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Summary

Production optimization for water flooding in the secondary phase of oil recovery is
the main topic in this thesis. The emphasis has been on numerical optimization al-
gorithms, tested on case examples using simple hypothetical oil reservoirs. Gradient-
based optimization, whichutilizes adjoint-based gradient computation, is used to solve
the optimization problems.

Thefirst contribution of this thesis is to address output constraint problems. These
kinds of constraints are natural in production optimization. Limiting total water pro-
duction and water cut at producer wells are examples of such constraints. Tomaintain
the feasibility of an optimization solution, a Lagrangian barrier method is proposed to
handle the output constraints. This method incorporates the output constraints into
the objective function, thus avoiding additional computations for the constraints gra-
dient (Jacobian) which may be detrimental to the efficiency of the adjoint method.

The second contribution is the study of the use of second-order adjoint-gradient
information for production optimization. In order to speedup convergence rate in the
optimization, one usually uses quasi-Newton approaches such as BFGS and SR1meth-
ods. These methods compute an approximation of the inverse of the Hessian matrix
given the first-order gradient from the adjoint method. The methods may not give
significant speedup if the Hessian is ill-conditioned. We have developed and imple-
mented the Hessian matrix computation using the adjoint method. Due to high com-
putational cost of the Newton method itself, we instead compute the Hessian-times-
vector product which is used in a conjugate gradient algorithm.

Finally, the last contribution of this thesis is on surrogate optimization for water
flooding in the presence of the output constraints. Two kinds of model order reduc-
tion techniques are applied to build surrogate models. These are proper orthogonal
decomposition (POD) and the discrete empirical interpolation method (DEIM). Opti-
mization using a trust-region framework (TRPOD) is then performed on the surrogate
models. Furthermore, the output constraints are again handled by the Lagrangian bar-
rier method.
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AD Automatic Differentiation
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Chapter 1

Introduction

1.1 Background

The need for fossil fuel energy has always been increasing due to the rise of human
population and the modernization of civilization. Oil reservoirs which were easy to
find and drain are now few and far between. Oil fields were initially discovered mainly
as onshore reservoirs but offshore areas are becoming more dominating, even moving
towards the Arctic region. Given the current situation, a small improvement in en-
hanced oil recovery (EOR) techniques will have enormous impact on oil production
and hence the value of assets. Therefore EOR is a very active research field in the reser-
voir engineering community.

Processes involved in an oil reservoir production can be classified into upstream
and downstream parts as shown in Figure 1.1. The upstream processes deal with sub-
surface flows, including the subsurface reservoir itself while the downstream part has
to do with pipelines, separators, and export facilities. Timescales in the oil reservoir
extraction processes vary from the upstream to the downstream part. In the upstream,
fluid movement can be very slow due to geological properties and the large-scale na-
ture of oil reservoirs. Fluid movement in a reservoir may be in the order of months or
years, e.g., for moving fluid from injector wells to producer wells. The dimension of
oil reservoirs, as seen in Figure 1.1, can be in the order of kilometers. In contrary to
the upstream part, timescales are much faster in the downstream processes; typically
hours or even into minutes.

The focus in this thesis will be on the upstreampart of the oil reservoir process. We
will apply techniques from systems and control to increase oil recovery. The upstream
technologies include modeling of subsurface reservoirs, which is known as reservoir
simulation. The simulation uses mathematical models governed by partial differential
equations (PDEs) to help reservoir engineers learn the dynamics and support impor-
tant economic decisions. The decisions are typically made on a long term horizon,
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1. Introduction

Figure 1.1: Oil reservoir from subsurface to surface facilities. Courtesy of Nexus - Hal-
liburton.

like a five year period or more. As such, the reservoir simulations are normally run
offline. Determining fluid injection rates and production targets are examples of de-
cisions supported by reservoir simulators. There also exists lower level control, on a
faster timescale, which will execute the actual production decisions, see Foss [2011]
for a detailed discussion of process control methods in the upstream petroleum indus-
tries. The research topic of systems and control in oil reservoirs has been coined by
the term closed-loop reservoir management. This expression is further explained in the
subsequent section.

1.2 Closed-loop Reservoir Management

The term closed-loop reservoir management (CLRM) appears in Jansen et al. [2005]
and Jansen et al. [2009a]. It is also known as real-time reservoir management in Sa-
putelli et al. [2006] or a self-learning reservoir in Saputelli et al. [2005]. The principle of
CLRM is to use control and optimization concepts from the fields of process control,
and data assimilation from oceanography and meteorology. We depict CLRM in Fig-
ure 1.2, consisting of an optimizer, plant (oil reservoir), and state/parameter estimator
or observer. Controlling an oil reservoir is a complex time-dependent process because
it cannot be seen physically, as it is lying deep down inMother Earth. Measurement de-
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vices ranging from sensors inwells to seismic data acquisition systems are used to infer
reservoir conditions. But, still one is not able to describe the reservoir accurately. Large
uncertainties related to fluid and rock properties are unavoidable. In addition, mea-
surement devices also introduce noise. The measurement data are used to close the
loop (as feedback) since the observer is connected to the optimizer as it uses updated
reservoir models. However, reservoir models do still have challenges to fully represent
the physics of the reservoirs themselves.

Reservoir
Model

Goal :
Objective
Function

Optimizer

Constraints

Oil Reservoir

Control input

Estimation
Algorithm

Reservoir Model

State/Parameter Estimator

Estimated state/
parameter

Process noise

Measurement
noises

Control input

Output measurement

Figure 1.2: Closed-loop control system treating oil reservoir as a plant.

The closed-loop reservoir management approach provides a handful of compu-
tational methods. To deal with uncertainties, instead of using one best-effort model
and by applying a data assimilation technique, the reservoir model may be realized as
a set of ensemble models to include statistical uncertainties. For the optimizer, there
exists a wide variety of optimization methods. The most efficient method to deal with
large-scale systems, as oil reservoirs, is to use gradient-based optimization provided
gradients are available at a reasonable cost. Optimal control theory offers an efficient
method to compute gradients since only two simulation runs are necessary regardless
of the number of optimization variables. This is the adjoint method. Furthermore,
due to the large dimension of reservoir models, there exists a scaling technique to re-
duce the dimension to a reasonable number which is still good enough to preserve
physical properties of the reservoir model. This technique is calledmodel order reduc-
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tion which, once implemented, may give substantial speedup of reservoir simulation
runtime. One goal of CLRM is to enable reservoir model update more frequently, as
opposed to treat it as a one-time batch process. Ultimately, the use of the CLRM will
increase the value of an asset. This has been shown in a case example in Jansen et al.
[2009a]. On the other hand, there are limitations of the CLRM strategy as discussed in
Foss & Jensen [2011].

From a reservoir engineering point of view the terms optimizer and observer are
not customary. Instead of observer, reservoir engineers often use the term history
matching or reservoir conditioning. Optimizer is commonly referred to as production
optimization. These twoproblems, production optimization and historymatching, are
the main tasks of a reservoir engineer. Well placement, which is also part of the opti-
mizer box, is another important decision problemworked on by reservoir engineers. A
further description of each problem will be explained in the next subsections.

It should be noted that CLRM does not mean automated control or automated
decision making. There will for the most part be humans in the loop meaning that
CLRM systems support decisions which are ultimately made by humans.

1.2.1 Production Optimization

Production optimization is an optimal control strategy to determine injector and pro-
ducer settings in order tomaximize some economicalmeasure of a reservoir. In control
terms, production optimization provides a means to decide the optimal control input.
The control input for oil reservoirs can bewell rates, bottom-hole pressures (BHP), and
valve/choke settings. A method that has been commonly used in practise is a reactive
control strategy. This method is somewhat similar to ’on-off ’ control since it closes a
well when water or gas content in a producer well reaches a threshold which makes
the producer well uneconomical. An optimal control approach applies a predictive
strategy and in this sense, optimal control approach is regarded as proactive control
strategy rather than a reactive method.

The production optimization problem can be cast as an optimization problem.
The objective function in production optimization is an economic measure, such as
net present value (NPV), recovery factor, or sweep efficiency. The number of decision
variables, that is, the dimension of control input depends on the length of the produc-
tion horizon, the number of wells and the parametrization of the well settings. In this
work we apply piecewise constant well settings. The number may be fairly large since
a typical problemmay involve a 5-10 year horizon, more than 10 wells and changes in
the well setting every 3 months. As a basic assumption we apply gradient-based opti-
mization methods when applicable, i.e., when gradients are available at a reasonable
cost. Hence, the use of derivative-freemethods [Conn et al., 2009], which are of interest
to reservoir optimization, will not be included in this work. The reservoir optimization
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problem is a nonlinear program. Hence, themethods applied herein cannot guarantee
to find a global optimum, the best we can hope for is a (good) local optimum. Global
optimization [Horst et al., 2000] is in theory an option, but due to large computational
costs, it is not viewed as a viable option.

From an optimizer point of view, an oil reservoir model is seen as an implicit
constraint in the optimization problem. The derivative-free methods are regarded as
black-box optimization approaches since they do not need any details inside a simu-
lator. Such methods just provide an input and use the simulator result based on the
given input. This is an iterative algorithm which will terminate after a stopping crite-
rion is satisfied. Gradient methods can apply a finite-difference method to compute
the gradients. The finite-difference method perturbs the simulator calculation about
a nominal value. However, the method is costly and vulnerable to numerical noise.
Computing gradients using the adjoint method usually requires knowledge of the in-
ternal of a simulator since the adjointmethod seldom is implemented in available sim-
ulators. The implementation of the adjoint method is laborious. Applying this line of
thought, the derivative-free methods will often be preferable because of their ease of
implementation. A recent and quite efficient method is to use ensemble-based gradi-
ent computation Su & Oliver [2010].

Once the gradients are available, one needs to decide what kind optimization
method to be used. Common approaches in the production optimization literature
are steepest descent, conjugate gradient, and quasi-Newton methods. These meth-
ods use first-order gradients and quasi-Newtonmethods to approximate second-order
information. In terms of convergence rate, that is, how fast the optimization algo-
rithms converge to a (local) solution, quasi-Newton is faster than the first-order gra-
dient (steepest descent/ascent) and the Newton method is the fastest. Computing the
Hessian using an adjoint method with reservoir model dynamics is not yet available in
the literature.

In the optimization literature, see e.g, Biegler [2010] and Nocedal & Wright [2006],
there exist two types of strategies: line-search and trust-region. So far, gradient-based
production optimization has mostly used the line-search strategy. The trust-region
method is not that much explored yet in the reservoir simulation research community.

Well-rates, bottom-hole pressures, and valve-settings all have limitation in their
operational values. Consequently, there are bound constraints on the control inputs.
Further, a possible incompressible fluid assumption introduces an equality constraint
to the control input, that is, the fact that total injection rate must equal total producer
rate. Other constraints are nonlinear and hence more complex. One example of such
constraints is limits on water production rates at producer wells. Another example is
conflicting objective functions for short-term and long-termhorizons [van Essen et al.,
2010]. Typically, an optimization package has an option to input the nonlinear con-
straint, but one has to supply gradients of the nonlinear constraint (Jacobian). In the
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case of adjoints this requires additional adjoint equations. In other words, the pres-
ence of nonlinear constraints may be detrimental to the adjoint method. Some work
have addressed this concern such as Kraaijevanger et al. [2007], Sarma et al. [2008], and
recently by Chen [2011].

One (forward) simulation for the whole life-cycle of a reservoir can be expensive
in term of computational time. Moreover, during the course of one optimization run
many simulation runs are needed. The idea to use model order reduction technique is
really beneficial. Markovinovic [2009] and Cardoso [2009] embed reduced-order mod-
els into the iterative algorithm of production optimization. The reduced-order models
in that work are built on proper orthogonal decomposition (POD). The speedup factor
gained is at least in the order of two.

In addition to the control inputs mentioned above, well location is an impor-
tant decision variable. This leads to the well placement problem, which also can be
cast as an optimization case. Compared to production optimization, which has long-
term and short-term horizons, the well placement optimization is normally posed on
a long-term horizon. Zandvliet et al. [2008a] uses the adjoint method combined with a
pseudowell concept and Zhang et al. [2010], Forouzanfar et al. [2010] regard the well-
placement problem as a nonlinear constraints in an adjoint-gradient based optimiza-
tion algorithm. In addition to the well placement problem, control of gas coning is a
special case of the production optimization problem. This problemmayoccur on short
and long-term horizons; from days to years. Work along these lines include Leemhuis
et al. [2007], Leemhuis et al. [2008], and Hasan et al. [2011].

In practice the implementation of advanced production optimization techniques
described above is eased by the use of smart-well technology, such as inflow control
device (ICD) [Brouwer, 2004].

1.2.2 History Matching

History matching is a work process to adjust the parameter values of a reservoir model
based on available data such as production data, well logs and/or seismic data. This
is known as the parameter estimation problem. The parameters typically include fluid
and rock properties like fault location, permeability, porosity, and net-to-gross ratio.
Due to the large number of parameters and limited measurement data, this parame-
ter estimation problem is an ill-posed problem in the sense of Hadamard [Hadamard,
1902]. Thus, it will not give a unique solution. After a model has been fitted towards
data it can be used for predictive analysis provided its predictive capabilities are rea-
sonable. Reservoir problems are quite similar to weather forecasting. Both oil reservoir
and weather models are large-scale systems derived from PDEs. But the timescale of
weather forecasting is much faster than that of oil reservoir models. Historymatchings
for reservoir models are therefore usually performed every 18 or 24 months on a cam-
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paign basis while the weather forecasting model updating can be as often as 6 hours.
This explains why weather forecasting needs a supercomputer to predict the weather.

In general there are two kinds of approaches in dealing with the history match-
ing problem. The first approach is to use optimization techniques, whose objective
function is the discrepancy between observation data and computed outputs from a
reservoir model. The adjoint method has been used extensively to solve this problem
since the 1990’s, see e.g., Wu [1999]. The number of optimization variables in such
cases is much larger than in the production optimization problem. The dimension of
decision variable is proportional to the number of gridblock in a reservoir, which can
be of dimension 104−106. Reduced-order techniques, or a more popular term in his-
tory matching known as parameterization, has also been applied. Work of Sarma et al.
[2007] for an example use a kernel principle component analysis (KPCA) to reduce the
number of parameters to be optimized.

The second approach is Kalman-filtering techniques. This method has been ac-
tively used in weather forecasting. Initiated by Naevdal et al. [2002], its application to
reservoir parameter estimationnowadays has gained a lot of attention [Aanonsen et al.,
2009] in particular the Ensemble Kalman Filter (EnKF) [Evensen, 2009] because of its
ability to deal with a variety of uncertainties. A mix of EnKF and optimization meth-
ods yields an iterative EnKF (IEnKF). The work of Gu & Oliver [2007] and Li & Reynolds
[2009] have shown that IEnKF handles strong nonlinearities favorably. A detailed re-
view of recent progress in history matching can be found in Oliver & Chen [2010].

Production optimization and history matching are coupled problems. In a SPE
benchmark problem - Brugge Case [Peters et al., 2010], both problems are jointly pre-
sented as an exercise to develop a CLRM strategy. A ’true’ reservoir model was avail-
able to the SPE benchmark organizers only. Interested participants with the bench-
mark case were given 104 realizations of parameters in the truth reservoir model. For
this case the participants using EnKF combined with ensemble-based production op-
timization (EnOpt) techniques got the best results. The result obtained from the best
participant had only 3% lower NPV than that of the true model.

Apart from production optimization and history matching, control analysis of oil
reservoir models is also an active research field. The work of Zandvliet et al. [2008b]
analyzed controllability, observability, and identifiability of a single-phase fluid sys-
tem. A follow up work on controllability of a two-phase fluid system can be found
in Jansen et al. [2009b] and further detailed analysis is available in van Doren J. F. M.
[2010]. These analyses are important and they highlight the fact that the dynamics of
reservoirs live in a low-dimensional space as compared to the dimensional of a typical
high fidelity reservoir model.
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1.3 Research Objectives and The Method of Attack

This thesis has an eye to the production optimization problem especially in dealing
with nonlinear output constraints. Several references are given above and much re-
search have been done. Our hypothesis, however, is that there is a significant potential
for improved optimization algorithms for reservoir production optimization. This in-
cludes both improvements of existingmethods as well as applyingmethods fromother
parts of the systems and optimization literature. In this work we will to a large extent
use existing state of the art optimization packages as part of the algorithms which have
been proposed, implemented and tested. In this view, we will utilize available opti-
mization packages/toolboxes to solve production optimization problem.

The use of the adjoint method, despite its efficiency, still has some challenges in
reservoir simulation studies. The aim of this work is to preserve the efficiency of the
method in the presence of nonlinear output constraints. We will also investigate the
use of model-order reduction (MOR) techniques for production optimization prob-
lems since the development of MOR algorithms has been vastly progressing during
recent years. This gives opportunities for identifyingMORmethods that might be suit-
able for oil reservoir models. To our knowledge the use ofMORmethods in production
optimizationwere startedwithMarkovinovic [2009], vanDoren et al. [2006], Heijn et al.
[2004] and Cardoso [2009].

The development of the adjoint method in other fields is also significant. In the
reservoir simulation literature, the adjoint method is used to compute first-order in-
formation. An adjoint method for second-order gradient is already available, see e.g.
Ito & Kunisch [2008]. We will investigate the use of second-order gradient information
for production optimization problems.

Since this thesis focuses onmethodology or optimization algorithmdevelopment,
we have used simple synthetic reservoir models. We do not use real oil reservoir sim-
ulators due to proprietary reservoir simulator code, which is hard, if not impossible to
analyze. Moreover, we do not investigate gridding techniques for reservoir models. We
assume the reservoir models have been properly developed and ready to use in a pro-
duction optimization problem setting. In all examples the aimhas been to evaluate the
proposed algorithms in a fair manner through the design of the examples and test sce-
narios. It should be noted that we use a simplified version of the IO center supported
Norne model in the case study in this work.1

1The model is publicly available at Norne’s webpage http://www.ipt.ntnu.no/~norne or at the
Program 2 - IO Center’s webpage http://www.iocenter.no/doku.php?id=research:program2
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1.4 Contribution

The main contributions in this thesis are:

Nonlinear output constraints

This type of constraints has many appearances in production optimization problems.
Based on feasibility of initial controls, we propose to use a Lagrangian-barrier method
to handle one-dimensional and multidimensional output constraint problems. We
demonstrate the method through case examples. One-dimensional cases include an
upper bound on the volume of water production and hierarchial short-time and long-
term optimization while an example of a multidimensional problem is constraining
water cut at all producer wells. The Lagrangian barrier method is compared to other
appropriate optimization methods.

Second-order adjoint-gradient

We have developed second-order adjoint-gradient code, and due to expensive com-
putational cost of the Newton method, we supply instead the Hessian-times-vector
product to a conjugate gradient optimizer. The convergence rate of the second-order
gradients against a quasi-Newton approach is studied on reasonable examples. Fur-
ther, optimizations are run with a variety of initial conditions since gradient-based
optimization is sensitive to initial guesses. This also applies to the nonlinear output
constraint problem above.

Surrogate optimization

We apply a recent model order reduction technique, that is, the discrete empirical in-
terpolation method (DEIM) and use the resulting reduced-order model in a surrogate
optimization framework. To ensure the quality of the reduced-order model, we ap-
ply a trust-region strategy to check the objective function value towards a high-fidelity
model. Furthermore, we also introduce output constraints in the surrogate optimiza-
tion.
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1.5 Thesis Organization

The remainder of the thesis is organized as follows:

• Chapter 2 - This chapter presents backgroundmaterial for subsequent chapters.
The chapter will give an introduction to the reservoir model that has been used
during the research period, gradient-based optimization theory, brief descrip-
tion of the adjoint method and its validation, and finally basic numerical linear
algebra used in this thesis.

• Chapter 3 -We explain the Lagrangian-barrier and other similarmethods in han-
dling the nonlinear output constraints. Three case examples are presented to
demonstrate the performance of the proposed algorithm.

• Chapter 4 - In this chapter, we present the development of the second-order
adjoint-method and further use the gradient for production optimization prob-
lem. We use both well-rates and BHP as control inputs in order to test perfor-
mance of the algorithm in two numerical case examples.

• Chapter 5 - This chapter builds on Chapter 3 and develops a nonlinear output
constraint handling method with reduced-order models. We study and evaluate
the DEIM and trust-region framework using three simple reservoir examples.

• Chapter 6 - Concluding remarks and recommendation for further work are given
in this chapter.

1.6 List of publications

The following publications list are the result of this thesis research work.

Journal papers

• [Suwartadi et al., 2012b] - E. Suwartadi, S. Krogstad, and B. Foss. Nonlinear Out-
put Constraints Handling for Production Optimization of Oil Reservoirs. Pub-
lished in Computational Geosciences, Volume 16, Issue 2 (2012), page 499-517.

• [Suwartadi et al., 2012a] - E. Suwartadi, S. Krogstad, and B. Foss. Adjoint-based
Surrogate Optimization of Oil Reservoir Water Flooding. Submitted to Journal of
Computational Physics.
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Conference papers

• [Suwartadi et al., 2009]. - E. Suwartadi, S. Krogstad, and B. Foss. On Adjoint State
Constraints of Adjoint Optimization in Oil Reservoir Water-flooding. In Proceed-
ing of SPE Reservoir Simulation and Characteristic Conference, Abu Dhabi, Octo-
ber 2009.

• [Suwartadi et al., 2010b] - E. Suwartadi, S. Krogstad, and B. Foss. Nonlinear Out-
put Constraints Handling for Production Optimization of Oil Reservoirs. In Pro-
ceeding of European Conference on Mathematical Oil Recovery 2010 (ECMOR XII),
Oxford, UK, September 2010.

• [Suwartadi et al., 2010a] - E. Suwartadi, S. Krogstad, and B. Foss. A Lagrangian-
Barrier Function for Adjoint State Constraints Optimization of Oil Reservoir Wa-
ter Flooding. In Proceeding of IEEE Conference on Decision and Control 2010,
Atlanta, Georgia, USA, December 2010

• [Suwartadi et al., 2010c] - E. Suwartadi, S. Krogstad, and B. Foss. Second-Order
Adjoint-Based Control for Multiphase Flow in Subsurface Oil Reservoirs. In Pro-
ceeding of IEEE Conference on Decision and Control 2010, Atlanta, Georgia, USA,
December 2010

Other papers

During the PhD project, I was involved in developing a unique real-field bench-
mark case and the result was presented in the following paper.

• [Rwechungura et al., 2010] - R. Rwechungura, E. Suwartadi, M. Dadashpour, J.
Kleppe, and B. Foss. The Norne Field Case -A Unique Comparative Case Study.
SPE 127538. In Proceeding of SPE Intelligent Energy Conference and Exhibition,
Utrecht, The Netherlands, March 2010.

Unpublished work

Due to time constraints some research work have not been published yet. Here
is the list of the work.

• Quantitative measure of controllability and identifiability for oil reservoir mod-
els. This topic is inspired by the work of W. Kang in Kang & Xu [2009] and Kang &

11



1. Introduction

Xu [2010] who use dynamic optimization to quantitatively measure observabil-
ity and controllability for systems governed by partial differential equations. This
type of problem is considered as an example of nonlinear output constraint han-
dling. Preliminary results of this work have been presented at ECMOR XII along
with the paper Suwartadi et al. [2010b].

• A trust-region Iterative Ensemble Kalman Filter. This study tries to use second-
order adjoint-gradient information for the history matching problem. As men-
tioned in Subsection 1.2.2, IEnKF is an optimization version of EnKFwhich deals
with strong nonlinearities in reservoir models. The IEnKF consumes more CPU
runtime than the EnKF, but it results in better estimation of parameters and good
agreement with measurement data.
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Chapter 2

Preliminaries

This chapter provides preliminary materials for the next chapters. We describe the
oil reservoir simulator used in this work and formulate the production optimization
problem in mathematical programming language. Gradient-based optimization and
how to obtain the gradient are also explained in this chapter.

2.1 The reservoir model

Oil reservoirs in porous media constitute a mixture between hydrocarbons and water.
Other components like CO2, H2S and sulphur may also appear, but they are neglected
in this work. The hydrocarbon part typically contains many components but a com-
mon simplification is to assume a three phase (three component) description known
as the black oil model [Aziz & Settari, 1979]. In this work, we assume the reservoirs
are in the secondary recovery phase where the pressures are above the bubble point
pressure of the oil phase. Therefore, two-phase immiscible flow, that is, no mass trans-
fer between the two liquid phases, is a fair assumption. We focus on water-flooding
cases for two-phase (oil and water) reservoirs. Further, we assume incompressible flu-
ids and rocks, no gravity effects or capillary pressure, no-flow boundaries, and finally
isothermal conditions.

To implement the reservoir model, we do not develop an oil reservoir simulator
from scratch. Instead, we use an open source MATLAB toolbox described in [Lie et al.,
2011]. The assumptions in previous paragraph are covered in the toolbox. Interested
readers to the toolbox can findmore information on how to use the toolbox at its web-
site (http://www.sintef.no/Projectweb/MRST/) along with references therein.
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2.1.1 Mass Balance and Constitutive Equations

LetΩ⊂Rd (d ≤ 3) be a porousmediumdomainwith boundary ∂Ω and let n be the out-
ward pointing unit normal on the boundary as depicted in Figure 2.1 . The mass con-
servation in Ω implies that the rate of change inside Ω is equal to the rate of mass en-
tering or leaving through the boundary ∂Ω and the rate ofmass contributed by sources
or sinks.

Ω ∂Ω

n

Figure 2.1: Porous mediaΩ in 2D-space, d = 2

Accordingly, the conservation of some quantity c can be described by

∂

∂t

∫
Ω

c d x +
∮
∂Ω

F ·nds=
∫
Ω

q d x, (2.1)

where F is themass flux and q is the source or sink term. Using the Gauss theorem this
leads to ∫

Ω

(
∂

∂t
c +∇·F

)
d x =

∫
Ω

q d x, (2.2)

which gives us the continuity equation:

∂

∂t
c +∇·F = q. (2.3)

The conserved quantity c in two-phase oil reservoirs is phase mass φsαρα, where α =
o (oil) or w (water), φ is the porosity, s is the saturation, and ρ is the fluid density. The
density, and similarly the porosity, is independent of pressure as we assume that the
fluid is incompressible. We define Fα = ρα�vα, where �v is the velocity. Now, the mass
conversion law becomes

∂

∂t

(
φραsα

)+∇· (ρα�vα

)= qα. (2.4)
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The velocities obey Darcy’s law:

�vα =−Kλα∇pα. (2.5)

Here K is the permeability tensor, λα = krα/μα is the phase mobility, where krα is the
relative permeability, μα is the viscosity, and pα is the pressure. The relative perme-
ability is the main source of nonlinearity in the model. The relative permeability data
are obtained from laboratory experiments using small portions of rock which do not
generally represent the rock properties of the whole reservoir. Hence, uncertainties are
unavoidable. The final data from the experiments are usually converted into look up
tables used in a simulator.

The porosity and density are independent of pressure since we here consider in-
compressible rock and fluids. Therefore, they are just constants and consequently (2.4)
can thus be rewritten as

φ
∂sα
∂t

+∇·�vα = qα

ρα
. (2.6)

Two-phase Flow Formulations

As we assume there is no capillary pressure, that is, po = pw , we then define a pressure
variable p as p = pw = po . The total saturation of the two-phase system is always one,
i.e., sw + so = 1. It is common to choose the water saturation as the primary unknown
variable and define it as a variable s, that is, s = sw . Now, the primary variables are the
pressure p and water saturation s. Porosity, mobility, and density are constants since
we assume that the flow is incompressible. However, relative permeabilities are not
constant.

Relative permeability is a function of water saturation. In this work we assume the
rock permeability follows the Corey model [Aziz & Settari, 1979];

sN ,α = s − sαr

1− swr − sor
, (2.7)

krα = k0rα snα

N ,α, (2.8)

where sN ,α is the normalized water saturation, swr and sor are the residual water and
oil saturation respectively, k0r w and k0r o are the end points of relative permeability, and
nw and no are empirical coefficients. The typical relative permeability functions is a
(quadratic) function of water saturation as shown in Figure 2.2.
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Figure 2.2: Typical relative permeability curves taken from http://aapgbull.

geoscienceworld.org/

The velocity in (2.4) consists of velocity for oil and water. If we sum the velocity of
the two phases and introduce �v =�vo +�vw as the total velocity, we end up with

�v =−Kλt (s)∇p, inΩ

∇·�v = q, inΩ (2.9)

�v ·n = 0, on∂Ω

where q is a volumetric rate, andλt is the totalmobility, which in this setting is the sum
of the water and oil mobility functions,

λt (s)=λw (s)+λo(s)= kr w (s)/μw +kr o(s)/μo . (2.10)

We refer to the equations and boundary condition of (2.9) as the pressure equations,
which in this case is an elliptic PDE. Now, we observe the water velocity from the pres-
sure equation, that is

�vw =−λw

λt
K∇p = λw

λw +λo
�v , (2.11)
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and refer to λw
λw+λo

as the water fractional flow denoted by fw (s). We substitute the
resulting water velocity (2.11) for the water phase of (2.6) to obtain

φ
∂s

∂t
+∇· fw (s)�v = qw

ρw
, (2.12)

which is the saturation equation (a hyperbolic PDE).

Discretization Method

The pressure and saturation equations, (2.9) and (2.12), are referred to as the state
equations. It is impossible to find an analytical solution of the state equations for
typical reservoir models. Hence, one approximates the solutions by some numerical
method. In reservoir simulation literature typical methods of choice are the finite-
difference, finite-volume, and finite-element methods. We do not differentiate the
finite-difference andfinite-volumemethod, in the sense that the finite-volumemethod
is a conservative finite-difference scheme that treats the grid cells as control volumes
[Aarnes et al., 2007].

However, before proceeding we need to select how to solve the state equations
using a sequential time step scheme. In the reservoir simulation literature both im-
plicit and explicit methods are applied. The implicit method is unconditionally sta-
ble while the explicit is potentially more efficient but restricted by numerical stabil-
ity conditions. In addition to the most common fully implicit scheme, the solution
strategy which can be used in reservoir management is the IMPES (I Mplicit Pressure
and Explicit Saturation) method. However, in this work we use the other way around,
i.e., explicit-pressure and implicit-saturation. First, the strategy computes relative per-
meabilities using the initial water saturation. Second, the pressure equation is solved
using the initial water saturation and the secondary variables values. Third, with the
obtained pressure solution, the velocity is computed and is used to solve the saturation
equation. This procedure is repeated until the final time is reached.

We begin with the pressure equations (2.9). In this work we use a cell-centred
finite-volume method, which is known as the two-point flux-approximation (TPFA)
scheme. We discretize the domainΩ into a number of grid blocks, k, such thatΩi ∈Ω

and i = 1,2, . . . ,k. After some rearrangement, (2.9) can be written as
∇· (−Kλt (s)∇p

)= q. (2.13)

The left-hand side of (2.13), after discretization, is called the transmissibilities. The
equation (2.13) is a linear equation, A (s)p = q, the left-hand side is represented by A,
which is a symmetric matrix with diagonal elements given by

ai k =
{∑

j ti j ifk = i ,

−ti k ifk �= i .
(2.14)
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In a Cartesian grid, thematrix A is a tridiagonalmatrix for 1D, pentadigonal for 2D, and
heptadiagonal for 3D cases.

Note that the discretization above is a spatial discretization of the pressure equa-
tion. We need to discretize the equation in time as well. To perform temporal dis-
cretization for the pressure equation, we use a finite difference operator and end up
with

A(sn−1)pn = Bun . (2.15)

Here, n represent the time step, u are the well rates, and B is the arrangement matrix
of the well rates. Now, we intend to discretize the saturation equation, (2.12). We apply
the finite difference operator;

φi

�t

(
sn+1

i −sn
i

)+ 1

|Ωi |
∑
j �=i

Ri j
(
sn+1)= qw,i

(
sn

i

)
ρw

. (2.16)

The porosity in Ωi is denoted by φi and Ri j is the approximation of the velocity at the
edge γi j , which is

Ri j ≈
∫
γi j

(
fw (s)i j �vi j

) ·ni j dS, (2.17)

where ni j is the normal vector. The water fractional flow at the edge is approximated
by using upstream weighting, such that

fw (s)i j =
{

fw (si ) if�v ·ni j ≥ 0,
fw

(
s j
)
if�v ·ni j < 0.

(2.18)

This gives the following discrete form of the saturation equation.

sn = sn−1+�t n D−1
PV

(
R
(
vn) fw

(
sn)+q

(
vn)

+
)
. (2.19)

Here DPV , R (vn) is a matrix representing
[

fw (sn)q (vn)−−∇· ( fw (sn)vn
)]
, and vn de-

note the total volume ofΩi and the velocity, respectively at time instance n.
The discrete state equations (2.15) and (2.19) can be written in an implicit form

F (x̃, ũ)= 0 as

F(x̃, ũ) =

⎛⎜⎝ F0
(
p1,s0,s1,u1

)
...

FN−1 (pN ,sN−1,sN ,uN
)
,

⎞⎟⎠ (2.20)

xnT = (pnT ,snT ), n = 1, ...,N ,
x̃T = (x1T , ...,xN T ),

ũT = (u1T , ...,uN T ).
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The state vectors and control input vectors are stacked for all time instances from
n = 1, . . . ,N . The control input variables are either bottom-hole pressures (BHP) in
the wells or well rates. Both producer wells and injector wells are covered by this for-
mulation. We refer to (2.20) as the forward model of the oil reservoir model.

Boundary Conditions

Due to no-flow boundary conditions, the driving forces of the reservoir models are at
the wells. Injector wells inject water while producer wells produce both oil and wa-
ter. At the wells we can either fix the rate or bottom-hole pressure (BHP). The for-
mer amounts to the Neumann boundary condition while the latter gives the so-called
Dirichlet boundary condition.

In this study, the well rate is implemented by using the Peaceman well model
[Peaceman, 1983], that is,

qt =λt W I
(
pw f −pg b

)
, (2.21)

whereW I denotes the well index, pw f is the BHP, and pg b is the well-block pressure.
The well index is described by the following equation

W I = 2π
d z 3

√
kxky kz

Vg b

(
ln

(
ro
rw

)
+S

) , (2.22)

where d z is the well-segment length, Vg b the volume of the well grid block, rw the
radius of the well, kx , ky , kz are the permeability in the x, y , z directions, respectively,
and ro is the effective well radius which is expressed as

ro = 0.28

[√
kx
ky

(�y
)2+√

ky

kx
(�x)2

] 1
2

4

√
kx
ky

+ 4

√
ky

kx

. (2.23)

The grid block length in the x and y direction are denoted by�x and�y , respectively.

2.2 Gradient-based optimization methods

Production optimization of oil reservoir is a constrained type mathematical nonlinear
programming problem. In general, the problem reads
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(P ) max
ũ∈Rnũ

J (x̃, ũ) (2.24)

subject to : F (x̃, ũ) = 0,
g (un) ≥ 0, ∀n = 1, . . . ,N ,

h (xn ,un) ≥ 0, ∀n = 1, . . . ,N ,
x0 isgiven.

J (x̃, ũ), g (un), h (xn ,un) are assumed C 2 or C 1 if one uses quasi-Newton methods.
The control input and the output constraints are represented by g : Rnũ →Rng and
h :Rnx̃×nũ →Rnh, respectively. The objective function is given byJ :Rnx̃ ×Rnũ →R and
the state equations are posed as implicit constraints. The state variables and the con-
trol inputs are dependent, therefore we are able to perform the optimization in the
control input space of ũ instead of in the full space given by (x̃, ũ). To this end, we de-
note the objective asJ (ũ) omittingJ (x̃ (ũ) , ũ). The objective function is an economic
measure of the oil reservoir such as net present value (NPV), recovery factor, sweeping
efficiency, etc. Therefore, it is natural to maximize the value.

The relation between the optimization problem here, which is solved using the
optimizer described in next section, and the reservoir model (simulator) explained in
Section 2.1 is depicted in Figure 2.3. The reservoir simulator computes the objective
function and its gradient based on the given control input, or decision variables, ob-
tained from the optimizer. The control input must honor the state constraints, which
are evaluated in the reservoir simulator as well.

Optimizer

(P ) max
ũ∈Rnũ

J (ũ)

s.t. g (un)≥ 0
h (xn ,un)≥ 0

Oil Reservoir Simulator

F (x̃, ũ)= 0

ũ

J (ũ) ,∇ũJ̄

Figure 2.3: Relation between optimizer and oil reservoir simulator.

As in constrained optimization, it is worth mentioning the (first-order stationary)
Karush-Kuhn-Tucker (KKT) condition since gradient-based methods seek to converge
to a solution where this condition holds. A solution u∗, which yields optimal states
x∗, of the optimization problem P is said to satisfy the KKT condition if there exist
Lagrange multipliers vectorsλ∗

g andλ
∗
h such that
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g
(
u∗) ≥ 0,

h
(
x∗,u∗) ≥ 0,

∂J

∂u∗ = d g

du∗λ
∗
g +

∂h

∂u∗λ
∗
h , (2.25)

λ∗
g ≥ 0,

λ∗
h ≥ 0,

g
(
u∗)λ∗

g = 0,

h
(
x∗,u∗)λ∗

h = 0.

The detailed explanation on the KKT condition and its proof can be found in any nu-
merical optimization book such as Nocedal & Wright [2006]. To solve the problem,
with the current state-of-the-art constrained optimizationmethods there are twomain
solvers, which are based on active-set and interior-point methods. These methods
are widely implemented in various optimization packages and one may find a regu-
lar benchmark for the packages at http://plato.asu.edu/bench.html. Themain nonlin-
ear optimizers include IPOPT, KNITRO, LOQO, PENNON, SNOPT, and CONOPT 1. These re-
sults show that KNITRO and IPOPT which uses an interior point algorithm are the best
performing packages, respectively. We have used these packages for production opti-
mization of oil reservoirs, see Suwartadi et al. [2009] andKNITRO based on an active-set
method gave better performance than IPOPT in our study. The performance of these
packages is of course case dependent. We sketch the active-set algorithm, which is a
variant of sequential quadratic programming (SQP) method, in this section.

Algorithm 1 Gradient-based optimization (subscript refers to iteration number)
INPUT: an initial control input ũ0
OUTPUT: solution of the optimization problem ũk

while (stopping criteria is not met) do
choose direction dk and step length αk

ũk+1 = ũk +αk dk

k = k +1
end while

Gradient based optimization can be structured as in Algorithm 1. As an introduc-
tory, we firstly do not take into account the constraints. The control and state con-
straints handling will be discussed in the next subsection using active-setmethod. The
algorithm consists of the local method for updating the step based on gradient infor-
mation and globalization strategy. In the literature [Nocedal & Wright, 2006] there are

1at http://plato.asu.edu/ftp/ampl-nlp.html
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two main globalization strategies: line-search and trust-region methods. The line-
search methods separate the computation of direction dk and step length αk . The
trust-region methods however compute simultaneously the direction and step length
after a trust-region radius is prescribed. Based on gradient information supplied in the
direction computation, we can classify the gradient-based methods as follows

• Steepest descent : dk =−∇J (ũk)
• Conjugate Gradient (CG): dk =−∇J (ũk)+βk dk−1. βk is a constant chosen such
that the direction at the current iteration is orthogonal to the previous one.

• Newtonmethod: dk =−(∇2J (ũk)
)−1∇J (ũk)

• Quasi-newton method: dk = −B−1
k ∇J (ũk), where Bk is an approximation of

Hessian.
In the literature, the Hessian approximation mostly uses two types of algorithms,

namely, symmetric-rank-one (SR1) and Broyden-Fletcher-Goldfarb-Shanno (BFGS).
These algorithm obeys the the secant equation

Bk+1sk = yk , (2.26)

where sk = ũk+1− ũk and yk =∇Jk+1−∇Jk . The SR1 update enforces symmetry with
the rule

Bk+1 = Bk +
(
yk −Bk sk

)(
yk −Bk sk

)T(
yk −Bk sk

)T sk

, (2.27)

while theBFGS enforces symmetry, positive definiteness, and rank-twoupdate, through
the update rule

Bk+1 = Bk −
Bk sk sT

k Bk

sT
k Bk sk

+ yk yT
k

yT
k sk

. (2.28)

Due to its positive definiteness, the BFGS method is mostly used in line-search
methods. Otherwise, a modification of the Hessian is needed. The step length αk is
computed in two steps: bracketing and bisection/interpolation. The bracketingmeans
finding an interval containing a good step length. Afterwards, the bisection will com-
pute a good step within the interval. We suggest interested readers to read chapter 3
of Nocedal & Wright [2006] for further detailed discussion on the step length compu-
tation.

As an alternative to line-searchmethods, the trust-region approach computes the
step length and direction at once given a maximum trust-region radius. The method
defines a region within which an quadratic approximation of the objective function is
trusted, then minimize the approximation model within this region. If the step is un-
acceptable, the size of the trust-region radius is reduced. The quadratic modelmk (d)
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of the true functionJ (ũk +d) at the point ũk is

mk (d)=Jk +∇J T
k d+ 1

2
dT Bk d. (2.29)

One might use the exact Hessian for the Bk term. For every trust-region iteration, the
step is found by solving the following constrained optimization problem

minimize
d∈Rn

mk (d) s.t. ‖d‖ ≤�k . (2.30)

The quality ofmodel approximationmk (d) ismeasured by the ratio of actual reduction
to the predicted reduction of the objective function, that is,

ρk = J (ũk)−J (ũk +dk)

mk (0)−mk (dk)
. (2.31)

If ρk is small it implies themodel is not a good estimate of the objective function and if
ρk is large, the model is good enough to approximate the objective function. To wrap-
up the trust-regionmethods, Algorithm 2 describes themethods. Themethod for solv-
ing subproblem (2.30) is explained in the next chapter.

Algorithm 2 Trust-region

INPUT: maximum trust-region radius:�̂ > 0, initial trust-region radius: �0 ∈
(
0,�̂)

,
and η ∈ [0, 14)
OUTPUT: solution of the optimization problem ũk

while (stopping criteria is not met) do
solve (2.30) to obtain dk

compute ρk from (2.31)
if ρk < 1

4
�k+1 = 1

4�k

else
if ρk > 3

4 and ‖dk‖ =�k

�k+1 =min
(
2�k ,�̂

)
else

�k+1 =�k

end if
if ρk > η

ũk+1 = ũk +dk

else
ũk+1 = ũk

end if
end while
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Sequential Linear-Quadratic Programming (SLQP)

We now explain briefly the active-set SQPmethod implemented in KNITRO. The details
are described in Bryd et al. [2004], which is also summarized in Chapter 18 of Nocedal
& Wright [2006]. It should be noted that there may be notations overlapping in this
subsection to the ones in the reservoir model. Readers should read the description of
the notations in order to avoid any confusion.

Themethod belongs to the equality-constrained quadratic program (EQP) type of
SQP; another method is based on inequality-constrained (IQP). EQP is more appeal-
ing than the IQP since it gives more economical CPU time when dealing with large
dimensions of decision variable. IQP-based methods compute the step and estimate
the optimal active set at the same time while EQP separates the computation into two
stages. First, linear program (LP) with the goal to estimate the optimal active set is per-
formed. Second, an equality-constrained quadratic program is solved to compute the
step given the active-set constraint in the first step. Themethod uses the �1 merit func-
tion to determine the acceptability of a step within a trust-region framework. The sec-
ond step is solved using a projected conjugate gradient (PCG) which will be explained
in the next subsection.

To solve the problemP , we rewrite the equation (2.24) as follows

min
ũ

−J (ũ)
.= f (ũ) (2.32)

subjectto : ci (ũ)= 0, i ∈ E

ci (ũ)≥ 0, i ∈I .

The bound constraints g (ũ) are divided into equality and inequality constraints. The
inequality constraints are handled explicitly using CG method. The other constraints
will be a part of equality constraints ci (ũ)= 0, i ∈ E . The state constraints are described
as inequality constraints ci (ũ)≥ 0, i ∈I . The �1 merit function takes the form

φ (ũ;ν)= f (ũ)+ν
∑
i∈E

|ci (ũ)|+ν
∑
i∈I
(max(0,−ci (ũ))) , (2.33)

where ν is the penalty parameter.
In the first stage a LP program, which aims to estimate the optimal active set W ∗,

reads

min
d

fk +∇ f T
k d (2.34)

subjectto : ci (ũ)+∇ci (ũ)T d = 0, i ∈ E

ci (ũ)+∇ci (ũ)T d ≥ 0, i ∈I

‖d‖∞ ≤�LP
k ,
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where�LP
k is the trust-region radius at iteration k and d is the solution. Because of the

linearization of the objective function, this LP formulation can yield infeasible con-
straints. Thus, a �1 penalty is added to the linearized objective function such that

min
d

�ν (d)
.= fk +∇ f T

k d+ν
∑

i∈E

∣∣ci (ũk)+∇ci (ũ)T d
∣∣ (2.35)

+ν∑i∈Imax
(
0,−ci (ũ)−∇ci (ũ)T d

)
subjectto : ‖d‖∞ ≤�LP

k .

However, this � function is well-known to be non-differentiable. Therefore, a smooth
linear program below is used.

min
d,r,s,t

fk +∇ f T
k d+ν

∑
i∈E (ri + si )+ν

∑
i∈I ti (2.36)

subjectto : ci (ũk)+∇ci (ũk)
T d = ri − si , i ∈ E

ci (ũk)+∇ci (ũk)
T d ≥−ti , i ∈I

‖d‖∞ ≤�LP
k

r,s,t ≥ 0.

Here r, s, and t are vectors of slack variables. To this end, we denote a solution of this LP
problem as dLP (ν). The resulting estimate of the optimal active set from this solution
is

Ak
(
dLP ) = {

i ∈ E |ci (ũk)+∇ci (ũk)
T dLP = 0}

∪{
i ∈I |ci (ũk)+∇ci (ũk)

T dLP = 0} ,
and the set of constraints violation is

Vk
(
dLP ) = {

i ∈ E |ci (ũk)+∇ci (ũk)
T dLP �= 0}

∪{
i ∈I |ci (ũk)+∇ci (ũk)

T dLP < 0} ,
and denote its complement by V c

k . The working active set,Wk , is defined as linearly in-
dependent subset of the active setAk

(
dLP

)
. Furthermore, we define a Cauchy point dc

to ensure the algorithm has favorable global convergence properties, by the following
equation

dc =αLP dLP , (2.37)
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where αLP ∈ (0,1] is the steplength computed using a line search backtracking method
in a decreasing direction of the quadratic approximation objective function (2.33).

Given the solution dLP andworking setWk , we now attempt to solve the EQP prob-
lem

min
d

fk + 1
2dT HEQP

k (ũ,λ)d+∇
(

f EQP
k

)T
d (2.38)

subjectto : ci (ũk)+∇ci (ũk)
T d = 0, i ∈ E ∩Wk

ci (ũk)+∇ci (ũk)
T d = 0, i ∈I ∩Wk

‖d‖2 ≤�k .

TheHEQP and f EQP are defined as follows:

H EQP (ũ,λ) = ∇2 f (ũ)+ν
∑

i∈V ∩E

sign
(
ci +∇ci (ũ)

T d
)∇2ci (ũ) (2.39)

−ν ∑
i∈V ∩I

∇2ci (ũ)−
∑

i∈V c∩E

λi∇2ci (ũ)−
∑

i∈V c∩I

λi∇2ci (ũ) .

f EQP = HEQP (ũ,λ)d+∇ f (ũ) (2.40)

+ν ∑
i∈V ∩E

sign
(
ci (ũ)+∇ci (ũ)

T d
)∇ci (ũ)−ν

∑
i∈V ∩I

∇ci (ũ) .

We denote a solution of (2.38) solved by the projected-CG (PCG) as dEQP . The total step
dk of the SLQP algorithm is

dk = dc +αEQP (
dEQP −dc) . (2.41)

Here, the steplength αEQP ∈ [0,1] is similar to αLP solved by the line-search backtrack-
ing algorithm. The SLQP algorithm relies on the penalty parameter ν, two trust-region
radii �LP and �. We refer to Bryd et al. [2004] for discussion on how to choose and
update these parameters values.

Projected Conjugate Gradient (PCG)

Wenowdescribe the PCG-algorithmused for solving (2.38). We use Steihaug conjugate
gradient [Steihaug, 1983] to compute a solution of the trust-region subproblem

min
x∈Rn

mk (x)
.= fk +∇ f T

k x+ 1
2xT Bk x (2.42)

subjectto : Ax = b

‖x‖ ≤�k
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where Bk is the Hessian or its approximation. The Steihaug-PCG is described in Algo-
rithm 3 below. The inequality constraints, that is, l ≤ g (ũ) ≤ u is denoted by l ≤ x ≤ u
affects the trust-region radius constraint such that it now becomes a bound constraint:
max(l ,xk −�k e)≤ x ≤min(u,xk +�k e), where e = (1,1, . . . ,1)T .

Algorithm 3 PCG-Steihaug
INPUT: tolerance εk > 0, initial x0 satisfying Ax0 = b, P projection operator.
OUTPUT: solution xk

Initialization: Set z0 = Px0, r0 = Bx0+∇ f0, d0 =−r0 and iteration j = 0.
if ‖r0‖ < εk

xk = z0
end if
while (stopping tolerance is not met) do

if dT
j Bk d j ≤ 0
compute τ such that xk = P

(
z j +τd j

)
minimizesmk (dk) in (2.42)

and satisfies ‖xk‖ =�k

stop
end if
set α j = rT

j r j /dT
j Bk d j

set z j+1 = z j +α j d j

if
∥∥z j+1

∥∥≥�k

find τ≥ 0 such that xk = P
(
z j +τd j

)
satisfies ‖xk‖ =�k

stop
end if
set r j+1 = r j +α j Bk d j

if
∥∥r j+1

∥∥< εk

xk = P
(
z j+1

)
stop

end if
set β j+1 = rT

j+1P
(
r j+1

)
/rT

j r j

set d j+1 =−P
(
r j+1

)+β j+1d j

set j = j +1
end while

2.3 Computing gradients

The conventionalway of computing gradients is to use finite-differencemethods. These
methods are easy to implement because they treat the system simulator, e.g., an oil
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reservoir simulator, as a black box. However, when the simulator is comprehensive
and the number of control variables is large, these methods become prohibitive. An-
other way is to use sensitivity equations, which is still quite expensive. It should be
noted however that there exists interesting options which exploits the structural simi-
larities between the sensitivity equations and themodel equations [Gunzburger, 2003].
The modest CPU time of both methods is O (nũ +1) times an evaluation of objective
function value, where nũ is the dimensional of control input. The finite differences
methods require evenmore CPU time to increase gradient accuracy by for instance us-
ing a central difference scheme instead of a one-sided method. An accurate gradient
approximation using a complex method is used in Kim et al. [2006]. The gradient is
approximated by

∇ũJ (ũ)
∣∣

ũ∗ =
Im

(
J

(
zk

ũ

))
h

+O
(
h2

)
, (2.43)

where Im(·) is the imaginary part of the argument and zk
ũ is the perturbation represen-

tation of the k-th element in the form of

zk
ũ = [

u∗
1 u∗

2 . . . u∗
k−1

(
u∗

k + i h
)

u∗
k+1 . . . u∗

N

]T

with i =�−1. This approximation results in similar accuracy to that of central finite-
difference but with the same CPU time as forward finite-difference, that is O (nũ +1).
Because there is no subtraction operation in the approximation, h can be chosen to
a very small value, e.g., h = 10−100. Another practical approach for constructing the
gradient (Jacobian) would be to use automatic differentiation (AD) tools [Griewank &
Walther, 2008].

In this thesis adjoint-gradient computation is utilized, which requires two times
evaluation of the objective function regardless of the dimension of control input. De-
tailed explanation of the adjoint method can be found in the subsequent chapters.
We have implemented a first-order and second-order adjoint-gradient for the reser-
voir simulation model used in this work.

In order to validate the adjoint-gradient implementation, one obviously can com-
pare the gradients produced by the adjoint methods against those from the finite-
difference computation. In other fields, such as in meteorology, a Taylor expansion
method is used to check the adjoint-gradient [Li et al., 1993]. The objective function
can be described as

J (ũ+δũ)=J (ũ)+δũT∇J +h.o.t .1 (2.44)

1high order terms
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or rewritten it as

J (ũ+δũ)−J (ũ)

δũ∇J
= 1+h.o.t . (2.45)

The gradient obtained from the adjoint method is ∇J and the goal is now tomake the
left hand side of (2.45) approach 1 as δũ approaches zero. If we define δũ by

δũ =α
∇J∥∥∇J

∥∥ , (2.46)

which is in the direction of∇J and the variation of the control input gives a consistent
scaling, then (2.46) in (2.45) will result in

φ (α)=
J

(
ũ+α

∇J

‖∇J‖
)
−J (ũ)

α
( ∇J

‖∇J‖
)T ·∇J

= 1+O (α) . (2.47)

If the obtained gradient is correct, small values of α, φ should linearly approach 1 as
α is reduced. Another method to check the adjoint-gradient implementation is to use
the checkpointing techniques, see, e.g., Walther & Griewank [2004].

2.4 Numerical Linear Algebra Stuff

The pressure and adjoint equations in this work are linear equations. The saturation
equation is non-linear, but requiresmultiple linear equations. To solve solutions of the
equations, we use a direct sparse solver which is the default blackslash (\) operator in
MATLAB. An explanation of the sparse linear solver approach can be found in Davis
[2006].

Another conceptwhichwill be used in the next chapters, particularly in the reduced-
order model part, is singular value decomposition (SVD). SVD is used to compute sin-
gular values and vectors of a matrix which will be basis functions for a reduced-order
model. Let A ∈ Rm×n, m ≥ n and r ank (A) = r ≤ n. Then, the matrix A can be decom-
posed as

A = UΣV T , (2.48)

where U and V are orthonormal matrices, U ∈ Rm×m and V ∈ Rn×n. Σ =
(
Σr 0
0 0

)
,

where Σr = di ag (σ1, . . . ,σr ) ∈ Rr×r with σ1 ≥ . . . ≥ σr > 0. The decomposition (2.48)
is called singular value decomposition (SVD) and the diagonal entries of Σr are the
singular values. Matrix Awill be obtained through snapshots of the dynamic response
of reservoir systems in a later section of this thesis. It should be noted that reduced
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SVD is useful when computing reduced-order basis, that is, the same decomposition
but forU ∈Rm×n, Σ=Σr , and V ∈Rn×n.
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Chapter 3

Nonlinear Output Constraints Handling
for Production Optimization of Oil
Reservoirs

This chapter is based on Suwartadi et al. [2012b] which is published in Computational
Geoscience Vol.16:2, 2012. Earlier papers on the same topic are Suwartadi et al. [2009],
Suwartadi et al. [2010b] and Suwartadi et al. [2010a].

Adjoint-based gradient computations for oil reservoirs have been increasingly used
in closed-loop reservoir management optimization. Most constraints in the optimiza-
tions are linked to the control inputs. These are either linear bound constraints or
linear equality constraints. This paper addresses (nonlinear) output constraints and
proposes to use a (interior) barrier function approach, where the output constraints
are added as a barrier term to the objective function. As we assume there always exist
feasible initial control inputs, the method maintains the feasibility of the constraints.
Three case examples are presented. One of these examples resembles the Norne field
geometry. The results show that the proposed method is able to preserve the compu-
tational efficiency of the adjoint method.

3.1 Introduction

The use of optimization is steadily expanding to evermore demanding applications.
Hence, the need for robust and computationally efficient algorithms is critical. De-
mands increase due to factors like system size, the nature of nonlinearities, integer
decision variables, stochasticity and reduced computation time. In this work we focus
on large-scale systems, which typically originates from discretized dynamic nonlinear
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PDE-models, and the use of adjoint-based techniques for gradient calculations. In all
high-standard gradient-based algorithms efficient computation of the gradient itself is
a critical ingredient. Before presenting the problem in more detail, a review of adjoint
based methods and its relevance to our application area will be given.

Computing the gradient of the objective functionwith respect to the decision vari-
ables in large-scale systems can be computationally prohibitive. To compute the gra-
dient, there are essentially three approaches; finite differences, the forward sensitivity
equation and the (backwards) adjoint approach. For nu decision variables the finite
difference method requires nu +1 simulation runs when applying the forward differ-
ence approach. This method might be impractical, in the context of PDE-constrained
optimization if the number of decision variables is large. For example, history match-
ing optimization in reservoir engineering has a large number of decision variables. The
sensitivity equation method requires one simulation run of the discretized PDE in ad-
dition to nu sensitivity models, each with a complexity similar to the discretized PDE
itself. A challenge for large-scale systems is the sheer size of the sensitivity information
which has to be stored to compute the gradient of the objective function. The stor-
age requirement amounts to nu ·nx ·N , where nx is the state dimension and N is the
number of time steps in the simulation horizon. In addition to the above, the emerging
ensemble-based methods (see Chen et al. [2008]) enables gradient computations in a
stochastic framework although the computational time remains a challenge.

The beauty of the adjointmethod is the fact that the gradient of the objective func-
tion can be computed by two simulations runs only, applying the discretized PDE in
the normal forward mode and subsequently its adjoint in a backward mode Bryson &
Ho [1975]. This is potentially highly efficient for computationally expensive models.
This advantage does however add some challenges. First, it is necessary to store the
complete solution of the forward simulation, that is, all the state vectors at each solu-
tion time, since they are used as inputs to the adjoint model. Second and more im-
portantly, the presence of output constraints, or path constraints, may be detrimental
to the efficiency of the adjoint method. The reason is that constraint gradient infor-
mation is required. Therefore each new constraint requires one additional Lagrange
multiplier, and, hence a new adjoint system. This observation has beenmade bymany
authors (see e.g., Mehra & Davis [1972]; Hargraves & Paris [1987]; Bloss et al. [1999]) as
a starting point for proposing changes tomaintain efficiency of the adjoint approach in
the output constrained case. Finally, the adjoint implementation itself is a challenging
task. The adjoint method is straightforward, but the implementation is a completely
different matter.
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3.1.1 Background

In the optimal control literature (see e.g., Bryson & Ho [1975]; Becerra [2004]) practi-
cal methods to handle path constraints are typically collocation methods, which con-
vert optimal control problems to nonlinear programming problems. The analytical
method described in Bryson & Ho [1975] requires prior knowledge of the number and
sequence of path-constrained arcs, which might not be possible to obtain. The use
of the generalized reduced gradient (GRG) method proposed in Mehra & Davis [1972]
and SQP-based optimization in Hargraves & Paris [1987] are in the class of collocation
methods, where the path constraints are posed as inequality constraints at each col-
location point in time. Collocation implies that both the control inputs and states are
discretized. Hence, the GRGmethod consists of independent and dependent variables
where the former are referred to as the decision variables. A change is enforced if the
method yields an infeasible solution. This implies that one of the independent vari-
ables is changed to a dependent variable and vice versa. Moreover, in this method, the
gradient is projected onto the constraint set and if some of the dependent variables hit
the constraint boundary, the variables will be changed as independent variables in the
next iteration. The changes from independent to dependent variables may be difficult
to implement and become practically infeasible in large-scale optimization problems.

In the nonlinear optimization literature, in addition to the SQP method, penalty
and barrier methods Fiacco & McCormick [1968] are often used to handle the path
constraints. In these methods the constraints are augmented to the objective func-
tion equipped with a parameter known as barrier or penalty parameter. Hence, the
path constraints are removed. A solution is found as a sequence of minimizations (or
maximizations), where the penalty or barrier parameter is varied between iterations.
However, themethodsmight cause numerical difficulty as they approach the solution,
that is ill-conditioning of the Hessian matrix may occur which affects the convergence
rate. This gives rise to the augmented Lagrangian method and more recently Primal
Dual logarithmic barriermethods. In practice the ill-conditionedHessianmatrix, how-
ever, can be benign if the methods are implemented properly. An excellent survey of
the class of interior point methods, which also includes classical penalty and barrier
methods, can be found in Forsgren et al. [2002].

Path constraints are notoriously difficult to handle and there are several approaches
to mitigate the problems. One of the most used methods is based on constraint lump-
ing, also known as �1 constraints. The idea is to lump controller coefficients in a
way that allows solution of a scalar optimization function, which is known as the KS
(Kreisselmeier-Steinhauser) function approachKreisselmeier & Steinhauser [1979]. The
KS function is used to aggregate all the path constraints into one constraint. The ag-
gregation is in the form of an exponential term. Although it seems appealing, the KS
function does not augment the path constraints to the objective function. Therefore, it
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requires the Jacobians of the path constraints, which is expensive for large-scale prob-
lems. On the other hand, there are also methods trying to approximate the Jacobians,
for example, the TR2 method Griewank & Korzec [2005]. In the PDE-constrained op-
timization literature (see e.g., Hinze et al. [2009]), Moreau-Yosida regularization and
Lavrentiev regularization are usually used to handle the path constraints. TheMoreau-
Yosida regularization is similar to a penaltymethodwhile the Lavrentiev regularization
is also a penalty-based method with a slightly modification in the penalty term. The
Lavrentiev regularization introduces a parameter as a new artificial control.

In reservoir management research, the adjoint method has been used in oil reser-
voir production optimization problems since the 1980s and 1990s (see e.g., Virnovsky
[1991]; Zakirov et al. [1996]) and recently it was reviewed in Jansen [2011]. Applications
of the adjoint method have further been suggested for history matching [Wu, 1999;
Rommelse, 2009] and well placement optimization Handels & Zandvliet [2007]. The
development of path constraints handling in adjoint-based optimization for reservoir
management has been considered in Montleau et al. [2006]; Sarma et al. [2008]; Kraai-
jevanger et al. [2007]. In Sarma et al. [2008] a feasible direction optimization method
combinedwith a lumping (state) constraints strategy is proposed. The lumping of con-
straints in Sarma et al. [2008] is the same as the KS function approach. However, the
proposed method in Sarma et al. [2008] may converge to an infeasible solution. This
was clearly shown in one of the case examples where the solution violated the con-
straint. The use of the GRGmethod was proposed in Montleau et al. [2006] and Kraai-
jevanger et al. [2007] with a certain control input and state variables combination, that
is, bottom hole pressure (BHP) controlled wells with rate constraints and vice versa.
It cannot easily be extended to other control input and state variable combinations,
such as constraints on saturation or total water production, because these cannot be
considered independent variables.

In this paperwepropose the use of a Lagrangian barriermethod for reservoirman-
agement optimization problems. The reason to use this method instead of using the
existing optimization packages is that one needs to supply the Jacobians of the out-
put constraints which will give an overhead to the computational time. This leads
to the development of a customized optimization package. The proposed method is
different from the usual barrier method Fiacco & McCormick [1968] in the sense that
the constraints are treated differently. The Lagrangian barrier method uses Lagrangian
multiplier estimates as a device to identify active constraints asymptotically and to pre-
vent numerical problems, that is, an ill-conditioned Hessianmatrix. Although in prac-
tice this rarely occurs and with the advent of trust region method, the ill-conditioned
problem can be circumvented Forsgren et al. [2002]. The method is presented and
compared to a pure barrier method and a standard nonlinear programming method
by applying it on three case examples. This provides a basis for drawing conclusions.
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3.2 Forward Model

In this work, we assume the reservoirs are in the secondary recovery phase where the
pressures are above the bubble point pressure of the oil phase. Therefore, two-phase
immiscible flow, that is, without mass transfer between the two phases, is a reasonable
assumption. We focus on water-flooding cases for two-phase (oil and water) reser-
voirs. Further, we assume incompressible fluids and rocks, no gravity effects or capil-
lary pressure, no-flow boundaries, and finally isothermal conditions.

The state equations in an oil reservoir Ω, with boundary ∂Ω and outward facing
normal vector n, can be represented by pressure and saturation equations. The pres-
sure equation is described as

�v =−Kλt (s)∇p, inΩ

∇·�v = q, inΩ (3.1)

�v ·n = 0, on∂Ω

where �v denotes the total velocity, K is the permeability, p is the pressure, q is the
volumetric well rate, and λt is the total mobility, which in this setting is the sum of the
water and oil mobility functions,

λt (s)=λw (s)+λo(s)= kr w (s)/μw +kr o(s)/μo . (3.2)

The saturation equation is given by

φ
∂s

∂t
+∇· fw (s)�v = qw , (3.3)

where φ is the porosity, s is the saturation, fw (s) is the water fractional flow which is
defined as λw

λw+λo
, and qw is the volumetric water rate at the well.

In this work we solve the pressure and saturation equations sequentially, and after
spatial and temporal discretizations, the pressure equation, can be written as

A(sn−1)pn = Bun , (3.4)

where thematrix A
(
sn−1) represents the two-point flux transmissibilities Aziz & Settari

[1979], and depend on the previous time step water saturation sn−1. Furthermore p
is the vector of grid block pressures, u is the control input which contains either well
rates or BHPs, and B is the arrangement matrix for the control input. The superscript
n indicates discretized time. The saturation equation is discretized using an implicit
finite volume scheme

sn = sn−1+�t n D−1
PV

(
R
(
vn) fw

(
sn)+q

(
vn)

+
)
, (3.5)
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where �t n is the time step and DPV is the diagonal matrix containing the grid block
pore volume. ThematrixR (vn) is the sparse fluxmatrix based on anupstreamweighted
discretization scheme, and q(vn)+ is the vector of positive sources (in this setting, water
injection rates).

The discrete state equations (3.4) and (3.5) can be rewritten in an implicit form
F (x̃, ũ)= 0 as

F(x̃, ũ) =

⎛⎜⎝ F1
(
p1,s0,s1,u1

)
...

FN
(
pN ,sN−1,sN ,uN

)
,

⎞⎟⎠ (3.6)

xnT = (pnT ,snT ), n = 1, ...,N ,
x̃T = (x1T , ...,xN T ),

ũT = (u1T , ...,uN T ).

An initial condition on the saturations, i.e. s0, is also needed. The state vectors and
control input vectors are stacked for all time instances fromn = 1, . . . ,N . Both producer
wells and injector wells are covered by this formulation. We refer to equation (4.9) as
the forward model of the oil reservoir model.

3.3 Problem Formulation

An oil reservoir should be exploited by maximizing its value while honoring all key
constraints. This goal is usually manifested as an objective function in production op-
timization problems. In oil reservoirs this can be Net Present Value (NPV), or other
key performance indices such as recovery factor, sweeping efficiency or accumulated
oil production. The production optimization problem can be cast as a nonlinear pro-
gramming problem, which is described as follows;

(P ) max
ũ∈Rnũ

J (x̃, ũ)

subject to : F (x̃, ũ) = 0
g (un) ≥ 0, ∀n = 1, . . . ,N

h (xn ,un) ≥ 0, ∀n = 1, . . . ,N
x0 isgiven.

J (x̃, ũ), g (un), h (xn ,un) are assumedC 1. The control input and the output constraints
are represented by g : Rnũ →Rng and h : Rnx̃ ×Rnũ →Rnh, respectively. The objective
function is given by J : Rnx̃ ×Rnũ →R and the state equations are posed as implicit
constraints. The state variables and the control inputs are dependent variables, there-
fore we are able to perform the optimization in the control input space of ũ instead of
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in the space of (x̃, ũ). To this end, we denote the objective objective asJ (ũ) omitting
J (x̃ (ũ) , ũ). In this paper we use NPV as the objective function

J (ũ) =
N−1∑
n=0

[
Npr od∑

j=1

(
ro qn

o, j − rw qn
w, j

)
−

Ni n j∑
l=1

(
ri n j qn

l

)] �t n

(1+d)tn

=
N−1∑
n=0

J n , (3.7)

where ro , rw , ri n j represent the oil price, the water separation cost, and the water in-
jection cost, respectively. The well rate at injector wells is denoted by ql , the water
rate at producer wells qw , the oil rate at producers qo , d is the discount factor,�t n is
the time interval, and N is the total simulation time. In addition,Npr od ,Ni n j denote
the number of producer and injector wells. Note that in the special case when d = 0
and water injection and separation costs are set to zero, the NPV is proportional to the
recovery factor in the sense that the optimal control inputs are equal.

The control input, either BHP or well rate, is always bounded. BHP is constrained
bywell and reservoir conditions, for example, a requirement to keepflowingBHPabove
the dew point. This leads to constraints on g (un). Moreover, since we assume the flow
is incompressible, this also introduces a constraint since the total injection rate must
equal the total production rate at all times. A common control input setting in reservoir
management is BHP control at producer wells and well-rate control at injector wells.
However, in this study we will use only well rate-controlled wells.

The output constraints might have different guises. We classify the constraints
into two classes. One class deals with one dimensional output constraints (nh = 1)
and another class poses multidimensional constraints, nh > 1. Examples of the one di-
mensional class are minimum total oil production, maximum water production, hier-
archial optimization as described in van Essen et al. [2010], or other approaches where
the output constraints are projected onto one measure. The multidimensional class
appears when several output constraints are treated individually. Examples are water
cut or water saturation constraints at each producer well.

Since we use gradient-based optimization, the adjointmethod is used to compute
gradients with respect to the objective functionJ (ũ). In this method, an augmented
objective function (or Hamiltonian)H =∑

L n , whereL n is defined as

L n (xn ,xn−1,un)=J n (xn ,un)+λnT F
(
xn ,xn−1,un) for n = 1, . . . ,N . (3.8)

Taking the derivative of the augmented objective function,H , with respect to the state
variables, xn , leads us to the adjoint equation
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(
∂F

(
xn ,xn−1,un

)
∂xn

)T

λn +
(
∂F

(
xn+1,xn ,un+1)

∂xn

)T

λn+1 (3.9)

=−
(
∂J n (xn ,un)

∂xn

)T

for n = N , . . . ,1,

with λN+1 = 0. The adjoint equation above is a linear equation where the solution are
the Lagrange multipliers λn . We then use the Lagrange multipliers to compute the
gradient with respect to the controls ũ, which is

∇ũL n = ∂J n (xn ,un)

∂un
+λnT ∂F

(
xn ,xn−1,un

)
∂un

. (3.10)

Implementing the adjoint equations correctly can be cumbersome. Hence, to validate
the adjoint implementation, we have compared the computed gradient to the gradient
obtained from a finite difference method (for a few control inputs). An example of the
validation check is shown in Figure 3.1.
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Figure 3.1: An example of gradient comparison between the numerical and adjoint
gradients. The numerical gradient is computed using forward finite difference with
relative perturbation size 10−5.

As seen, in order to compute the derivative ∇ũL of an objective function with re-
spect to the decision variables, the adjointmethod requires the partial derivatives; ∂Fn

∂xn ,
∂Fn+1
∂xn , ∂Fn

∂un , and
∂J n

∂un . Since we use a simplified model in this work, we derive all the
partial derivatives analytically. For a general simulator, however, this can be cumber-
some. As noted in Jansen [2011]; Sarma et al. [2008] the partial derivative ∂Fn

∂xn is exactly
what is used in the Newton-Raphson iteration of a fully implicit simulator, so in this
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case thesematrices can be stored during the forward simulation, and reused in the ad-
joint simulation. Alternatively, techniques such as Automatic Differentiation (AD) (see
e.g., Griewank &Walther [2008]), can be utilized to compute the derivatives efficiently.
The computational bottlenecks are in the linear solvers for the pressure equation and
Lagrangian multipliers. They account for more than 80 percent of the runtime in the
examples we consider.

3.4 Solution Method

In this section we will explain in detail how to the handle the output constraints. We
begin by explaining the motivation behind the barrier methods. Subsequently, we will
discuss the methods for handling the control input and output constraints. Finally, we
shall present somemethods for performance benchmark purposes.

3.4.1 Motivation

To solve the optimization problemP , the Lagrangian barrier method, as in Conn et al.
[1997], uses the following barrier function

Ψ
(
x̃, ũ,μ,λh

)=J (x̃, ũ)+μ
m∑

i=1
λh,i log

(
hi (x̃)+μλh,i

)
, (3.11)

where λh is the Lagrangian multiplier estimates, sh,i = μλh,i is the shift parameter
which is positive, and μ denotes the barrier parameter. The (primal) barrier method,
as in Fiacco &McCormick [1968], uses the barrier function

Ψ
(
x̃, ũ,μ

)=J (x̃, ũ)+μ
m∑

i=1
log(hi (x̃)) . (3.12)

The differences between the barrier and Lagrangian barrier methods are the shift vec-
tor and Lagrangian multiplier estimates. The shift parameter allows the Lagrangian
barrier to be started from an infeasible initial solution. However, the shift will relax the
output constraint, hence the solution may become infeasible. On the other hand, the
barrier method must be initiated from a feasible initial solution. Furthermore, as seen
in (3.12), the barrier function treats all the output constraints equally, while the La-
grangian barriermethod uses the Lagrangianmultiplier estimates to differentiate each
of the path constraints. This provides a potential benefit in the case of multidimen-
sional path constrained problems.

In addition to the barrier methods, penalty methods are also possible to use to
solve optimizationproblemP . Referring to the penaltymethod in Fiacco&McCormick
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[1968], the quadratic penalty function is

Ψ (x̃, ũ,ν)=J (x̃, ũ)− 1
ν

m∑
i=1
(hi (x̃))

2 . (3.13)

Further, the augmented Lagrangian function, which is an enhancement of the classical
penalty method, has the following form

Ψ (x̃, ũ,ν,sh)=J (x̃, ũ)− 1
ν

m∑
i=1

(
hi (x̃)+ sh,i

)2 . (3.14)

Note that the ν in the penalty methods is referred to as the penalty parameter. In both
types of methods, penalty and barrier, a solution is found as μ→ 0 and ν→ 0. Further,
the penalty methods have no requirement to start from a feasible set. However, both
of the methods have the well-known ill-conditioned Hessian matrix. We explain this
by studying (3.12) closer. The method approaches a solution of ũ

(
μ
) → ũ∗ as μ → 0.

Furthermore, if we define ri
(
μ
)≡μ/hi (x̃), we end up with a Hessian matrix

H =∇2J (x̃, ũ)+
m∑

i=1
ri∇2hi (x̃)− 1

μ

m∑
i=1

r 2i ∇hi (x̃)∇hT
i (x̃) .

Notice that if a constraint is active at the solution, the corresponding ri is non-zero,
that will result in a condition number r 2i /μ as μ→ 0.

The Lagrangian barrier method, proposed in Conn et al. [1997], is a combination
of barrier and penalty approaches. The method uses a barrier function and a penalty
parameter, and allows one to start from an infeasible initial solution. The method has
several advantages. First, the Lagrangian barriermethod is able to asymptotically iden-
tify inactive constraints. This can be done by utilizing the Lagrangian multiplier esti-
mates, that is, if any value of them is nonzero it implies an active constraint. Second,
themethod is less sensitive to degenerate problems, namely problemswhere the corre-
sponding Lagrangian multipliers are zero for active constraints at an optimal solution.
Finally, there are no slack variables introduced in this method which keep the number
of unknown variables limited.

As mentioned above, with the presence of the shift parameter the Lagrangian bar-
rier can be started from infeasible initial solutions. However, the choice of initial value
of shift parameter is a challenge. Therefore, we follow an earlier development of bar-
rier function classes, that is, the so-called modified barrier function (see Jittorntrum &
Osborne [1980]). The details of this method will be explained in the subsequent sub-
section. The idea to use the barrier method is that, in principle, we want to keep the
solution feasible. In addition, the modified barrier function has the other nice prop-
erties of the Lagrangian barrier mentioned above. Furthermore, the Lagrangian mul-
tiplier estimates are also useful to prevent ill-conditioned Hessian matrices since μ is
bounded away from zero.
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The barriermethod consists of two iteration levels; inner and outer iterations. The
inner iteration deals with the control input constraints and the outer iteration treats
the nonlinear output constraints. The two iteration levels will be explained in the sub-
sections below.

3.4.2 Control Input Constraints Handling

Tohandle the control input constraints, which appear as equality or bound constraints,
we use the projected conjugate gradient method for the equality constraints and a
barrier method for the bound constraints. These methods are implemented in the
optimization package KNITRO, see Byrd et al. [2006]. Apart from the control input
constraints handling, most of the runtime is spent in the inner iteration. Therefore,
the choice of globalization strategies is crucial. Given the current state-of-the-art of
gradient-based methods, there are two major choices; line search and trust region
methods.

In general, the solution of the optimal control input is iteratively computed in the
following form

ũk+1 = ũk +αsk . (3.15)

Here sk is the search direction. This line search processmay takemany function evalu-
ations or forward simulation runs. Amongmanymethods, twomethods for computing
α are the golden ratio search method and backtracking methods.

Contrary to the line search approaches, the trust region methods iteratively find
the optimal solution of control inputs using

ũk+1 = ũk +sk . (3.16)

The step sk simultaneously determines the direction and step length. This might give
significant reduction in the number of function evaluations. More importantly, these
methods still work in the presence of indefinite of Hessian matrices Conn et al. [2000].
For these reasons, we choose a trust regionmethod in the inner iteration, see Algorithm
1. The trust region method is presented as a macro code below.

The step sk is found by solving a quadratic approximation of the objective func-
tion, which is called a trust region subproblem. We use a conjugate gradient (CG)
method to solve the step sk , that is, Steihaug-CG [Steihaug, 1983]. Moreover, since the
quadratic approximation requires second order gradient (Hessianmatrix) information
we use the BFGS method to numerically approximate the Hessian. Algorithm 2 de-
scribes the standard Steihaug-CG method. To this end, scaling the objective function
or control input is important to speed up the optimization.

In brief, the trust region method measures the objective function decrease (in a
minimization problem) by using a ratio ρ. If the ratio is larger than (typically) 0.75 or
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Algorithm 4 Trust RegionMethod
1.Initialization:

• Set initial control input ũ0 and initial trust region radius���0.
• Set constants η1, η2, γ1, γ2 which satisfy 0< η1 ≤ η2 < 1 and 0< γ1 ≤ γ2 < 1.
• Set gradient convergence tolerance ω∗ � 1

2. For k = 0,1, . . .
• If

∥∥∇ũk J (ũk)
∥∥≤ω∗, then stop.

• Compute a step sk by solving trust region sub-problem :
min

s
qk (s) s.t : ‖s‖ ≤���k ,

where qk (s)=∇J (ũk)
T s+ 12sT∇2J (ũk)s, a quadratic approximation of the objec-

tive functionJ (ũk).
• Compute a ratio ρk :

ρk = J (ũk +sk)−J (ũk)

qk (sk)
.

• Update uk based on ρk value :

ũk+1 =
{

ũk +sk if ρk ≥ η1

ũk if ρk < η1
.

• Update trust region radius :

���k+1 ∈

⎧⎪⎪⎨⎪⎪⎩
[���k ,∞) if ρk ≥ η2,

[γ2���k ,���k ] if ρk ∈ [η1,η2),
[γ1���k ,γ2���k ] if ρk < η1.
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close to one, the step s will be updated and accordingly the trust region radius will be
enlarged. If not, the ratio is larger than 0.01 (or slightly larger than 0), the step will be
updated and the trust region radius will either be kept or decreased. Otherwise, if the
ratio less than 0.01, the increment will be rejected and the radius will be shrunk. The
parameters η1, η2, γ1, γ2 in Algorithm1 control the changes of the ratio and trust region
radius. The detailed description of this method can be found in Conn et al. [2000].

Algorithm 5 Steihaug Conjugate Gradient Method
1. Set ηk < 1,���k > 0, s0 = 0, r0 =−∇J (ũk), and d0 = r0.
2. For i = 0,1, . . .

• If ‖ri‖ ≤ ηk
∥∥∇J (ũk)

∥∥, then sk = si and stop.
• If dT

i Hdi ≤ 0, compute τ such that
∥∥si +τdi

∥∥=���k , then sk = si +τdi and stop.
• ϑi = ‖ri‖2 /dT

i Hdi

• si+1 = si +ϑi di

• If
∥∥si+1

∥∥≥���k , compute τ such that
∥∥si +τdi

∥∥=���k , then sk = si +τdi and stop.
• ri+1 = ri −ϑi Hdi

• φi = ‖ri+1‖2 /‖ri‖2
• di+1 = ri+1+φi di .

3.4.3 Nonlinear Constraints Handling

Now, we are in a position to explain the output constraint handling and we use the La-
grangian barrier method for this purpose. The barrier method requires us to construct
a composite function consisting of the objective function and the output constraints
with a barrier parameter. This parameter will vary from one iteration to the next. In
the spirit of the Lagrangian barrier function of Conn et al. [1997] and Jittorntrum &
Osborne [1980], we use the following function

Ψ
(
x̃, ũ,μ,λh

)=J (x̃, ũ)+μ
m∑

i=1
λhi log(hi (x̃)) , (3.17)

whereλhi , hi (x̃) are the Lagrangemultiplier estimates and the output constraints, all in
componentwise form, respectively. The barrier parameter is denoted by μ. The index
m denotes the number of output constraints. Note that the control input constraints
g (un) are not included. Further, we define the Lagrangian multiplier estimates as

λ̄hi

(
x̃,λhi ,μ

)
:=μ

λhi

hi (x̃)
. (3.18)

This identity is derived by taking the first derivative of the barrier function,

∇ũΨ
(
x̃, ũ,μ,λh

)=∇ũJ (x̃, ũ)+μ
m∑

i=1

λhi

h (x̃)
∇ũh (x̃) . (3.19)
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Weaim to estimateλ∗
h (the optimal Lagrangianmultiplier) such thatλ

∗
h ≈ λ̄h and drive

∇ũΨ
(
x̃, ũ,μ,λh

)
as close to zero as demanded by the first order necessary optimality

condition. We then use Algorithm 3 to handle the output constraints.

Algorithm 6 Lagrangian Barrier Method
Step 0: Initialization
- Set feasible initial solution of control input ũ0 and positive initial multiplierλ0
- Set convergence tolerances:
- gradient tolerance ω∗ � 1
- constraint violation η∗ � 1
- objective function changes ε∗

- Set positive barrier parameter μ0 and τ< 1
- Set initial convergence tolerance: ω0.

Perform iteration: k = 0,1,2, . . .
Step 1: Inner iteration
- Find ũk such that∥∥∇ũkΨ

(
x̃k , ũk ,μ,λk

)∥∥≤ωk

Step 2: Test for convergence
- If

∥∥∇ũkΨ
(
x̃k , ũk ,μ,λk

)∥∥≤ω∗
or

∥∥[hi (x̃k)]
m
i=1

∥∥≤ η∗
or

∣∣Jk+1 (x̃, ũ)−Jk (x̃, ũ)
∣∣≤ ε∗ then stop.

- Check
∥∥λ̄h,k −λh,k

∥∥ ≤ τk
μk
. If this holds continue to Step 3. Otherwise go to Step

4.
Step 3: Update Lagrangian Multipliers
- μk+1 =μk

- ωk+1 = τkωk

- λh,k+1 = λ̄h
(
x̃k ,λh,k ,μk+1

)
- Continue to Step 1.

Step 4: Update Barrier parameter
- μk+1 = τkμk

- τk+1 =μ0.5k
- Continue to Step 1.

Remarks:
• The control input constraint g (un) is handled during the inner iteration. Any
kind of gradient based optimization method can be used in the inner iteration.

• When the output constraints are violated, the logarithmic term in the objective
function will give a meaningless value (not a real-valued number). To mitigate
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this, we use the following modified objective function

Jb (x̃, ũ)=
{
Ψ
(
x̃k , ũk ,μ,λk

)
, if∀hi > 0

−∞ , if∃hi < 0

• Given the three kinds of stopping criteria in the algorithm, there exists a finite
iteration number k̄ such that the Step 3 is executed in k̄ times and a threshold
μ > 0. Therefore, the algorithm manages to prevent the ill-conditioned Hessian
matrix problem.

• The value of the Lagrangianmultiplier estimates λhi gives information on which
constraints are close to becoming active. This is contrary to the pure barrier
method which treats all the constraints equally.

• It should be noted that the Lagrange multiplier and barrier parameter are not
updated every outer iteration, as opposed to the pure barrier method described
in Algorithm 4. The Lagrange multiplier is updated when the output constraint
violation, which is shown in the algorithm above by the difference between La-
grange multiplier values and their estimates, is small and the barrier parameter
is fixed, and the gradient tolerance is tightened. When the constraint output con-
straint is large, the barrier parameter is updated and the Lagrange multiplier is
fixed, and the gradient tolerance is kept from the previous outer iteration. The
consequence of this condition is that the Lagrangian barrier method may stop
earlier than the pure barrier method since the gradient stopping criterion is not
updated every outer iteration. Hence, the Lagrangian barrier method requires
fewer number of inner iteration. This stopping criterion is a modification from
our previous work in Suwartadi et al. [2010a].

• The algorithm enjoys a superlinear convergence rate, see Jittorntrum & Osborne
[1980] and Conn et al. [1997].

3.4.4 Alternative methods

In addition to the Lagrangian barrier method, in this work we also implement the pure
barrier method as well as an existing optimization option in KNITRO (SLQP). The aim
is to compare their performance relative to the Lagrangian barrier method. The pure
barrier method is described in algorithm 4 while the algorithm in KNITRO is based on
the SQP method. The SLQP method uses a linear programming solver to detect active
constraints in a way resembles the active-set method Byrd et al. [2006].

In the next section, we demonstrate and compare the algorithms for some simple
reservoir management cases with output constraints.
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Algorithm 7 Pure Barrier Method
Step 0: Initialization
- Set feasible initial solution of control input ũ0
- Set convergence tolerances: gradientω∗ � 1, constraint violation η∗ � 1, objective

function changes ε∗
- Set positive barrier parameter μ0 and τ< 1
- Set initial convergence tolerance: ω0.

Perform iteration: k = 0,1,2, . . .
Step 1: Inner iteration
- Find ũk such that∥∥∇ũkΨ

(
x̃k , ũk ,μ

)∥∥≤ωk

Step 2: Test for convergence
- If

∥∥∇ũkΨ
(
x̃k , ũk ,μ

)∥∥≤ω∗
or

∥∥[hi (x̃k)]
m
i=1

∥∥≤ η∗
or

∣∣Jk+1 (x̃, ũ)−Jk (x̃, ũ)
∣∣≤ ε∗ then stop.

- otherwise execute Step 3
Step 3: Updates and tighten convergence tolerances
- μk+1 = τkμk

- ωk+1 = τkωk

- τk+1 = τkωk

Continue to Step 1.
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3.5 Numerical Cases

In this section three cases demonstrate the proposedmethod for handling output con-
straints. In these cases the output constraints appear as total water production, water
cut (water fractional flow) constraints, and an objective function constraint. The first
and third cases represent one dimensional problems, while the second case demon-
strates the multidimensional output constraint problem. All the cases are open loop
optimization problems, that is, there is no use of real-time data for feedback purposes.
To measure the performance of the proposed method, we compare the Lagrangian
barrier method with a pure barrier method and a Sequential Quadratic Programming
(SQP)-based method, SLQP, which is one algorithm option in the KNITRO solver. The
pure barrier is the classical barrier method in the sense that it uses no Lagrangianmul-
tiplier estimates. The simulations for the case examples are done on a Linux 64-bit
machine with CPU specification Intel Xeon(R) 3.00 GHz and 16 GB RAM. The oil reser-
voir models in this work are all implemented by using MATLAB Reservoir Simulation
Toolbox [Lie et al., 2011].

3.5.1 Numerical Case 1

In this case, we constrain the maximum total water production. First, we run an op-
timization with maximum water production constraint for the first layer of SPE 10th
Comparative Study [Christie & Blunt, 2001]. Later, we will run the optimization for 10
selected layers of the SPE 10th model. The wells follow a 5-spot pattern consisting of
one injector well at the middle and four producer wells at the corners, see Figure 3.2.

The grid has 60×220 blocks where a grid block has physical dimension 10ft× 20ft
× 2ft. Figure 3.2 displays a heterogeneous permeability field while the porosity, for
simplicity, is set to 0.3 in all gridblocks. The water-to-oil mobility ratio is set to 5 and
initial water saturation is 0.2. The objective function is normalized net present value
(NPV) with a zero discount rate, where oil price is 1 and zero water separation cost and
zerowater injection cost. The control inputs are injector and producer well-rates. Note
that the total injector rate must equal the total production rate due to incompressible
fluids and formation. We divide the control inputs into 12 equal intervals for a 360-day
simulation time. In other words, we change the well-rates every month. The initial
water injection is 0.1 of total pore volume at constant rate. To prevent producer wells
from becoming injector wells and vice versa we confine their values to be positive.

In this case the output constraint is maximum water production. We limit the
maximum total water production to 2.24×104m3 or 0.5 of the pore volume of the reser-
voir, and define this asQw,max . The barrier term for this output constraint is

ψ
(
x̃, ũ,μ,λ

)= N∑
n=1

J n (xn ,un)+μλlog

(
Qw,max −

N∑
n=1

Qn
w,pr d

)
. (3.20)
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Figure 3.2: Permeability field, well location and relative permeability curves for Case 1.
The color bar shows the logarithm of the permeability of layer 1 of the SPE 10model in
milidarcy. The well locations follow the 5-spot pattern in which 4 producers are placed
in the corners and 1 injector in the middle.

The initial barrier parameter is set to μ0 = 100, other parameters are set as follows:
τ = 0.1, ω0 = 0.1, λ0 = 1 ∈ R12×1. The stopping criteria parameters are the relative
gradient tolerance ω∗ = 10−4, absolute maximum total water rate producers tolerance
η∗ = 10−6, and absolute objective function changes ε∗ = 10−2 percent of NPV.

The optimization results for the first layer is described in Table 3.1. The barrier
methods terminate due to the absolute objective function change criterion. The pure
and Lagrangian barrier methods result in almost the same NPV and total water in-
jected. Both methods require the same number of outer iteration as seen in Figure
3.3. Since the constraint violation is quite large, the Lagrangian barrier method does
not tighten the gradient stopping criterion. Therefore, the method takes fewer inner
iterations to converge than those of the pure barrier method. The optimized well-rate
for each method is depicted in Figure 3.4. The Lagrangian barrier and pure barrier
methods produce very similar optimized control inputs.

We also run optimization for various layers of the SPE 10th model. Table 3.2 sum-
marizes the results. Similarly to the results of the first layer, the Lagrangian barrier
method is the fastest in terms of CPU time. The Lagrangian and pure barrier meth-
ods achieve almost the same NPV, but the Lagrangian barrier method is slightly faster.
Note that in all cases the barrier methods stop due to the objective function change
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Table 3.1: Optimization results of the three methods for the first layer SPE 10th model.

Aspects SLQP Lag. Barrier Pure Barrier

NPV (in 104) 1.69 1.73 1.73
Total Water Production (104m3) 2.20 2.22 2.22
CPU time (in seconds) 2260 1320 1444
Total Water Injected (in PVI*) 0.8780 0.8709 0.8709

PVI stands for Pore Volume Injected.
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Figure 3.3: Objective function evolution for each iteration. The iterations for the bar-
rier methods refer to outer iteration, while SLQP represents to the number of inner
iteration.

criterion.
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Figure 3.4: Optimized control input (well-rates) for each method. The Lagrangian bar-
rier and pure barrier methods yield almost the same control inputs. Therefore the blue
colors of the Lagrangian barrier are overlapped by the green colors of the pure barrier.

Table 3.2: Optimization results of the three methods for 10 layers of SPE 10th model.
NPV is given in 104, TWI stands for TotalWater Injected in PVI, CPU Time is in seconds.
Layer Method

SLQP Lag. Barrier Pure Barrier
NPV TWI. CPU Time NPV TWI. CPU Time NPV TWI. CPU Time

5 1.62 0.86 1513 1.68 0.85 905 1.68 0.85 1001
9 1.57 0.79 589 1.63 0.84 870 1.63 0.84 924
13 1.36 0.80 995 1.41 0.78 916 1.41 0.78 1006
17 1.60 0.85 1566 1.65 0.84 833 1.65 0.84 889
21 1.51 0.84 1441 1.54 0.82 897 1.54 0.82 999
25 1.52 0.73 314 1.62 0.85 885 1.62 0.85 1059
29 1.68 0.87 1497 1.73 0.85 895 1.73 0.86 1020
33 1.45 0.82 1421 1.46 0.81 956 1.46 0.81 1036
37 1.02 0.73 1173 1.11 0.68 895 1.11 0.72 1024
41 1.01 0.72 929 1.04 0.71 950 1.04 0.71 954

Average 1.43 0.80 1144 1.48 0.80 900 1.48 0.81 991

50



Numerical Cases

Prd2

Prd4

Inj1

Prd1

Prd3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Relative permeability curves

Water Saturation, Sw

R
el

at
iv

e 
P

er
m

ea
bi

lit
ie

s,
 k

rw
 a

nd
 k

ro

Water
Oil

Figure 3.5: The logarithm of permeability field in milidarcy, well location and relative
permeability curves for Case 2. The well locations follow the 5-spot pattern in which 4
producers are placed in the corners and 1 injector in the middle.

3.5.2 Numerical Case 2

This case is again taken from the SPE 10th Comparative Study; layer 10, as seen in
Figure 3.5. The reservoir has 60×220 gridblocks, initial water saturation 0.1, connate
water saturation and residual oil saturation 0.1, and water-to-oil mobility ratio 5. For
simplicity, we use constant porosity 0.2. The gridblock dimensions are 10ft× 20ft× 2ft.
Water cut at each producer well at the end time of the simulation (N ) is the output
constraint, which is described in the following barrier function

Ψ
(
x̃, ũ,μ,λ

)= N∑
n=1

J n (xn ,un)+μ
m∑

i=1
λi log

(
fw,max − f N

w pr od ,i

)
. (3.21)

Themaximumallowable water cut, fw,max , at producer wells is set to 0.9. The objective
function is recovery factor and the control inputs are well rates. The total simulation
time is divided into 5 control intervals where each interval equals 100 days. In this case,
there is no upper bound constraint on the control inputs.

The parameter settings in this case are: λ0 =
[
1 1 1 1

]T
, τ = 0.1, μ0 = 100,

ω0 = 0.1, relative gradient tolerance ω∗ = 10−4, absolute maximumwater cut tolerance
η∗ = 10−6, and absolute objective function changes ε∗ = 10−2 percent of recovery fac-
tor. The initial total injection is 0.2 of the total pore volume at constant and equal rates
for all the wells. We chose an active set algorithm in KNITRO to the handle control
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input constraints g (ũ).
Table 3.3 and Figure 3.6, 3.7, and 3.8 show the performance comparison of the

methods and constraints satisfaction of each method. The final barrier parameter, μ,
is for both the barrier methods set to 10−2. Interestingly, the Lagrangian multiplier es-
timates are able to asymptotically identify the active constraints by their values, which
are

λ= [
786.2 29.8 22.3 8.9

]T

The values imply that all constraints active.

Table 3.3: Comparison of the methods in Case 2.

Method SLQP Lag. Barrier Pure Barrier

Recovery Factor (%) 52.74 56.00 56.10
CPU Time (seconds) 556 504 734
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Figure 3.6: SLQP - The output constraints satisfaction. Notice that the output con-
straints are almost active at the final control interval, i.e., between 400 and 500 days in
some producer wells

The optimized production profile is depicted in Figure 3.10. In Figures 3.6, 3.7, and
3.8, we observe that the constraints for Pr d1 and Pr d4 do not become active for the
SLQP method. The reason probably is that, to use the SLQP algorithm in KNITRO, we
aggregate the output constraints in the following way,

h (x̃)=
4∑

i=1
max

((
fw,max − f N

w,pr d i

)
,0
)
, (3.22)
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Figure 3.7: Lagrangian Barrier
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Figure 3.8: Pure Barrier

which yields non-smoothness, affecting convergence rate of the optimizer. This also
effects the objective function evolution seen in Figure 3.9. Furthermore, for this par-
ticular choice of control inputs, the SLQP method gives the lowest recovery factor, see
Table 3.3. The pure barrier leads to a slightly higher recovery factor than the Lagrange
barrier method at the expense of a longer runtime. The reason for this is similar to the
first case, that is, the Lagrangian barrier method does not tighten the gradient toler-
ance. As seen in Figure 3.9 both the barrier methods take the same number of outer
iteration but the gradient tolerance for the Lagrangian barrier method is not changed
for each inner iteration.

We then run 10 simulations with different initial values since the gradient-based
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Figure 3.9: Objective function evolution for each iteration. The iterations for the bar-
rier methods refer to outer iteration, while SLQP represents to the number of inner
iteration.

optimizations are sensitive to initial solutions. Table 3.4 describes the results. On av-
erage the Lagrangian barrier method gives almost identical results as the pure barrier
method but with a 29% runtime reduction.

Table 3.4: Simulation results from 10 different initial control inputs
SLQP Lag. Barrier Pure Barrier

min max average min max average min max average

Recovery Factor (%) 48.36 55.50 51.98 55.06 56.43 55.83 55.06 56.44 55.86
CPU time [sec] 133 627 364 188 259 225 273 427 319
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Figure 3.10: Comparison of optimal control inputs from the methods.

3.5.3 Numerical Case 3

This case uses the objective function (NPV) as a constraint and originates from van Es-
sen et al. [2010]. The constrained NPV is a result of an optimal control strategy which
has lower value in the short termhorizon compared to theNPVof reactive control strat-
egy. Hence, a second stage optimization is needed to enhance the resulting optimal
control strategy. In the second stage optimization, the optimized control inputs are
re-optimized such that the NPV in the short term horizon is improved. The long term
NPV value in the second stage optimization is maintained by constraining its value so
that it approaches to the NPV of first stage optimization.

In addition to the use of Hessian information in van Essen et al. [2010] to solve
this problem, the use of an augmented Lagrangianmethod has been proposed in Chen
et al. [2011]. In thatwork, asmentioned in Section 4, the augmented Lagrangianmethod
can be started from any initial guess. Furthermore, the authors in Chen et al. [2011]
also incorporate model uncertainties by introducing an ensemble of oil reservoir real-
izations into the optimization algorithm. Hence, the objective function is an expected
value (average) of NPV from the realizations.

We use a real reservoir geometry, from the Norne field case Rwechungura et al.
[2010] as shown in Figure 3.11. The reservoir consists of 46×112×22 gridblocks with
4 injector and 8 producer wells. We perform 5 years simulation divided into 20 control
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intervals. Hence, in total we have 240 well-rates controlled. We use the same relative
permeability in this case as in case 1. The permeability of the field is depicted in Figure
3.11 and water-to-oil mobility ratio is set to 5. The oil price is set to $100/m3, water
separation cost $10/m3, and water injection cost $1/m3. In the first stage optimization
the objective function is NPV with a zero discount rate and in the second stage NPV
has a discount rate of 25 percent aiming to emphasize production on the short term
horizon. The rates at the producer and injector wells are constrained downwards by
zero, that is, producer and injector wells cannot turn into injector and producer wells,
respectively.

Figure 3.11: Permeability field and well location of Norne field for case 3. Color bar in
the picture displays logarithm of permeability in millidarcy. Injector wells are C-1H,
C-2H, C-3H, and F-1H. The remaining wells are production wells.

As seen in Figure 3.12, the reactive control results in better NPV in the short term
horizon while in the long run, the optimal control strategy yields a significantly higher
NPV. The output constraint in this case will be defined as the long term NPV of the op-
timal control strategy. After finishing the long term optimization, we run the second
stage optimization in order to increase NPV of the optimal control result. To summa-
rize, the following is the optimization procedure.
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Figure 3.12: Comparison of long term optimization using optimal control and reactive
control

Hence, in this case the barrier function is

Ψ
(
x̃, ũ,μ,λ

)= Nshor t∑
n=1

J n
s

(
xn ,un)−μλlog

((
J ∗−ε

)− N∑
n=1

J n
s

(
xn ,un)) . (3.23)

The ε in the barrier function accounts for a small reduction of the long term NPV (J ∗)
in the second stage optimization. The objective function for the second stage opti-
mization isJ n

s with a non-zero discount rate.
The parameter settings in this case are: λ0 = 1, τ = 0.1, μ0 = 100, ω0 = 0.1, rela-

tive gradient tolerance ω∗ = 10−8, absolute constraint violation η∗ = 10−6$, absolute

Algorithm 8Hierarchical Optimization Procedure
- Run the long term (or first stage) optimization to obtain: J ∗ and ũ∗,
- Use the ũ∗ as initial solution,
- Use theJ ∗ as an output constraint,
- Set an NPV with a non-zero discount rate to emphasize the short term production

horizon,
- Run the short term (second stage) optimization.
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Figure 3.13: Optimized well rates for the 4 injectors and 8 producers.

objective function tolerance changes ε∗ = 1000$, reduction of long term NPV ε= 109$.
Reactive control and an optimized production strategy are compared in Figure

3.12. In the reactive control case equal and constant injection rates are used. A pro-
ducer well is shut in when the water cut exceeds 0.9. The optimized production strat-
egy, shown in Figure 3.13, is in this case computed using the SQP method; with a dis-
count factor of zero. The result indicates a significant potential for optimal control.

Next we apply the three optimization methods on the short optimization prob-
lem. The time horizon for the short optimization problem is the same as the first stage
optimization. The results are depicted in Figure 3.14, 3.16 and Table 3.5. As seen in the
table, the pure barrier and SLQP methods yield the highest NPV. Interestingly, these
methods lead to 2.7% increasement of long term NPV. The Lagrangian barrier method
results in the fastest CPU times but with the lowest long term NPV. The evolution of
the objective function changes is shown in Figure 3.15. The Lagrangian barrier termi-
nates just after two outer iterations. This is due to the unchanged value of the gradient
stopping criterion. Hence, the method requires a lower number of inner iterations. As
a result, the objective function at the second outer iteration is almost the same as the
previous iteration. Then, the method stops because of the objective function changes
criterion. The pure barrier method, with the gradient tolerance changed every outer
iteration, results in better objective function value but takes more inner iterations to
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converge.
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Figure 3.14: Hierarchial optimization enhancing the short term optimal control strat-
egy. The SLQP and pure barrier methods have almost the same NPV, therefore the
green dash line of SLQP is overlapped by the blue dash line of pure barrier.

Table 3.5: Comparison of the short term NPV

Method SLQP Lag. barrier Pure barrier

NPV (in $1010) 1.89 1.79 1.89
CPU Time (in minutes) 433 97 540

In this case we have deliberately chosen initial values in which the short term op-
timization result is below the reactive control NPV for the same horizon. This is rea-
sonable since this situation may well occur due to the fact that there are multiple local
solutions of this problem.

3.5.4 Discussion of results

Three cases have beenpresented. As described, the barriermethods needproper initial
parameters, for example the barrier parameter, μ. For the Lagrangian barrier method,
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Figure 3.15: Objective function evolution for each iteration. The iterations for the bar-
rier methods refer to outer iteration, while SLQP represents to the number of inner
iteration.

we need also to supply initial Lagrangian barrier estimates. This did not complicate
matters in the two earlier examples. In the latter case however it seems like more care
needs to be taken in order to initialize the Lagrangian barrier method. For the choice
of parameter values used in the two first case examples, the barrier methods seem ro-
bust to a variety of initial values of control inputs. However, we have not presented the
effect of varying the initial parameter values to the optimization performance. This
will be subject for future research. Furthermore, the stopping criteria is also an impor-
tant consideration. All the barrier methods in the case examples terminate due to the
objective function changes criteria.
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Figure 3.16: Comparison of the methods, SLQP, Lagrangian barrier, and pure barrier.
The colors represent; SLQP-red, pure barrier-green, and Lagrangian barrier-blue. No-
tice that pure barrier and SLQP have almost the same optimized control inputs. There-
fore the red color is overlapped by the blue color.

3.6 Conclusion

In this paper we have proposed the use of a Lagrangian barrier method for the han-
dling of output constraints, where the dimensions of the output constraints appear in
one and multidimensional cases. The proposed method is compared to a pure bar-
rier and SLQPmethods. The proposed Lagrangian barrier method is able to honor the
nonlinear output constraints. The performance of the Lagrangian and barrier meth-
ods are very similar for the first two case examples presented, while for the third case
they are slightly different. In the examples presented, the Lagrangian barrier method
required fewer function evaluations than the other two approaches, and hence gave a
faster CPU time. Furthermore, the use of Lagrangian multiplier estimates give infor-
mation on which constraints are active.

The assumption of a feasible initial guess is needed for the use of the Lagrangian
barrier method. We have used the modified barrier function, that is, without a shift
parameter. This shift parameter allows an infeasible initial guess. An idea for future
direction is to use the shift parameter when the solution is infeasible and set the shift
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parameter to zero when the solution is feasible.
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Chapter 4

Second-Order Adjoint-Based Control
for Multiphase Flow in Subsurface Oil
Reservoirs

A short version of this chapter was presented in Suwartadi et al. [2010c].

This paper presents an efficient way to compute second-order gradients by using
the adjoint method for PDE-constrained optimization. The gradient thus obtained is
used in an optimization algorithm. We propose a conjugate gradient approach com-
bined with the trust-region method, which, ultimately, may exhibit a quadratic con-
vergence like the Newton’s method. Furthermore, we compare the proposed algo-
rithm to a quasi-Newton method (BFGS), and apply the method for production op-
timization in two-phase oil reservoirs. Two numerical cases are presented, showing
that our proposed method requires fewer function and gradient evaluations than the
quasi-Newton approach even though the CPU time does not decrease.

4.1 Introduction

Oil reservoirs aremodeled bypartial differential equations (PDEs) and are implemented
as a reservoir simulator. The models are used by reservoir engineers to get insight
into the physics and to help deciding reservoir management strategy. Due to complex
time-dependent processes and uncertainties in rock and fluid properties of subsurface
reservoirs, the reservoir simulator may not accurately describe the physics. Hence,
one-best-effort model is not preferable rather a set of ensemble models are usually
employed, representing spread of the uncertainties. The reservoir management de-
cisions include how to sweep remaining oil efficiently (production optimization), use
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of the models for future asset calculation (parameter estimation/reservoir condition-
ing), and determine where a injector or producer well should be placed. These types
of decisions can be regarded as numerical optimization problems.

PDE-constrained optimization is currently an active research field. Books ofHinze
et al. [2009] and Troltzsch [2010] give details introduction and applications of the op-
timization. In the literature, one can observe two different approaches. The first ap-
proach is to use derivative-freemethods, for instanceHooke-Jeeves’s direct-search [Hooke
& Jeeves, 1961] and genetic algorithm [Goldberg, 1989]. This approach treats the reser-
voir simulator as a black box and gives an ease of implementation. However, for large-
scale systems such as oil reservoir, which is discretized into 104 - 106 grid blocks, will
result inmany simulation runswhich consequently be prohibitive in termof CPU time.
The second approach is gradient-based optimization. From optimal control theory
perspective, the adjoint method is readily available for computing the gradient. Al-
though the implementation is a challenging task, at the end the optimization will be
more computationally efficient. The adjoint method is focus of the topics in the books
[Hinze et al., 2009; Troltzsch, 2010]. Production optimization of oil reservoir in PDE-
constrained optimization is seen as an example of boundary control problem since the
control inputs are either well-rate or bottomhole pressure at the producer wells. A well
in oil reservoir model is a boundary condition of the PDEs. While parameter estima-
tion for oil reservoir, which is known as history matching by reservoir engineers, is a
type of distributed control. The parameters (rock or fluid properties) are assigned to
each and every grid block of reservoir model.

In the reservoir simulation literature, the use of adjoint method for production
optimization has been started since early 1980s see for example Asheim [1986]. The
method has been revived in Brouwer & Jansen [2004] and recently reviewed in Jansen
[2011]. The current state-of-the-art industrial oil simulator, such as Eclipse E300 Schlum-
berger [2009] provides the ability for computing gradient using the adjoint methods.
The simulator also incorporates steepest descent and conjugate gradient optimizers.
The adjoint-gradient that is supplied to the optimizers is first-order gradient. In the
research literature, one can find the use of quasi-Newton, e.g., BFGS method used in
order to speedup the optimization.

In this work we are interested in the use of second-order gradient or the Hessian.
The development of the Hessian matrix in the framework of adjoint methods can be
traced to Raffard & Tomlin [2005], where an auxiliary convex quadratic optimization
was used to compute the Newton step. In that work, the Hessian matrix was not com-
puted explicitly. In Raffard et al. [2008], the use of finite differencemethods to compute
the Hessian was proposed. Similarly, van Essen et al. [2010] presented a hierarchical
optimization approach for oil reservoirs that used the central finite difference method
to estimate the Hessian. In the optimization community, an analysis of the Newton
methodwas presented by, among other works, Ito &Kunisch [2000]. InHeinkenschloss
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[2008] an inexact Newton method was applied, that is, Truncated Newton or Newton
Conjugate Gradient, to a PDE-constrained optimization.

In this paper, in the spirit of Ito & Kunisch [2000] and Heinkenschloss [2008], we
implement the adjoint method for the Hessian matrix. A Hessian-times-vector, as
in Heinkenschloss [2008], is derived for production optimization of an oil reservoir
model. In addition, weuse the conjugate gradient algorithm, following Steihaug [1983],
to perform the optimization using the gradients (first and second order) from the ad-
joint method. Here, we do not consider constraint on the state variables. We only put
constraints on the control inputs, which can be inequality and equality constraints. In-
terested readers on state constraints for production optimization problemmay refer to
our work in Suwartadi et al. [2012b].

The outline of this paper is the following. We discuss the second-order adjoint
algorithm in Section 4.2. In Section 4.3 we explain our incompressible oil reservoir
model along with the optimization goal. Two numerical cases demonstrating our pro-
posed algorithm are presented in Section 4.4. In Section 4.5 we discuss the results of
the numerical cases, and in Section 4.6 we present our conclusions.

4.2 The Adjoint Gradient For The Hessian

In general, we consider an optimization problem,

min
x∈Rnx ,u∈Rnu

J (x,u) (4.1)

subject to c (x,u)= 0, (x,u) ∈ Wad,

where J : Rnx ×Rnu →R is the objective function, c : Rnx ×Rnu →Rnc is the implicit
constraint representing a dynamic model, and Wad ⊂ W := Rnx ×Rnu is a nonempty
closed set. J and c are continuously Fréchet-differentiable. We assume that for a
given control input u, there is always a unique solution of the state variable x, i.e.,
u ∈Rnu �→ x ∈Rnx. Moreover, we also assume that cx (x (u) ,u) is continuously invertible.
Hence, the implicit function theorem guarantees that x (u) is continuously differen-
tiable. Since x is dependent on u, we obtain the reduced problem

min
u∈Rnu

Ĵ (u) : = J (x (u) ,u) , (4.2)

subject to u ∈ Ûad :=
{

u ∈Rnu: (x (u) ,u) ∈ Wad
}
.

Furthermore, an equation for xu (u) is obtained by taking the derivative of c (x,u):

cx (x,u)xu (u)+ cu (x,u)= 0. (4.3)

We will use this derivative for gradient computation which will be explained shortly.
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4.2.1 The Adjoint Method

Following Heinkenschloss [2008], we now derive the first-order gradient using the ad-
joint method. We construct a Lagrangian:

L (x,u,λ)=J (x,u)+λT c(x,u). (4.4)

By the optimality condition∇xL (x,u,λ)= 0, we can solve the following linear equation

cx(x(u),u)
Tλ=−∇xJ (x(u),u). (4.5)

Denote the solution as the Lagrangian multiplier λ (u) and the first-order gradient as

∇uJ (x(u),u)=∇uL (x,u,λ)|x=x(u),λ=λ(u). (4.6)

If one is interested in the use of a quasi-Newtonmethod, for example, the BFGS al-
gorithm, (4.6) will be supplied to the algorithm to numerically approximate the inverse
of the Hessian matrix. Now, we continue to derive the adjoint for the Hessian matrix.

For brevity, we denote the Hessian ∇2J (u) referring to ∇uuJ (x(u),u), and let x
and λ denote x (u) and λ (u), respectively. From (4.6), we take the derivative with re-
spect to x, u,λ, yielding the Hessian, as follows:

∇2J (u) = ∇uxL (x,u,λ)xu(u)+∇uuL (x,u,λ) (4.7)

+∇uλL (x,u,λ)λu(u).

Furthermore, if we differentiate ∇xL (x,u,λ)= 0 we obtain

∇xxL (x,u,λ)xu (u)

+∇xuL (x,u,λ)

+∇xλL (x,u,λ)λu (u) = 0. (4.8)

Using the implicit function theorem, we take the derivative of the Lagrangian (4.4)
and obtain

∇xλL (x,u,λ)= cx(x,u)
T (4.9)

∇uλL (x,u,λ)= cu(x,u)
T . (4.10)

Substitute (4.9) into (4.8) with the aim of computing the derivative of the Lagrangian
multiplier λu(u) will lead to

λu (u) = −cx (x,u)
−T (4.11)

(∇xxL (x,u,λ)xu (u)+∇xuL (x,u,λ)) .

66



The Adjoint Gradient For The Hessian

Equation (4.3) also implies

xu(u)=−cx(x,u)
−1cu(x,u). (4.12)

Then, we substitute (4.10), (4.11), and (4.12) to the Hessian matrix in (4.7). After some
rearrangement, we get

∇2J (u) = ∇uxL (x,u,λ)xu(u)+∇uuL (x,u,λ)

−xu(u)
T ∇xxL (x,u,λ)xu(u)

−xu(u)
T ∇xuL (x,u,λ). (4.13)

If we defineW (x,u)=
(

xu(u)
I

)
, then (4.13) will become

∇2J (u) = W (x,u)T (4.14)( −∇xxL (x,u,λ) −∇xuL (x,u,λ)
∇uxL (x,u,λ) ∇uuL (x,u,λ)

)
W (x,u) .

The identity (4.14) can be used to compute the Hessian matrix. However, in prac-
tice, the pure Newton’s method is prohibitive in terms of computational cost. There-
fore, we instead use a Hessian-times-vector product. This Hessian-times-vector prod-
uct will be used in a conjugate gradient-based method, which we will describe in the
next section. Let us summarize the procedure in the following steps.
1. Given the control inputu, solve the systemmodel c (x,u)= 0. Denote the solution
by the state variable x.

2. Solve the adjoint equation cx(x(u),u)Tλ = −∇xJ (x(u),u). The solutions are the
Lagrangian multipliersλ.

3. Compute the derivative of the state variable in the direction of s1

xu (u)s1 =−cx (x,u)
−1 cu (x,u)s1

4. Also compute the derivative of the Lagrangian multiplier in the direction of s1

λu (u)s1 = −cx (x,u)
−T

(∇xxL (x,u,λ)xu (u)+∇xuL (x,u,λ)s1)

5. Compute the Hessian-times-vector product

∇2J (u)s1 = ∇uxL (x,u,λ)xu (u)s1
+ ∇uuL (x,u,λ)s1
+ cu (x,u)

T λu (u)s1

Note that steps 3 and 4 are linear equations that supplement the adjoint equation,
which is also a linear equation.
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4.2.2 Truncated Newton Method

Newton’s method, ∇2J (uk)sk = −∇J (uk), is approximately solved using the conju-
gate gradient (CG) method. The method consists of two layers of iterations, i.e., an
inner and an outer iteration. The inner iteration finds a Newton step sk at iteration
k, while the outer iteration is a trust-region globalization strategy. Algorithm 9 below
describes the outer iteration. The algorithm setting here is similar to Steihaug [1983].

Algorithm 9 Trust-regionMethod (Outer iterations)
1. Initialization:

• Set the initial control input u0 and initial trust region radius���0.
• Set constants η1,η2, γ1, γ2, which satisfy 0< η1 ≤ η2 < 1 and 0< γ1 ≤ γ2 < 1.
• Set the gradient convergence tolerance ω∗ � 1

2. For k = 0,1, . . .
• If

∥∥∇uk J (uk)
∥∥≤ω∗, then stop

• Compute a step sk by solving the trust region sub-problem:
min

s
qk (s) s.t : ‖s‖ ≤���k ,

where qk (s)=∇J (uk)
T s+ 12sT∇2J (uk)s, a quadratic approximation of the objec-

tive functionJ (uk).
• Compute a ratio ρk :

ρk = J (uk +sk)−J (uk)

qk (sk)
.

• Update uk based on ρk value:

uk+1 =
{

uk +sk if ρk ≥ η1

uk if ρk < η1
.

• Update the trust region radius:

���k+1 ∈

⎧⎪⎪⎨⎪⎪⎩
[���k ,∞) if ρk ≥ η2,

[γ2���k ,���k ] if ρk ∈ [η1,η2),
[γ1���k ,γ2���k ] if ρk < η1.

The trust region sub-problem in Algorithm 9 is solved using Steihaug’s Conjugate
Gradient method Steihaug [1983]. We choose this method because the Hessian matrix
may be negative definite. Hence, if we use line search methods, we will not succeed
in finding a descent direction (minimization problem). The method is described in
Algorithm 10. The algorithm is terminated if one of the following criteria is met: resid-
ual tolerance, crossing the boundary of the trust region, or negative curvature. Fur-
thermore, since the Conjugate Gradient algorithm might have lengthy iterations, the
iteration is "truncated" in the early stages of the inner iteration. This algorithm is also
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known as the Truncated Newton or Inexact Newton method. The truncation is done
according to the residual, which is described by the following inequality

ri =
∥∥∇J (uk)+∇2J (uk)si

∥∥≤ ηk
∥∥∇J (uk)

∥∥ . (4.15)

The subscript i represents the iteration within the Conjugate Gradient algorithm. The
s is the approximate solution of the Newton step.

Algorithm 10 Steihaug Conjugate Gradient (Inner iterations)
1. Set ηk < 1,���k > 0, s0 = 0, r0 =−∇J (uk), and d0 = r0.
2. For i = 0,1, . . .

• If ‖ri‖ ≤ ηk
∥∥∇J (uk)

∥∥, then sk = si and stop
• Hvi =∇2J (uk)di

• If dT
i Hvi ≤ 0, compute τ such that

∥∥si +τdi
∥∥=���k , then sk = si +τdi and stop

• ϑi = ‖ri‖2 /dT
i Hvi

• si+1 = si +ϑi di

• If
∥∥si+1

∥∥≥���k , compute τ such that
∥∥si +τdi

∥∥=���k , then sk = si +τdi and stop
• ri+1 = ri −ϑi Hvi

• φi = ‖ri+1‖2 /‖ri‖2
• di+1 = ri+1+φi di .

TheHessian-times-vector (Hvi ) in Algorithm10 is obtained from the adjointmethod
explained in the previous section. The theorem below further explains the relationship
between the convergence rate and the residual value in (4.15).

Theorem 1. Assume that ∇J (u) is continuously differentiable in a neighborhood
of a local solution u∗ of (4.1). In addition, assume that ∇2J (u∗) is nonsingular and
that it is Lipschitz continuous at u∗. Assume that iteration k of the truncated-Newton
method computes a step sk that satisfies∥∥∇J (uk)+∇2J (uk)sk

∥∥≤ ηk
∥∥∇J (uk)

∥∥
for a specified value of ηk ; the new estimate of the solution is computed using uk +sk →
uk+1 . If u0 is sufficiently close to u∗ and 0 ≤ ηk ≤ ηmax < 1, then {uk } converges to
u∗ q-linearly in the norm ‖·‖∗, defined by ‖v‖∗ ≡ ∥∥∇2J (u∗)v

∥∥, with asymptotic rate
constant no greater than ηmax. If l i mk→∞ηk = 0, then the convergence is q-superlinear.
If ηk =O

(∥∥∇J (uk)
∥∥r ) for 0< r ≤ 1, then the convergence is of order at least (1+ r ).

Proof: see Dembo et al. [1982]. �
The ηk is called the forcing sequence, which, as suggested in Dembo et al. [1982],

has practical value ηk =min{12 ,κ∥∥∇J (uk)
∥∥a} , where κ is a positive constant and 0 <

a ≤ 1.
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The algorithms above have been described without constraints handling. Later,
we will present case examples with constraints. To handle the constraints, we use an
active set Sequential Linear-Quadratic Programming (SLQP) method, as implemented
in the software package KNITRO [Byrd et al., 2006]. This method is based on the pro-
jected Conjugate Gradient (PCG). In short explanation, the constraints are represented
by equality constraints gE and inequality constraints gI . The objective function will be
in the form

P (u;ν)= Ĵ (u)+ν
∑
i∈E

∣∣gi (u)
∣∣+ν

∑
i∈I

(
max

(
0,−gi (u)

))
. (4.16)

Here, ν is the penalty parameter and i ∈ E and i ∈ I represent the vectors gE and gI ,
respectively. The Hessian-times-vector derived in the previous section is supplied to
the optimizer. Refer to Byrd et al. [2006] for further details of constraints handling in
the SLQPmethod.

4.3 Production Optimization Of Oil Reservoirs

The problem that we are interested in for demonstrating the algorithms is that of oil
reservoirs. An oil reservoir model is posed as the implicit constraint c(x,u) in (4.1).
An economic objective function is selected to represent the objective functionJ (x,u).
Furthermore, our problem here is an open-loop optimal control setting, with the goal
being to find the best possible solution for production strategy.

4.3.1 Oil Reservoir Model

We focus on the optimal production case for two-phase (oil and water) reservoirs. Fur-
thermore, we assume immiscible and incompressible fluids and rocks, no gravity ef-
fects or capillary pressure, no-flow boundaries, and finally isothermal conditions. Let
Ω be a porous media domain with boundary ∂Ω. The corresponding state equations
are referred to as the pressure equation and the saturation equation. The pressure
equation is given by

�v =−Kλt (s)∇p, ∇·�v = q in Ω, (4.17)

where �v is the Darcy velocity, K is the permeability tensor, and q is the volumetric
source/sink term. Finally, λt is the total mobility, which in this setting is the sum of the
water and oil mobility functions,

λt (s)=λw (s)+λo(s)= kr w (s)/μw +kr o(s)/μo . (4.18)

Here, kr w ,kr o and μw ,μo are relative permeabilities and viscosities for water and oil,
respectively. Assuming no-flow boundaries mean that the normal component of the
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Darcy velocity across boundaries is zero. The saturation equation is given by

φ
∂s

∂t
+∇· ( fw (s)�v

)= qw in Ω, (4.19)

where φ is the porosity and qw is the volumetric water source. Finally, fw is the wa-
ter fractional flow function fw (s) = λw (s)/λt (s). The nonlinear behavior of the above
equations is mainly dictated by the shape of the relative permeability functions, which
in this paper are taken to be quadratic.

The reservoir simulation model is typically given as a (non-matching) hexahedral
grid, where each grid block is assigned reservoir properties such as permeability and
porosity. For ease of exposition, we assume here that the pressure equation (4.17)
is discretized using a two-point flux approximation (TPFA) (see, e.g., Aziz & Settari
[1979]), although the MATLAB implementation employed in this work Aziz & Settari
[1979] is more general in the sense that a wider range of discretization schemes can be
used. For a given saturation field, the TPFA assumes that the Darcy flux from one grid
block i to its neighbor j is proportional to the pressure drop between the two blocks,
i.e.,

vi j = ti j (si , s j )(pi −p j ). (4.20)

In the above equation, ti j is referred to as the transmissibility, which in this for-
mulation is taken to be dependent on the saturation in the two blocks (or rather, λ(si )
and λ(s j )). Wells are implemented using the Peaceman well model [Peaceman, 1983]

q w
i =−W I w

i (si )
(
pw −pi

)
. (4.21)

Here, q w
i is the flow rate from well w into grid block i , and pw is the wellbore pressure

(assumed to be constant since we neglect gravity and wellbore flow effects). Finally,
W I w

i (si ) is the Peaceman well-index as a function of the grid block saturation si . The
implementation uses a sequential splitting, that is, the pressure field at time-step n is
calculated based on the saturation at time step n −1, and the saturation at time step
n is calculated based on the pressure field at time step n. Let pn denote the vector
containing the grid block pressures and unknown wellbore pressures at time-step n.
Similarly, let sn−1 denote the grid block saturations at time step n−1. Enforcing volume
balance, i.e., setting the sum of all out-fluxes (expressed as (4.20) and (4.21)) from each
block equal to the source, leads to a positive definite matrixA (sn−1) in a linear system
equation

A
(
sn−1)pn =Bun , (4.22)

or in more detailed form described as
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⎛⎜⎜⎜⎜⎜⎝
Bn

(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
vn

−qn
w

−pn

πn

pn
w,N

⎞⎟⎟⎟⎟⎟⎠ (4.23)

=

⎛⎜⎜⎜⎜⎜⎝
0

−Dw,D pn
w,D (u

n)
0
0

−qn
tot ,N (u

n)

⎞⎟⎟⎟⎟⎟⎠ .
Here, we have taken the right-hand-side as a function of a control input vector un

for time step n, which can either be well rates or well pressures (bottom hole pres-
sure/BHP). We note that the right-hand-side is linear in un and refer to (4.22) as the

discretized pressure equation. The solution vectors
[

vn −qn
w −pn πn pn

w,N

]T

are the fluxes, the well rates, grid the block pressures, the face and well pressures, and
the wellbore pressure, respectively.

We discretize the saturation equation (4.19) using a standard upstream weighted
implicit finite volumemethod to form

sn = sn−1+�t n D−1
PV

(
A
(
vn) fw

(
sn)+q

(
vn)

+
)
. (4.24)

Here, �t n is the time step and DPV is the diagonal matrix containing the grid block
pore volumes. ThematrixA (vn) is the sparse fluxmatrix based on the upstreamweighted
discretization scheme, and q(vn)+ is the vector of positive sources (in this setting, wa-
ter injection rates). We note that the matrix A and vector q are linear functions of vn ,
while vn = T(sn−1)pn , where T(sn−1) is a matrix containing the transmissibilities and
well indices based on sn−1. We refer to (4.24) as the discretized saturation equation.

The discrete state equations (4.22) and (4.24) can be written in an implicit form
F (x,u)= 0 as

F(x̃, ũ) =

⎛⎜⎝ F1
(
p1,s0,s1,u1

)
...

FN
(
pN ,sN−1,sN ,uN

)
,

⎞⎟⎠ (4.25)

xnT = (pnT ,snT ), n = 1, ...,N ,
x̃T = (x1T , ...,xN T ),

ũT = (u1T , ...,uN T ).

The state vectors and control input vectors are stacked for all time instances from n =
1, . . . ,N .
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In this study, we use Net Present Value (NPV) as the objective function, having the
following formula

J (ũ) =
N−1∑
n=0

[
Npr od∑

j=1

(
ro qn

o, j − rw qn
w, j

)
−

Ni n j∑
l=1

(
ri n j qn

l

)] �t n

(1+d)tn

=
N−1∑
n=0

J n , (4.26)

where ro , rw , ri n j are the represented oil price, water separation cost, and water injec-
tion cost, respectively. Thewell rate at the injector wells is denoted by ql , the water rate
at the producer wells is qw , the oil rate at the producers is qo , d is the discount factor,
�t n is the time interval, and N is the total simulation time. In addition, Npr od ,Ni n j

denote the number of producer and injector wells, respectively.

4.3.2 Adjoint Implementation

In this section, we follow the procedure in Section 4.2 to compute the first and second
order gradients. The first order adjoint-gradient derivation in this work is the same as
that presented in Krogstad et al. [2011]. LetJ (x̃, ũ)=∑N

n=1J
n (xn ,un) be an objective

function and the gradient with respect to the control input ũ is ∇ũJ . The procedure is
the following:
1. Given the control input ũ, we are able to compute the state variables x̃ forward
in time, i.e., for n = 1, . . . ,N . It should be noted that the state variables consist
of pressure and saturation equations. In the later steps, the equations always
correspond to the pressure and saturation parts.

2. We then construct the Lagrangian

L (x̃, ũ,λ) = J (x̃, ũ)+λT F (x̃, ũ)

=
N∑

n=1

(
J n +λnT Fn) , (4.27)

where

λnT Fn = λnT
v

(
Bnvn −Cpn +Dπn)

+ λnT
qw

(−Bn
w qn

w −Cw pn +Dw,N pn
w,N +Dw,D pn

w,D

(
un))

+ λnT
p

(
CT vn −CT

w qn
w

)
+ λnT

π DT vn

+ λnT
pw,N

(−DT
w,N qn

w +qn
tot ,N

(
un))

+ λnT
s

(
sn −sn−1−�t nin) .
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For sake of brevity, we refer to in = D−1
PV

(
A (vn) fw (sn)+q (vn)+

)
. The Lagrange

multipliers denoted by
[
λv λqw λp λπ λpw,N λs

]T
are the solution of

these adjoint equations. By taking the first order optimality condition, we are
able to solve the adjoint equations from n = N , . . .1, given that the Lagrangian
multipliers are zero at N +1. This equals

(
I−�t

(
∂in

∂sn

)T
)
λn

s =λn+1
s −

(
∂J n

∂sn

)T

−
(

∂

∂sn

(
Bn+1vn+1))T

λn+1
v , (4.28)

⎛⎜⎜⎜⎜⎜⎝
Bn

(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
λn

v
λn

qw

λn
p
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π
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⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
∂in

∂vn

)T
λn

s −
(
∂J n

∂vn

)T(
∂J n

∂qn
w

)T

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.29)

Using the obtained Lagrangianmultipliers in (4.28) and (4.29), the first order gra-
dient is

∂L

∂un
= ∂J n

∂un
+λnT

qw
Dw,D

∂pn
w,D (u

n)

∂un
+λnT

pw,N

∂qn
tot ,N (u

n)

∂un
. (4.30)

3. Now we compute the linearized state equations such that

∂Fn

∂x̃
α=−∂Fn

∂ũ
β

from n = 1, . . . ,N . This will lead to analogous equations to (4.23) and (4.24),
namely
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⎛⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎠ , (4.31)

(
I− ∂in

∂sn

)
αn

s =αn−1
s + ∂in

∂vn
αn

v . (4.32)

4. Then we compute the derivative of the Lagrangian multipliers, denoted by

[
ϕv ϕqw ϕp ϕπ ϕpw,N ϕs

]T

, which are also analogous to the adjoint equation (4.28) and (4.29). The following
equations are solved backward in time, i.e., from n = N , . . .1.

⎛⎜⎜⎜⎜⎜⎝
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(
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5. Finally, the Hessian-times-vector product is given by

∂2L

∂2un
β= ∂2J

∂2un
β+ϕnT

qw
Dw,D

∂pn
w,D (u

n)

∂un
+ϕnT

pw,N

∂qn
tot ,N (u

n)

∂un
. (4.35)

To check the adjoint implementation, we compare the obtained gradients with
those of the finite-differencemethod. The gradient from forwardfinite-differencemethod
is computed as follows

∇ũJ = J (ũ+εv)−J (ũ)

ε
. (4.36)

Here, ε is a small value representing the perturbation size, v is the arbitrary vector
with the same dimension as the control input and it is generated randomly. We com-
pare the adjoint-gradient and the gradient from finite-difference in Table 4.1, where
< grad,v > represents the inner product between the adjoint-gradient and the vector
v. The absolute error is the absolute value of the difference between adjoint-gradient
and gradient using finite-differences. This comparison is performed using an initial
control value (well-rate controlled) described in Section 4.4.
We also check the Hessian-times-vector product against its finite-difference approxi-
mation. The finite-difference of Hessian-times-vector is defined by

Hv = g1−grad

ε
, (4.37)

where g1 is gradient using finite-differences, grad is the adjoint-gradient. If these two
gradients in (4.37) are computed by finite-difference methods and the Hessian-times-
vector is supplied to a conjugate gradient algorithm, this will lead to a Hessian-free

76



Numerical Cases

Table 4.1: Comparison of first-order gradient algorithms: Adjoint and finite-difference
(FD) approximation

ε-size Adjoint < grad,v > FD approximation Absolute error

1.000000e −003 −2.321109e +005 −2.321951e +005 8.418134e +001
1.000000e −004 −2.321109e +005 −2.321109e +005 2.050601e −005
1.000000e −005 −2.321109e +005 −2.321109e +005 1.696753e −007
1.000000e −006 −2.321109e +005 −2.321109e +005 1.079170e −006
1.000000e −007 −2.321109e +005 −2.321109e +005 4.377827e −006

Newtonmethod [seeNocedal &Wright, 2006, chap. 7]. The comparison of theHessian-
times-vector product is shown in Table 4.2. The error absolute is inner product of the
difference of adjoint and finite-difference approximation.

Table 4.2: Comparison of Hessian-times-vector : Adjoint and finite-difference (FD) ap-
proximation

ε-size absolute error

1.000000e −003 8.940078e +011
1.000000e −004 5.928105e +000
1.000000e −005 2.261278e −004
1.000000e −006 1.597134e −006
1.000000e −007 2.757622e −008

Furthermore, the Hessianmust be a symmetric matrix since it has the self-adjoint
property. This is described in Table 4.3, where v1 and v2 are generated randomly.

Table 4.3: Self-adjoint test with ε = 1.000000e −006
< Hv1,v2 > < Hv2,v1 > |< Hv1,v2 >−< Hv2,v1 >|

4.974882e −002 4.950165e −002 2.471707e −004

4.4 Numerical Cases

In this section, we use a five-spot 2-dimensional oil reservoir consisting of oil and wa-
ter. The reservoir is discretized into 60×60 grid blocks and it originates from layer 65 of
the SPE 10th comparative study [Christie & Blunt, 2001]. The grid block dimension is
10ft×10ft×2ft. There are four producerwells at the corners and one injectorwell in the
middle. The porosity is set homogenously to 0.3 in the reservoir, but the permeability
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is heterogenous, as depicted in Figure 4.1. The mobility ratio between oil and water is
one. The initial water saturation is 0.2, and pressure in the reservoir is 400 bar. The oil
price is set to 126 $/m3, the water separation cost to 19 $/m3, and the water injection
cost to 6 $/m3. We set up two examples by distinguishing the control input. Further-
more, we parameterize the control input into five control intervals, where a control
interval is equal to 30 days.
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Figure 4.1: Five-spot well pattern with a heterogenous permeability field (with units in
milidarcy), 2-dimensional 60×60 grid block. i1 is the injector well in the middle, and
p1, p2, p3, p4 are the producer wells at the corners.

4.4.1 Case 1

In this case, we use well rates as our control input, namely

un =
[

qn
i1

qn
p1 qn

p2 qn
p3 qn

p4

]T
.

Hence, we have five control intervals, which means that this case has 25 decision vari-
ables. Since we assume incompressible flow, the total injection rate is equal to the total
producer rates, that is, qn

i1 =
∑4

j=1 qn
p j . Moreover, the well rate is bounded to be greater

than 0 m3/day. The initial injection rate is 10 m3/day.

4.4.2 Case 2

Now, we use BHP in the producer wells as the control input and set a fixed BHP in the
injector well. The control input is

un = [
pn

w,p1 pn
w,p2 pn

w,p3 pn
w,p4

]T
.
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In total, the number of control inputs is 20. We fix the BHP at the injector well to 411
bar, and the initial BHP at each producer well is 408 bar. Furthermore, we constrain
BHP below 410 bar.

4.5 Results and Discussion

We compare our proposed method, the Truncated Newton (TN), to a quasi-Newton
method, that is, BFGS. The BFGS method is also used in a conjugate gradient algo-
rithm. Table 4.4 summarizes the performance of the methods using the given initial
control input. We run each case for 100 different initial control inputs, yielding the
statistics presented in Tables 4.5 and 4.6. The simulations were performed on a Linux
64-bit machine with an Intel Xeon(R) 3.00 GHz and 16 GB of RAM. The constraints ap-
pear as equality and bound constraints in the first case, and only as bound constraints
in the second case. Moreover, we set the number of inner conjugate gradient iterations
to 5.

4.5.1 Case 1

The stopping criteria for the optimizer are relative gradient and step size, which are set
to 10−3 and 10−15, respectively. Both methods terminate due to the gradient tolerance
and lead to the same value of NPV. The TN method excels in the number of iterations
and the number of function evaluations. The optimized control inputs are displayed
in Figure 4.3, where the results from bothmethods almost have comparable well rates.

4.5.2 Case 2

We use the same stopping criteria as in Case 1 and optimized control inputs are shown
in Figure 4.5. In this case, both methods stop due to the gradient criterion. The TN
method yields higher NPV than the BFGS method. However, the TN method is more
CPU-intensive, as can be seen in Table 4.4. This can be explained from the Hessian-
times-vector procedure in Section II, particularly steps 3 and 4, which require the solv-
ing of linear equations. To solve the linear equations, we use the built-in solver inMAT-
LAB which is a direct sparse method (see Davis [2006]).

4.6 Conclusion

As shown, the TN method requires fewer function and gradient evaluations. Further-
more, in Case 2, the TN method results in better objective function values than the
BFGS method. However, the TN method requires more CPU time. This is due to the
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Table 4.4: Performance comparison of BFGS and TN in terms of: number of iterations;
number of function, gradient, and Hessian-vector evaluations; CPU time; and objec-
tive function values

Method Case 1 Case 2
BFGS TN BFGS TN

# of iteration 54 16 111 21
# of function evals 112 34 112 25
# of grad evals 55 17 112 22

# of Hessian-vec evals - 250 - 275
CPU time (in sec) 170 370 280 415
NPV (in 105) 2.42 2.42 2.24 2.32

Table 4.5: Statistical performance comparison of BFGS and TN for Case 1 from 100
different initial control inputs.

Method Case 1
BFGS TN

min max average min max average
# iteration 35 74 46 14 50 23
# function evals. 74 145 97 30 100 50
# grad. evals. 36 75 47 15 50 24
# Hessian-vec. evals. - - - 218 669 365
CPU Time (in sec) 114 228 150 323 990 546
NPV (in $105) 2.42 2.42 2.42 2.42 2.42 2.42

Table 4.6: Statistical performance comparison of BFGS and TN for Case 2 from 100
different initial control inputs.

Method Case 2
BFGS TN

min max average min max average
# iteration 87 133 113 16 43 25
# function evals. 107 144 119 22 81 42
# grad. evals. 88 134 114 17 44 26
# Hessian-vec. evals. - - - 214 894 474
CPU Time (in sec) 214 301 331 320 1412 686
NPV (in $105) 1.23 2.28 2.16 2.28 2.32 2.31
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Figure 4.2: Comparison of the objective function (NPV) evaluation between BFGS and
Truncated Newton (TN) for the first case. The control inputs are well rates at the injec-
tor and producer wells.

fact that the computation of the Hessian-times-vector product requires more linear
equations to be solved. The Hessian-times-vector procedure requires 4 simulations: 2
forward simulations and 2 backward simulations. The forward simulations are needed
to compute the state variables and the linearized state variables. The backward simu-
lations are used to obtain the Lagrangian multiplier and its derivative.
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Figure 4.3: Comparison of optimized control inputs, BFGS and TNmethods.
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Figure 4.4: Comparison of the objective function (NPV) evaluation between BFGS and
TN for the second case. The control inputs are BHP at the producer wells.
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Figure 4.5: Comparison of optimized control inputs, BFGS and TNmethods.
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Chapter 5

Adjoint-based Surrogate Optimization
of Oil Reservoir Water Flooding

This chapter is based on Suwartadi et al. [2012a].

A novel method which uses reduced-order models for solving optimization prob-
lems with nonlinear inequality constraints is proposed and tested. The Lagrangian
barrier method is used to handle the nonlinear inequality constraints. The optimiza-
tion with reduced-order models is done by employing a trust-region proper orthogo-
nal decomposition (TRPOD) algorithm. In addition to the PODmethod, we also build
a reduced-order model based on a discrete empirical interpolationmethod (DEIM). In
the algorithm, the first-order gradient of the objective function is computed by using
the adjointmethod, while the inverse of the second-order gradient is approximated us-
ing the BFGS method. The reduced-order models involve both the forward (state) and
backward (adjoint) equations. Three optimization case examples are used to study the
method. It shows that the TRPODmethod is very efficientwhile simultaneously honor-
ing nonlinear constraints. Furthermore, the contribution of this work is to introduce a
novel application of TRPOD combined with a DEIM-based reduced-order model since
it is applied successfully to reservoir engineering problems.

5.1 Introduction

Oil reservoirs are usually modeled by partial differential equations (PDEs), where the
geological model is in the order of 106 to 109 discretized grids. Oil reservoir models are
used in many important applications in the reservoir engineering domain, such as for
determining optimal injection and drainage strategies (production optimization), and
for well placement. These applications can be cast into optimization problems. In this
paper, we focus on the production optimization application with emphasis on water
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flooding. The injected water aims to sweep remaining oil efficiently. With the current
state-of-the-art computing power, reservoir simulation models are usually reduced to
the order between 104 and 106 grid blocks. This process is known as upscaling since
it creates a coarse model from the geological model. Upscaling is done based on geo-
physical interpretation by reservoir engineers. This involves heuristics and can be a
time-consuming task.

Model order reduction techniques can be used to facilitate the upscaling process.
The use of model order reduction techniques has been around in the reservoir sim-
ulation research since the early years of 2000’s, see e.g., Markovinovic et al. [2002b]
and Markovinovic et al. [2002a]. The work of Heijn et al. [2004] compared methods for
reduced-order modeling which treat oil reservoirs both as linear and nonlinear mod-
els. The methods originate from systems and control theory. Balanced truncation,
subspace identification, and proper orthogonal decomposition (POD)were compared.
It was shown that POD gave the best approximation of the oil reservoir dynamics. In
follow up work van Doren et al. [2006]; Markovinovic & Jansen [2006], POD method
was used for gradient-based production optimization. The adjoint equations were
derived using reduced-order models of the state equations. POD generates reduced-
ordermodels with global basis functions. Another approachwas presented in Krogstad
et al. [2011] where a multiscale method was applied to compute local basis function.
In that work an optimization problem using a real geometry of an oil reservoir was
solved in 15 minutes, compared to a normal length of hours or even days. In a more
recent work a combination of multiscale and PODmethods was presented in Krogstad
[2011], yielding local POD basis function. The selection of local basis functions in a
multiscale method is done by considering physical aspects such as fault locations and
flux boundaries, which is more intuitive to the reservoir engineers since the reservoir
model is divided into some coarsened segments, where each of the segment has its
own local basis function.

The use of the trajectory-piecewise-linearization (TPWL) method, which mod-
els the oil reservoir as a linear time varying (LTV) system along selected operating
points, was proposed in Cardoso & Durlofsky [2010a]. The same authors also pro-
posed the use of missing point estimation (MPE)-POD in Cardoso et al. [2009] and
further used the TPWL-based model order reduction for production optimization in
Cardoso & Durlofsky [2010b]. Two optimization methods were presented in Cardoso
& Durlofsky [2010b]. There were the gradient-based and generalized pattern search
methods. None of the production optimization papers mentioned above discuss the
state or nonlinear output constraint problem. In more recent work, the use of approx-
imate dynamic programming combined with PODmethod was proposed in Wen et al.
[2011]. This work used the penalty method to handle the state constraint problem.

In other areas, the POD method has been used for constraints handling in low-
fidelity model optimization. Among this, the trust-region POD (TRPOD), originally
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proposed in Fahl [2000] for unconstrained optimization problems, was further devel-
oped for constrained optimization. The idea is that POD gives a good approximation
of the high-fidelity model by updating POD basis functions in limited (or "trusted")
operating points. During the course of optimization the decision variables are always
changed, therefore the POD basis functions need to be updated using the new update
of decision variables. Without this updating, the POD basis functions represent the
previous/old decision variables, which are no longer valid and give a poor approxima-
tion of the high-fidelity model. The constrained TRPOD, which means optimization
using reduced-order models in the presence of (equality/inequality) constraints, was
initiated in Alexandrov et al. [2001]. The authors developed penalty, augmented La-
grangian, and SQP-like methods. A similar approach was used in Robinson [2007],
where POD, space mapping methods, and their combination were proposed for con-
structing the reduced-order models. Furthermore, the use of the filter method, for
nonlinear constraints handling, in low-fidelitymodels optimization alongwith TRPOD
was presented in Agarwal [2010]; Agarwal & Biegler [2011].

In this work, we follow the TRPODmethod and to handle the state constraints we
use the Lagrangian barrier method, which is a continuation of our work in Suwartadi
et al. [2010a]. To best of our knowledge, the TRPOD method has not been applied to
the reservoir simulation problem. Hence, the contribution of this work is to apply TR-
POD method to the production optimization of oil reservoirs. Furthermore, we con-
sider nonlinear inequality constraints. Our method is a gradient-based optimization
method which uses POD for computing basis functions for state and adjoint equa-
tions. Since we have implemented the adjoint method in the high-fidelity model and
to avoid the difficulty of re-implementating the adjoint-based gradient in the reduced-
order model, we take snapshots of the adjoint equations as well. Thus, the reduced-
order models in this work consist of reduced-order state and adjoint equations.

It should be noted that there aremany variants of PODmethods in addition to the
vanilla POD andMPE-PODmentioned above. A combined POD and discrete empirical
interpolation method (DEIM), where DEIM is a variant of EIM Barrault et al. [2004],
was recently proposed in Chaturantabut & Sorensen [2010]. This work pointed out that
the vanilla POD is only good for approximating linear or bi-linear terms of equations.
As shown in an example in Chaturantabut & Sorensen [2011], for nonlinear systems,
POD in conjunction with DEIM gives considerable CPU time speedup compared to
the vanilla POD. Since the oil reservoirmodels contain nonlinear terms, in this workwe
also compare the vanilla POD and POD-DEIMmethods. This is also a new application
of DEIM to oil reservoir model as well as the use of DEIM to a challenging optimization
problem. We note this as another contribution of this work.

The outline of this paper is the following. In Section 5.2 we describe the oil reser-
voir model which consists of pressure and saturation equations representing the state
variables. We refer to these state equations as forward equations. In this section we
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also derive the adjoint equations and the reduced-order models. The production opti-
mization problem is explained in Section 5.3, which basically is an economic optimiza-
tion problem. In Section 5.4, we present the algorithms for TRPOD and the Lagrangian
barrier method for nonlinear constraint handling. The algorithms use TRPOD in the
inner iteration and Lagrangian barrier in the outer iteration. This means TRPOD is
used within the Lagrangian barrier iteration. Case examples that use 2D oil reservoirs
are presented and the results are discussed in Section 5.5. Finally, based on the case
example results we conclude this paper in Section 5.6.

5.2 Oil Reservoir Model

Water flooding is the most common secondary recovery technique for oil reservoirs.
During early stages of oil reservoir production, the pressure in the reservoir is high
enough to flow naturally. However, water is often injected to provide pressure support
in the reservoir and thereby increase recovery.

We assume the reservoir is above the bubble point so that the oil component is
in liquid form only. Furthermore, we assume the process is isothermal, the liquids
are incompressible, immiscible (water and oil cannot be mixed), no capillary pressure
between oil and water, no gravity effect, and no-flow at the boundary of the reservoirs.

5.2.1 Forward Model

The oil reservoir is governed by the continuity equation which expresses conservation
ofmass. We refer themodel exposition here to Aarnes et al. [2007]. The state equations
consist of pressure and saturation equations. Let Ω be a porous media domain with
boundary ∂Ω. The pressure equation is given by

�v =−Kλt (s)∇p, ∇·�v = q in Ω, (5.1)

where �v is the Darcy velocity, K is the permeability tensor, p is the pressure, and q is
the volumetric source/sink term. Finally λt is the total mobility, which in this setting is
the sum of the water and oil mobility functions,

λt (s)=λw (s)+λo (s)= kr w (s)

μw
+ kr o (s)

μo
. (5.2)

Here, kr w ,kr o and μw ,μo are the water and oil relative permeabilities and viscosities,
respectively. Assuming no-flow boundaries means that the normal component of the
Darcy velocity across boundaries is zero.
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The saturation equation is given by

φ
∂s

∂t
+∇· ( fw (s)�v

)= qw in Ω, (5.3)

where φ is the porosity and qw is the volumetric water source. Finally, fw is the wa-
ter fractional flow function fw (s) = λw (s)/λt (s). The nonlinear behavior of the above
equations is mainly dictated by the shape of the relative permeability functions, which
in this paper are taken to be quadratic. The relative permeability data are obtained
from laboratory experiments using small portions of rocks which do not generally rep-
resent the rock properties of thewhole reservoir. Hence, uncertainties are unavoidable.

(5.1) and (5.3), which are elliptic and parabolic PDEs respectively, are solved nu-
merically for typical oil reservoir simulation. Hence, we need to discretize the equa-
tions. We discretize the domainΩ into a set of polyhedral grid blocks {Ei }, where a grid
block E contains faces ek , k = 1, . . . ,nE . Let vE be the outward pointing flux vectors
corresponding to the faces of E , pE the pressure at the grid block center, and πE the
pressures at the grid faces. Then, the discretized pressure equation for a single grid-
block is

vE = λ (sE )TE
(
pE −πE

)
(5.4)∑

vE = qE ,

where TE is the transmissibilitymatrix, and qE is the source/sink term in block E . Here,
we discretize according to the two-point flux-approximation (TPFA) (see e.g., Aziz &
Settari [1979]), which will result in diagonal transmissibility matrices.

The boundary conditions are only located atwells sincewe assumeno-flowbound-
ary. As in (5.1) the sink/source terms represent injector/producer wells. The wells are
modeled by the Peaceman equation Peaceman [1983] as follows

q w
E =−λ (sE )W I w

E

(
pE −pw

E

)
. (5.5)

Here q w
E is the flow rate from well w into grid block E and pw

E is the wellbore pressure
(assumed to be constant since we neglect gravity and wellbore flow effects). W I w

E is
the Peaceman well-index as a function of the grid block saturation sE .

The discretized pressure equation (5.4) and the well equation (5.5) can be com-
bined such that they construct the following linear equation
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⎛⎜⎜⎜⎜⎜⎝
Bn

(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
vn

−qn
w

−pn

πn

pn
w,N

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0

−Dw,D pn
w,D (u

n)
0
0

−qn
tot ,N (u

n)

⎞⎟⎟⎟⎟⎟⎠ . (5.6)

Superscript n represents the time step and un is the control input at time step n, which
could be either bottom-hole pressure (BHP) or well rate. The solution vector[

vn −qn
w −pn πn pn

w,N

]T

include the fluxes, the well rates, the grid-block pressures, the face and well pressures,
and the wellbore pressure, respectively. (5.6) is solved for time step n using the default
linear solver in MATLAB which is a direct sparse method (see Davis [2006]). We note
that when TPFA is used, the pressure equation (5.6) can be reduced to a system of cell
pressure-unknowns only, while the current implementation uses a mixed formulation
where fluxes and cell pressures are solved for simultaneously.

We discretize the saturation equation (5.3) using a standard upstream weighted
implicit finite volumemethod to form

sn = sn−1+�t n D−1
PV

(
A
(
vn) fw

(
sn)+q

(
vn)

+
)
. (5.7)

Here, �t n is the time step and DPV is the diagonal matrix containing the grid block
pore volumes. ThematrixA (vn) is the sparse fluxmatrix based on the upstreamweighted
discretization scheme, and q(vn)+ is the vector of positive sources (in this setting, wa-
ter injection rates). We note that the matrix A and vector q are linear functions of vn .
The discretized saturation equation (5.7) is solved implicitly for the current time step
n +1 using a Newton-Raphsonmethod.

As seen (5.6) and (5.7) are coupled. The solution strategy to solve these equa-
tions is first solving the discretized pressure equation (5.6) using initial water satura-
tion values, and then solve the discretized saturation equation (5.7). This procedure is
repeated forward in time until the final time is reached. This kind of solution strategy
is known as a sequential-splitting method Aarnes et al. [2007]. The model used in this
work is implemented in Lie et al. [2011]. For convenience, we write the discrete state
equations (5.6) and (5.7) in an implicit form F (x,u) as
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F(x̃, ũ) =

⎛⎜⎝ F1
(
p1,s0,s1,u1

)
...

FN
(
pN ,sN−1,sN ,uN

)
,

⎞⎟⎠ (5.8)

xnT = (pnT ,snT ), n = 1, ...,N ,
x̃T = (x1T , ...,xN T ),

ũT = (u1T , ...,uN T ).

The state vectors and control input vectors are stacked for all time instances from n =
1, . . . ,N .

5.2.2 Adjoint Equations

LetJ (x̃, ũ)=∑N
n=1J

n (xn ,un) be an objective function denoted∇ũJ the gradientwith
respect to a control input ũ. The detailed description of the objective functionJ (x̃, ũ)
will be explained in Section 5.3. We then construct an augmented objective function
or Lagrangian functional

L (x̃, ũ,λ) = J (x̃, ũ)+λT F (x̃, ũ) (5.9)

=
N∑

n=1

(
J n (xn ,un)+λnT F

(
xn ,xn−1,un)) ,

for n = 1, . . . ,N , where

λnT F = λnT
v

(
Bnvn −Cpn +Dπn)

+ λnT
qw

(−Bn
w qw −Cw pn +Dw,N pn

w,N

(
un))

+ λnT
p

(
CT vn −CT

w qn
w

)
+ λnT

π DT vn

+ λnT
pw,N

(−DT
w,N qn

w +qn
tot ,N

(
un))

+ λnT
s

(
sn −sn−1−�t nin) .

Here in = D−1
PV

(
A (vn) fw (sn)+q (vn)+

)
. By choosing λ that makes ∇x̃L = 0, we arrive

at the adjoint equations

(
∂F

(
xn ,xn−1,un

)
∂xn

)T

λn +
(
∂F

(
xn+1,xn ,un+1)

∂xn

)T

λn+1 =−
(
∂J n (xn ,un)

∂xn

)T

, (5.10)
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for n = N , . . . ,1. The details of (5.10) are

⎛⎜⎜⎜⎜⎜⎝
Bn

(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
λn

v
λn

qw

λn
p

λn
π

λn
pw,N

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
∂in

∂vn

)T
λn

s −
(
∂J

∂vn

)T(
∂J n

∂qn
w

)T

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (5.11)

for the corresponding pressure equation and the following equation for the saturation

(
I−�t

(
∂in

∂sn

)T
)
λn

s = λn+1
s −

(
∂J n

∂sn

)T

(5.12)

−
(

∂

∂sn

(
Bn+1vn+1))T

λn+1
v

+
(

∂

∂sn

(
Bn+1

w qn+1
w

))T

λn+1
qw
.

Using the fact that at the final time λN
α = 0 for α = {

v,qw ,p,π,pw,N , s
}
, we are able to

compute the Lagrangian multipliers for each time step backward in time. It should be
noted that (5.11) and (5.12) are linear equations and they are solved using the direct
sparse method as well. Finally using the obtained Lagrangian multipliers values, the
gradient with respect to ũ is

∇ũL n = ∂J n (xn ,un)

∂un
+λnT ∂F

(
xn ,xn−1,un

)
∂un

. (5.13)

5.2.3 Reduced-order Models

Vanilla POD method

In order to build a reduced-order model based on the POD method, we need to take
snapshots of the high-fidelitymodel described in (5.6) and (5.7). Let x = [

qw p pw,N s
] ∈

Rnx be the snapshot of the solution of the forward equations with nx as the dimension
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of the solution. Given a set of snapshots {x1, . . . ,xΞ} ∈Rnx×Ξ and let V = span{x1, . . . ,xΞ}
, the POD basis function is a solution of an optimization problem for finding orthonor-

mal vectors
{
ψi

}�
i=1, where �≤ rank(V ). The optimization formulation is

min
{ψi }�i=1

J
(
ψ1, . . . ,ψ�

)
:= ∑Ξ

j=1
∥∥∥x j −∑�

i=1
(
xT

j ψi

)
ψi

∥∥∥2
2

(5.14)

subject to ψT
i ψ j =δi j =

{
1 if i = j

0 otherwise
.

We define a Lagrangian functional

L
(
ψ1, . . . ,ψ�,λ11, . . . ,λ��

)=J
(
ψ1, . . . ,ψ�

)+ �∑
i , j=1

λi j
(
ψT

i ψ j −δi j
)
. (5.15)

The necessary optimality conditions, ∂L
∂ψi

= 0 and ∂L
∂λi j

= 0, give us an eigenvalue prob-
lem

Ξ∑
j=1

x j

(
xT

j ψi

)
=λi iψi , for i = 1, . . . ,� (5.16)

or by settingλi =λi i and X = [x1, . . . ,xΞ] ∈Rnx×Ξ, then the problem reads

XXTψi =λiψi , for i = 1, . . . ,�. (5.17)

To compute the solution of (5.17), we decompose the vector X using singular value
decomposition (SVD), that is,

X = UΣVT , (5.18)

where U = [
u1, . . . ,unx

] ∈ Rnx×nx and V = [v1, . . . ,vΞ] ∈ RΞ×Ξ are orthogonal matrices,
and Σ ∈ Rnx×Ξ is the pseudo-diagonal matrix with diagonal arranged in a decreased
order, that is, σ1 ≥σ2 ≥ . . .≥σΞ ≥ 0. In other words,

UT XV =Σ. (5.19)

Moreover, it can be shown for 1≤ i ≤Ξ that

Xvi =σi ui , XT ui =σi vi , XXT ui =σ2i ui . (5.20)

The solution of problem (5.17) is a POD basisψi = ui and λi = σ2i > 0 for i = 1, . . . ,�≤
d = dimV . The minimized objective function (5.14) is then

J
(
ψ1, . . . ,ψ�

)
:=

Ξ∑
j=1

∥∥∥∥∥x j −
�∑

i=1

(
xT

j ψi

)
ψi

∥∥∥∥∥
2

2

=
d∑

i=�+1
λi . (5.21)
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To determine the dimension of �, the singular value is cut according to the following
’energy’ truncation

E =
∑�

i=1σi∑Ξ
i=1σi

<α, (5.22)

where typically 0.9≤α< 1. This choice of truncation is a rather heuristic consideration
Volkwein [2003]. We followwhat is commonly used in the literature. In other work, one
may use quadratic summation of the singular value, see e.g., van Doren et al. [2006];
Markovinovic & Jansen [2006].

The POD method is applied to the state and adjoint equations. Let �p , �s , and
np , ns be the dimension of the pressure and saturation equations in reduced-order
and high-fidelity models respectively, where �p < np and �s < ns . Then transformation
from the reduced-order to the high-fidelity model is

xp = Vp x̂p +xp , (5.23)

xs = Vs x̂s +xs .

The high-fidelity model is represented by xp ∈ Rnp , xs ∈ Rns and their respective aver-
ages during the snapshots xp ∈ Rnp and xs ∈ Rns . In the reduced-order space, x̂p ∈ R�p

and x̂s ∈R�s , the forward equations now become

VT
p

⎛⎜⎜⎜⎜⎜⎝
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(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
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0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠Vp x̂n
p =

VT
p

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
0

−Dw,D pn
w,D (u

n)
0
0

−qn
tot ,N (u

n)

⎞⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎝

Bn
(
sn−1) 0 C D 0
0 Bn

w

(
sn−1) Cw 0 Dw,N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w,N 0 0 0

⎞⎟⎟⎟⎟⎟⎠ x̄p

⎞⎟⎟⎟⎟⎟⎠ ,(5.24)

ŝn = ŝn−1+�t VT
s D−1

PV

(
A
(
vn) fw

(
Vs ŝn + s̄

)+q
(
vn)

+
)
. (5.25)

Similarly, we also take snapshots of the adjoint equations (5.11) and (5.12) and ob-
tain reduced-order adjoint equations. The reduced-order corresponding adjoint pres-
sure and saturation respectively are
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where Vap and Vas are the basis functions for the corresponding adjoint pressure and
saturation equations, and λ̄ is the average snapshot of Lagrangian multipliers of ad-
joint equation solutions. As seen in all reduced-order equations (5.11), (5.12), (5.26)
and (5.27), the solution of full-space equations are needed in order to solve the reduced-
order solutions. Hence, after solving the reduced-order equations we reconstruct the
full-space solution through the transformation (5.23). This will inevitably give an over-
head in the computational time. After all, we still gain computational reduction in CPU
time compare to the high-fidelity model run.

Empirical Interpolation Method (EIM)

We now describe the EIM method and its discrete variant EIM based on the work of
Chaturantabut & Sorensen [2010] and Barrault et al. [2004]. The empirical interpola-
tion method (EIM) was first proposed in Barrault et al. [2004] and later is more elab-
orated in Grepl et al. [2007] within the context of the reduced-basis (RB) method (see
http://augustine.mit.edu/). The method seeks to approximate a function in spatial
domain by selecting interpolation points which represent the largest errors between a
given set of basis functions and their normalized values.
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To explain the idea, we consider a non-affineparameter dependent functiond (·;θ) ∈
L∞ (Ω), whereΩ is a spatial domain and θ is a parameter in the domain. Our goal is to
approximate the function d by d̂ given a set of basis functions

{
q1, . . . ,qm

}
, wherem is

the dimension of a low-dimensional space defined by M d ≡ {d (·;θ) : θ ∈D}. D is the
parameter domain. The variation inM d can be represented in some selected points
{z1, . . . ,zm} ∈Ω. The approximation of d by d̂ is

d̂ (x;θ) =
m∑
�=1

q� (x)β� (θ) ,

d̂ (zi ;θ) = d (zi ;θ) i = 1, . . . ,m. (5.28)

The coefficient β in the form β (θ) = [
β1 (θ) , . . . ,βm (θ)

]T is determined in the follow-
ing way. Given basis function Q (x) = [

q1 (x) , . . . ,qm (x)
]
and interpolation points z =

[z1, . . . ,zm]T ∈ Ωm . Function evaluation at z is d (z;θ) = [d (z1;θ) , . . . ,d (zm ,θ)]
T , and

Q (z)=

⎡⎢⎢⎢⎣
q1 (z1) q2 (z1) . . . qm (z1)
q1 (z2) q2 (z2) . . . qm (z2)
...

...
. . .

...
q1 (zm) q2 (zm) . . . qm (zm)

⎤⎥⎥⎥⎦ ∈Rm×m . From the relation d̂ (x;θ)=Q (x)β (θ)

and d̂ (z;θ) = d (z;θ), the coefficient β is β (θ) = (Q (z))−1d (z;θ). Finally, the approxi-
mated function is d̂ (x;θ)=Q (x) (Q (z))−1d (z;θ).

Now, in case the interpolation points are not given, the work of Barrault et al.
[2004] proposes the EIM Algorithm 11 below to select the interpolation points z.

Algorithm 11 Empirical Interpolation Method
INPUT: A set of basis functions {ξi }

m
i=1

OUTPUT: EIM points {z1, . . . ,zm} and normalized basis functions
{

q1, . . . ,qm
}

1. Set z1 = argess supx∈Ω |ξ1 (x)|.
q1 = ξ1(x)

ξ1(z1)
;

Q1
(
Z1

)= q1 (z1)= 1.
2. for L = 2 tom do

Solve ρL−1 from: QL−1 (zL−1)ρL−1 = ξL
(
zL−1)

Define rL (x)= ξL (x)−QL−1 (x)ρL−1

Set zL = argess supx∈Ω |rL (x)|
qL (x)= rL(x)

rL(zL)
.

end for

For clarity, Figure 5.1 describes how the interpolation points are selected. Notice that
the current EIM point in the figure located when the residual between the original (in-
put given) to its normalized value is the largest.
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Oil Reservoir Model

Figure 5.1: This figure shows how the interpolation points are selected. This figure is
taken from Chaturantabut & Sorensen [2010] without any modification.

POD-DEIM

The set of basis functions used in the EIM method can be some choices. In the RB
method, a greedy basis function algorithm is usually used. The work of Chaturantabut
& Sorensen [2010] uses the POD basis functions as the given basis. Furthermore, the
POD-DEIM applies specifically the EIM method to systems which contain nonlinear
terms. How the POD-DEIM works is described in this subsection.

Let us consider the water saturation equation (5.7) in the following form

sn+1 = sn +�t n D−1
PV

(
A
(
vn) fw

(
sn)+q

(
vn)

+
)
. (5.29)

This equation is solved for next time stepn+1 implicitly usingNewton-Raphsonmethod,
that is,

0≡G
(
sn+1)= sn+1−sn −�t n D−1

PV

(
A
(
vn) fw

(
sn)+q

(
vn)

+
)
. (5.30)

Given an initial guess s̃, then by Taylor expansion, the equation above is approximated
by

0=G
(
sn+1)

≈G (s̃)+G ′ (s̃)
(
sn+1− s̃

)
, (5.31)
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where the solution sn+1 is obtained through sn+1 = s̃+d s̃. The changes d s̃ = sn+1− s̃
satisfies the linear equation −G ′ (s̃)d s̃ =G (s̃). The JacobianG ′ (s̃) is

G ′ (s̃)= I−�t n D−1
PV A

(
vn) f

′
w

(
sn)

Note that the terms f
′

w (s
n) and fw

(
sn+1) are evaluated componentwise, which means

that they are evaluated at each gridblock.
As seen in (5.25), even in the reduced-order space we still need to evaluate the

nonlinear term, which is in this case is water cut, in full-space. Similarly, in solving
(5.31) in the reduced-order space, we evaluate the Jacobian in full-space. To miti-
gate this, we construct another reduced-order model for the water cut term. This is
when the POD-DEIM [Chaturantabut & Sorensen, 2010] comes into play. The method
projects the nonlinear term onto a lower dimension, such that

f (τ)�Φc (τ)+ f̄ (5.32)

whereΦ= [Φ1, . . . ,Φm] ∈Rnx×m, c (τ) is the corresponding vector coefficient, and f̄ is the
average value of the nonlinear term in the snapshot. The vector c (τ) is determined by
selecting appropriatem rows from the overdetermined f (τ)�Φc (τ)+f̄. The selection is
done by a matrix P = [

e℘1 , . . . ,e℘m

] ∈ Rnx×m , in a way such that PT f (τ)= PT
(
Φc (τ)+ f̄

)
and after some arrangement the full space nonlinear term is reconstructed as follows

f (τ)=
{
Φ
(
PTΦ

)−1
PT (

f (τ)− f̄
)}+ f̄. (5.33)

We now need to construct the Φ and Pmatrices. Φ is selected as the POD basis func-
tion, while P is determined by Algorithm 12. Algorithm 12 is similar to Algorithm 11,
except the output from Algorithm 12 is only a set of indices or interpolation points as
in Algorithm 11.

Algorithm 12 POD-DEIM
INPUT: {Φl }

m
l=1 ⊂Rnx

OUTPUT: �℘= [
℘1, . . . ,℘m

]T ∈Rm

1.
[
ρ ℘1

]=max{|Φ1|}
2. Φ= [Φ1] , P = [

e℘1
]
, �℘= [

℘1
]

3. for l = 2 tom do
Solve

(
PTΦ

)
c = PTΦl for c

r = ul −Φc[
ρ ℘l

]=max{|r|}
Φ← [

U Φl
]
, P ← [

P e℘l

]
, ℘̄←

[
�℘

℘l

]
end for
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Production Optimization Problem

We employ the POD-DEIM just for the forward saturation equation, since this is
the only equation that contains the nonlinear water cut term. So now the reduced-
order equation of water saturation is

ŝn = ŝn−1+�t VT
s D−1

PV

(
A
(
vn) {(ΦT (

PTΦ
)−1

PT (
fw

(
Vs ŝn + s̄

)− f̄w
))+ f̄w

}
+q

(
vn)

+
)
.

(5.34)
One may notice there is a nonlinear dependence in the pressure equation (5.6) as

well, that is, in the term Bn
(
sn−1), involving water saturation from the previous time

step. Because (5.6) is a linear equation and the POD method has proved to be good
for linear terms, we do not apply POD-DEIM for the pressure equations. Nevertheless,
this opens an opportunity for future investigation.

5.3 Production Optimization Problem

By injecting water into reservoirs, cumulative oil production may increase. This is cast
as the following optimization problem using a reduced-order model

(P̂ ) max
ũ∈Rnũ

J
(˜̂x, ũ)

subject to : F
(˜̂x, ũ) = 0

g (un) ≥ 0, ∀n = 1, . . . ,N
h
(˜̂xn
,un

)
≥ 0, ∀n = 1, . . . ,N

x0 isgiven.

J
(˜̂x, ũ), g (un), h (x̂n ,un) are assumed C 1. The reduced-order state is represented by˜̂x, while the full-space system is in (5.8). The control input and the state constraints

are represented by g : Rnũ → Rng and h : Rnx×nũ → Rnh , respectively. The objective
function is given byJ : Rn ˆ̃x×nũ → R and the state equations are posed as implicit con-
straints. The state variables and the control inputs are dependent, therefore we are
able to perform the optimization in the control input space of ũ instead of in the space
of

(˜̂x, ũ). To this end, we denote the objective objective as J (ũ) omitting J
(˜̂x (ũ) , ũ).

In this work, we use the recovery factor (RF) (or net present value (NPV) used in the
previous chapters) as the objective function

J (ũ)=
∑Ng b

i=1 DPVi sN
i

Vg b
×100%, (5.35)

where DPVi is the diagonal element of the pore volume matrix, sN
i is the water satu-

ration at grid block i at the final time step N , Ng b is the number of grid blocks in the
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5. Adjoint-based Surrogate Optimization of Oil Reservoir Water Flooding

reservoirs, and Vg b is the total volume of the reservoir. In other words, the recovery
factor represents the percentage of oil that can be produced from the reservoirs. Water
flooding can normally give recovery factor somewhere between 20% and 40%, mean-
ing that 20% - 40% of the oil is extracted from the reservoir.

The optimization problem in full-space is described as

(P ) max
ũ∈Rnũ

J (x̃, ũ)

subject to : F (x̃, ũ) = 0
g (un) ≥ 0, ∀n = 1, . . . ,N

h (x̃n ,un) ≥ 0, ∀n = 1, . . . ,N
x0 isgiven.

Let Uopt and Ûopt be the solutions of the optimization problem in full-space P and
reduced-space P̂ , respectively. InHinze & Volkwein [2005], the error estimate between
Uopt and Ûopt is

∥∥Uopt − Ûopt
∥∥∼ ∥∥x0−Φx̂0

∥∥+∥∥x̃−Φ˜̂x∥∥+‖λx̃ (x̃ (ũ))−Φ (λx̃ (x̃ (ũ)))‖+
√√√√ d∑

i=�+1
λi .

(5.36)
Here Φ is the basis function (eigenvector) obtained from the POD method, λx̃ is the
Lagrangianmultiplier in the adjoint equations (5.11) and (5.12), and the last term con-
tainsλ from the residual of POD approximation as in (5.21).

The second term of the error estimate (5.36)
∥∥x̃−Φ˜̂x∥∥ can be eliminated by taking

snapshots of the state equations. Similarly, the term ‖λx̃ (x̃ (ũ))−Φ (λx̃ (x̃ (ũ)))‖ may
vanish by taking snapshots of the adjoint equations. We will proceed with this ap-
proach and will explain it in the next section.

5.4 Solution Method

In this section we explain how to use a reduced-order model to solve the optimization
problem P̂ . Here, we use interchangeably the term low-fidelity model referring to the
reduced-order model and the term high-fidelity model for the full-space model.

5.4.1 Trust-region POD

The optimization is performed using a reduced-order model, which is known as sur-
rogate optimization. The principle of surrogate optimization is depicted in Figure 5.2.
During the course of optimization many simulation runs are needed therefore by us-
ing a reduced-order model the goal is to reduce runtime, while the optimization solu-
tion converges to that of the optimization using a high-fidelity model. Furthermore, as

100



Solution Method

mentioned in the introduction there are alternative ways to construct reduced-order
models. Here we will use POD and DEIM described in the previous section.

Optimization

Reduced-order models

High-fidelity model

Optimization in reduced-order space

Compute approximate
gradient and objective

function value
Update decision

variable

Evaluate decision
variable

Update reduced-order
models

Figure 5.2: Optimization in reduced space (surrogate optimization). Optimization is
performed using reduced-order models (ROMs) and the ROMS are updated according
to the trust-region rule. This figure is modified after Alexandrov et al. [2001]

To maintain the quality of surrogate models, we apply a trust-region framework.
The trust-region framework is used as the globalization strategy in gradient-based op-
timization Conn et al. [2000]. In a trust-region globalization strategy a quadratic ap-
proximation is used to approximate the objective function while in the surrogate opti-
mization trust-region framework, which is called the trust-regionPOD (TRPOD)method,
one builds a POD-based reduced-order model. The method will in principle enlarge
its region when good approximations are obtained and reduce the region when the
quality of model approximation is poor, or keep the region if the approximation qual-
ity is the same as at the previous iteration. The quality of approximation is measured
by checking the value of the objective function in the full-space model. Finally, the
method will terminate due to some stopping criteria. The details of this method is ex-
plained in Algorithm 13 with some remarks below. For sake of clarity, a pictorial sketch
of TRPOD from Bergman et al. [2005] is displayed in Figure 5.3.

During the kth iteration the TRPODmethod solves the following subproblem

max
δ∈Rnũ

J R
b,k (ũ+δ) (5.37)

s.t. Fk
(˜̂x, ũ+δ

) = 0
gk (un +δ) ≥ 0, ∀n = 1, . . . ,N

hk

(˜̂xn
,un +δ

)
≥ 0, ∀n = 1, . . . ,N

‖δ‖∞ ≤�k .
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The optimized variables in the subproblemare the stepsδ, where the length, expressed
infinite norm, is bounded by a trust-region radius �k . J R

b,k is the modified objec-
tive function using the Lagrangian barriermethod (5.39), explained in next subsection,
evaluated using the (forward) reduced-order model.

Algorithm 13 Trust-region PODmethod
Step 0: Initialization Choose 0< η1 < η2 < 1≤ η3, 0< γ1 ≤ γ2 < 1≤ γ3, an initial trust-
region radius�0, minimum radius�mi n , maximum radius�max . Compute snapshots
of forward and adjoint equations,X0 based on the initial control ũ0, computeJb (ũ0),
and set k = 0.
Step 1: Definition of POD-based models Compute POD basis functions for forward
and adjoint equations and build reduced-order models for both equations.
Step 2: Step calculation Compute step δk by solving the subproblem (5.37)
Step 3: Definition of trust-region ratioCompute new snapshotsXk+ based on ũk +δk

andJb (ũk +δk).
Define the ratio

ρk = ar edk (δk)

pr edk (δk)
= Jb (ũk +δk)−Jb (ũk)

J R
b,k (ũk +δk)−J R

b,k (ũk)
.

Step 4: Trust-region update:
•If ρk ≥ η3 :
Set ũk+1 = ũk +δk ,
Jb (ũk+1)=Jb (ũk +δk) ,Xk+1 =Xk+.
Update trust-region radius�k+1 =min

(�max ,γ2�k
)
.

Set k = k +1 and go to Step 1.
•If η2 ≤ ρk < η3 :
Set ũk+1 = ũk +δk ,
Jb (ũk+1)=Jb (ũk +δk) ,Xk+1 =Xk+.
Update trust-region radius�k+1 =�k

Set k = k +1 and go to Step 1.
•If η1 ≤ ρk < η2 :
Set ũk+1 = ũk +δk ,
Jb (ũk+1)=Jb (ũk +δk) ,Xk+1 =Xk+.
Update trust-region radius�k+1 = γ2�k .
Set k = k +1 and go to Step 1.

•If ρk < η1 or ρk =∞ :
Set ũk+1 = ũk ,
Update trust-region radius�k+1 = γ1�k .
Set k = k +1 and go to Step 2.
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Remark 1 The subproblem (5.37) is not the standard quadratic model approxi-
mation as in the trust-region globalization strategy. Instead, it is an approximation of
the high-fidelity model. In Fahl [2000], an algorithm based on the Cauchy condition is
used to solve the subproblem. In this work, we use the KNITRO optimization package
Byrd et al. [2006] for finding optimal steps δk .

Remark 2 As in Fahl [2000]; Agarwal [2010], to enforce that the optimization us-
ing reduced-order models converges to the same solution as the optimization in high-
fidelitymodels, first-order consistency conditions are assumed. These condition satisfy

Jb =J R
b , ∇Jb =∇J R

b . (5.38)

Some scaling techniques are applied in Fahl [2000]; Agarwal [2010] to fulfill the condi-
tion. In this work, since we take snapshots of both the forward and adjoint equations,
the condition relies on the choice of POD basis functions. It should be noted that the
snapshots must be chosen such as to capture the main dynamics.

Remark 3 The stopping criteria applied in full-space optimization are usually the
absolute changes objective function or constraints violation as described inAlgorithm14.
In the TRPOD method, the stopping criterion is the trust-region radius. If the trust-
region radius is less than the minimum trust-region radius �mi n , then the optimiza-
tion is terminated. Since the objective function in surrogate model can be lower (max-
imization case) than in the previous iteration, which may yield negative value of ρk ,
we therefore take absolute value of ρk . Moreover the value of ρk can be infinite due to
constraint violation, we hence reduce the trust-region radius.

Remark 4The bound constraint in the high-fidelity optimization g (un) is adjusted
in the low-fidelity optimization due to the infinite norm constraints on the steps δk .
The optimization in surrogate model may be stopped if the bound constraint in high-
fidelity optimization is violated.

Remark 5 The trust-region parameters in the TRPOD method are chosen as fol-
lows

η1 = 0.02, η2 = 0.5, η3 = 1, γ1 = 0.25, γ2 = 0.5, γ3 = 1.5.

The small value of η1 = 0.02meanswe accept small improvement in the objective func-
tion value.

Remark 6 The discussion on convergence and convergence rate of the algorithm
can be found in Fahl [2000]; Agarwal [2010].

It should be noted that to speed up the optimization convergence we employ the
BFGS method using the first-order gradient from the adjoint method. Alternatively,
onemay use the SR1 algorithm to approximate theHessianmatrix, which is quite com-
mon in the trust-region scheme.
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Figure 5.3: Pictorial sketch how the TRPOD method works. This figure is taken from
Bergman et al. [2005] without any modification.

5.4.2 Lagrangian barrier methods

Since we also handle state constraints, in this work we employ the Lagrangian barrier
method, which requires an augmented objective function

Jb
(
ũ,λ,μ

)=J (ũ)+μ
nh∑

i=1
λi log

(
hi

(
x̂n ,un)) . (5.39)

Here μ is the barrier parameter and λi is the componentwise Lagrange multiplier es-
timates, which are updated during the course of optimization. The Lagrangian barrier
method is described in Algorithm 14. The TRPOD method is used in step 1 of the La-
grangian barrier method. This method will terminate either due to (most likely) ob-
jective function criterion or constraint violation. We suggest interested readers to refer
to Suwartadi et al. [2012b] for further details of algorithm discussion and its uses for
production optimization.
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Algorithm 14 Lagrangian Barrier method
Step 0: Initialization
- Set feasible initial solution of control ũ0, step δ, and positive initial multiplierλ0
- Set convergence tolerances:
- gradient tolerance ω∗ � 1
- constraint violation η∗ � 1
- objective function changes ε∗

- Set positive barrier parameter μ0 and τ< 1
- Set initial convergence tolerance: ω0.

Perform iteration: k = 0,1,2, . . .
Step 1: Inner iteration

- Find δ such that
∥∥∥∇J R

b,k

∥∥∥≤ωk

Step 2: Test for convergence
- If

∥∥[hi (x̃k)]
m
i=1

∥∥≤ η∗
or

∣∣Jk+1 (x̃, ũ)−Jk (x̃, ũ)
∣∣≤ ε∗ then stop.

- Check
∥∥λ̄h,k −λh,k

∥∥≤ τk
μk

- If this holds continue to Step 3.
Otherwise go to Step 4.

Step 3: Update Lagrangian Multipliers
- μk+1 =μk

- ωk+1 = τkωk

- λh,k+1 = λ̄h
(
x̃k ,λh,k ,μk+1

)
- Continue to Step 1.

Step 4: Update Barrier parameter
- μk+1 = τkμk

- τk+1 =μ0.5k
- Continue to Step 1.

5.5 Case Examples

In this section, we present three case examples. The first case will compare POD and
DEIM in building reduced-order models in terms of CPU time and its accuracy. The
second example will demonstrate how the TRPOD method works in an optimization
case without the presence of nonlinear output constraints. The last case examples
will show how the TRPOD and Lagrangian methods handle the nonlinear output con-
straints in surrogate optimization. Simulations for these case examples were done on a
64-bit Linux boxwith Intel(R) Xeon(R) CPU@ 3.00GHz. All the SVD computation in the
case examples are done by using the SVD function in MATLAB. We use the economical
option (SVD(’*’,’econ’)) in order to choose the eigenvectors corresponding to the largest
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singular values.

5.5.1 Case 1

The reservoir model in this case is taken from layer 10 of SPE 10th comparative study
Christie &Blunt [2001]. The grid consists of 60×220 gridblocks, where the dimension of
a grid block is 10ft×20ft×2ft. The connate oil saturation and residual water saturation
are zero. The porosity, for simplicity, is set homogenously to 0.3, while the permeability
is heterogenous as depicted in Figure 5.4. The mobility ratio oil-to-water is set to 5
and initial water saturation is zero. The well configuration is a 5-spot pattern with
an injector in the middle and four producers at the corners. The simulation is run for
1200 days and the control inputs are the well rates. We divide the control inputs into 40
intervals, whichmeans we change the well rates every 30 days. The number of controls
variables is 40×5= 200. Initial injection rate is set to 0.5 PVI. Moreover, the snapshots
of forward and adjoint equations are taken from 40 control intervals.
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Water
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Figure 5.4: The logarithm of permeability field in millidarcy (mD), well location and
relative permeability curves. The well locations follow the 5-spot pattern in which 4
producers are placed in the corners and 1 injector in the middle.

In this case example, we compare reduced-order models obtained from the POD
and DEIM methods. The reduced-order models are constructed based on the snap-
shots of the forward and adjoint equations. For the PODmethod, the snapshots for the
forward equations comprise the solution of pressures and water saturation for 40 con-
trol steps. While for the DEIMmethod, we need additional water cut snapshots repre-
senting the nonlinear terms, which is also from 40 control steps. In the adjoint equa-
tions, since there is no nonlinear term, we apply the PODmethod. Thus, the snapshot
for the adjoint equations will be the solution of the adjoint equations. We will explain
the reduced-order models for both types of equations in the following subsection.

106



Case Examples

Forward Equations

Table 5.1: CPU Time for forward equations using the high-fidelity model
CPU Time (in sec.)

Pressure Eq. Saturation Eq. Total Time
15.6 5.3 20.9

The runtime of the high-fidelity model is described in Table 5.1. To build reduced-
order models for the forward equations, we choose an energy level truncation. We
vary the value of energy truncation in order to know a good value or dimension of the
reduced-order models. Furthermore, we define the error of the reduced-order model
by the following equation

E :=
∥∥sN − ŝN

∥∥
2∥∥sN

∥∥
2

, (5.40)

where sN is water saturation at final time step N , and ŝN is the reduced-order water
saturation at the final time step.

Figures 5.5, 5.6, and 5.7 depict the singular values of the state variables: pressure,
saturation, and the nonlinear term, water cut.
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Figure 5.5: Singular values of pressure snapshots.
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Figure 5.6: Singular values of water saturation snapshots.
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Figure 5.7: Singular values of water cut snapshots.

We then run simulations with a variation of energy truncations and the results are
displayed in Tables 5.2 and 5.3. In general the POD method gives significant speedup
for the pressure equation compared to that of the high-fidelity model runtime de-
scribed in Table 5.1. However, only a slight CPU time reduction is obtained for the
saturation equation. On the other hand, DEIM gives more speedup for the saturation
equation. The approximation errors and the CPU time speedups decrease when the
number of basis functions increase.
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Table 5.2: POD - variation of energy truncation
Energy Truncation #Basis Functions CPU Time (in sec.)

Error Sat.
Pres. W.Sat. Pres. W.Sat. Pres. Eq. Sat. Eq. Total Time
90% 90% 4 9 4.2 3.3 7.5 0.021

95% 13 3.6 7.8 0.013
99% 24 4.6 8.8 0.004

95% 90% 5 9 4.5 4.4 8.9 0.021
95% 13 4.8 9.3 0.013
99% 24 5.4 9.9 0.003

99% 90% 11 9 5.1 4.1 9.2 0.021
95% 13 4.1 9.2 0.013
99% 24 4.8 9.9 0.003

99.9% 99.9% 24 35 6.9 6.2 13.1 0.000
99.99% 99.99% 35 40 9.6 6.4 16.0 0.000

Table 5.3: DEIM - variation of energy truncation
Energy Truncation #Basis Functions CPU Time (in sec.)

Error Sat.
Pres. W.Sat. W. Cut Pres. W.Sat. W. Cut Pres. Sat. T. Time
90% 90% 90% 4 9 9 4.4 2.5 6.9 0.020

95% 95% 13 13 2.7 7.1 0.010
99% 99% 24 22 3.8 8.1 0.010

95% 90% 90% 5 9 9 4.6 2.3 6.9 0.020
95% 95% 13 13 2.7 7.3 0.010
99% 99% 24 22 4.1 8.7 0.009

99% 90% 90% 11 9 9 5.2 2.6 7.8 0.020
95% 95% 13 13 2.8 8.0 0.010
99% 99% 24 22 3.8 9.0 0.010

99.9% 99.9% 99.9% 24 35 34 6.8 5.0 11.8 0.001
99.99% 99.99% 99.99% 35 40 38 9.8 5.3 15.1 0.000
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Figure 5.8: Comparison of water saturation at final time for the high-fidelitymodel and
reduced order models; POD and DEIM.

To show the quality of reduced-ordermodel POD andDEIM, we display water sat-
uration at the end time using energy truncation 90% for the pressure, 90% for the water
saturation, and 90% for the water cut in Figure 5.8.

Adjoint Equations

Here, we continue to vary the energy truncation of the adjoint equations. The run-
time for the full model of the adjoint equations is described in Table 5.4. Furthermore,
we plot the singular values of the corresponding pressure and saturation equations in
Figure 5.9 and 5.10.

Table 5.4: CPU Time for adjoint equations using the high-fidelity model
Adjoint - CPU Time (in sec.)

Pressure Eq. Saturation Eq. Total Time
15.9 2.1 18.0
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Figure 5.9: Singular values of corresponding adjoint pressure equation snapshots.
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Figure 5.10: Singular values of corresponding adjoint water saturation equation snap-
shots.

Similarly, we have done some simulations using variation of energy truncations
and the results are described in Tables 5.5 and 5.6. We define the error of the adjoint-
gradient in the reduced-order model by the following equation

Egrad :=
∥∥grad− ˆgrad

∥∥
2∥∥grad

∥∥
2

, (5.41)

which compare the gradient in full-space (grad) and in reduced-order ( ˆgrad).
Both the POD and DEIM methods, shown in Tables 5.5 and 5.6, give speedup in

runtime compare to the adjoint equations in full-space described in Table 5.4. We run
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both POD and DEIM for the adjoint equations since they need forward reduced-order
models. Furthermore, the CPU time for corresponding adjoint saturation is compara-
ble to that of full-space runtime. This is because of the sparsity property in the linear
adjoint saturation equation. In the full-space equation the adjoint saturation is solved
using a sparse linear solver. However, in a reduced-order model we loose the spar-
sity structure of the adjoint saturation equation. One may get better speedup for the
adjoint saturation equation if the reservoir model has a larger number of grid blocks.

Table 5.5: Adjoint POD - variation of energy truncation
Fwd. - E. Trun. Adj. - E. Trunc. # Adj. Basis F. CPU Time (in sec.)

Error
Pres. W. Sat. Adj.Pres. Adj.Sw Adj.P. Adj.Sw Adj.P Adj.Sw T. Time
90% 90% 90% 90% 7 6 6.5 2.1 8.6 0.008

95% 95% 95% 10 8 8.2 2.2 10.4 0.005
99% 99% 99% 4 24 15.9 2.4 18.3 0.004

95% 90% 90% 90% 7 6 7.3 2.1 9.4 0.008
95% 95% 95% 10 8 8.0 2.1 10.1 0.004
99% 99% 99% 19 13 16.1 2.4 18.5 0.002

99% 90% 90% 90% 7 6 7.1 2.1 9.2 0.007
95% 95% 95% 10 8 8.7 2.1 10.8 0.003
99% 99% 99% 19 13 16.1 2.4 18.5 0.001

99.9% 99.9% 99.9% 99.9% 34 26 26.8 3.7 30.5 0.001

Table 5.6: Adjoint DEIM - variation of energy truncation
Fwd. - E. Trunc. Adj. - E. Trunc. # Adj. Basis F. CPU Time (in sec.)

Error
P. Sw Fw Adj.P Adj.Sw Adj.P. Adj.Sw Adj.P. Adj.Sw T.Time
90% 90% 90% 90% 90% 7 6 6.6 2.2 8.8 0.009

95% 95% 95% 95% 10 8 8.9 2.3 11.1 0.003
99% 99% 99% 99% 19 13 16.2 2.4 18.6 0.004

95% 90% 90% 90% 90% 7 6 6.5 2.1 8.6 0.008
95% 95% 95% 95% 10 8 8.8 2.2 13.0 0.004
99% 99% 99% 99% 19 13 16.1 2.4 18.5 0.002

99% 90% 90% 90% 90% 7 6 6.8 2.1 8.9 0.008
95% 95% 95% 95% 10 8 8.8 2.2 13.0 0.004
99% 99% 99% 99% 19 13 16.2 2.4 18.6 0.001

99.9% 99.9% 99.9% 99.9% 99.9% 34 26 28.3 3.8 32.1 0.001

We also present the quality of the gradient approximation in the reduced-order
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models in Figure 5.11 and 5.12, where the truncation is 90% and 90% for the corre-
sponding pressure and saturation, respectively.
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Figure 5.11: Comparison of adjoint-gradient in full-space and POD.
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Figure 5.12: Comparison of adjoint-gradient in full-space and DEIM.

Effect of Perturbations

In order to know the robustness of basis functions, we first build a reduced ordermodel
using DEIM with 90% energy truncation for pressure, saturation, and water cut. We
then change well rate at producer wells around 5%, 10%, and 20% in the sense that
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we perturb the initial well rates when the basis functions are constructed. As seen in
Figures 5.13, 5.14, and 5.15 below, the reduced-order model is good enough to approx-
imate the high-fidelity model. The relative error saturation is the water saturation dif-
ference between high-fidelity model and reduced-order model divided by saturation
in high-fidelity model.
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Figure 5.13: 5% variation of producers well rates with relative error saturation approx-
imation is 0.021.
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Figure 5.14: 10% variation of producers well rates with relative error saturation approx-
imation is 0.029.
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Figure 5.15: 20% variation of producers well rates with relative error saturation approx-
imation is 0.052.

5.5.2 Case 2

In this case we set up a surrogate optimization without any output constraints. The
goal is to show the performance of TRPOD method compared to the optimization us-
ing a high-fidelitymodel. Since there is no nonlinear output constraint, the constraints
appear only on the control, that is, bound constraints and an equality constraint due
to the incompressible flow (the total injector rate must be equal the total producer
rate). The objective function in this case is net present value (NPV) with oil price 80 $

m3 ,

water separation cost 19 $
m3 , and water injection cost 1

$
m3 . It should noted there is no

augmented objective function in this case. Furthermore, we continue using the reser-
voir setting described in case 1 with initial injection rate is 0.4 PVI for 1200 simulation
days (40 control intervals). The control inputs are well rates at producer and injector
wells. The reduced-order model is built using DEIM due to its faster CPU time than
POD.

To fully capture the dynamics of reservoir, we extend the simulation a bit further
until 1800 days ensuring awater cut value 0.80 reaches all producer wells (based on the
price setting). This is performed when building the initial basis functions but not dur-
ing the basis functions update within the TRPOD strategy. We use energy level 99% for
the forward pressure, 95% for saturation equation, and 95% for the water cut. For the
adjoint equations we use 95% energy level for the corresponding pressure and satura-
tion equations. Using this energy truncation, an initial forward reduced-order model
consists of 12, 16, and 15 basis functions for the pressure, saturation, and water cut,
respectively. The interpolation points are shown in Figure 5.16. The adjoint reduced-
ordermodel has 13 and 8basis functions for the corresponding pressure and saturation
equations, respectively.

115



5. Adjoint-based Surrogate Optimization of Oil Reservoir Water Flooding

D15

D8

D10

D6
D9

D12

D14

D2

D4

D5

D13

D11
D1

D7

D3

Figure 5.16: Interpolation points (represented with D) for the nonlinear water cut term
are located at grid blocks: 12076, 4285, 13031, 3445, 12622, 5495, 314, 10308, 5129, 282,
12437, 3746, 378, 7106, and 11869.

We then run optimization using the reduced-order models. To evaluate the op-
timization, we also run the optimization using the high-fidelity model. The stopping
criteria are the absolute gradient tolerance 10−8 and absolute step length 10−8. These
stopping criteria apply both for reduced and full-space model optimizations. The sur-

rogate optimization is run with an initial trust-region radius,�0, set to 0.03× Vg b

1200days ,

themaximum trust-region radius,�max , is 0.03× Vg b

1200days . This maximum trust-region
radius represents the bound in which the reduced order model is robust enough to
the control input perturbation. Moreover, the minimum trust-region radius �mi n , is

10−3 × Vg b

1200days . The minimum trust-region ratio ρmi n is set 0.001. The bound con-

straints on the control input are set between 0 and 0.6× Vg b

1200days .
After running the optimization, the evolution of the objective function is depicted

in Figure 5.17. Note that the number of iterations in the full-space optimization rep-
resents the number of inner iteration while the number of iterations in the reduced-
space optimization denotes the number of outer iteration, involved in TRPODmethod.
Table 5.7 describes the runtime and obtained objective function values. The details of
the optimization using the reduced-order model are described in Table 5.8, where Ĵ

is the objective function in reduced-order model andJ is the objective function eval-
uated in high-fidelity model. The surrogate optimization terminates due to the mini-
mum trust-region radius.
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Figure 5.17: Evolution of the objection functions using the initial injection 0.4 PVI.

Table 5.7: Comparison of optimization in full-space and reduced-space using initial
injection of 0.4 PVI.

Comparison Full-model POD-DEIM
NPV (in $) 1.44e+06 1.43e+06

CPU Time (in seconds) 5715 1270

Table 5.8: Iteration in surrogate optimization using initial injection of 0.4 PVI.
k ρ Ĵ J

0 - 1.27e+06 1.27e+06
1 1.16e+01 1.28e+06 1.32e+06
2 1.07e+00 1.31e+06 1.35e+06
3 9.28e-01 1.34e+06 1.37e+06
4 8.09e-01 1.37e+06 1.39e+06
5 2.37e-01 1.44e+06 1.41e+06
6 2.34e-01 1.41e+06 1.42e+06
7 5.67e-01 1.42e+06 1.43e+06
8 3.44e-01 1.43e+06 1.43e+06
9 3.88e-01 1.43e+06 1.43e+06
10 3.28e-01 1.43e+06 1.43e+06

In Table 5.8 above, the trust-region ratio ρ determines when the basis functions
must be updated as well as when the radius ratio will be enlarged or shrunk. The trust-
region parameter settings are described in Section 5.4. The basis functions and the
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trust-region regionwill not be updated and enlarged if the trust-region ratioρ has value
less than 0.02. The trust-region radius will be enlarged only if the trust-region ratio is
larger than 1. Otherwise, it will be kept or reduced. Hence, starting from the fifth iter-
ation, seen in Table 5.8, the trust-region radius is shrunk. In the seventh iteration, the
trust-region radius is kept as the same previous iteration and is decreased afterwards.
Consequently, the optimization terminates due to the minimum trust-region radius
criterion. Figure 5.18 shows the comparison of optimization solution in full-space and
surrogate optimization. Here, we denote the injector rate with positive sign and pro-
ducer rate with negative sign.
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Figure 5.18: Optimization solutions in full-space and reduced-spacemodels and water
saturation at final time.

Next, we run another optimization with initial injection rate of 0.5 PVI using the
same parameter values (initial trust-region radius). This initial rate is closer to the op-
timization solution in a high-fidelity model. The objective function evolutions are de-
scribed in Figure 5.19. The details of the optimization in the reduced-space model can
be seen in Table 5.10 andCPU time speedup is described in Table 5.9. The optimization
in high-fidelity model terminates due to the step length tolerance, while in surrogate

optimization it stops because it hits the upper bound constraint, that is, 0.6× Vg b

1200days .
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Figure 5.19: Evolution of the objection functions using the initial injection of 0.5 PVI.

Table 5.9: Comparison of optimization in full-space and reduced-space using initial
injection of 0.5 PVI.

Comparison Full-model POD-DEIM
NPV ($) 1.44e+06 1.44e+06

CPU Time (in seconds) 26681 1269

Table 5.10: Iteration in surrogate optimization using initial injection of 0.5 PVI.
k ρ Ĵ J

0 - 1.38e+06 1.38e+06
1 1.06e+00 1.36e+06 1.41e+06
2 2.16e-01 1.42e+06 1.42e+06
3 4.75e-01 1.41e+06 1.43e+06
4 1.31e-01 1.43e+06 1.43e+06
5 7.09e-01 1.43e+06 1.43e+06
6 1.45e+00 1.43e+06 1.43e+06
7 1.03e+00 1.43e+06 1.44e+06
8 3.69e-01 1.42e+06 1.44e+06
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Figure 5.20: Optimization solutions in full-space and reduced-spacemodels and water
saturation at final time.

It turns out that the surrogate optimization reaches a different local maximum
than optimization with high-fidelity model. However, the runtime is still quite cheap.
The optimization in high-fidelity seems to converge in the same local maxima but with
the cost of higher CPU time. The speedup factor in this case can be up to 20 times.

5.5.3 Case 3

This case is a continuation of the previous case, which uses the same reservoir, and
well setting, however, with the inclusion of output constraints and a more accurate
reduced-ordermodel with an increased energy truncation for saturation andwater cut
to 99%. The objective function is now recovery factor (RF), described in (5.35). In this
case we constrain the water fractional flow (water cut), which is function of water sat-
uration, at the producer wells. We limit the water cut for the producer wells at the final
time to fw,max , which is set to 0.80. To this end, the augmented objective function is

Jb
(
ũ,λ,μ

)=J (ũ)+μ
4∑

i=1
λi log

(
fw,max − f N

w,pr odi

)
. (5.42)

The parameter settings in this case are: λ0 =
[
1 1 1 1

]T
, τ = 0.1, μ0 = 104,

ω0 = 10−6, absolute maximum water cut tolerance η∗ = 10−6, and absolute objective
function changes ε∗ = 10−4 percent of recovery factor. We choose an active set al-
gorithm in KNITRO to the handle control input constraints g (ũ). The initial trust-
region radius, �0, and the maximum trust-region radius, �max , are set equally to

0.01× Vg b

1200day , the minimum trust-region radius�mi n , is 10−4× Vg b

1200day , andminimum
trust-region ratio ρmi n is 0.001. The bound constraints on the control input are set
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between 0 and 0.8× Vg b

1200days . We run two optimizations with different initial injector
settings.

Initial injection rate 0.5 PVI

We start the optimizationwith an initial injector rate 0.5 PVI. The optimizationwith the
high-fidelity model stops due to the objective function change criterion. Furthermore,
Table 5.11 describes the results and constraint violations are shown in Figure 5.21. The
comparison of the objective function evolution is displayed in Figure 5.22. The infi-
nite objective function value in the reduced-order space indicates that the output con-
straint is violated.

Table 5.11: Optimization results. The water injected is measured in pore volume in-
jected (PVI)

Comparison Full Model POD-DEIM

Recovery factor (%) 48.41 47.96
CPU time (in sec.) 12054 8809

Total Water Injected (in PVI) 0.77 0.75
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Figure 5.21: The state constraints satisfaction, i.e., the water-cut at final time step.
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Figure 5.22: Comparison of the objective function evolution in full-space and reduced-
space. The objective value from reduced-space in the figure is the objective function
evaluation using the high-fidelity model given the solution of surrogate optimization.

The optimization in reduced-space terminates because of the minimum trust-
region radius. POD-DEIM in this case gives a speedup more than 1.3 times. The out-
put constraints are active only for Pr d1 in the surrogatemodel while other production
wells are closely becoming active.

0 500 1000
−20

−10

0

10

20

30

Time [day]

R
at

e 
[m

3 /d
ay

]

High−fidelity

uinj1
uprd1
uprd2
uprd3
uprd4

0 100
0

200

400

600

800

1000

1200

0

0.2

0.4

0.6

0.8

1

0 500 1000
−20

−10

0

10

20

30

Time [day]

R
at

e 
[m

3 /d
ay

]

MOR − DEIM

uinj1
uprd1
uprd2
uprd3
uprd4

0 100
0

200

400

600

800

1000

1200

0

0.2

0.4

0.6

0.8

1

Figure 5.23: Optimization solutions in full-space and reduced-spacemodels and water
saturation at final time.

In Figure 5.23 the optimization solutions using high-fidelity and reduced-order
model are shown. The producer rates are shown in negative sign while the injector
rate is in positive sign. Again, it is clear the surrogate optimization resulted in a local
maximum. The figure also shows water saturation at final time step. As seen, the water
saturation is slightly different around Pr d4 area.
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Initial injection rate 0.4 PVI

We continue the optimization using reduced-order model with different initial solu-
tion. Here, we set initial injection rate to 0.4 PVI. The results are shown in Table 5.12,
constraints satisfaction in Figure 5.24. Similarly, the optimization terminates due to
the minimum trust-region radius and Pr d1 is active, while the other production wells
are almost active. The evolution of the objective function is shown in Figure 5.25, and
control input solution is in Figure 5.26.

Table 5.12: Optimization results. The water injected is measured in pore volume in-
jected (PVI)

Comparison Full Model POD-DEIM

Recovery factor (%) 48.35 47.88
CPU time (in sec.) 13615 11181

Total Water Injected (in PVI) 0.77 0.74
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Figure 5.24: The state constraints satisfaction, i.e., the water-cut at final time step.
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Figure 5.25: Comparison of the objective function evolution in full-space and reduced-
space. The objective value from reduced-space in the figure is the objective function
evaluation using the high-fidelity model given the solution of surrogate optimization.
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Figure 5.26: Optimization solutions in full-space and reduced-spacemodels and water
saturation at final time.

5.5.4 Case 4

This case originates from the Norne comparative study Rwechungura et al. [2010] with
a simplifiedmodel. The reservoir is depicted in Figure 5.27 and there are 6 wells. Initial
water saturation and pressures at each grid block are set to 0.2 and 40 bar, respectively.
The mobility ratio between water and oil is 1 to 5. The end points of connate water
saturation and oil saturation are both set to 0.2. The relative permeability curves are
displayed in Figure 5.27. The simulation is run for 500 days and divided into 50 control
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intervals. Thus, in total the controls consist of 300 variables. The controls in this case
are well rates. Similar to the previous cases, we deal with equality constraints due to
incompressible flow, that is, total injectors rate must equal total producers rate. In
addition, we set bound constraint on the injectors, which is set lower than 2 PVI. The
initial water injection rate are 0.25 and 0.30 of total pore volume using constant rates.
The number of snapshots for building the reduced-order models is the same as the
number control intervals, which is 50 snapshots.

In this case we constrain the total water production at the final control interval
to 5× 10−3 of the pore volume of the reservoir and define this constraint as Qw,max .
Hence, in this case the augmented objective function is

Jb
(
ũ,λ,μ

)=J (ũ)+μλ log

(
Qw,max −

nh=4∑
i=1

QN
w,i

)
. (5.43)

Here the output constraint is just a scalar, that is, the total water production of each
producer well at final control interval.
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Figure 5.27: Norne field, a 3D reservoir, with 6wells: 4 producers (E-1H, K-1H, B-2H, K-
2H) and 2 injectors (C-1H and C-2H). Permeability field is plotted in millidarcy (mD).
The right hand figure shows relative permeabilities

The reduced-order models are constructed using 90% energy truncation for the
pressure and saturation equations, and 90% for the non-linear water cut term. This
results in 4, 7, 7 number of basis functions for the pressure, saturation and water cut,
respectively. For the adjoint equations, we use a 95% energy level both for the corre-
sponding pressure and saturation equations. To this end, the reduced-order adjoint
equations have dimension 16 and 4, respectively. The CPU time comparison of the
full-model and reduced-order models are described in Table 5.13. The POD-DEIM re-
sults are consistently faster than the vanilla POD. Significant speedup is obtained for
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the forward equations, but the corresponding saturation equation is again similar to
the first case. Due to sparsity property in the full-space adjoint equation and the dense
matrix in the reduced-order models, the speedup of corresponding saturation adjoint
equations is not that significant. To this end, we use the reduced-order model of POD-
DEIM for surrogate optimization.

The parameter settings in this case are: λ= 1, τ= 0.1, μ= 107, ω0 = 10−3, and ab-
solute total water production tolerance η∗ = 10−4. We choose an active set algorithm
in KNITRO to handle control input constraints g (ũ). The maximum trust-region ra-

dius, �max , is 0.1× Vg b

500day , and minimum trust-region radius �mi n , is 0.001× Vg b

500day

and initial trust-region radius, which are�0 = 0.1× Vg b

500d ay s .

Table 5.13: Comparison of CPU time of forward and adjoint equations
CPU Time (in sec.) Full Model POD POD-DEIM

Forward equations
Pressure Eq. 154 32 29
Saturation Eq. 51 19 11

Total Time Forward Eqs. 205 51 40
Adjoint equations

Pressure Eq. 215 92 86
Saturation Eq. 18 15 15

Total Time Adjoint Eqs. 233 107 101

Initial injection rate 0.25 PVI

We firstly run the optimization with initial injection 0.25 PVI. The results are summa-
rized in Table 5.14, the constraint satisfaction in Figure 5.28, and comparison of opti-
mized control inputs in Figure 5.29. The optimization terminated due to theminimum
trust-region radius.

Table 5.14: Optimization results with initial injection rate 0.25 PVI. The water injected
is measured in pore volume injected (PVI)

Comparison Full model POD-DEIM

Recovery factor (%) 37.52 37.61
CPU time (in hours) 9.20 2.32

Total Water Injected (in PVI) 0.31 0.32
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Figure 5.28: The output constraints satisfaction, i.e., the total volume of water produc-
tion at the final time step.
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Figure 5.29: Optimization solutions in full-space and reduced-space models.

Initial injection rate 0.3 PVI

We then run optimization with initial injection rate 0.3 PVI. The results are described
in Table 5.15, Figure 5.30, and Figure 5.31. The optimization in this case terminates
due to the minimum trust-region radius.

Table 5.15: Optimization results with initial injection rate 0.3 PVI. The water injected is
measured in pore volume injected (PVI)

Comparison Full model POD-DEIM

Recovery factor (%) 37.29 37.28
CPU time (in hours) 7.30 3.57

Total Water Injected (in PVI) 0.32 0.32
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Figure 5.30: The output constraints satisfaction, i.e., the total volume of water produc-
tion at the final time step.
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Figure 5.31: Optimization solutions in full-space and reduced-space models.

5.5.5 Discussion

We have presented four case examples. The first case example shows the quality of a
reduced-order model given a variation of energy truncation. It turns out that the POD
method is more CPU intensive than the POD-DEIM simulation run. Reducing the en-
ergy truncation will reduce CPU time at the expense of accuracy. The case examples
shown use a 2D reservoir consisting of 13200 grid blocks. The POD method results in
significant speedup for the pressure equation. However, for the saturation equation
the CPU time in the reduced-order model is marginally faster than the high-fidelity
model. In the first case it is shown that DEIM can improve slightly the CPU time of
saturation equation. Using larger number of grid blocks may give further speedup.
Furthermore, in the saturation adjoint equation we loose the sparsity property. Conse-
quently, the sparse linear solver, which is used to solve the adjoint equation, consumes
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more CPU time.
In the second case, wedemonstrate the performance of the TRPODmethod. Based

on the first case, we continue the optimization only with the DEIM reduced-order
model to the next cases because the method give more speedup than POD. Using two
different initial controls (injector rate), the TRPOD method is trapped into local max-
ima with comparable objective function (NPV) values. This implies that the choice of
initial control and initial trust-region radius are important considerations. The speedups
in this case are significant, between 5 and 20 times for the two different initial controls.
Another finding from Sachs [2009], shown in Figure 5.32, seems to be similar to what
the second case implies. The reduced-order model may have a smaller ’region of at-
traction’ than the high-fidelity model.

Figure 5.32: A correlation between different scale of grid (coarse/fine) can yield differ-
ent local maxima. This figure is taken from Sachs [2009] without any modification.

In the third case, we introduce output constraints in reduced-space optimization.
The output constraints are water cut at the producer wells. This represents a multidi-
mensional output constraint problem. The TRPOD combined with Lagrangian barrier
does not achieve the same solution as the high-fidelity optimization. We have tried to
use two different initial controls. The water cut value at one of the producer wells is ac-
tive, while the other wells are almost active. The speedup in this case is slightly faster
than the high-fidelity optimization.

In the fourth case, we apply TRPOD and the Lagrangian barrier method to con-
strain total water production. This case is a one-dimensional output constraint prob-
lem. The results from this case show that our proposed method is able to make the
optimization in reduced-space converge to a better local maxima than that of high-
fidelity optimization. Moreover, the constraint is active and give speed up factor more
than two times.

Apart from the results above, both the TRPOD and Lagrangian barrier methods
rely on some parameter settings. In the Lagrangian barrier method we need to supply
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suitable values of initial μ and its stopping criteria, and the TRPODmethod needs still
more parameters, which are the minimum trust-region radius �mi n , its initial value
�0, and its maximum value�max . These parameter values do obviously have an im-
pact on the optimization results. To find good values for them, it would be interesting
to use a derivative-free optimization method, see e.g. Audet & Orban [2006], rather
than to use a heuristic approach.

Another point worthwhile to note is the fact that gradient-based optimization is
sensitive to initial guess values. We have therefore run some optimizations with differ-
ent initial controls. The results consistently show that the surrogate optimization have
substantial lower CPU time while honoring the nonlinear output constraints.

5.6 Conclusion

The use of the TRPODmethod in two case examples has been presented in this paper.
Two kinds of model order reduction techniques, the POD and POD-DEIM methods,
have been explained. Because of the nonlinear nature of oil reservoirs, particularly the
water saturation equation, the POD method may result in a slight speedup in terms
of CPU runtime. To get more CPU time speedup, we use POD-DEIM that is consis-
tently faster for the forward equations. In the 2D reservoir example, the sparse linear
solver seems to be efficient to solve the linear equation of the adjoint systems. Hence,
the corresponding adjoint-saturation equation in the reduced-order model cannot be
faster. Surrogate optimization using the POD-DEIM reduced-order model have shown
to give considerable speedup andmay also give a comparable objective function value.
In addition, result from surrogate optimization can be used as an initial guess to an op-
timization algorithm using a high-fidelity model.

The Lagrangian barrier method is sensitive to the choice of algorithm parameters,
such as the barrier multiplier. In addition, the TRPOD method also requires suitable
choices of parameter values. The choice of these parameters will affect the optimiza-
tion solution.

The state equations in this work are solved using a sequential method, that is,
implicit-pressure and implicit-saturation solvers. Here, the fluxes are solved explicitly
and the pressure are computed afterwards. The POD-DEIM is then applied to the im-
plicit water saturation equation. In commercial reservoir simulators, a fully-implicit
method, that is, implicit solutions for both pressure and saturation are commonly
used. We foresee the use of POD-DEIM in fully-implicit reservoir simulator, where
it may give a better speedup and reasonable approximation of the high-fidelity than
those using the vanilla PODmethod.
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Chapter 6

Concluding Remarks and
Recommendations for Further Work

The goal of this thesis is to use concepts from system and control in dealingwith the in-
creasing challenges in reservoir engineering problems. One of the problems which has
been discussed intensely in this thesis is production optimization. Chapter 1 has given
an overview of the reservoir engineering problems. Two methods and computation
tools from system and controls have been used in this thesis. First, the adjoint method
from optimal control theory which enables efficient gradient computation of the ob-
jective function independent of the number of decision variables. Second,model order
reduction (MOR) techniques for approximating the oil reservoir models and the re-
sulting reduced-order models are adapted and utilized, giving a substantial CPU time
speedup while maintaining a reasonable quality of approximation.

6.1 Concluding Remarks

The primary topic has been nonlinear output constraint handling. Chapter 3 explains
the proposed method, i.e., the Lagrangian barrier method and further demonstrates
the applicability of themethod in three case examples. Two alternativemethods, SLQP
and the pure barrier method, are compared to the Lagrangian barrier method. Initial
control input values given to the threemethodsmust be feasible ones. In all case exam-
ples, the Lagrangian barrier method consumes less CPU time than the other methods.
Hence, the method preserves the efficiency of the adjoint method. The case examples
represent one-dimensional and multidimensional output constraints. In the multi-
dimensional cases, the Lagrangian multiplier estimates can be used as information
on which constraints are active. The Lagrangian barrier is shown to provide accurate
handling of active constraints without violating the nonlinear output constraints. The
methodmaintains the feasibility of the given initial control inputs and yields a solution
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on the boundary of the feasible domain. On the other hand, the Lagrangian barrier
method requires good initial values of barrier parameters. The stopping criteria is also
an important consideration. In all case examples, the optimization terminates due to
the preset tolerance on objective function changes.

First-order gradient optimization (steepest descent) is slow to converge. In Chap-
ter 4 we have developed a Hessian-times-vector product using the adjoint method in
Steihaug’s conjugate gradient method, known as the Truncated Newton (TN) method.
We compare our proposed method to the BFGS method. It was shown in two case
examples that the TN method improves the convergence rate. However, the compu-
tational cost for each iteration is increased due to the overhead in runtime for com-
puting the Hessian-times-vector product. Instead of solving one adjoint equation and
one forward equation as in the first-order adjoint-gradient, the Hessian-times-vector
procedure requires two corresponding adjoint equations and two corresponding state
equations. Therefore, the choice of the number of inner iterations in the conjugate
gradient algorithm is an important input. We have fixed this value to 5 in all case ex-
amples. Fine tuning of this number may result in fewer Hessian-times-vector function
calls and can potentially reduce the CPU time. The case examples use well-rate and
BHP-control. For well-rate control, the BFGS method gives comparable results to the
TN method. Although it uses more iterations to converge, BFGS still gives favorable
CPU time. Based on this, we use well-rate control along with the BFGS method in the
case examples in Chapters 3 and 5. The well-rate control case seems to have the same
local optima given variations of the initial control inputs. On the contrary, in the BHP
control case each initial control input may result in different local optima. On aver-
age, the objective function value for the TNmethod is better than the BFGS. The opti-
mization in all case examples terminate mostly due to the absolute gradient stopping
criteria and a few times because of the step length tolerance.

Chapter 5 also addresses nonlinear output constraints and shows the use of reduced-
order models in order to speedup the optimization runtime. In addition to the stop-
ping criteria in the Lagrangian barrier method, the size of the minimum trust-region
radius is also used as a stopping criterion. Four case examples are presented to test the
quality of POD and DEIM, and the performance of surrogate optimization with and
without the presence of nonlinear output constraints. In out test-cases we found that
the PODmethod for the non-linear water saturation equation can be almost compara-
ble to the high-fidelity simulation run. DEIM mitigates this by building another basis
function for the nonlinear water cut term. The speedup in the case examples can be
up to a factor of 20.
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6.2 Further work

It is an obvious need to further demonstrate the proposedmethods in this thesis to real
oil reservoirs.

Nonlinear Output Constraints Handling

Themanifestation of output constraints are shown as water cut constraints, total water
production, and in hierarchial optimization. The nonlinear output problem can also
appear in well placement optimization as in Zhang et al. [2010]. It is thus interesting to
test our proposed method for the well placement optimization problem.

Second-order Adjoint Information for Production Optimization

To reduce the CPU time of the Hessian-times-vector algorithm, it would be beneficial
to apply model order reduction techniques. Using different kinds of preconditioner
matrices for the Hessian might also reduce the CPU time. Furthermore, the Lanczos-
CGmethodmay lead to better results than the Steihaug-CGmethod.

The use of conjugate gradients with Hessian-times-vector supplied by the adjoint
method can be beneficial in parameter estimation (history matching) optimization.
This may be particularly interesting for the iterative ensemble Kalman filter (IEnKF)
[Li & Reynolds, 2009] in which an optimization algorithm is used for better handling of
nonlinearities in oil reservoirs rather than the standard EnKF.

Surrogate Optimization of Oil Reservoir Water Flooding

In this work the choice of PODbasis functions is paramount. Due to the limited operat-
ing range, the POD basis functions are updated with a trust-region strategy during the
course of optimization. However, there exist plenty variants of PODmethods to extend
the operating range of the PODmodel. One example is Burkardt et al. [2006]whichmay
give a better approximation since it includes an extrapolation strategy. Furthermore,
the TRPOD method depends heavily on some important parameters, namely, the ini-
tial andmaximum trust-region radius. Methods like adaptive TRPOD Sachs [2009] can
be applied to partially overcome dependency of these parameters.

133



6. Concluding Remarks and Recommendations for Further Work

134



References

Aanonsen, S. I., Naevdal, G., Oliver, D. S., Reynolds, A. C., & Valles, B. (2009). The En-
semble Kalman Filter in Reservoir Engineering–a Review. SPE Journal, 14:3, 393–412.

Aarnes, J. E., Gimse, T., & Lie, K. A. (2007). An introduction to the numerics of flow in
porous media using Matlab, (pp. 265–306). Springer Verlag.

Agarwal, A. (2010). Advanced Strategies for Optimal Design and Operation of Pressure
Swing Adsorption Processes. PhD thesis, Carnegie Mellon University.

Agarwal, A. & Biegler, L. T. (2011). A trust-region framework for constrained opti-
mization using reduced ordermodeling. Optimization and Engineering, online first.
dx.doi.org/10.1007/s11081-011-9164-0.

Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., & Newman, P. A.
(2001). Approximation and model management in aerodynamic optimization with
variable-fidelity models. Journal of Aircraft, 38:6, 1093 – 1101.

Asheim, H. A. (1986). Optimal control of water drive. SPE 15978. SPE Journal.

Audet, C. &Orban, D. (2006). Finding optimal algorithmic parameters using derivative-
free optimization. SIAM Journal of Optimization, 17, 642–664.

Aziz, K. & Settari, A. (1979). Petroleum Reservoir Simulation. Applied Science Publisher.

Barrault, M., Maday, Y., Nguyen, N. C., & Patera, A. T. (2004). An ’empirical interpola-
tion’ method: application to efficient reduced basis discretization of partial differ-
ential equations. Comptes Rendus Mathematique, 339:9, 667–672.

Becerra, V. M. (2004). Solving optimal control problems with state constraints using

135



References

nonlinear programming and simulation tools. IEEE Trans. On Education, 43, No.3,
377 – 384.

Bergman, M., Cordier, L., & Brancher, J. P. (2005). Control of the cylinder wake in the
laminar regime by trust-region methods and POD reduced order models. In Pro-
ceeding of IEEE CDC 2005. Seville, Spain. pp. 524-529.

Biegler, L. T. (2010). Nonlinear Programming. Concepts, Algorithms, and Applications
to Chemical Processes. MOS-SIAM Series on Optimization. SIAM.

Bloss, K. F., Biegler, L. T., & Schiesser, W. E. (1999). Dynamics process optimization
through adjoint formulations and constraint aggregation. Ind. Eng. Chem. Res, 38:2,
421 – 432.

Brouwer, D. R. (2004). Dynamic water flood optimization with smart wells using opti-
mal control theory. PhD thesis, TU Delft.

Brouwer, D. R. & Jansen, J. D. (2004). Dynamic optimization of waterflooding with
smart wells using optimal control theory. SPE Journal, 9:4, 391 – 402.

Bryd, R. H., Gould, N. I. M., Nocedal, J., & Waltz, R. A. (2004). An algorithm for nonlin-
ear optimization using linear programming and equality constrained subproblems.
Math. Program., Ser. B, 100, 27–48.

Bryson, A. & Ho, Y. (1975). Applied Optimal Control. Hemisphere.

Burkardt, J., Gunzburger, M., & Lee, H. C. (2006). Centroidal voronoi tessellation-based
reduced-order modeling of complex systems. SIAM Journal of Scientific Computing,
28:2, 459–484.

Byrd, R. H., Nocedal, J., &Waltz, R. A. (2006). Knitro: An integrated package for nonlin-
ear optimization. Large-Scale Nonlinear Optimization, 83, 35 – 59.

Cardoso, M. A. (2009). Development and Application of Reduced-Order Modeling Pro-
cedures for Reservoir Simulation. PhD thesis, Stanford University.

Cardoso, M. A. & Durlofsky, L. J. (2010a). Linearized reduced-order models for subsur-
face flow simulation. Journal of Computational Physics, 229:3, 681 – 700.

136



References

Cardoso, M. A. & Durlofsky, L. J. (2010b). Use of reduced-order modeling procedures
for production optimization. SPE Journal, 15:2, 426 – 435.

Cardoso, M. A., Durlofsky, L. J., & Sarma, P. (2009). Development and application of
reduced-order modeling procedures for subsurface flow simulation. International
Journal for Numerical Methods in Engineering, 77:9, 1322 – 1350.

Chaturantabut, S. & Sorensen, D. C. (2010). Nonlinear model order reduction via dis-
crete empirical interpolation. SIAM J. Sci. Comp., 32:5, 2737–2764.

Chaturantabut, S. & Sorensen, D. C. (2011). Application of POD and DEIM on dimen-
sion reduction of non-linearmiscible viscous fingering in porousmedia.Mathemat-
ical and Computer Modelling of Dynamical Systems, 17:4, 337–353.

Chen, C. (2011). Adjoint-gradient-based production optimization with Augmented la-
grangian method. PhD thesis, The University of Tulsa.

Chen, C., Li, G., & Reynolds, A. (2011). Robust Constrained Optimization of Short and
Long-termNPV for Closed-Loop Reservoir Management. SPE 141314. In Proceeding
SPE RSS, Houston, TX, U.S.A, 21–23 February.

Chen, Y., Oliver, D. S., & Zhang, D. (2008). Efficient ensemble-based closed loop pro-
duction optimization. SPE-112873. In Proceeding of SPE/DOE Improved Oil Recovery
Symposium,Tulsa, Oklahoma, U.S.A, 19-23 April.

Christie, M. A. & Blunt, M. J. (2001). Tenth SPE comparative solution project: A com-
parative of upscaling technique. SPE Reservoir Eval.Eng, 4, 308 – 317.

Conn, A. R., Gould, N. I. M., & Toint, P. L. (1997). A Globally Convergent Lagrangian
Barrier Algorithm for Optimization with General Inequality Constraints and Simple
Bounds. Mathematics of Computation, 66:217, 216 – 288.

Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust-Region Methods. SIAM.

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to Derivative-Free
Optimization. MPS-SIAM Book Series on Optimization. SIAM.

Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. SIAM.

137



References

Dembo, R. S., Eisenstat, S. C., & Steihaug, T. (1982). Inexact Newton methods. SIAM J.
Numer. Anal, 19, 400 – 408.

Evensen, G. (2009). Data Assimilation: The Ensemble Kalman Filter. Springer.

Fahl, M. (2000). Trust-region Methods for Flow Control based on Reduced Order Mod-
elling. PhD thesis, Trier University.

Fiacco, A. V. & McCormick, G. P. (1968). Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. JohnWiley.

Forouzanfar, F., Li, G., & Reynolds, A. C. (2010). A two-stage well placement optimiza-
tion method based on adjoint gradient. SPE 135304. In Proceeding of SPE Annual
Technical Conference and Exhibition, 19-22 September 2010, Florence, Italy.

Forsgren, A., Gill, P. E., & Wright, M. H. (2002). Interior methods for nonlinear opti-
mization. SIAM Review, 44, No.4, 525 – 597.

Foss, B. (2011). Process control in conventional oil and gas production - Challenges
and opportunities Control Engineering. To appear in Control Engineering Practice.

Foss, B. & Jensen, J. P. (2011). Performance analysis for closed-loop reservoir manage-
ment. SPE Journal, 16:1, 183–190.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc.

Grepl, M. A., Maday, Y., Nguyen, N. C., & Patera, A. T. (2007). Efficient reduced-basis
treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathe-
matical Modelling and Numerical Analysis, 41:3, 575–605.

Griewank, A. & Korzec, M. (2005). Approximating Jacobians by the TR2 formula. Proc.
Appl. Math. Mech., 5, 791–792.

Griewank, A. &Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. SIAM.

Gu, Y. & Oliver, D. S. (2007). An Iterative Ensemble Kalman Filter for Multiphase Fluid

138



References

Flow Data Assimilation. SPE Journal, 12:4, 438–446.

Gunzburger, M. D. (2003). Perspective in Flow Control and Optimization. SIAM.

Hadamard, J. (1902). Sur les problems aux derives partielles et leaur signification
physique. Princeton University Bulletin, (pp. 49–52).

Handels, M. & Zandvliet, M. J. (2007). Adjoint-based well-placement optimization un-
der production constraints. SPE 105797. In Proceeding of SPE RSS, Houston, TX,
U.S.A, 26–28 February.

Hargraves, C. & Paris, S. (1987). Direct trajectory optimization using nonlinear pro-
gramming and collocation. Journal Guidance Cont. Dyn., 10:4, 338 – 342.

Hasan, A., Foss, B., & Sagatun, S. (2011). Flow control of fluids through porous media.
Applied Mathematics and Computation.

Heijn, T., Markovinovic, R., & Jansen, J. D. (2004). Generation of low-order reservoir
models using system-theoretical concepts. SPE Journal, 9:2, 202–218.

Heinkenschloss, M. (2008). Numerical Solution of Implicitly Constrained Optimization
Problems. Technical report, Dept. of Computational and App.Math., Rice University.

Hinze, M., Pinnau, R., Ulbrich, M., & Ulbrich, S. (2009). Optimization with PDE Con-
straints. Springer.

Hinze, M. & Volkwein, S. (2005). Proper orthogonal decomposition surrogate mod-
els for nonlinear dynamical systems: error estimates and suboptimal control. In
P.Benner, V.Mehrmann, D.C. Sorensen (eds.), Reduction of Large-Scale Systems, Lec-
ture Notes in Computational Science and Engineering, Vol 45. Springer, Berlin.

Hooke, R. & Jeeves, T. A. (1961). "Direct Search" solution of numerical and statistical
problems. J. ACM, 8:2, 212 – 229.

Horst, R., Pardalos, P. M., & Thoai, N. V. (2000). Introduction to Global Optimization.
Springer.

Ito, K. & Kunisch, K. (2000). Newton’s method for a class of weakly singular optimal

139



References

control problems. SIAM Journals Optimization, 10:3, 896 – 916.

Ito, K. & Kunisch, K. (2008). Lagrange Multiplier Approach to Variational Problems and
Applications. SIAM.

Jansen, J. D. (2011). Adjoint-based optimization of multi-phase flow through porous
media - a review. Computers & Fluids, 46, 40 – 51.

Jansen, J. D., Brouwer, D. R., Naevdal, G., & van Kruijsdijk, C. P. J. W. (2005). Closed-loop
reservoir management. First Break, 23, 43–48.

Jansen, J. D., Douma, S. D., Brouwer, D. R., Van den Hof, P. M. J., Bosgra, O. H., &
Heemink, A. W. (2009a). Closed loop reservoir management. SPE-119098. In Pro-
ceeding SPE Reservoir Simulation Symposium, 2-4 February The Woodlands, Texas.

Jansen, J. D., van Doren, J. F. M., Heidary-Fyrozjaee, M., & Yortsos, Y. C. (2009b). Front
controllability in two-phase porous media flow, (pp. 203–219). Springer Verlag.

Jittorntrum, K. & Osborne, M. R. (1980). A modified barrier function method with im-
proved rate of convergence for degenerate problems. J. Austral. Math. Soc, Series B,
21, 305 – 329.

Kang, W. & Xu, L. (2009). A quantitativemeasure of observability and controllability. In
Proceeding of Joint 48th IEEE CDC and 28th Chinese Control Conference, Shanghail,
P.R. China, December 16-18.

Kang, W. & Xu, L. (2010). Analyzing control systems by using dynamic optimization.
In Proceeding of 8th IFAC Symposium on Nonlinear Control Systems, University of
Bologna Italy, September 1-3.

Kim, J., Bates, D. G., & Postlethwaite, I. (2006). Nonlinear robust performance analysis
using complex-step gradient approximation. Automatica, 42, 177–182.

Kraaijevanger, J. F. B.M., Egberts, P. J. P., Valstar, J. R., & Buurman, H.W. (2007). Optimal
waterflood design using the adjoint method. SPE 105764. In SPE Reservoir Simula-
tion Symposium, 26-28 February, Houston, Texas, U.S.A.

Kreisselmeier, G. & Steinhauser, R. (1979). Systematic control design by optimizing a

140



References

vector performance index. In Proceeding of IFAC Symposium on CADS, Zurich.

Krogstad, S. (2011). A sparse basis POD for model reduction of multiphase compress-
ible flow. SPE-141973. In Proceeding of the SPE 2011 Reservoir Simulation Sympo-
sium.

Krogstad, S., Hauge, V. L., & Gulbransen, A. F. (2011). Adjoint multiscale mixed finite
elements. SPE Journal, 16:1, 162 – 171.

Leemhuis, A. P., Belfroid, S. P. C., & Alberts, G. J. N. (2007). Gas coning control for
smart wells. SPE 110317. In Prooceeding of the 2007 Annual Technical Conference
and Exhibition, November 11-14.

Leemhuis, A. P., Nennie, E. D., Belfroid, S. P. C., Alberts, G. J. N., Peters, E., & Joosten,
G. J. P. (2008). Gas coning control for smart wells using a dynamic coupled well-
reservoir simulator. SPE 112234. In Proceeding of the 2008 SPE Intelligent Energy
Conference and Exhibition, Amsterdam, The Netherlands, 25-27 February.

Li, G. & Reynolds, A. C. (2009). Iterative Ensemble Kalman Filters for Data Assimilation.
SPE Journal, 14:3, 496–505.

Li, Y., Navon, M., Courtier, P., & Gauthier, P. (1993). Variational data assimilation with a
semi-lagrangian semi-implicit global shallow-water equationmodel and its adjoint.
Monthly Weather Review, June, 1759–1769.

Lie, K.-A., Krogstad, S., Ligaarden, I. S., Natvig, L. R., Nilsen, H. M., & Skafltestad, B.
(2011). Open-sourceMATLAB implementation of consistent discretisations on com-
plex grids. Computational Geosciences, online first.

Markovinovic, R. (2009). System-Theoretical Model Reduction for Reservoir Simulation
and Optimization. PhD thesis, TU. Delft.

Markovinovic, R., Geurtsen, E. L., Heijn, T., & Jansen, J. D. (2002a). Generation of
low-order reservoir models using POD, empirical gramians and subspace identifica-
tion. In Proc. 8th European conference on the mathematics of oil recovery (ECMOR).
Freiberg, Germany, pp. E31-1-E31-10.

Markovinovic, R., Geurtsen, E. L., & Jansen, J. D. (2002b). Subspace identification of

141



References

low-order reservoir models. In Proceeding of IV international conference on compu-
tational methods in water resources, Delft, The Netherlands. pp. 281-288.

Markovinovic, R. & Jansen, J. D. (2006). Accelerating iterative solution methods using
reduced-order models as solution predictors. International Journal for Numerical
Methods in Engineering, 68:5, 525 – 541.

Mehra, R. & Davis, R. (1972). A generalized gradient method for optimal control prob-
lems with inequality constraints and singular arch. IEEE Transactions on Automatic
Control, 17, 69 – 79.

Montleau, P. d., Cominelli, A., Neylon, K., Rowan, D., Pallister, I., Tesaker, O., & Nygard,
I. (2006). Production optimization under constraints using adjoint gradient. In Pro-
ceedings of ECMOR X-10th European Conference on the Mathematics of Oil Recovery.
Number A041, Amsterdam, The Netherlands.

Naevdal, G., Mannseth, T., & Vefring, E. H. (2002). Near-well reservoir monitoring
through ensemble kalman filter. SPE 75235. In Proceeding of SPE/DOE Improved Oil
Recovery Symposium, 13-17 April, Tulsa, Oklahoma.

Nocedal, J. & Wright, S. J. (2006). Numerical Optimization. Springer.

Oliver, D. S. & Chen, Y. (2010). Recent progress on reservoir history matching: a review.
Computational Geosciences, 15:1, 185–221.

Peaceman, D. (1983). Interpretation ofwell-block pressures in numerical reservoir sim-
ulation with nonsquare grid blocks and anisotropic permeability. SPE Journal, 23:3,
531–543.

Peters, L., Arts, R. J., Brouwer, G. K., Geel, C. R., Cullick, S., Lorentzen, R. J., Chen, Y.,
Dunlop, K. N. B., Vossepoel, F. C., Xu, R., Sarma, P., Alhuthali, A. H., & Reynolds, A. C.
(2010). Results of the brugge benchmark study for flooding optimization and history
matching. SPE Reservoir Evaluation & Engineering, 13, Number 3, 391–405.

Raffard, R. L., Amonlirdviman, K., Axelrod, J. D., & Tomlin, C. J. (2008). An adjoint-
based parameter identification algorithm applied to planar cell polarity signaling.
IEEE Transaction of Automatic Control, Special Issue on System Biology, 53, 109 –
121.

142



References

Raffard, R. L. & Tomlin, C. J. (2005). Second order adjoint-based optimization of ordi-
nary and partial differential equations with application to air traffic flow. In Proceed-
ings of 2005 American Control Conference. pp. 798-803.

Robinson, T. D. (2007). Surrogate-Based Optimization using Multifidelity Models with
Variable Parameterization. PhD thesis, Massachusetts Institute of Technology.

Rommelse, J. R. (2009). Data Assimilation in Reservoir Management. PhD thesis, TU
Delft.

Rwechungura, R., Suwartadi, E., Dadashpour, M., Kleppe, J., & Foss, B. (2010). The
norne field case -a unique comparative case study. SPE 127538. In Proceeding of SPE
Intelligent Energy Conference and Exhibition, Utrecht, The Netherlands.

Sachs, E. W. (2009). Adaptive trust region POD algorithms.

Saputelli, L., Nikolaou, M., & Economides, M. J. (2005). Self-learning reservoir man-
agement. SPE Reservoir Evaluation & Engineering, 8:6, 534–547.

Saputelli, L., Nikolaou, M., & Economides, M. J. (2006). Real-time reservoir manage-
ment: A multiscale adaptive optimization and control approach. Computational
Geosciences, 10, 61–96.

Sarma, P., Chen, W. H., Durlofsky, L. J., & Aziz, K. (2008). Production optimization with
adjointmodels under nonlinear control-state path inequality constraints. SPE Reser-
voir Evaluation & Engineering, 11:2, 326–339.

Sarma, P., Durlofsky, L. J., Aziz, K., & Chen, W. H. (2007). A new approach to automatic
history matching using kernel PCA. SPE 106176. In Proceeding of SPE Reservoir Sim-
ulation Symposium, 26-28 February, Houston, Texas, U.S.A.

Schlumberger (2009). Eclipse - technical description. In Eclipse - Simulation Software
Manuals 2009.2. Schumberger.

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale
optimization. SIAM Journal on Numerical Analysis, 20:3, 626–637.

Su, H.-J. & Oliver, D. S. (2010). Smart well production optimization using an ensemble-

143



References

based method. SPE Reservoir Evaluation & Engineering, 13:6, 884–892.

Suwartadi, E., Krogstad, S., & Foss, B. (2009). On adjoint state constraints of adjoint op-
timization in oil reservoir waterflooding. SPE 125557. In Proceeding of SPE Reservoir
Simulation and Characteristic Conference, Abu Dhabi.

Suwartadi, E., Krogstad, S., & Foss, B. (2010a). A Lagrangian-Barrier Function for Ad-
joint State Constraints Optimization of Oil Reservoir Water Flooding. In Proceeding
of IEEE Conference on Decision and Control 2010, Atlanta, Georgia, USA.

Suwartadi, E., Krogstad, S., & Foss, B. (2010b). Nonlinear output constraints handling
for production optimization of oil reservoirs. In Proceeding of European Conference
on Mathematical Oil Recovery 2010 (ECMOR XII), Oxford, UK.

Suwartadi, E., Krogstad, S., & Foss, B. (2010c). Second-Order Adjoint-Based Control for
Multiphase Flow in Subsurface Oil Reservoirs. In Proceeding of IEEE Conference on
Decision and Control 2010, Atlanta, Georgia, USA.

Suwartadi, E., Krogstad, S., & Foss, B. (2012a). Adjoint-based Surrogate Optimization
of Oil Reservoirs Water Flooding. Submitted to Journal of Computational Physics.

Suwartadi, E., Krogstad, S., & Foss, B. (2012b). Nonlinear output constraints handling
for production optimization of oil reservoirs. Computational Geosciences, 16:2, 499–
517.

Troltzsch, F. (2010). Optimal Control of Partial Differential Equations: Theory, Methods
and Applications. AmericanMathematical Society.

van Doren, J. F. M., Markovinovic, R., & Jansen, J. D. (2006). Reduced-order optimal
control of water flooding using proper orthogonal decomposition. Computational
Geosciences, 10:1, 137 – 158.

van Doren J. F. M. (2010). Model Structure Analysis for Model-based Operation of
Petroleum Reservoirs. PhD thesis, TU Delft.

van Essen, G. M., Van den Hof, P. M. J., & Jansen, J. D. (2010). Hierarchical long-term
and short-term production optimization. SPE 124332. SPE Journal, 16(1), 191 – 199.

144



References

Virnovsky, G. A. (1991). Waterflooding strategy design using optimal control theory. In
Proceeding of 6th. European IOR-Symp. Stavanger, Norway.

Volkwein, S. (2003). Model reduction using proper orthogonal decomposition. In Lec-
ture Note. Institute of Mathematics and Scientific Computing: University of Graz.

Walther, A. & Griewank, A. (2004). Advantages of binomial checkpointing for memory-
reduced adjoint calculations. In Proceeding of ENUMATH 2003, Prague, pp. 834 -
843, Springer.

Wen, Z., Durlofsky, L. J., & van Roy, B. (2011). Use of approximate dynamic program-
ming for production optimization. SPE 141677. In Proceeding of the SPE 2011 Reser-
voir Simulation Symposium.

Wu, Z. (1999). Conditioning Geostatistical Models to Two-Phase Flow. PhD thesis, Uni-
versity of Tulsa.

Zakirov, I. S., Aanonsen, S. I., Zakirov, E. S., & Palatnik, B. M. (1996). Optimizing reser-
voir performance by automatic allocation of well rates. InProceeding of 5th. ECMOR,
Leoben, Austria.

Zandvliet, M. J., Handels, M., van Essen, G. M., Brouwer, D. R., & Jansen, J. D. (2008a).
Adjoint-based well-placement optimization under production constraints. SPE
Journal, 13:4, 392–399.

Zandvliet, M. J., Van Doren, J. F. M., Bosgra, O. H., Jansen, J. D., & Van den Hof,
P. M. J. (2008b). Controllability, observability, and identifiability. Computational
Geosciences, 12, 605–622.

Zhang, K., Li, G., Reynolds, A. C., Yao, J., & Zhang, L. (2010). Optimal well placement
using an adjoint gradient. Journal of Petroleum Science and Engineering, Volume 73,
Issues 3-4, 220–226.

145



References

146




