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ABSTRACT 
We consider the problem of cargo transfer in high sea 
states over a ramp from an LMSR (large, medium-speed, 
roll-on/roll-off) vessel to a smaller connector vessel, the 
T-Craft. Due to the complexity of the wave and ship 
interactions, this problem represents significant 
challenges for ship and control system designers and 
requires the use of computational tools to simulate the 
system. We utilize Matlab, AEGIR, and Rhino to model 
and simulate the system in two configurations: 1) the 
ships are oriented side by side, and 2) the ships are in a 
bow-to-stern configuration. To reduce the oscillations in 
the ramp connecting the vessels, we design and employ 
adaptive wave cancellation algorithm with air flow rate as 
actuator. When the ships are oriented side by side, the 
wave disturbance in heave of the T-Craft is estimated and 
cancelled by using fans to control the pressure in an air 
cushion positioned underneath the vessel.  For the bow-to-
stern configuration, a two-chamber air cushion is 
considered, where wave disturbance in pitch is estimated 
and cancelled by inducing a moment through a pressure 
difference between the chambers. We present simulation 
results. 
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1.0 INTRODUCTION 
The T-Craft is a vessel being developed that has 
combined characteristics of both a surface effect ship 
(SES) and an air cushion vehicle (ACV). One of its main 
operational requirements is the transfer of cargo from a 
large vessel, LMSR, to nearby land targets. The T-Craft 
has two modes of operation: It is either supported entirely 
by twin hulls resembling a catamaran, or by an air cushion 
that uses a bag system and fans to fill a pocket of air to lift 
the craft towards the surface of the water. Currently, there 
is great effort being placed into the modelling of such 
ships. There are a number of highly complex and coupled 
interactions that increase the task difficulty. In addition to 
the synthesis of equations of motion, there is also an effort 
to simulate these ships with an effective software 
package.  
 
T-Craft operation presents unique challenges that have not 
been addressed from a control standpoint. We exploit the 

capabilities of this type of ship to stabilize a ramp during 
cargo transfers with the LMSR. Two transfer methods 
considered a side by side configuration and a bow to stern 
configuration. We use existing software to model the 
system and simulate it with and without control. Though 
the used software doesn’t contain the air cushion 
dynamics, we model the effect separately and add it 
during simulation. Adaptive backstepping method is used 
to regulate the pressure in the air cushion. With this 
method, we estimate the unknown wave disturbance and  
cancel its effect to the system. Simulation results 
demonstrate significant reduction in heave for the side by 
side configuration, and in pitch in a bow to stern 
configuration, both of which reduce ramp oscillation. 
2.0 SYSTEM MODELING 

2.1 Wave Modelling using AEGIR 
The modelling of the ocean waves and contributing forces 
is done through a proprietary wave sea keeping program 
called AEGIR. This greatly simplifies the difficult aspect 
of approximating the wave forces while also providing 
accurate solutions in a short time scale. 
  
AEGIR uses a series of sine inputs provided by the user to 
represent a typical wave pattern. While many models exist 
to produce these sine waves, we use the Pierson-
Moskowitz spectrum for fully developed wave conditions. 
The power for a given wave frequency is 
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with   = 8.1 × 10-3 and 
p

 = / 19.5g U , where 19.5U is the 

wind speed 19.5 meters above the water. A random phase 
between 0 and 2 is assigned to each frequency.  



 
Fig. 1. Pierson-Moskowitz spectrum of SS 3 and SS 4 

wave. 
In addition to amplitude, extracted from the power 
spectrum, the important characteristics of the waves are 
the modal period and wave heading. Fig. 1 shows the 
spectrum for waves in sea state 3 and 4 with modal 
periods of four, five, and six seconds. During simulations, 
different wave patterns are used to compare system 
behaviours in varying conditions and headings. 

2.2 Configurations and Parameters 
The vessel parameters are shown in Table 1. 

Table 1. System parameters 
 LMSR T-Craft Ramp 
Length (ft) 990 250 90 
Beam (ft) 100 75  
Weight (tons) 81,700 820  
Roll Gyradius (ft) 40 15  
Pitch Gyradius (ft) 200 50  
Yaw Gyradius (ft) 200 50  

 
The ramp has two hinges that only allow pitch at each 
pivot point. The ramp is assumed to be massless and rigid. 
We test multiple setups to determine the effectiveness of 
each controller while also determining optimal transfer 
conditions. Fig. 2 shows the ships in a bow to stern 
configuration. Conversely, Fig. 3 shows the ships in a side 
by side configuration. Each configuration produces 
different motions while also altering the approach to the 
control of the system.  In the side by side setup, roll of the 
T-Craft is nearly uncontrollable. As a result, the heave is 
the main degree of freedom that we control. In the bow to 
stern setup, a two chamber air cushion controls pitch and 
heave of the vessel. This in turn reduces ramp oscillation. 

 

 
Fig. 2. Bow to stern configuration. 

 

 
Fig. 3. Side by side configuration. 

2.3 Lagrangian Equations of Motion 
The most accurate way to implement the T-craft model 
into AEGIR, is the treatment of its two hulls as two 
separate bodies and consideration of the rigid connection 
between the two hulls in the systems equations of motion, 
which accordingly have to be derived for a three-body 
case. We use Lagrangian framework to derive the 
equations of motions. Lagrange's equations are given by 
L T U   
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with kinetic energy T , potential energy V , and the 
generalized forces j for each of the independent 

generalized coordinates j .     
 
The kinetic energy of the 3-body system can be expressed 
as a sum of kinetic energies of each of the three bodies as 

1 2 3T T T T   . Similarly, for the potential energy with g 
as gravity the combined potential energy is expressed as 

1 1 2 2 3 3U m gz m gz m gz   . The focus of the primary 
work mainly lies in the stabilization of the ramp between 
the two vessels, control and reduction of heave, pitch and 
roll motions are of prime interest in this time. Thus the 
surge, sway and yaw of the combined, two-vessel system 
can be disregarded without loss of generality for the 
simulation and control development. 
 
The heave motion of the whole system along the z-axis of 
main frame of reference follows, 
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Similar expressions can be derived for roll and pitch of 
the whole system as well as roll and pitch of each of the 
vessels around the pivot points. The considered and 
ignored degrees of freedom for the bow-to-stern 



configuration are shown in. For the side-by-side  
(respectively, bow-to-stern) configuration, pitch (resp., 
roll) of LMSR and T-Craft is constrained and roll (resp., 
pitch) is considered. The considered, ignored and 
dependent degrees of freedom for bow to stern 
configuration are summarized in Table 2. 
 

Table 2. Degrees of freedom for bow-to-stern 
configuration 

DoF Considered Ignored DoF Dependent DoF 

1. Total Heave  6. Total Surge 9.   Surge of T-Craft 

2. Total Roll  7. Total Sway 10. Surge of LMSR 

3. Total Pitch  8. Total Yaw 11. Sway of T-Craft 

4. Pitch of T-Craft  12. Sway of LMSR 

5. Pitch of LMSR    13. Heave of T-Craft 

  14. Heave of LMSR 

 
  15. Roll of T-Craft 

 
  16. Roll of LMSR 

 
  17. Yaw of T-Craft 

 
  18. Yaw of LMSR 

 
2.4 Air-Cushion Dynamics 

Reynold’s Transport Theorem and mass conservation are 
used to find the equation for pressure change in the air 
cushion. The control volume is deformable and shown in 
Fig. 4.  The cross-sectional area of the control volume 
only varies in height. The free surface is considered as 
being flat and the pressure distribution to be uniform in 
the control volume.  
 
The air leakage depends on physical properties of the skirt 
and finger and also the pressure inside of the cushion. We 
assume the leakage has a linear relationship with air 
pressure and define a resistance term to represent the 
physical properties of the air cushion, LR , and assume it 
remains constant. The final expression for change in air 
pressure is 
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where 0 , 0V , and 0P are initial values, q is the mass 

flow rate, cA  is the cross sectional area of x,y plane and 

  Cc
 0V0 P0 .   

 
Fig. 4. The representation of the air cushion model.

 

3.0 SYSTEM CONTROL 
Controller design for air-cushion vehicles poses 
significant challenges. The difficulty arises from the 
unmeasured wave disturbance, the inaccurate system 
parameters such as mass and hydrodynamic terms, the 
indirect actuation of the air cushion pressure. We present 
several algorithms that tackle some combinations of the 
said challenges. 

3.1 Heave and Pitch Dynamics 
Although dynamics of ocean vehicles are coupled and 
have complex hydrodynamic effects (presented in detail 
in Fossen, 1994), AEGIR provides a reliable simulation 
environment to test our controllers. It is common to 
consider a linear decoupled model of the ship dynamics to 
design the controller. Following (Sorensen and Egeland, 
1995) and (Fossen, 1994), we consider the following 
models for design purpose. The heave dynamics 
(decoupled from pitch) are given by 
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whereas the pitch dynamics (decoupled from heave) are 
given by 

55 55 55 55 55 55 55 5( ) ( ) ( ) ( ) ( ),
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where 33 55,   represent the heave and pitch of ship 

respectively, cP is the current pressure in the air cushion 

and dP  is the current pressure difference between two 

chambers. ,c cA L are area and length of the air cushion 

respectively. m is the mass of ship and 55I is moment of 
inertia around y-axis. Hydrodynamic (added-mass), 
radiation damping coefficient and hydrostatic (restoring) 
terms for heave and pitch are represented as 

,  and ii ii iiA B C  respectively. 3 5( ), ( )e eF t F t  are 
hydrodynamic excitation force and moment, which affect 
heave and pitch. 

3.2 Wave Modelling for Control Design 
While the actual wave consists of many sinusoids, for the 
purpose of wave cancellation by control we adopt a 
single-sinusoid (N=1) model, where the wave frequency, 
amplitude, and phase are tracked by a parameter 
estimator. As discussed in (Faltisen, 1990), the single-
sinusoid hydrodynamic excitation force 3

eF is written as 
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where d  and L  represent draft and length of the side-
hulls respectively, e  is called encounter frequency 

which is equal to 1 1k U  . 
 



For the purpose of control design, we assume that draft of 
the side hulls, hydrodynamics and hydrostatics terms do 
not change with time. Then, 3

eF  is expressed as 

3 3( ) sine e
eF t K t  (7) 

which can be treated as the output of an autonomous 
(second-order, mass-spring) exosystem with unknown 
parameters. The hydrodynamic excitation moment 5

eF  
can be expressed in the same way. 

3.3 Wave Disturbance Representation 
In this section, we represent the unknown wave 
disturbance (7) as the product of an unknown constant 
vector and the known regressor by using the result in 
(Nikiforov, 2004a and 2004b).  

3.3.1 Known System Parameters 
As it is shown and proved in (Nikiforov, 2004a), it is 
possible to represent  (7) as the output of a linear system 
whose input is itself, whose state and input matrices are 
known , and whose output matrix is unknown. Dividing 

3
eF by constant  33m A  affects only the amplitude. 

Therefore, we can write the scaled unknown disturbance 
as follows, 
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where 

z Gz l   (9) 
where G is a 2 2  Hurwitz matrix and constitutes a 
controllable pair with a chosen vector 2l .  
 
In this representation, z is not accessible, since the 
unknown disturbance 3

eF cannot be measured. However, 
it is possible to estimate z by using the measurements of  
heave, heave rate and pressure which are assumed to be 
available for  measurement. Decoupled heave dynamics 
(4) can be represented in the state-space form as follows 
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By applying the proposed filter in (Nikiforov, 2004a) to 
,  cx P  and  using the system parameters in (10), z is 

given as, 
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Since G is Hurwitz, the estimation error  decays to zero 
exponentially. Using (8) and (11), we obtain 

ˆ .T Tz      (13) 
 

3.3.2 Unknown System Parameters 

The system matrix A  and the vector B can be 
represented as  
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The proposed filter in (Nikiforov, 2004b) to estimate the 
unknown signal   is given as, 
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where 
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By using (8) and (15) ,  is represented as follows 
,T Tw      (17) 

where 

 0 1 2

1 2

,

.

TT
u u

T T T T T

w N x   

      

   
   

 

  (18) 
3.4 Heave Control 

We apply adaptive backstepping method to design a 
control law, which cancels the unknown wave disturbance 
by actuation of air flow rate. The structure of the control 
problem is illustrated in Fig. 5. We consider two different 
cases; known and unknown system parameters. 

 
Fig. 5. The structure of the control problem. 

3.4.1 Known System Parameters 
We consider the following Lyapunov/energy function to 
design an air-cushion pressure controller, which cancels 
wave disturbance in heave, 

1T T TV x Px P   


     (19) 

where 0  ,  represents the wave estimation error,  

the positive definite matrix 2 2P   is a solution of the 
matrix equation  
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with the control gain 1 2K  , the positive definite 
matrix 2 2P

  is a solution of the matrix equation  
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and  
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 We choose the air-cushion controller as follows, 
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where ̂  is the estimate of  . Taking derivative of 
V and using (20), (21) and (23), we obtain 
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 Choosing the update law as follows 

0
ˆ ,Tzb Px    (25) 

and using Young's inequality, we obtain 
.TV x x   (26) 

 
By LaSalle's theorem, it is concluded that all signals are 
bounded and heave and heave rate go to zero in time. 
However the air-cushion pressure cannot be actuated 
directly. To find the implementable control and update 
law by the actuation of air-flow rate, we apply adaptive 
backstepping design. 
 
The deviation of cP from its desired value is written as  
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The Lyapunov function for  ,x e system is chosen as 
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3.4.2 Unknown System Parameters 

We consider the following Lyapunov function to design 
an air-cushion pressure controller which cancels wave 
disturbance in heave for uncertain system parameters, 
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where , , 0       and ,  ,      represents the 
estimation error of the system parameters, wave and high 
frequency gain, respectively. The positive definite matrix 

uP  is a solution of the matrix equation 
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We choose the adaptive air-cushion controller as follow, 
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We apply adaptive backstepping design to reach the real 
actuation. The control law is given as 
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The update laws are given as 
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where 
1 2
, , 0.

cc c c     

3.5 Pitch Control 
Two chambers air-cushion model enables us to control 
pitch by using pressure difference between two chambers. 
The pressure changes for each chamber are given as 
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These equations are used for simulations. However, the 
pressure difference is needed for control design. By 
subtracting 1P  and 2P , we obtain 
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where 2 1dP P P   and 2 1dq q q  . 

By following the same procedure in Section 3.3, 
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By using (5), (42), (43) and following the same procedure 
in Section 3.4.1, we obtain 
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where the positive definite matrix 2 2
pP   is a 

solution of the matrix equation  
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4.0 SIMULATIONS AND RESULTS 

4.1 Overall Structure of Simulation System 
We use time-domain sea-keeping code AEGIR provided 
by Navatek/APS, to solve hydrodynamic forcing imparted 
to vessels. Though the current software doesn’t contain 
the air cushion dynamics and ramp connection between T-
Craft and LMSR, we add them with the designed 
controller during simulation by using MATLAB interface 
code. AEGIR and MATLAB interface is illustrated in Fig. 
6. 
 
 

 
Fig. 6. AEGIR and MATLAB interface. 

The rigid body motions and control laws are implemented 
in MATLAB. The resulting generalized coordinates of the 
vessels are provided as inputs to AEGIR, which in turn 
simulates the wave motions and generates the 
hydrodynamic forces on the vessels, which are provided 
as inputs to MATLAB. The Rhino CAD program is used 
to model LMSR and T-Craft hulls. CAD models are given 
in Fig. 7 and Fig. 8. 
 

 
Fig. 7. 3D Rhino model of T-Craft hulls. 

 

 
Fig. 8. 3D Rhino model of LMSR. 

4.2 Results 
The estimation of wave disturbance and heave of T-Craft 
for  heading angle 20  in SS4 in side by side configuration 
for known system parameters are given in Fig. 9 and Fig. 
10. 
 

 
Fig. 9. Disturbance estimation in heave of T-Craft for 20 

heading angle in side by side configuration. 
 

 
Fig. 10. The simulation result of control algorithm for 

known system parameters.  
The simulation result of heave of T-Craft for unknown 
system parameters in bow to stern configuration is given 
in Fig. 11. 



 
Fig. 11. The simulation result of control algorithm for 

unknown system parameters in bow to stern 
configuration. 

The result of simultaneous application of heave and pitch 
control  is given in  Fig. 12. 

 

 
Fig. 12. The simulation result of heave and pitch 

controller simultaneously for known system parameters in 
bow to stern configuration. 

5.0 CONCLUSION 
In this paper we present the details of the modelling  of a 
Sea Base consisting of an LMSR and T-Craft and design 
of an adaptive wave cancellation algorithm for T-Craft. 
Lagrangian equations of motion are derived for a pitch 
hinged ramp connecting the two vessels. The vessels are 
modeled in Rhino with dimensions and parameters used 
from experimental data. A wave sea-keeping program, 
AEGIR, is used to calculate wave forcing. Finally, an air 
cushion model is derived and incorporated through added 
forcing. 
 
We develop an adaptive wave cancellation algorithm  
utilizing backstepping for known and unknown system 
parameters to regulate pressure in an air cushion 
underneath the vessel. This leads to perfect estimation of 
wave disturbance and significant reduction of heave in a 
side by side configuration and pitch in a bow to stern 
configuration. As actuators, this method conveniently 
uses the fans in the air cushion, which are already present 
in the vessel.  
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