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Extended Abstract

The Department of Engineering Cybernetics at the Norwegian University of Science and
Technology established the Unmanned Vehicle Laboratory fall 2010. The goal is to have
students develop a fully functional autonomous aerial vehicle over time as part of projects
and master’s theses. A range of projects were carried out fall 2010, among others the
report General Platform for Unmanned Autonomous Systems was written on the topic of
hardware, operating systems and peripheral interfacing.

This master’s thesis continues where the previous report left suggestions for further work,
and covers the topics of a software framework, sensor error detection, actuator and sensor
interfacing, that is now part of the autonomous flight system.

A highly modular software framework has been constructed, applicable far beyond the
unmanned vehicle domain. Due to the high level of encapsulation and modularity it is
especially valuable in projects where there is a high mobility of the workforce, such as
student projects and theses. It acts as a middleware layer, with language independent,
separately compilable modules, communicating with one another to achieve the desired
functionality.

To prevent unrealistic or erroneous sensor readings from spreading through the system, a
software detection unit catches signal anomalies based on statistics and alerts subscribing
modules. The algorithm has been interfaced into the software framework, and is applicable
to numerous sensors.

Hardware was designed, constructed and tested to handle sensor interfacing, power supply
demands and real-time critical actions such as actuator control. The design is performed
from an aerial vehicle application point of view, but general to such an extent that is usable
in a wide range of autonomous crafts.

The framework, filter and hardware are merged together and tested on an embedded sys-
tem, verifying the system functionality with a feedback loop from measurements to ac-
tuators. Utilizing the previous work along with all three elements of this thesis, a fully
functional system for vehicle control is achieved.
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Chapter 1

Introduction

1.1 Motivation

Unmanned vehicles started to appear along with advances in technology that allowed for
remote operation. The application for unmanned vehicles stretches across many domains
such as on water, under water, on land and in the air, in vast and microscopic scales. Uses
span an immense specter where it is dangerous, inefficient or impossible for humans to
venture. As advances in science are made, technologies that before were restricted due to
price or secrecy are becoming more available. This is particularly the case for unmanned
vehicles where autonomous control used to be a costly procedure, due to expensive sensor,
radio and imagery technology. At present time, reasonably priced technology can be bought
from a range of suppliers providing an easy and low-cost entrance to the world of unmanned
vehicles.

In the field of cybernetics, this is a phenomenal area to explore as cybernetics can be utilized
to a great extent to control these vehicles. Schools and private companies have indeed
recognized this field as a great area to learn, give assignments and develop technology
which can turn a profit.

1.2 The Big Scope

The Department of Engineering Cybernetics established the “Unmanned Vehicle Labora-
tory” (UVL) fall 2010. This lab serves as a hub for students performing assignments that
falls under this category, and encourages teamwork, sharing of information and a better
environment for UV development purposes. Assignments have for several years been car-
ried out at the department in the field of unmanned vehicles, but the projects tend to halt
when students graduate. One of the initial physical objectives is to develop an in-house,
low cost, fully automated unmanned aerial system in a short amount of time. The UAV
will serve many purposes such as PhD, master and project assignments over many years, be
used as a test facility for new components, gathering of test data, be part of international
unmanned aerial vehicle (UAV) competitions and be used as advertisement.

- 1 -



CHAPTER 1. INTRODUCTION

1.3 Previous Work

Since the UV lab started in 2010, a range of projects and master’s theses have been written
on the subject. With the in-house UAV in mind, consider Figure 1.1 for what has been
executed so far. Blue indicates contents of this thesis. See Section 1.4 for details. Green
is already addressed issues that are completed to such a degree that they can support the
vehicle in autonomous flight. As is ordinary with prototypes and projects in development,
all parts are subject to continuous improvement and alteration. Thus should no part be
considered as completely finished. Manual control is marked as addressed since this is
supplied with the currently used aircraft (The Recce D6 from Odin Aero AS). The inertial
measurement unit (IMU) is also marked green due to the fact that this only needs minor
alterations to become part of the framework. This is also the case for the GPS which is
fully operable, but interfaced to the previous framework. White boxes are unaddressed
issues.

Assignments performed so far in the UVL targeted towards the Recce D6 are summarized
here.

• The assignment regarding motherboard, OS, servo-control and GPS was addressed
in [1, Skøien, Vermeer].

• A model of the Recce D6 and a simulator can be found in [2, Dønnestad pp.34-46
and pp.22-33 respectively], and in [3, Dønnestad].

• Several observers have been made, and are discussed in [4, Ingebretsen] [5, Nøkland]
[6, Hafslund] and [7, Nøkland].

• Work regarding hardware in the loop has been under development spring 2011 and
can be found in [8, Stern].

1.4 Main Contributions and Contents of Thesis

This thesis contributes in two directions at once. One very general direction, producing
solutions that are usable in many domains and one targeted towards completing the specific
UAV described. Many of the results in this thesis are general to such an extent that they
are applicable far beyond the unmanned laboratory and unmanned vehicles, making the
thesis of interest to a wide audience within the genre of embedded solutions and computer
science. Specific implementations, figures, some tests and examples are targeted towards
UAVs and the Recce D6 platform to set the solutions into context. By utilizing and
building upon the work that has already been done, and then performing further studies,
construction and implementation, this thesis takes the Recce D6 a large step closer to
autonomous flight.

The advantage of viewing this thesis along side with the underlying project report [1,
Skøien, Vermeer] General Platform for Unmanned Autonomous Systems must be empha-
sized, which founded much of the base for further work. It is included in the digital
appendix A.

The target audience are individuals with knowledge in the field of cybernetics, program-
ming, electronics, unmanned vehicles and some mathematics, especially future UAV-lab
participants. The thesis may also interest general embedded and code developers, students
and radio control hobbyists.
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Figure 1.1: Project overview with the Recce D6. Picture courtesy of Odin Aero AS

To complete the platform, the following issues are considered in this thesis:

• SW framework
A highly modular framework is constructed, supporting modules in a variety of pro-
gramming languages. The software is able to accommodate the modularity of the
hardware, detect faulty modules, and take action to correct. Based on extracted
work form this thesis, a paper [9, Skøien, Skavhaug] on the software topic is being
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prepared for publication by the author and main supervisor.

• Sensor error detection
The need for an adaptable low-level sensor error detection module is addressed. This
will alert modules such as observers and control systems of faulty sensor readings,
and prohibit these from going astray. By looking at such parameters as variance,
some information regarding the quality of the signal is also known.

• Support hardware and servo control
To control actuators, provide extra safety, monitor power usage and provide a stable
power supply, an add-on board is designed and constructed. A range of sensors
interface to this board, becoming a part of the total framework.

This thesis provides a general software and hardware solution, applicable to a wide range
of unmanned crafts. Due to the high level of modularity and confinement, the solution
is especially applicable in projects and workplaces where there is a high mobility of the
workforce, such as school projects and theses. By reading further, one will be presented
with solutions applicable to a range of unmanned vehicles, as well as the software framework
being applicable in general software and embedded solutions.

As one can observe from Figure 1.1, by providing these additional pieces, the puzzle will
become complete to such an extent that autonomous flight is possible, except for guidance
and control. These two issues have yet to be addressed, so for initial test purposes the
guidance system will be omitted, and a simple P regulator used for vehicle control. The
radio link and logger is not necessary to fly autonomously.

1.5 Thesis Structure

The contents of this thesis as noted in Section 1.4 is presented by focusing on to two
main topics which are critical to complete the system for autonomous flight, and the signal
detection algorithm which is a smaller topic with less focus. Finally, all three topics are
tested together.

Chapter 2, Software Framework
This chapter describes the work surrounding the software framework, code examples and
extended descriptions of the system are given.

Chapter 3, Sensor Signal Quality and Error Detection
An IMU is interfaced to Simulink for system debugging and visual reference, and a general
basic signal error detection system is coded. The desire and need for a universal solution
results in this chapter being somewhat briefer than the other two main chapters due to the
generic implementation.

Chapter 4, BeagleBoard UAV Support Hardware
Demands, design, development and test of an expansion board is covered here.

Chapter 5, Full System Test
This chapter executes a full system test, demonstrating feedback functionality with all
three previous chapters functioning together.

Chapter 6, Overall Discussion and Evaluation
Discussions are handled in their respective chapter. A brief overall discussion is found here
as well as a reflection on the performed work.
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Chapter 7, Future Work
Recommendations regarding alterations and further work are summarized in this chapter.

Chapter 8, Conclusion
The final conclusion resides here.

The nature of this thesis suggests that studies, demands, results and discussions, are part
of each separate chapter. A short general discussion and conclusion is located at the end to
maintain readability. For that same reason, some guides, tables and procedures have been
moved to the appendix. This way, developers interested in performing a specific action
can use a particular appendix in isolation as a guide. All figures are created by the author
unless otherwise stated in the caption. References are made to specific pages if applicable,
to simplify the process of finding source material.
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Chapter 2

Software Framework

2.1 Background

In projects within the domain of computer science, modularity is an important issue. Con-
sider a project with a certain number of people are involved in code production. Modular
code lets developers define interfaces between sections of code (e.g. function calls), and
then focus on developing and debugging their specific section. This also allows for code
reuse, as one section of code performs a certain operation that can be eligible in many
places. In the area of unmanned vehicles (UV), it has for long been a common practice
to use a microcontroller unit (MCU) to handle vehicle control in all regards, due to the
low weight, cost, power consumption and price. Since microcontrollers often impose quite
some computational limitations, such as: limited core frequency, little memory, “big while”
implementation, only one priority level and no multithreading capabilities, the code must
be designed accordingly. This can in some projects result in highly integrated code. As
pointed out in [10, Garcia et al. pp.96] this have several disadvantages:

• Removing obsolete code is difficult. The highly integrated code may have connections
to many parts of the total structure.

• Expansions and upgrades are hard to perform as one needs more extensive knowledge
of the system.

• In highly integrated code, timing and synchronization with external devices becomes
rigid. On the other hand in a multi threaded environment, a thread can be sched-
uled out while waiting for an external unit and thus free valuable time for other
applications.

• Testing after upgrades and/or alterations is more comprehensive. Consider a single
“threaded“ MCU application vs. a multithreaded PC application. An addition to
the first causes the entire program to increase its loop-time whilst this might not be
the case in the latter.

As development progresses, more powerful systems are developed in smaller packages at a
more reasonable price. In this particular project the BeagleBoard (BB)(See Figure 2.1) is
chosen as the vehicle’s main control unit, running Ångström Linux, providing extraordinary
computing capabilities in a small package. This enables the developers to avoid some of
the issues that arise from ordinary microcontroller applications.
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Figure 2.1: The BeagleBoard

Some key features of the BeagleBoard:

• OMAP3530 ARM Cortex A8 720 MHz CPU

• Integrated vector HW floating point unit

• 128 MB RAM, 256 MB flash memory

• ∼2 W power consumption

See [1, Skøien, Vermeer pp.13-17 & pp.19-29] for more information regarding the Beagle-
Board, why it is used and available operating systems.

This system sets the guidelines for the software framework, though the solution is applicable
in a much larger range of applications. Compared to an ordinary desktop system, this
hardware puts no limitations on the developer, except for some reduction in processing
power and no multi-core capabilities.

2.2 Framework Requirements

The software framework must accommodate the modularity of the hardware and provide
a base for rapid prototyping and expandability. The following demands are specified by
the author, based on the problem description, earlier work, experiences and requests from
other UVL developers.

• Accommodate modules in several languages
Modules in this setting are referred to as an independent unit which is either hardware
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CHAPTER 2. SOFTWARE FRAMEWORK

or software function specific. E.g. a GPS or GNC module respectively. MATLAB /
Simulink support falls under this point.

• Highly modular design
Adding a module should impose very little work in other existing modules.
The user must be provided with a framework to allow rapid construction of new
modules. The user should not be bothered with details regarding timing, inter-
process communication (IPC) and data security/validity. Modules that use data
from other modules must of course be aware of the structure of the posted data to
make use of the information.

• Separate compilation
To accommodate different languages and ease development, it is desirable to be able
to compile modules individually.

• Possibility of different loop frequencies
As an example, a typical GPS can update at 10 Hz, while an IMU can run at up to
a 100 Hz. The framework must be able to allow for different execution rates, while
having e.g. old GPS data accessible even though the IMU data is updated.

• Watchdog to monitor module performance
A watchdog must make sure that each module updates its data at an interval given
by the user. Should a module die, or provide data at a decreased rate, it can be
rebooted without affecting other modules. (Of course except a prolonged interval of
un-updated data).

• Maintain data integrity
Care must be taken to ensure that corrupt data is not passed in the system, and
that data is available for other modules while computation is ongoing in the posting
module.

• The framework must be able to sustain soft real-time execution.

• Establish rules for new modules
A software framework can indeed be generic, but to make any communication possi-
ble, new modules must be made in accordance with certain system-wide rules.

2.3 Previous Work

2.3.1 Former Implementation

In [1, Skøien Vermeer pp.34-36] a framework was suggested to enable different modules
to communicate. A master thread spawned modules as threads and passed the necessary
struct pointers. The use of classes were central throughout the solution. This system
proved to work as intended, but had certain limitations:

• All the modules must be implemented in C++.
This is one of the largest hurdles, since many developers might be unfamiliar with
object oriented programming and the use of classes.

• Adding a module requires quite some modification of the central software block.
The thread creation process is handled in the main loop. To insert a new module,
one must spawn a new thread in main and pass a pointer to the appropriate struct.
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One of the features that will be brought forward is the timing feature. As stated in [1,
Skøien, Vermeer pp.34] this method is used which is originally based on [11, Simmonds]:

1 thread ( period )
2 {
3 struct periodic_info info ;
4 make_periodic ( period , info ) ;
5

6 while (1 )
7 {
8 /∗ Do work ∗/
9 wait_period ( info ) ;
10 }
11 }

Where periodic info is declared in the following manner:

1 struct periodic_info

2 {
3 int timer_fd ;
4 unsigned long long wakeups_missed ;
5 } ;

Before the while-loop is reached, a timing info struct is instantiated and a periodic time
in µs is given as a parameter. In make periodic, period is parsed to the correct format,
and the command

1 info−>timer_fd = timerfd_create ( CLOCK_MONOTONIC , 0) ;

is run which creates a timer that via a file descriptor delivers timer expiration notifications.
See [12, Linux Programmer’s Manual]. When wait period is called in the periodic loop,
a blocking read call is made to the same timer:

1 ret = read (info−>timer_fd , &missed , sizeof ( missed ) ) ;
2 if ( ret == −1)
3 {
4 //Handle e r r o r
5 }

The scheduler will wake the threads at intervals to check the condition, which results in
either going back to sleep or start executing a new iteration. How often this is done is
dependent on many factors, such as type of scheduler, priority and system load. If the
cycle time is too fast, the call will block and the thread scheduled out. On the other
hand, if the computations in the loop are too large to be executed in that particular period
or the program scheduled out for too long, the value of info->wakeups missed will be
incremented. This allows for both easy timing as well as a convenient way of knowing if
modules miss their deadlines. The timing will not be accurate enough for hard real-time
use due to its polling based nature, and the underlying non real-time OS. More about
Linux real time properties can be found in [1, Skøien, Vermeer pp.27].
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2.3.2 Some Comments on Other Possible Solutions Which Uti-
lizes an OS

As stated, many UV projects before has utilized a simple microcontroller without an OS
to control a craft. Such solutions have been examined to gather general information, but
specific points will for the most part be of limited value in this setting where an OS is
utilized.

What is much more interesting is how the software is structured in projects where an OS
is in control of the system. One such project that is of great interest is ”Designing an
autonomous helicopter testbed: from conception through implementation“ by Garcia [13,
pp.61]. Here the idea of concurrently running processes communicating through shared
memory structures is presented. The basic idea of using shared memory for inter process
communication (IPC) originates from this dissertation, but the specific solutions com-
mented upon later are chosen and created by the author. Further, the mentioned disserta-
tion puts each module in responsibility of creating their own shared memory area, and the
associated semaphore. This method will not be used here. In this project, to provide new
developers with the simplest module framework possible, a centralized module handles the
setup of shared memory and semaphores. With a central module being able to read data
from slaves, it will have valuable monitoring capabilities. Another drawback is that in [13,
Garcia] each module creates their own shared memory segment, and if that module fails
before any other subscribes to it, the reserved memory will be released. If no processes are
connected to the shared memory it will be marked for deletion by the OS. On the other
hand, if both a master module and a slave connect to their shared memory, the slave can
die whilst the memory is left available. Though no data is stored there, other modules will
not fail trying to connect to this memory segment.

[14, Holmgaard et al. pp.23-30] also used shared memory between processes. They use a
single large shared memory area protected by one semaphore for sharing variables. This
implies some drawbacks in this setting such as: Every module must know the structure of
the shared memory, even if all the data is not used by this particular module. If one wish
to alter the memory size a module utilizes, all modules must know about this change. [14,
Holmgaard et al.] keeps the structure of the shared memory is stored in an .h file, which
means recompilation of all modules for a single change. This solution works well in more
established projects, but here exists a desire for an even higher level of decoupling. If a
module fails while holding the only semaphore the entire system will be affected, since no
one can read or write to shared memory. This leaves the system highly dependent of each
module functioning properly. In a continuously altering test environment as this thesis
is targeted towards, it is desirable to be able to experiment with new modules. If a new
module fails, this must impact the rest of the system to the smallest possible degree. [14,
Holmgaard et al.] utilizes a single semaphore which will cause more waiting. With many
modules accessing the same semaphore, the time spent waiting for access will increase as
more modules are added and high module frequencies are used. Finally, with a single shared
memory space it is possible to overwrite the reserved area. E.g. since many modules are
using the same space, a developer writing buggy code might end up using more memory
than originally planned, and thus overwriting what other modules have saved. In this
thesis, a defined shared memory area for each module is reserved. This way the OS will
ensure that a modules storage of data can not exceed a certain size.
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2.4 Proposed Solution

2.4.1 Overview

In Figure 2.2, one can view the basic modular interconnection principle. Each module is
responsible for posting data to its own shared memory segment, and make a local copy of
the data from other shared memory segments of modules they subscribe to. The structure
of this segment in the form of a struct is known to the other modules by an .h file which is
available across the system, used only by the subscribing modules. Each module is as self-
contained as possible, which means that each module spawns the appropriate thread(s),
handles errors, and maintains control of execution rate. The basic principles for these
actions are provided in the form of a framework.

Driver Driver

UART UART

Driver

SPI

GPS IMU Servo

Application
GPS

Application
IMU

Application
Servo

Application
(estimator)

Application
 (GNC)

Source copy Source copy
Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Shared
Memory

Source copy

Figure 2.2: Software structure

The implementation is done in C++ but the framework itself is language independent.
Languages that can make use of the system calls and POSIX commands in Table 2.1 can
be used for an interface with the framework. A valuable added feature of this solution is the

System calls
clock gettime shmat

freopen shmctrl
popen shmdt

sem close shmget
sem open signal
sem post

sem unlink
sem wait

Table 2.1: Utilized calls

possibility to incorporate MATLAB/Simulink. Via S-functions and Real-Time Workshop,
the control system can be developed in Simulink, which is a familiar environment for many
engineers today in the academic and industrial sector. Sensors appear as blocks and the
calculations for servo/actuator settings is placed in shared memory for the servo control
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module to subscribe to. Such an interface is discussed in [1, Skøien, Vermeer pp.35-40].
Figure 2.3 depicts a simplified image of how the system might look in Simulink once all
the modules are finished. The left side boxes reads from shared memory and the expansion
board box on the right posts to shared memory. All the functionality of the GNC block is
developed in Simulink.
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Quality_IMU
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Fix
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GNC
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Servo4
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Batt voltage
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Servo1

Servo2

Servo3

Servo4

Servo5

Servo6

Figure 2.3: Simulink example

The box marked green is finished and the yellow are yet to be completed. The IMU and
Simulink interface is discussed in Chapter 3 and the expansion board in Chapter 4. It is
emphasized that utilizing Simulink it entirely optional.
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2.4.2 Shared Memory

As mentioned, shared memory will be used as the primary means of communication between
the modules. This solution has the advantage of being a very fast way of transferring data,
keeping information available regardless of other work being performed and is accessible
throughout the system. As seen in Figure 2.2, each module is responsible of posting data
to its shared memory segment at the given intervals of the module. Data posted to shared
is in the form of a struct of a given size that is structured similar to this:

1 struct struct_dummy1{
2 long timestamp1_ms ; // Last timestamp from module
3 long max_time_ms ; // The maximum a l l owab l e cy c l e ←↩

time
4 unsigned long long missed_deadlines ; // Missed wakeup c a l l s
5 long timestamp2_ms ; // Last timestamp copy
6 char name_general [ 5 0 ] ; // Module name
7 char name_specific [ 5 0 ] ; // Addi t iona l in fo rmat ion
8 int mem_key ; // Shared memory key
9 int pid ; // Process PID
10 int data_1 ; // Data
11 int data_2 ;
12 .
13 .
14 } ;

Listing 2.1: A typical struct residing in shared memory

The master module needs the timing information to determine if the module functions as
intended. The first four variables are used for this purpose. These must always be located
at the top of the struct, since these are cast to a timing structure in the master module.
This part of the structure is fixed so the master need not know the remaining fields.
long timestamp1 ms consists of UNIX time plus three digits which are the milliseconds.
long max time ms is checked by the watchdog against long timestamp ms to determine if
the module has timed out. unsigned long long missed deadlines is written to by the
timing feature. If the module misses wakeup calls, it means it does not have enough time
allocated by the system. Increasing the cycle time, increasing the priority or reducing the
system load can correct this issue. long timestamp2 ms is used by the master to verify
data validity, and should hold the same value as the first timestamp. The master can not
use semaphores, since there is a risk of being blocked by a slave malfunctioning whilst
holding the semaphore, and thus not be able to read the timing data. Since the master
module does not use semaphores when reading shared memory, it needs some method of
data verification. If timestamp 1 & 2 are equal, the master can verify that the data is valid.
As an example, a slave might lock the semaphore and start writing to shared memory. As
this happens, the slave is scheduled out, and the master starts reading the same memory,
which can happen when not using semaphores. This would yield two different timestamps,
and thus invalid data.

The rest of the variables are up to the maker of the module to decide upon.

Figure 2.4 gives another view of the shared memory solution. The system master has
access to all the shared memory segments, but does not need to know information about
the structure (residing in the .h files) due to the mentioned fixed data fields.
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Modules that only post data to the system (e.g. GPS) only have shared memory to post
its data, and does not subscribe and make source copies. On the other hand, modules
that read/subscribes to others need to know the structure and thus have access to the
.h files of the supplying module. To minimize access to shared memory, each subscribing
process makes a copy of its provider rather than work directly off the shared memory data.
Directly working off the shared memory segment would cause the semaphore to be locked a
great portion of the time. (More about semaphores in 2.4.3). Modules that only subscribe
to others such as the Application logger uses its shared memory only to inform the master
of their status. Since there are no more specific data fields in shared memory, there is no
need for an .h file to describe the structure. Although not shown in Figure 2.4, each shared
memory module has a semaphore associated with it.
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Figure 2.4: Shared space

2.4.3 Use of Semaphores

Semaphores are in the most basic form a mechanism that can enforce mutual exclusion
and synchronization through coordination of access. (Semaphores will not be commented
upon in depth. For more information, see [15, Burns and Wellings pp.233-235]). In this
software framework, named binary semaphores are used for both these functions. The
primary function is to provide mutual exclusion to the shared memory regions. Consider
the following scenario: The owner of a shared memory region starts to write data but is
preempted by the scheduler during the write operation. If a reader is then scheduled to
run, it can now access the memory region only to read data that are only partially updated
or even corrupted. Semaphores are also used to hold the execution of all the slaves until
the master has finished its initialization.
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Named semaphores are accessible through the entire system as long as the same identifier
is used. The filepath of the modules are used to generate the name, so each module knows
the name of its provider’s semaphores.

Two main commands are used during program execution to use the semaphores:
sem wait(semaphore) Decrease the value of the semaphore from 1 to 0 and continue. If
the value is already zero it means the semaphore is locked and the process must wait.
Execution is continued in another thread or program.
sem post(semaphore) Increases the value from 0 to 1 to release the semaphore. A snippet
from the program where a slave writes to shared memory:

1 sem_wait ( semaphore ) ;
2 ∗struct_ptr = ∗struct_ptr_local ;
3 sem_post ( semaphore ) ;

Note that all updated data is placed in *struct ptr local before all the data fields in the
local struct are copied out as a whole to minimize the locked time of the semaphore.

2.4.4 Startup Sequence

In some systems, the startup sequence is extra crucial due to the fact that each module
creates their own shared memory segment. (Such as in [13, Garcia]). Modules that use data
from other shared memory sources are dependent of these areas being created beforehand.
By centralizing the initialization of shared memory in the master, it is only a matter of
holding the execution of all slaves until all the shared memory is allocated.

In the following figures, the functionality is illustrated with two slave processes, -one data
subscriber (SLAVE1, ”dummy1”) and one data provider (SLAVE2, “dummy2”).

Consider Figure 2.5 which illustrates the following explanation of the startup sequence:

The system first receives a start command from the user or the system. The master module
begins traversing through the file paths of the slaves to be started. In the system master.h

file resides the description of all the slaves which are provided to the master in the following
manner:

1 string modules [ ] = {"sudo nice -n -5 ./dummy1/dummy1" ,"sudo ./dummy2←↩
/dummy2" } ;

All the executables are listed in an array, where optional priorities can be given. Here the
first slave (dummy1) is executed with a niceness of -5 with respect to the systems default
priority setting, implying that it has a higher priority than dummy2. In Linux, priorities
range from -20 (highest) to 19 (lowest). Although not implemented, the command renice

can be used to increase or decrease the priority of modules at runtime.

Firstly, the last 4 letters of SLAVE1 (“dummy1“) are used to generate a numerical key
which are used for identifying the shared memory region. One will be alerted if the name
is too short or duplicate names are found. The string for the semaphore identifier is the
same as this numerical key, making it a simple matter to associate shared memory and the
belonging semaphore. Semaphore 1 is created in a locked state. SLAVE1 is started with
the command

1 pf = popen ( arguments . c_str ( ) ,"r" ) ;
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where popen starts a process connected by a unidirectional pipe which is read ‘‘r’’ back
to the master. arguments is a string on the form sudo nice -n -5 ./dummy1/dummy1

1835890993 &. The shared memory key could of course be generated by the slave itself,
but is transferred as an argument to save code. The slave in turn transmits back its PID
and size needed in shared memory via a pipe and reroutes the pipe to the terminal to
output potential messages:

1 freopen ("/dev/tty" , "w" , stdout ) ; // r e rou t e the pipe to te rmina l

A sem wait then holds SLAVE1 from further execution. The master creates the shared
memory region for SLAVE1.

The same sequence is repeated for all slaves before the master releases all semaphore locks
and the slaves begin executing. They connect to their own shared memory regions, and to
other slaves shared memory that they might subscribe to based on their names. This way
the master assures that all modules have started without errors, semaphores are created and
locked, and that all memory has been successfully allocated before commencing execution.

2.4.5 Normal Operation

Consider Figure 2.6. During normal operation, each module executes at its defined fre-
quency which usually is in the range of 1-100 Hz. This execution rate is defined before-
hand by the user, but can also be altered during runtime by changing the make periodic

(period,info);. Some modules might utilize blocking calls to the system or external
units, and these can be used to make the module execution periodic. One should be care-
ful not to use busy-while implementations that will use system resources unnecessarily. In
this example, SLAVE2 writes data to its shared memory at given intervals. At one point
in time, SLAVE1 reads the data from shmem 2 to process that data. SLAVE1 posts its
processed data to shmem1 for other modules to utilize.

At given intervals, the master unit reads the timing data from all the slaves to ensure
that they execute periodically via the watchdog. A reboot (SIGQUIT signal sent and then
handled) can be performed on non-functioning modules if desired and possible. See Section
2.4.7. Note how the master reads data from SLAVE1 with the semaphore in locked state
as mentioned earlier.

2.4.6 System Shutdown

Consider Figure 2.7. When a SIGINT is caught by the master module, it iterates through
the slaves sending SIGTERM. Notice that SIGTERM is used for signaling shutdown whilst
SIGQUIT is used for signaling slave reboot, enabling slaves to take different actions. Each
slave stops its current execution, takes appropriate shutdown actions/ precautions and ex-
its. The master module deletes all the shared memory and finally closes all the semaphores.

2.4.7 Watchdog

The watchdog is an optional service provided to the system modules which resides in the
master module. It is able to send signals to processes that do not respond (post shared
memory data) within a given time, and restart the module if desired and made possible by
the developer. Each module supplies a timestamp of the current system time when posting
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Figure 2.5: Startup sequence

the data to shared memory, a maximum allowable delay and its missed deadlines. This
is done in the long timestamp ms1, & 2, long max time ms and unsigned long long

missed deadlines variables respectively.
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Figure 2.8 shows a simplified flow scheme. The watchdog is initialized by connecting to each
modules shared memory. WATCHDOG START DELAY is defined to keep the watchdog
from potentially rebooting modules that need time to start, before they can post updated
timing info. The watchdog traverses all the slaves each cycle of the master module, copying
out the timing information from shared memory to local storage. It begins by examining
the long max time ms value. Currently the configuration is such that a -1 here equals
no watchdog active for this module. Should this field contain a positive value, it signifies
the max allowable time in ms without response before the module should be considered
as faulty. With the current configuration, the watchdog sends SIGQUIT to the given
module and then reboots it. The developer can choose what actions should be taken when
SIGQUIT is caught.
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Figure 2.7: System shutdown

2.5 Tests and Results

2.5.1 BeagleBoard Test

To verify basic functionality, the software framework was cross-compiled and tested on
target. A detailed guide to recreate this test is found in appendix B. The master was set
to run at 1 Hz, dummy1 (D1) reads an integer from shared memory at 1 Hz and prints the
value to terminal. Dummy2 (D2) increments the same integer each cycle and runs at 100
Hz. The frequencies are chosen to be in the vicinity of what the system might experience
in a UV application.

The master was started with the command:

root@beagleboard : / home/cross_comp_test . / system_master

The master begins by spawning the two slaves:

MASTER started module : . / dummy1/dummy1 pid : 1038
MASTER started module : . / dummy2/dummy2 pid : 1040
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Each time the master runs, it prints status information from all the slaves. Here is an
example from this test where 0 and 1 denotes dummy1 and dummy2:

MASTER in watchdog module : timestamp1 : 0 643594065
MASTER in watchdog module : max_time : 0 10000
MASTER in watchdog module : missed deadl : 0 0
MASTER in watchdog module : timestamp1 : 1 643594311
MASTER in watchdog module : max_time : 1 10000
MASTER in watchdog module : missed deadl : 1 0

The timestamps are on the format stated earlier, the watchdog timeout is set to 10 seconds
for both slaves, and missed deadlines are reported.

To get an estimate on missed deadlines (MD) as a function of module frequency, the tests
in Table 2.2 were run. More tests have been performed in the area where missed deadlines
start to appear. Unrealistically high execution rates are also run to examine how missed
deadlines scale with regards to module frequency. The one minute tests were run three
times to get a better average estimate on the number of missed deadlines. However, this
average has a very large standard deviation, due to substantial differences in the amount
of missed deadlines for each run. A rough estimate of CPU usage was obtained via the
“top” command. The nanosleep command was also tested to examine if this yielded fewer
missed deadlines, but the results were far worse. Results are discussed in 2.6.1.
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Test time D1 exec D2 exec D1 CPU D2 CPU D1 MD D2 MD
1 min 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0
5 min 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0
10 min 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0
30 min 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0
60 min 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0
12 hours 1 (1 Hz) 10 ms (100 Hz) ∼0 ∼0.3% 0 0

1 min 1 (1 Hz) 2.5 ms(400 Hz) ∼0 ∼3% 0 0
5 min 1 (1 Hz) 2.5 ms (400 Hz) ∼0 ∼3% 0 13
10 min 1 (1 Hz) 2.5 ms (400 Hz) ∼0 ∼3% 0 14

1 min 1 (1 Hz) 1 ms (1000 Hz) ∼0 ∼8.4% 0 0
5 min 1 (1 Hz) 1 ms (1000 Hz) ∼0 ∼8.4% 0 20

1 min 1 (1 Hz) 0.85 ms (∼1176 Hz) ∼0 ∼9.8% 0 7

1 min 1 (1 Hz) 0.75 ms (∼1333 Hz) ∼0 ∼10% 0 19

1 min 1 (1 Hz) 0.5 ms (2000 Hz) ∼0 ∼17.5% 0 186

1 min 1 (1 Hz) 0.25 ms (4000 Hz) ∼0 ∼35.5% 0 1123

1 min 1 (1 Hz) 0.1 ms (10 kHz) ∼0 ∼36% 0 ∼300000

Table 2.2: Framework test scenarios

2.5.2 Shared Memory Access

A rugged test was run on the BeagleBoard to examine the overhead caused by shared
memory access in the framework. To represent typical execution rates, tests are run with a
single slave, executing at 0.1, 1, 5, 10, 50 and 100 Hz, and the master module with watchdog
running at 1 Hz. The slave does no work, except for posting its execution data to shared
memory in the same format as in Listing 2.1. The framework overhead percentage vs.
slave frequency is presented in Figure 2.9.

The process of getting the timestamp, unlocking, posting to shared memory and locking
the semaphore, was run thousands of iterations to get the average time. It was found that
in this test case, the mentioned process took appropriately 6.28 µs every slave cycle, which
yields 0.00063% overhead at 1 Hz and 0.063% at 100 Hz. This number is not very accurate,
but it does not need to be to get an estimate of the overhead. The accuracy is commented
upon in 2.6.2. This overhead percentage will scale almost linear as the execution rate
increases, but the time used for posting remains constant.

2.6 Discussion

2.6.1 BeagleBoard Test

As one can observe from the test data in Table 2.2, missed deadlines become apparent
around 400 Hz. This number has limited practical significance, as the modules tested here
does almost no work, and there will most likely be far more modules in a typical application.
The variance in missed deadlines is very high. The five minute test at 400 Hz revealed
missed deadlines in the range of 0-50 for each run. By observing the missed deadlines over
time, an interesting discovery was made. The system can execute for minutes at the time
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Figure 2.9: Framework overhead under test conditions

without losing deadlines, when suddenly 40 can be missed in the matter of seconds, and
then again resuming execution without losing further deadlines. This can imply that the
OS does some other work at times, which will severely impact the framework if it operates
at the edge of the OS’s capability.

Another interesting result is that the system looses deadlines even if CPU usage is low.
This has to do with the overhead from context switching. This mechanism which is used
to share threads over a processor needs time to store the program counter, registers and
so on each time a switch is performed. The higher the switch rate, the more time is used
switching back and forth between processes without doing any actual work from a users
point of view.

In a normal (Vanilla) kernel, this overhead can contribute significantly, as can be observed
in [16, David et al.]. With more code in the modules, this CPU to missed deadline ratio
will improve, since more CPU is used compared to the number of context switches. This
result also suggests that very high frequency modules are not ideal, especially on this OS,
since the number of missed deadlines scales extremely fast with the number of context
switches. The framework should be tested on a real time OS, or at least with a real-time
scheduler that improves the task switch overhead to examine the performance.

To summarize, one can not guarantee that the system meets all its deadlines with the
current timing system and non real-time OS.

A vast number of scenarios could have been run with parameters such as: number of slaves,
execution rates, the amount of work done in slaves, other applications on the system,
different priorities and more. This would have been too comprehensive in the timeframe of
this thesis. The test is done to verify functionality, and show that deadlines will be missed
if system load is too high.
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2.6.2 Shared Memory Access Overhead

This test was run to get an estimate of the overhead associated with shared memory access,
and to examine how this access impacts the system performance in normal and extreme
cases. Due to the fact that the shared memory access time is very short, the use of normal
timing features to examine it is rendered useless due to the high granularity. Time was
spent examining how to access CPU tics to achieve the desired accuracy, but no solutions
were found that could be easily performed. This lead to the use of the less accurate
clock gettime, with the memory access run thousands of times in succession and this
again run 20 times to get a descent mean value. One must be aware that the system load,
size of shared memory and scheduler plays a crucial part in the shared memory access
time. If the process is scheduled out while holding the semaphore due to Linux operations
or other programs, that particular access will take somewhat longer. There is thus some
variance in the access time, but without some low level timing mechanism this variance
will remain unknown. Even so, the test determines that the access times are generally very
short compared to the cycle time, so that in all practical cases, the shared memory access
time does not influence the overall performance of the system in a significant way.

2.6.3 Goodness of the Solution

The benefits and drawbacks of the solution are summarized here and commented upon.

By using separate shared memory regions, several advantages are gained. Firstly, the time
spent waiting is less compared to if all modules were to access a large common shared area
each cycle. Secondly, this solution increases security as no module can overwrite a larger
area of memory than what was originally reserved. Finally, if a module fails while holding
the semaphore, only the subscribing modules will be affected. This implies a prolonged
interval without availability of new data. Subscribers can use sem timedwait when reading
from others. This allows for waiting a certain amount of time, and if the semaphore is not
acquired by then, the module continues its execution. By doing this, subscribing modules
will not freeze for an infinite amount of time if the semaphore is unavailable.

Due to the fact that there is a very limited chance of a module failing in the short amount
of time it is holding the semaphore simply to copy out data, sem timedwait is not standard
in the framework. It has though been successfully tested, and it is up to the developer to
choose if a module must acquire data each cycle, or can suffice with older data for some
time.

By having the master set up all the shared regions before releasing the slaves ensures that
there is enough allocatable memory, and that all regions have been set up correctly.

All modules copy in and out the entire shared structure every time, working off the local
copy, which minimizes the locking and unlocking of semaphores.

By enforcing some fixed fields in the memory structure, the master module and watchdog
can keep track of module execution and take necessary actions without knowing the total
structure. Such a method makes for a highly decoupled system where changes in memory
structure are of no concern to the master. Only the subscribing modules need to know of
this change to make use of the structure in shared memory.

As of now, all the modules scheduled to start are stored in the system master.h file. This
implies that all modules must be present in the header and compiled with the master.
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The contents of the header file are read at boot only, which means that dynamic exchange
of modules is not implemented but indeed supported by the framework. One must be
extremely vigilant if such a feature is implemented. - The master and many subscribers
might be connected to the module one wishes to change. This means that if e.g. the
module “slave2” is exchanged with “Xslave2”, they must have the exact same shared
memory structure to not make the data invalid for subscribers, they must connect to and
post to the same shared memory region, and one must ensure that slave2 is completely
killed before Xslave2 is spawned so two modules do not post different interleaved data.

One can discuss the value of such a high risk feature, compared to sending a signal to a
module, and changing e.g. to another test algorithm internally. It is possible to manually
change a module, by killing “slave2” and replacing the executable with another slave with
the same name. The watchdog will detect the timeout, try to kill the non-existent module
and restart the new module. This is not recommended as this sequence is prone to user
errors and is far more complex.

The framework is ready for use, and developers are presented with a dummy, which they
can modify quite easily to fit their needs. A small drawback is that there is quite an
amount of code in these files already to enable interaction with the framework. However,
new modules can be constructed fast, interfaced quickly and tested without giving much
thought about other modules in the system. The system allows for rapid prototyping, easy
expandability, use of different languages, confinement in modules, flexibility, complements
hardware modularity, error detection and error correction.

The system can not guarantee any hard real time demands, as this is heavily dependent
on the underlying OS. As discussed in [1, Skøien, Vermeer pp.20], hard real time is not
usually necessary for control in the unmanned vehicle domain. The operator will however
be alerted if modules miss their deadline, and tests run so far have yielded good results.
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Chapter 3

Sensor Signal Quality and Error
Detection

3.1 Background

In every possible genre of automation, sensor equipment is used to provide information
about the state of the system to the feedback loops, enabling automatic control.

All sensors have a chance of failing and thus transmitting an erroneous signal or no sig-
nal to the control system. Undetected signal errors can be fatal for the control loop as
incorrect feedback is given, and the wrong or inadequate action is performed. Consider
a constant signal from an aircraft altimeter which will cause the autopilot to believe the
current thrust (and elevator setting) is sufficient to maintain the altitude. Fuel saving
algorithms programmed into the system will try to reduce thrust by as much as possible,
whilst maintaining altitude. The result might be fatal. This scenario is highly unlikely on
commercial aircraft due to human interaction, redundancy and smart algorithms. However
on a simpler UAV this scenario might occur.

Signal error detection is rarely a part of the guidance, navigation and control (GNC) system
itself. It is often implemented near the HW, and is very sensor specific. Should an error
occur, a message must be sent to the control system which can choose to use degraded
data if possible, discard the sensor data or make another appropriate action. A framework
applicable in the unmanned vehicle domain should be equipped with such functionality.

3.2 Scope

A broad range of sensor equipment is utilized in unmanned aerial vehicles. Gyroscopes,
magnetometers, accelerometers, GPS, barometer, ultrasonic and pitot sensors are just a few
examples. Quite often the first three mentioned sensors are integrated into one component
and named an inertial measurement unit (IMU), giving the attitude of the vehicle.

As the unmanned aerial vehicle project progresses, the need to have a form of low level sig-
nal quality detection and alert system in the framework is present. A sensor signal quality
detection algorithm is constructed, which is very general to accommodate a broad range
of sensors. Among other HW, the UAV’s IMU is run through this module, and algorithms
created to detect and alert the autopilot and operator when IMU data is erroneous.
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The detection system within this thesis provides basic and general error detection. Exten-
sive theory exists on the subject, but much is beyond the scope of this initial implemen-
tation, such as use of multiple IMUs which are uncommon on smaller unmanned systems,
and larger models to accommodate such parameters as scale factor and nonorthogonality.
Some solutions rely on knowing the actuator input to see if the sensors respond accordingly
to find errors. See [17, Heredia et al. pp.96].

The implementation is targeted towards general analog sensors, and for illustrational and
development purposes, the Xsens IMU is used here. Other sensors such as pitot or ultra-
sonic height sensors can also with ease be monitored as many errors such as high noise,
drift or no-signal can occur in many measurement devices.

3.3 Theory

3.3.1 Main Error Sources

Flenniken IV et al. [18, pp.1] identify three main accelerometer and gyro error sources:

• Constant offset (bias)

• Moving bias (sensor drift)

• Random error

Vik [19, pp.37] also point out three main IMU error sources:

• Bias

• Scale factor

• Misalignment (sensor placement with regards to vehicle frame)

Some of these points have to be considered in the design and building stages. More crucial
errors that can appear during flight that requires immediate attention is the main focus
of the detection algorithm. Rogers [20, pp.4267] points out some more general faults in
analog sensors which are more in-line with the target in this project:

• Dead

• Excessive noise

• Drift

• Offset (bias)

Rogers[20] points out the fact that the drift and bias require specific models to be corrected.
The sensor quality algorithm is supposed to be general and applicable to almost any signal.
In addition, many sensors have built-in bias correction. As an example, the Analog Devices
ADIS16405MLZ and the Xsens MTi IMU have such functionality. Finally, the observers
are better suited at detecting drift and offset if necessary. In contrast to the general sensor
algorithm, an observer has access to measurements from many sensors such as GPS, IMU
and pitot. Since all these measurements are interconnected, it is possible to compare
measurements from several sensors to detect errors. To draw a conclusion, the low level
general error detection must be able to detect the most crucial low-level errors whilst being
applicable to most sensor outputs.
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Based on the previous documentation, [21, Sharma et al. pp.3], and input from others, the
detection system is targeted towards:

• Excessive noise

• Dead sensor

• Frozen output

• Short noise spikes

• Unrealistically high and low values

How to find these errors are presented in Section 3.5.

3.3.2 Definitions

Before the solution is embarked upon, some appropriate fault terminology is defined. Con-
sider Figure 3.1 as a reference for the following examples where an oscillating device is
mounted to the IMU to simulate fuselage vibration. The unfiltered accelerometer in the Z
(down) direction is presented here. Mind that although the data is from a physical IMU,
the errors presented are artificial for purpose of illustration. [21, Sharma et al. pp.5] iden-
tifies three main signal faults:
NOISE (Figure 3.2): The variance of a window of samples are higher than a given thresh-
old. This can be characterized as many SHORT faults in succession. Unlike the SHORT
faults, the NOISE can be due to e.g. a newly introduced source of noise in the system or
a faulty sensor transmitting random values.
CONSTANT (Figure 3.3): A given sensor transmits the same or very similar values over
a range of samples. This can in imply a frozen or dead sensor.
SHORT (Figure 3.4): A sudden change in output value compared to the previous sample.
This could indicate a short physical jolt or corrupted data at one point in time.
In addition, signals that are unrealistically high or low for their domain are addressed.
HIGH: Values above a certain threshold.
LOW: Values below a certain threshold.

3.4 IMU Interface

3.4.1 Background

To develop and test the error detection system, an IMU will be used to provide example
data to the system. Since it has been interfaced before and is known to provide high
quality data, the Xsens MTi IMU is used for this purpose. Due to the cost of this device
which is in the region of 1750 EUR (fall 2010), this IMU is not suited for the final product
due to the focus on low cost. The MTi is shown in Figure 3.5 and extensive information
is available from the Xsens homepage [22]. A GPS can also easily be interfaced, but this
was not done in the timeframe of the thesis. An IMU can much easier generate reasonable
values to test the filter, compared to a GPS where one has to be outdoors and move over
a distance to gather data.

The MTi communicates over a 115200 BAUD serial line with a serial to USB converter.
There is an internal Kalman filter which will not be utilized in this thesis, except as a
source of filtered data for some illustrational purposes.
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Figure 3.1: NORMAL Figure 3.2: NOISE

Figure 3.3: CONSTANT Figure 3.4: SHORT

Figure 3.5: The Xsens MTi

The IMU was first tested with supplied files that display the IMU orientation in text
according to user preferences to verify functionality. This functioned as intended, but

- 30 -



CHAPTER 3. SENSOR SIGNAL QUALITY AND ERROR DETECTION

some of these files are copyrighted in addition to providing an unnecessary amount of
functionality, thus being unsuitable for further use.

Fortunately, [4, Ingebretsen] wrote a parser for the MTi fall 2010. These files combined
with new code to access the serial port, provides all the IMU data in a manageable struct
format. This code is now implemented in the software framework, so that the IMU is
usable as a module both on a desktop system and on the BeagleBoard by changing the
serial port between /dev/ttyUSB0 and /dev/ttyS2 respectively. Since the code has been
interfaced to the framework, the IMU data is available in shared memory across the system
in the following format:

1 struct struct_imu_xsens{
2 long timestamp1_ms ;
3 long max_time_ms ;
4 unsigned long long missed_deadlines ;
5 long timestamp2_ms ;
6 char name_general [ 5 0 ] ;
7 char name_specific [ 5 0 ] ;
8 int mem_key ;
9 int pid ;
10 //−−Module s p e c i f i c v a r i a b l e s below−−
11 int file_in ;
12 int file_out ;
13 vec3_t acc ;
14 vec3_t gyr ;
15 vec3_t mag ;
16 quat_t q ;
17 vec3_t euler ;
18 float k_acc ;
19 float k_mag ;
20 float acc_cut ;
21 imu_quality_t quality ;
22 } ;

Listing 3.1: IMU struct in shared memory

Notice how the first four fields are fixed in coherence with the framework rules as stated
earlier in Section 2.4.2. The interesting fields are acc, gyr, mag which each contain
unfiltered data in the form of three double values, one for each axis. q, euler contains
Kalman filtered data in the form of a quaternion and Euler angles. The module specific
fields are defined by [4, Ingebretsen], except for quality which is the topic of this chapter.
The filter implementation will for test purposes use data from this struct.

3.4.2 MATLAB Graphics

In the package that is supplied with the MTi, there exist files for direct graphic presen-
tation and MATLAB interface. Unfortunately, these files are only usable on a Windows
platform, and the current BeagleBoard OS as well as the desktop OS are Linux based. To
enable easier debugging, test the filter, and aid further development, having a graphical
representation of the IMU orientation is essential.

By using and modifying the shared memory MATLAB interface presented in [1, Skøien,
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Vermeer pp.39 & Appendix H] together with the above mentioned files, it is possible to
interface the IMU directly into Simulink. Since this interface is part of a previous report
it is not commented here, but for easy reference, a slightly modified copy of the mentioned
appendix is placed in Appendix D. The S-function was altered to read out the shared
memory posted by the IMU module. This effectively makes Simulink a subscriber to the
IMU in the software framework. The Simulink graphics are only used to read the shared
memory contents on the desktop station, it is not under control of the master, nor does it
post anything to shared memory. The code is available in the digital appendix A, and a
guide to get the graphics running can be found in Appendix E. Consider Figure 3.6. The
IMU appears as an ordinary block with exits for each of the sensors along all the rotational
axis, as well as quaternion and Euler angles.

Figure 3.6: Simulink block diagram

The Euler angles are interfaced to a 6 DoF standard aerospace block, and the x, y, z
craft positions are set to zero. As the simulation runs, it produces a smooth moving
image of a missile that closely follows the physical movement of the IMU. See Image
3.7. This test is documented on video and is available in the digital appendix A. For a
more realistic graphical representation, Dønnestad[3] produced an accurate model of the
Recce D6 aircraft. The model was interfaced with Euler angles and a Simulink call to the
“plot3D“ function in the ”reccePlot.m“ file. This produced Image 3.8. Unfortunately, the
draw function in the latter 3D plot demands more processing power than available, and is
thus not good enough at displaying the IMU position in real-time. The 6DoF Animation
block will be used to display live data from this point on.

3.5 Solution

3.5.1 General Structure

It was originally planned to have the signal quality detection as a standalone module in the
framework. As implementation began, it became obvious that this would not be an optimal
solution, since there is no guarantee that modules execute in lockstep (the detection filter
could miss a sample). The filter block must run at the same frequency as the data provider,
so that subscribing modules can read updated sensor quality data for each sample.

The solution is a general filter block that is an optional add-on to any framework module.
It is written in C++ as a class, instantiated once for each measurement and called upon for
each sensor cycle. As was pointed out in Section 2.3, making sure developers can write in
their preferred language is an important feature. It must be emphasized that in contrast to
the previous framework where developers were forced to write the entire module in C++,
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Figure 3.7: 6 DoF animation

Figure 3.8: Recce D6 model by Dønnestad [3]

- 33 -



CHAPTER 3. SENSOR SIGNAL QUALITY AND ERROR DETECTION

the added functionality of C++ in this case is contained within the functions and is not of
developers concern. The one thing that must be done is create an instance of a class and
call the filter function in the module’s ”while(1)-loop“.

All data from the sensor quality will be available in a struct that is posted to shared
memory along with the sensor data and module information. For each output signal of a
sensor, a struct is available for subscribing modules to read:

1 typedef struct sensor_quality{
2 double variance ;
3 double average ;
4 bool flag_noise ;
5 bool flag_constant ;
6 bool flag_short ;
7 bool flag_high ;
8 bool flag_low ;
9 }sens_qual_t ;

To make certain that there is a logical way to read the sensor quality, it is stored alongside
the sensor data in the globally available shared memory (Listing 3.1), and is accessed in
the same manner as the sensor readings. To read data from the IMU z-axis accelerometer
in a subscribing module:

1 imu_ptr−>acc . v3

To read the variance of the same sensor:

1 imu_ptr−>quality . acc . v3 . variance

One could also store the quality struct together with the specific measurement, but with
the current method, few alterations are required in the sensor module, and subscribers can
easier filter out these quality data and choose whether or not to store them locally and use
them.

3.5.2 Setting Filter Parameters

For each signal there are six parameters that must be set:

1 unsigned int samples ;
2 double noise_variance_limit ;
3 double constant_variance_limit ;
4 double short_fault_limit ;
5 double high_limit ;
6 double low_limit ;

Listing 3.2: Filter parameters

Where samples is the window size denoted N, constant variance limit is the lower vari-
ance limit before the sensor is marked as CONSTANT, short fault limit the maximum
difference between two successive samples before the SHORT flag is raised, variance limit

is the NOISE flag limit, high limit is the maximum value before the HIGH flag is raised
and low limit the opposite for the LOW flag.

These variables are read from a text file when an instance of the filter class is created:
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1 Signal_quality filter_value_accv3 ("acc.v3" ,&struct_ptr_local−>←↩
quality . acc . v3 ) ;

Listing 3.3: Creating a filter instance

Listing 3.4 depicts a typical text file containing filter settings for nine different measure-
ments, such as made available through the Xsens’s acc, gyr and mag readings.

1 This is the IMU filter parameters setup file .
2 int samples , double noise_variance_limit , double ←↩

constant_variance_limit , double short_fault_limit , double ←↩
high_limit , double low_limit .

3 −−−−−−−−−−−−−−−−−−−−−−−−−
4 acc . v1 10 8 0 .01 4 20 −20
5 acc . v2 10 8 0 .01 4 20 −20
6 acc . v3 10 8 0 .01 4 20 −20
7 gyr . v1 10 8 0 .01 4 20 −20
8 gyr . v2 10 8 0 .01 4 20 −20
9 gyr . v3 10 8 0 .01 4 20 −20
10 mag . v1 10 8 0 .01 4 20 −20
11 mag . v2 10 8 0 .01 4 20 −20
12 mag . v3 10 8 0 .01 4 20 −20

Listing 3.4: Example file format. (filter settings.txt)

The first parameter to the constructor in Listing 3.2 is the keyword which is searched for in
the text file, in this case "acc.v3". The six numbers following the keyword in the text file
is parsed and set as the filter parameters. By searching in this manner, the configuration
file can contain other information, and it is easy for programs to write a configuration
file, since the structure can be random as long as there is a keyword match followed by
the filter parameters. It is also possible to update the parameters during runtime, by
changing the contents of the text file and then stop (SIGTERM) or send SIGUSR1 to the
module. One should use SIGTERM with great caution as this stops module execution,
and is dependent on the watchdog timing out and rebooting the module. This not only
takes time, but leads subscribers with old data for a prolonged period as well as severely
impacting communication with hardware. Developers must evaluate this according to their
module design. SIGUSR1 is a lighter way of updating the values. The SIGUSR1 signal is
caught, a flag is set, the text file is reopened, and new filter parameters stored. Decreasing
samples is safe, since the most recent samples are kept. Increasing samples will cause the
most recent flag status to hold until N samples are once again stored in memory. The
module could also read filter parameters from shared memory, but this requires some code
modification.

Operators can now analyze data in real-time, adjust filter parameters accordingly and
observe the results if two-way communication is available.

3.5.3 Excessive Long Term Noise (NOISE)

Noise is present in all types of measurements, and this is especially the case for instru-
mentation mounted in moving vehicles. Systems utilizing such data must be able to filter
and cope with a certain amount of noise. Excessive noise (in comparison with what is
common), could imply that a sensor outputs random values or some noise source has in-

- 35 -



CHAPTER 3. SENSOR SIGNAL QUALITY AND ERROR DETECTION

creased in amplitude. Examples can be an accelerometer too close to the motor, a sensor
detaching from its damping bracket during flight, or a GPS loosing and regaining fix. Such
faults can be detected by calculating the signal variance. Using variance to monitor signal
quality was a solution proposed by the author early in the project, and is also utilized in
[21, Sharma et al. pp.7], [20, Rogers pp.4267] and [23, Ramanathan et al. pp.8-9].

The variance across the user defined N last samples will be written to the quality struct,
and can be used for e.g. weighing in observers. This can also be part of a log, and alert
the operator of sensor faults.

The general formula for calculating variance in a selection is given in Eq. 3.1, and found
in [24, Løv̊as pp.42].

s2 =
1

N − 1

N∑

i=1

(xi − x̄)2 (3.1)

However, the implementation formula is structured in the following way:

s2 =

N∑

i=1

x2i − (
N∑

i=1

xi)
2/N

N − 1
(3.2)

The basic Eq. 3.1 assumes that the mean (x̄) is known. In Eq. 3.2, this is calculated, and
the two sums can run in the same for-loop, saving computation time. This is known as a
Näıve algorithm since it is one of the simplest solutions. It is not the most accurate, but
speed is a more important issue than accuracy in this implementation since the algorithm
must run for each signal sample. The formula was for test purposes implemented in the
following manner:

1 double Signal_quality : : find_variance ( void ) {
2 unsigned int N = 0 ;
3 double sum = 0 , sum_sqr = 0 , mean , variance ;
4 for ( iter=prev_values . begin ( ) ; iter != prev_values . end ( ) ; ++iter )
5 {
6 sum = sum + ∗iter ;
7 N += 1 ;
8 sum_sqr = sum_sqr + (∗ iter ) ∗(∗ iter ) ;
9 }
10 mean = sum/N ;
11 if (N == 1) {
12 variance = 0 ;
13 }
14 else{
15 variance = ( sum_sqr − sum∗mean ) /(N − 1) ;
16 }
17 return variance ;
18 }

If the variance crosses the noise variance limit the NOISE flag is raised.
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3.5.4 Dead Sensor & Frozen Signal (CONSTANT)

An apparent sensor failure is to provide no data at all. This can be due to the sensor itself
failing, faulty wiring, driver problems or other issues. In some cases the module reads data
from the sensor and uses the sensor itself to control the execution rate. The halt of sensor
dataflow will in these cases also cause the module to halt, thus leaving the sensor quality
detection useless. This scenario will be caught by the watchdog, mentioned in Section
2.4.7. Should the module execution not be affected by sensor timing, the quality detection
comes into play. All the modules constructed at this stage (GPS & IMU) are built in
such a way that the last transmitted sensor signal is stored for system-wide availability.
Should the sensor fail, the subscribing modules will have access to the most current data.
This should of course be used for calculations with caution, and the quality struct should
always be read to verify sensor functionality.

The variance is also used to detect dead sensors. If the variance is below the
constant variance limit, the flag constant is raised. By setting this value to zero, the
flag will be raised only when N successive equal samples are received. This low variance
detection system is valuable in a range of sensors, e.g. a clogged pitot tube. Clogging
renders the pitot useless, but even so, the value transmitted from the pressure sensor is
noise prone and the samples will most likely not be exactly equal. Only checking if X
samples in succession are equal to raise the constant flag is thus in many cases not good
enough at detecting dead sensors.

3.5.5 Noise Spikes (SHORT)

Shorter physical jolts/noise or short communication errors leading to one or a few samples
being numerically far from the mean value has to be caught separately from NOISE. This
is due to the fact that variance is calculated from N samples to signal NOISE, and just
one high sample will only give a small increase in variance. A flag needs to be raised
immediately to alert subscribing modules of particularly high/low samples. To detect
faults that fall under the SHORT definition, a method from [21, Sharma et al. pp. 7] is
utilized, which in this paper yielded good results compared to other methods of SHORT
fault detection. It is only a matter of comparing the two last samples, and determine if
the difference is larger than a certain threshold.

3.5.6 High and Low Values (HIGH, LOW)

SHORT faults are calculated between two successive samples, but HIGH and LOW control
the most recent sample to check if it is above the HIGH or below the LOW limit. Based
on domain knowledge, developers can set limits which the sensor is unlikely or unable to
pass in the specific application. As an example, a thermometer on an aerial vehicle should
always transmit values within a physical feasible range.

3.6 Results

3.6.1 Test Conditions & Parameters

The following tests were carried out using data from the Xsens IMU connected to a desktop
computer, whilst being manually agitated to simulate faults. Data is from the accelerometer
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z-axis, high flags are presented with the value ”1”, and marked with circles. The filter
parameters are for illustrational purposes set to the following in this test:

N = 10 (window size)

noise_variance_limit = 8

constant_variance_limit = 0.01

short_fault_limit = 4

high_limit = 20

low_limit = -20

Figure 3.9 shows the S-function block which subscribes to the IMU. The first five outputs
are for all sensors, while the remaining eight are specific for the accelerometer z-axis.

flag var constant short

acc z & variance

To Workspace

simout

IMU quality debugger

Quarternions

Accelerometer

Gyroscope

Magnetometer

Euler_angles

Variance

Average

flag_noise

flag_constant

flag_short

extra_double

flag_high

flag_low

Data Type Conversion

Convert

Figure 3.9: Simulink test setup

The test conditions and values are commented upon in 3.7.

3.6.2 Test Results

The NOISE flag and variance is presented in Figure 3.10. A slow roll is performed
first, which yields a very low variance and no flags are set. The IMU is agitated harder
along the z-axis, which gives a large increase of variance. When the variance crosses the
variance limit the NOISE flag is set.

The CONSTANT flag is tested in 3.11. A slow moving signal is present and then almost
freezes at 760 samples, causing the CONSTANT flag to be raised when the variance falls
below the constant variance limit. Note that the flag is raised even if are some modest
variations in the signal.

In Figure 3.12 the IMU is stationary for the test, then briefly agitated in the z-direction.
Three rapid jolts are given, where one is of magnitude large enough to trigger the SHORT
flag. The short fault limit is set to 4 in this test, which equals: 4m/s2 = 0.407g limit
between two successive samples, which at 100 Hz sample rate equals a change of 0.407 g
pr 10 ms.

The HIGH and LOW flag tests are depicted in Figure 3.13 and 3.14 respectively. The
high limit and low limit are set to 20, -20. One can observe that the flags are raised
immediately, at the same sample as the value crosses the limit.
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Figure 3.10: NOISE flag test
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Figure 3.11: CONSTANT flag test
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Figure 3.12: SHORT flag test
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Figure 3.13: HIGH flag test
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Figure 3.14: LOW flag test

3.7 Discussion

The above tests have been conducted in a controlled stationary environment, and the IMU
agitations have been man-made and not produced by real-flight. Thus, the above is a test
of the filter functionality and the numerical values are not representative of live data. To
only test the filter, these induced values are quite sufficient.

The filter parameters are for this test set for illustrative purposes to verify filter function-
ality. When using the filter with live data, the parameters must be set according to sensor
properties and ”domain knowledge”, which is emphasized throughout [21, Sharma et al.].
Testing the filter with real vehicle data, one can tune the parameters to give the optimum
balance, detecting faults and minimizing false flags.

The filter proves to function very satisfactory in this controlled environment. Errors are
detected correctly and flags raised according to their limits, without computationally heavy
algorithms. Filter results are made available alongside the measured data in the software
framework.
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Chapter 4

BeagleBoard UAV Support Hardware

4.1 Background

For the framework to be capable of environment interaction, additional hardware is neces-
sary to enable actuator control and sensor interfacing. As the system is targeted towards
unmanned vehicles, servo actuators are commonly used for control (See Section 4.1.1). The
servos will take place in the software framework as a module, and will ultimately subscribe
to a control module’s output to turn calculated values into physical actions. The hardware
will also make possible for a wide range of sensors to interface the board, and they will as
well end up as modules in the framework.

At the beginning of the semester project in 2010 [1, Skøien, Vermeer], a expansion board
(Trainer from Tin Can Tools [25]) was ordered as an interface to the BeagleBoard to
handle servo control. As the previous project neared completion, it became apparent that
the Atmel ATmega328P processor on the Trainer Board was not dimensioned for the task.
The servo resolution was low, and there was a desire to incorporate even more features. This
chapter discusses the desired functionality of the expansion board, appropriate components,
implementation and testing. This board is meant to be redesigned as the project progresses
over time, as new demands arise. The reasons for utilizing an expansion board to handle
certain operations are thoroughly discussed in [1, Skøien, Vermeer pp.45]. To summarize
a few points:

• To accurately position servos, a high level of timing accuracy is needed. A dedicated
processor is better suited for this task, as the BB is currently running a non-real-time
OS.

• There are few vacant I/O pins on the BB.

• The BB I/O pins operate on 1.8 V, but most servos needs higher voltage for the
control pulses.

• A cheaper expansion board will provide the BB with a protection barrier, since there
are just a few connected bus lines with voltage level converters, and not a range of
directly connected peripherals.

• The ability to manufacture the expansion board in house will support project longevity.
New students can use the provided board design and code in this thesis and adapt
it for new functionality.

- 43 -



CHAPTER 4. BEAGLEBOARD UAV SUPPORT HARDWARE

• The expansion board method has proved to work well in many previous projects such
as CyberSwan [26, Bjørntvedt E. pp.61-74], [27, Bristeau P.-J. pp.735] and in [28,
Brekke S. E. pp. 43]. See Section 4.3.

4.1.1 Servos

A wide range of unmanned vehicles utilize servos as mechanical control organs. In a model
size aircraft, servos are used for moving control surfaces, in cars they can be used for
steering, helicopters for rotating the blades, just to mention a few examples. Providing the
user with an easy interface for servo control is a desired feature of the platform.

Some information is provided in this section regarding the workings of ordinary RC servos
and the pulse needed to control them.

Figure 4.1: Standard analog servo. Picture courtesy of sparkfun.com

An RC servo can turn a given number of degrees, usually somewhat more than 180◦ bank
to bank. Due to the low gear rate, even small servos can pull and push with significant
force. Normally a servo is connected by a +5V and GND wire for power, and a third
low-current control pulse. The effect of this pulse can be seen in Figure 4.2.

The interval between the rising and falling edge gives the position set point to the servo.
If there is 1.5 ms between the two flanks, this equals center and the servo will move to this
position. A servo can be exited with pulse widths ranging from, 0.9 ms to 2.1 ms to use
its entire region of movement. An internal potentiometer gives the actual position which
the servo compares with the pulse and strives to keep the two equal. As long as there is
no discrepancy between the set point and position, very little power is used. If force is
applied to the arm, currents in the range of ∼400 mA can be drawn as opposed to ∼9 mA
when idle.
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Figure 4.2: Servo control pulse

Both the range of movement, pulse width to position mapping, current draw, speed and
other properties varies greatly across make and models.

4.2 Functionality

Before components can be chosen, one must define the desired functionality of the expan-
sion board. Points here are based on the author’s experiences in practice, earlier UAV
projects such as those mentioned in Section (4.3), and points from Skavhaug and Fossen.

• Control of six servos
The Recce D6 only utilize four (elevon1, elevon2, rudder and throttle), but in future
models such functionality as flaps and landing gear may be present.

• Read servo positions in manual flight mode
By registering what input is given to the craft as well as the response, one can improve
and verify vehicle models.

• Auto/manual flight switch
This enables the servo control to be switched from manual (operator) mode to auto.
In many projects, this feature is realized in a microprocessor or programmable array
logic. This has some advantages such as fewer components, lower cost and current
consumption. On the other hand, these devices need power to pass the servo signal
through. The proposed solution here is low-power mechanical relays to switch be-
tween flight modes. Should all power disappear on the 5V, 3.3V bus or HW errors
occur, the relays will lose power and thus switch to manual mode. Servo power will
be supplied directly from the engine speed control (ESC). One has to be vigilant with
this design as well, since it is highly undesirable to exit auto-mode when the vehicle
is out of range. It must also be possible to have some channels (servos) in manual
mode and some in auto at the same time. This way the operator can control throttle,
flaps and elevator while a heading (rudder, aileron) stabilizer is tested.
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• Current and voltage measurement
To inform the operator and control system of the remaining flight time, the power
usage and remaining battery capacity must be known. This is seen as an important
safety feature as well as giving knowledge of the impact of payload on flight-time. The
user must inform the system of the type of battery pack used, and then via voltage
and current measurement, power, energy used/remaining and minutes of flight time
can be calculated.

• Provide stable power to the BeagleBoard
With the benefit of increased functionality and computational power on the BB comes
complexity and sensitivity. Should the power disappear or induce such a spike that
the system reboots during long-range flight, the BB can use almost a minute to come
back on-line. Although the Atmel processor can take certain actions to soften the
landing without feedback, it is no match to the BB control system. The UAV is also
a very noisy environment with magnetic fields, a range of electric frequencies and
pulses, varying engine load and supply voltage. The control system supply must be
noise-resilient, dependent and isolated as much as possible.

• Provide an interface to sensors such as IMU, ultrasonic altimeter and pitot
Providing an easy interface to BB I/O such as SPI, I2C and GPIO enables easy
expansion to accommodate new units.

4.3 Previous Work

Many projects have before recognized the need to expand with additional hardware on the
original system due to a variety of reasons. Issues that arise can be need for more I/O,
more processing power, redundancy, real-time demands etc. As this project develops and
hardware expansion is needed here as well, a study of earlier methods is executed to find the
best solutions. Particularly good solutions that are suitable for this project are highlighted
briefly in this section. Other points that influenced design choices are commented shortly.
The authors comments on solutions are preceded by a hyphen (-).

The design that influenced the expansion board the most is the Trainer from TinCanTools.
Website [25], schematics: [29]. The Trainer was purchased as part of the General Platform
for Unmanned Autonomous Systems [1, Skøien, Vermeer]. It uses level converters to shift
voltage levels between the BB and peripheral hardware. - This is also applicable on the
expansion board. An EEPROM is used over I2C to communicate with the BB to set
the appropriate pinmux. - Such functionality is necessary in this design. The Trainer is
equipped with an Atmel ATmega 328 processor. - A more powerful processor is desirable
with more I/O.

The CyberSwan project has much in common with this thesis, as both utilize a Linux
GPOS on a purchasable highly available platform [26, Bjørntvedt E. pp.12], and targeted
towards unmanned aerial vehicles. [26, Bjørntvedt] expansion HW uses a very versatile
DC-DC power-supply unit, the Traco power TEB 15-2411WI, which can operate in a wide
voltage range and provide stabilized power with high efficiency. - A similar device is ideal
for the expansion board. There is functionality that allows for servo signals from the
receiver to be logged. - This is very valuable to examine inputs vs. vehicle movements in
the lab to improve and verify vehicle models. The programmable array logic (PAL) circuit
used to switch between auto/manual mode caused problems due to noise. - Power loss
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will also become an issue as the PAL circuit needs power to feed signals through. The
Atmel ATMega128 and code used is programmed for a specific type of RC receiver. - The
implementation must be able to accommodate any type of RC receiver.

[30, Veierland P. M. pp.14] does not utilize an expansion board, but two separate identical
microcontrollers are used to handle critical and non-critical operations. - This dissertation
provides detailed HW design schematics which are valuable to avoid basic design errors.
The processors are part of the Atmel XMEGA series, and proved to work very well for this
UAV purpose. - The XMEGA series are likely well known for many future developers in
the unmanned vehicle laboratory due to the Atmel focus at NTNU, making it a very good
candidate.

Two sources that have not contributed to the final design in a very considerable way are:
[27, Bristeau pp.735] also develops a system with a central processing unit using mini-ITX,
and a separate board for sensor interfacing. - This article does not go into depth of the
design, but does provide some input on the overall design and peripheral interfacing.

[28, Brekke pp.27] Has the same layout with a central single board computer and I/O card.
- This thesis does not provide specific design suggestions due to the PC/104 architecture,
but stands as an example to the vast increase of available I/O due to an add-on board.

4.4 Components

The components chosen to fulfill the demands are listed in the following headings.

Focus is on low price and possibility to easily redesign and expand upon the expansion
board. To ease development it must be possible to produce the board in-house. At time
of writing, the tools available restricts the design to hand-solderable component packages
and two-layer boards. As the project progresses, new users might create more advanced
designs, and they must choose whether it is best to keep within the constraints of in-house
production.

Common components such as resistors, connectors and LEDs are not a part of this section.
These components can be found in the components list in appendix F. Board Design is
commented upon after the components.

4.4.1 Main Processor

The lack of processing power in the ATmega238P is one of the reasons the expansion board
had to be updated. Particularly the lack of accurate timers (16-bit) and corresponding in-
terrupts complicated the code and made it highly integrated. The microcontroller demands
are:

• Provide easy control and logging capability for at least 6 servos

• Have at least one UART for communication with the BeagleBoard

• Package must be solderable by hand

• Supply at least two analog to digital (AD) converters for measuring current draw
and battery voltage
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In addition, it is desirable to provide quite some overhead for future expansions. New users
of the framework can reuse and modify existing code as well as alter the expansion board
layout to accommodate new functionality. With the milling machine at the Cybernetics
lab, producing a new PCB takes only a few hours from finished design to usable product.

The choice fell on the Atmel AVR XMEGA series, and more specifically, the ATxmega32A4.
A TQFP44 package will be used as it is solderable by hand, and provides enough I/O to
fulfill the demands. The 32 KB memory size was simply chosen due to the fact that this
particular version was free of charge at the time of writing.

In addition to fulfilling the above mentioned criteria, Atmel controllers have been exten-
sively used throughout the Cybernetics study, as well as the XMEGA series have proved
its capability in several unmanned vehicles. (Local hawk Phoenix II [30, Veierland] and
continued in Local Bug [31, Wenstad]).

The ATxmega32A4 has a significant amount of functionality, such as 5 16-bit timers, real-
time clock, event system, and a range of communication links, ADC and DAC channels.
Should even more functionality be desirable in the future, there are XMEGAs with larger
package, more memory and peripherals available.

4.4.2 EEPROM

The Trainer board utilizes an EEPROM connected to the BB via I2C interface. During
boot, the BB reads the EEPROM to set the correct pinmux for the given expansion board.
This design uses the same solution to set the pinmux, thus making sure the BB enables
the correct pin functionality to utilize the expansion board.

The most viable solution is to use the same EEPROM as the Trainer, the Atmel AT24C01,
since this is known to function properly. This particular item was not to be found, so a
similar device, (M24C01-WMN6P) is used instead.

4.4.3 Voltage Regulators

In the specifications received from Odin Aero, the Recce D6 is equipped with an 8000
mAh/11.1 V Lithium Polymer battery (LiPo). A fully charged 3-cell LiPo reaches a max-
imum voltage of 12.6 V and a discharged (engine cut) voltage of ∼11 V. To maintain
usability across a variety of vehicles, the power supply must be able to cope with even
higher voltages. In helicopters, 6-cell LiPo packs are common, delivering a maximum
voltage of 25.2 V.

On the output side, the BeagleBoard needs a stable, low-noise 5V DC power supply. Con-
sult Table 4.1 for a rough current consumption estimate for the entire system.

As one can observe, the total system current draw is estimated to 734 mA. The servos
which can be a major power consumer will be fed from the vehicles ESC. By having a
separate supply system, the entire 5V (and thus 3.3V and 1.8V) can fail, disabling the
BeagleBoard and expansion board all together, but still maintain manual control through
the mechanical relays and RC receiver.

The Traco DC/DC TEN8-2411WI was chosen as the most appropriate candidate. Some
of the main features of the TEN8-2411WI are:

• Voltage input range of 9-36 V
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Item Model Typical current Max current Rated voltage
Main unit BeagleBoard 270 mA 450 mA 5 V
EEPROM AT24C01 5 mA 5 mA 2.7-5.5 V
Microcontroller ATxmega32A4 13 mA 13 mA 1.6-3.6 V
IMU ADIS16405BMLZ 70 mA 70 mA 4.75-5.25 V
GPS EM-406A 44 mA 44 mA 4.5-6.5 V
Relay G6K-2F-Y 21 mA*3 21 mA*3 5 V
Level converter TXS0102 ∼0 mA ∼0 mA 1.8 V & 3.3 V
Level converter SN74AVC4T774 ∼0 mA ∼0 mA 1.8 V & 3.3 V
Hall effect sensor CSLS6B60 7 mA 9 mA 5 V

Camera e.g. 50 mA

RF module e.g. 30 mA
Servos - Ext. supply Ext. supply 5 V

Total: 734 mA

Table 4.1: Expansion board current consumption

• 85% typical efficiency

• 5 V, 1500 mA max current

• -40◦C to +85◦C operating temperature

• 16 g weight

• Galvanic separation

• Shielded metal encapsulation

• Over-voltage and short circuit protection

There is also a need for 3.3 V and 1.8 V supply as well due to low voltage logic and BB
interface. All the components using these voltages consume a very small amount of power,
and thus more reasonably priced and accessible low dropout (LDO) linear regulators were
chosen. LM1117MPX-3.3Ct-ND and LP2992IM5-1.8CT-ND will provide these voltages
respectively.

4.4.4 Voltage and Current Measurement

A voltage sensor is accomplished by using the XMEGA ADC and a resistor divider network.

To log current consumption, a Hall effect method has been chosen. Instead of having a
small resistor in series with the load, causing loss, the current is measured by letting the
current pass through a magnetic field which exerts a force on the charge carriers. This
generates a potential difference perpendicular to the current and magnetic field which can
be measured. A wide variety of compact hall effect current sensors are available on the
market, and to decide upon the model, a power consumption estimate was performed:

As stated in the Recce D6 specification, it is equipped with a 200 W brushless motor. 200
W/ ∼12.0 V = 16.7 A. Even larger engines are quite common, with a current draw up to
50 A. The contribution from the control system is very limited: 0.734 A*5 V = 3.67 W
3.67 W/12.0 V/0.85 = 0.36 A current draw with 85% regulator efficiency. The hall-effect
sensor must be able to measure in this range.
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CSLS6B60 has been chosen as an appropriate sensor, due to its compact size, 60 A range
and pre-amplified linear output.

4.4.5 Relays for Manual/Auto Switch

The relays used to handle the servo control switch must be monostable, be of low-weight,
small size and have little coil current draw. Since mechanical relays have moving parts,
they must also stand up to the G-forces and vehicle vibrations.

The G6K-2F-Y relay is ideal for this purpose.

• 1 g weight

• 200 G shock resistance

• -40◦C to +70◦C operating temperature

• Rcoil 237 Ω

Each relay has two switching contacts and can thus handle two servos.

4.4.6 Other Components

A range of level converters are used to increase and decrease the voltage, allowing for
components and peripherals to communicate with the BeagleBoard. The UART, I2C, SPI
and some GPIO pins runs through level converters. Quite similar to the Trainer Board the
Texas Instruments txs0102 and sn74avc4t774 are used for this purpose.

Such items as diodes, resistors, transistors, connectors etc. are chosen according to partic-
ular needs and are not commented upon in detail.

4.5 PCB Layout - Hardware Design

4.5.1 Demands

The PCB layout must fulfill the following demands:

• Low weight

• Possible to produce in house (max two layers, hand-solderable packages)

• Small size (keeping the form factor of the BB allows for easy mounting (3” X 3.1”))

• Provide an interface for IMU, GPIO, servos

• Provide the user with configurable LEDs for easy debugging

4.5.2 Solution

The board design was done in CadSoft EAGLE light edition, which is a familiar design tool
to many fellow students and the author. Even more powerful design tools are available,
but with price, easy accessibility and longevity in mind, it suits the project well. The
light version can only use two layers, max 100 mm x 80 mm layout, supports only manual
routing and only one sheet of schematics, which of none are limiting factors in this project.
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The first board version (v1.0) proved to have too small via clearances and some of the
mounts were a millimeter off. This, in addition to the router yielding bad results on a few
wires, suggested a second attempt. Changes are summarized in Table 4.2.

Item New Value
Moved BeagleBoard header to correct position
Adjusted mounting holes
Increased ”via to wire” clearance 12 mil
Increased ”wire to wire” clearance 8 mil

Table 4.2: Expansion board alterations v1.0 to v1.1

Version 1.1 turned out descent and it was intended to be the final prototype.

Soldering and tests went very well until the level converters were put in place. Some error
caused the voltage on the 1.8 V rail to reach almost 2.3 V. At first, the 1.8 V regulator
was changed, but with no results. Copper traces were severed until the txs0102 level
converter emerged as the erroneous device. The component was switched without any
success, switched again, this time rotated 180 degrees as it was unclear which pin was
#1. This yielded no results, so a simple breakout housing only the txs0102 was made and
tested. The connections were double checked by a peer, and even at this stage it drew
almost 500 mA of the 3.3 V rail and acted irregularly. Upon closer inspection it proved
that the wrong device was shipped. A very similar component package along with the
correct information on the container caused the wrong device to be attached to the board.

At this stage the expansion board was in such a bad shape that the best solution was to
make a completely new board. Version 1.1 still has a fully functioning XMEGA and relays,
and will be used for testing and code debugging. Although this caused three to four days
of extra work, it was also a good opportunity to do some other minor design alterations,
summarized in Table 4.3. The final prototype version is known as v1.2. See Figure 4.3 and
Figure 4.4 for layout 1.2.

Item Value
Zener diodes switch to resistors due to high Zener current draw
Increased some capacitor footprints
Altered to ”through-hole“ reset switch since this was available
Increased the ”wire to pad” clearance 10 mil
Increased the “via to wire“ clearance 15 mil

Table 4.3: Expansion board alterations v1.1 to v1.2

Due to the amount of components and small board size, the final layout has limited free
space. The power supply plug and 5 V DC-DC regulator are placed close together and
as far away as possible from sensitive components, such as the XMEGA. All the servos
pass through centrally placed relays on the path through the board. Note that there is an
additional control line into the board (seven instead of six) to enable auto/manual control.
The servo control lines can be switched in pairs (1&2 3&4 5&6) between manual and
auto mode. Should less than six channels be required for vehicle actuators, the remaining
channels can be used to supply information to the XMEGA via PWM. There are three
yellow LEDs along the right side to indicate individually that relays are in auto mode. Two
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Figure 4.3: The 1.2 expansion board layout with traces visible. (Manually routed).
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Figure 4.4: The 1.2 expansion board layout with names and values visible

green LEDs at the right top indicate that the 5 V and 3.3 V lines are powered. Four user-
definable LEDs on the left side can be used for debugging and indication of control system
status. The hall-effect sensor is supplied with 5 V, and the analog output connected to
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the HALL IN pin. Battery voltage is read from a voltage divider into the XMEGA ADC.
A Program and Debug Interface (PDI) and reset button can be found in the center of the
board. Level converters for UART, SPI, I2C and GPIO are placed close to the BeagleBoard
connector. An EEPROM acts as a board identifier chip, transmitting information about
the necessary pinmux setup to the BB upon boot.

As one can observe, there is no form for galvanic separation on this board. [26, Bjørntvedt
pp.72] manufactured a similar expansion board, also without separation. Inquiries have
been made regarding this issue, and as far as known, this should not cause any complica-
tions. No noise related errors have been experienced in any of the tests. Placing additional
optocouplers on this two layer board to achieve galvanic separation would be a challenging
task.

The board was made using a LKPF ProtoMat S62 mill, which takes appropriately 1.5
hours to mill a board of this size and complexity. It was checked for defects and soldered
at the Department of Engineering Cybernetics (ITK) lab.

The interconnection principles can be viewed in Figure 4.5 and the finished board in Figure
4.6. Complete schematics can be found in appendix G. Eagle design files and Gerber files
are available in the digital appendix A.

4.6 XMEGA Development

4.6.1 Peripheral Hardware and Programming Interface

Consider Figure 4.6 for this section, which depicts the board during the development
process. All the items used to program and test the board are specified in greater detail
in appendix H.
The board is supplied on the top left via a ∼13 V DC power supply. A standard 6-channel,
2.4 GHz, 3.3 V radio receiver is connected to the input and three servos on the output for
testing.

The Rx and Tx pins are connected via the yellow and green wire to a STK500 development
board for serial to RS-232 translation, used for debugging only.

In the center of the board a JTAG ICE MKII is connected to the program and debug
interface, which in turn is connected to a windows PC via USB.

4.6.2 Code Development Environment

As previously stated, all the OS and HW related development on the framework is per-
formed on an x86 64 Ubuntu GNU/Linux machine. ”AVRDUDE“ [32] is an open source
tool available for this platform, suitable for programming Atmel devices. This is not an
integrated development environment (IDE), and does thus not have the same user-friendly
graphical interface and debugging tools. Atmel does provide developers with their own
comprehensive IDE ”Atmel AVR Studio“ [33] which greatly simplifies the development
and debugging process with features such as auto-complete, integrated compiler, correct
syntax highlighting and built in debugger. Unfortunately, this software is available strictly
for the Windows platform at time of writing. With the complexity and functionality de-
mands of the expansion board, there will be much code on the chip. In the UAV lab with
such a high mobility of the workforce, lowering the complexity level and providing new
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Figure 4.5: Peripheral connections

users with familiar tools is of high importance. Using some form of virtual machine on
Ubuntu is also a possibility, but many people have negative experiences with this method.
Therefore it was chosen to develop the code on a separate Windows 7 machine running
Atmel AVR Studio 5.

4.6.3 XMEGA Code

This section gives a brief overview of the different files, and will not go into depth as the
code is quite self explanatory and thoroughly commented. The amount of code makes it
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Figure 4.6: The finished expansion board

undesirable to include directly in the thesis. Snippets with belonging explanation can be
found here, and the entire code can be viewed in the digital appendix A.
As mentioned, the code has been developed using AVRStudio 5 on a windows based ma-
chine. The code is designed very modular, with separate files for each function on the
board. A given function is declared in the following manner:

1 double adc_getvoltage ( void ) ;

Where the first word is the name of the general function, and the name of the .c file where
the function is located. After the underscore is a more specific description of the function.
By keeping to this strict formatting rule, it is easy to find the location of a function and
understand what it does. Defines can be found in the appropriate .h file. Atmel provides
a header file for each chip model that includes a wide range of definitions for the device.
In this project, the file named ”iox32a4.h“ is included via ”avr/io.h” and is used to make
the code as readable as possible.

Figure 4.7 illustrates the files used in the XMEGA project.

• main.c

The main function is responsible for initializing the system and running the main
program loop at a certain frequency. It begins by setting the appropriate system
clock, and then calling upon all the setup functions.
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Figure 4.7: XMEGA code structure

1 main_ports_setup ( ) ;
2 usart_setup ( ) ;
3 warn_err_setup ( ) ;
4 servocontrol_setup ( ) ;
5 servocapture_setup ( ) ;
6 autman_setup ( ) ;
7 adc_setup ( ) ;
8 main_startup_test ( ) ;

Listing 4.1: Initialization in main()

Note how all functions cohere to the design rules. After the initialization, the master
checks if a complete message is received over UART each iteration. If this is the case,
that message is parsed and output to the servos if in auto mode. Main also checks
if auto or manual mode is selected and sends desired data such as voltages, current
and servo positions back over UART.

• usart.c

As the name suggest, all the UART and printf() routines reside within this file.
It configures the UART at the given baud rate, sets up interrupt driven receive
and enables printf();. The latter is a heavy but powerful tool, enabling printf()
with all its formatting capabilities over UART. Should the code become too large,
it is recommended to remove printf() and replace it with a c-string print tool. In
the given stdio.h library, the binary print function is not supported. Therefore, a
custom binary print function was made, enabling easy viewing of uint8 t, uint16 t
and uint32 t registers.

• warn err.c

The warning and error utility is a powerful debugging and status tool. As more
files and functions are added, there is a need to standardize the handling of errors
and warnings. A system was constructed where system warnings and errors are each
stored in an integer, where each bit location equals a warning or error. Should a
warning or error occur in a function, it reports this to the warn err facility, and re-
ports again when the issue is resolved. As an example, if the signal from the receiver
disappears:
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1 ISR ( TCE0_OVF_vect ) { // I f the bu f f e r ower f lows = no s i g n a l in
2 autman_pwm = 0 ; // Set to zero i f t imer overruns = auto mode .
3 warn_err_seterr ( NO_SIGNAL ) ; // Report e r r o r
4 }

The NO SIGNAL value is defined in warn err.h, and is simply a given number of places
to left shift a “1“ bit. Warn err stores this “1” in the given position and powers the
red LED on the expansion board. By using the yellow and red LED for warnings
and errors respectively, a user can easily see if the system functions as intended. The
specific errors can be printed over UART by calling the warn err print function
which uses the binary print utility to output the status.

• servocontrol setup.c

This file contains functions that parses the incoming UART message, and sets the
timers accordingly to generate the PWM signals. There is no checksum in the message
due to the short bus distance and the fact that at 100 Hz, errors will likely be
corrected by the next message before the servos have been able to change their
position significantly. The accuracy of the timer was a limiting factor on the previous
solution, making the servo positioning inaccurate. With a range of 16-bit timers
available, this is not an issue with the XMEGA. A 16 bit timer gives an overflow
value of COV F = 216 = 65536. Given that a servo control pulse period is 20 ms long,
a clock divider must be chosen so there is no possibility of overflow, while maintaining
the highest level of accuracy. FCPU = 32MHz, the divider can be selected between
DIV = {1, 2, 4, 8, 64, 256, 1024} see [34, XMEGA manual pp.165], and tp = 20ms.

As can be seen in Eq. 4.1, a divider of 8 will cause counter overflow, thus a divider
of 64 gives the best possible resolution. See Eq. 4.2.

tp ∗ FCPU/DIV 8 = 80.000 = CTOP > COV F (4.1)

tp ∗ FCPU/DIV 64 = 10.000 = CTOP ≯ COV F (4.2)

Given that the servo operates from max to max in the range of 1 to 2 ms, this gives
a resolution of:

1ms ∗ CTOP/Tp = 500 (4.3)

Assuming that the servo operates from 0◦to 180◦ this gives a rotational resolution of

180◦/500 = 0.36◦ (4.4)

This is commented upon in Section 4.9.

• servocapture setup.c

Servo capture enables capture of the RC receivers PWM signals so that servo po-
sitions can be logged during manual flight. These channels can also be utilized for
additional control of the XMEGA, given that those particular channels are not used
for actuators. The positions are stored, and can be relayed back to the BB. Servo
capture uses high and low flank interrupts from the RC receiver and compares it
against a timer. Since these position readings are non-critical to system functional-
ity, the lowest level interrupts are used. The XMEGA event system [34, XMEGA
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manual pp.65] together with timers, has a special mode called “pulse width capture”
which directly gives the pulse with in a simple and efficient manner. This is however
not utilized here, since each pulse width capture require its own timer. The XMEGA
32A4 does not have sufficient timers available for this purpose, but the “auto manual
switch” utilizes this feature as described later.

• autman setup.c

The auto manual switch uses a separate timer and event system to make use of
the “pulse with capture” method to read the pulse from the receiver at servo input
6. The event system does work without using the CPU, freeing valuable resources.
Medium level interrupts are used since this is a critical function, which together with
a separate timer enables very accurate readings of the pulse width. This means that
this input signal can if desired be used for much more than just selecting between
two modes, -auto or manual.

• adc setup.c

This file contains the setup method for enabling analog input reading on pin PORT
A 5 and PORT A 7 for reading back the voltages from the hall-effect sensor and
input voltage respectively.

4.7 Programming the Expansion Board EEPROM

The EEPROM is programmed in order for the BeagleBoard to set the appropriate pinmux.
As an example, UART2 is disabled on the OMAP by default, but this is needed to commu-
nicate with the expansion board. At startup, U-BOOT reads from the EEPROM via I2C
to recognize the signature of an eventual expansion board and sets the pinmux accordingly.
Since the expansion board uses the same pin configuration as the trainer, the EEPROM
contents should be equal. “i2ctools” is an easy to use software tool available from the pack-
age system which reads and programs devices over I2C. The contents of the trainer EEP-
ROM were read, the trainer replaced with the expansion board and then programmed with
the same contents. Upon reboot, the BB outputs: Recognized Tincantools Trainer

expansion board (rev 0 0). The EEPROM programming guide is placed in appendix
I.

4.8 Testing

The expansion board interfaced to the BeagleBoard can be seen in Image 4.8.

The interface proved to work as intended. The BeagleBoard immediately found the EEP-
ROM via I2C, and the pinmux was set correctly. Messages over UART were both sent and
received without problems. Auto/ manual mode functions properly, and the system enters
auto mode if the receiver is turned off or is out of range. Servo control, servo capture and
voltage readings all worked as intended. To test the servo resolution, a highly elongated
servo arm was attached and the XMEGA solution compared with the RC receiver. There
was no observable difference between the minimum deflection of 0.36◦ produced by this
solution, and the smallest movement produced by the RC receiver. Since there was cur-
rently no need for SPI and GPIO, time was not spent investigating how to access these
buses from the OS, and have yet to be tested.
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Figure 4.8: BeagleBoard and expansion board connected

4.9 Discussion

Due to the small size of some components, combined with only average soldering expertise,
resulted in some of the solder joints being of mediocre quality. Under stationary testing
this does not make any difference, but movement and vibrations during flight puts high
demands on the joints. A final version might be produced to solve this and some other
points mentioned in further work (Section 7.1.2). Since the expansion board is in its first
versions, and is meant to be easily altered and added upon with project progression, it was
highly desirable to produce it in-house to enable easy and fast re-design. A more dense
and user-friendly board could be achieved by sending the design away for production with
more layers and silk screen print. With the functionality now verified, there is less need
for design modifications. New users may utilize and expand upon this design and choose
whether to produce it in-house or send it away for production.

The given servo resolution of 0.36◦ is more than satisfactory based on [26, Bjørntvedt E.
pp.54], and the fact that no difference in resolution was observed comparing the RC receiver
and the expansion board. This is to some extent dependent on the servo model, and the
specific servos used on the Recce D6 were not available for testing at the moment.

The warning error system creates a standardized way of providing the user with status
feedback, both via use of LEDs and optional text over UART. This works well, and lets
the user quickly identify issues in the system.

All the code on the XMEGA is structured and written in a very orderly fashion to allow
for easy understanding and modification. The UART message is currently formatted for
development and debugging, and is not very suitable for the finalized system, compared to
a high-density but almost humanly unreadable binary format.
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The expansion board itself solves the given demands well, is tested with good results, and
is applicable in a wide range of vehicles. Recommended improvements to the board are
gathered in Section 7.1.2.

- 60 -



Chapter 5

Full System Test

5.1 Aerial Vehicles

Although many topics of this thesis are applicable in general unmanned vehicles, it is
worth to clarify some basic aspects of aerial vehicle orientation since this is commented
upon later, and the system is tested and implementation is targeted towards aerial vehicle
operation.

{i} = {n}

−→xn (north)

−→yn (east)

−→zn (down)

ψ

φ

θ

−→xb

−→yb

−→zb

CG
{b}

Figure 5.1: Aerial vehicle frames and rotation

Figure 5.1 depicts an aerial vehicle flying southbound and banking port. The vehicle has
a fixed BODY frame ({b}) where the center is located at the center of gravity (CG), also
referred to as the center of mass. The x-axis points in the longitudinal direction of the
vehicle, y-axis to the right (pilot view) and the z-axis directly downwards perpendicular to
the other two axes. This allows a rotation to be defined with regard to some inertial frame.
Here the inertial frame ({i}) is chosen as the NED (north, east, down) ({n}) frame, which
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is the tangent plane on the earth’s surface moving with the vehicle. −→xn points to true north,
−→yn points east and −→zn points down to the center of the earth normal to the surface. One
should be aware that choosing NED as the inertial frame implies some simplifications such
as ignoring the earth’s rotation. This is beyond the scope of this thesis, as only vehicle
rotations and some arbitrary position is of interest here. For more information see [35,
Fossen T. I. pp.3-44].

Rotations in the figure are φ (roll), θ (pitch) and ψ (yaw); angles between the {n} and the
{b} system. Each control surface is colored to represent the rotation it influences: Purple
(ailerons, φ, roll), red (elevator, θ, pitch), green (rudder, ψ, yaw). This is a simplification
for illustrative purposes, as for instance ailerons will cause roll, which in turn causes the
airplane to lose some lift and influence pitch as well. Delta wings, such as the Recce D6
combines the ailerons and elevator, and must thus mix the use of these combined rudders
to achieve roll and pitch.

5.2 Feedback Loop Test

At this point, with all three main chapters of the thesis finished, the framework was tested
to check functionality in a feedback loop system. The setup was made to simulate an aerial
vehicle with stabilization on roll (φ) and pitch (θ), using separate servos for aileron and
elevator control for illustrational purposes. The Xsens IMU was interfaced via UART to
the BeagleBoard, and a simple P-regulator used in the loop. Figure 5.2 illustrates the
general simplified system.

Vehicle (Aircraft)Kp

u(t) =



θS0

θS1

θS2


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Figure 5.2: Simplified feedback model

r(t) gives the reference which for this test is set to
[

0 0 0
]T

to maintain level flight. e(t)
is the error between the setpoint and measured vehicle attitude. u(t) is the servo input.
The test does not include yaw stabilization, so there is no signal on θS2. y(t) describes the
6 directions of freedom (DoF), where x, y, z are some position from an arbitrary point on
the ground which is irrelevant in a test regarding only attitude.

Figure 5.3 shows the test setup with control surface servos, the BeagleBoard with expansion
board and the Xsens IMU. The IMU was interfaced as a module in the framework and the
sensor detection filter used to catch signal anomalies. For test purposes the servo control
module subscribed directly from the IMU module. In later stages of the project, the data
flow will look similar to: IMU (and other sensors)→ navigation (observer)→ guidance→
control → servos. The servo positions are sent in a preliminary test format over UART on
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Figure 5.3: Setup for feedback test

the form: 500,1000,500,1000,500,1000,!. Servo position string values are given in the
range of 500 - 1000, are comma-separated and the string ends with an exclamation mark.

Currently the IMU and servo control runs at 100 Hz, and the servos at 50 Hz. The servos
operate at highest possible frequency given the standard 20 ms pulse period. Files to
recreate this test can be found in Appendix A. Run the framework as normal, according
to Appendix B, and enable the Xsens and servo control module by entering the following
in system master.h:

1 string modules [ ] = {"./imu_xsens/imu_xsens" ,"./servo/servo" } ;

The servos proved to respond rapidly to the IMU movements without any noise or lag.

Since the Recce D6 is not available at time of writing, the test was confined to the lab, but
none the less proving that all parts of this thesis works together in a feedback loop system.
A video can also be viewed in appendix A.

5.3 Discussion

The feedback loop test shows that the results from [1, Skøien, Vermeer] together with
the three main aspects of this thesis are able to work as a unit, providing a feedback
controlled system. Measurements are received from the Xsens IMU, passed through the
signal detection algorithm and the servo control module subscribes directly to the IMU
data.

Since the Recce D6 was not available at the time, no real flight test was conducted. This
combined with the fact that the hardware is not exactly what will be appearing in the
aircraft (servos, IMU); one can not draw any definitive conclusions on the capabilities of
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the system. On the other hand, due to the respectable specifications of the sensors and
control system compared to other autonomous aerial control systems, such as [30, Veierland]
and [36, ArduPilot Mega], combined with a successful preliminary test, the solution seems
very promising.
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Overall Discussion and Evaluation

All discussions can be found locally at the end of their respective chapters. This chapter
summarizes some points and performs a more general discussion of the solution, as well as
a thesis reflection.

6.1 The Complete Solution

The described solutions in this thesis bring the autonomous platform up to a whole new
level, and has successfully been tested for stabilized flight in the laboratory. It would
have been an advantage to perform a real test flight as the most unforeseen issues have
a tendency to appear when tested in the real world. To perform this test, a ground link
would have been desirable to adjust parameters, some sort of casing for the hardware, and
of course a suitable aerial vehicle to test with. The software and hardware are interfaced,
and all measurements made available across the system, with optinal use of the signal
detection filter. All parts of this thesis work well together, but new challenges will likely
arrive when many modules created by different developers must work together. Although
the software framework is made to assist in precisely such a setting, developers must still
agree upon the data coming into and out of modules. - Even though the modularity and
confinement is high, this does not help if module A uses degrees and B uses radians.

6.2 Thesis Reflection

When the original outline of the project was created early January, the planned content of
this thesis was larger than the outcome turned out to be. Issues such as a battery model
and interfacing the Analog Devices IMU were scheduled for completion. See Appendix J for
Gannt charts. On the other hand, the thesis has successfully covered a lot of ground. As the
project progressed, it became obvious that the software framework needed more attention,
as more functionality was needed to become user-friendly and general enough. This was
time well spent as the framework is now operational without any need of modification.

The next order of business was the construction of the filtering algorithm, which was a
wish by Professor Thor I. Fossen. In retrospect it might have been better to leave this
chapter for further work, as it is not crucial to test basic flight capabilities at this point.
The saved time could have been spent further improving the framework, going more into
depth, and implementing modules such as GPS and logging. Omitting this chapter would
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have allowed for studies on the topic of accessing SPI and GPIO from the BeagleBoard on
the expansion board. This would also have reduced the number of chapters in the report,
removing the least significant part. On the other hand, the work and results from the
algorithm chapter with the interfacing of the Xsens IMU lead way for the final test, linking
all parts of the thesis together. It also leaves the path clear for observers and control
algorithms which will now be altered of faulty values. A graphical interface in MATLAB
provides easier debugging and system visualization.

The expansion board is a crucial part of the total system, and went a few days beyond
schedule due to the wrong device shipped from Digi-Key. The most central aspects of the
board were completed on time and tested. As mentioned, a few days might have been
spent investigating the GPIO and SPI access. This was not done due to time constraints
and the fact that these peripherals are yet unused.

To summarize with the benefit of hindsight: The correct decision was made to phase out
the battery and Analog Devices IMU interface. It would perhaps been better to only
interface the Xsens IMU, but leave the filtering algorithm and graphics for later, enabling
even more comprehensive work on the other two parts, while still performing the final test.
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Future Work

7.1 Existing Issues

7.1.1 Servo Module and Expansion Board Communication For-
mat

The feedback loop test was performed using a preliminary communication format and a
test servo module in the framework. New developers must decide on the communication
format and finish the servo software module. By doing this, the servo module can subscribe
to e.g. a control module and transmit positions to the expansion board, as well as making
position readings, current and voltage measurements available to other modules in the
framework.

7.1.2 Expansion board Alterations

As the expansion board was more extensively used, some additional points to improve
appeared. Most design flaws have been corrected from version 1.0 to 1.2, but there are still
some minor issues:

• One of the mounting holes connecting the expansion board to the BB is a millimeter
off.

• A screw terminal should be added to provide easier access to the 5 V.

• The external 32 MHz crystal should be switched with a 16 MHz and run in 2X mode
as stated in the XMEGA manual. ([34][pp.76].)

• PIN 40 (PORT A 0, AREF) should be connected to VCC.

7.2 Further Work

7.2.1 Test the Framework on Other OS

It is highly desirable to test the framework performance on a real-time Linux kernel; See [1,
Skøien, Vermeer pp. 27] for tips on achieving real-time properties in Linux. Though only
briefly studied, the Fast Context Switch Extension (FCSE) yielded improved context switch
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times on an OMAP1610 ARM v5 processor running Linux [37, Chanteperdrix, Cochran].
This might be applicable on the BeagleBoard OMAP3530 ARM v7 processor as well,
according to the reference manual [38, ARM Architecture Reference Manual, Appendix E].

7.2.2 Additional Sensors

Many sensors might be interfaced to the framework, increasing the accuracy of the position
and attitude estimation. Horizon heat, pitot, and ultrasonic height sensor are just a few
examples. The most important sensor to interface is the Analog Devices IMU, which would
significantly reduce the total system cost, as the Xsens MTi is a costly device.

7.2.3 Incorporate Observers

A range of observers have been constructed, both within the unmanned vehicle laboratory
(See Section 1.3) and externally. These must be incorporated either via a MATLAB -
Simulink module, or a module written in code which can interface to the framework.

7.2.4 Navigation and Control Module

No attention has yet been given to navigation and control modules. For any craft to
become autonomous, these modules are essential. The GNC can be implemented as a
single or separate modules, either via compatible code or MATLAB - Simulink. This can
be done respectively by using the template files in the digital appendix A, or creating a
Simulink solution similar to Figure 2.3 by using the guide in Appendix D.

7.2.5 Semaphore Capable of Addressing Multiple Readers-Writers
Problem

At this point in time all the shared memory segments are protected by a binary semaphore.
As stated in Section 2.5.2, if the number of reading processes are quite small (as they
typically are in a UV), the reduced performance caused by an ordinary binary semaphore
is negligible. Should the framework be used in a larger system where the number of
subscribing (reading) processes is significant, a multiple reader-writer capable semaphore
should be considered. This type of semaphore is also referred to as the “fourth semaphore”.
By utilizing this lock, multiple readers can access the shared data simultaneously, while
only one writer may write when no others have access to the region. This can yield higher
system throughput as the readers no longer have to wait for each other.
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Conclusion

The unmanned aerial vehicle project at the Department of Engineering Cybernetics has
taken a solid leap forward, with six fall projects and four master’s theses completed on the
subject within its first year.
Focus throughout has been modularity, low cost, and providing a software and hardware
base that can grow with new system demands, knowledge and available technology.

A highly modular software framework has been developed, which accommodates hardware
and software specific modules. The implementation is targeted towards unmanned vehicles,
but the framework is usable in a range of applications. Since there is such a high level of
abstraction, the solution is especially suited for ventures where there is a high mobility of
the workforce, such as in student projects and theses. The framework has been run on the
embedded BeagleBoard system, with modules for actuator control and attitude measure-
ment. System overhead due to inter-module communication was found to be insignificant
in a typical unmanned application. Context switches can become a limiting factor if the
number of modules and their loop frequency is too high, due to the task switch overhead
in the Linux kernel.

To detect errors in sensor equipment, an adaptable algorithm has been constructed that
alerts subscribing modules of errors and anomalies in measurements. The filter parameters
are adaptable during run-time, and such incidents as stationary signal, noise, spikes, too
high or too low values are reported to other modules in the framework. This allows sub-
scribing modules to take necessary precautions and react appropriately to different alerts.

Based upon earlier designs, new demands and ideas, an expansion board is fabricated
for power filtering, actuator control and sensor connection, applicable in a wide range of
vehicles. This has been interfaced to the BeagleBoard, providing protection, added I/O
and a separate system for real-time critical actions. Positioning of servo actuators has been
tested, and found to be accurate within 0.36◦, which is sufficient. The design is alterable
as new demands appear.

A system feedback test has been performed, utilizing the software framework, signal filter-
ing and the expansion board, positively verifying the functionality of all components.

The process of making a general platform for unmanned autonomous systems is indeed
successful. All parts of this thesis have been linked, combined with earlier work, tested
and run together as a single unit, in practice enabling autonomous operation for any vehicle
given the appropriate control structure.
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Contents of Digital Appendix

• Documentation

• Framework code

• Filtering code

• XMEGA code

• Eagle files

• Videos (MATLAB graphics test and feedback loop test)

• Report: K. R. Skøien and H. Vermeer, “General Platform for Unmanned Autonomous
Systems.” Department of Engineering Cybernetics, NTNU, Dec. 2010.
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Appendix B

Testing the Software Framework
(User Guide)

B.1 Introduction

To assist new developers with the software framework, this guide describes how to run
a test utilizing the master module and two slaves on a Linux system. The files needed
are supplied in the folder “framework” in the digital Appendix A. Here one can find the
master module, dummy1 and dummy2 which are used for this test, the xsens imu and the
preliminary servo module.

To comment upon the two latter files, the xsens imu is a finished file, reading data from
the Xsens over a serial port. On a desktop Linux computer this is usually /dev/ttyUSB0
and on the BeagleBoard /dev/ttyS2 if it is connected to the BeagleBoard top serial header.
The servo program simply subscribes to the IMU accelerometer, parses the message and
sends a serial stream to the Atmel controller on the expansion board. This will thus only
function properly on the BeagleBoard and is only there for illustrational purposes. If one
wishes to create a new module, use a slave as a template, copy the code to a new file and
customize from there.

B.2 Test File Functionality

The test setup is similar to the examples given in Section 2.4, where slave 2 provides data,
and slave 1 subscribes to these data and prints to terminal. The files are configured as
follows:

• system master:
Runs at 1 Hz, and prints information each cycle from both slaves in the format:
name, memory key, PID, shared memory ID.

• dummy1:
Runs at 1 Hz, reads a simple integer from dummy2 and prints the value to terminal.

• dummy2:
Runs at 100 Hz, increments the integer by one for each cycle and posts its data to
shared memory.
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B.3 Compiling and Running

Move all the files in the Framework folder to your Linux computer. Make sure that
system master.h invokes the correct modules. The file should read:

1 string modules [ ] = {"./dummy1/dummy1" ,"./dummy2/dummy2" } ;
2 // const s t r i n g modules [ ] = {” ./ imu xsens / imu xsens ”} ;

Each module has its own makefile associated with it which does all the compiling and
linking of its respective module. The makefiles can be invoked individually by running
make in the desired module folder. To ease the compilation process, a script residing in the
Framework folder named compile all will invoke all the makefiles.

user@user−desktop : ˜/ framework$ . / compile_all . sh

The output should look similar to this:

======== Invoking all makefiles ========
===================
g++ −g −Wall −lrt −lpthread −o system_master system_master.cpp system_master.h←↩

timer.cpp timer.h
===================
make: Entering directory ‘/home/uav−2/masteroppgave/code/framework/dummy1’
make: Nothing to be done for ‘all’.
make: Leaving directory ‘/home/uav−2/masteroppgave/code/framework/dummy1’
===================
make: Entering directory ‘/home/uav−2/masteroppgave/code/framework/dummy2’
make: Nothing to be done for ‘all’.
make: Leaving directory ‘/home/uav−2/masteroppgave/code/framework/dummy2’
===================
make: Entering directory ‘/home/uav−2/masteroppgave/code/framework/imu_xsens’
make: Nothing to be done for ‘all’.
make: Leaving directory ‘/home/uav−2/masteroppgave/code/framework/imu_xsens’
===================

For illustrational purposes, a change has been made in the system master.cpp file so this
is recompiled. The executables will now reside in the same manner as in Figure B.1.

Now, invoke the system master and it will in turn execute the other modules

uav−2@uav−2−desktop : ˜/ masteroppgave/code/framework$ . / system_master

The modules will begin their execution and print status messages. The master module
should print messages at each cycle in the format described in appendix B.2:

MASTER : in while (1 ) . / dummy1/dummy1 1835890993 3910 2621473
MASTER : in while (1 ) . / dummy2/dummy2 1835890994 3912 2654242

The system runs in the manner described in Section 2.5, 2.6 and 2.7.

If it is desirable to compile for the BeagleBoard, consult appendix C and alter the makefiles
accordingly. An example makefile can be viewed in the digital appendix A “makefile
(crosscompile)”.
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system_master

Framework

dummy1 dummy2 imu_xsens

dummy1 dummy2 imu_xsens

Figure B.1: Executables after compilation
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Appendix C

Cross Compiling for the BeagleBoard

The following appendix is copied from [1, Skøien, Vermeer. Appendix G].
Follow this procedure to enable cross-compiling for the TI OMAP3530 ARM Cortex A8
(arm v7) processor.

1. Download the CodeSourcery command line cross-compiler:
http://www.codesourcery.com/sgpp/lite/arm/portal/package5385/public/

arm-none-linux-gnueabi/arm-2009q3-67-arm-none-linux-gnueabi.bin.
Consult www.codesourcery.com for the newest lite version.

2. Make sure the .bin file is executable by using chmod.

3. Run the installer in the xterm shell.

4. After installation, add G++ to your respective path. Example:

export PATH=$PATH:/home/uav-2/CodeSourcery/Sourcery_G++_Lite/bin/

Remember that each time you close the shell, the path has to be added again.

5. Verify the install with arm-none-linux-gnueabi-g++ -v The last line, depending on
the version, should read gcc version 4.4.1 (Sourcery G++ Lite 2009q3-67).

6. At this stage, a cross compiled program will run on target with the exception of
some flags which are not yet recognized. Preferably test the installation by making
a simple “hello world!” program and run it on target.
$arm-none-linux-gnueabi-g++ -o hello world hello world.cpp

7. To achieve full support for hardware floating point (-mfpu and -mfloat-abi flags),
some additional runtime dependencies must be transferred to the BeagleBoard.

See the manual [39, pp.14-18] for several ways of transferring and using the required
files. As an example, we assume that it is desirable to:

A. Install the dependencies in a separate folder. It is possible to move the runtime
support files to the BeagleBoard base files, but this might cause the BB not to boot
properly.

B. Passing arguments at compile time to provide information where to find the run-
time support files. If the files were installed in the root folder, this would not be
necessary. The user can choose to provide the paths at runtime as-well, but this
requires quite some text to run the executable.
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8. Find the folder
../CodeSourcery/Sourcery G++ Lite/arm-none-linux-gnueabi/libc/thumb2/

on the host computer. To get compiled code running, copy the subfolder /lib to the
target, e.g. to the folder /root/sysroot/thumb2/lib. Note here that /root/ here
is the root user, not the file system root. The .so files in ../thumb2/usr/bin &
../thumb2/sbin should also be copied into their equal sub-folders under
/root/sysroot/thumb2/ on target. There should now be three sub-folders in the
thumb2 folder. The mentioned manual provides more detailed information about
which files one needs to move to target. At compile time, the user must provide infor-
mation to the executable where to find the runtime support files. In our example this
is done in the following manner: arm-none-linux-gnueabi-g++ -mtune=cortex-a8

-mfpu=neon -mfloat-abi=softfp -Wl,-rpath=/root/sysroot/thumb2/lib: ←↩
/root/sysroot/thumb2/usr /lib -Wl,--dynamic-linker=/root/sysroot←↩
/thumb2/lib/ld-linux.so.3 -o master master.cpp. Additional flags may be ap-
plicable.

9. Copy the executable to target.

10. Run your executable like normal with ./system master.

- C82 -



Appendix D

Interfacing Simulink with Shared
Memory

The following appendix is a modified version of [1, Skøien, Vermeer. Appendix H].
This guide is written as an introduction to passing data between Simulink and legacy code.

1. You must have MATLAB, Simulink and Real-Time Workshop installed on the host
computer. This method is verified with MATLAB version R2010a 64-bit (glnxa64)
Ubuntu GNU/Linux, Simulink Version 7.5 R2010a and Real-Time Workshop version
7.5 running with ITK site license.

2. In Simulink, find the S-function builder block. This block enables hand-written
C/C++ code to be implemented into Simulink.

The S-function can also be written by hand, but it is recommended to at least use the
builder once to see the C/C++ file structure. Since data will be passed to Simulink,
treated by the diagram and then passed back to the process, HW interfacing blocks
should ONLY have outputs OR inputs. This coincides with the way Simulink executes
the blocks, one at the time from input to exit. Entering the builder block, choose
an appropriate name for your S-function. Under “initialization“, choose sample time
= inherited, unless this block needs to run at a different frequency than the main
Simulink loop. Select ”data properties“ delete all inputs (read from HW) and set up
the desired number of outputs. The default data type is double with one-dimensional
ports. Change this according to spec. Under ”build info” unmark the checkbox
”Generate wrapper TLC” and Press ”build“. The S-function will be generated in the
working directory. There is no longer need for the S-function builder, delete this and
add the block called ”S-function“. The latter block will act as a hardware abstraction
layer (HAL), providing data to Simulink.

In the S-function block, write the name you gave in the ”S-function name“ field. Press
”edit“ to make sure that the C/C++ file is found. Leave ”S-function parameters“
blank, and leave ”S-function modules“ = ””.

To verify the function of the code, it is recommended to put a printf(”running\ n”); in
the MdlOutputs function in the code. Since it was chosen to not generate a wrapper,
the line that calls ”outputs wrapper()” in “mdlOutputs()“ must be commented out.

Running the simulation demands some adjustment. Under Simulation 7→ configura-
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tion parameters choose solver. Set the desired stop time (e.g. 10.0 s), type: ”fixed
step“, Solver: ”discrete“, ”fundamental sample time“ according to desired loop fre-
quency e.g. 0.1 s.

Before running the simulation the C/C++ file must be compiled. This is done with
”mex <yourfilename> in the MATLAB command. Simulation7→ start should now
print “running” 10s/0.1s = 100 times.
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Running the IMU with Simulink
Graphics

This guide describes how to get the graphical interface from Section 3.4.2 to run with the
supplied files.

1. Ensure that all the software mentioned in Appendix D is installed. This guide has
been tested with the above versions, but should work on newer releases as well.

2. In the supplied folder Framework open the system master.h file. This must be
configured to read the IMU, and should thus look similar to:

1 .
2 .
3

4 // s t r i n g modules [ ] = {” n i c e −n 5 . /dummy1/dummy1” ,” . /dummy2/←↩
dummy2”} ;

5 string modules [ ] = {"./imu_xsens/imu_xsens" } ;
6 .
7 .

3. Compile the modules using ./compile all.

4. Connect the Xsens MTi via USB.

5. Run the framework with ./system master. The framework should now be reading
the IMU, and the master will give periodic execution messages.

6. Start MATLAB with root privileges.

7. Open the supplied folder Matlab and add it to path.

8. Run mex imu input framework.c. This should compile with no errors.

9. Open the Simulink model imu graphics.mdl.

10. Make sure that the framework is running and start the simulation. The missile
graphics should appear and follow the IMU movements.
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Figure G.1: Expansion board, power supply
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Figure G.2: Expansion board, BeagleBoard interface
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Figure G.3: Expansion board, relays and XMEGA
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Appendix H

Expansion Board Development and
Test Tools

Item Producer Description Item no/version
Programmer Atmel JTAG ICE mkII rev 10 A09-0041/09
Programmer Atmel STK500 AVRATSTK500 ATM012694
Servo Hitec HS-322HD -
Receiver Orangerx DSM2 - -
Programming SW Atmel AVRStudio 5.0 v 5.0.1038.1038
RC transmitter Spektrum DX6i

Table H.1: Development tools
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Appendix I

Programming the Expansion Board
EEPROM

Before reading further, one should be aware that the proper EEPROM values for the
expansion board are available in Table I.1. The first section of this guide describes how
to read from the EEPROM. This is not necessary if one only wish to program a new
expansion board that utilizes BB I/O in the same manner as described in the expansion
board schematics. (Figure G.2).

• Install i2ctools on the BeagleBoard using opkg install i2c-tools. Version 3.0.2
was used in this guide.

• Make sure that /dev/i2c-2 is listed. In this version of Ångström (kernel 2.6.32,
Angstrom 2010.7-test-20100916, built from branch: org.openembedded.dev,
revision: 37ac17279e45eeb238d688b68251de8121283490), this is enabled by default
and I2C-2 is used on the expansion header.

• For reading, make sure your desired expansion board is attached.

• Run i2cdetect -r 2 to find all the devices attached to this bus. If the TinCanTools
Trainer is attached, it should read:

root@beagleboard :˜# i2cdetect −r 2
WARNING ! This program can confuse your I2C bus , cause data loss←↩

and worse !
I will probe file /dev/i2c−2 using read byte commands .
I will probe address range 0x03−0x77 .
Continue? [ Y/n ]

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 : −− −− −− −− −− −− −− −− −− −− −− −− −−
10 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
20 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
30 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
40 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
50 : 50 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
60 : −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
70 : −− −− −− −− −− −− −− −−

This indicates a present device on address 0x50. Should all fields return blank, check
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expansion power and EEPROM connections.

• To read a register use the command i2cget (i2cbus chip-address data-address).
example: i2cget 2 0x50 0x00 will return the first data field in the EEPROM, which
in this case is 0x00:

root@beagleboard : / home# i2cget 2 0x50 0
WARNING ! This program can confuse your I2C bus , cause data loss←↩

and worse !
I will read from device file /dev/i2c−2, chip address 0x50 , ←↩

data address

0x00 , using read byte data .
Continue? [ Y/n ]
0x00

An unprogrammed field contains 0xff.

In the case of the trainer, only the fields 0x00 - 0x07 are programmed. The values of
these fields are presented in Table I.1.

• To write to a register, first make sure that the “write enable” header is latched. On
the expansion board this is the two pins located towards the middle of the board,
close to the EEPROM.

• To write to a field, use the command i2cset (i2cbus chip-address data-address

value). Example: i2cset 2 0x50 0x00 0x00 will write 0x00 to the first data field
in the EEPROM:

root@beagleboard : / etc# i2cset 2 0x50 0x00 0x00
WARNING ! This program can confuse your I2C bus , cause data loss←↩

and worse !
DANGEROUS ! Writing to a serial EEPROM on a memory DIMM

may render your memory USELESS and make your system UNBOOTABLE !
I will write to device file /dev/i2c−2, chip address 0x50 , data←↩

address

0x00 , data 0x00 , mode byte .
Continue? [ y/N ]

• You want to remove the “write enable” header when finished and use i2cget to verify
the contents.

• Upon BB reboot it should now output over the serial line:

Texas Instruments X−Loader 1 . 4 . 4 ss ( Sep 10 2010 − 02 : 4 3 : 0 2 )
Beagle Rev C4

.

.

.
Probing for expansion boards , if none are connected you ll see ←↩

a harmless I2C error .

Recognized Tincantools Trainer expansion board ( rev 0 0)
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Beagle Rev C4

.

.

.

The pinmux should now be set appropriately, enabling expansion board communica-
tion over USART, SPI, I2C and GPIO.

i2cbus chip address data address value

2 0x50 0x00 0x00
2 0x50 0x01 0x01
2 0x50 0x02 0x00
2 0x50 0x03 0x04
2 0x50 0x04 0x00
2 0x50 0x05 0x00
2 0x50 0x06 0x30
2 0x50 0x07 0x00
2 0x50 0x08 0xff
2 0x50 0x09 0xff
2 0x50 0x... 0xff

Table I.1: Expansion board EEPROM values
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Appendix J

Project Gantt Charts

This appendix contains the Gannt charts which illustrates the planned progress. The
project plan was revised monthly. Updated charts for each month with comments can be
viewed here.

J.1 January Revision

This is the initial plan, and will be revised throughout the project.

• The project has been divided into three main parts: Sensor error detection, expansion
board and framework.

• Some minor, less important tasks have been added towards the end.

• Initial meetings are done 10-14 Jan, and the thesis work begins Jan 17th.
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J.2 February Revision

This revison was made February 2nd.

• In the first weekly meeting, A. Skavhaug pointed out that the framework should
always be kept in mind. Alterations and needed adjustments will show as the project
progresses. The framework pre-study and implementation was moved forward, and
implementation showed as a long process. The basics will be implemented, and
expansions made throughout the project.

• The remaining tasks were moved further ahead to accommodate the point above.
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J.3 March Revision

This revision was made March 3rd.

• The framework proved to be a larger task than anticipated. To create a fully func-
tional framework took half a week longer than planned, stretching this part of the
project to 2.5 weeks.

• Due to the above, and the fact that some tasks surrounding the framework must be
done alongside other tasks, the BeagleBoard casing is phased out as part of the plan.
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J.4 April Revision

This revision was made April 10th.

• Together with Amund Skavhaug it was decided to publish a paper regarding the SW
framework and publish in Journal of Systems Architecture. One week extra has been
reserved for this purpose. Note that the thesis deadline has been moved one week
forward.

• The complexity combined with the limited amount of space on the expansion board
required more design focus than what was anticipated. The design process took
approximately 5 days longer than planned.

• Due to Digi-Key sending the wrong component (a txs0102 level converter was or-
dered and some other unknown component shipped) the debugging process was very
extensive. The shipped item was almost the same package as the txs0102, and the
label on the package stated that this indeed was the correct device. An isolated test
confirmed that is was the wrong device. The expansion board was in such a bad
state after this debugging that a new board had to be designed, milled and soldered.
Fortunately this was a chance to get some other minor redesigns done. This newest
and final version of the board is known as version 1.2

• Due to these events the LiPo battery model has been phased out of the schedule. A
battery model was made during the autumn which might be easily integrated.
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J.5 May Revision

This revision was made May 3rd.

• After commencing with the paper, it is apparent that quite some timing and/or
profiling data is needed to document the results. This will take some time, but
hopefully bring both the paper and the report to a higher level.

• The new txs0102 chips from Farnell had not arrived. Some time must be reserved to
solder and test the BB - expansion board communication.

• It must be evaluated if it is feasible to connect the Analog Devices IMU via SPI in
time.
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