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SUMMARY 
Wave induced vertical accelerations (cobblestone 
oscillations) of a SES in small sea states is studied. 
Resonant spatially uniform and nonuniform dynamic 
cushion variations are then important. A nonlinear time 
domain solution is used. The nonlinearities are mainly 
due to the flexible stem seal bag behaviour. It is 
demonstrated that both the spatially varying pressure 
underneath the flexible stem seal bag and the impact 
between the bag and the water are important for the 
vertical accelerations of the vessel. The influence of 
main parameters characterizing the stem seal bag is 
discussed. 

1. INTRODUCTION 
A problem with a Surface Effect Ship (SES) is high 
vertical accelerations in small sea states. This 
represents a comfort problem for passenger 
transportation. The phenomenon is often referred to as 
the cobblestone effect and is a resonance effect due to 
the compressibility of air in the air cushion. The 
cobblestone effect is excited because the water waves 
dynamically change the air cushion volume. The 
resonance phenomenon occurs at high frequencies 
relative to the resonance frequencies for the rigid body 
motions of displacement ships of similar length. The 
two lowest resonance frequencies in the air cushion of 
a 30-35 m long SES are approximately 2 Hz and 5-6 
Hz. Due to the frequency of encounter effect there are 
waves with sufficient energy in small sea states that 
excite these resonance oscillations. The eigenfunction 
for the dynamic air cushion pressure is constant in 
space for the lowest eigenfrequency and represents 
acoustic wave resonances for the higher eigen- 
frequencies. [1] demonstrated the importance of the 
lowest eigenfrequency. [2], [3] and [4] showed that 
acoustic standing wave effects must also be included. 
[5] and [63 give simplified introductions to cobblestone 
oscillations. [2] documented by full scale measurements 
onboard a 35 m long SES the importance of the two 
lowest eigenfrequencis (see Fig. 1). Since the lowest 
eigenmode is constant in space, it affects mainly heave 
accelerations. The second eigenmode, which 
corresponds to the lowest acoustic resonance frequency, 
has a node approximately midships. It can be 
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Fig. 1 Full scale measured spectrum SLl(f) of 
vertical accelerations at bow of 35 m 
SES. Flexible stern seal bag. 45 knots. 
Head sea. II,,, =0.3-0.4 m. f=frequency. 
Ref. [2]. 

approximated by a sinusoidal function. The modal 
wave length is roughly twice the ship length. It means 
that the second eigenmode affects mainly the pitch 
accelerations. Fig. 2 gives an overview over 
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Fig. 2 Investigated physical effects. 

investigated subproblems. Important damping 
mechanisms of the cobblestone oscillations are due to 
the air flow into the air cushion through the fans and the 
air leakage underneath the seals and through louvers 
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that are part of a ride control system. The placement of 
the louver system is essential. For instance if the louver 
system is placed midships, it will have a negligible 
effect on the acoustic resonance mentioned above. The 
reason is simply that the acoustic pressure component 
has a small amplitude midships, while it has its 
maximum absolute value at the ends of the cushion. 
Fig. 3 shows a proposed ride control system by [7]. A 
louver system consisting of two vent valves in the front 

Fig. 3 Ride Control System. Ref. [7]. 

of the air cushion is used. The opening and closing of 
the vent valves control the air flow from the air cushion 
and cause damping of the cobblestone oscillations. 
Three pressure sensors were used in the air cushion and 
one accelerometer on the vessel as part of the ride 
control system. By properly filtering the signals from 
the measurement units and using a mathematical model 
for the behaviour of the SES, the control system can 
give the correct signals to the louver system. In order to 
construct a ride control system, a simplified but rational 
mathematical model is needed ([4]). This study focus 
on the nonlinear effects of the flexible stem seal bag. 
The cobblestone oscillations do not Froude scale. For 
instance resonance periods are approximately 
proportional to the ship length. This makes 
comparisons with model tests difficult. Full scale 
validation is needed. 

2. THEORY 
Head sea longcrested waves are assumed. A right- 
handed coordinate system that moves with the forward 
velocity U of the SES and is fixed to the mean 
oscillatory position of the vessel, is used. Here the X- 
axis points upstream in the direction of the forward 
velocity, and goes through the center of gravity (CG). 
The Y-axis points to the port side and the Z-axis is 
upwards. Both goes through CG. The equations of 
coupled heave (@and pitch (TQ motions are 
formulated in the time domain as 

(2) 

t is the time variable and dot stands for time derivative. 
M is the structural mass and I, is the structural mass 
moment of inertia around the Y-axis of the SES. Alj”, 
B: and Co! are hydrodynamic infinite frequency 
added mass, damping and restoring coefficients of the 
two side-hulls. Fib is the linear hydrodynamic 
excitation force on the side-hulls and Fi” is the 
nonlinear force acting on the SES due to integrated 
unsteady excess pressure in the air cushion in direction 
i. The nonlinearity in Fiat is mainly caused by 
nonlinear effects related to the flexible stem seal bag. 
The hydrodynamic loads on the hull are expressed by 
strip theory ([S]) . This is not an important part of the 
cobblestone analysis. 

2.1 Global Air Cushion Model 
The air cushion is analyzed in two steps. First a global 
flow model is studied. The air cushion is then 
approximated as a box. Air flow through fans, air 
leakage and the velocities of the bounding surfaces are 
accounted for. The global flow is later connected to a 
detailed model around the bag. The global model 
describes the air flow by the wave equation 

a24 
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v,2v%$ = 0 (3) 

Here 4 is the velocity potential, vs is the velocity of 
sound in air and 02 is the Laplacian operator. The 
linear dynamic pressure ~5, can be expressed as 
-pa@/&. Boundary conditions have to be imposed. 
Formally we can write that a@/& is equal to the 
normal velocity v(,?,t) * n’ on the surface r that 
encloses the air cushion volume. The normal vector n’ 
to I’ is positive out of the air cushion, Since it is 
sufficient to consider a one-dimensional flow in the 
longitudinal direction, the normal velocities at the stem 
and seal regions are averaged over the height of the air 
cushion. For instance at the stem of the air cushion 
there is a combined effect of the flow between the 
inside of the bag and the air cushion, the motions of the 
air bag, and the leakage below the air bag. The motions 
of the air bag have an important effect on the lowest 
acoustic spatially varying natural mode of the air 
cushion. The boundary condition at the free water 
surface follows from the kinematic free surface 
condition. Only incident waves are considered. The 
boundary condition at the rigid part of the wetdeck 
follows from the heave and pitch velocities. The normal 
velocity at the fan is expressed by the steady fan 
characteristics. The Finite Element Method has been 
used to solve the problem. Eq. (3) is combined with the 
boundary conditions and written as 
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Here N ’ is the transposed of the trial function matrix 
N. The first term in Eq. (4) is rewritten by Green’s 
theorem as 

s N ‘V%$dV,= 
s 

N ‘$fl-[VN T. V+dV, (5) 

“” r “” 
The aialyzed domain is broken down into N,[ small 
1-D elements in the longitudinal direction. It is assumed 
that c$(~,t)=N(~)h$(t)} where {r)(t)} is a vector 
containing the node point values of the velocity 
potential of the air flow. A linear variation is used over 
each element. [9] verified the numerical method by 
comparing with the Finite Difference Method and by 
using an analytical solution based on mode 
superposition. 

2.2 Local Air Cushion Model at the Stern 
It is now focused on the details at the stem bag seal. A 
2-D problem is solved in the longitudinal plane of the 
SE?% The pressure is assumed spatially constant inside 
the bag. This pressure can be related to the pressure in 
the air cushion by using continuity of mass flow in and 
out of the bag. The air inside the bag is assumed 
compressible and an adiabatic relationship is used 
between the pressure and the air density. The bag 
structure is modelled as a cable in the cross-sectional 
plane. In the static case the bag is not touching the 
water, but the leakage height underneath the bag is 
assumed to be initially zero in the time domain solution 
procedure. The aerodynamic pressure force acting on 
the bag is an order of magnitude larger than the gravity 
force. The dynamic contributions from gravity will 
appear as restoring terms and can be neglected 
compared to the tension terms. The bag structure is 
therefore modelled as a weightless but not massless 
cable. The studied bag geometry is a typical 2-100~ bag 
configuration (see Fig. 4). The static bag geometry is 
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Fig. 4 Static geometry of 2-100~ flexible bag seal. 

approximated by 3 cable segments with constant radius 
of curvature R. This implies spatially uniform static 
difference pressure over each segment. The tensions in 
segments 1 and 2 are constant and equal. There are 
equal static difference pressures across segments 2 and 
3, i.e., AP,,=AP,, . 

The equations of motions for the flexible bag are 
derived by a linear perturbation of the static solution. 
Compatibility gives the relationship between tension 
and the motions in the transverse and the longitudinal 
directions. Since the radius of curvature R is constant 
for each cable segment, the equations of motions can be 
set up separately for each segment. Afterwards these 
cable segments are linked together with the boundary 
conditions. The equations of motions for a cable 
segment are finally written as 

d2q V,+EA)dtl, EA 
M,$ =T,L 

ds2 
+-- --TJ,+APu 

R ds R2 
(6) 

d2rl, EA d’l, M,jj,=EA- ---- 
ds’ 

(7) 

Here q, and q, are the motions in the transverse and 
longitudinal directions. Mm is the structural mass per 
unit length of the cable. E is the elasticity modulus of 
the material. A is the cross dimensional area of unit 
width and T,, is the static tension in the cable segment. 
s is the longitudinal coordinate along the cable 
segments (see Fig. 4) and APU is the unsteady 
difference pressure across the cable. The structural 
boundary value problem is solved by “dry” mode 
superposition. We can write 

7],(s,t) = ~ai(t>~:(s> (9) 

Here ai is the principal coordinate of vibration mode 
number i and 4: and 4; are the mode shape functions 
in the transverse and longitudinal directions. A finite 
number of modes is used. Eqs. (8) and (9) are 
substituted into Eqs. (6) and (7). The two equations are 
multiplied with 4; and $, respectively and integrated 
over the length Lcy of all the cable segments. The two 
coupled equations’of motions are added and give 

Mjiiii + Cjiai = 
s 

AP,,#‘ds (10) 
L cs 

where 
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Here plh is unsteady pressure inside the bag. p(s,n,,,t) is 
the unsteady hydrodynamic pressure. Lj is the length of 
bag segment number i. Since the hydrodynamic pressure 
is dependent on the bag deformations, the problem is 
hydroelastic. @,, is the unsteady spatially varying air 
cushion pressure underneath the flexible stem seal bag. 
This is present when there is a gap between the lowest 
point of the bag and the free water surface. 

We will show how fi,, and p are evaluated. We assume 
first the bag is not touching the water and p=O. A 2-D 
problem is analyzed. This information is used as a basis 
for a 1-D approximation. The flow is assumed quasi- 
steady and incompressible. The air is inviscid. Since the 
important wave lengths in the acoustic air cushion 
problem is much longer than the cross-sectional length 
dimensions of the air bag, the assumption of 
incompressibility is consistent from that point of view. 
However, when the air gap becomes very small, the local 
Mach number is high. The assumption of quasi-steady 
flow and inviscid air may also then be questioned. Since 
viscous effects are neglected, the separation point of the 
air flow must be chosen. The lowest point of the bag is 
used. The geometry and the coordinate system are 
defined in Fig. 5. Origo is placed at the steady free water 
surface. The x-axis is parallel to the undisturbed free 
water surface and is pointing towards the stem of the 
SES. The y-axis is pointing upwards. The velocity 
potential @ of the local air flow satisfies the 2-D Laplace 
equation. The kinematic condition on the free air surface 
is 

+,(xY> =~x(x,~)CxW on Y =5(x> (12) 

Free air surface 

Fig. 5 Air flow underneath stern seal bag. 

Here c(x) is the air surface coordinate defined in Fig. 5. 
The subscripts x and y denoted the x- and y-derivatives. 
The dynamic condition states that the pressure on the 
free air surface is equal to the atmospheric pressure. This 

implies that 

+&y>=Va on y=Ux) (13) 

The subscript s denotes the tangential derivative at the 
free air surface and Vu is the constant air flow velocity 
at the free air surface as indicated in Fig. 5. There are no 
normal velocity on the “walls”. A Kutta condition is 
prescribed at the separation point (lip). It expresses that 
the tangential velocity and aerodynamic pressure are 
continuous at the lip. The horizontal uniform inflow 
velocity is assumed known and constant over the height 
of the air cushion. The outflow velocity Va is assumed 
constant through the air jet. The velocity potential 4 for 
the incompressible air flow inside the fluid domain is 
represented by Green’s second identity, i.e. 

Here S is the surface that encloses the air flow volume. 
The normal vector n’ to S is positive into the air flow 
domain. Further Q=loglZi -?I . When the field point 
approaches a point on the boundary, an integral equation 
of Fredholm type is obtained. The geometry is 
discretized into straight elements. The velocity potential 
and the normal velocity are assumed constant over each 
element. A set of linear equations follows from the 
discretization. To get a correct representation of the 
velocity potential on the lip of the bag, the equation that 
satisfies no normal velocity on the last element on the lip 
is exchanged with an equation that prescribes 
atmospheric pressure at the trailing edge. This implies 
that the tangential velocity at the separation point must 
be equal to V, (see Eq. (13)). To establish this equation 
the local behaviour of the tangential velocity of the air 
flow near the lip is used. The unknowns are the normal 
derivative of the velocity potential on the free air surface 
and the velocity potential on the inflow and the wall 
surfaces. The solution procedure is as follows. First a jet 
contraction coefficient %=5(x-m)lh, (see Fig. 5) is 
guessed. A free air surface is generated based on this 
guess. This surface is described by an exponential 
function in the first iteration. The unknown coefficients 
in this function are determined from the approximation 
of the jet contraction coefficient and the fact that the 
tangent to the free air surface is equal to the tangent of 
the bag at the lip. An outflow velocity can be found from 
the jet contraction coefficient by mass conservation. The 
potential on the free air surface can now be found from 
the dynamic free surface condition defined in Eq. (13), 
since now both the velocity potential at the outflow 
surface and the tangential velocity at the free air surface 
are known. Green’s second identity can then be used to 
find the normal derivative of the velocity potential on the 
free air surface. When this velocity is known, the 
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kinematic free surface condition is used to generate a 
new free air surface (see below), and the procedure is 
repeated until there is no updating of the free air surface 
or that the error estimate obtained from the conservation 
of momentum is below a chosen value (e.g. 1%). One 
important point is how the kinematic free surface 
condition is rewritten into an iterative scheme to update 
the free air surface. To obtain a stable and accurate 
solution, the kinematic free surface condition defined in 
Eq. (12) is rewritten into the following iterative scheme 

(15) 

It is used that <X=-n,/n2, c$~=~+II~+~~$,~ and 
~$~==n~@~-n~+,~. Here n=(n,,n,) . The slope of the first 
element on the free air surface is set equal to the slope of 
the last element on the lip, and is not updated by the 
algorithm described above. The reason is the Kutta 
condition, that ensures a smooth flow at the separation 
point of the bag. Now both the velocity potential and its 
normal derivative are known on the whole enclosing 
surface. The air pressure is found from Bernoulli’s 
equation. The method has been verified against analytical 
solutions based on conformal mapping ([9]). Since a 
more simplified method is beneficial in a ride control 
system, 1-D approximations have been studied. It has 
been found that the pressure distributions can be well 
described by 

-=I-(- P(X) -P, k&,), 

OS&V,2 h(x) 
(16) 

Here h(x) is the local vertical distance between the water 
free surface and the bag. h, is the value of h at the 
lowest point of the bag. The jet-contraction coefficient ka 
is determined a priori by a 2-D analysis for a given bag. 
Vu is found by setting p equal to p, upstream. 

Water impact loads 
The behaviour of a planing bag bouncing on the free 
water surface is analyzed as a water entry problem, 
assuming a large forward speed of the SES relative to the 
relative vertical velocity between the bag structure and 
the water surface. Gravity can be neglected. The wetted 
length of the bag will vary strongly through the impact 
on the free water surface. The hydrodynamic loading will 
be much larger than the aerodynamic loading due to the 
relatively low pressure in the air cushion and inside the 
bag. This implies that the immersion of the bag is low. 
The body boundary conditions can therefore be 
transferred to a straight horizontal line. This together 
with the free surface conditions leads to a square root 
singularity in the hydrodynamic pressure at the spray 
root in the planing problem. The modal hydrodynamic 

force defined by the last integral on the right hand side of 
Eq. (1 l), will not be affected by the detailed behaviour of 
the flow around the spray. The vertical global motions of 
the bag and the effect of the vertical motions due to 
incident waves are considered. A right-handed local xy- 
coordinate system that moves with the forward speed U 
of the vessel is used. The origin is fixed at the lowest 
point of the static bag configuration. The x-axis is 
positive towards the upstream direction of the 
undisturbed water flow and the y-axis is positive 
upwards. The undisturbed free stream velocity U is in the 
negative x-direction relative to this coordinate system. 
Since potential flow is assumed, the separation point 
must be determined a priori. The lowest point of the bag 
is chosen. The body boundary conditions are transferred 
to a straight horizontal line that corresponds to the x-axis 
(y=O) defined above (see Fig. 6). The total 

Simplified HBVP 

Fig. 6 Hydrodynamic boundary value problems 
(HBVP) for water entry of bag. 

velocity potential is defined as 
Q(x,y,t) = - Ux++(x,y,z) ++(x,y,t) where +,(x,y,t) is the 
incident irregular wave potential and +(x,y,t) is the 
velocity potential for the water flow caused by the bag. 
@ is found by a quasi-steady approach in the simplified 
Hydrodynamic Boundary Value Problem (HBVP). The 
dynamic free surface condition is approximated by @=O 
on x < 0 and x > 2c(t). Here 2c(t) is the wetted length. 
At the wetted surface of the bag the following vertical 
velocity is prescribed 

(17) 

Here vbag describes the unsteady geometry of the bag, 
that is the vertical distance between a point on the bag 
and a horizontal line defined by y=O. An approximation 
of the wetted length is found from 
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Here h, is the vertical distance between the lowest point 
of the bag and the free water surface at t=O and 5 defines 
the incident wave profile. L is the length of the air cushion 
and the flexible bag is located at X= -LJ2 . Pile-up of water 
is neglected. A more correct way to define the HBVP is 
shown in Fig. 6. [lo] and [ 1 l] solved this HBVP and did 
also include pile-up of water upstream the wetted part of 
the bag. This represents a more complicated procedure. 
Numerical studies by [9] showed that the errors using the 
simplified solution are not important. 

3. RESULTS 
Unsteady air cushion pressures and vertical accelerations 
of a SES are studied at AP, CG and FP. Here AP is 
located at X= -U2, CG at X=0 and FP at X=U2. The SES 
is described in Table 1. Head sea longcrested waves are 
assumed. A modified Pierson Moskowitch wave spectrum 
with peak period T,,= 1.8 s is used. This spectral period 
is realistic for small sea states. The peak period is chosen 
so that there are significant vertical accelerations in the 
frequency domain around the first spatial pressure 
resonance of the air cushion. There is negligible wave 
energy at the lowest eigenfrequency. The results are 
organized so that the simplest simulation model is 
presented first. Different effects are then added, so the 
importance of each effect can be quantified. The results 
are presented in terms of response spectra as a function of 
frequency of encounter. 

Table 1. Main particulars of SES 

Weight (IV) 

Air cushion length (L) 

Air cushion height 

Air cushion beam (BP) 

Mean side-hull beam 

Mean side-hull draft 

Mean air cushion pressure (p,,) 

Mean fan flow rate (two fans) (Q;,) 

Linear air cushion fan slope 
(two fans) @); 

Linear bag fan slope (two fans) 
(de)C 
ap ’ 

Longitudinal position of fans (X,) 

Forward speed (u) 

140 000 kg 

28 m 

2m 

8m 

1.5 m 

1.0 m 

510 mmWc 

2.8 m*/s 

-0.00104 
m2s/kg 

-0.00063 
m2s/kg 

12m 

23 m/s 

;; 400x10’ - 

Nm 
I 
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. . . . . . 

0 
Ll 

*p 

:: CG 

!z  
200- 

2 

f loo- 
$ 

Lf 

4 6 
f,B[HZ] lo I2 l4 

Fig. 7 Spectra of air cushion pressures. Air 
leakage neglected. Rigid stern seal. 
Head sea. T,,=1.8 s . H1,3=0.15 m. 

Fig. 7 shows the unsteady air cushion pressure when the 
stem seal is rigid and air leakage underneath the seals 
is neglected. The spectra have an oscillatory behaviour 
with many peaks. This is caused by amplification and 
cancellation effects in the volume pumping of the air 
cushion due to the incident waves. If the cancellation 
effect is disregarded, there are two main spectral peaks 
at approximately 6 and 12 Hz. These frequencies 
correspond to the two first spatial pressure resonances 
of a rectangular box, with length L=28 m. The spectral 
values around 6 Hz are nearly the same at AP and FP 
and nearly zero at CG. The reason is that the first 
eigenfunction for acoustic resonance in a rectangular 
box is equal to -1,O and 1 at AP, CG and FP. Around 
12 Hz there is significant response also at CG. The 
reason is that the second eigenfunction for acoustic 
resonance is equal to - 1, 1 and - 1 at AP, CG and FP. 
Vertical accelerations at AP, CG and FP are presented 
in Fig. 8. The accelerations and the air cushion 
pressures have a similar behaviour, except that the 
accelerations around 12 Hz is negligible. Fig. 8 
illustrates that the linear hydrodynamic wave excitation 
forces and moments on the side-hulls are negligible. 

2 4 6 
f:[Hz] lo l2 I4 

Fig. 8 Spectra of vertical accelerations. Air 
leakage neglected. Rigid stem seal. Head 
sea. T,,=1.8 s. H,,,=0.15 m. 
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In order to illustrate possible deformation patterns of the 
stem seal bag, the static and the first four mode shapes of 
a 2-100~ flexible stem seal bag are represented in Fig. 9. 
These mode shapes are the first four used (see Eqs. (8) 
and (9)) to describe the deformation of the flexible stem 
seal bag structure. 

Static configuration and first four mode 
shapes of flexible stern seal bag. Static 
difference pressures: APO, = 500 Pa. AP,, 
= 5500 Pa. Bag length L,=3.16m. Bag 
height Hb=l .4m. EA=0.6*106 N. 
M,,, =4.3 kglm . 

Vertical accelerations at AP, CG and FP with a flexible 
stem seal bag are presented in Fig. 10. The air leakage 
underneath the seals is neglected. If Fig. 8 is compared 
with Fig. 10, some differences are observed. First one 
notes that the main spectral peak is shifted from 
approximately 6 Hz down to about 5 Hz. This is due to the 
flexible behaviour of the stem seal bag. The mechanism 
may be explained as follows; the flexible bag is deformed 
due to the unsteady air cushion pressure so that the 
deflected volume is in phase with the unsteady air cushion 
pressure. This leads to an equivalent horizontal velocity at 
the bag, due to the assumption of uniform pressure over 
the height of the air cushion. A simplified model can 
illustrate thisioyhenomenon. Assuming harmonic time 
dependence e e and neglecting damping, the following 
eigenvalue problem can be defined 

Here i is the complex unit and rJbspeio,’ is the velocity 
potential of the air flow in the air cushion due to the 
motion of the bag. HC and BC are the cushion height and 
beam. pd) is the steady mass density of air in the air 
cushion. dV)dp, is a measure of the change in air cushion 
volume Vcdue to bag deformation. It can be evaluated by 
noting that the right hand side of the boundary condition 
at x’=L is a longitudinal velocity u/averaged over the 

cross-section of the air cushion. This can be expressed 
as 

Here p, = -~,~io~$~~~e lyr is the dynamic pressure in the 
air cushion at x’=L. dV)dp, can be estimated by a 
static analysis of the bag. The solution of the 
eigenvalue problem is ~h,~,,=~bSPcosrx’ where op=vSr 
and 

tanrL+Y”P”O f.3 rL=O 
HcBcL dp, 

(20) 

Here r is the wave number of the standing pressure 
waves in the air cushion. Eq. (20) is the dispersion 
relation of the acoustic pressure waves inside the air 
cushion. When dVJdp, is zero, rL=o,LlvS=nTc, 
n=1,2; * * . This is a well known result for standing 
pressure waves in a long tube with rigid ends. Since 
dV)dpc>O for a flexible stem, the resonance frequency 
is reduced relative to rigid ends. The actual value 
depends on L, H, BC, the ratio of specific heat of air 
Y,~ and the steady excess pressure pCO in the cushion. 

that the spectral peaks of the vertical Second one notes 
accelerations at AP and FP in Fig. 10 are reduced with 
approximately 40% and 20% relative to Fig. 8. This 
reduction is explained by the flexible behaviour of the 
stem seal bag and the coupling between the bag 
pressure and the air cushion pressure at the bag. The 
differences between the vertical accelerations at AP and 
FP presented in Fig. 10, may be explained by the mode 
shape function of the pressure waves. If the previous 
simplified solution of $lhs,, is used, then the variation in 
the longitudinal direction is given by cosrx’. The ratio 
of Qbs,, between AP and FP is cosrL. Since rL is less 
than n, the absolute value of the ratio is less than 1. 
Fig. 10 shows that the flexible bag increases the 
accelerations in the region just above 10Hz. This 
increase is mainly explained by the volume change of 
the air cushion due to the deformation of the flexible 
step seal bag. 

$0.2 ,:‘ : 

m : : 

50.0 
> 

~yJ/i- 
_. . . _ _ .. , 

2 4 6 8 10 12 

f, [Hz1 

Fig. 10 Spectra of vertical accelerations. Air 
leakage neglected. Flexible stern seal 
bag. Head sea. 7’,,=1.8 s. H,,,=0.15 m. 
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The effect of a constant leakage height underneath the 
stem seal bag can be studied by comparing Fig. 10 and 11. 
The vertical accelerations in Fig. 11 are decreased with 
approximately 10% relative to Fig. 10 around the first 
spatial pressure resonance frequency. The reason is 
additional damping caused by the air leakage underneath 
the stem seal bag. 

Fig. 11 Spectra of vertical accelerations. Constant 
leakage heights: 0 m (bow); 0.02 m (stern). 
Flexible stern seal bag. Head sea. 
Tp=1.8 s. H,,,=0.15 m. 

Vertical accelerations at AP, CG and FP accounting for 
variable leakage height underneath both the bow and stem 
seal are presented in Fig. 12. The variable leakage height 
underneath the seals is dependent on the relative motion 
between the seal and the water surface. The spatially 
varying pressure underneath the flexible bag is also 
accounted for. The static leakage height (h,) is set equal 
to -0.1 m and 0.02 m at the bow and the stem. The 
negative static leakage height at the bow means that the 
relative motion between the bow skirt and the water 
surface must be 0.1 m before air leakage at the bow 
occurs. These values of the static air leakage height are 
used through the remaining part of this section. 

Fig. 12 Spectra of vertical accelerations. Variable 
air leakage. Spatially varying pressure 
underneath flexible stern seal. Head sea. 
Tp=1.8 s. H,,3=0.15 m. 

When vertical accelerations presented in Fig. 12 are 
compared with Fig. 11, one observes an increase of 
approximately 85% in the vertical accelerations around 
the first spatial pressure resonance frequency. An 
important reason is reduced damping due to smaller 
leakage height underneath the flexible stem seal bag. 
The spatially varying pressure underneath the bag 
forces the flexible bag to reduce the leakage height. 
There is also a change in the excitation of the air 
cushion pressure caused by the flexible bag motion. 

Fig. 13 Spectra of vertical accelerations. 
Variable air leakage. Spatially varying 
pressure underneath flexible stern seal. 
Water impact on bag. Head sea. 
TP=1.8 s. H,,,=O.l m. 

Vertical accelerations predicted by the complete model 
are presented in Fig. 13. The effect of air leakage 
underneath the seals is included together with 
hydrodynamic impact forces from the contact with the 
water. H,,, is reduced from 0.15 to 0.10 m in these 
calculations. This is necessary to avoid too large 
deformations of the bag structure and not contradict the 
assumption of a linear elastic model. These 
deformations are mainly caused by the interaction 
between the spatially varying pressure underneath the 
flexible bag and the hydrodynamic impact loads from 
the water. Since the bag structure is close to being 
horizontal in the impact region, a small increase in the 
immersion of the bag results in large increase in the 
wetted length. This causes large impact loads that 
punch the bag structure out of the water. On the other 
hand the spatially varying air pressure is in a way 
forcing the bag structure to reduce the leakage height 
underneath the bag. Many modes are needed to describe 
the dynamic behaviour of the bag during water impact. 
Improved convergence was achieved by introducing a 
bending stiffness term -EIa4q,,/as4 on the right hand 
side of Eq. (6). The mode shapes corresponding to 
EI=O were used. EI was set equal to 4.0 Nm 2, It was 
controlled that the global response was independent of 
this particular choice of EZ as long as EZ was small and 
larger than 3 Nm2. 
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To evaluate the effect of the hydrodynamic impact flexible stem seal bag is “following” the water surface. 
between the flexible stem seal bag and the water, an A main reason is that the spatially varying pressures 
analysis is made with the same model and data as caused by the air leakage reduce the leakage. This 
described in Fig. 13, but without the effect of water behaviour is a characteristic feature of a flexible stem 
impact. The results are presented in Fig. 14. The seal bag. 

Fig. 14 Spectra of vertical accelerations. Variable 
air leakage. Spatially varying pressure 
underneath flexible stern seal bag. No 
water impact. Head sea. Tp=l.S s. 
H,,,=O.l m. 

largest differences between Figs. 13 and 14 occur in the 
frequency region around the first spatial pressure 
resonance of the air cushion (= 5 Hz). Spectral values for 
vertical accelerations are increased about 20% relative to 
the results in Fig. 13. One possible explanation is that the 
motion of the stem seal bag induced by the water impact 
affects the air cushion pressure similarly as a piston at the 
end of a long tube and may in this way cancel a part of the 
pressure variation in the air cushion. A probably more 
important reason is that the hydrodynamic impact punches 
the bag out of the water immediately after the initial 
impact so that an air leakage is recovered. The air leakage 
introduces damping and therefore reduces the vertical 
accelerations. 

Since the results in Figs. 12 and 14 are obtained by the 
same physical model, but with different values of H,,S , it 
illustrates that vertical accelerations are nonlinearly 
dependent on H,,, . If the vertical accelerations had a 
linear behaviour, spectral value of the vertical 
accelerations at FP at the highest peak of the spectrum 
should be approximately 5.4 (m/s ‘)‘s for H,,,=0.15 m 
when the corresponding spectral value is 2.4 (m/s 2)2, at 
H,,,=O.lO m. Fig. 12 shows instead a value of 
3.4 (m/s 2)2s at H,,, =O. 15 m . This means that cobblestone 
oscillations of a SES can be over-predicted if linear 
transfer functions are used. 

The airgap underneath the lowest point of the static bag 
configuration are presented as function of time in Fig. 15. 
The complete model is used. The significant difference 
between the two curves is due to the dynamic deformation 
of the lowest point of the bag. Fig. 15 illustrates that the 

“.‘...’ w/o bagdeformatmn 
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4.5 5.0 55 6.0 65 7.0 
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Fig. 15 Airgap underneath lowest point of static 
bag configuration as function of time. 
Effect of dynamic bag deformations. Full 
simulation model. (see also Fig. 13). 

The previous analysis has in particular focused on the 
dynamics of the flexible stem seal bag and its effect on 
the vertical accelerations. An important parameter from 
a design point of view is the height to length ratio of the 
flexible stem seal bag. Fig. 16 shows vertical 
accelerations 

Fig. 16 Spectra of vertical accelerations at AP 
for different height to length ratios of 
flexible stern seal bag. Data and model 
as in Fig. 13. 

at AP for three different height to length ratios of the 
flexible stem seal bag. When the height to length ratio 
is increased, the vertical accelerations are reduced. 
Similar results are obtained at FP. Fig. 16 shows also 
that the frequency region of the uniform pressure 
resonance is affected. The uniform pressure resonance 
frequency is approximately 1.6 Hz. Since the linear 
wave loads are negligible in this region due to the 
assumed wave spectrum, the response is due to 
nonlinear effects. One possible explanation for the 
reduced accelerations is that increased height to length 
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ratio of the flexible stem seal bag reduces the effect of the 
spatial pressure variation underneath the bag caused by 
the air leakage. This reduction may be explained as 
follows. The effect of the spatial pressure variation 
underneath the bag is mainly important in the region where 
the ratio between the leakage height and the height at the 
actual position is most influenced by the motion of the 
bag, that is the region near the lowest point of the bag. In 
the present case where the height to length ratio is 
increased, this implies that the length of this region is 
reduced and the effect of the spatial pressure variation as 
a result is reduced. 

4. CONCLUSIONS 
Cobblestone oscillations are theoretically studied in the 
time domain. Focus is on the influence of flexible stem 
seal bags and how the associated aero-hydroelastic 
problem can be simplified. It is shown by a case study 
that: 

- The flexible stem seal bag reduces the lowest spatial 
resonance frequency of the air cushion. The elastic 
bag deformations are important for cobblestone 
oscillations. 

- The spatially varying pressure caused by air leakage 
underneath the bag reduces the air leakage. This 
effect is important and increases the cobblestone 
oscillations. 

- Hydrodynamic impact on the bag matters and reduces 
the vertical accelerations. 

- Hydrodynamic wave induced loads on the side hulls 
are not important. 

- Increased height to length ratio of the bag reduces the 
vertical accelerations. 

- Vertical accelerations have a nonlinear dependence on 
significant wave height. 

The analysis assumes that the incident waves pass 
undisturbed through the air cushion. The influence of the 
change in air cushion volume and leakage area due to 
diffraction of the incoming wave system by the presence 
of the side hulls, cushion pressure and bow seal should be 
studied. This includes interaction with the steady flow 
field. A quasi-steady analysis of the fans is used. [ 121 
reports that dynamic fan effects may significantly reduce 
the spatially uniform pressure response in the air cushion. 

Since the cobblestone oscillations are difficult to study in 
model scale [l], the theory needs to be validated by full 
scale results. 
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