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Design of Ride Control System for Surface Effect Ships 

using Dissipative Control* 

A. J. S0RENSENt and 0. EGELANDS 

Dissipative control is used to design a ride control system for surface effect 
ships for active damping of vertical accelerations caused by resonances in 
the air cushion. Full-scale experiments showed significant improvement in 

ride quality. 
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Abstract-A ride control system for active damping of heave 
and pitch accelerations of surface effect ships (SES) is 
presented. It is demonstrated that distributed effects that are 
a result of spatially varying pressure in the air cushion result 
in significant vertical vibrations in low and moderate sea 
states. In order to achieve high quality human comfort and 
crew workability it is necessary to damp these vibrations 
using a control system which accounts for distributed effects 
owing to spatial pressure variations in the air cushion. To 
develop such a ride control system a mathematical model 
describing the motion of the craft in the vertical plane is 
derived. This mathematical model accounts for accelerations 
induced by both the dynamic uniform and the spatially 
varying air cushion pressure. Sensor and actuator placement 
is discussed, and the stability of the control system is 
analysed using the theory of passivity. The performance of 
the ride control system is shown by power spectra of the 
vertical accelerations and the pressure variations obtained 
from full-scale experiments with a 35 m SES. 

1. INTRODUCTION 

Surface effect ships (SES) are known to offer a 
high quality ride in heavy sea states compared 
to conventional catamarans. However, in low 
and moderate sea states there are problems with 
discomfort owing to high frequency vertical 
accelerations induced by resonances in the 
pressurized air cushion. A high performance ride 
control system is required in order to achieve 
satisfactory passenger comfort and crew work- 
ability. To develop such a ride control system it 
is essential to use a sufficiently detailed dynamic 
model. Previous ride control systems have been 
based on the coupled equations of motion in 
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heave and pitch as derived by Kaplan and Davis 
(1974, 1978), and Kaplan et al. (1981). Their 
work was based on the assumption that the 
major part of the wave-induced loads from the 
sea was imparted to the craft as dynamic uniform 
air pressure acting on the wetdeck, while a minor 
part of the wave-induced loads from the sea was 
imparted to the craft as dynamic water pressure 
acting on the side-hulls. This work was extended 
by Sorensen et al. (1992, 1993), who included the 
effect of spatial pressure variations in the air 
cushion. It was found that acoustic resonances in 
the air cushion excited by incident sea waves can 
result in significant vertical vibrations. To 
investigate the acoustic resonances a distributed 
model was derived from a boundary value 
problem formulation where the air flow was 
represented by a velocity potential subject to 
appropriate boundary conditions on the surfaces 
enclosing the air cushion volume. A solution was 
found using the Helmholtz equation in the air 
cushion region. In Sorensen et al, (1992) the first 
two acoustic modes were included in the 
mathematical model, while in Sorensen et al. 
(1993) a more general model with an infinite 
number of acoustic modes was derived. In this 
paper the mathematical model presented in 
Sorensen et al. (1993) is slightly modified and 
adapted to control system design. This mathe- 
matical model is used to derive a new ride 
control system, which provides active damping of 
both the dynamic uniform pressure and the 
acoustic resonances in the air cushion. Special 
attention is given to sensor and actuator 
placement to achieve robust stability and high 
performance. The stability of the control system 
is analysed using the theory of passive systems as 
presented in Desoer and Vidyasagar (1975) and 
in Vidyasagar (1993). It is demonstrated that 
under appropriate assumptions the dynamic 
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system to be controlled is passive, and L$’ 
stability can be achieved using a strictly passive 
controller with finite gain. 

The paper is organized as follows: in Section 2 
the mathematical model is derived. Section 3 
includes the controller design and the stability 
analysis. Finally, in Section 4, simulation results 
and power spectra of pressure variations and 
vertical acceleration obtained from full-scale 
trials with a 3.5 m SES are presented. 

2. MATHEMATICAL MODELLING 

A moving coordinate frame is defined so that 
the origin is located in the mean water plane 
below the centre of gravity with the X-, y- and 
z-axes oriented positive forwards, to the port, 
and upwards, respectively (Fig. 1). This type of 
coordinate frame is commonly used in marine 
hydrodynamics to analyse vertical motions and 
accelerations (Faltinsen, 1990). The equations of 
motion are formulated in this moving frame. 
Translation along the z-axis is called heave and 
is denoted by q3(f). The rotation angle around 
the y-axis is called pitch and is denoted by vs(t). 
Heave is defined positive upwards, and pitch is 
defined positive with the bow down. We are 
mainly concerned about the high frequency 
vertical vibrations. In this frequency range the 
hydrodynamic loads on the slender side-hulls are 
of minor importance. Strip theory is used and 
hydrodynamic memory effects are assumed to be 
negligible due to the high frequency of 
oscillation. Furthermore. infinite water depth is 
assumed. 

The craft is assumed to be advancing forward 
in regular head sea waves. The waves are 
assumed to have a small wave slope with circular 
frequency w,. The circular frequency of 
encounter w, is 

w, = w, + klJ. (1) 

Z 

1 
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Fig. 1. Surface effect ship (SES)-coordinate frame. 

where k = 2n/A is the wave number, A is the sea 
wave length and ZJ is the craft speed. The 
circular frequency of encounter w, is the 
apparent wave frequency as experienced on the 
craft advancing forward at the speed U in head 
sea. The incident surface wave elevation 5(x, t) 
for regular head sea is defined as 

i(.r, t) = l, sin (wet + kx), (2) 

where {, is the wave elevation amplitude. In the 
case of calm water the wave elevation amplitude 
is equal to 0. The water waves are assumed to 
pass through the air cushion undisturbed. For 
simplicity a rectangular cushion is considered at 
the equilibrium condition with height h,, beam b 
and length L, reaching from x = -L/2 at the 
stern (AP) to x = L/2 at the bow (FP). The 
beam and the height of the air cushion are 
assumed to be much less than the length. Hence, 
a one-dimensional ideal and compressible air 
flow in the x-direction is assumed. This means 
that the longitudinal position of the centre of air 
cushion pressure is assumed to coincide with the 
origin of the coordinate frame. The air cushion 
area is then given by A, = Lb. The total pressure 
pC(x, t) in the air cushion is represented by 

PI& t) = P;, + P”(f) + P&V f)V (3) 

where pa is the atmosphere pressure, p”(t) is the 
uniform excess pressure and ~&, t) is the 
spatially varying excess pressure. The basic 
thermodynamic variations in the air cushion are 
assumed to be adiabatic. When neglecting seal 
dynamics, aerodynamics and viscous effects, the 
external forces are given by the water pressure 
acting on the side-hulls and by the dynamic air 
cushion pressure acting on the wetdeck. It is 
assumed that the dynamic cushion pressure is 
excited by incoming sea wave disturbances. In 
the absence of waves, the stationary excess 
pressure in the air cushion is equal to the 
equilibrium excess pressure p,,. The nondimen- 
sional uniform pressure variations p,(t) and the 
nondimensional spatial pressure variations 
~&, r) are defined according to 

The volumetric air flow into the air cushion is 
given by a linearization of the fan characteristic 
curve about the craft equilibrium operating 
point. It is assumed that there are q fans with 
constant rpm feeding the cushion, where fan i is 
located at the longitudinal position xFi. The 
volumetric air flow out of the air cushion is 
proportional to the leakage area A,(t), which is 
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defined as 

AL(t) = A,, + ARCS(t). (5) 

AL(f) represents the total leakage area and is 
expressed as the sum of an equilibrium leakage 
area A, and a controlled variable leakage area 
ARCS(f). The equilibrium leakage area 

A,, = AtP + ArP (6) 

will be divided into leakage areas under the bow 
and stern region or more precisely under the 
stem and bow seals. AtP is the stern equilibrium 
leakage area at x = -L/2 and AEP is the bow 
equilibrium leakage area at x = L/2. The 
controlled leakage area ARCS(t) of the ride 
control system is written 

ARCS(f) = $ (Azcs + AA~CS(~Bi, t)), (7) 

where r is the number of louvers. The louvers 
are variable vent valves located at the lon- 
gitudinal position x = xLi, which change the area 
of openings in the wetdeck for the purpose of 
leakage control. Azcs is defined as the mean 
operating value or bias of the leakage area and 
AARCS(X,i, t) is defined as the commanded 
variable leakage area of louver i. Pressure 
sensors are used to measure the pressure 
variations in the air cushion. Sensor i is placed at 
the longitudinal position x = X,i. Dynamic 
leakage areas under the side-hulls and the seals 
owing to craft motion are assumed to be 
negligible in this analysis. This type of leakage is 
a hard nonlinearity and can be analysed using 
describing functions (Gelb and Vander Velde, 
1968). Computer simulations done in Wrensen et 
al. (1992) indicate that the dynamic leakage 
terms owing to craft motion can be neglected for 
small amplitudes of sea wave disturbances and 
associated small amplitudes of heave and pitch 
motions, as long as the sealing ability is good. 

2.1. Boundary value problem for spatial pressure 
variations 

The effect of spatial pressure variations in the 
air cushion was investigated by Serensen ef al. 
(1992, 1993) in the frequency domain using 
Helmholtz equation. In this paper the wave 
equation is considered leading to a more general 
solution formulated in the time domain. A 
distributed model is derived from a boundary 
value problem formulation. A one-dimensional 
ideal and compressible air flow in the x-direction 
is assumed. The motion of the craft in the 
vertical plane is assumed to be small so the body 
boundary conditions and the free surface 
condition can be linearized. The air flow 
dynamics is formulated in terms of potential 
theory. The velocity potential &,(x, Z, t) for the 
spatially varying pressure is assumed to satisfy 
the wave equation in the cushion region and the 
boundary conditions enclosing the cushion 
volume (Fig. 2). The wave equation is given by 

~2&J(x, L, 4 
at2 _. 

_ c* a*d%,(x~ z1 t> + a24&, z, 4 ( ax2 a.22 1 = 0, (8) 

where c is the speed of sound in air. The 
one-dimensional approximation of the velocity 
potential is introduced 

ICI,&, t) = ; ~‘Od,,(l-, z, t) dz. (9) 

By integrating the wave equation in the 
z-direction, the following partial differential 
equation of second-order in the two variables x 
and f is obtained 

a+&, Z, d ad&, Z, 0 - 
az z=h, az 

+ c2 a?k,k 4 _ a?k,c6 4 

ax2 at2 
=o. (10) 

4 L/2 _ L/2 1 

ul & D 
x RCS 

AP 

Fig. 2. The boundary value problem. 



186 A. J. Sorensen and 0. Egeland 

It is then possible to derive an analytical solution 
of the boundary value problem. Because the 
louver area and the outflow area of the lift fan 
system do not cover the whole beam, it is 
necessary to integrate these boundary conditions 
in the y-direction, The nondimensional spatial 
pressure variations ~,&x, t) can be found as 

The unbounded differential operator a’/&’ 
with boundary conditions on the finite interval 
x E [--L/2, L/2] appearing in (10) has a set of 
discrete eigenvalues (Keener, 1988) called the 
discrete spectrum of the differential operator. 
#/ax2 is a time-invariant smooth, self-adjoint 
differential operator which is dense in the infinite- 
dimensional inner product space L2(Q), where R 
denotes the air cushion. L,(Q) is complete and 
hence a Hilbert space. The eigenvalue equation 
is given by 

-25 @j(X)) = w;q(x), ; = 1, 2, 3, k, 

(12) 

where q(x) is the eigenfunction or the mode 
shape function of mode j, and w, is the 
corresponding eigenfrequency. The eigenfunc- 
tions for j E (1, 2, 3, . . , k} are orthonormal, 
that is 

(T;(X), rj(X)) = ~‘~‘2 ri(X)rj(X) dX = 6,,, (13) 
--LIZ 

where (., .) denotes the scalar product. The 
Kronecker delta is defined by S, = 1 when i = j 
and 6, =O when i #j. Letting k+ m, the 
eigenfunctions q(x) for j E (1, 2, 3, . .} form an 
orthonormal basis of the Hilbert space &(Q). 
Thus, ~,~(x, t) has a unique modal representa- 
tion for k + ~0 given by 

(14) 

where the time derivatives of pj(t) is the modal 
amplitude function for mode j and $T(x) = T,(X). 
Owing to linearity and orthogonality between 
the modes, each mode can be considered 
separately and the contributions from each of 
them are superposed. In Appendix B the 
boundary conditions on the surfaces enclosing 
the cushion air volume are defined. The mode 
shape functions will be chosen so the boundary 
conditions on the seals are satisfied. The 
following mode shape functions, in general 

infinitely many, will satisfy the boundary 
condition on the seals 

L q(x)=cos’? xf- 
i 1 L 2’ 

L L 
W) 

.\:E 
[ 1 ---, j = 2’2 1, 2, 3, . 

From (12) we find that the corresponding 
eigenfrequency W, for mode j is 

The modal amplitude functions will be deter- 
mined according to (10) and the remaining 
boundary conditions. By taking the inner 
product of (10) with the mode shape function of 
mode j for j E (1, 2, 3, . . .} and using (14), we 
find the spatially varying pressure equation for 
mode j for j E (1, 2, 3, . .} (see (22) and (25) 
later in the text). The heave force and the pitch 
moment owing to the spatially varying pressure 
are found in the following way: 

I 
I.12 x 

F;p(f) = p,b l; Pjii(f)Cf(x>dx =O, 

i = 1,2,3,... , 

F;P(t) = -p”b (17) 

b j = 2,4, 6, . . 

Owing to symmetry around the origin, there is 
no contribution from the spatially varying 
pressure on the heave motion. However, the 
pitch moment F?(t) is important to include in 
the pitch equation. 

2.2. Equations of motion and dynamic cushion 
pressure 

The coupling between the dynamic uniform 
pressure and the spatially varying pressure and 
hydrodynamic and hydrostatic coupling terms 
like A,-, B,j- and C,,-terms are assumed to be 
negligible regarding control system design. The 
equations of motions and the dynamic air 
cushion pressure are: 
(1) Uniform pressure equation 

K, CL,(t) + K+,(f) + ~co&%(t) 

= K2 c AApCS(xsr, t) + ~coi;,(O, (18) 
,=l 

where the time derivative of V,(t) is the wave 
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volume pumping and is found in the following 
way for regular head sea waves: 

i&(t) = b JLiZ k(x, f) dx 
- Ll2 

kL 
sin - 

= A&+- cos o,t (19) 

2 

and 

j = 2,4,6, . . 

pi(t) + 2&fjWjfjj(t) + WTpj(t) 

= 

(25) 

where the wave volume pumping for regular 
head sea for j = 2,4,6, . . . , is 

K = PcohoAc 
, K2= ~cocn 

2P0 
1 pa, 4c2 

q(t) = - 

k sin? 

(20) PAL 
2 0~5, cos w,t. (26) 

where pa is the air density at the atmospheric 
pressure pa, pCO is the density of the air at the 
equilibrium pressure pO, y is the ratio of specific 
heat for air, Q,; is the equilibrium air flow rate 
of fan i when p”(t) =pO and (~3Q/dp)l,, is the 
corresponding linear fan slope about the craft 
equilibrium operating point Qoi and pO of fan i. 
c, is the orifice coefficient varying between 0.61 
and 1 depending on the local shape on the edges 
of the leakage area. In the numerical simulations 
c, = 0.61 is used. 
(2) Spatially varying pressure equation 

/kc~,p(X, t) = 2 pj(t) COS ‘f X + $ 7 

j=l 2 > 
XE 

[ 1 
-4,; . (21) 

Odd modes around the centre of pressure, 
j = 1, 3, 5, . . . 

pi(t) + 2&jWjJjj(t) + WTpj(t) 
r 

= -cy7jg(r) + Cl c COSJf 
i=l 

(22) 

where 

2K,c2 4PcoLC2 

“=pov,) ‘*’ =p,h,( ja)* * 
(23) 

The wave volume pumping for regular head sea 
for j = 1, 3, 5, . . . , is 

4c2 
I@) = - - 

kcos$ 

PAL k2_ j?! 
( ) 

2 W& sin OJ. (24) 

L 

Even modes around the centre of pressure, 

The relative damping ratio for j = 1,2, 3,4, . . . , 
is 

x (+;+$)). (27) 

(3) Heave equation 

(m + A&L(t) + &37j&) 

+ Gv&) - A,P,P&) = FW, (28) 

where m is the craft mass. 
(4) Pitch equation 

(Z,, + A&,(t) + &s%(f) + Css~&) 

- 2pob x (k)‘,,,, = O$), (29) 
j=1,3,... la 

where Z,, is the moment of inertia around the 
y-axis. 

The hydrostatic Cii terms are found in the 
standard way by integration over the water plane 
area of the side-hulls. The hydrodynamic 
added-mass coefficients Ai;, the water wave 
radiation damping coefficients Bii, and the 
hydrodynamic excitation force in heave F:(t) 
and moment in pitch F:(f), are derived from 
hydrodynamic loads on the side-hulls. The 
hydrodynamic loads on the side-hulls may be 
calculated as presented in Nesteglrd (1990), 
Faltinsen and Zhao (1991a, b) and Faltinsen et 
al. (1991,1992). However, since the main focus 
in this paper is on the high frequency range, we 
have used a simplified strip theory based on 
Salvesen et al. (1970) for calculation of the 
hydrodynamic loads. Neglecting the effects of 
transom stern and radiation damping, the 
hydrodynamic excitation forces on the side-hulls 

AUTO 31-2-B 
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in heave and pitch are given by 

kI_ 
sin - 

F’?(f) = 2{;,e A” -$- (C’,; w,,w,A~,) sin o,f. 

7 

(30) 

F;(r) = 2<.,e “’ t 
1 kL< 2 kL_ 
- cos - -- 
k 2 

7 
k.-I. sin 7 _ i 

kL 
sin 1 

x-A 

-- 1 kL, 
33 cos w,l. (31) 2 

where rf is the draft of the side-hulls. In the case 

studied here. the submerged part of the side- 
hulls are assumed to have constant cross-section- 

al area. Examples of two-dimensional frequency 

depending added-mass and wave radiation damp- 
ing coefficients are found in Faltinsen ( 1990). In 
the control system analysis constant two- 

dimensional B,, and A,, values are assumed. The 
high frequency limit of the two-dimensional 

added-mass coelficient found in Faltinsen (1990) 
is used. The selected wave radiation damping 

coefficient in pitch corresponds to the value at 
the pitch resonance frequency determined from 

structural mass forces acting on the craft and 
hydrodynamic forces on the side-hulls. For heave 

we have chosen the wave radiation damping 
coefficient at the resonance frequency that will 
exist without the presence of the excess air 
cushion pressure. These simplifications are 

motivated by fact that the effect of damping is 
most pronounced around the corresponding 

resonance frequency. 

2.3. Discussion of the muth~mutical motlt~l 
It is seen from (28) and (29) that the heave 

and pitch motions are coupled to the dynamic 
excess pressure in the air cushion region. This is 

to be expected since the major part of the SES 
mass is supported by the air cushion excess 

pressure. The dynamic air cushion pressure is 
expressed as the sum of the dynamic uniform 
pressure and the spatially varying pressure. An 
important question is how many acoustic modes 
should be included in the mathematical model. 
Even if the solution is formally presented by an 
infinite number of acoustic modes, the modelling 
assumptions will not be valid in the high 
frequency range when two- and three- 
dimensional effects become significant. Then a 

more detailed numerical analysis is required, like 

for instance a boundary element or a finite 
element method. In the following we will use a 
tinite number k of acoustic modes in the mathe- 
matical model. The effect of higher order modes 

is assumed to be negligible. It is important to 

note that the air cushion dimensions and the 
forward speed affect the energy level of the 

vertical accelerations caused by the acoustic 

resonances. The acoustic resonance frequencies 
arc inversely proportional to the air cushion 
length as seen from (16). The wave excitation 

frequency which is given by the circular 
frequency of encounter, w, = w, + kU. increase 
with the forward speed U. Thus waves of 

relatively low circular frequency w, may excite 

the craft in the frequency range of the acoustic 
resonance when the speed I/ is high. This may 

result in more energy in the sea wave excitation 

around the resonance frequencies since the 

maximum sea wave height will tend to increase 
when the period of the sea waves increases. The 

relative damping ratio 5, given by (27) is an 
important parameter. As expected the leakage 
terms and the fan inflow term contribute to 

increased damping. One should notice that the 
fan slope (@/;lp)lO,, is negative. We also 
observe that the longitudinal placement of the 
fan and the louver systems strongly affects the 

relative damping ratio. In the case of a single fan 
system and a single louver system, it may seem 

natural to place the fan and the louver in the 
middle of the air cushion, that is xF = x,_ = 0. 
However, from (27) we observe that the relative 

damping ratio for the odd modes will be reduced 
significantly if x, and xF are equal to 0. 

Maximum damping of both the odd and even 
acoustic resonance modes in the case of a single 
lift fan system and a single louver system is 
obtained for xy and x1_ equal to -L/2 or L/2. 
The relative damping ratio of the first odd 

acoustic mode on a 35 m SES will increase from 
about 0.05 to 0.2 by placing the lift fan system at 

one of the ends of the air cushion instead of in 
the middle. This gives a significant improvement 

in ride quality even when the ride control system 
is turned off. In the same manner the active 
damping due to the ride control system is 

maximized by placing the louver system at one 
of the ends of the air cushion. 

.:. KOBUS7‘ DISSIPATIVE CONTROLLER DESIGN 

In this section a ride control system based on 
the mathematical model derived in the previous 
section is developed. The objective of the 
controller is to damp out pressure fluctuations 
around the equilibrium pressure p,) in the 
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presence of sea wave disturbances. This can be The use of collocated compatible actuators and 
formulated in terms of the desired value of the sensors pairs, and strictly passive controllers 
nondimensional dynamic uniform pressure 
p:(f) = 0 and the nondimensional spatially 

provides a design technique for circumventing 

varying pressure &,(x, t) = 0, where the super- 
these problems. The louver and sensor pairs are 
distributed along the air cushion, preferentially 

script d denotes the desired value. The number in the longitudinal direction. The problem 
of modes to be damped depends on the described in this paper is closely related to the 
requirements related to established criteria for problem of vibration damping in large flexible 
crew workability and passenger comfort. The space structures. Inspired by the work of Joshi 
mathematical model of the craft dynamics is of (1989) we propose to use dissipative control for 
high order as it contains a high number of vibration damping of SES. Note that the 
acoustic modes. A practical implementable problem of vibration damping of SES has 
controller has to be of reduced order. When significant differences as the dynamic system 
designing a controller based on a reduced-order given by (18)-(31) is of third-order as opposed 
model, it may happen that the truncated or to similar vibration damping problems of large 
residual modes result in degradation of the 
performance, and even instability of the closed- 

flexible space structures that can be written as an 

loop system. This is analogous with the so-called 
equivalent second-order mass, damper and 
spring system. Also, we use passivity theory in 

spillover effect in active damping of vibrations in the following, whereas Joshi (1989) used 
mechanical structures (Balas, 1978). The inad- Lyapunov theory. In dissipative controller 
vertent excitation of the residual modes has been synthesis using a linear design model it is 
termed control spillover, while the unwanted possible to use standard linear synthesis 
contribution of the residual modes to the sensed methods, however, the design is complicated by 
outputs has been termed observation spillover the constraint that the resulting controller must 
(Fig. 3). This problem was also discussed by satisfy appropriate passivity properties. In the 
Gevarter (1970) in connection with control of present paper a static dissipative solution is 
flexible vehicles. Mode 0 in Fig. 3 is related to presented where a passive controller with 
the uniform pressure, while the higher-order proportional feedback is used. It would also be 
modes are related to the spatially varying possible to use dynamic dissipative control based 
pressure. The controller must be robust with on LQG synthesis (Lozano-Lea1 and Joshi, 1988; 
respect to modelling errors and parametric and Joshi and Maghami, 1990; Joshi et al. 1991) or 
nonparametric uncertainties, nonlinearities in H” control synthesis (Haddad et al., 1993). It is 
sensors and actuators, and component failure. straightforward to extend the stability results 

k+l 
c x1 

Fig. 3. Observation and control spillover, where C*xL = cos krr(xl. + L/2)/L and C’x, = cos klt(x, + L/2)/L. 
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presented in the following to the case of dynamic 
dissipative controllers. 

3.1. Preliminaries 
The linear vector space L; of real square- 

integrable n vector functions of time t is defined 

by 

L; = {CR++ R” / rr(r)ri(t) dt < -}. (32) 
I J Jo 

Define the truncation operator PT such that 

Zr = Prz = 
z(t) O-=tiT 

0 t>T ’ 
(33) 

The extended space L& is then defined as 

L;c={(z:R++R”)VTzO, lIzlln<“}. (34) 

The respective norms (1. )I2 and (1. (/ TZ are defined 

by 

112112 = FmX /lzll 7‘27 (35) 

where 

llzll~2 = (2, t)F2 = (j’z(t)‘;(t) dt)“‘. (36) 
0 

The inner product (., .) of x, z E Lz, is 

If (Y = 0, the mapping H is L; stable with finite 
gain and zero bias. 

(x, z)r = ~$‘i(r, dt 

so that ~IzI/~~ = (z, z)~ If x, z E L;, then 

(37) 
3.2. State space model 

(x, 2) = lim (x. t)r (38) 7‘-r 

and hence l/z/j: = (z, z). A function t: R, -R” 
belongs to LZ if 

The dynamic system given by (lg)-(31) is 
written in standard state space form 

i(t) = Ax(t) + Bu(t) + Eu(t), 

y(t) = b(t), 
(44) 

where the n-dimensional state vector x(t) is 

I/2(1, = ess_soup It(t)1 <SC. (39) 

By essential supremum we mean 

pk_9 Lil, Ij2, 7 LiJ’. (45) 

u(t) is the (3 + k)-dimensional disturbance vector 
defined as 

ess sup /z(t)1 = inf v(t) = [Ft;, F;, q,, v,, ri,, , Ij$ (46) 
I?0 fZ(l 

x {a 1 Iz(t)l % a almost everywhere}. (40) 

that is /z(t)1 5 a except for a set of measure zero, 
and the ess sup is the smallest number which has 
that property. Notice that the LZ space is a 
normed linear space but not an inner product 

space. Disturbances induced by irregular sea, 
and regular sea as well, are persistent for a long 
period of time and can be represented by 
sinusoidals. This is the case in (19), (24), (26), 
(30) and (31). Such disturbances belong to the 
L: space but not to the L; space. On the other 
hand, in regular sea over a finite time interval 
when for example running the craft into and out 
of a wave field set up by the craft itself or by 

where F;(t), F;(t) and the time derivative of 
q(t) for i = 0, 1, 2, . . . , k are found in Section 2. 
k is the number of acoustic modes, u(t) is the 
r-dimensional control input vector, and r is the 
number of louvers. The elements of u(t) are, for 
i=l,2,...,r 

u,(t) = AApcs(Xs,, t), (47) 

where AA~CS(~S,, t) is defined in (7). y(t) is the 
m-dimensional measurement vector and m is the 
number of pressure sensors. The symbolic 
expressions for the II X n system matrix A, n X r 
control input matrix B, n x (3 + k) disturbance 
matrix E and m X n measurement matrix C are 
given in Appendix C. Consider the case where 

other ships, the disturbances are transient and 
may belong to the L; space. This may be 
modelled using the truncation operator given in 
(33) on the (19), (24), (26), (30) and (31). 
Passivity and strict passivity on Lze are defined 

below 

Definition 1. (Desoer and Vidyasagar, 1975). 
Let H : L& --_) Ly,. H is passive if there exists 
some constant p such that 

(Hu, u), 2 p, Vu E L;,, VT z 0. (41) 

H is strictly u-passive if there exist some a2 => 0 
and some constant j3 such that 

(Hu, u), 2 a2 II4l;z + Pe 
vu E c;,, VT 20. (42) 

Definition 2. (Desoer and Vidyasagar, 1975). 
Let H: Lie + LE,. The mapping H is L: stable 
with finite gain if Hu E L; whenever u E Lz and 
there exist finite constants y and (Y such that 

IWII, 5 Y Ilull,, + aY, vu E L;, P E [I, 4. 
(43) 
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sensors and actuators are ideal, that is linear and 
instantaneous with no noise. It is assumed that 
the control input matrix B can be related to the 
measurement matrix C so that 

C = BTP, 

where P a it n symmetric definite 
matrix correct scaling the BT 

to the matrix. This the case there is 
collocation between sensors and 

louvers, i.e. =x,; for i and = m. can 
derive linear time-invariant bet- 
ween outputs and inputs of dynamic 
system by (44). s to the 
different Since the (A, B) 
controllable and pair (A, is observable, 

dynamic system be represented 

Y(S) = + K&)~(S) 

YU(S) + (49) 
where 

= C(sZn A)-‘B, 

Z&(s) C(sZ,, -A)-% 

and Z,, the IZ X n identity matrix. 

3.3. Stability properties of the control system 
In this section a strictly passive controller with 

finite gain is proposed. Employing the definitions 
of passivity as presented in Desoer and 
Vidyasagar (1975) and in Vidyasagar (1993) on 
an interconnected system consisting of two 
subsystems in a standard feedback configuration 
(Fig. 4), robust stability of the feedback system 
can be shown for certain input-output properties 
of the subsystems. The following lemma showing 
that the n X n system matrix A is Hurwitz will 
then be utilized. 

Lemma 1. The eigenvalues of the n X n system 
matrix A given in (44) have negative real parts. 

Proof. Consider the autonomous system of (44) 
with u(t) = u(t) = 0. Define the Lyapunov 
function candidate 

V(x) = $xx’Px > 0, (51) 

where the n X n diagonal positive definite matrix 

UC 
Hc 

A Y” 
” 

Fig. 4. Feedback system. 

P is given in (56). V(x) is positive definite. The 
time derivative of V(x) along system trajectories 
is 

v(x) = $xT(ATP + PA)x\ 

= - $x-Q 5 0. (52) 

The n X n diagonal positive semidefinite matrix 
Q is 

Q = diag [Gx2, Q~M, GM, Q&d (53) 

The 3 X 3 diagonal positive definite Qljx3 matrix 
is 

Q13,3 = diag [4ii], i = 3,4, 5, 

2B33 2B55 
q33 = p33 ___ 

m+A,,’ q44 = p44 ZS5 + As5 ’ 
(54) 

2K3 
q55 = P55 

K, ’ 

The k X k diagonal positive definite Q2kxk 
matrix is 

Q&e = diag [qi;], 
i = 5 + k + 1, 5 + k + 2, . . . ,5 + 2k, 

q(5+k+j)(5+k+j) = p(5+k+,)(5+k+j)46jwj, 

j = 1, 2,3, . . . , k. (55) 

The n X n diagonal positive definite matrix P is 
found from (52) to be 

P = diag [pii], i = 1,2, . . . , 5 + 2k, 

j = 1,2, . . . , k, 

PI1 = P33 
c33 c55 

m+A,,’ “* = ‘~4 Z5s + A55 ’ 

(56) 
P33 = P55 

,4m + As31 g1 

KIP, ’ p44= -4d 

Kl W? 
P55 = 

-1 

~coK2 
9 P(5+j)(5+j) - 7 

Cl 

1 
p(S+k+j)(5+k+j) = .-& 3 

where c1 is defined in (23). From (44) and (52) it 
is seen that 

V(x) = 0 

v (57) 

x=xO=[773,775,0,0,0,p1,p2,...,pk,0,0,....,0]T. 

However, from (44) 

jj3=ij5=Ciu=fj1=ij2=...=fjk=0, (58) 

which implies 

113=775=p,=p2=...=pk=0. (59) 

Hence, by the invariant set theorem (Vid- 
yasagar, 1993) the equilibrium point x, = 0 is 
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asymptotically stable and the result of Lemma I 
follows. CJ 

Define the linear time-invariant operators 
H,, : L;“, -+ L&(r = m) and H,,: LG ” - l,:?, such 

that y, E L;t whenever u E 15:“. In the follow- 
ing lemma it is shown that the process operator 

H, is passive. This allows for the design of 
robust, stable output feedback controllers for 

ride control of SES. 

Lemma 2. The process operator ti,, is passive. 

Proof: Set u(t) = 0 in (44) and use the Lyapunov 
function candidate as given in (51). V(x) is 

positive definite. The time derivative of V(x) 
along the system trajectories is 

tifx) = &‘(A’P + PA)x +x’PBu. (60) 

The n x n diagonal positive semidetinitc matrix 

Q is given in (53). If we assume perfect 

collocation between the sensor and actuator 
pairs, that is C = B ‘P, (60) becomes 

V(x) = X’C’U ~ ix’Qx 

= y:u .- ;x’Qx, (611 

Integrating (61) from r = 0 to t = T we obtain 

(y,,,u),.= V(r= T) V(r=O) +$ j’x’Qx(I,. 
- 0 

(62) 

Since QzO and V(t = T)>O. (62) WI bc 
written 

(y,, u), 2 -V(r =o)np 

and the result of Lemma 2 follows. 

(63) 

IKl 

Remark 1. It is evident from (44) that if the 
initial conditions are equal to zero. that is 
x(8 = 0) = 0, then p = -- 1/2x’ (r = O)Px(t = 0) 7~ 
0. 

Remark 2. The transfer matrix H,,(S) of the 

linear time-invariant operator H,, as defined by 
(50) is strictly proper and all the poles have 
negative real parts according to Lemma I. 
Hence, if u E L:tk, then y,, = I-l,,v E L:” n 1~‘:‘. 

Let the controller be defined as the linear 

time-invariant operator H, between the input 
y = y, + y, and the output u,. Connecting the i-/, 
operator with the H,, and H,, operators, we 
obtain the feedback system illustrated in Fig. 4. 
The transfer matrix of H, is denoted H,(s). 

Proportional control law. A strictly u-passive 

proportional pressure feedback controller of 

dimension r x r with hnite gain is proposed 

according to 

u,.(s) = H, (s)y(s), 

H,.(s) = G,>, 
(64) 

where G,, = diag [g,,, ] > 0 is a constant diagonal 
feedback gain matrix of dimension r X r. This 
control law provides enhanced damping of the 

pressure variations around the resonance 
frequencies. 

The main result of this section is given by the 

following theorem. 

Theorem 1. Consider the following feedback 

system (see, Fig. 4) 

Y, = 4~. 

y,, = H,,va 

Y =yu +ylJ. 
(65) 

u= m-u,= -H,y, 

where H,, , H, : L;; + L;;. Assume that 

H,,: L; ’ A + L’,“, so that y, E L;I’, whenever 

v t L‘S ’ th. H, is strictly u-passive with finite gain 
and H,, is passive. Hence, the feedback system 
defined in (65) is Ly stable and since the 
feedback system given by H,, HP and HC is 
linear, Ly stability is equivalent to LE’ (BIBO) 

stability. 

Proof: Set u(t) = 0 in (44) and use the Lyapunov 
function candidate as given in (51). V(x) is 
positive definite. If we assume perfect colloca- 
tion between the sensor and actuator pairs, that 
is C‘ = R ‘P, the time derivative of V(x) along 

the closed-loop system trajectory becomes 

v(x) = -y;C,,y, ~ ;x“Qx 

= --x’(C’G,,C + lQ)x, (66) 

where the n x n diagonal positive semidefinite 

matrix Q is given in (53). It can be demonstrated 

by inspection that 

C”G,,C + fQ 2 0, (67) 

since the first term in (67) is in quadratic form 
for diagonal G/, > 0 and hence positive semi- 
definite. The time derivative of V(x) is negative 

semidefinite. Using the invariant set theorem 
(Vidyasagar, 1993) the equilibrium point of the 
closed-loop system is asymptotically stable and 
the result follows. 0 

L’,’ and LZ stability of the closed-loop system 

using collocated sensor and actuator pairs is 
maintained regardless of the number of modes, 
and regardless of the inaccuracy in the 
knowledge of the parameters. Thus, the spillover 
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problem is eliminated and the parameters do not 
have to be known in advance for stability to be 
obtained. Notice that there are no restrictions on 
the location of the collocated sensor and 
actuator pairs with respect to stability. However, 
for optimizing the performance the longitudinal 
location of the sensor actuator pairs is crucial, 
as seen in equation (27). Robustness with respect 
to unmodelled dynamics and sector non- 
linearities in the actuators are shown in Sorensen 
(1993). It is further shown by Sorensen (1993) 
that some imprecision in the collocated sensor 
and actuator pairs can be accepted without 
violating the stability properties of the closed- 
loop system. 

4. SIMULATION AND FULL-SCALE RESULTS 

In this section numerical simulations and 
results from full-scale trials with a 35 m SES 
advancing at high speed in head sea waves are 
presented. The effect of collocation and noncol- 
location of the sensor and actuator pairs for the 
35 m SES is investigated. The SES is equipped 
with one single fan and louver system. Main 
dimensions and data of the SES craft are given 
in Appendix A. The number of acoustic modes 
considered in the simulation model is four, i.e. 
k = 4. 

4.1. Numerical simulations 
Figure 5 shows the Bode plot of &,(iw,) 

between the pressure sensor yU(s) and the louver 
U(S) when the pressure sensor and actuator pair 
is fully collocated. The sensor and louver are 

located at the fore end of the air cushion. When 
the frequency of encounter goes to zero, the 
dynamic pressure tends to a static value 
proportional to K1/K2. This indicates that the 
equilibrium pressure p. will decrease when the 
equilibrium leakage area increases, and vice 
versa. Around 0.2Hz the response is close to 
zero. This is related to the structural mass forces 
acting on the SES and the hydrodynamic forces 
acting on the side-hulls. The high value around 
2 Hz is due to the resonance of the dynamic 
uniform pressure. The high values around 6, 12, 
18 and 24 Hz are related to the four acoustic 
resonance modes. From the phase plot we 
observe that the phase varies between 90” to 
-90” in the whole frequency range. This is to be 
expected when using collocated sensor and 
actuator pairs. 

Figure 6 shows the Bode plots of HJio,) 
when the pressure sensor is located at the fore 
end of the air cushion while the louver is located 
at the aft end of the air cushion. From the phase 
plot we observe that the sensed pressure signal 
at the fore end is 180” out of phase compared to 
the pressure signal at the aft end where the 
louver is located. This is to be expected with 
noncollocated sensor and louver pairs. Non- 
collocated sensor and actuator pairs introduce 
negative phase and may lead to instability. 

4.2. Full-scale results 
The prototype ride control system used in the 

full-scale experiments was based on the passive 
controller as presented in Section 3. The control 

Bode plot - phase(y/u) 

lOO- 

Hz 

Fig. 5. Collocated sensor and actuator pair; numerically calculated Bode plot of H,(io,); xL = x, = 12 m, 
I+ = 6 m, U = 50 knots, p0 = 500 mm WC. 
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Fig!. 6. Noncollocated sensor and actuator pair; numerically calculated Bode plot of H,(iw,.); X, = 12 m, 
x, = -12m.x, =tm. ci: SO knois, JT<, = SCQmm WC.’ ’ _’ 

algorithms in the ride control system were partly 
implemented on a personal computer (PC). 
Analog hardware devices were also used. An 
outer feedback loop was implemented on the 
PC, while a faster inner feedback loop around 
the electrohydraulic louver system was imple- 
mented by means of analog hardware devices. 
The louver system consisted of two vent valves 
located side by side at the same longitudina! 
position xL = 8 m. The two vent valves were 
operated in parallel in the outer feedback loop. 
Two pressure sensors located at x,, = 10 m and 

x,2 = -10 m were used to measure the excess 
pressure variations in the air cushion. One 
accelerometer located about 5 m aft of the centre 
of gravity was used to measure the vertical 
accelerations. The inner analog controller loop 
around the louver system provided the necessary 
opening and closing actions of the vent valves. 
The experimental arrangement is illustrated in 
Fig. 7. The full-scale measurements were carried 
out in sea states with significant wave heights 
estimated to vary between 0.3 and 0.6 m. The 
power spectra of the vertical accelerations with 

and without the ride control system are 
presented. 

Figure 8 shows the full-scale power spectra of 
the vertical accelerations about 5 m aft of the 
centre of gravity with and without the ride 
control system activated. With the ride control 
system turned off, we observed significant 
response around 2, 5 and 8 Hz. The response 
around 2Hz is related to the resonance of the 
dynamic uniform pressure, while the response 
around 5 and 8 Hz is related to the first odd and 
even resonance modes. When activating the ride 
control system the response around 5 Hz was 
significantly amplified, while the response aro- 
und 2 Hz was only slightly reduced. In this case 
the pressure signal at x,~ = -10 m was used in 
the feedback loop. Hence, the actuator and 
sensor pair was completely noncollocated since 
the louver was located at x,_ = 8 m. This means 
that for the first odd mode, the noncollocation 
resulted in positive feedback for this particular 
mode because the pressure at the sensor location 
was 180“ out of phase compared to the pressure 
at the actuator location in the frequency range 

Fig. 7. Experimental arrangement. 
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[Hz1 

Fig. 8. Noncollocated sensor and actuator pair; full-scale power spectra of the vertical accelerations at 
x = -5 m of a 3.5 m SES with the ride control system on and off, p,, = 450 mm WC. 

dominated by the first odd acoustic resonance 
mode. The response around 8 Hz was more or 
less unchanged. Both time series were recorded 
when the craft was advancing with the speed 
U = 45 knots in head sea waves with significant 
wave height estimated to be H, = 0.3 m. 

Figure 9 shows the full-scale power spectra of 
the excess pressure variations at xS1 = 10 m in the 
air cushion with and without the ride control 
system activated. The time series were recorded 
during the same run as above. The pressure 
signal at xS2 = -10 m was used in the feedback 
loop. Hence, the louvers and sensors were 
completely noncollocated. With the ride control 

system turned off, we observed a response 
around 2 and 5 Hz. Activating the ride control 
system, the response around 5 Hz was sig- 
nificantly amplified. At the resonance of the 
dynamic pressure around 2 Hz the response level 
was reduced by the ride control system. 

Figure 10 shows the full-scale power spectra of 
the vertical accelerations about 5 m aft of the 
centre of gravity with and without the ride 
control system activated. In this case the 
pressure signal at xS1 = 10 m was used in the 
feedback loop. Hence, the louvers and sensors 
were ‘almost’ collocated since the louvers were 
located at xi_ = 8 m. With the ride control system 

250000 .- 

1 Ride control system OFF 

2ooooo: 7- 

150000.. 

. Ride control system ON 

T------ 

ia 

Fig. 9. Noncollocated sensor and actuator pair; full-scale power spectra of the excess pressure at x = 10 m of 
a 35 mm SES with ride control system on and off, p0 = 450 mm WC. 

AUTO 31-2-C 
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Ride control system OFF 
-7.. 

Ride control system ON 

4 
2. 4. 6. 10. 

WI 

Fig. 10. Collocated sensor and actuator pair; full-scale power spectra of the vertical accelerations at 
x = -5 m SES with ride control system on and off; p. = 430 mmWc. 

turned off, we observed responses around 2, 5 
and 8 Hz. Activating the ride control system, the 
response around all three resonance frequencies 
was significantly reduced. These time series were 
recorded when the craft was advancing with the 
speed CT = 44 knots in head sea waves with 
significant wave height estimated to be H, = 
0.6 m. 

Figure 11 shows the full-scale power spectra of 
the excess pressure variations at x,, = 10 m in the 
air cushion with and without the ride control 
system activated. The time series were recorded 
during the same run as in Fig. 10. The pressure 
signal at xsl = 10 m was used in the feedback 

loop. Hence, the louvers and sensors were 
‘almost’ collocated. With the ride control system 
turned off, we observed response around 2 and 
5 Hz at the fore end of the air cushion. 
Activating the ride control system, the response 
around all three resonance frequencies was 
significantly reduced. 

5. CONCLUSIONS 

The pressure variations in the pressurized air 
cushion of a SES have two fundamental 
characteristics; a dynamic uniform and a spatially 
varying pressure term. It has been demonstrated 

Ride control system OFF 
-,. 

iN 

Ride control system ON 

Fig. 11. Collocated sensor and actuator pair; full-scale power spectra of the excess pressure at x = 10 m of a 
35 mm SES with ride control system on and off; p‘, = 430 mm WC. 
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that the resonances of the dynamic uniform 
pressure and the spatially varying pressure cause 
excessive vertical accelerations when the craft is 
advancing in sea states which contain energy in 
the frequency domains corresponding to the 
resonance frequencies. In order to achieve high 
human comfort and crew workability, it is 
necessary to reduce these accelerations using a 
ride control system. A distributed ride control 
system has been developed based on the theory 
of passive systems, and a proportional pressure 
feedback controller has been proposed. Full- 
scale experiments of a prototype ride control 
system showed significant improvement in ride 
quality when using a ride control system which 
provided dissipation of energy around the 
resonance frequencies. The full-scale experi- 
ments also showed the importance of using 
collocated sensor and actuator pairs in the 
acoustic dominated frequency range. Spillover 
effects such as unwanted excitation of residual 
modes were avoided, regardless of the number 
of modes considered and the parameter values, 
through the use of collocated sensor and 
actuator pairs. 
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APPENDIX A 
SES main dimensions 
Length overall: 35 m 
Equilibrium fan flow rate: 150 m3/s 
Linear fan slope: -140 m*/s 
Cushion length: 28 m 
Nom. cushion pressure: 500 mm WC 
Cushion beam: 8 m 
Cushion height: 2 m 
Weight: 150 ton 
Speed: 50 knots 

APPENDIX B 

Boundary conditions 
We can set up the following boundary conditions on the surfaces enclosing the cushion air volume. 

1. On the rigid part of the wetdeck (z = h,) 

a4&, z, t) 
a2 = ?3W - Xi)SW. 03.1) 
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2. At the rigid bow and rear seal systems (x = *L/2) 

G&T z. r) = O, 
dX 

3. At the fan outlet (z = h,, x = xr,) 

where AA is the outlet area of fan i. 
4. At the controlled leakage area (z = h,, x = x,,) 

5. At the bow leakage area (z = 0, x = xFp = L/2) 
Assuming no motion induced leakage, we have 

6. At the stern leakage area (z = 0, x = xAp = -L/2) 
Assuming no motion induced leakage, we have 

ad&, z, 1) C” 2; z 
az = -d ( 2 

bJ” z /$W/(XM) + LL”W j. 

7. At the mean free surface (z = 0) 

03.2) 

(B.3) 

(B.4) 

03.5) 

03.6) 

03.7) 

APPENDIX C 

Symbolic model matrices 
The n x n system is given by 

where O,,,, O,,, and Ok,,, are the 5 X k. k X 5 and k X k zero matrices, respectively. Ikxk is the k X k identity matrix. Al,,, is 

defined as 

Al 5x5 = 

A2,,, is defined as 

where 

A3 kx5 is defined as 

A2 5x/, = 

.43k,s = 

0 

0 

A<P<> 

m+A33 

0 

K3 

K, 

(C.2) 

(C.3) 

(C.4) 

(C.6) 
where 
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A4kxk and A5k,k are defined as 

The n X (3 + k) disturbances matrix is defined as 

I 

E= 

0 

0 

1 

n+A33 

0 

0 

The n x r control input matrix is given by 

B= 

0 

0 

0 

0 

K -2 

K, 

A4,xk = diag [-~$1, (C-7) 

A5 kxk = diag [-25,wj]. (C.8) 

1 

15s + As5 
0 0 0 . . 0 

0 & 

K, 
0 0 ... 

0 kX(3+k) 

0 kx3 dk X k 

0 . . . 0 

0 . . . 0 

0 . . 0 

0 . . . 0 

K -2 
KI 

K 2 

K1 
0 kXr 

The WI x n measurement matrix is given by 

0 

0 

0 

0 

1 

p = 

0 

0 

0 

0 

1 

0 kxm 

. . 

. . 

. . 

. 

. . 

cos;(xr,+$) cos;(x12+;) . . 

cos~(x*,+~) cos$(xs2+$) .. 

_cos~(xs, +g cos$yxs2+$) . . 

co,; .,+; ( > 
co2 x 

L ( I _+; 

,,L? x L’ 
L ( -+5 

(C.9) 

(C.10) 

(C.11) 

where 

(C.12) 


