on constraints, and the receding horizon
idea (Maciejowski, 2002). A more general description of a model predictive
controller is one which

• uses a internal model to predict future behavior

• optimizes future behavior

• handles constraints on input and output signals

It is now one of the most used controller in the process industry, and it is
also gaining acceptance in other application areas.

The presence of constraints makes MPC differ from the traditionally linear
quadratic (LQ) controller, where a feedback control law is computed based on
minimization of a given cost function without constraints. A model predictive
controller is therefore an integration of a LQ controller.

2.2.1 Basic formulation

In the literature, many different notations in model predictive control exists.
However, they all explains the same. Here, the notation in Imsland (2007)
is used, and presents the general idea behind the receding horizon.

Cost function

The cost function is essential in MPC theory. This is the function which is
to be minimized or maximized, depending on the problem, based on some
constraints. In the discrete, general trajectory tracking SISO case, the cost
function penalizes deviations from the desired controlled outputs ŷk+i+1 from
a desired reference trajectory y(k+ i+1)d. The subscript (k+ i+1) indicates
that the signal depends on conditions at time k, with i = 0, 1, . . . , N . The
notation ŷ indicates that only an estimate of the state variables is known.
That is, the state cannot be measured. The penalization is done with some
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tuning matrices q(i) and r(i), which reflects the relative importance of the
signals. Another tuning parameter is the prediction horizon N . This is
expressed mathematically as

J(k) =
N∑
i=0

q(yk+i+1 − ydk+i+1)2 + r(uk+i − udk+i)
2 (2.5)

Note that the cost function is quadratic, which is the case in general. In
addition, if the constraints are in the form of linear inequalities, the problem
is a quadratic programming (QP) problem. Solution methods are known to
solve such a problem reliably and quickly (Maciejowski, 2002).

Constraints

Constraints are what makes MPC differs from the LQ controller. The con-
straints are most often on the input uk, input rate ∆uk, and output zk.
Constraints on the state xk are also common. Physically, constraints on the
input can be interpreted as some saturation characteristics; for instance, fi-
nite range in valves, maximum flow due to pipe diameter, and so on. If, for
instance, actuators have limited slew rate, constraints on input rate is also
present.

2.2.2 MPC principle

Processes do, in many cases, have multiple inputs and multiple outputs
(MIMO). Model predictive controls are able to handle MIMO systems in
a nice way. A MIMO system may be described by a discrete state space
model

xk+1 = Axk +Buk (2.6)

yk = Cxk (2.7)

which may be obtained from linearization of a nonlinear process. For a
constant setpoint, the performance to be optimized is based on minimization
of the cost function (Imsland, 2007)

J =
∞∑
k=0

xTkQxk + uTkRuk (2.8)
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If, however, the objective is to track some given, possibly changing, set points,
the objective function would be

J =
∞∑
k=0

(yk − ydk)TQ(yk − ydk) + (uk − udk)TR(uk − udk) (2.9)

where ydk is the reference. It may be constant along the prediction horizon.
Note the similarities with the SISO case in the cost function (2.5).

The essence of MPC is prediction of future variables yk, xk and uk. For the
open-loop problem, the predictions are done straightforward based on (2.7):

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A2x0 + ABu0 +Bu1

...

xN = AxN +BuN = ANx0 + AN−1Bu0 + . . .+BuN−1

Figure 2.1: The principle of a model predictive controller. Source: Imsland
(2007)

2.1 shows how the model predictive controller works. At each timestep, the
controller optimizes future inputs and outputs based on a given reference, by
only using the first of the calculated inputs as input to the process. That is,
at each timestep, a QP problem is solved over the entire prediction horizon,
a new input sequence (uk, uk+1, . . . , uk+N) is obtained, and the first input in
the sequence is applied to the process. In the next time instant (k + 1), the
process is repeated. This is the receding horizon idea.
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Chapter 3

Reservoir modeling and shale
gas metering

This chapter starts with a summary of the reservoir model and inflow model
developed in Nordsveen (2011). The reader is referred to this report for
further details on the modelling. A study of liquid loading are adressed, and
a simulation of applying constant shut-in times is included. A first order
wellhead choke model are developed and studied. At the end, a litterature
review of possible measurements in gas wells is carried out.

3.1 The reservoir model

The radial shale gas model developed and analyzed in Knudsen (2010b)
yielded a radial one-dimensional model. This model was further developed
into two dimensions in cartesian coordinates in Nordsveen (2011). The model
is as follows

φµc
∂m

∂t
=

∂

∂x
(k(x, y)

∂m

∂x
) +

∂

∂y
(k(x, y)

∂m

∂y
) (3.1)

where φ is the porosity, µ is the viscosity, and c is the compressibility of the
gas. The model is based on the following assumptions

• The well is horizontal, and gravity effects are neglected

• The permeability is uniform along the half length

• The gas is single phase
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• The reservoir consists of only one layer

3.1.1 State space formulation

Due to symmetry reasons and no-flow boundaries, only half a fracture and
half a reservoir was modeled (referred to as half geometry). For one fracture,
the simulation results of the model needs thus to be multiplied by 2. Likewise,
for n number of fractures, the results needs to be multiplied by 2n.

By applying a finite difference scheme on 3.1, a set of ODEs are obtained.
This was done in Nordsveen (2011). The state space formulation of the model
in (3.1) was expressed as

Eṁ(t) = Am(t) + Bq(t) (3.2)

or, in standard form

ṁ(t) = E−1Am(t) + E−1Bq(t) (3.3)

m(0) = minit (3.4)

where m = [m1,1,m2,1,m3,1 . . .mNx,Ny ]. With E expressing the volume ele-
ment Vi,j = ∆xi∆yjh, that is

E =


V1,1φµc 0 . . . 0

0 V2,1φµc . . . 0
...

. . . . . . 0
0 0 . . . VNx,Nyφµc

 (3.5)

then A is defined as

A =



−Λ1+ 1
2
,1+ 1

2
α1+ 1

2
,1 . . . β1,1+ 1

2
0 0 . . . 0

α2− 1
2
,1 −(Λ2+ 1

2
,1+ 1

2
+ α2− 1

2
,1) α1+ 1

2
,1 . . . β2,1+ 1

2
0 . . . 0

0
. . .

. . .
. . . . . .

. . . . . . 0

β1,2− 1
2

. . .
. . .

. . .
. . . . . .

. . . 0

0
. . . . . .

. . .
. . .

. . . . . . βNx,Ny−1+ 1
2

0 . . .
. . . . . .

. . .
. . .

. . .
...

0 . . . 0
. . .

. . .
. . .

. . . αNx−1+ 1
2
,Ny

0 . . . 0 . . . βNx,Ny− 1
2

. . . αNx− 1
2
,Ny

−ΛNx− 1
2
,Ny− 1

2


(3.6)
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αi+ 1
2
,j = h∆yj(

k
i+1

2 ,j

xi+1−xi ), i = 1, 2, . . . , Nx − 1

αi− 1
2
,j = h∆yj(

k
i− 1

2 ,j

xi−xi−1
), i = 2, 3, . . . , Nx

βi,j+ 1
2

= h∆xi(
k
i,j+1

2

yj+1−yj ), j = 1, 2, . . . , Ny − 1

βi,j− 1
2

= h∆xi(
k
i,j− 1

2

yj−yj−1
), j = 2, 3, . . . , Ny

Λi± 1
2
,j± 1

2
= αi± 1

2
,j + βi,j± 1

2

where ∆xi± 1
2

and ∆yj± 1
2

is defined as

∆xi± 1
2

= ±(xi±1 − xi)

∆yj± 1
2

= ±(yj±1 − yj)

Note the pentadiagonal form of the matrix A, as the model is in 2D. B is
defined as

B =


−2Tpsc

Tsc

0
0
...
0

 (3.7)

3.1.2 Well inflow model

In Nordsveen (2011), two different well inflow models were developed and
discussed; one two dimensional areal flow model, and one radial inflow model.
It was shown that the radial inflow model, given as

qsc =
hkTsc

2Tpsc(ln
Rwellbore

Rtubing
+ s)

(m1,1 −mwf ) (3.8)

gave the most reasonable response in terms of stability and convergence. s
is the skin factor. Equation (3.8) can also be represented as

q(t) = αw [m1 −mwf ] (3.9)

where
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w =
hkTsc

2Tpsc(ln
Rwellbore

Rtubing
+ s)

(3.10)

and α ∈ {0, 1} is the valve setting. α can be controlled directly, and repre-
sents the control variable in applying switchings.

3.2 Liquid loading

All producing gas wells needs to adress the problem of liquid loading. This
phenomenon arises when the gas rate falls below a critical rate, known as the
Turner rate or minimum rate to lift (Turner et al., 1969). This causes the
gas to lose its transportation energy, and is hence uncapable of transporting
co-producing liquids to the surface. The liquids may be present in the gas
as condensate, water or oil (Whitson et al., 2012). If the liquids are not
transported to the surface, they will accumulate in the well. This may cause
severe slugging, or kill the well completely.

Turner et al. (1969) calculated the minimum gas flow velocity based on an
analysis of flow conditions necessary to remove the largest drops of liquid
that can exist in the well, leading to the following expressions

vt = 20.4
4
√
σ∆ρ
√
ρg

(field units) (3.11a)

vt = 6.2
4
√
σ∆ρ
√
ρg

(SI units) (3.11b)

The expressions in (3.11) can be used to estimate the minimum rate to lift,
qgc:

qgc = 3.06
A

Bg

vt (3.12)

A is the cross-sectional tubing area and Bg is the volume formation factor.
The rate is given in (MMscf/day). Converting the expression to SI units
(m3/day), (3.12) can be written as

qgc = 86.649 · 103 ApTsc
pscTZ

vt (3.13)

Figure 3.1 shows an illustrative example of what happens when the flow hits
the critical rate, with a constant shut-in time of 10 days; the well is switched
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(a) Flow rate profile (b) Pressure build-up

Figure 3.1: The effect on flow rate and pressure when a well is shut down

off, which results in a zero production rate. This causes the pressure to build
up. When the well is swtiched on after being shut-in, the build-up of pressure
causes more gas to be extracted from the well.

3.3 Wellhead choke control

Wellhead chokes are often used to control and monitor flow rates from the
well it is installed on, and to protect the reservoir and surface equipment from
pressure fluctuations and slugging. There are mainly two types of wellhead
chokes (Abou-Kassem et al., 2006)

• Fixed chokes

• Adjustable chokes

The bottomhole pressure can be determined for any given wellhead pres-
sure. Thus, controlling the wellhead pressure is the same as controlling the
bottomhole pressure.

The reservoir model in (3.2) is only a simplified model. Because of the
assumption of stationary flow, the dynamics when a well is started up is lost.
The result is a high initial production when a well is opened. In Knudsen
(2010b) and Nordsveen (2011), this was bypassed by imposing a maximum
flow.

q(t) ≤ qmax (3.14)
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However, in a optimization scheme, this constraint causes a non-linear prob-
lem formulation, in the form of the minimum function

q(t) = min(qmax, αw(m1,1 −mwf ) (3.15)

This may be rewritten as linear constraints instead, leading to a mixed integer
linear program. However, both additional variables and new constraints are
introduced. This is obviously a drawback when it comes to optimization;
more variables causes a higher run-time.

3.3.1 Dynamic model

Because of the extra variables and constraints introduced when rewriting the
nonlinearity, it is in interest to avoid this, and instead introduce a dynamic
model of the wellhead pressure.

By assuming that the bottomhole pressure immediately after the well is
opened equals the pressure in gridblock 1, and then drops to mwf constant
value, a dynamic model of the bottomhole pressure can be written as

ṁwf = − 1

T
mwf + m̃+ αc (3.16)

where T , m̃ and c is tuning parameters. α is the control variable, which
means that the parameter c is only applied when the well is open.

3.3.2 Flow rate profiles

Without switchings

Figure 3.2b shows the flow profile of the dynamic model in (3.16) plotted
against a SENSOR1 simulation. The profile is more realistic in the start-up
region; the production starts at zero, not at qmax. Some accuracy is lost in
the transition area compared to the model with constant mwf . However, the
initial plateu, caused by the saturation on the flow, is avoided.

1Coats Engineering, Inc., see http://www.coatsengineering.com
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(a) 360 days (b) 1800 days

Figure 3.2: Flow rate with stepwise change in bottomhole pressure - com-
parison between SENSOR model and matlab model

With switchings

Although the model in (3.16) works well when a well is opened, the un-
modelled dynamics in (3.1) is not handled well in (3.16). The high initial
production when a well is re-opened after being closed is still present. This
can be seen in figure 3.3. A maximum flow restriction qmax = 1600 m3/s had
to be included, or else the magnitude of the flow when the well is reopened is
in the magnitude of 108. Different values of the tuning paramteres were tried
out, without luck. In addition, an PI controller were tried out, to make the
bottomhole pressure follow the pressure buildup in gridblock 1. The result
did not improve much.

3.4 Shale gas metering

Although the model in (3.1) is assumed to be single phase, the hydraulic
fracturing process involves injection of large amounts of water. The gas
would thus in reality act as multiphase (two-phase) flow. Although it is
beyond the scope of this thesis to take two-phase flow into account, it is of
importance in gas metering in practice.

The general definition of multiphase flow is (Falcone et al., 2010): ”Mul-
tiphase flows consists of the simultaneous passage in a system of a stream
composed of two or more phases.” Much focus has been put into multiphase
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(a) 500 days (b) 140 days

Figure 3.3: Flow rate with stepwise change in bottomhole pressure and
switchings

flow metering (MFM) the last 30 years. MFM means measurement of every
single phase in a multiphase flow. Today, MFM includes also wet gas me-
tering and metering of heavy oils. The benefits of MFM in the oil and gas
industry includes reduced costs, better reservoir management and improved
layout of production facilities (Falcone et al., 2002).

3.4.1 Wet gas metering

When a shale field experiences late life production near the critical flow rate,
condense may build up in the reservoir. The immediate effect of this is
wetting of the dry gas - small amounts of liquid in the gas. This causes flow
metering to be difficult. Wet gas metering is a relatively new technology,
and the industry has struggled to meter individual well rates with adequate
accuracy (Izgec et al., 2008; Steven, 2002).

In a cluster of producing fields of small or remote gas fields, wet gas flow
measurement is required before mixing the gas (Lide et al., 2007). Two ways
are normally employed;

• Multiphase flow metering

• Dry gas metering with corrections based presence of liquid in the gas
stream

The last method requires a priori knowledge of the liquid flow, and this
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has to be obtained in another way. However, the most favoured wet gas
metering method is using MFM. No single instrument exists that will measure
individual flow rates directly. One approach is by using the venturi effect, and
is hence referred to as venturi flow meters. The venturi effect is the pressure
drop experienced when the fluid flows through a narrowed section of a pipe.
This type of metering seems to obtain relatively good results (Busaidi and
Bhaskaran, 2003). The advantage with such a flow meter is that no separation
of phases is required. To extract the gas flow rate using venturitype flow
meters, a correlation needs to be applied. In lack of other alternatives, the
correlation has traditionally been carried out by using Orifice plate meter
correlations (Steven, 2002).

3.4.2 Distributed temperature sensing

The flow rate metering needs to be complemented with flow rate estima-
tion, both because of validation of measurement quality and to fill in missing
information in infrequent measurements. This is done by using tempera-
ture readings from sensors in the wellbore; Distributed temperature sensing
(DTS) have gained increased popularity the last few years, and successful
results have been reported from gas wells ranging from hydraulic fractured
low-permeability tight reservoirs to high permeability reservoirs (Johnson
et al., 2006). Izgec et al. (2010) presents two different methods for flow rate
estimation based on temperature data; Entire wellbore method and single
point method. The first method requires both the wellhead pressure and the
wellhead temperature, while the second method uses only transient temper-
ature formulations at a single point in the wellbore.

The entire wellbore method depends on a relationship between the produc-
tion rate and the temperature of the flowing fluid. Because of temperature
differences between the wellbore fluid and the surroundings, a heat exchange
is taking place.

In the single point method, a unique temperature profile can be extracted from
the total amount of fluid passing through a given point in the wellbore. The
difference between the measured and the calculated temperature is beeing
minimized by continuously iterating on the mass flow rate by a Newton-
Raphson method for mass flux. This method works off in any point in the
wellbore from temperature measured in that point.

More info can be found in Izgec et al. (2008), Izgec et al. (2010) and Kabir
et al. (2008).
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Chapter 4

Optimization of shale gas
production

This chapter presents the open-loop and closed-loop optimization formula-
tions for use on multiple shale gas wells in a joint production setting. An
implicit time discretization of the state space model is also carried out. At
the end, a discussion of possible disturbances in the system is given.

4.1 Production facilities

The production optimization considered in this report are performed on mul-
tiple wells. Figure 4.1 illustrates the simplified layout of the production fa-
cilities for multiple wells in a joint production setting. The surface facilities
includes both separation units and compressors to compress the gas and in-
crease the pressure enough to make the gas flow from the production fields
to the market via pipelines. The separation units and compressors will, how-
ever, not be included in the problem formulation. The chokes seen in the
figure are modelled as on/off valves.

4.2 Time discretization

For the state space model to be applicable in a optimization scheme, it has
to be time discretized. As (3.2) is a stiff system, it is difficult to solve with
explicit methods (Egeland and Gravdahl (2003)).
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To market

Surface facilities

Figure 4.1: Production facilities in shale gas optimization

The discretization is done using the backward Euler method. This method
is an implicit method, but only of first order. Methods like Crank-Nicolson,
a second order method, would be more accurate. However, such a method
might be more demanding when applied into a optimization scheme, as it
requires smaller timesteps, and oscillations are introduced. This is further
discussed in section 7.1.4.

Consider the implicit Euler method in general form

yn+1 = yn + f(yn+1, tn+1) (4.1)

where h is the time step; a solution computed for (t0, t1, . . . , tN) with n =
1, 2, . . . , N , gives h = tn+1 − tn. Reformulating (4.1) gives

mn+1 −mn

h
= f(mn+1, qn+1) (4.2)

Applying this to the state space model in (3.3) gives

mn+1 −mn

h
= E−1Amn+1 + E−1Bqn+1 (4.3)

(I− E−1Ah)mn+1 = mn + E−1Bhqn+1 (4.4)



31 4.3. OPEN-LOOP FORMULATION

Reformulating the terms (I− E−1Ah) and E−1Bh as

(I− E−1Ah) = Ad (4.5)

and
E−1Bh = Bd (4.6)

the full discrete state space system can be written as

Ad
kmn+1

k = mn
k + Bd

kqk
n+1 (4.7)

mk
0 = mk

init (4.8)

qkn = αkwk[m1,n −mwf ] (4.9)

where n = 0, 1, 2, . . . , N − 1 is the time step, and k = 1, 2, . . . , Nw is the
number of wells.

Any choice of the time step h is possible, as the implicit Euler’s method is
A-stable (Egeland and Gravdahl (2003)).

4.3 Open-loop formulation

In this section, an open-loop problem is formulated and analyzed. This
section is based on Knudsen (2010b).

Gas production
Well pressuresWell conditions,

facilities etc. switchings etc.
Shale reservoir

Figure 4.2: Illustration of open-loop optimization in shale gas

Figure 4.2 shows graphically how the process of the open-loop problem works.
Well conditions, type of surface facilities etc. determines how much gas is
produced, based on some given cost function and constraints, and without
feedback.

4.3.1 The objective function

Production optimization in the oil and gas industry is typically driven by
the means of maximizing the net present value (NPV). This often includes
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operational expenditures (OPEX) and captial expenditures (CAPEX). The
optimization here will, however, be formulated as a short-term scheduling
problem, where the objective is to follow a given reference rate, possible time-
varying, while avoiding liquid loading in the well. The objective function can
be formulated as in Knudsen et al. (2012) as

max
N−1∑
n=0

[
Nw∑
k=1

cgq
k
n −W1qupper −W2qlower

]
h (4.10)

where cg is the gas price per unit volume, denoted in US dollars , q is the
gas, and qupper and qlower are auxilliary variables. W1 and W2 are used as
penalty factors, by punishing either too much or too less, respectively. These
parameters are given in US dollars, and may be selected based on gas sales
contract specifications (Knudsen et al., 2012). Table 4.1 displays the notation
used in the objective function.

Table 4.1: Indicies, sets and data used in the objective function

(a) Indicies

k well index
n time step

(b) Sets

N Number of time steps
Nm Number of grid blocks
Nw Number of wells

OPEX and CAPEX

The objective function in (4.10) does not include operational expenditures
(OPEX) or captial expenditures (CAPEX), as the scheduling problem is de-
fined to track a given reference. Maximizing the net present value, however,
will require an analysis of both OPEX and CAPEX into the objective func-
tion. A small presentation of these expressions therefore follows

OPEX

OPEX will include both on-site costs of operating the well, and downstream
processing of the gas. These costs are to a large extend related to the cost
of compressing the gas. By assuming a reciprocating compressor, which also
leads to the assumption of an isentropic process, the following expression
yields the power consumption in the compressor (Guo et al. (2007))
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Ps =
kc

kc − 1
P1Q1

[(
P2

P1

) kc−1
kc

− 1

]
(4.11)

where kc is the gas specific ratio, P1 is the inlet pressure to the compressor,
P2 is a constant downhole pressure, and Q1 is the volumetric flow rate into
the compressor. Q1 equals the gas flow rate at each timestep.

CAPEX

Wright (2008) estimated the capital costs (CAPEX) to be $3,400,000 for
horizontal well drill and completion, and $1,000,000 for horizontal well refrac,
based on an approximation of current conditions in the Barnett field. These
numbers are only mean, and additional costs related to restimulation of the
shale at late-life production is not included. Introducing CAPEX into the
model would only be valid for long-term optimization, and only short-term
optimization is done here.

4.3.2 Constraints

Flow rate

Turner rate and maximum constraint due to saturation. As mentioned in
Nordsveen (2011), the maximum constraint is needed in order to ensure re-
alistic gas rates when the well is opened.

qkn ≤ qkmax (4.12)

qkn ≥ qgc (4.13)

The maximum flow rate constraint (4.12) will cause infeasibility. This could
be overcome by a dynamical model for the bottomhole pressure mwf , which
was discussed in chapter 3. The disadvantage with such a solution is the ad-
dition of an extra control variable. The advantage is the reduction in number
of variables which is introduced by the reformulation in (4.14). However, no
solution for this was found.

Instead, the infeasibility is avoided by reformulating the constraint as a non-
linear, continuous function, where the flow rate is determined by a minimum
value imposed by either the maximum saturation value, or the well inflow
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model in equation (3.8). This is formulated mathematically as (Knudsen
(2010b))

qkn = min
{
qkmax, α

k
nw(mk

1,1,n −mk
wf )
}

(4.14)

Equation (4.14) is a nonlinear function, and included in a optimization
scheme, (4.14) would lead to a mixed integer nonlinear program (MINLP).
To ensure a efficient solution strategy, this expression thus needs to be refor-
mulated as a linear constraint. This will be done in a later section.

As (4.12) will cause an infeasibility in the solution, so will (4.13) when shut-
ins are applied. As α is defined as a binary variable, (4.13) can be rewritten
as (Knudsen (2010b))

αknqgc ≤ qkn (4.15)

Summarized, the constraints on the flow rate for well number k in discrete
time is

qkn = min
{
qkmax, α

k
nw(mk

1,n −mk
wf )
}

(4.16)

αknq
k
gc ≤ qkn (4.17)

Reference trajectory

In a real production setting, there is often a requested daily production to be
fullfilled. This desired production may be given as a time varying reference
qref = qref (t), which reflects the operators choice of changing the reference
in relation to varying demands. This reference is included in the problem
formulation as a constraint, that is

nw∑
k=1

qkn − qupper + qlower = qref,n (4.18)

where qlower and qupper balances the total rate.

Switchings

The focus on shut-ins in this thesis is on the optimal shut-in time during
production, and to compare the results from the open- and closed-loop per-
formance.
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To be able to set the minimum shutin time allowed, the number of switchings
during the optimization needs to be counted. A new variable ηkn is thus
introduced. It is defined as ∣∣αkn − αkn−1

∣∣ ≤ ηjn (4.19)

The minimum shutin period can thus be formulated in the additional con-
straint

n+L∑
u=n+1

ηku ≤ 1− ηkn (4.20)

where L represents the minimum shutin period.

4.3.3 Problem formulation

Based on the discussion of objective function and constraints, the problem
formulation can therefore be summarized as the following mixed integer non-
linear program

max
N−1∑
n=0

[
Nw∑
k=1

cgq
k
n −W1qupper −W2qlower

]
h (4.21)

subject to

Nw∑
k=1

qkn − qupper + qlower = qref,n (4.22a)

Ad
kmn+1

k = mn
k + Bd

kqk
n+1 (4.22b)

qkn = min
{
qkmax, α

k
nw(mk

1,1,n −mk
wf )
}

(4.22c)

αknq
k
gc ≤ qkn (4.22d)∣∣αkn − αkn−1

∣∣ ≤ ηjn (4.22e)
n+L∑
u=n+1

ηku ≤ 1− ηkn (4.22f)

αkn ∈ {0, 1} (4.22g)
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4.4 Model predictive control

In the last section, optimal shutin times were calculated open-loop, without
any feedback. This is unlikely when an optimization scheme is deployed in
practice. In the sense of fracking, reservoirs are often diverse, and model
uncertainty do occure. Because of the nature of shales, reservoir parameters
are likely to change during a wells lifetime. In addition, certain wells may ex-
perience sudden shut-ins, to avoid liquid loading, or because surface facilities
fails. Model updates are therefore required.

The main idea behind a model predictive controller, as described in chapter
2, is to use an internal model to predict future response of the system. These
predictions are optimized in the sense of maximizing tracking performance,
and handling the constraints. Only the first sample of the optimal prediction
is applied to the plant at time t. In the next time step, a new sequence of
optimal predictions are obtained, which are replacing the old ones. This
provides the desired closed-loop control feature. The benefits with feedback
may include enhanced reservoir understanding and economic performance
(Bemporad and Morari, 1999; Saputelli et al., 2003).

Sensors
Optimization

algorithms

Shale reservoir
&

facilities

System models

History

matching

Noise
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Figure 4.3: Closed-loop control process. Based on Jansen et al. (2009)

Figure 4.3 displays the essential elements in a model predictive control set-
ting. The system models may typically include the well inflow model, ge-
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ological models and wellbore models. Sensors are measuring the processes
(i.e. wellhead pressure, gas flow rate, temperature). The system models are
updated in accordance to the measured output through history matching,
such that the uncertainties in the models are minimized. Based on this, the
switching rates are optimized, and fed back to the system. This is done for
each time step over a prediction horizon.

4.4.1 Problem formulation

In the open-loop cost function (4.21), the objective is to maximize the shale
gas production in terms of a given reference rate. Auxiliary variables are
introduced to balance the total produced rate for each time step, and the
penalty parameters W1 and W2 are used to punish either too much, or too
less gas compared to the reference rate.

Using the same objective function in the closed-loop case, this can be seen
as a simple form of MPC tracking, with the objective function maximized.
However, it is linear, and not a quadratic function, as in a standard MPC
tracking problem. There are several advantages using this linear formula-
tion, as stated by Knudsen et al. (2012); MILP solvers are more efficient in
reusing excisting solutions and basis for consecutive nodes in branch-and-
bound and branch-and-cut algorithms, and the objective function preserves
the economical interpretation. The worst case solution time of an mixed in-
teger quadratic program (MIQP) is in fact exponentially dependant on the
number of integer variables in the problem (Bemporad and Morari, 1999).

The use of the same objective function with feedback from the flow rate will of
course require that the flow rate is measureable (c.f section 3.4). In addition,
it requires feedback from the states and α. The states are here assumed
measureable. As they in practice are not, they need to be estimated. This
is discussed in section 7.4.2.

The problem formulation is similar to (4.21) and (4.22), and can be formu-
lated as

max J(n) =

Np−1∑
i=0

[
nw∑
k=1

cgq
k
n+i|n −W1qupper −W2qlower

]
h (4.23)
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subject to

nw∑
k=1

qkn+i|n − qupper|n + qlower|n = qref,n|n (4.24a)

Ad
kmn+1|n

k = mn|n
k + Bd

kqk
n+1|n (4.24b)

qkn+i|n = min
{
qkmax, α

k
n+i|nw(mk

1,n+i|n −mk
wf )
}

(4.24c)

αkn+i|nq
k
gc ≤ qkn+i|n (4.24d)∣∣αkn+i|n − αkn+i−1|n
∣∣ ≤ ηjn+i|n (4.24e)

n+i+L|n∑
u=n+i+1|n

ηku ≤ 1− ηkn+i|n (4.24f)

αkn+i|n ∈ {0, 1} (4.24g)

where the notation (n+ i|n) means that the variable depends on the condi-
tions at time n.

4.4.2 Disturbances

Processes never operate under optimal conditions. Disturbances are always
a part of a real plant process. Introduction of disturbances often give rise to
great economic losses, and it is therefore important to include disturbances
in the modelling of the production.

Disturbances can be divided into two categories (Lindholm et al., 2011)

• Local disturbances

• Plant-wide disturbances

Local disturbances represents disturbances at a certain place in a process,
and will not necessary cause economic losses over the entire site. Plant-wide
disturbances will, however, affect the economic performance of the produc-
tion. An example of this is pressure drop in the wellhead.

Further, the causes of disturbances can be divided into the following

• Personnel

• Material

• Equipment
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Material can be divided into raw materials (i.e. materials that is part of a re-
action process), and utilities (i.e. not part of the final product, but important
for operation). Personnel disturbances includes actions taken by operators,
equipment includes wear and tear of production facilities (Lindholm et al.,
2011).

The main disturbances which will be included in the closed-loop production
setting can be divided into the following

• Planned shut-ins made by personnel

• Sudden shut-ins caused by failure in production facilities

Planned shut-ins are actions taken if maintainance are to be performed on
the wellsite. In this report, the disturbances will be static (i.e. occuring at
a preset time). This as a means of comparing performance of the open-loop
and closed-loop problem.

Model errors are also a form of disturbance, especially uncertainty in reservoir
parameters. This will be discussed further in section 7.4.3.
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Chapter 5

Implementation

This chapter presents some implementation strategies for the problems in the
previous chapter. Firstly, a presentation of the solution software and scaling
is given. Reformulation of the nonlinearities in (4.22) is performed, to make a
transition from MINLP to MILP. At the end, some aspects concering solution
parameters in CPLEX are presented.

5.1 Solution software & hardware

The MILP problem is implemented in ILOG CPLEX Optimization studio
v.12.31. CPLEX is a state-of-the-art tool for solving linear and convex opti-
mization problems. This includes LP, QP, QCP, MIP and MIQP problems.
A big benefit with the CPLEX software is the possibility of using parallel
optimizers on hardware platforms with parallel processors (IBM, 2009). On
large models, this may be beneficial with regards to the CPU/solution time.

CPLEX builds on a robust branc & cut algorithm, mentioned in section
(2.1.2). The solution might generate several types of cuts. See IBM (2009)
for more information.

Lower and upper bounds of the objective values are essential in MILP prob-
lems, and are gradually improving as a new solution is found. CPLEX logs
this gap, and is defined as

(best integer− best node) ∗ objective

| best integer | +10−9
(5.1)

1IBM R©, see www.ibm.com



CHAPTER 5. IMPLEMENTATION 42

The software is run on a Dell Optiplex 32-bit Windows 7 machine with 3 GB
RAM and Intel Core2 Duo 3.00GHz CPU.

5.2 Scaling

The initial pseudopressures, in the range of 1019, will eventually cause nu-
merical problems in the optimization. The pseudopressures are therefore
diagonally scaled as

m = Msm̃ (5.2)

where Ms is the diagonally scaling matrix

Ms =


ms 0 . . . 0
0 ms . . . 0
...

. . . . . . 0
0 0 . . . ms

 (5.3)

The discrete state space formulation in (4.7) is thus updated as follows to
include (5.2)

Ad
kMsm̃

k
n+1 = Msm̃

k
n + Bd

kqk
n+1 (5.4)

5.3 Reformulation of non-linearities

The problem with the constraints from (4.22) is that the min-function

qkn = min{qmaxn , αknw(mk
1,n −mwf )} (5.5)

is in fact a non-continuous, non-linear function. The non-linearities lies in
both the min-function, and the product αknm

k
1,n. Knudsen (2010b) imple-
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mented this reformulation exact, based on FICO (2009), as

αnwmwf ≤ q̃nl,n ≤ αnwmmax (5.6a)

wmwf (1− αn) ≤ wm1,1,n − q̃nl,n ≤ wmmax(1− αn) (5.6b)

q̃n = q̃nl,n − αnwmwf (5.6c)

qn ≤ qmax (5.6d)

qn ≤ q̃n (5.6e)

qn ≥ qmaxdn (5.6f)

qn ≥ q̃n − q̃∞n dn (5.6g)

where the non-linear part q̃nl,n = αnwm1,1,n, mmax is the maximum pressure
value in gridblock 1, and dn is a binary value, whose value is 1 if qmax is the
maximum value, 0 if not. Note however, that rewriting the min-function as
(5.6), nine inequality constraints and one binary variable are introduced for
each well at each timestep.

In addition, the absolute value∣∣αkn − αkn−1

∣∣ ≤ ηkn (5.7)

is simply formulated as

αkn − αkn−1 ≤ ηkn (5.8a)

αkn−1 − αkn ≤ ηkn (5.8b)

5.4 Shutin period

In the open-loop case, one need not worry about the minimum shutin period.
The value is set at the start of the optimization, and is static over the time
horizon. In the closed-loop case, however, the minimum shutin period will be
dynamic, and the remaining shutin time needs to be saved for each iteration.

This will affect the minimum shutin constraint

n+L∑
u=n+1

ηku ≤ 1− ηkn (5.9)
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which is implemented as

n+L−r∑
u=n+1

ηku ≤ 1− ηkn, n = r + 1, L+ r + 2, . . . , r(L+ 1) +N (5.10)

with r = 0, 1, 2, . . . , L.

Note that for both the open-loop and closed-loop optimizations, the shut-in
times are variable, in contrast to the simulations in section 3.2. One of the
main objectives are in fact to find optimal shut-in times for each well in the
optimization, to maximize production.

5.5 Branch-and-bound solution parameters

In CPLEX, the user are allowed to change a number of parameters to con-
trol factors like solution methods, scaling, tolerances, limits, MIP strategies.
Some of these are manually changed. The reader is referred to IBM (2009)
for further details on parameters in CPLEX.

5.5.1 Gap tolerance

The duality gap in CPLEX, as defined in (5.1), makes it possible to view
the solution progress in real time. This shows the relative deviation from
optimality of the currently best integer solution. The default relative gap
tolerance in CPLEX is 1e-04. When the gap (5.1) falls below this value, the
optimization stops.

The default value may, however, cause a long runtime when applied in both
open- and closed-loop optimization. In general, for a big problem, the de-
crease of the upper bound is slow when the number of nodes are high. A
larger gap may be acceptable, especially for difficult models with uncertainty
in the input data. Thus, the MIP gap tolerance is set to terminate at 20%2.

5.5.2 Solution limit

Another termination parameter in MILP is the number of integer solutions
found before stopping. As default, this limit is set to 2100000000. To reduce

2with the parameter epgap
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the runtime of the optimization, the maximum number of integer solution is
therefore set to 103.

5.5.3 Integrality tolerance

The default integrality tolerance 1e-05. This value will, especially for the
closed-loop system, give unrealistic flow rates and switchings. This is thus
reduced to a value between 1e-06 and 5e-06 4. Note that by lowering this
value, the solution time increases.

5.5.4 MIP cuts

As stated in section 5.1, CPLEX builds on a branch & cut algorithm, and
alot of differ CPLEX have a large number of cuts which may me added to the
model to cut away noninteger solutions that would otherwise be a solution of
the continuous relaxation, and are automatically handled by the optimizer.
These are so-called cutting plane methods. Adding cuts to the model may
reduce the number of branching steps needed to solve the problem, and thus
reducing the runtime.

However, cuts may also, at occasions, increase the runtime, or even give
infeasible solutions. The user are able to turn off cuts selectively. This is,
however, not done. More information about the different cut limit parameters
can be found in IBM (2009).

3with the parameter intsollim
4with the parameter epint
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Chapter 6

Results

This chapter contains results and analysis of both the open-loop and closed-
loop optimization on multiple wells presented in chapter 4. First, a base case
is presented in which start points are extracted from. Then the open-loop
and closed-loop multiwell optimization are simulated both with and without
disturbances, and compared to each other.

6.1 Base case

The choice of total number of gridblocks in the model affects the solution
time when applied in a optimization scheme. More gridblocks gives mores
accurate results, to few makes the model lose accuracy. The number of
gridblocks is based on a trade-off between accuracy and solution time.

Each well is divided into Nx = 9 and Ny = 3, in total Nm = 27 gridblocks.
This is the smallest number of gridblocks in which the accuracy is still good.

6.2 Well and gas specifications

Table 6.3 shows the initial gas price used in the optimization, retrieved
26.04.2012. The results from the simulations are naturally affected by the
present gas price. This will be further discussed in chapter 7.



CHAPTER 6. RESULTS 48

Table 6.1: Reservoir geometry

Parameter Units SI units
xfracture 0.5 ft 0.15 m
xreservoir 100 ft 30.48 m
yhalflength 100 ft 30.48 m
h 200 ft 60.96 m
Rtubing 0.2 ft 0.06 m
Rwellbore 0.33 ft 0.1 m

Table 6.2: Reservoir properties

Parameter Units SI units
µ 2.02 · 10−5 Pa.s 2.02 · 10−3 cp
φ 5 % -
c 8.46 · 10−8 Pa−1 5.83 · 10−4 psi−1

ko 100 mD -
ki 0.000075 mD -
T 200 ft 60.96 m
pinit 200 bar 2901 psi
pbottomhole 10 bar 145 psi

Table 6.3: Initial gas price

Label Field units SI units
cg $2.12 / mcf $0.075 / m3

The optimization is done on the half-fracture model in (3.2). Due to symme-
try, the production from one fracture is found by multiplying the results with
2. It is assumed that one well contains 10 fractures, such that the results
needs to be multiplied by 20.

The prediction time is set to 10 days, with a time step of 12 hours. All
wells operate under constant bottomhole pressure (10 bar), and they have
the same minimum rate qgc = 233.28 m3/day. Note that the minimum rate
is for the half-fracture. The rate for one well is qgc = 4665.6 m3/day.

To get a meaningful short-term optimization problem, the base case from
Nordsveen (2011) is simulated for 900 days prior to the optimization. A num-
ber of shut-ins are also included in the simulation, and grid pseudopressures
are collected at random points in the simulation. These pseudopressures are
used as initial grid pressures in the optimization.
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Table 6.4: States of the wells

Well number 1 2 3 4 5 6
qmax (m3/day) 1477.44 1503.36 1607.04 1365.12 1512 1356.48
State C C C P C P

Table 6.4 shows qmax and the state of each well. P means that the well is
production, C means that the well is closed. The qmax values are randomly
varying ±10 % around the base case value qmax = 1500 m3/day.

6.3 Multiwell open-loop scheduling

This section presents the results from the open-loop problem presented in
section 4.3.3, with the reformulation of the non-linearities from section 5.3.
It is thus solved as a MILP formulation using CPLEX. Only short-term
production planning for six wells are considered.

6.3.1 Optimization parameters

Table 6.7 displays the optimization parameters used. The weights are chosen
to achieve as close tracking of the target rate as possible. L is the minimum
shut-in time for the well to build up enough pressure to produce at a rate
higher than the critical rate.

Table 6.5: Initial optimization parameters

Label Value
W1 2.5cg
W2 2.5cg
L 1 day
qref 49019 (m3/day)
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6.3.2 Simulation results

Without disturbances

The optimizer for the open-loop problem without disturbances terminates
after 52 minutes, with a duality gap of 26%. Figure 6.1 displays the total
flow rate along with the total switchings. The production is close to constant
the first two days, as the producing wells have a production at the maximum
allowed rate. At day 2, the flow rate shoots of, with a high excessive produc-
tion from the reference rate. This high peak in production is caused by the
three wells producing at its maximum rate. However, for two wells producing
at maximum rate, the peak would be closer to the rate. This unexpected
behavior of having 3 wells open may be caused by some tolerance errors. The
reason could also be the weighting factors. However, it was experienced that
increasing W1 and W2, the optimizer had problems finding solutions for some
time steps.

Looking at the flow rate profiles in figure A.1, well number 6 seems to not
follow the decline profile that should be expected from figure 3.1. This dis-
crepancy is caused by the integrality tolerance. Setting this value lower is
helping on the flow rate profile, but the high peak is still present.

The shut-ins builds the pressure up, but the wells are only able to produce
at rates higher than the minimum rate for some days (cf figure 3.1). The
flow rates for each well are displayed in figure A.1 in appendix A.

(a) Total flow rate (b) Total switchings

Figure 6.1: Open-loop optimization

The number of wells controlled are limited to 6, and α is the only control
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variable. The result is a relative large deviation from the reference trajectory.
More wells would possibly make the total flow rate follow the reference better.
Note that 6 wells is chosen based on getting an efficient optimization scheme
without too long run time.

As qgc and L are only minimum values, the wells might be shut-in at rates
higher than qgc, and have shut-in periods longer than L.

With disturbances

Table 6.6: Disturbances

Well number Closing time Closed for
2 Day 7 2 days
3 Day 4 2 days

Table 6.6 shows the disturbances used in the optimization. Well number 2
and 3 are closed down at day 7 and 4, respectively. Although these distur-
bances in reality would occur at random times, they are set static to be able
to compare the results with the closed-loop optimization. The disturbances
could therefore also be considered as planned shut-ins.

By introducing disturbances into the system, the flow rate profile changes.
Figure 6.2a displays the total flow rate. The day before the first dirstur-
bance kicks in, more wells are activated to prevent loss in production. The
result is extra surplus gas. In fact, at most almost 60% extra gas from the
reference rate is produced. The flow rate then drops until day 6, when there
is no disturbances in the system, and the same trend is seen as for the first
disturbance; a large deviation from the reference rate, possibly to prevent
too much loss in production. When the second disturbance is introduced at
day 7, the flow rate drops again, and experiences a major production loss
at the end of the disturbance period. At the end of the time horizon, the
wells are able to produce at a rate with small deviatons from the reference.
The individual flow rates for each well is shown in figure A.2 in appendix A.
Note that there are no switchings in well 6. This is somewhat unexpected,
considering the deviation in production before the first disturbance, but may
have connection with the weighting factors. As mentioned, setting the fac-
tors higher resulted in no solution for a couple of timesteps. In addition,
limited wells to control (with only one control variable) makes the deviation
significant.
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(a) Total flow rate (b) Total switchings

Figure 6.2: Open-loop optimization with disturbances

6.4 Closed-loop reservoir management

This section presents results based on an implemented MILP model predic-
tive controller developed in section 4.4.1. The controller is implemented in
ILOG CPLEX by using flow control. Flow control in CPLEX includes a
main function to orchestrate model, model data and solving. The main file
used in the optimizations are attached in appendix B

6.4.1 Optimization parameters

To be able to see the potential improvements of MPC in shale gas production,
the same well and gas specifications as presented in section 6.3 are used. This
also includes the weighting factors and minimum shutin period.

Table 6.7: Initial optimization parameters

Label Value
W1 2.5cg
W2 2.5cg
L 1 day
qref 49019 (m3/day)
Prediction horizon 10 days
Control horizon 10 days
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6.4.2 Simulation results

Without disturbances

The total flow rate for the closed-loop case is shown in figure 6.3a. Comparing
the figure with 6.1a, it is observed that the high peak between day 2 and 3,
and at day 6 is reduced. The discrepancy between the highest peak and
reference value in figure 6.1a is close to 60%, in figure 6.3a the discrepancy is
close to 40%. This confirms an improvement when it comes to tracking the
reference. However, the rate experiences a drop of the total rate at the end
of the prediction horizon, so that the tracking is not as tight as expected.

(a) Total flow rate (b) Total switchings

Figure 6.3: Closed-loop optimization

With disturbances

The most interesting comparison between the open-loop and the closed-loop
formulation is by the introduction of disturbances into the system. In sec-
tion 6.3.2, disturbances in the open-loop formulations revealed the somehow
suprising high peaks in production a day before the wells were shut off. This
is surprising, as the open-loop problem has no feedback, and are not able to
predict forward in time. Optimizing the current timestep is only based on
the initial information at time t = 0.

The receding horizon idea in MPC makes it possible to predict forward in
time, a mechanism that has the potential of foresee sudden or planned shut-
ins of wells in the production network, and thus suppessing them.
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Figure 6.4 displays total flow rate and the number of producing wells during
the control horizon. Again, the simulations confirms that closing the loop
helps reducing the peaks in production. Comparing figure 6.3a and 6.4a, it
is seen that with disturbances in the system, the rate stays close to constant
the first 3 and a half days, after which it drops when well 3 is closed down.
This suggest that the MPC controller is able to forsee shutdowns of some
wells, and adapt the rate to it. However, the drop in production at the end
of the horizon, observed in both open- and closed-loop simulations with and
without disturbances, is not improved by much, and may suggest that the
optimizer struggles to keep the reference rate, and that it may be too high.

Comparing figures 6.2a and 6.4a, it is observed that the closed-loop formula-
tion actually performs better than open-loop, in the sense of reduced peaks
and tighter tracking of the reference rate. It was expected that the tracking
of the reference should be even tighter at the end of the horizon. Increasing
the prediction horizon should yield better results. However, it is believed
that the hardware used in the simulation is not sufficient, as CPLEX runs
out of memory for prediction horizons longer than the control horizon. An
upgrade of the hardware is highly recommended.

(a) Total flow rate (b) Total switchings

Figure 6.4: Closed-loop optimization with disturbances



Chapter 7

Discussion

This chapter further discuss the results in the previous chapters. Opti-
mization aspects are discussed, and drawbacks and advantages of open-loop
against a MPC formulation are reviewed. State estimation and model up-
dates are also reviewed.

7.1 Model applicability

The model (3.1), developed in Nordsveen (2011), is a two-dimensional model,
building on work done in Knudsen (2010a,b). This model was analyzed and
discussed in Nordsveen (2011), and no thorough discussion on the model
itself will be done here. However, it is interesting and important to discuss
some aspects around model size and model definition.

7.1.1 Model size

Discretizing (3.1) yields the state space formulation in (3.2). The model is
valid for two dimensional flow, and the number of gridblocks has the potential
of growing very large; expanding the number of gridpoints Ny with 1 in y-
direction gives Nx

1 extra gridblocks.

In total, 27 gridblocks were chosen in the optimization (Nx = 9 and Ny = 3).
A smaller gridblock size would affect the accuracy of the model, a bigger
would make it more accurate. A small number was chosen to make the

1Nx is the number of gridpoints in x-direction
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optimization as effective as possible, but one should consider increase this
number in practice.

7.1.2 Dynamic wellhead model

As mentioned in section 3.3, the maximum flow rate imposed to the flow
rate yields a non-linear min-function in the optimization scheme, shown in
(3.15). Reformulating this to exact linear constraints, which yields a MILP
formulation of the problem, introduces 9 inequality constraints plus 1 binary
variable for each well at each timestep. Obviously, this increases the problem
size dramatically, making the optimization less effective.

A dynamic wellhead model of first order (3.16) was tried out in chapter 3.
The response of the flow did appear to be good at the startup region when
no shutins were applied, shown in figure 3.2a; the flow builds up from zero
production, and avoids beeing saturated due to the tuned model. This is
more realistic than having the flow start at the maximum flow rate qmax.
When applying shutins, the startup region the first 320 days is still good.
However, after a shutin, the flow goes off, an still gets saturated at qmax.

The unrealistic high flow rate after a shutin is due to the unmodelled dy-
namic in the model (3.1). (3.16) is only of first order. Developing a model
with higher order may provide some extra dynamics, and thus overcome this
problem to a certain extent. This is left out as further work.

7.1.3 Liquid loading

By use of the Turner rate in section 3.2, it is possible to determine when a
well must be shut in to avoid accumulation in the well. This is formulated
in the constraint

αknq
k
gc ≤ qkn (7.1)

for both the open- and closed-loop problem. The advantage of using this
lower bound on the flow rate is that there is no need to include water satu-
ration in the reservoir model (3.1) (Knudsen et al., 2012). Note that the use
of shutins as a means of building up the pressure is not intended to replace
the well stimulation by hydraulic fracturing, but comes in addition. In this
way, the OPEX may be reduced, as fracturing is an expensive process.
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(a) Timestep 24 hours (b) Timestep 0.1 hours

Figure 7.1: Oscillations are introduced by implementing the Crank-Nicolson
method as discretization scheme, but are reduced with smaller timesteps

7.1.4 Numerical errors

Both for time and spatial discretization, numerical errors are introduced,
which limits the achievable accuracy of the optimization. There are trade-
offs between model size and sample size in optimization, and the solution
time for the optimizer.

For the time discretization, a backward (implicit) Euler method was chosen.
It is A-stable, which means that any time step can be chosen. However, it
is only of order one, and is thus the least accurate discretization method. A
second order method, such as the Crank-Nicolson

yn+1 = yn +
h

2
(f(yn, tn) + f(yn+1, tn+1) (7.2)

give more accurate results. It is a stable method (Quarteroni et al., 2010).
However, for large time steps, the approximate solution might contain oscil-
lations. Two simulations, both over 200 days, is shown in figure 7.1; figure
7.1a has timestep 24 hours, figure 7.1b has timestep 0.1 hours (6 minutes).
The trend is clear; reducing timestep removes the oscillations. However, sim-
ulating over 200 days with 6 minutes timestep will substantially increase the
solution time, and Crank-Nicolson is therefore not used here.
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7.2 Optimization concerns

The emphasis of the implementation strategies in chapter 5 has been to
provide good solution quality and reduced solution time. However, there are
trade-offs between these two criteria.

7.2.1 Sensitivity

The initial inputs to the model have a big impact on the optimizer. The
initial values are grid pseudopressures, maximum possible flow, state of the
well, permeability and maximum pseudopressure in gridblock 1. These are
the inputs that are most sensitive, both in the form of solution and run time
of the optimizer. Much time was spent trying to ”tune” the model, i.e. trying
to make a realistic case.

For some parameters, CPLEX reported ”infeasible or unbounded” solution,
caused by conflicts in the model. A conflict is a set of constraints which makes
the model infeasible, and removing these makes the problem feasible (IBM,
2009). For instance, a conflict happens when x is defined as both bigger than
y, and lower than z, with y 6= z. For the open-loop case, the optimizer is
able to solve this automatically. For flow control (i.e. the closed-loop case),
the optimizer terminates with the message ”No solution”. The parameters
was chosen to avoid the conflicts, and make the optimizer terminate with an
optimal solution.

Time horizons

Ideally, future behavior of the process should be optimized over an infinite
prediction horizon. In practice this is hard to achieve. The process is often
under hard time constraints, and with limiting software/hardware solutions.
With large prediction horizons, it was observed that the optimizer had prob-
lems improving solutions, and the branch-and-cut tree grew very big. This
resulted in out-of-memory error, and the optimizer terminated. A prediction
horizon equal the control horizon appeard to show the best effect.

Initial grid pseudopressures

The initial grid pseudopressures are chosen before the optimization, from
a simulation of the base case presented in section 6.1. For some initial
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pressures, especially for low values, the problem became infeasible due to
conflicts.

Integrality tolerance

As mentioned in section 5.5.3, CPLEX uses an default integrality tolerance
of 1e-05. It was observed, especially in the closed-loop case, that some wells
did not follow the decline profile as they should with this value. Some wells
appeared to produce at a constant rate. The tolerance was reduced to be-
tween 1e-06 and 5e-06 in both the open-loop, and closed-loop case, at the
cost of increased run time. Also, for too low tolerance, and especially for
high weighting factors, the optimizer was unable to find a solution in the
closed-loop case.

7.2.2 Validation

To validate the results from the optimizations, the tracking should be simu-
lated in SENSOR, with optimal shut-in times obtained from CPLEX. Com-
paring both the open-loop and closed-loop simulations with a simulation
based on constant shut-in times, one should see the true potential of track-
ing performance.

7.3 Model predictive control vs. open-loop

optimization

In the open-loop case, the flow rates and the switchings in each wells are
defined by the initial information (i.e. initial grid pseudopressures) at time
t = 0 only. In the closed-loop case, the system response are defined by the
feedback from the grid pressures and flow rates at the latest time step. The
closed-loop response thus has the potential to change the transient repsonse
of the system, which is not possible in the open-loop case (Foss and Jensen,
2011). Because of the receding horizon idea in model predictive control,
closed-loop approach is more robust than an open-loop approach (Bemporad
and Morari, 1999).

Model predictive control is in fact a mix of both open-loop and closed-loop
strategies. The receding horizon idea, with reoptimization at each time step
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over a certain prediction horizon, provides the feedback to the system. The
reoptimization at each time step therefore requires alot of computational
work. For systems with short time constants, this may be a problem (Foss
and Jensen, 2011). However, for the system considered here, the time con-
stant is long (weeks). The prediction horizon will obviously affect the run-
time, and the prediction horizon may be large. A too short horizon may not
capture disturbances introduced to the system, and the closed-loop response
will in that case not be able to adjust the parameters to reject it.

Introduction of model predictive control would only be of practical interest
when there are clear benefits. Such benefits may include (Going et al., 2006)

• Reduced costs and enhanced profits

• Enhanced efficiencies in resources, workflows and equipment

• Improved safety and reliability

The use of closed-loop control control has the potential of reducing the num-
ber of personell required on remote sites. Monitoring systems provide data,
which is sent to an off-site operational centre. The system can take its own
decisions under observation of operators, often based on prequalified alarm
conditions and user feedback notifications. This is cost effective and efficient,
while the safety is improved for personell.

Closing the loop also makes it possible to predict future production. This is
important, as a means of setting up a production plan based on the market,
and to ensure that it is in fact possible to meet future demands. This is
especially crucial on behalf of governments and investor groups (Going et al.,
2006).

The MPC formulation used in this thesis is only ”semi-predictive”. The
objective function only punishes the auxiliary qlower and qupper, and not the

actual error (
∑Nw

k=0 q
k
n+i|n−qref ). Note that this formulation makes it possible

to give independent weights on over- and underproduction. This is similar
to the zone objective principle, in which the output remains inside speci-
fied boundaries (Maciejowski, 2002), except that the zone is very thin. The
output is penalized when it leaves the ”zone”.

The traditional MPC have a quadratic cost function. The MILP MPC in
chapter 4 is only linear. A linear cost function was chosen to exploit the
efficient MILP solution methods in CPLEX. Actually, for a MIQP problem,
the worst case solution time is exponentially dependant on the number of
integer variables (Bemporad and Morari, 1999). When this number gets
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high, so does the solution time.

The MPC controller was implemented in CPLEX, with optimization program-
ming language (OPL). OPL have some inconvenient ways of implementing
feedback, and a transition to Yalmip2 in matlab should be further investi-
gated. Yalmip supports CPLEX as solver. Through yalmip, one has better
control over each variable. In addition, implementing state estimation and
model updates are inconvenient in CPLEX. Note that Yalmip was tried out,
but the solver only reported an infeasible problem, and terminated. This
should be investigated further.

7.4 Practical optimization aspects

The results from the open- and closed-loop optimization is not valid if it can
not be put into practical perspective. Theoretical gas optimization is only an
”ideal” case, and real life operations will bring along challenges not included
in the formulation.

7.4.1 Gas price

The optimization results will inevitably vary with the gas price. However,
it can be difficult to estimate. It is strongly dependant of future demand,
and this might give a clue to the future development. 7.2 shows a short
time projection of the gas price into the beginning of 2013. The price is not
expected to fluctuate much from the current gas price.

7.4.2 State estimation

The model predictive controller considered in this thesis requires that the
full state vector of the pseudopressures in the gridblocks is available. These
are, however, not measurable states, and the states needs to be estimated,
typically with a Kalman filter.

The Kalman filter estimates the states from a process that is containing noise
and measurement errors, based on a sequence of measurements. It requires
separate knowledge of the disturbances that enters the state estimation and
the measurements. The state observer equations is based on the discrete

2See Löfberg (2004)
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Figure 7.2: U.S. Natural gas prices with short-term projections retrieved
from U.S. Energy Information Administration

system in (4.7), with a blending factor, Kalman gain, Kn chosen such that
the mean square error of the state estimation is as small as possible, and may
be expressed as (Brown and Hwang, 1997; Yan and Bitmead, 2005) (adapted
to the model in 4.7)

m̂k
n|n = m̂k

n|n−1 + Kn|n
k(qk

n|n −Ckm̂n|n−1
k
) (7.3)

Ad
km̂k

n+1|n = m̂k
n|n + Bd

kqk
n+1|n (7.4)

Kn|n
k = Σk

n|n−1C
T (CΣn|n−1C

T + Λn)−1 (7.5)

Σn is the error covariance matrix, so that Kn minimizes the terms along the
diagonal of Σn, and is thus optimal in some sense. Note that m1,1 may be
found from q through the inflow model in (3.8).

State estimation is an iterative process, and would indeed take up some pro-
cessing time and further increase the runtime of the closed-loop optimization.
However, in this thesis, state estimation is not included into the problem for-
mulation in (4.24). It is left out as further work.

7.4.3 Parameter identification

In the closed-loop formulation in 4.24, it is assumed that the internal model
is a perfect match of the process. This is a very unrealistic assumption,
as parameters change continuously over time. Model errors are therefore
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prominent, and model updates are essentially. Referring to figure 4.3, the
model updating can be done on the basis of predicted and measured out-
puts, in addition to well tests, fluid properties and so on, to determine the
permeability.

The parameters in state matrix A is highly uncertain. The most promi-
nent uncertainty is the permeability in the reservoir, which have only been
guessed. This uncertainty can have a large influence on the prediction of fu-
ture production. It is unlikely that an optimization scheme will be deployed
in real life without any form of parameter estimation.

It is in fact common in reservoir engineering to do a so-called history match-
ing, or data assimilation, to reduce the uncertainty of the reservoir param-
eters. History matching means minimizing the difference between a model
and the history of the reservoir. This has traditionally been done by hand,
by varying different reseroir parameters until a satisfactory match has been
found. This is very time consuming and error prone. Gradient-based opti-
mization techniques have therefore been adopted from the oil industry.

The optimization techniques involves automatic variation of the reservoir pa-
rameters until it reaches a satisfactory stopping critera (good histoy match-
ing); a cost function is defined and minimized over all possible parameter
values (Tavassoli et al., 2004). θ is defined as a vector with the unknown pa-
rameters (i.e. the permeability values), and it is assumed that measurements
are available, generated by the system (Zandvliet, 2008)

mn+1 = A(θ)mn + B(θ)qn (7.6a)

m0 = minit (7.6b)

yn = qn (7.6c)

As θ includes the permeability in all gridblocks, virtually all parameters non-
identifiable, and the problem is ill-posed. The usual way of reducing the effect
of this problem is to include the difference between the estimated θ and θinit
in the cost function (Jansen et al., 2009; Zandvliet, 2008). The problem may
be expressed as

min V (θ) =
N∑
n=1

(yn − yn(θ))P−1
y (yn − yn(θ)) (7.7a)

+ (θn − θinit)P
−1
θn

(θn − θinit) (7.7b)

mn+1 = A(θ)mn + B(θ)qn (7.7c)

m0 = minit (7.7d)

yn = qn (7.7e)
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where P−1
y and P−1

θn
are the inverse of the covariance matrix of the measure-

ments. The cost function is often expressed as a quadratic function such that
gradient-based optimization techniques can be used.

These approaches are only a suggestion on how the identification can be done
in practice, and have not been tried out in this thesis. This is left out as
further work.



Chapter 8

Conclusion

In this thesis, the use of mixed integer model predictive control of shale gas
production has been studied. This introduces other challenges than conven-
tional MPC, because of the binary variables used to control the switchings of
the wells. The same objective function are used in both the open-loop and
closed-loop formulation, with disturbances introduced in the system. The ob-
jective is to track a reference rate. Both run time and tracking performance
differs, especially for disturbances in the system.

The open-loop and closed-loop formulations shows how short-term produc-
tion planning with the objective of following a reference rate yields different
results in the sense of optimal shut-in times. Closed-loop control yields better
tracking performance. Its predictive characteristics reduces deviations from
the reference rate. This is especially observed when disturbances are intro-
duced into the system. However, for both the open-loop and closed-loop
problems, a decrease in gas flow rate is observed along the time horizons.
This drop is hard to improve by the current models.

The optimizations in this thesis assumes a perfect internal model. As reser-
voir and system parameters reduces over time, model updates are required
in order to apply the optimization setting in practice. The model are in
reality non-linear. Reformulations yields extra constraints and variables in
the problem. Transition to a non-linear model, possible including startup
dynamics, might improve the results, but will result in a more demanding
model.
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Chapter 9

Further work

In this thesis, a model predictve controller has been developed. The controller
assumed that the state vector was directly available. This is obviously a false
assumption. State estimation was not included into the model, but to give
it a practical applicability, this should, in the form of a Kalman filter.

In addition, a perfect internal model was assumed. This model, however,
changes over the reservoirs lifetime. System identification and history match-
ing is therefore important to include to update the model, and should be
investigated further.

Also, an effort to try to make a dynamic wellhead model, to avoid the non-
linear min-function was a time consuming task. This worked without shut-ins
of the wells. The model was only of first order. A model of higher order could
lead to better results. The advantages of such a model is reduction in both
constraints and decision variables in the MILP model.
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List of symbols

Nomenclature

φ Reservoir porosity [-]
µ Viscosity [Pa.s]

ρ density [kg/m3]
A Cross-sectional area [m2]
c Gas compressibility [1/Pa]
cg Gas price [$]

g Gravity [m/s2]
h Reservoir height [m]
k Permeability [mD]
ki Permeability in the inner region [mD]
ko Permeability in the outer region [mD]
m Pseudopressure [Pa/s]
minit Pseudopressure [Pa/s]
mwf Bottomhole pseudopressure [Pa/s]
N Time horizon [-]
Nm Total number of gridpoints [-]
Nw Number of wells [-]
p Reservoir grid pressure [bar]
Rtubing Radius of tubing [m]
Rwellbore Radius of wellbore [m]
T Reservoir temperature [K]
q Gas flow rate [m2/s]
vt Minimum gas flow velocity [m/s]
xfracture Radius of fracture [m]
xreservoir Reservoir length [m]
yhalf−length Fracture half-length [m]
Z Gas compressibility factor [-]
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Subscripts

d Discrete
gc Gas critical rate
n Time instant
sc Standard conditions

Superscripts

k Well number
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Appendix A

Additional plots

A.1 Open-loop optimization

Figure A.1 shows the individual flow rates for each well from section 6.3.2
without disturbances in the system. Figure A.2 shows the flow rates when
disturbances are present in the system.

Figure A.1: Flow rate for each well in open-loop optimization

The switchings of each well without disturbances is shown in figure A.3, A.4
shows the switchings with disturbances.
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Figure A.2: Flow rate for each well in open-loop optimization with distur-
bances

A.2 Closed-loop control

Figure A.1 shows the individual flow rates for each well from section 6.3.2
without disturbances in the system.
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Figure A.3: Switching pattern in each well in open-loop optimization

Figure A.4: Switching pattern in each well in open-loop optimization with
disturbances
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Figure A.5: Flow rate for each well in closed-loop optimization

Figure A.6: Flow rates for closed-loop optimization with disturbances
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Figure A.7: Switching pattern for closed-loop optimization

Figure A.8: Switching pattern for closed-loop optimization
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Appendix B

Program script

B.1 CPLEX main file

Below is the main file from the flow control used in CPLEX to implement
the model predictive controller.

main

{

var status = 0;

thisOplModel.generate();

var CurrSol = thisOplModel;

var shutinTime = CurrSol.l;

// Initial pseudopressures

var m1 = CurrSol.m_cl1;

var m2 = CurrSol.m_cl2;

var m3 = CurrSol.m_cl3;

var m4 = CurrSol.m_cl4;

var m5 = CurrSol.m_cl5;

var m6 = CurrSol.m_cl6;

var feedback = 2;

var constSI = 2; //Predefined shutin time = 1 days

var SI = 0;

//Control horizon

var Nu = 23;
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// Define counting variables

var States = CurrSol.Nm;

var best;

var curr = Infinity;

var tot_q = 0;

var tot_alpha = 0;

var iter = 1;

// Define output files

var ofile2 = new IloOplOutputFile(filename);

ofile2.writeln("Timestep = ", Nu-1);

ofile2.writeln("Referance = ", CurrSol.tot_rate);

var alphafile = new IloOplOutputFile(filename);

alphafile.writeln("Timestep = ", CurrSol.N1);

var Well1rate = new IloOplOutputFile(filename);

var Well2rate = new IloOplOutputFile(filename);

var Well3rate = new IloOplOutputFile(filename);

var Well4rate = new IloOplOutputFile(filename);

var Well5rate = new IloOplOutputFile(filename);

var Well6rate = new IloOplOutputFile(filename);

var ofileAlpha1 = new IloOplOutputFile(filename);

var ofileAlpha2 = new IloOplOutputFile(filename);

var ofileAlpha3 = new IloOplOutputFile(filename);

var ofileAlpha4 = new IloOplOutputFile(filename);

var ofileAlpha5 = new IloOplOutputFile(filename);

var ofileAlpha6 = new IloOplOutputFile(filename);

var vekt2 = 0;

while( iter != Nu )

{

if(iter < 2)

{

vekt2 = 1;

}

else

{

vekt2 = 0;

}

best = curr;
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// Output to script log

writeln("Solve for iteration ", iter);

writeln("Shut-in time left: ", CurrSol.l);

if ( cplex.solve() ) {

curr = cplex.getObjValue();

writeln();

writeln("OBJECTIVE: ",curr);

writeln();

writeln("alpha = ", CurrSol.alpha);

}

else

{

writeln("No solution!");

break;

}

// Define feedback variables

var q1 = CurrSol.q[1][feedback-vekt2].solutionValue;

var q2 = CurrSol.q[2][feedback-vekt2].solutionValue;

var q3 = CurrSol.q[3][feedback-vekt2].solutionValue;

var q4 = CurrSol.q[4][feedback-vekt2].solutionValue;

var q5 = CurrSol.q[5][feedback-vekt2].solutionValue;

var q6 = CurrSol.q[6][feedback-vekt2].solutionValue;

var alpha1 = CurrSol.alpha[1][feedback-vekt2].solutionValue;

var alpha2 = CurrSol.alpha[2][feedback-vekt2].solutionValue;

var alpha3 = CurrSol.alpha[3][feedback-vekt2].solutionValue;

var alpha4 = CurrSol.alpha[4][feedback-vekt2].solutionValue;

var alpha5 = CurrSol.alpha[5][feedback-vekt2].solutionValue;

var alpha6 = CurrSol.alpha[6][feedback-vekt2].solutionValue;

var eta1 = CurrSol.eta[1][feedback-vekt2].solutionValue;

var eta2 = CurrSol.eta[2][feedback-vekt2].solutionValue;

var eta3 = CurrSol.eta[3][feedback-vekt2].solutionValue;

var eta4 = CurrSol.eta[4][feedback-vekt2].solutionValue;

var eta5 = CurrSol.eta[5][feedback-vekt2].solutionValue;

var eta6 = CurrSol.eta[6][feedback-vekt2].solutionValue;

for(var stateiter in States)

{

m1[stateiter] = CurrSol.m[1][stateiter][feedback-vekt2].solutionValue;
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m2[stateiter] = CurrSol.m[2][stateiter][feedback-vekt2].solutionValue;

m3[stateiter] = CurrSol.m[3][stateiter][feedback-vekt2].solutionValue;

m4[stateiter] = CurrSol.m[4][stateiter][feedback-vekt2].solutionValue;

m5[stateiter] = CurrSol.m[5][stateiter][feedback-vekt2].solutionValue;

m6[stateiter] = CurrSol.m[6][stateiter][feedback-vekt2].solutionValue;

}

// Output rate and alpha for each well

Well1rate.writeln(q1);

Well2rate.writeln(q2);

Well3rate.writeln(q3);

Well4rate.writeln(q4);

Well5rate.writeln(q5);

Well6rate.writeln(q6);

ofileAlpha1.writeln(alpha1);

ofileAlpha2.writeln(alpha2);

ofileAlpha3.writeln(alpha3);

ofileAlpha4.writeln(alpha4);

ofileAlpha5.writeln(alpha5);

ofileAlpha6.writeln(alpha6);

// Output total flow rate

tot_q = q1 + q2 + q3 + q4 + q5 + q6;

ofile2.writeln(tot_q);

// Output total alpha

tot_alpha = alpha1 + alpha2 + alpha3 + alpha4 + alpha5 + alpha6;

alphafile.writeln(tot_alpha);

// Prepare next iteration

var def = CurrSol.modelDefinition;

var data = CurrSol.dataElements;

if ( CurrSol != thisOplModel )

{

CurrSol.end();

}

CurrSol = new IloOplModel(def,cplex);
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// Remaining shutin time

if( shutinTime >= 1 )

{

shutinTime = shutinTime - 1;

data.l = shutinTime;

}

else

{

shutinTime = constSI;

data.l = shutinTime;

}

// Update data source with new q from feedback

data.q_init[1] = q1;

data.q_init[2] = q2;

data.q_init[3] = q3;

data.q_init[4] = q4;

data.q_init[5] = q5;

data.q_init[6] = q6;

// Iterate predefined shutin periode

if(alpha1 == 0)

SI1 = constSI+iter;

else

SI1 = 0;

if(iter < SI1)

data.AlphaMin1[1] = 0;

if(alpha2 == 0)

SI2 = constSI+iter;

else

SI2 = 0;

if(iter < SI2)

data.AlphaMin1[2] = 0;

if(alpha3 == 0)

SI3 = constSI+iter;

else

SI3 = 0;

if(iter < SI3)

data.AlphaMin1[3] = 0;
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if(alpha4 == 0)

SI4 = constSI+iter;

else

SI4 = 0;

if(iter < SI4)

data.AlphaMin1[4] = 0;

if(alpha5 == 0)

SI5 = constSI+iter;

else

SI5 = 0;

if(iter < SI5)

data.AlphaMin1[5] = 0;

if(alpha6 == 0)

SI6 = constSI+iter;

else

SI6 = 0;

if(iter < SI6)

data.AlphaMin1[6] = 0;

// Update disturbance time

if(data.disturbanceStart == 1)

data.disturbanceStart = 1;

else

data.disturbanceStart = data.disturbanceStart-1;

if(data.disturbanceEnd == 1)

data.disturbanceEnd = 1;

else

data.disturbanceEnd = data.disturbanceEnd-1;

if(data.disturbanceStart2 == 1)

data.disturbanceStart2 = 1;

else

data.disturbanceStart2 = data.disturbanceStart2-1;

if(data.disturbanceEnd2 == 1)
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data.disturbanceEnd2 = 1;

else

data.disturbanceEnd2 = data.disturbanceEnd2-1;

// Update data source with new pseudopressures

for(var i in States)

{

data.m_init_tilde[1][i] = m1[i];

data.m_init_tilde[2][i] = m2[i];

data.m_init_tilde[3][i] = m3[i];

data.m_init_tilde[4][i] = m4[i];

data.m_init_tilde[5][i] = m5[i];

data.m_init_tilde[6][i] = m6[i];

}

// Add updated data source to the problem

CurrSol.addDataSource(data);

CurrSol.generate();

iter++;

}

// Close output files

Well1rate.close();

Well2rate.close();

Well3rate.close();

Well4rate.close();

Well5rate.close();

Well6rate.close();

ofileAlpha1.close();

ofileAlpha2.close();

ofileAlpha3.close();

ofileAlpha4.close();

ofileAlpha5.close();

ofileAlpha6.close();

ofile2.close();

alphafile.close();

}
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