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Problem description

The Department of Engineering Cybernetics has an arm/hand with seven motorized de-
grees of freedom. The model is to be used as a demonstrator andeye-catcher in exhibi-
tions, stands etc. The joints are driven by RC model servos, controlled by a LEGO NXT
controller, currently without software.

In this assignment you are to create a control system based onthe available hardware,
the department’s EMG sensor systems and a relevant control algorithm for multifunc-
tional prostheses.

1. Give a short presentation of different signal features used in pattern recognition
for myoelectric prosthesis control. Emphasize aspects such as computational com-
plexity, real time aspects and classification accuracy.

2. Describe different relevant software platforms for a potential control system for
the given model, and make a justified choice.

3. Establish a functional specification in agreement with the supervisors, and perform
a structured software design based on the functional specification.

4. Implement and test the system as far as possible within theallotted time.
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Abstract

In this thesis a working control system for a 7 degrees of freedom hand prosthesis model
controlled by electromyographic and accelerometer signals has been developed. The
complete system consists of a wireless EMG and accelerometer measurement system,
two National Instruments data acquisition modules, a desktop computer, a Lego Mind-
storms NXT brick and a hand model with 7 motorized degrees of freedom.

The controller is based on pattern recognition and signal classification. Several dif-
ferent EMG features for this purpose are presented and implemented. Two different
linear classifiers were used and their performance studied.

The LabVIEW software platform was used for both the computerand the NXT. The
developed software has a modular design, facilitating future development and extension.
Its design and implementation are presented and discussed.
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1
Introduction

1.1 Reader’s guide

This thesis is divided into 8 main chapters. The first chapterafter this introduction, chap-
ter 2, presents some background information on myoelectricsignals, myoelectric control
and pattern recognition and classification. Chapter 3 presents the functional specification
of the system and its parts, and chapter 4 discusses different possible software platforms
for the control system implementation. Chapter 5 shows the design and implementation
of the software that realizes the specified controller. The results are presented in chap-
ter 6 before reaching a conclusion in chapter 7. Finally, chapter 8 suggests some future
work to properly utilize the results of this thesis.

There are two appendices, appendix A and B, that are to be considered as part of
this thesis work. These present a practical developer’s guide to the system hardware and
software respectively. Upon request from the supervisors,they are written such that they
may be printed and used separately from this document, and are made appendices for
this reason.

Part of the problem is to analyse aspects of features such as calculation time and
classification accuracy. Because an quantitative discussion on this requires actual data,
part of this discussion was moved to the results chapter as the developed system was
used for measurement and feature extraction.

Throughout this thesis I will assume that the reader has a good understanding of
mathematics, computer science and software design. I will also assume that the reader

1



2 CHAPTER 1. INTRODUCTION

is familiar with the LabVIEW and MATLAB platforms. A quick overview of LabVIEW
can be found in appendix C which readers unfamiliar with LabVIEW are strongly en-
couraged to read.

1.2 Work methodology

The scope of this problem is very broad. It covers computer science concepts from byte-
level communication protocols to high-level abstraction,object oriented programming
and integration of different development environments, all with a heavy mathematical
back-end for a medical and cybernetic purpose.

The first step was to research the field of myographic control,specifically pattern
recognition methods and different EMG features used for this purpose. Then an overview
of different software platforms was gathered, most importantly for the NXT.

Software development is an iterative process. An idea that looks good on paper may
be cumbersome to use in practice, and some flaws or sub-optimalities are not evident
before having extensive experience with the software. Therefore, the functional spec-
ification was worked out during the course of development, incollaboration with the
supervisors.

Design and implementation started on the NXT, covering servo control and then
communication. After that, communication on the host was implemented. Hardware
connections, measurement, training, features and classifiers followed in order, with the
graphical user interface being developed in parallel. A significant effort was put into
implementation, resulting in a system consisting of over 150 LabVIEW VIs and several
MATLAB functions. In order to facilitate further development, much time was spent
researching the best practice implementation methods by LabVIEW engineers. The Na-
tional Instruments developer zone1 and the LabVIEW community2 were frequently used
and of great help.

As with any project, some bumps in the road were experienced,specifically with
the hand model. Some time had to be spent on error searching, tweaking and fixing
the servos on the model. At the time of writing the problem description, it was thought
that the EMG measurement system could provide real-time signals over USB. When this
proved not to be the case, analog measurements were introduced, increasing the system
layout complexity.

In spite of this, there was still enough time left to test the system after development.
A thorough analysis of the controller (i.e. classifier and features) was performed after
the system had been successfully implemented.

1http://zone.ni.com
2http://www.ni.com/labview/community/
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1.3 Thesis context

1.3.1 Hardware

EMG and acceleration measurement system

The EMG and accelerometer measurement system used for this thesis work was the
Trigno system by Delsys. This system consists of 16 separate units,each containing
an EMG sensor and a triaxial accelerometer. These are wirelessly connected to a base
station where the 16 EMG and the 48 inertial measurements areoutputted as analog
signals.

All the analog signals are in the±5 V range. The raw EMG signals are amplified
by a factor of 909 to fill this dynamic range. The accelerometer range can be selected as
either±1.5 g or±6 g.

The base station also offers a USB interface to work with the Delsys EMGworks
software. However, since this software does not support exporting of the signals in real-
time, analog sampling was used for this thesis work.

Analog sampling

The analog signals were sampled by two National Instrument data acquisition units; a
NI DAQPad-6016 and a NI PCI-6025E. Together these units allow for analog to digital
conversion of 32 channels with a sampling rate of up to 200 kHzat 16-bit resolution.
The signals were wired to allow sampling of all signals from eight electrode units (8
EMG + 24 accelerometer signals).

NXT

The LEGO mindstorm NXT 2.0 module is a robotics controller. It is designed to be
robust, easy to use, develop for and program.

The core processor is a 32-bit Atmel ARM processor with 64 KB RAM and a clock
frequency of 48 Hz. Several I/O ports are available, supporting analog and digital com-
munication. A full-speed USB port and a bluoetooth module isused for communication
with computers and other NXT modules.

A standard NXT module comes with a Lego firmware, but a JTAG interface is avail-
able enabling low-level programming of the processor. On the NXT module used during
this thesis a JTAG connector has been soldered on. In addition, two wires are connected
to the batteries, making the NXT able to function as an external power source.

The NXT module is shown in figure 1.1 and a overview of its specifications is shown
in table 1.1.
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Figure 1.1: Lego Mindstorm NXT 2.0 module with modifications. Image: (Håkonsen
2010)

Table 1.1: NXT 2.0 module specification. For more details refer to the hardware devel-
oper kit datasheet.

Main processor Atmel 32-bit ARM processor, AT91SAM7S256

• 256 KB FLASH

• 64 KB RAM

• 48 MHz

Co-processor Atmel 8-bit AVR processor, Atmega48

• 4 KB FLASH

• 512 byte RAM

• 8 MHz

Bluetooth CSR BlueCore 4 v2.0 +EDR System
USB 2.0 Full speed port (12 MB/s)

4 input ports 6-wire interface supporting both digital and analog in-
terface

3 output ports 6-wire interface supporting input from encoders
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The prosthesis model

The hand prosthesis model that was used in this thesis work was developed by Kristian
Håkonsen in his master’s thesis (Håkonsen 2010). The model is shown in figure 1.2. It
has seven motorized degrees of freedom, listed in table 1.2.

Table 1.2: Model functions and motorized degrees of freedom(DOF).

Part Movement DOF number

Forearm
Supination

1
Pronation

Wrist

Flexion
2

Extension

Ulnar deviation
3

Radial deviation

Thumb

Flexion
4

Extension

Abduction
5

Adduction

Index finger
Flexion

6
Extension

Middle, ring and little finger
Flexion

7
Extension

All the motorized degrees of freedom are controlled by a electronic servo motors.
These motors are connected to a NXTServo-v2 servo controller which communicates
with the NXT over I2C. This servo controller allows speed and position control of up to
eight servos.
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Figure 1.2: Handle model. Picture from (Håkonsen 2010).



2
Background

2.1 The myoelectric signal

This section will give an introduction to electromyography. Section 2.1 is reprinted from
the author’s previous work in (Bersvendsen 2010).

The electrical activity produced by a contracting muscle isreferred to as amyoelec-
tric signal. The physiological origin and nature of the myoelectric signal are described
in a number of books covering biomedical engineering, such as (Muzumdar 2004).

The goal of this chapter is to present the reader with a rough overview of the pro-
cesses involved in a muscle contraction. The focus will be onhow these processes relate
to the myoelectric signal measured by electrodes on the surface of the skin.

Although there are different muscle types in the body, this chapter will exclusively
deal with theskeletalmuscles; those under voluntary control effecting the movements
of limbs.

2.1.1 Anatomy and origins

Skeletal muscles are generally connected throughtendonsto two different skeletal bones,
such that their contraction produce a movement of the two bones relative to each other.
Note that a muscle may not actively stretch, it has only the ability to actively contract.

Roughly speaking, a skeletal muscle consists of severalfasciclesthat are bundles of
muscle fibres, organized as a “bundle of spaghetti”. The muscle fibres can be as long as

7



8 CHAPTER 2. BACKGROUND

the muscle itself, and each fibre is connected to (orinnervatedfrom) a singleaxonat a
single point about halfway down the fibre.

The axon is a cell that is part of the central nervous system (CNS) and its cell body
lies in the spinal cord. Each fibre is innervated by only one axon, but an axon innervates
anything from 1 to 1000+ fibres, depending on whether the muscle is used for forceful
or fine-tuned movements. The collection of an axon and all thefibres it innervates is
called amotor unit.

When the axon of a motor unit receives activity from the CNS, it leads an electrical
impulse towards its connected fibres. When this impulse meets a fibre it is transported
along the fibre in both directions away from the innervation point, making the fibre
contract as the impulse moves. When an axon creates and leadsthe electrical impulse,
we say that itfires. This causes the fibres it innervates to perform a short contraction
called atwitch.

Note that when an axon fires, all fibres that it innervates twitches. One cannot volun-
tarily control single fibres, only single axons. Once the axon fires, the innervated fibres
will produce the same contraction every time1. This means that the produced force of
the fibres can not be modulated by the strength of the impulse,only by the frequency of
which they are sent, referred to as thefiring rate.

A single skeletal muscle contains muscle fibres of differentproperties. Some gener-
ate a lot of force when contracting, but fatigue easily. Others generate less force, but can
twitch repeatedly over long periods of time. The fibres are generally arranged such that
different axons innervate fibres with similar force-fatigue properties.

Another way in which the CNS can modulate the produced muscleforce is there-
cruitmentof motor units; the order in which the motor units are excited. It comes as no
surprise that the less forceful motor units are recruited first, and if they do not deliver the
required force the more powerful ones are recruited.

A final important note is the way in which the motor units twitch with respect to
each other. They do thisasynchronously; different axons fire at different times. Since
all fibres have a maximum rate at which they can twitch, synchronously firing could not
lead to smooth contractions.

2.1.2 Surface EMG measurement

The process of electrically measuring myoelectric signalsis calledelectromyographyor
EMG. One may measure the signal either inside the muscle or at thesurface of the skin,
in which case we call itsurface-EMGor SEMG. SEMG has the obvious benefit of being
non-invasive and is much more practical for prosthetic users.

When the electric pulse travels along a muscle fibre, as discussed in the earlier sec-
tion, it has a spatial spread along the fibre. If one measures the voltage difference be-
tween two points along the fibre, the signal will look something like figure 2.1

1When not considering time-varieties such as fibre fatigue.
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Figure 2.1: Qualitative measured action potential along a muscle fibre. Note that the
amplitude significantly depend on the measuring condition (subject and device), but is
usually in the order of a few mV.

To accomplish such a measurement on the surface of the skin, one often uses a
differential amplifier between two electrodes. This require a total of three contact points
to the skin, two measure points and one ground point.

SEMG measurement poses several difficulties. For one, the measured signals are
very small (usually some mV in amplitude) and subject to a common-mode due to elec-
trical interference from external power sources (i.e. the power grid). This common-mode
is present everywhere on the skin, and can easily be as large as 10-15 V, which is signif-
icantly larger than the signal of interest. To overcome this, the common-mode rejection
ratio (CMRR) of the differential amplifier needs to be very large.

2.1.3 Nature of the surface EMG signal

The signal shown in figure 2.1 is that of a single fibre. When measuring the activity
over a large part of the muscle, the measured signal is actually a sum of several of these
signals originating from different motor units at different locations within the muscle.
Since the motor units fire asynchronously, as discussed in section 2.1.1, the individual
motor unit signals are shifted in time, seemingly at random.When the force exerted by
the muscle increases, both the firing rate of the motor units and the number of motor
units that are recruited generally increase.
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Figure 2.2 shows an actual SEMG measurement2 of the biceps at rest and during
sub-maximal isometric3 contraction (note that the amplitude of the signals are scaled
so they do not reflect the amplitude of the raw SEMG signal). One can see that the
signal looks like white noise with variance related to the muscle activity. This may be a
practical model, but it is important to note that the signal is not noise, it just resembles
it.
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Figure 2.2: Blue: Measured SEMG signal (scaled) of biceps at rest and during sub-
maximal isometric contraction.Red: Rectified and low-pass filtered and scaled SEMG
signal.

However, a frequently used measure of the muscle activity isthe “noisiness” of the
signal. In its simplest form an EMG signal processor consists of a rectifier and a low
pass filter. The red line in figure 2.2 shows the result of this operation.

2.2 Myoelectric control systems

Many different myoelectric control systems for prosthetics have been developed. In the
simplest casethreshold controlmay be used to give an on/off control of a function (e.g.
open/close hand).Proportional controlcan give the user control of the speed or force of
one or more motors by relating it to some value increasing with muscle activation.

2The measurement is from an experiment performed by the author at the University of Twente.
3Where the muscle generates force without changing length.
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In this thesispattern recognition controlwill be used, allowing a user to control
several functions (i.e. motor movements) in an on/off fashion. Figure 2.3 shows an
overview of the main parts in a complete pattern recognitioncontrol system. This thesis
will treat the software part of this diagram.

The origin and measurement of the SEMG signal was discussed in section 2.1 and
feature extraction and classification aspects are discussed in section 2.3.

The low-level feedback consists of sensory information from the prosthesis (e.g.
touch sensors, position or speed of motors) which is used by the controller to create
correct actuations. One of the major drawbacks of prosthetic control based on EMG is
the lack of feedback (proprioception) which healthy persons receive from the muscles
that are missing on an amputee. This can be acquired through high-level feedback such
as vision or tactile stimulation (e.g. vibration).

Human Hardware Software

Brain Muscle SEMG Processing Feature-
extraction

Classifi-
cation

Controller Prosthesis

low-level
feedback

high-level feedback

Figure 2.3: Pattern recognition control system overview. Based on (Oskoei & Hu 2007).

2.3 Classification

2.3.1 Problem overview

This section will present the signal classification problemand some solutions. The sec-
tion is based on the works of Theodoridis & Koutroumbas (2008).

The problem of classification is to study someobjectand labeling it with aclassof
a pre-defined set of classes. In the context of this thesis, the classes are motion classes
performed by a subject and the object is a set of measured accelerometer and EMG
signals. A motion class may be the specific movement of a single joint (e.g. wrist
flexion) or a grip involving several joints (e.g. clenching the fist).

When a certain motion is performed several times, the resulting measurements will
never be exactly the same. This is not simply due to noises anduncertainties in the
measurement equipment, but the SEMG signal is non-deterministic in nature. However,
the muscles will be activated in roughly the same way every time, so the measured
signals will have roughly the same properties.
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There are several aspects of the measured SEMG signal that may be studied for clas-
sification purposes. One may for instance look at the power ofthe signal, its frequency
contents or the number of times the signal crosses zero per second. Such aspects are
calledfeaturesof the signal.

Based on a set of measurements, several different features may be calculated, some
resulting in a single number and some resulting in several numbers. All these feature
values can then be stacked into a vector, which is called afeature vector.

A general classifier works by comparing this feature vector to existing feature vectors
that are already classified. To label a feature vector with a class is calledclassifying. The
existing feature vectors that the classifier uses is called thetraining dataof the classifier.

2.3.2 Solution outline

Given a problem consisting of three classes described by twoscalar features. The
feature-vector now consists of two elements and is a point ontheR2 plane. One solution
of the classifier problem is to divide this plane into three mutually exclusive regions. In
this case a given feature vectorx lies in one (and only one) region, and the resulting class
is then said to be the one associated with this region4.

An example of such a feature-space division is shown in figure2.4. Note that in this
case the class divisions are straight lines. These specific type of classifiers are called
linear classifiers, and are the ones used throughout this thesis.

f1

f2

A B

C

Figure 2.4: Example of a classification scheme with three classes (A, B and C) and two
feature values (f1 and f2). The feature space (R2 plane) is divided into three mutually
exclusive regions, one for each class.

This concept generalizes to any number of classes and any number of features. In the
general case there areM classes andl feature values, in which case theRl feature-space

4What is done on the border may be arbitrary.
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is divided intoM mutually exclusive regions.
Because there are many ways of creating these regions, even when limited to linear

constraints, many different linear classifiers have been developed.

2.3.3 Least squares method (LSM)

The least squares method is a computationally simple methodthat does not assume any-
thing on the training data set (e.g. class separability).

For each class an output is defined that is a linear combination of the feature vector
elements. This linear combination is chosen such as to minimize an error in the least
squares sense.

Given a training set ofM classes andN feature vectors of lengthl with class asso-
ciation. For each classi a weight vectorwi is chosen such that it minimizes the cost
function

J(w) =
N

∑
k=1

(yk− x⊤k w)2 (2.1)

wherey is the desired output andx is the feature vector. This is chosen as a positive
number (i.e. 1 in this thesis) foryk if xk belongs to classi, and a non-positive (i.e. 0 in
this thesis) if not.

(2.1) can be solved as a standard least squares problem, and the optimalwi is given
by

wi = (X⊤X)−1X⊤y (2.2)

where

X =











x⊤1
x⊤2
...

x⊤N











=











x11 x12 · · · x1l

x21 x22 · · · x1l
...

...
. . .

...
xN1 xN2 · · · xNl











, y =











y⊤1
y⊤2
...

y⊤N











(2.3)

A subtle “trick” can be done in order for the output to be a linear combination of the
feature vector elementsanda constant. This is done by adding a 1 as the last element in
the feature vector, giving a new vector

x̄ =

[

x
1

]

(2.4)

which gives the newX matrix

X =











x̄⊤1
x̄⊤2
...

x̄⊤N











=











x⊤1 1
x⊤2 1
... 1

x⊤N 1


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





=




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
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x21 x22 · · · x1l 1
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...
.. .

...
...

xN1 xN2 · · · xNl 1











(2.5)
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We now haveM optimal linear combinationswi of x̄. These have the property that
they come closer to 1 as̄x approaches the training feature vectors of classi and come
closer to 0 as̄x approaches the training feature vectors of all other classes. The classi-
fication algorithm can then simply calculate all the linear combinations and choose the
classi for which x̄⊤wi is maximized.

Note that(X⊤X)−1X⊤ in (2.2) is called thepseudoinverseof X which can be eval-
uated efficiently in software. Another simplification is that all the linear combinations
may be evaluated at once by

Gx̄ (2.6)

where

G =











w⊤
1

w⊤
2
...

w⊤
M











(2.7)

Similarly, all thew vectors may be calculated at the same time by

G =
[

w1 w2 · · ·wM
]

= (X⊤X)−1X⊤Y (2.8)

where

Y =
[

y1 y2 · · · yM
]

=











y11 y21 · · · yM1

y12 y22 · · · yM2
...

...
. . .

...
y1N y2N · · · yMN











(2.9)

To demonstrate the computational elegance of this method, the following MATLAB
snippet trains an LMS classifier (i.e. calculates theG matrix)

G = X\Y;

and classification is done by

[¬, class] = max(G*[x; 1]);

Figure 2.5 illustrates how this works in practice. Two classes (red and blue) are given
by a set of feature vectors with lengthl = 1 (i.e. scalars). Training the LMS classifier
produces two (one for each class) linear combinations of thefeature vector (a scalar)
plus a constant, resulting in a line inR2. These linear functions are plotted, as well as
the maximum value (gray). One can see that the feature is classified as red if it is below
a value of about 1.5 and blue otherwise. Ifl = 2 the feature vectors are distributed in the
R

2 plane and the linear combinations would be planes inR
3, and so on.
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Figure 2.5: Example of LMS classification with two classes and scalar features. The
gray line shows the maximum of the classification values.
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2.3.4 Linear discriminant analysis (LDA)

TheLDA classifier creates the linear class separations by studyingthe statistical proper-
ties (i.e. mean and covariance) of several feature vectors for each class acquired during
training.

An existing MATLAB implementation of this classifier as presented in (Englehart,
Hudgins, Parker & Stevenson 1999) was supplied by the supervisors.

2.4 Signal features

2.4.1 Feature expressions

Section 2.4.1 will present the most commonly used features in EMG prosthesis control
based on (Zardoshti-Kermani, Wheeler, Badie & Hashemi 1995, Boostani & Moradi
2003, Fougner 2007, Bach 2009, Englehart et al. 1999, Parker, Englehart & Hudgins
2006). All features are calculated on a time-series of a single EMG channel. This time-
series ofN samples is called awindow of length N.

Average absolute value (AAV)

This is one of the most intuitive and commonly used signal feature, and is simply given
by

AAV =
1
N

N

∑
i=1

|xi | (2.10)

This feature is easy to calculate, has linear time complexity (AAV ∈ O(n)), and can
be easily implemented analogously in hardware. However, itis significantly dependent
on the quality of the electrode-skin interface, which may bechanged over time (e.g. by
sweat).

Variance (VAR)

The unbiased variance estimation given by

VAR =
1

N−1

N

∑
i=1

x2
i (2.11)

is another commonly used feature. Note that (2.11) assumes an expected value of zero,
which is the case for EMG signals. This value is related to thepower of the signal5,

5 The signal powerP is the “energy per sample”, given by

P=
E
N

=
1
N

N

∑
i=1

(xi −µ)2
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but has the same problems as AAV. Easy to calculate and has linear time complexity
(VAR ∈ O(n)).

Willison amplitude (WAMP)

The Willison amplitude, introduced in (Willison 1963), counts the number of times the
difference between two consecutive samples exceed a pre-defined threshold value. This
can be expressed mathematically as

WAMP =
N−1

∑
i=1

f (|xi − xi+1) (2.12)

where

f (x) =

{

1 if x> threshold
0 otherwise

(2.13)

Willison himself used a threshold value of 100µV, but other values have been used
by others. Easy to calculate and has linear time complexity (WAMP ∈ O(n)).

Zero crossing (ZC)

The zero-crossings feature, as the name suggests, counts the number of times the signal
crosses zero, and is given by

ZC=
N−1

∑
i=1

sgn(−xixi+1) (2.14)

where

sgn(x) =

{

1 if x> 0
0 otherwise

(2.15)

Instead of usingx > 0 in (2.15) one can usex = threshold where the threshold is
some positive value. Easy to calculate and has linear time complexity (ZC∈ O(n)).

which gives
σ2 = P−µ2

whereµ is the average value andσ is the biased variance estimate

σ2 =
1
N

N

∑
i=1

x2
i
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Number of turns (NT)

Counts the number of turning points of the signal; the numberof times the signal slope
changes sign. This can be calculated by

NT =
N−2

∑
i=1

sgn(−(xi+1− xi)(xi+2− xi+1)) (2.16)

where

sgn(x) =

{

1 if x> 0
0 otherwise

(2.17)

Easy to calculate and has linear time complexity (NT∈ O(n)).

Average amplitude change (AAC)

Calculates the average absolute amplitude change between two consecutive samples,
given by

AAC =
1

N−1

N−1

∑
i=1

|xi+1− xi| (2.18)

Easy to calculate and has linear time complexity (AAC∈ O(n)).

Myopulse percentage rate (MYOP)

Calculates the fraction of samples exceeding a given threshold, given by

MYOP=
1
N

N

∑
i=1

tresh(xi) (2.19)

where

tresh(x) =

{

1 if x> threshold
0 otherwise

(2.20)

Easy to calculate and has linear time complexity (MYOP∈ O(n)).

Histogram (HIST)

Createsn binsof amplitude values, ranging from the minimum to the maximumvalue.
Then counts the the number of samples in each bin, resulting in n feature values. Boost-
ani & Moradi (2003) used nine bins of unknown levels. Easy to calculate and has linear
time complexity (HIST∈ O(n)).
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Auto-regressive coefficients (AR)

This feature fits an’th order AR filter6 to the window. A 4’th order model is widely used,
as increasing past this does not generally infer an increasein classifier performance.
Quadratic time complexity (AR∈ O(n2)) using Levinson-Durbin recursion (which is
used by the internallevinson function in MATLAB).

Cepstral coefficients (CC)

Cepstral coefficients are widely used in speech and music recognition applications, and
may also be used with EMG signals. Fougner (2007) defines thisfeature as finding the
Fourier transform of the logarithm magnitude spectrum.? on the other hand, define this
to be theinverseFourier transform of the logarithm magnitude spectrum, butnotes that
different techniques are used in practice. The following expression is given in (Kang,
Cheng, Lai, Shiu & Kuo 1996, Boostani & Moradi 2003) and used in papers such as
(Pattichis & Elia 1999).

c1 = a1 cn =−∑n
k=1

(

1− k
n

)

akcn−k−an (2.21)

wereci is thei’th cepstrum coefficient andai is thei’th AR coefficient.
With the definition in Xavier & Rodet (2003) the DFT and IDFT algorithms domi-

nate the time complexity. Using the FFT and IFFT gives CC∈ O(nlogn).

Wavelet coefficients

The Fourier transform contains information on a signal located in frequency, but looses
time domain information. Because myographic signals contain transitory characteristics,
this is not necessarily an optimal feature.

Thewavelet transformis a mathematical transformation similar to a windowed Fourier
transform that have proved to give good results for EMG classification. With the wavelet
transformation, analysis can be done on time-localized subsets of the data without the
limiting precision of a windowed Fourier transform.

2.4.2 Correlation between features

With pattern recognition methods where several features are used, it is important that
the features give information on different aspects of the signal (i.e. that they are as
uncorrelated as possible). Otherwise one is basically wasting computation time, as an
increased number of features in this case does not increase the available information.

6

yi = c+
n

∑
i=1

xi + εi

whereε is a white noise with zero mean and some variance.
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Some of the features mentioned in section 2.4.1 are intuitively correlated, such as
AAV and VAR. As shown in (2.10) AAV is essentially the sum of the absolute sample
values, whereas VAR is essentially the sum of the absolute sample values squared, as
shown in (2.11). Obviously,|x| is significantly correlated withx2, so one would expect
AAV and VAR not to complement each other very well.

Another example is AAV and AAC defined in (2.10) and (2.18) respectively. An
EMG signal generally looks like white noise around zero, with amplitude increasing
with muscle activation. Obviously, when the amplitude of such a signal increases, the
amplitude change between consecutive samples will increase as well.

On the other hand, ZC and NT are independent on the amplitudes, which intuitively
suggests that they are less correlated with AAV and AAC.

A quantitative study of the correlation between different features was done using the
developed software for measurement and feature extraction. These results are presented
in chapter 6.4.4. Note that in order to represent the numbersin a two-dimensional array
only scalar features were calculated.

2.4.3 Calculation time

All of the features presented in section 2.4.1, with the exception of the wavelet coef-
ficients, were implemented in MATLAB. In order to investigate the calculation time a
simple test was carried out. Vectors of random numbers with different lengths were used
as input for each feature, and the execution time was recorded. For each input vector
and feature, the calculation was done 100 times and the resulting time was averaged
over these trials. The vector lengths were multiples ofN = 1000 samples. The results
are shown in figure 2.6.

Note that the actual times used are not really important, as they are obviously ex-
clusive to the computer on which the test ran. Furthermore, as MATLAB is such a
high-level language, the results will not necessarily be the same for a low-level imple-
mentation (e.g. written in C). Note however that the times are in the millisecond scale,
which means that there will be no problem in calculating themfast enough on the com-
puter used during development.

More important is the time usage relative to the other features, and the time usage
relative to different data set size for the same feature. Theresults show that the AR and
cepstral coefficients are the most computationally demanding.

A similar study was done in (Bach 2009) which included wavelet features. His
approach (e.g. input data size) is not documented, but usingthe MATLAB wavelet
toolbox he concluded that calculation of wavelet features took about 35 to 650 times
longer than that of AAV. However, these features were not implemented in this thesis.
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Figure 2.6: Calculation time of implemented features with different signal lengths. The
base length isN = 1000.
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3
Function specification

3.1 Main usage overview

The complete system is meant to be used as a demonstrator on exhibitions, stands or in
classroom settings. As a minimum the prosthesis must be controllable by a single person
to demonstrate its functionality to an audience. If possible however, spectators should
be able to use the system, with as little training and configuration time as possible.

Where a regular prosthesis must be robust enough to work day and day again with
little or no need for reconfiguration, this system may need re-training for each event it is
to be used for.

Since the software is primarily to be used by a few people withgood knowledge of
the system, and due to the time constraints of the thesis work, error handling is not a
high-priority goal. It is much more important that the system is functional in normal
cases, than that unexpected events should be treated correctly. The software will not
protect the user from himself; if the user makes an error in configuration (e.g. sets the
sample rate too high), the system may display an error and simply require restart.

3.2 Contextual goals

Given that the system will include real-time acquisition ofEMG and accelerometer sig-
nals it is obvious that this may be a tool for researches and students to test prosthesis

23
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control schemes in practice. A secondary goal is therefore to make the system easily
extendable and to achieve a well-documented and modular software design.

As this is a system primarily meant for one specific purpose and set of hardware, the
limits on both hardware and software follow the availability for the department where
this thesis is written. In practice, this means that any software or hardware that is readily
available for students and employees at the department can be a requirement to run the
system. Furthermore, the department will benefit from a software platform written in
programming languages that students and employees are generally used to.

3.3 Specification overview

The system contains two modules, thehost running on a computer and the low-level
controller running on the NXT. When working together, the host acquires measurements
and calculates set-points for the NXT. These set-points arethen communicated and the
NXT controls the servos.

In addition, these nodes should have the ability of working independently. For the
host, this means that one should be able to run the measurements and calculations, but
instead of communicating the set-points they are somehow shown to the user instead.
For the NXT, this means that instead of accepting set-pointsfrom the host, the set-points
are read from a file on the NXT to perform a pre-defined movement.

There are currently 7 servos used, but the servo controller is capable of 8 connections.
Adding an eight servo should therefore require a minimal change in code.

Furthermore, the NXT has several additional, unused ports that may be used in the
future. This requires a flexible communication protocol between the nodes, making it
less cumbersome to add additional information exchange. Asthese ports may be used
for sensors and not merely actuators, the NXT should be able to send messages back to
the host, both as a response (e.g. the host requests information) and by its on initiative
(e.g. an NXT event occurs). This requires the host and the NXTto have both send and
receive capabilities.

3.4 Host

The host software is where the analog signals are gathered and the majority of the cal-
culations are done. It acquires the measurements and performs the high-level aspects of
the control scheme, communicating set-points to the NXT.

3.4.1 Measurement

The software should be able to acquire and handle measurements from any combination
of the 16 EMG and accelerometer sources, even though the current hardware setup limits



3.4. HOST 25

this to 8.
There is no need for individually selecting separate accelerometer components (X, Y

or Z). However, one should be able to acquire only the EMG signal, only the accelerom-
eter signals, none or all signals for each electrode unit.

The sample rate, window size and window update rate should beconfigurable.

3.4.2 Training

During the training phase a number of motion classes are shown to the user in sequence.
The user mimics the motion depicted on the screen and the selected sources are measured
and stored in memory.

The user may choose any number of classes to train, and class descriptions may be
added, removed or edited from outside the software source code.

For each class there is a preparation and a sample phase. The duration of these phases
should be configurable, and the complete training sequence may be repeated a defined
number of times. The order in which the classes appear to the user may be sequential or
randomized according to the configuration.

3.4.3 Feature extraction and classifier training

Once the training is complete a feature vector is calculatedfor each measured window.
The feature calculations should be easily edited and new ones added from outside of the
software source code. The user may decide which of the available features to extract.
Once the feature extraction is complete, a classifier shouldbe trained based on a set of
feature vectors with class relationship.

3.4.4 Demonstrator

Once the classifier training is complete, the user may run thesystem. In this mode a
window is measured from the configured sources, and a featurevector is calculated.
This feature vector is inputted to the classifier, which outputs the current motion class.
This motion class is then displayed to the user.

Each class may have a set of speed servo set-points associated with it. If the NXT is
connected, these set-points are sent to the NXT which controls the servos.

3.4.5 Save/load

At any time one should be able to save the current state of the application to a file. The
state includes all configuration, active measurement recordings and calculations.
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3.5 NXT

The function of the NXT unit is to control the servo motors on the prosthesis model.
It will have two modes. In thecontroller mode it accepts motor set-points from the
host and realizes these set-points on the sevos. The set-points should be set in a unit
intuitively related to the angle of the motorized joints. Inaddition, the host should be
able to set the raw control set-points of the servos (i.e. thepulse-width of the PWM
signals). Both position and speed set-points should be supported.

Furthermore, the position and speed of the servos should be readable over the same
communication channel, again in a unit intuitively relatedto the angle of the motorized
joints.

In the demomode the software makes the model move in a predefined way. The
purpose of this mode is to demonstrate the possibilities of the model and to serve as an
eye-catcher. The model hand may for example wave to or point at an audience.

3.5.1 Goals

The primary goal of the NXT software is that it ought to be robust enough to operate
for long periods of time without reprogramming or even resetting the NXT. Once pro-
grammed, one should be able to utilize every aspect of the model hardware over the
communication channel.



4
Software platforms overview

4.1 NXT

4.1.1 NXT-G (LabVIEW)

The NXT comes with a limited, “LEGO-like” version of the LabVIEW programming
language G, called NXT-G. In addition, LabVIEW comes with a NXT add-on that allows
one to create LabVIEW programs that run on the NXT with regular LabVIEW code with
limited block support. All of the NXT features are supportedin NXT-G.

The communication between a NXT-G program running on the NXTand a regular
LabVIEW program running on a computer is very straight-forward and robust. Both
wired USB and wireless bluetooth is supported. However, NXT-G infers significant
overhead in execution as it is a very high-level programminglanguage, resulting in a
performance loss. A significant overhead is also inferred inthe NXT-host communica-
tion, gaining robustness with the cost of communication speed.

As this is the way the NXT was meant to be programmed from the manufacturer,
good support and a lot of example code is available.

27
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4.1.2 Next Byte Codes (NBC) and Not eXactly C (NXC)

Next Byte codes (NBC) is a simple, open-source, assembly-like language that can be
used to program the NXT. Not eXactly C1 is a high-level open-source language, similar
to C, built on the Next Byte Codes (NBC) compiler.

The NXC syntax is very similar to ANSI C, but there are constraints on the number
of functions and variables specific to the NXT.

4.1.3 MATLAB and Simulink

Both MATLAB and Simulink have toolboxes that can generate low-level code that can
run on the NXT. Most NXT features are supported, including LEGO sensors, low-level
I2C and serial communication. Available freely online2.

4.1.4 leJOS NXJ

leJOS3 is a tiny, open-source Java Virtual Machine that is ported tothe NXT. In addition,
leJOS NXJ is a set of tools and Java APIs to help code for and program the NXT. leJOS
currently supports the following features

• Object oriented programming

• Preemptive threads

• Multi-dimensional arrays

• Recursion

• Synchronization

• Exceptions

• Java types

• Most of thejava.lang, java.util andjava.io classes

• A well-documented robotics API

leJOS comes bundled with an API for the full Oracle Java VM that simplifies host-
NXT communication on the host side. A developer plugin for the popular Java IDE4

Eclipse5 is also available. The project was started in 2006 and is still in active develop-
ment. The newest release (leJOS NXJ 0.9) was released May 16th, 2011.

1http://bricxcc.sourceforge.net/nbc/
2http://www.mathworks.com/academia/lego-mindstorms-nxt-software/legomindstorms-matlab.html
3http://lejos.sourceforge.net/nxj.php
4Integrated developer environment
5http://eclipse.org
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4.1.5 C/C++

The ARM7 chip could be programmed with machine code compiledfrom assembly, C or
C++. Several such compilers exists, both free (e.g. the Imagecraft ICCARM Embedded
Development Suite) and commercial (e.g. the IAR Embedded Workbench). The main
advantage of such a compiler is that it provides complete native access to the hardware
with absolutely no overhead. Specialized libraries for thespecific hardware platform
exist, such as LibNXT6. One would expect this to significantly increase the utilization
of the available processing power on the NXT. However, one would not be able to utilize
the existing LabVIEW libraries that are specifically designed for the NXT.

As a result, the development time for a program with equal robustness would (from
experience) be higher when opting for the C/C++ software platform then a high-level
language.

4.1.6 Other platforms

There are interpreters and compilers for many different languages available, including
Lua7, Ruby8, Ada9, Python10, C#11 and even Haskell12. These were not considered
in great detail as they seem to have a small user group compared to the other platforms
discussed. In addition, these languages are not commonly used by students or employees
at the department.

4.2 Host

As the host can run any operating system, the options here arepractically endless. The
only limit is that the National Instruments DAQ modules mustbe supported, but this is
generally the case on most major platforms. However, most choices of NXT software
platform has a logical host counterpart to facilitate communication between the nodes.

4.3 Choice

The decision was taken to use LabVIEW for both the host and theNXT. Considering
that National Instruments is the main line of hardware used,this seems to be the most
natural choice.

6http://code.google.com/p/libnxt/
7http://hempeldesigngroup.com/lego/pbLua/
8http://ruby-nxt.rubyforge.org/
9http://libre.adacore.com/libre/tools/mindstorms/

10http://code.google.com/p/nxt-python/
11http://nxtnet.codeplex.com/ and http://www.mindsqualls.net/
12http://hackage.haskell.org/package/NXT



30 CHAPTER 4. SOFTWARE PLATFORMS OVERVIEW

In addition, LabVIEW offers a tight integration with MATLABwhich is a great
tool for performing the control system calculations. The graphical user interface in
LabVIEW is extremely easy to create compared to regular programming languages. The
DAQmx drivers and NXT communication API are specifically designed for LabVIEW
which results in a very robust platform. Finally, both LabVIEW and MATLAB are
available for students and employees at the department.

The main shortcoming of this choice is performance, mainly experienced on the
NXT. Should it be experienced, however, that the LabVIEW platform introduces such
high overheads that the communication and execution speed is reduced to unacceptable
levels, this choice must be reevaluated.

Since LabVIEW offers integration with native code and the .NET framework, a pos-
sible solution, in the event that the NXT software is unacceptably slow, is to re-program
the NXT and write a communication protocol in native code. This would allow the host
software to still run in LabVIEW.



5
Software design and implementation

5.1 System overview

Figure 5.1 shows a schematic diagram of the different parts of the system and their
relationship. The analog signals of the Trigno EMG and accelerometer measurement
system are measured by two NI DAQ modules. Note that the Trigno system needs a USB
connection to the host in order to activate the analog outputs. The host communicates
with the NXT over either bluetooth (BT) or USB which again communicates over I2C
with the model.

This section will present the design and implementation of the host and NXT soft-
ware (red boxes in figure 5.1). The focus will be on giving a top-level view and under-
standing of the system, but source code of some key features will also be shown.

5.2 Code terms

The following terms and code structures will be used throughout this chapter. These
are considered “best practice” approaches by National Instruments themselves, and are
commonly used in academic LabVIEW applications such as (Elliott, Vijayakumar, Zink
& Hansen 2007, Hosek, Prykäri, Alarousu & Myllylä 2009). Formore information
please refer to the provided links to the LabVIEW developer zone articles.
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Standard error in/out functionality 1 Requires a VI to have an error input and output.
If the error input contains error information, this is passed on to the error output.
In this case the VI may choose not to complete its tasks and instead return immedi-
ately. If the error input contains no error, the error outputwill contain information
on an error that occurred inside the VI, if any.

Functional global variable2 A local variable encapsulated in a VI that allows different
access methods and is not reentrable. Most commonly both read and write access
is given, but some VIs may include an initialize option or maylack the write
option. Can be implemented using a local variable or a while loop with a shift
register. In practice, more than one local variable may be used inside the VI.

Dynamic event registration3 Events may be registered dynamically using a control
reference. In this way events can be handled in a sub-VI instead of the VI con-
taining the control. Once registered, some events may be disabled or re-enabled.

Producer/consumer architecture4 The producer/consumerarchitecture consists of one
or more producer-loops and one or more consumer-loops. All loops have access
to a synchronization variable, such as a queue. The producers produce some value
(e.g. a measurement) and adds it to the queue. The consumers wait for something
to be added to the queue, read the element and process it (e.g.shows it on a graph).

5.3 Design pattern implementations

This section will demonstrate the implementation style of LabVIEW design patterns that
are frequently used in the developed software. Each design pattern will be demonstrated
with an example. These examples are fictional and simplistic, but the core concepts of
the design patterns nevertheless remain the same.

Some examples may seem so easy to implement in ordinary ways as to make the
proposed implementation seem bloated. Note that in practice these design patterns are
used in much larger pieces of software, such as the developedsystem, where abstraction
and modularization are critical concepts.

5.3.1 Functional global variable

A functional global variable is one or more local variables encapsulated in a VI that
allows different access methods and is not reentrable. The different access method are
specialized for the needs of the specific variable.

1http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_in/ and
http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_standard_error_out/

2http://labviewwiki.org/Functional_global_variable
3http://zone.ni.com/reference/en-XX/help/371361G-01/lvconcepts/using_events_in_labview/
4http://zone.ni.com/devzone/cda/tut/p/id/3023
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Consider a variable containing a single struct with two elements, a string and a num-
ber. We want to be able to read from and write to this variable.In addition we have a
special action called initialize, which may perform some initialization action. Finally,
we want to be able to set the numeric element of the variable without changing the string
value. Standard error-out functionality should be used.

Figure 5.2 shows the front panel of this functional global variable. Besides the error
wires it contains three inputs and one output. TheAction input is an enum control
specifying the available actions or access methods. TheValue in andNumeric in
controls are used to set the value whenAction is Write andSet numeric respectively.

Figure 5.2: Functional global variable example front panel.

Figure 5.3 shows the standard error-out functionality, as well as the general block
diagram layout. A switch case structure is used to perform anaction based on theAction
input value. All cases are shown in figure 5.4.

Note that the output is always given, even in the write actioncases. This is part of
the design pattern and is useful for signal routing to specify execution order. In addition,
the VI may change the input value before writing and outputting it (e.g. by limiting the
numeric to a certain range in this example).

5.3.2 Dynamic event registration

Events may be registered dynamically using a control reference. In this way events
originating in a control can be handled in a sub-VI instead ofthe VI containing the
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Figure 5.3: Functional global variable example. Block diagram showing the standard
error out functionality.

Figure 5.4: Functional global variable example. Block diagrams for each action case.
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control.
Consider a simple application containing two elements, a numeric control and a

boolean indicator. The indicator is to display whether or not the value of the numeric
control exceeds a value of 5. Once started, the application should run until aborted by
LabVIEW (i.e. no dedicated stop button on the front panel).

Figure 5.5 shows the front panel and an ordinary (i.e. statically registered) even
structure that performs this task. Note that this event structure may not be placed in any
other VI but the one that is running the front panel, as the control and indicator are used
directly and the event structure refers to an event originating in this VI.

Figure 5.5: Dynamic event registration example. Front panel and block diagram using
ordinary,staticallyregistered events.

Inferring dynamic event registration means that the event structure may be contained
by another VI (called ahandlerfor cases like this). In this case references to the original
front panel objects are used to read and write the control values. Figure 5.6 shows the
implementation of the handler using dynamic event registration. The new block diagram
of the main VI is shown in figure 5.7.

Figure 5.6: Dynamic event registration example. Front panel and block diagram of the
dynamic handler.

Note that the handler does not know or care which VI calls it, meaning that this VI
may now be reused by any other piece of software.
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Figure 5.7: Dynamic event registration example. New main VIblock diagram using the
dynamic handler.

5.3.3 Producer/consumer architecture

The producer/consumer architecture consists of one or moreproducer-loops and one or
more consumer-loops. These loops both have access to a buffer. The producers produce
some value (e.g. a measurement) and adds it to the buffer. Theconsumers wait for
something to be added to the buffer, read the element and process it (e.g. shows it on a
graph).

LabVIEW offers several synchronization primitives that may be used as a buffer, out
of which thequeuewas chosen. Eachnodein this architecture can be aproducer; a node
that enqueues elements on the buffer, or aconsumer; a node that dequeues elements
from the buffer. In the general case there may be more than onebuffer. In this case a
node may be aconsumer-produceror even aproducer-produceror consumer-consumer,
however the latter two cases are not used in the developed software.

In order to terminate the producer and consumer loops, a second queue is used. This
is called thestop queue5. Enqueueing any element in this queue signals that all loops
are to terminate. This is done by either the main application(e.g. when the user presses
a stop button) or the nodes themselves (e.g. if an error occours inside a loop).

Figure 5.8 shows an overview of the relationships of these different nodes where two
buffers are used.

Consider the case where we have two loops, one producer and one consumer. The
producer produces numbers one by one through some process that the consumer is un-
aware of. The consumer on the other hand uses those numbers for some purpose that he
producer is unaware of.

For this example we will assume that the producer simply produces random numbers,
and the consumer adds these to a waveform chart. In addition,should anything go wrong
during execution of any loop6 both loops are to terminate. Finally, the front panel should
have a stop button to stop both loops and exit the application.

Figure 5.9 shows the block diagram of an implementation using the producer/con-
sumer architecture that satisfied the specification. Note that the producer and consumer
loops would benefit from being separate sub-VIs. This would require the use of a refer-
ence for the chart in the consumer loop, as discussed in section 5.3.2. Note also that a

5This is a special case of acommand queuewhich may contain information on an action that should be
performed by each loop (e.g. start, stop, initialize, restart etc.).

6in this case, nothing reallycango wrong, but for the sake of demonstration.
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Producer Producer

Consumer
Consumer
Producer

Producer

Consumer

Figure 5.8: Producer consumer architecture overview. The black, horizontal lines repre-
sent buffers (i.e. queues) and the green lines represent thestop queue.
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lossy enqueue is used in this implementation. This means that if the number of elements
in the queue is equal to the buffer size7, the oldest element in the queue is discarded.
This ensures that deadlocks can not occur.

Figure 5.9: Producer/consumer example block diagram.

7Specified upon queue creation. In this example the buffer size is unlimited as no size is specified.
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5.4 Host-NXT communication

5.4.1 Overview and terms

The communication between the host and the NXT revolves around the central type
definition,message. It consists of two parts, aheaderand apayload.

The header contains information on the message structure and a flag telling whether
the sender awaits a reply or not. This can be calculated basedon the payload, with the
exception of the response flag which needs to be set separately. The payload consists of
a variable-length message type identifier string and a type-dependent data field.

The act of turning a message instance to a string (i.e. a byte array) for sending
is calledflatteningthe message. Similarly, the act of turning a received stringinto a
message instance is calledun-flattening. Figure 5.10 shows the message type definition
and flattened, binary representation.

Content Representation

package length unsigned byte
type length unsigned byte
data length unsigned byte
response? unsigned byte

message type string
data string

Figure 5.10: Message type and flattened structure.

Since the native LabVIEW flatten/un-flatten functions work differently on a PC and
the NXT, a custom flattening/un-flattening scheme was implemented.

Because the native LabVIEW NXT communication API supports amaximum of 58
bytes per transmission and a message may be of variable length and larger than this limit,
thepackettype is introduced. The packet type consists of three bytes of structure infor-
mation (analogous to the message header) and a variable-length data field. A flattened
message can besplit into one or more packets, and the receiver canjoin these to create a
flattened message.

Similar to messages, a packet is turned to a string by flattening the packet and the
packet type is remade by un-flattening. Figure 5.11 shows thepacket type definition and
flattened representation.
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Content Representation

number of packets unsigned byte
packet number unsigned byte

data length unsigned byte
data string

Figure 5.11: Packet type and flattened structure.

Implementation and usage

Figure 5.12 shows an example of how the different message type definitions relate to
each other in the source code. This example shows how a message payload is turned
to a set of flattened strings on the sender side, and how these are turned to a message
instance on the receiver side. Note that all the VIs used hereare shared between the host
and the NXT.

Figure 5.12: Message/packet example block diagram.

The front panel of this example after it has been run is shown in figure 5.13.
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Figure 5.13: Message/packet example front panel.

5.4.2 Message payload types

This section will discuss the different message payload types used in the developed
software. All the types discussed in this section refer to themessage payloadfield of the
message type definition in figure 5.10.

Each payload type has its own type definition. The act of goingfrom such an instance
to a message payload is calledcomposinga message. In the other direction, the act of
going from a message payload to an instance of a given messagepayload type is called
parsingthe message payload.

The following payload types are implemented. The message type field is the same
as the payload type name unless otherwise specified.

GET_SERVO_STATE Sent from the host to the NXT. Instructs the NXT to read the
position and speed of each servo and transmit aSERVO_STATE message back to
the host. Shown in figure 5.14.

SERVO_STATE If sent from the host to the NXT with theSET_SERVO_STATE type
field, it instructs the NXT to realize the given servo position and speed set-points.
May also be sent from the NXT to the host with theGET_SERVO_STATE_RESP type
field as a response to aGET_SERVO_STATE message. Shown in figure 5.15.

SET_SERVO_POSSent from the host to the NXT. Instructs the NXT to realize the
given servo position set-points. The speed is calculated such that the servos reach
their set-points in the same time as the time difference since the last message was
received. Shown in figure 5.16.

SET_SERVO_SPEEDSent from the host to the NXT. Instructs the NXT to realize the
given servo speed set-points. Based on whether theincrement? flag is set, the
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position set-points are chosen to the their maximum or minimum values respec-
tively. Shown in figure 5.17.

SET_SERVO_SPEED_FASTSent from the host to the NXT. This is a special version
of SET_SERVO_SPEED that is specifically designed for the 7 servos currently in
use. The NXT will also use a servo I/O function specialized for 7 servos. This
optimization significantly increases the available servo update rate at the cost of
modularity. Shown in figure 5.18.

The following figures show the data type and flattened representation of all the
message types listed above. The position and speed value types are explained in sec-
tion 5.5.1. Note that a word here is an integer using two bytes.

Content Representation

position type unsigned byte
speed type unsigned byte

Figure 5.14:GET_SERVO_STATE message type and flattened representation.

Content Representation

position type unsigned byte
speed type unsigned byte

number of entries unsigned byte

motor id unsigned byte
position unsigned word
speed unsigned byte

...
...

motor id unsigned byte
position unsigned word
speed unsigned byte

Figure 5.15:SERVO_STATE message type and flattened representation.
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Content Representation

value type unsigned byte
number of entries unsigned byte

motor id unsigned byte
position unsigned word

...
...

motor id unsigned byte
position unsigned word

Figure 5.16:SET_SERVO_POS message type and flattened representation.

Content Representation

value type unsigned byte
number of entries unsigned byte

motor id unsigned byte
speed unsigned byte

increment? unsigned byte
...

...
motor id unsigned byte

speed unsigned byte
increment? unsigned byte

Figure 5.17:SET_SERVO_SPEED message type and flattened representation.



5.4. HOST-NXT COMMUNICATION 45

Content Representation

value type unsigned byte
speed motor 0 unsigned byte

...
...

speed motor 6 unsigned byte
increment? 0 unsigned byte

...
...

increment? 6 unsigned byte

Figure 5.18:SET_SERVO_SPEED_FAST message type and flattened representation.

Implementation and usage

Figure 5.19 shows an example of how the composers and parsersrelate to each other
in the source code. Each message type has its own composer andparser. The com-
posers are generally located on the host and the parsers on the NXT. The exception is
theSERVO_STATE message type for which the composer and parser are shared.

Figure 5.19: Compose/parse example block diagram.

An overview of all composers and parsers is shown in figure 5.20. The two on the
far right are polymorphic composers and parsers, added purely for convenience.

5.4.3 Send and receive algorithms

Both the host and the NXT have send and read capabilities between each other. The
LabVIEW offers a basic API for this purpose, and this is exactly the same for commu-
nication over USB and bluetooth. USB communication was usedthroughout the thesis
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Figure 5.20: Compose and parser VIs. All composers return and all parsers accept a
message payload.

work, but bluetooth could be used in the future with absolutely no code change. This API
is designed to be robust and “fool proof”. If a message is transmitted, it is guaranteed
not to contain any errors when received. A minimum amount of communication initial-
ization is needed. If the USB cable is disconnected during transmission, the program
can continue as if nothing happened when it is connected again. However, successful
transmission require the receiver to call the read API at thesame time as the sender sends
a message, and the high-level VIs for this are designed without a timeout.

A communication module was built on this API for both the hostand the NXT.
This module offers methods to send and receive messages in the types specified in sec-
tion 5.4.1. For each method a timeout is given to prevent deadlocks in the case that
connection is lost during transmission.

There are two send and receive methods implemented,regular andbroadcast. The
regular method was designed and implemented first and is designed to be robust and
modular. Using this method a message can be of any length and will be transmitted in
several smaller packets, where each packet is acknowledgedby the receiver.

After this was implemented, the overhead delay in sending a single byte message
was found to be significantly higher than expected. To optimize the servo update rates
the newer and faster method,broadcast, was implemented. This method operates on
the same message type, but a maximum of 58 bytes can be transmitted. The message
is still acknowledged by the receiver. Due to lack of time, the broadcast method is only
implemented as a receiver on the NXT and sender on the host.

Regular method

Figure 5.21 shows a state diagram of the send algorithm. The algorithm starts intrans_req
where it sends the stringtrans_req until it is acknowledged. It then loops in the
trans_pkg state until all packets are sent, and waits for anACK string for each packet.

If at any time something goes wrong (i.e. nothing or something unexpected is re-
ceived) the function either falls back to thetrans_req state or exits, depending on
whether the time limit of the function has been reached.
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trans_req

E: Sendtrans_req

trans_pkg

E: Send packet

receive
anything else

[used time< timeout]

receive nothing
[used time< timeout]

receive nothing
[used time≥ timeout]

receive
anything else

[used time≥ timeout]

receive
ACK

receiveACK
[last]

receive
anything else

[used time≥ timeout]

receiveACK
[more left]

receive
anything else

[used time< timeout]

Figure 5.21: Send message state diagram.E: denotes an action performed when entering
the state.
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Figure 5.22 shows a state diagram of the receive algorithm. The algorithm starts in
rec_req where it waits for the stringtrans_req to be received. It then loops in the
rec_pkg state until all packets are received, and transmits anACK string upon receiving
a packet.

If at any time something goes wrong (i.e. nothing or something unexpected is re-
ceived) the function either falls back to therec_req state or exits, depending on whether
the time limit of the function has been reached.

rec_req

rec_pkg

E: SendACK

receive anything else
[used time< timeout]

/ sendwait_for_trans_req

receive nothing
[used time< timeout]

receive nothing
[used time≥ timeout]

receive
anything else

[used time≥ timeout]

receivetrans_req

receive packet [last]
/ sendACK

receive anything else
[used time≥ timeout]

receive packet
[more left]

receive anything else
[used time< timeout]

/ sendwait_for_trans_req

Figure 5.22: Receive message state diagram.E: denotes an action performed when
entering the state.

Note that the timeouts are only checked when something unexpected occurs. This
means that, if there are no packet losses, once the packet transmissions are started, they
will complete successfully even if the functions take longer to complete than the speci-
fied timeout.

These functions are implementer separately for the host andNXT, as they use dif-
ferent low-level communication APIs. However, they both follow the state diagrams
discussed here.
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Broadcast method

The broadcast VIs have the same signatures as the regular method VIs. They differ in
that only 58 bytes may be transmitted. It is made for optimization and should be used
whenever one knows at compile-time that a message may never exceed this length.

The sender in this case simply re-sends the message at regular intervals until it times
out or receives an acknowledgment. Similarly, the receiverreads until it times out or
receives a message where it sends an acknowledgment and returns.

Implementation and usage

The VIs in figure 5.23 are responsible for communication. Allsend and receive messages
operate on the message type definition shown in figure 5.10.

Figure 5.23: Send and receive VIs.

5.5 NXT software

5.5.1 Servo controller

Low-level API

The NXTServo-v2 controller comes with LabVIEW support available online8. This is
simply a wrapper for the NXT I2C API with some useful register mappings.

This code was used as provided by the manufacturer, but upon inspection several
suboptimalities were found. For one, both the servo speed and position values are written
even if only one of these values were changed, and the servo voltage is always read.

Considering that there seems to be a several millisecond overhead/delay in calling
the I2C API, this can become a bottleneck when handling fast updaterates. To overcome
this a separate writing mode, called thefast mode, was implemented in addition to the
supplied API. The fast mode is used with theSET_SERVO_SPEED_FAST message type

8http://www.mindsensors.com/index.php?module=pagemaster
&PAGE_user_op=view_page&PAGE_id=93
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and differs from the manufacturer’s API in that it assumes exactly 7 servos and is able
to write the position and speed of all servos in only two writeoperations.

Each servo is enumerated inmotor_id.ctl which is shared between and used through-
out the host and the computer software. The servo numbers follow the definition in
table 1.2.

NXTServo-v2 controller

The NXTServo-v2 controller operates on PWM width inµs for position set-points and
PWM width change inµs per 24µs for speed set-points. If a position set-pointP is
written and the associated speed registerS is greater than zero, the controller increases
or decreases the PWM width byS each 24µs until the positionP is reached. IfS= 0
thenP is written at once and the servo moves as fast as possible.

The servos accept pulse widths between 500µs and 2500µs, although the construc-
tion of the hand limits the movement of the servos much more than this. The position
set-points are given in a 16-bit unsigned word, and the speedset-points are given in a
single byte.

When the servo controller receives power it initializes by writing 1500 µs to all
servos. This is a standard neutral position for the servos, but as it is not the natural
position of the hand, a separate initialization is done whenthe NXT application starts.

Set-point value types

The host should not have to worry about the pulse widths on theservos, so there is a need
for an additional, more useful unit type for both position and speed. The NXT therefore
operates with theposition value typeandspeed value typetype definitions. Conversions
between the different types are done by the VIs shown in figure5.24.

Figure 5.24: NXT servo value type conversion VIs.

As the maximum and minimum servo PWM widths are NXT-specific information,
all unit types are available when sending set-points between the host and the NXT. Note
that in section 5.4.1 all message types are shown to accept anunsigned word for position
set-points and an unsigned byte for speed set-points. Floating-point numbers with a
known range (i.e. -1 to 1 or 0 to 1) are transformed to an unsigned byte/word by linear
interpolation (e.g. floating point numbers between 0 and 1 are mapped to unsigned bytes
between 0 and 255) before sending. This is done by the VIs shown in figure 5.24.
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Figure 5.25: Integer/double interpolation utilities.

The only currently implemented and used position type, in addition to the raw PWM
width, is theUnit [-1. . . 0. . . 1] position type. This type represents the position with a
floating point number from -1 to 1, where 0 is a neutral state and -1 and 1 are the extreme
positions. For servos that operate in only one direction from the neutral position the
range from 0 to 1 is used. For values in between a linear interpolation is performed to
find the corresponding pulse width.

The only currently implemented and used speed type, in addition to the raw PWM
width change, is theUnit [0. . . 1] speed type. This type represents the speed as a fraction
of the maximum speed value.

Servo limits

The servo limits are configured inservo_get_limits.vi. For each servo the -1, 0
and 1 position points are defined, which makes up the maximum,minimum and neutral
value. Note that some servos rotate clock-wise and others counter-clockwise, meaning
that the -1 value may be higher or lower than the 0 and 1 values.Some servos operate in
one direction only, and this is represented by having the same value for the -1 and 0 or 1
and 0 values. In addition, the maximum speed is defined for each servo.

Integration with other NXT software modules

All the servo I/O operations are encapsulated in the functional global variablevar_servo_state.nxt.vi.
This VI remembers the state of each servo and allows other VIsto read and write the state
of all servos or a single one. It also supports thefastmode discussed earlier. Figure 5.26
shows the most important VIs for this purpose.

Figure 5.26: NXT servo VIs.
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5.5.2 Controller mode

The controller mode combines the communication and servo I/O module parts to form
the perform the main functionality of the NXT. The NXT startsmy initializing the servos
to their neutral state, before entering an eternal loop. In this loop a message is received
and acted upon. No receive timeout is specified, so the program will run until aborted
from outside (i.e. the user presses the back button on the NXT).

Figure 5.27 shows the top-level block diagram with explanations. Note that the
broadcast communication mode is used in this block diagram.Regular mode can be
used by replacing the VI labeled2) with comm_receive_message.nxt.vi.

Figure 5.27: Controller mode top-level block diagram.

5.5.3 Demo mode

When the NXT enters the demo mode, it starts by reading a specified demo file. It first
reads the very first bytes of the file that constitutes a mode identifier string. This mode
identifier may be eitherPOS or SPEED, and determines the further structure of the file as
well as the operation of the NXT. Table 5.1 shows the structure of these files.

The NXT then operates by reading a set of bytes which is converted to a set of set-
points based on the position/speed value type. These set-points are then actuated and
the NXT continues reading the file. The delta time flag of the file specifies theminimum
time interval for the onset of each set-point set. Given the non-deterministic execution
time, there is no guarantee that the actually used time will not exceed this limit.

When the set-points are positions, the speed is calculated such that the servos reach
their destinations in the same time as the time since the lastset-points were read.

Note that theSPEED mode was not fully implemented. The file format is supported
and speed-set points are supported by the servo module, so this is exclusively due to time
constraints.
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Table 5.1: Demo file structures.
(a) Position mode

Content Representation

mode length (3) unsigned byte
mode (POS) string

value type unsigned byte
delta time [ms] unsigned byte

number of servos (n) unsigned byte

setpoint 0 unsigned word
...

...
setpointn unsigned word
setpoint 0 unsigned word

...
...

setpointn unsigned word
...

...

(b) Speed mode

Content Representation

mode length (5) unsigned byte
mode (SPEED) string

value type unsigned byte
delta time [ms] unsigned byte

number of servos (n) unsigned byte

setpoint 0 unsigned byte
...

...
setpointn unsigned byte
setpoint 0 unsigned byte

...
...

setpointn unsigned byte
...

...

5.6 Host software

5.6.1 Architectural overview

The main application consists of severalsub-applications. A sub-application is the top-
level module type in the application architecture. Each sub-application is a VI whose
front panel is never shown and that never returns (until the application is aborted). All
GUI controls that a sub-application needs are given as references when the VI call is
made. A sub-application communicates with the rest of the application through func-
tional global variable VIs. The complete application consists of the following sub-
applications; Measurement, Training, Calculation and Demo.

The other main module type is theGUI handler. These operate similarly to sub-
applications, except that they do not communicate with any other part of the system.
GUI handlers operate exclusively on the graphical user interface (e.g. enables or disables
choices based on a configuration selection). They may read from but not write to global
variables. The general structure of a GUI handler is an eventstructure with a dynamic
event terminal surrounded by a never-ending while loop.

An illustration of the modularization of the main application is shown in figure 5.28.
The main application works by first initializing itself and then calling every sub-

application and GUI handler in parallel. In this way, all sub-applications contain their
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Sub-
application

Sub-
application GUI handler

Control
references

Functional global
variables

Figure 5.28: Application architecture overview. Note thatthere may be several sub-
applications and GUI handlers.

own internal state. The only loop running in the main application after this is a loop
containing the boolean controls configured with latching mechanisms. The LabVIEW
architecture demands that these be read only one place in thecode (i.e. to avoid race
conditions), and this must be in the VI that contains the controls (i.e. the main application
VI).

5.6.2 Measurements

The EMG and accelerometer measurements are acquired by two National Instruments
data acquisition modules. These both support the NI DAQmx measurement drivers
which are integrated with LabVIEW.

Before a measurement is started, a measurementtask is created. To this task all
the analog input channels are registered, with a name, unique input pin identifier and a
maximum and minimum value.

For each channel thenon-referenced single-ended (NRSE)measurement mode is
used. This means that each channel is measured with respect to a single-node analog
input sense (AISENSE) that is independent on the measurement system ground.

After all channels are registered to the task, a timer is registered as well. The follow-
ing two sample modes are used.

Finite samples Acquires a given number of samples. Uses hardware timing to ensure
that exactly the given number of samples are returned. Infers a delay of about
10 ms for each read operation. Read operations are blocking calls.

Continuous samplesStarts acquiring samples and saves them to a hardware buffer.
Once the task is started, each consecutive call to get the samples will return the
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buffered samples. Runs until the task is stopped. Ensures that no samples are lost,
as long as the buffer does not overflow. Read operations are non-blocking and
may return zero samples.

To ensure that no data is lost in between read operations, thecontinuous sample
mode is used when the system is running. For the training sequence, however, the finite
samples mode is used, as only one read operation per class is needed and this ensures
acquisition of an exact number of samples.

Implementation and usage

The output of the DAQmx call is an array of waveforms9. However, the rest of the
application operate on a custom type definitionwindow. This type definition is shown in
figure 5.29, as well as the VIs used for measurement. The blockdiagram of an example
using these VIs is shown in figure 5.30.

(a) Windowtype definition.

(b) Window/waveform VIs.

(c) Measurement VIs.

Figure 5.29: Measurement type definitions and VIs.

5.6.3 Feature calculations

Since features are calculated by mathematical expressionsand algorithms, a textual lan-
guage is much better suited for this job than LabVIEW. Because of the mathematical

9A waveform is a standard LabVIEW data structure containing an array of floating point numbers, a delta
time flag and some metadata.
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Figure 5.30: Measurement example block diagram.

aspects of feature calculations, MATLAB was the language ofchoice for feature im-
plementation. As mentioned, LabVIEW offers a tight integration with MATLAB, and
reference MATLAB code for many features are readily available from the works of
(Håkonsen 2010).

For future use it is important that features may be added, changed or removed without
editing the software code. To achieve this the application is configured with the path to
a directory containing a set of MATLABm-files. Everym-file in this directory is then
assumed to be a MATLAB function with a known function signature.

All features accept two arguments and return a single resultvalue. The first argu-
ment,data, is a matrix where each column is a time series from a separatesource. The
second argument,config, is a structure containing the sample rate and the ID of each
source (see section 5.6.5). All features must return a vector of real numbers with at least
one element.

When the feature directory is added to the MATLAB search path, which is done pro-
grammatically, a function can be called based on its name. This is done by the following
code

% Get the function to call
f = str2func(feature);

% Calculate
result = f(data, config);

wherefeature is the feature function name (file name excluding extension).
Because some features are specific to either EMG or accelerometer signals, the user

may select what the input of each feature should be. This can be either EMG only,
accelerometer only, both or none. If no inputs are chosen fora feature, this feature is
simply not calculated.

The application can then loop over this selection, create the correct sub-set of input
signals for each feature, and concatenate all outputs to create the final feature vector.
This is performed bycalc_extract_feature_vector.vi and the implementation is
shown in figure 5.31.
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Figure 5.31: calc_extract_feature_vector.vi block diagram.

The following features were implemented in MATLAB and are available in the ap-
plication; AAC, AAV, AR, CC, HIST, MYOP, NT, VAR, WAMP and ZC.

5.6.4 Classifier training and classification

To enhance the future usefulness of the software, the software architecture is specified
to handle several different types of classifiers. The easiest and most straightforward way
of doing this is to make each classifier have their own set of VIs, and use a switch-case
on some classifier type identifier whenever the system needs to access these VIs. The
obvious drawback of this method is that whenever a new classifier is introduced a new
case must be added everywhere it is used in the code.

Another option is to use MATLAB scripts in the same way as is done for features.
However, classifiers can be a much more complex than features. Classifiers may for
instance be adaptive, have a state and require memory in between executions, whereas
features are stateless.

What is needed is a structure that allows the software to operate on a definition of
what a classifier should be able to do (i.e. be trained and perform a classification),
without knowing anything about how it is implemented. This structure must be able to
store it’s own data structure (e.g. a matrix for the LDA and LMS classifiers). This is a
textbook example of where theobject orienteddesign pattern is most useful.
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Object oriented programming (OOP) is, in National Instrument’s own words, a new
and advanced addition to LabVIEW. Although there are significant differences between
OOP in LabVIEW and in a text-based language such as Java or C++, the most funda-
mental aspects remain the same. These include

• Encapsulation of a data structure.

• Member functions, both static and non-static.

• Class hierarchy, including overriding functions.

• Member function visibility, including public (i.e. visible to all other functions),
private (i.e. visible to the class only) and protected (i.e.visible to the class and all
sub-classes only).

• Casting to a more specific (i.e. towards the base class) or to amore general (i.e.
towards the child class) class version.

LabVIEW classes are contained in a.lvclass file, and can be instantiated from a
file path. This makes it ideal for use in this specific case, as the application only needs
to know where the class is located on disk to use it. Thus, whena new classifier is added
and to be used, the application is simply given this new path instead of the old one, and
no further code change is needed10.

Implemented classifiers

Figure 5.32 shows a class diagram of the two implemented classifiers. The base class,
Classifier, has two member fields. These store the configuration presentat the time
of training. Only those that are critical to the execution (i.e. the feature and class se-
lection) are stored. Thus, the classifier is not concerned about other configurations (e.g.
window length, sampling rate etc.) even if changes here may produce sub-optimal clas-
sification. Both of these fields are available for reading trough public getter functions.
However, since the fields are private, they may not be writtento by any other class than
Classifier, which writes these in thetrain function. To ensure that these are written
correctly, all sub-classes are required to unconditionally call the base implementation in
thetrain function. This condition is supported by LabVIEW OOP, and any sub-class
that fail to adhere to this demand will give a compile error.

The internal data structure for both theClassifier LDA andClassifier LMS is a
matrix of real numbers, calledG. This field is private and is only used in the respective
classify overrides.

10In fact, a classifier could be created outside the context of the application project. However, this is un-
practical simply because the input and output values of the member functions are typedefs contained in the
project.
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Classifier

- Feature selection
- Class IDs

+ Read Feature Selection
+ Read Class IDs
+ train
+ classify

Classifier LDA

- G

Classifier LMS

- G

Figure 5.32: Class diagram of the classifier classes.

Both classifiers are implemented using a MATLAB back-end. Inthe LDA classifier
an existing MATLAB implementation was used, whereas a new implementation was
done for the LMS classifier. As both are linear classifiers, classification boils down to
a matrix multiplication, and both classifiers use the following code for classification,
contained in thedoClassify function.

% Actual classification
[val, i] = max(G*[x 1]’);

% Get classId
id = classIds(i);

The LMS classifier training boils down to a pseudo-inverse matrix multiplication.
Training is performed by thetrainLMS method containing the following code.

% Create the training matrices
classIds = unique(target);
nVal = size(data ,2);
Y = zeros(nClass ,nVal);
for iClass=1:nClass;

class = classIds(iClass);
Y(iClass ,:) = (target == class);

end
X = [data’ ones(nVal ,1)];

% Actual training
G = (X\Y’)’;

Implementation and usage

A class member function VI looks just like a regular VI, but ithas an instance of the
object as an input and output. Thetrain andclassify function VIs for the LMS
classifier are shown in figures 5.33 and 5.34 respectively. Note that the only difference
between these VIs and those of the LDA is the type of the objectinput and output, and
that thetrainLMS function is replaced withtrainLDA.
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Figure 5.33: LMStrain function VI.

Figure 5.34: LMSclassify function VI.
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5.6.5 Application configuration files

Signal routing

All channel names are enumerated insource_id.ctl. The EMG channels are labeled
EMG01, EMG02, . . . , EMG16. The accelerometer channels are labeledACC01X, ACC01Y,
ACC01Z, . . . ,ACC16X, ACC16Y, ACC16Z. The numbers refer to the numbers on the Trigno
electrode units.

The channel routing is located in./Computer/Config/sources.txt. Each row in
this file assigns an enumerated channel name to a LabVIEW taskchannel in the follow-
ing format;<channel id>=<task channel>.

As an example, the following lines assigns the EMG channel ofthe 9’th and 10’th
electrode units to the first and second analog input pins of the module with idDev4:

EMG09=Dev4/ai0
EMG10=Dev4/ai1

Classes

All classes have an unique string identifier, a label and an illustration file name. The
available classes are located in./Computer/Config/classes.txt. Each row in this
file adds a new class available for training in the following format; <id> <label>
<image>. Note that the white-space characters are tabular characters. The image field is
the absolute path to ajpg file.

As an example, the following lines creates the “wrist flexion” and “wrist extension”
classes:

WRIST_FLEXION Wrist flexion <some path >\wrist flexion.jpg
WRIST_EXTENSION Wrist extension <some path >\wrist extension.jpg

Servo set-points

Each class can have a set of servo set-points associated withit. These set-points are lo-
cated in./Computer/Config/servo_setpoints.txt. Each row in this file associates
a class with a set of servo set-points in the following format; <id> <setpoints>. Note
that the white-space character is a tabular character. Thesetpoints field consists of 7
floating point numbers separated by white-space. The i’th number in this list gives the
set-point of the i’th servo, enumerated inmotor_id.ctl discussed in section 5.5.1. The
set-points are given in the “unit” speed type, as discussed in the same section. The class
identifiers must match those defined in the class-file discussed above.

As an example, the following lines defines the wrist flexion and wrist extension set-
points.
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WRIST_FLEXION 0 0 1 0 0 0 0
WRIST_EXTENSION 0 0 -1 0 0 0 0

5.6.6 Sub-application: Measurement

The measurement sub-application is a very simple one. Its function is to measure the
selected signals with the selected source configuration, and display the results to the
user. Figure 5.35 shows a state diagram of the sub-application.

stopped

E: Update GUI

running

E: Update GUI
E: Start loops

stopping

E: Send stop command

start

stoperror

all loops
stopped

Figure 5.35: Measurement sub-application state diagram.

The sub-application is implemented as a producer-consumerarchitecture. When the
measurement is running a producer communicates with the DAQmx drivers to acquire a
set of measurements that are then added to a buffer. From thisbuffer a consumer pulls
the measurements and displays them in a graph.

In addition, a GUI handler monitors the buffer and displays its state (i.e. the number
of elements waiting to be consumed). This is useful as it illustrates whether there is
enough processing power to perform all tasks without data loss or delay.

5.6.7 Sub-application: Training

The training sub-application handles all the training-related aspects of the application.
When a training sequence is started with a given configuration, a class sequence is cre-
ated based on the selected classes.

For each class a producer-consumer relationship is established with a measurement
and a GUI loop. When the measurement is done the loops exits and the data is added
to a training data set. Once all classes are trained, the dataset is saved to a functional
global variable, so that it may be used by other sub-applications.
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The training may be paused or aborted at any time. In the paused state the user may
return to a previous class and continue the training from there, overwriting existing data.

If the target functional global variable already contains training data, the user may
either overwrite with, append with or discard the new data. Upon pressing the abort
button, the user is prompted with a warning message, and may return to the training if
the abort command was a mistake on his or her part.

Figure 5.36 shows a state diagram of the sub-application.

stopped

E: Update GUI

running

E: Update GUI
E: Start loops

pausing

E: Send stop command

paused

E: Update GUI

stopping

E: Send stop command

saving

E: Show save options

aborting

E: Show abort options

start

pause

all loops
stopped

start

abort

cancel

abort

back
/

decrement
class number

done[last]

done[more left]

all loops
stopped

[data exists]

user input
/ save

all loops stopped
[no data exists]

/ save

Figure 5.36: Training sub-application state diagram.

5.6.8 Sub-application: Classifier training

The classifier training sub-application calculates a classifier based on the available train-
ing data and the current configuration. Since this is done in asingle step, it is the simplest
sub-application, coding-wise, as no producer-consumer relationship is needed.

Figure 5.37 shows the block diagram of this sub-applicationVI. Note the dynamic
event registration and global functional variable usage for both the training data and
current classifier.
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Figure 5.37: Classifier training sub-application block diagram.

5.6.9 Sub-application: Demo

The demo sub-application brings the measurement modules, the trained classifier and
the NXT together to function as the demonstrator that is the original purpose of the
application. Measured signals are classified and the appropriate servo set-points are
communicated to the NXT, which actuates these on the servos.

Figure 5.38 shows an overview of the communication flow between the different
modules and loops during normal execution. The signals are explained in table 5.2.

Again a producer-consumer architecture is used. The measurement loop produces a
measurement by contacting the DAQ hardware, and adds these measurements to a buffer.
The calculation loop consumes the measurement from this buffer and produces a class
identifier which is added to a second buffer. Lastly, the communication loop consumes a
classification from this buffer and communicates the appropriate servo set-points to the
NXT.

The NXT simply awaits a communication, and upon receiving, actuates the received
set-points on the servos.

The status of each buffer is displayed in the same way as in themeasurement sub-
application.

Figure 5.39 shows the block diagram ofdemo_run.vi. This function initializes and
runs the producer-consumer architecture for the demo sub-application. Note that in ad-
dition there is a GUI controller handling the stop-button, but this is outside the scope of
this function. The communication loop is only created if theuser enables it, meaning
that the demonstration must be restarted in order for changes in this setting to take ef-
fect. This is done because the communication loop tries to initialize the communication,
resulting in an error if the NXT is not connected.
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Table 5.2: Explanation of labels in figure 5.38

Label Explanation

1 The measurement loop makes a call to the DAQmx
drivers that communicate with the DAQ hardware.

2 The call returns a set of measured time series.
3 The measured window is added to the measurement

buffer.
4 The calculation loop polls the measurement from the

buffer.
5 A MATLAB script is called for each feature.
6 Each MATLAB script returns an array of feature values.
7 A feature vector is handled to the classifier instance.
8 The classifier may call a MATLAB script to perform the

calculations.
9 The MATLAB script returns a class identifier.
10 The classifier returns a class identifier.
11 The class identifier is added to the communication buffer.
12 The communication loop polls the class identification

from the buffer.
13 A set of servo set-points corresponding to the class iden-

tifier are communicated to the NXT.
14 The commuication loop on the NXT receives and parses

the set-points and gives them to the servo module.
15 The servo module communicates with the servo con-

troller over I2C to actuate the set-points.



5.6. HOST SOFTWARE 67

Figure 5.39: Demo sub-application core top-level block diagram.



68 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION



6
Results

6.1 NXT software

All the NXT functionality is contained in a single application. Upon entering this appli-
cation a simple menu is displayed, operated by the arrow and enter buttons on the NXT.
There are two main modes, “demo” and “controller”. The controller mode has a second
parameter which is the send/receive method the applicationwill use. In addition, a servo
test mode is available.

When selecting the demo mode, a new menu is shown where the user may select
which demo file to run1. Screenshots of these menus are shown in figure 6.1.

When the controller mode is entered the servos are initialized to their neutral posi-
tion, and the NXT starts listening to communication from thehost. After receiving a
message and updating the servos, the servo state is displayed on the screen as<pos> /
<speed> with values given in PWM width. Screenshots of these menus are shown in
figure 6.2.

The servo test application is useful when changes to the model has been done. It
allows manual position control of each servo. After selecting a servo the position can be
increased or decreased by pressing the arrow buttons. Pressing the enter button returns
to the servo menu. Screenshots of these menus are shown in figure 6.3.

1 Note that this menu must be changed in code as the NXT does not support file listings programmatically.
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Choose mode

> Demo
Controller
Controller (B)
Test comm.
Test servos

Select a demo file

> Ind. fing. PWM
Ind. fing. UNIT

Figure 6.1: NXT menu, “demo” application.

Choose mode

Demo
Controller

> Controller (B)
Test comm.
Test servos

1650 / 10
1940 / 40
1500 / 50
1180 / 50
840 / 100
1470 / 10
2100 / 100

Figure 6.2: NXT menu, “controller” application.

Choose mode

Demo
Controller
Controller (B)
Test comm.

> Test servos

Pronation
Ulnar deviation

> Wrist flexion
Fingers flexion
Finger flexion
Thumb abduction
Thumb flexion

Wrist flexion

Position: 1500

Figure 6.3: NXT menu, “test servos” application.



6.2. HOST SOFTWARE 71

6.2 Host software

The host application is designed to allow the user to efficiently configure, train and run
the controller. It is easy to use and feels robust and bug-free. Screenshots of the different
aspects of the application user interface are shown in figures 6.4 through 6.11.

Every aspect of the functional specification presented in chapter 3 is covered, as well
as some additional ones. For instance, the training data maybe exported to a MATLAB
mat file. This enables the application to be used exclusively forits training module, and
all processing to be done off-line.

Another additional feature is the option of analyzing features after completing a
training sequence. When this option is chosen, several classifiers are trained based on
the selected features, and displayed to the user. Even though the results are only plotted
in R

2 (e.g. as in figure 6.12) when the true feature space is much larger, this still gives
an indication on what features are likely to perform well on the current data set.

The classifier may be configured with two options. If the “strict transitions?” flag is
checked, the only class transitions allowed are those entering or leaving the “no move-
ment” class. Although it makes the controller slower to operate, this will in some cases
reduce the number of errorous classifications.

The other classifier option is the “classification hysteresis” number. If this number is
set toN, the controller must receiveN+1 consecutive classifications of classc in order
to change the current class toc. This slows the controller down, but has proved to be
essential for the model to move smoothly, and is very effective at removing unwanted,
rapid class changes.

When running the demonstrator the user may select whether ornot to communicate
with the NXT. In addition, the speed of the NXT servos may be set by a slide bar. The
value of this bar (in the range[0,1]) is multiplied to the configured servo speed set-
points. If the speed is set too high, the user must concentrate too hard to achieve fine
tuning control of the model. If set too low however, the modelbecomes unacceptable
slow. This slide bar enables the user to change the speed at run-time which has proved
to be a valuable option.
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Figure 6.4: Information tab. Allows the user to save or load from an application state
file. The input fields are used to add information to a saved state and are all optional.
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Figure 6.5: Configuration tab. Allows the user to configure and select which sources to
use.
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Figure 6.6: View data tab. Measures and displays data based on the current configura-
tion.
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Figure 6.7: Training configuration tab. Allows the user to configure a training sequence.
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Figure 6.8: Training running tab. The training sequence canbe paused, restarted and
aborted.
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Figure 6.9: Training results tab. Upon completing a training sequence the user may
inspect the signals visually. These may also be exported to MATLAB for offline pro-
cessing.
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Figure 6.10: Classifier training tab. The user may select theinput of each feature. The
“analyze features” option displays the classification as shown in figures 6.12 and 6.13.
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Figure 6.11: Demonstrator tab. The user may configure the classification and the host-
NXT communication.
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6.3 Controller

With four electrodes, two on the wrist flexors and two on the wrist extendors, one can
control the following classes with almost no error in classification; no movement, wrist
flexion, wrist extension, power grip, hand open, underarm pronation and supination.
For this to work best the training set ought to be at least two repetitions of at least two
seconds of sampling per class. Note that with only one test subject (i.e. the author) one
cannot conclude that these results will reproduce for otherusers.

Using at least a single classification hysteresis (i.e. two similar, consecutive clas-
sifications must occur in order to change class) proved to be vital to avoid oscillations
and rapid class change in between motion classes. Requiringmore than two consecutive
classifications turned out to infer such high delays (with a 10 Hz window update rate) as
to make the system very hard to use.

6.4 Classifier performance

There are several aspects of the classifier that can be studied in the context of this thesis.
The following two terms are used throughout section 6.4. Theseparabilityof a classifier
is the percentage of feature vectors in the training data that are classified correctly by the
classifier. However, this not the whole story, as the controller may make classification
errors even with a training set separability of 100 %, simplybecause the EMG signals are
non-deterministic. Theperformanceof a classifier is the percentage of feature vectors
from a test data set that are classified correctly.

The strategy for calculating these were to separate the training data into two parts.
The first is used to train a classifier and calculate its separability, and the second is used
to calculate the performance.

The separability and performance of LDA and LMS classifiers using different, two-
dimensional feature spaces are discussed in section 6.4.1.

Note that when visualizing and analyzing the classifiers it is necessary to reduce the
feature-space to comprehensible sizes. In practice, the feature space can easily beR70
using various features and eight electrodes.

6.4.1 LDA and LMS classifier performance

Figures 6.12 and 6.13 show the LMS and LDA classifier schemes and separability for
different features on the same data set. Two electrodes wereused, one on the wrist
flexors and one on the wrist extendors. All the calculated features are scalar, so the
feature space is alwaysR2, making visualization easy.

By visual inspection, the LDA classifier seems to perform consistently better than the
LMS classifier. However, the LDA training time is consistently higher than for the LMS
classifier. Tests on different training data set sizes revealed that the LDA training takes
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close to twice the time compared to the LMS classifier. However, the actual calculation
time for the MATLAB scripts are done in a matter of milliseconds on a standard desktop
computer, so for the purpose of this thesis this does not matter2.

Figures 6.14 and 6.15 show the classifier schemes and performance when only half
the training data set of section 6.4.1 is used for classifier training. Note that most sepa-
rability values are now reduced compared to figures 6.12 and 6.13.

6.4.2 LDA and LMS classifier separability with multiple features

So far only two scalar features were used at one time. This results in an easily plotted,
two-dimensional feature space, but the performance is not always acceptable. This is
specially true when the number of classes increase. To investigate what impact the num-
ber of features have on classifier separability and performance, the following experiment
was carried out.

For a given data set,N different feature values were calculated. Then, for each
combination ofn feature values out ofN possible, LMS and LDA classifiers were trained
and their separabilities calculated. This was repeated forincreasingn, and for eachn the
LSM and LDA classifiers with highest separability were kept and defined asoptimal.
The performance of these classifiers were then calculated.

The dataset was recorded using the same electrode configuration as in section 6.4.1,
but two additional classes were introduced. The available features were AAV, ZC, NT,
MYOP, WAMP and AR. Since the AR feature has four values (i.e. coefficients) and the
others are scalar, 9 feature values were available for each EMG signal. Two electrodes
were used, resulting in a maximum feature space ofR

18.
Figure 6.16(a) shows the results forn = 2, and figures 6.16(b) and 6.16(c) show

the results for alln. The figure clearly demonstrates that the LDA performs significantly
better than LMS for small feature spaces, but the differencedecrease as the feature space
grows. Another interesting observation is that the curves are not strictly increasing. In
other words, there are some features thatare harmfulfor the classification.

2 The main application uses a few seconds on training, even though the actual MATLAB script executes
in milliseconds. This may be due to overheads in transferring large amounts of data between LabVIEW and
MATLAB, but as it poses no real problem this was not investigated further.
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Figure 6.12: Comparison between LMS and LDA classifier performance in theR2 fea-
ture space.Red: no movement,Blue: wrist flexion, Black: wrist extension,Green:
power grip.
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Figure 6.13: Comparison between LMS and LDA classifier performance in theR2 fea-
ture space.Red: no movement,Blue: wrist flexion, Black: wrist extension,Green:
power grip.
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Figure 6.14: Comparison between LMS and LDA classifier performance in theR2 fea-
ture space.Red: no movement,Blue: wrist flexion, Black: wrist extension,Green:
power grip.
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Figure 6.15: Comparison between LMS and LDA classifier performance in theR2 fea-
ture space.Red: no movement,Blue: wrist flexion, Black: wrist extension,Green:
power grip.
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(a) Separability with feature spaceR2. Red: no movement,Blue: wrist flexion,Black: wrist extension,
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(b) Separability with increasing feature space.Red:
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Figure 6.16: Comparison between optimal LMS and LDA classifiers separability and
performance for different feature space sizes.
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6.4.3 Feature/classification combinations

Because the LDA and LMS classifiers work in different ways, a feature set resulting in
good separability for a LDA classifier does not necessarily do so for a LMS classifier.

To study this, the following experiment was done. For each combination of 4 feature
values of the lateral and 4 of the medial electrode, a LDA and aLMS classifier was
trained and its separability was calculated. Note that the feature space is exactly the
same size for each classifier (R

8). The same dataset as presented in section 6.4.2 was
used.

Figure 6.17 shows the class separability for all classifiers. The values are sorted
such that combination 1 has the highest separability, and the last combination has the
lowest (this is done separately for the LDA and LMS classifiers). This figure clearly
demonstrate the importance of using correct features, as the difference in separability
from the best to the worst combination can easily be 25 %. Notethat there are several
combinations resulting in the same separability.
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Figure 6.17: LMS and LDA performance with different featurecombinations. The x
axis shows the combination number, ranging from the best to the worst separability for
each classifier.Red:LDA, Blue: LMS.

Figure 6.18 shows the separability of the 50 best LMS and LDA combinations. One
can see that the LDA generally outperforms the LMS, but for some feature value com-
binations, the LMS has the highest separability. Feature selection is therefore dependent
on the classifier in use.

6.4.4 Correlation between features

Having independent features is important in order to utilize the available processing
power of the platform where calculation is done, as using heavily correlated features
does not increase the classification quality. For this thesis work processing power was
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Figure 6.18: LMS and LDA separability with different feature combinations. The x axis
shows the combination number, ranging from the best to the worst separability LMS (a)
and LDA (b).Red:LDA, Blue: LMS.

superfluous as a desktop computer was used, but for usage on anactual prosthesis this is
not the case.

The correlation between different feature values was calculated for the same dataset
as used in section 6.4.1. Pearson’s correlation coefficientgiven by

ρX,Y =
cov(X,Y)

σXσY
(6.1)

was estimated by

ρ̂X,Y =
∑N

i=1(Xi − X̄)(Yi − Ȳ)
√

∑N
i=1(Xi − X̄)2

√

∑N
i=1(Yi − Ȳ)2

(6.2)

whereX̄ represents the average value of allX samples. The results are shown in ta-
bles 6.1 and 6.2.

AAV is generally highly correlated with AAC and VAR, whereasZC, NT and MYOP
are less correlated with other features. These results are in agreement with the conclu-
sions suggested in chapter 2.4.2.

One can also see that whereas AAV and VAR are always highly correlated, AAV and
AAC are highly correlated when the muscle is active (i.e. flexion and power grip for the
medial side, extension and power grip for the lateral side).This seems to be the case
between AAV and WAMP as well.
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Table 6.1: Feature correlation, electrode on medial side ofunderarm.
(a) No movement

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.52 0.87 0.21 0.82 0.0077 0.44
AAC 1 0.45 0.35 0.43 0.062 0.38

MYOP 1 0.049 0.58 0.029 0.28
NT 1 0.37 0.25 0.062

VAR 1 0.1 0.25
WAMP 1 0.12

ZC 1

(b) Wrist flexion

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.91 0.59 0.38 0.97 0.89 0.46
AAC 1 0.36 0.42 0.93 0.96 0.22

MYOP 1 0.12 0.43 0.33 0.58
NT 1 0.43 0.41 0.015

VAR 1 0.92 0.34
WAMP 1 0.24

ZC 1

(c) Wrist extension

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.59 0.81 0.086 0.96 0.44 0.65
AAC 1 0.37 0.032 0.61 0.57 0.27

MYOP 1 0.076 0.65 0.26 0.65
NT 1 0.12 0.22 0.04

VAR 1 0.43 0.56
WAMP 1 0.3

ZC 1

(d) Power grip

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.96 0.01 0.69 0.96 0.86 0.0027
AAC 1 0.089 0.76 0.91 0.94 0.18

MYOP 1 0.052 0.092 0.085 0.45
NT 1 0.58 0.84 0.28

VAR 1 0.75 0.0034
WAMP 1 0.24

ZC 1
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Table 6.2: Feature correlation, electrode on lateral side of underarm.
(a) No movement

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.19 0.85 0.016 0.81 0.24 0.47
AAC 1 0.17 0.33 0.24 0.17 0.26

MYOP 1 0.054 0.63 0.093 0.34
NT 1 0.019 0.33 0.00025

VAR 1 0.24 0.11
WAMP 1 0.097

ZC 1

(b) Wrist flexion

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.63 0.84 0.12 0.92 0.37 0.62
AAC 1 0.52 0.54 0.58 0.096 0.38

MYOP 1 0.21 0.65 0.36 0.55
NT 1 0.016 0.085 0.073

VAR 1 0.42 0.48
WAMP 1 0.29

ZC 1

(c) Wrist extension

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.88 0.59 0.59 0.98 0.85 0.5
AAC 1 0.37 0.71 0.86 0.94 0.32

MYOP 1 0.089 0.54 0.43 0.55
NT 1 0.58 0.75 0.15

VAR 1 0.82 0.45
WAMP 1 0.28

ZC 1

(d) Power grip

AAV AAC MYOP NT VAR WAMP ZC
AAV 1 0.84 0.67 0.4 0.96 0.78 0.53
AAC 1 0.48 0.54 0.84 0.94 0.26

MYOP 1 0.16 0.63 0.47 0.5
NT 1 0.48 0.51 0.0039

VAR 1 0.78 0.39
WAMP 1 0.23

ZC 1
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Conclusion

Through this thesis a working control system for a 7 degrees of freedom hand prosthesis
model controlled by electromyographic and accelerometer signals has been developed.
It has been an ambitious project with a very satisfying results, of which the author is
truly proud.

7.1 Controller

The controller is training based, meaning that each user gets a unique controller. Every
algorithm used can fit to any number of electrodes and degreesof freedom. This training
is done in a minute or two, and configuration is done from a simple graphical user
interface.

Using four electrodes and a training sequence of a couple of minutes, the author
was able to control the hand using 7 motion classes. The levelof precision is limited
by the time delay from a movement is performed til the hand starts moving. This time
delay was definitely noticeable, but the achieved precisionwas certainly good enough
for demonstration purposes.

Some classes were harder to consistently classify correctly than others, such as pinch
grip. However, when using eight electrodes instead of four,this may be easier to achieve.

The performance of the controller was thoroughly analyzed,using different classi-
fiers and features. This gives insight into how different classifier and feature combina-
tions perform for myoelectric prosthesis control.
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7.2 Host software

In addition to implementing a controller and fulfilling the functional specification, al-
most every aspect of the host software is designed with future extension in mind. New
motion classes may easily be added, as well as new classifiersand features.

The MATLAB back-end enables developers to change features and classifiers in a
powerful, high-level language, and without knowledge of the LabVIEW code.

It is the author’s own conclusion that the developed software is not merely a con-
troller as assigned in the thesis problem description, it isasoftware frameworkdesigned
to be easily extended in the future. Much effort has been put in to making the software
modular, and to make as many aspects as possible configurableas opposed to hard-
coded. Each of thẽ150 VIs in the developed software has a few descriptive linesof
text in its documentation available in the LabVIEW editor, and some are more heavily
documented. The structure of the LabVIEW project, file names, file hierarchy and the
VI icon practices are very strict and well structured.

The LabVIEW platform has proved to be a great choice of software platform for the
host and the application has a robust and bug-free feeling toit.

7.3 NXT software

The NXT was programmed in NXT-G using the LabVIEW NXT toolkit. Because the
overheads in the native communication APIs (both USB, bluetooth and I2C) were much
higher than expected, the NXT has become the bottleneck of the system, limiting the
servo set-points update rate. However, with some effort this update rate has been in-
creased to acceptable levels, although the delay from a class is shown on the screen to
the model starts moving is noticeable. On the other hand, theLabVIEW NXT toolkit
makes it easy to create robust code, and the NXT software feels bug-free and is easy to
use.



8
Suggested future work

8.1 Controller changes

The analysis of the classifier performance demonstrates theimportance offeature selec-
tion. In an optimal case, the classifier would always use the features that give optimal
performance for the given subject at the given time. For the analysis in this thesis, a
simple brute-force approach was used, which takes too much time to be used in practice.
However, many resources are available on feature selection, including Theodoridis &
Koutroumbas (2008). Implementing such an algorithm would increase the demonstrator
performance.

8.2 Software changes

8.2.1 Error handling

As mentioned earlier, the software does not perform any error-handling, which is an
addition that would benefit the user. Error-wires are used throughout the source code
to facilitate error-handling implementation in the future, but errors are most commonly
displayed and cleaned. An overview of possible errors and corresponding actions should
be developed, before changing the appropriate VIs to adhereto this specification.

93



94 CHAPTER 8. SUGGESTED FUTURE WORK

8.2.2 Code “tweaks”

Through my experience developing with the designed software framework, some subtle
possible improvements were found that were not implemented. This is strictly due to
time constraints, as none of these aspects are hard to implement.

• Make the base classifier object store more configurations (i.e. source configura-
tion). As it is now, the user may train a classifier then changewhich electrodes to
use. If the user then tries to run the demonstrator, an error may occur because the
new source configuration is applied to an unsupported classifier.

In order to fix this, the classifier should store the source configuration used during
training. This is done for the feature selection and training class selection, so it
could easily be done the same way for source configuration.

• Combine broadcast and regular communication mode VIs. As itis now, the re-
ceiver must know in advance what communication mode the sender uses. This
is not particularly troublesome, but at the same time not really elegant. A possi-
ble solution is to have each transmission contain a single byte (e.g. the first one),
identifying the communication mode (e.g. 1 for broadcast and 0 for regular mode).

• When demonstration is running on the host, the measurement buffer status bar
does not contain as much information as it could. A better indicator of the system
performance would be the difference between the number of measured samples
actually read and the number specified in the configuration. If this number is high,
it means that classification and feature calculation takes too much time.

This would be very easy to fix, simply change the input of the buffer graph.

• The broadcast send/receive method is only implemented as sender on the host and
receiver on the NXT. Implementing this in the other direction would be useful for
when the NXT needs to communicate back to the host.

• The speed type used now is a number between 0 and 1. However, tospecify the
direction an additional flag is needed when sending. This could be simplified
by using the same -1 to 1 uword as for position, where the sign determines the
direction. The only thing to note is that the precision available when using an
uword is much larger than the NXTServo-v2 allows.

8.3 Changes in the system layout

Through my experience with the system, having two nodes (host and NXT) feels rather
superfluous. As it is now the host performs all the work with the exception of the I2C
communication with the servo controller. For a future project I would suggest removing
one of these nodes.
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Removing the NXT is the most natural approach, as a computer is needed anyway
(i.e. for the data acquisition and training). This could be done by replacing the NXT
with a simple circuit board with a serial interface, which issupported by LabVIEW.
This board would not need any logic, it could be a byte-to-byte transfer from UART to
I2C. Another option would be to replace the NXTServo-v2 controller with another servo
controller supporting a USB or USART interface.

One could also move in the other direction, i.e. from the computer towards the NXT.
Note that a computer would still be needed to acquire the signals, but implementing the
control scheme on the NXT will take the system in the direction of an actual prosthesis
implementation. For this purpose the LabVIEW NXT toolkit will certainly be inade-
quate, but a low-level C implementation could perform quitewell given the high clock
speed of the ARM7.
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A
Developer’s guide: Hardware

This short guide will serve as a quick reference to the hardware aspects of the system.

Servo warning
The thumb abduction/adduction servo has been discon-
nected on the model, because connecting it results in a
short-circuit.

A.1 Power supply

Power warning
When external power is used for the servo motors, this
power sourcemust be disconnectedwhenever the NXT
is turned off or disconnected from the servo controller.
If this is not done there will be noise on the PWM
lines resulting in chaotic movement of the hand.

The NXT may be used as a power supply for the servos. However, since the batteries
are drained so quickly, using an external power source is recommended.
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The power source should be at 8.0 V and support a maximum current of about 2.0 A.
The normal power drain is much less than this, but when running several motors at once,
the current peaks about this value.

A.2 Trigno/host connections

This section describes all connections of the analog signals as used by the developed
software “out of the box”. Note that the signal routing may bechanged in software as
described in the software developer’s guide.

Tables A.1 and A.2 show the connection schemes of the analog signals from the
Trigno system to the DAQPad-6016 and PCI-6025E respectively. All pin numbers and
names refer to the manufacturer’s datasheets.

The wire colors refer to those on the cable provided by Delsyswith the Trigno sys-
tem. Note that the wires in this cable are twisted in groups oftwo. The twisted cables
always have alternating colors (e.g. the gray/tan wire is twisted with the tan/gray wire).

Note that the accelerometer signals exhibit a fixed 48 ms delay from the time a sensor
detects an event to the time the analog signal is reproduced.

A.3 NXTServo-v2 controller

The NXTServo-v2 controller operates on PWM width inµs for position set-points and
PWM width change inµs per 24µs for speed set-points. If a position set-pointP is
written and the associated speed registerS is greater than zero, the controller increases
or decreases the PWM width byS each 24µs until the positionP is reached. IfS= 0
thenP is written at once and the servo moves as fast as possible.

The servos accepts pulse widths between 500µs and 2500µs, although the construc-
tion of the hand limits the movement of the servos much more than this. The position
set-points are given in a 16-bit unsigned word, and the speedset-points are given in a
single byte.

When the servo controller receives power it initializes by writing 1500 µs to all
servos. This is a standard neutral position, but as this is not a natural position of the
hand, a separate initialization is done when the NXT application starts.
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Table A.1: Trigno to DAQPad-6016 connections. By DAQPad input name and DAQPad
input pin.

DAQPad inputs Trigno outputs Wire colors

Name Pin Name Pin Main Stripe

AI 0 1 EMG 9 51 Gray Tan
AI 1 4 EMG 10 49 Blue Tan
AI 2 7 EMG 11 47 Yellow Tan
AI 3 10 EMG 12 45 Pink Tan
AI 4 17 AX 9 50 Violet Tan
AI 5 20 AX 10 48 Green Tan
AI 6 23 AX 11 46 Orange Tan
AI 7 26 AX 12 44 Brown Tan
AI 8 2 AZ 9 17 Tan Gray
AI 9 5 AZ 10 15 Tan Blue
AI 10 8 AZ 11 13 Tan Yellow
AI 11 11 AZ 12 11 Tan Pink
AI 12 18 AY 9 16 Tan Violet
AI 13 21 AY 10 14 Tan Green
AI 14 24 AY 11 12 Tan Orange
AI 15 27 AY 12 10 Tan Brown
AI SENSE 13 GND 22 Brown Blue

DAQpad inputs Trigno outputs Wire colors

Pin Name Pin Name Main Stripe

1 AI 0 51 EMG 9 Gray Tan
2 AI 8 17 AZ 9 Tan Gray
4 AI 1 49 EMG 10 Blue Tan
5 AI 9 15 AZ 10 Tan Blue
7 AI 2 47 EMG 11 Yellow Tan
8 AI 10 13 AZ 11 Tan Yellow
10 AI 3 45 EMG 12 Pink Tan
11 AI 11 11 AZ 12 Tan Pink
13 AI SENSE 22 GND Brown Blue
17 AI 4 50 AX 9 Violet Tan
18 AI 12 16 AY 9 Tan Violet
20 AI 5 48 AX 10 Green Tan
21 AI 13 14 AY 10 Tan Green
23 AI 6 46 AX 11 Orange Tan
24 AI 14 12 AY 11 Tan Orange
26 AI 7 44 AX 12 Brown Tan
27 AI 15 10 AY 12 Tan Brown
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Table A.2: Trigno to PCI-6025E connections. By PCI input name and PCI input pin.

PCI inputs Trigno outputs Wire colors

Name Pin Name Pin Main Stripe

ACH0 3 EMG 13 42 Violet White
ACH1 5 AZ 13 8 White Violet
ACH2 7 EMG 14 40 Green White
ACH3 9 AZ 14 6 White Green
ACH4 11 EMG 15 38 Orange White
ACH5 13 AZ 15 4 White Orange
ACH6 15 EMG 16 36 Brown White
ACH7 17 AZ 16 2 White Brown
ACH8 4 AX 13 41 Blue White
ACH9 6 AY 13 7 White Blue
ACH10 8 AX 14 39 Yellow White
ACH11 10 AY 14 5 White Yellow
ACH12 12 AX 15 37 Pink White
ACH13 14 AY 15 3 White Pink
ACH14 16 AX 16 35 Tan White
ACH15 18 AY 16 1 White Tan
AISENSE 19 GND 43 Gray White

PCI inputs Trigno outputs Wire colors

Pin Name Pin Name Main Stripe

3 ACH0 42 EMG 13 Violet White
4 ACH8 41 AX 13 Blue White
5 ACH1 8 AZ 13 White Violet
6 ACH9 7 AY 13 White Blue
7 ACH2 40 EMG 14 Green White
8 ACH10 39 AX 14 Yellow White
9 ACH3 6 AZ 14 White Green
10 ACH11 5 AY 14 White Yellow
11 ACH4 38 EMG 15 Orange White
12 ACH12 37 AX 15 Pink White
13 ACH5 4 AZ 15 White Orange
14 ACH13 3 AY 15 White Pink
15 ACH6 36 EMG 16 Brown White
16 ACH14 35 AX 16 Tan White
17 ACH7 2 AZ 16 White Brown
18 ACH15 1 AY 16 White Tan
19 AISENSE 43 GND Gray White



B
Developer’s guide: Software

This is short guide will serve as a reference for developers changing software configu-
rations or extending the software. This is a practical guide, for more information please
refer to the main thesis.

B.1 Installation

For the development a 32-bit version of Windows 7 was used. The following software
needs to be installed.

LabVIEW The version used during development was LabVIEW 2010 Professional De-
velopment System.

LabVIEW NXT toolkit This is freely available from the NI Developer Zone1 if not
included with the LabVIEW installation.

VI package manager This is an application that manages additional packages forLab-
VIEW. Specifically it is needed to easily download and install certain Open-G
packages. Available freely (the community edition) online2.

1http://zone.ni.com/devzone/cda/tut/p/id/4435
2http://jki.net/vipm
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LabVIEW packages Using the VI package manager, install the following packages.

• UI Control Suite: System Controls 2.0, contains controls used by
the host application.

• nirsc_html_help_common

• oglib_appcontrol

• oglib_array

• oglib_error

• oglib_file

• oglib_lvdata

• oglib_lvzip

• oglib_md5

• oglib_string

• oglib_dynamicpalette

All packages, except the first one, are dependencies of thematio package written
in open-g, that will allow LabVIEW to export MATLAB files.

LabVIEW matio package Download thematio package freely available online3. The
downloaded file can be opened in the VI package manager and installed from
there. The version used during development was 0.1-8.

MATLAB The version used during development was MATLAB R2010b (7.11.0).

B.2 LabVIEW project structure and practices

All LabVIEW code for both the host and NXT software is contained in a single Lab-
VIEW project. All source files are located in one of the following three folders.

Computer Contains code that is used exclusively on the host.

NXT Contains code that is used exclusively on the NXT.

Shared Contains code that is used on both the host and the NXT.

Within the NXT folder each VI is categorized further. VIs that are written exclusively
for the NXT that does not make sense to run anywhere else (e.g.code that handles the
NXT display or buttons) get the file extension.nxt.vi as opposed to the regular.vi.

3http://sourceforge.net/projects/matio-labview/
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B.2.1 VI icon practices

All VIs have an icon that follows a strict rule. Each icon consists of a white background
with a black frame, and up to four lines of text. For the normalVIs the first line is
a color-coded identifier of the VI type (e.g.comm. for communication,train. for
training), and the rest of the lines make a descriptive text.

The exceptions to this rule are the main executable VIs that have their names writ-
ten in the center of the icon, and the NXT-specific VIs that have a slightly different
background frame. Examples of all these icon types are shownin figure B.1.

(a) (b) (c) (d)

Figure B.1: Examples of VI icons. Main executable VIs for host (a) and NXT (b).
Normal VIs for host (c) and NXT (d).

B.3 Configuration

Configuration files warning
All configuration files must end with a line-break in
order for LabVIEW to parse them correctly. Windows
(CRLF), UNIX (LF) and Mac (CR) line breaks are
supported.

B.3.1 Application configuration

The functional global variablevar_config_app.vi4 contains the application configura-
tion. This configuration can be changed by writing a new default value to theApplication
Configuration variable control. Below is a description of each field.

Config file pinout Absolute path to the analog channel pinout file. Value used during
development is./Computer/Config/sources.txt.

Config file training classesAbsolute path to the training classes file. Value used during
development is./Computer/Config/classes.txt.

4Located in./Computer/VI/Configuration/
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Config MATLAB script path This path will be added to the MATLAB work path.
Note that sub-folders arenotadded. Value used during development is./Computer/Matlab.

Config classifier class pathAbsolute path to the classifier.lvclass class file. Value
used during development is./Computer/Classes/Classifier LDA/ Classifier
LDA.lvclass.

Config features path Absolute path of the folder containing the featurem-files. This
path will be added to the MATLAB work path. Note that sub-folders arenot
added. Each file is assumed to be a proper feature function. Value used during
development is./Computer/Matlab/Features.

Config file servo set pointsAbsolute path to the set-points file. Value used during de-
velopment is./Computer/Config/servo_setpoints.txt.

B.3.2 Analog channel pinout file

All channel names are enumerated insource_id.ctl. The EMG channels are labeled
EMG01, EMG02, . . . , EMG16. The accelerometer channels are labeledACC01X, ACC01Y,
ACC01Z, . . . ,ACC16X, ACC16Y, ACC16Z. The numbers refer to the numbers on the Trigno
electrode units.

The channel routing is located in./Computer/Config/sources.txt. Each row in
this file assigns an enumerated channel name to a LabVIEW taskchannel in the follow-
ing format;<channel id>=<task channel>.

The following file defines the connection routing as used during development.

EMG09=Dev4/ai0
ACC09X=Dev4/ai4
ACC09Y=Dev4/ai12
ACC09Z=Dev4/ai8
EMG10=Dev4/ai1
ACC10X=Dev4/ai5
ACC10Y=Dev4/ai13
ACC10Z=Dev4/ai9
EMG11=Dev4/ai2
ACC11X=Dev4/ai6
ACC11Y=Dev4/ai14
ACC11Z=Dev4/ai10
EMG12=Dev4/ai3
ACC12X=Dev4/ai7
ACC12Y=Dev4/ai15
ACC12Z=Dev4/ai11
EMG13=Dev5/ai0
ACC13X=Dev5/ai8
ACC13Y=Dev5/ai9
ACC13Z=Dev5/ai1
EMG14=Dev5/ai2
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ACC14X=Dev5/ai10
ACC14Y=Dev5/ai11
ACC14Z=Dev5/ai3
EMG15=Dev5/ai4
ACC15X=Dev5/ai12
ACC15Y=Dev5/ai13
ACC15Z=Dev5/ai5
EMG16=Dev5/ai6
ACC16X=Dev5/ai14
ACC16Y=Dev5/ai15
ACC16Z=Dev5/ai7

Note thatDev4 refers to the DAQpad, andDev5 to the PCI card. This is specific to the
computer on which the application runs, and can be changed with the “Measurement
& Automation Explorer” application that comes bundled withLabVIEW. These are lo-
cated underMy System/Devices and Interfaces and can be changed by renaming
the device in question.

B.3.3 Training classes file

All classes have a unique string identifier, a label and a illustration file name. The
available classes are located in./Computer/Config/classes.txt. Each row in this
file adds a new class available for training in the following format; <id> <label>
<image>. Note that the white-space characters are tabular characters. The image field is
the absolute path to ajpg file.

The following file defines the classes used during development.

NO_MOVEMENT No movement .\Computer\Images\nomov.jpg
WRIST_FLEXION Wrist flexion .\Computer\Images\wflex.jpg
WRIST_EXTENSION Wrist extension .\Computer\Images\wext.jpg
WRIST_SUPINATION Wrist supination .\Computer\Images\wsup.jpg
WRIST_PRONATION Wrist pronation .\Computer\Images\wpron.jpg
POWER_GRIP Power grip .\Computer\Images\pgrip.jpg
HAND_OPEN Hand open .\Computer\Images\open.jpg
FINE_PINCH_GRIP Fine pinch grip .\Computer\Images\pinch.jpg

Training classes warning
The NO_MOVEMENT class is special in that it is used
explicitly when the “strict transitions” controller mode
is enabled. This class is therefore assumed to exist
and be the first in the list.
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B.3.4 Servo set-points file

Each class can have a set of servo set-points associated withit. These set-points are lo-
cated in./Computer/Config/servo_setpoints.txt. Each row in this file associates
a class with a set of servo set-points in the following format; <id> <setpoints>. Note
that the white-space character is a tabular character. Thesetpoints field consists of 7
floating point numbers separated by white-space. The i’th number in this list gives the
set-point of the i’th servo, enumerated inmotor_id.ctl. The set-points are given in
the “unit” position type, as discussed in section 5.5.1. Theclass identifiers must match
those defined in the class-file discussed above.

The following file defines the set-points used during development.

NO_MOVEMENT 0 0 0 0 0 0 0
WRIST_FLEXION 0 0 1 0 0 0 0
WRIST_EXTENSION 0 0 -1 0 0 0 0
WRIST_SUPINATION -1 0 0 0 0 0 0
WRIST_PRONATION 1 0 0 0 0 0 0
POWER_GRIP 0 0 0 1 1 0 1
HAND_OPEN 0 0 0 -1 -1 0 -1
FINE_PINCH_GRIP 0 0 0 0 1 0 1

Note that if there are no servo set-points defined for a class azero-vector is used.

B.4 Features

All features are MATLABm-files in the configured feature folder. Each file is assumed
to contain a function accepting two arguments and returninga row-vector. The follow-
ing code snippet demonstrates how the AAV feature is implemented and represents the
method signature that is common for all feature files.

% EMGaav Calculate average absolute value
% EMGaav(DATA, CONFIG) calculates the AAV of DATA
% DATA: A nSamples x nSources matrix where each column is a
% time series from a separate source (i.e. channel).
% CONFIG: A struct containing the fields
% rate: Sample rate in Hz.
% sources: A list of source identifiers. The ith
% element corresponds to the ith column
% in DATA.
function AAV = EMGaav(data, config)

AAV = mean(abs(data));
end
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B.5 Required MATLAB back-end

The classifier and feature MATLAB scripts rely on some MATLABfunctions that need
to be in the search path when the system runs. The following MATLAB scripts must be
placed in the path configured int the application configuration discussed in section B.3.1.

doClassify.m Used by both the LDA and the LMSclassify functions.

getAccData.m Used by the feature extraction LabVIEW function.

getEmgData.m Used by the feature extraction LabVIEW function.

trainLDA.m Used by the LDA classifier.

trainLMS.m Used by the LMS classifier.

In addition, there are some methods that are not needed by thesoftware as is, but
might be useful for future classifier and feature implementation.

id2label.m Creates a source label (e.g.EMG01) from a source id.

isEmg.m Returns whether the supplied source id is an EMG signal.

isAcc.m Returns whether the supplied source id is an accelerometer signal.

B.6 Servo limits (NXT)

The servo limits are configured inservo_get_limits.vi5. The default value of the
indicator gives the servo limits. For each servo three position points are given (-1, 0
and 1 points) in PWM width inµs. In addition, the maximum speed is given in PWM
width µs per 24µs. Elementi in this array refers to servoi as defined inmotor_id.ctl.
Figure B.2 shows the values used during development.

Figure B.2:servo_get_limits.vi default output values as used during development.

5Located in./NXT/VI/Servo/
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B.7 NXT demo files

The NXT demo files are downloaded using the NXT terminal available fromTools
- NXT tools - NXT terminal. Because the current NXT firmware does not support
directory listings, the list of available demo files must be changed in code. This is done
in application_demo.nxt.vi.

To generate a demo file with the structure shown in figure 5.1 the following MAT-
LAB script can be used.

% GENERATE DEMO FILE
% generate_file_pos(FILENAME, CONFIG , DATA) writes a demo -file to the
% given file that may be run on the NXT.
%
% FILENAME: The name of the file to write. Will be overwritten if
% already existing.
% CONFIG: A cluster containing the following fields:
% type: POS or SPEED.
% datatype: Setpoints type
% 0=PWM, 1=[-1,1] for POS
% 0=PWM per 24 us for SPEED
% dt: Time to sleep (in ms) between the onset of
% each setpoint.
% DATA: An nSetpoints *nServos matrix containing the set-points.

% Jorn Bersvendsen , jornb87@gmail.com
% 24. May 2011

function generate_file(filename, config , data)
% Open file reference
file = fopen(filename, ’w+’);

% Error handling
if file == -1

disp([ ’Error: Could not open/create file ’,...
filename,...
’ for writing. ’]);

return;
end

% Accept data in both column and row order
s = size(data);
if s(1) < s(2)

data = data ’;
s = size(data);

end
nPoints = s(1);
nMotors = s(2);

% Write type (POS/SPEED)
fwrite(file, length(config.type ), ’uint8’);
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fwrite(file , config.type , ’char*1’);

% Write config
fwrite(file , config.datatype , ’uint8’); % setpoint type
fwrite(file , config.dt , ’uint8’); % delta time
fwrite(file , s(2), ’uint8’); % number of servos;

% Write data
for i=1:nPoints

for j=1: nMotors
if strcmp(’SPEED’, config.type )

% SPEED type
fwrite(file , data(i, j), ’uint8’);

else
% POS type
d = data(i, j);

% Check for [-1, 1] unit type
if config.datatype == 1

d = floor((max(-1, min(1, d)) + 1) * 32767);
end

fwrite(file , d, ’uint16’);
end

end
end

% Write carrige return
fprintf(file , ’\r’);

% Close file
fclose(file);

end

B.8 Trigno analog outputs

In order to activate the analog outputs the Trigno base station must be connected to a
computer by USB. Running the “Trigno Analog Output” application provided with the
Trigno system activates the analog outputs.



a-14 APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

Figure B.3: Screenshot of the Trigno analog output application.



C
Quick guide to LabVIEW

This chapter will give an overview of the LabVIEW programming language and devel-
opment environment. It is based on (Elliott et al. 2007, Hosek et al. 2009, Kehtarnavaz
2007).

LabVIEW (LaboratoryVirtual InstrumentationEngineeringWorkspace) is a graph-
ical programming language. The source code for a program is not written but drawn,
similar to a flowchart diagram.

The main unit of execution, similar to a function/method in regular programming
languages such as C, is the VI (Virtual Instrument). A VI has three parts; a front panel,
a block diagram and a connector pane.

The front panelis analogous to a method declaration in C and defines a method by
its inputs and outputs. However, the front panel is also a graphical user interface in that
all (i.e. almostall) inputs and outputs are intractable. The intractable inputs are called
controlsand outputs are calledindicators.

Theblock diagramis analogous to the method source code in C. Every control and
indicator is represented as an object on both the front paneland the block diagram.
However, many different front panel objects are represented the same way on the block
diagram. A boolean control on the block diagram may be a switch or a button on the
front panel. Similarly, slides, knobs, dials an gauges are all represented as numeric
controls on the block diagram.

Since LabVIEW is a graphical programming languages, the VI is called using an
icon on the block diagram instead of a function name in the source code. Theconnector
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panedefines how the VI looks and is used on the block diagram.
Examples of different block diagram structures with explanations are shown in fig-

ure C.1.

Figure C.1: Commonly used LabVIEW block diagram structures.

Note that there is one control (Boolean) and one indicator (String) in this code,
both on the switch case in the lower right corner. Their representation on the front panel
is shown in figure C.2.

Figure C.2: Front panel of the block diagram in figure C.1 after execution with different
boolean control values.
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