@ NTNU

Norwegian University of
Science and Technology

Control of a multifunction Arm
Prosthesis Model

Jarn Bersvendsen

Master of Science in Engineering Cybernetics
Submission date: June 2011
Supervisor: @yvind Stavdahl, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Control of a multifunction arm prosthesis
model

Jarn Bersvendsen

@ NTNU

Department of Engineering Cybernetics

Problem description

The Department of Engineering Cybernetics has an arm/h#&hdseven motorized de-
grees of freedom. The model is to be used as a demonstrateyanchtcher in exhibi-
tions, stands etc. The joints are driven by RC model sernmgralled by a LEGO NXT
controller, currently without software.

In this assignment you are to create a control system bast@vailable hardware,

the department’s EMG sensor systems and a relevant cotgaritam for multifunc-
tional prostheses.

1. Give a short presentation of different signal featuresgiuia pattern recognition
for myoelectric prosthesis control. Emphasize aspectsasicomputational com-
plexity, real time aspects and classification accuracy.

2. Describe different relevant software platforms for agodil control system for
the given model, and make a justified choice.

3. Establish a functional specification in agreement wighstipervisors, and perform
a structured software design based on the functional spatbifi.

4. Implement and test the system as far as possible withialkbiged time.

Abstract

In this thesis a working control system for a 7 degrees ofdoeehand prosthesis model
controlled by electromyographic and accelerometer sgghak been developed. The
complete system consists of a wireless EMG and accelerommetasurement system,
two National Instruments data acquisition modules, a agskbmputer, a Lego Mind-
storms NXT brick and a hand model with 7 motorized degreessafdom.

The controller is based on pattern recognition and sigreaisification. Several dif-
ferent EMG features for this purpose are presented and mgaleed. Two different
linear classifiers were used and their performance studied.

The LabVIEW software platform was used for both the compatet the NXT. The
developed software has a modular design, facilitating-éutievelopment and extension.
Its design and implementation are presented and discussed.

Preface

This thesis is submitted in fulfilment of the degree of Mastecience at the Norwegian
University of Science and Technology, Department of Engjiimg Cybernetics.

Working with this thesis has been an intriguing, informatnd ever so challenging
experience, the results of which | feel righteously prouchope and believe | have
accomplished something of value to the department, thaheip interest others in the
field of prosthetics and medical cybernetics, and that stiscend researchers might find
useful in the future.

I would like to take this opportunity to than®yvind Stavdahfor being my enthu-
siastic and excellent supervisor, as wellfaslers Fougnefor being my insightful and
very helpful co-supervisor.

Contents

BEL _GOAlS . o o v oo 26
|4__Software platforms overview 27
Bl NXT oo e 27
411 NXT-G(LabVIEW) 27
14.1.2 Next Byte Codes (NBC) and Not eXactly C (NXC) 28
413 MATIABandSimulink 28
414 1eJOSNXI 28
............................... 29
[41.6 _Otherplatforms v oot 29
B2 HOSt . . o 29
B3 ChOICE . .« « o o oo e e 29
I5__Software design and implementation 31
6.1 Systemovervidw 31
B2 COUEIBIMIS « o v o o e e e e e e e 31
[5.3 Design pattern implementations 33
[5.3.1 Functionalglobalvariable 33
[5.3.2 Dynamiceventregistration 34
[5.3.3 _Producer/consumer architecture 37
- ication e 40
[5.41 Overviewandterhs 40
[5.42 Message payloadtybes 42
[543 Sendandreceivealgorithms 45
[B5 NXTsoftwark 49
551 Servocontroller. 49
[5.5.2 Controllermode 52
553 Demomode oo v v 52
[6.6 Hostsoftwale 53
[5.6.1 Architecturaloverview 53
[5.6.2 Measurememts 54
[5.6.3 Featurecalculatidns 55
I5.6.4 _Classifier training and classification 57
I5.6.5 Application configurationfiles 16
[5.6.6 Sub-application: Measuremdent 2 6
[5.6.7 _Sub-application: Trainihg 62
5.6.8__Sub-application: Classifier traifing 63
- ication: o 64

Vi

[6.1 NXTsoftwark 69
[6.2 Hostsoftwale 71
6.3 Controlldr o o 80

Iﬁ_%mdce 80
6.4.1 | DA and L MS classifier performance 80

6.4.2 1DAand LMS classmer seoarabnltv with multiple fests . . 81

vii

viii

Introduction

1.1 Reader’s guide

This thesis is divided into 8 main chapters. The first chagifter this introduction, chap-
ter2, presents some background information on myoelesigitals, myoelectric control
and pattern recognition and classification. Chdgdter 3 pteslee functional specification
of the system and its parts, and chapier 4 discusses diffeossible software platforms
for the control system implementation. Chapfer 5 shows &sigth and implementation
of the software that realizes the specified controller. Eseilts are presented in chap-
ter[@ before reaching a conclusion in chapler 7. Finallyptd@8 suggests some future
work to properly utilize the results of this thesis.

There are two appendices, apperidix A and B, that are to bedesed as part of
this thesis work. These present a practical developertegioi the system hardware and
software respectively. Upon request from the supervisbey,are written such that they
may be printed and used separately from this document, anthade appendices for
this reason.

Part of the problem is to analyse aspects of features suchlaglation time and
classification accuracy. Because an quantitative disonssi this requires actual data,
part of this discussion was moved to the results chaptereagdlieloped system was
used for measurement and feature extraction.

Throughout this thesis | will assume that the reader has a goolerstanding of
mathematics, computer science and software design. | sl assume that the reader

2 CHAPTER 1. INTRODUCTION

is familiar with the LabVIEW and MATLAB platforms. A quick erview of LabVIEW
can be found in appendix C which readers unfamiliar with LHBY are strongly en-
couraged to read.

1.2 Work methodology

The scope of this problem is very broad. It covers compuiense concepts from byte-
level communication protocols to high-level abstractiohject oriented programming
and integration of different development environmentswéth a heavy mathematical
back-end for a medical and cybernetic purpose.

The first step was to research the field of myographic conspmcifically pattern
recognition methods and different EMG features used femhrpose. Then an overview
of different software platforms was gathered, most imputyefor the NXT.

Software development is an iterative process. An idea tltddd good on paper may
be cumbersome to use in practice, and some flaws or sub-dipsnare not evident
before having extensive experience with the software. 8foeg, the functional spec-
ification was worked out during the course of developmentdhaboration with the
supervisors.

Design and implementation started on the NXT, coveringseontrol and then
communication. After that, communication on the host waplé@mented. Hardware
connections, measurement, training, features and ckssiéillowed in order, with the
graphical user interface being developed in parallel. Aiicant effort was put into
implementation, resulting in a system consisting of over L&bVIEW Vls and several
MATLAB functions. In order to facilitate further developmt much time was spent
researching the best practice implementation methods bYIEW engineers. The Na-
tional Instruments developer zdhand the LabVIEW communiﬁzwere frequently used
and of great help.

As with any project, some bumps in the road were experiergeekifically with
the hand model. Some time had to be spent on error searchirgking and fixing
the servos on the model. At the time of writing the problemcdesion, it was thought
that the EMG measurement system could provide real-tinmatsgver USB. When this
proved not to be the case, analog measurements were intddacreasing the system
layout complexity.

In spite of this, there was still enough time left to test thstem after development.
A thorough analysis of the controller (i.e. classifier andtfiees) was performed after
the system had been successfully implemented.

http://zone.ni.com
Zhttp://www.ni.com/labview/community/

1.3. THESIS CONTEXT 3

1.3 Thesis context

1.3.1 Hardware
EMG and acceleration measurement system

The EMG and accelerometer measurement system used foh#sis twork was the
Trigno system by Delsys. This system consists of 16 separate @ith containing
an EMG sensor and a triaxial accelerometer. These are sgitgleonnected to a base
station where the 16 EMG and the 48 inertial measurementswgpitted as analog
signals.

All the analog signals are in the5 V range. The raw EMG signals are amplified
by a factor of 909 to fill this dynamic range. The acceleromietege can be selected as
eithert1.5g or+6 g.

The base station also offers a USB interface to work with tleésys EMGworks
software. However, since this software does not suppoxreixy of the signals in real-
time, analog sampling was used for this thesis work.

Analog sampling

The analog signals were sampled by two National Instrumatat dcquisition units; a
NI DAQPad-6016 and a NI PCI-6025E. Together these unitsvelits analog to digital

conversion of 32 channels with a sampling rate of up to 200 &Hx6-bit resolution.

The signals were wired to allow sampling of all signals froigh¢ electrode units (8
EMG + 24 accelerometer signals).

NXT

The LEGO mindstorm NXT 2.0 module is a robotics controlldrisidesigned to be
robust, easy to use, develop for and program.

The core processor is a 32-bit Atmel ARM processor with 64 K&VRand a clock
frequency of 48 Hz. Several I/O ports are available, sufppganalog and digital com-
munication. A full-speed USB port and a bluoetooth modulesisd for communication
with computers and other NXT modules.

A standard NXT module comes with a Lego firmware, but a JTA@rfate is avail-
able enabling low-level programming of the processor. @INKT module used during
this thesis a JTAG connector has been soldered on. In additio wires are connected
to the batteries, making the NXT able to function as an eslgrower source.

The NXT module is shown in figute 1.1 and a overview of its sfieations is shown
in table[1.1.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Lego Mindstorm NXT 2.0 module with modificatiorisage: (Hakonsen
2010)

Table 1.1: NXT 2.0 module specification. For more detaileréd the hardware devel-
oper kit datasheet.
Main processor Atmel 32-bit ARM processor, AT91SAM7S256

e 256 KB FLASH
e 64 KB RAM
e 48 MHz

Co-processor Atmel 8-bit AVR processor, Atmega48

e 4 KB FLASH
e 512 byte RAM
e 8 MHz

Bluetooth CSR BlueCore 4 v2.0 +EDR System
USB 2.0 Full speed port (12 MB/s)

4 input ports 6-wire interface supporting both digital andlag in-
terface
3 output ports 6-wire interface supporting input from erexsd

1.3. THESIS CONTEXT 5

The prosthesis model

The hand prosthesis model that was used in this thesis wasldexeloped by Kristian
Hakonsen in his master’s thesis (Hakonsen 2010). The msdkidwn in figuré1]2. It
has seven motorized degrees of freedom, listed in fable 1.2.

Table 1.2: Model functions and motorized degrees of free0@F).

Part Movement DOF number
Forearm Supma’gon 1
Pronation
Flexion
Extension 2
Wrist

Ulnar deviation
Radial deviation

Flexion

Extension 4
Thumb
Abduction 5
Adduction

. Flexion
Index finger Extension 6

. . . . Flexion
Middle, ring and little finger Extension 7

All the motorized degrees of freedom are controlled by atedaic servo motors.
These motors are connected to a NXTServo-v2 servo contrehiech communicates
with the NXT over EC. This servo controller allows speed and position contfaipoto
eight servos.

CHAPTER 1. INTRODUCTION

Figure 1.2: Handle model. Picture from (Hakonsen 2010).

Background

2.1 The myoelectric signal

This section will give an introduction to electromyograp8ectio 2.1 is reprinted from
the author’s previous work in (Bersvendsen 2010).

The electrical activity produced by a contracting musclefsrred to as ayoelec-
tric signal. The physiological origin and nature of the myoeledtignal are described
in a number of books covering biomedical engineering, ssafMauzumdar 2004).

The goal of this chapter is to present the reader with a rowghvaew of the pro-
cesses involved in a muscle contraction. The focus will beamthese processes relate
to the myoelectric signal measured by electrodes on thaceidf the skin.

Although there are different muscle types in the body, thigpter will exclusively
deal with theskeletalmuscles; those under voluntary control effecting the maeis
of limbs.

2.1.1 Anatomy and origins

Skeletal muscles are generally connected thraeigtiongo two different skeletal bones,
such that their contraction produce a movement of the tw@boelative to each other.
Note that a muscle may not actively stretch, it has only thityato actively contract.
Roughly speaking, a skeletal muscle consists of sefasalclesthat are bundles of
muscle fibresorganized as a “bundle of spaghetti”. The muscle fibres eagstdong as

8 CHAPTER 2. BACKGROUND

the muscle itself, and each fibre is connected tdr{nervatedfrom) a singleaxonat a
single point about halfway down the fibre.

The axon is a cell that is part of the central nervous systeNy and its cell body
lies in the spinal cord. Each fibre is innervated by only onenabut an axon innervates
anything from 1 to 1000+ fibres, depending on whether the fatisaised for forceful
or fine-tuned movements. The collection of an axon and alfitires it innervates is
called amotor unit

When the axon of a motor unit receives activity from the CN&ads an electrical
impulse towards its connected fibres. When this impulse sreeébre it is transported
along the fibre in both directions away from the innervati@inp making the fibre
contract as the impulse moves. When an axon creates andtleadkectrical impulse,
we say that iffires This causes the fibres it innervates to perform a short aotibn
called atwitch.

Note that when an axon fires, all fibres that it innervatetveis. One cannot volun-
tarily control single fibres, only single axons. Once therafites, the innervated fibres
will produce the same contraction every tinerhis means that the produced force of
the fibres can not be modulated by the strength of the impaidg by the frequency of
which they are sent, referred to as firang rate.

A single skeletal muscle contains muscle fibres of diffepeoperties. Some gener-
ate a lot of force when contracting, but fatigue easily. @lyenerate less force, but can
twitch repeatedly over long periods of time. The fibres amegelly arranged such that
different axons innervate fibres with similar force-fagoroperties.

Another way in which the CNS can modulate the produced mudscte is there-
cruitmentof motor units; the order in which the motor units are excittdomes as no
surprise that the less forceful motor units are recruitestl, fimd if they do not deliver the
required force the more powerful ones are recruited.

A final important note is the way in which the motor units twitewith respect to
each other. They do thissynchronouslydifferent axons fire at different times. Since
all fibres have a maximum rate at which they can twitch, symebusly firing could not
lead to smooth contractions.

2.1.2 Surface EMG measurement

The process of electrically measuring myoelectric sigisatslledelectromyographgr
EMG. One may measure the signal either inside the muscle or atitifece of the skin,
in which case we call isurface-EMGor SEMG SEMG has the obvious benefit of being
non-invasive and is much more practical for prostheticsiser

When the electric pulse travels along a muscle fibre, as ssclin the earlier sec-
tion, it has a spatial spread along the fibre. If one measheesdltage difference be-
tween two points along the fibre, the signal will look someghlike figure 2.1

1When not considering time-varieties such as fibre fatigue.

2.1. THE MYOELECTRIC SIGNAL 9

Amplitude (V)
o
T
|

|
0 5 10 15 20
Time (ms)

Figure 2.1: Qualitative measured action potential alonguaate fibre. Note that the
amplitude significantly depend on the measuring conditiubject and device), but is
usually in the order of a few mV.

To accomplish such a measurement on the surface of the skinpften uses a
differential amplifier between two electrodes. This requirtotal of three contact points
to the skin, two measure points and one ground point.

SEMG measurement poses several difficulties. For one, tleesuned signals are
very small (usually some mV in amplitude) and subject to amem-mode due to elec-
trical interference from external power sources (i.e. thegr grid). This common-mode
is present everywhere on the skin, and can easily be as lart@ &5 V, which is signif-
icantly larger than the signal of interest. To overcome, ttie common-mode rejection
ratio (CMRR) of the differential amplifier needs to be vergla.

2.1.3 Nature of the surface EMG signal

The signal shown in figude 4.1 is that of a single fibore. Whensugag the activity

over a large part of the muscle, the measured signal is &ctualim of several of these
signals originating from different motor units at diffetdacations within the muscle.
Since the motor units fire asynchronously, as discussedciinaé?.1.1, the individual

motor unit signals are shifted in time, seemingly at rand@vhen the force exerted by
the muscle increases, both the firing rate of the motor umitstae number of motor
units that are recruited generally increase.

10 CHAPTER 2. BACKGROUND

Figure[2.2 shows an actual SEMG measurefhehthe biceps at rest and during
sub-maximal isomettftcontraction (note that the amplitude of the signals areeskcal
so they do not reflect the amplitude of the raw SEMG signal).e ©an see that the
signal looks like white noise with variance related to thesale activity. This may be a
practical model, but it is important to note that the sigsaiot noise, it just resembles
it.

08 —Amp\ified raw E‘MG signal ‘

0.6 = Filter output

0.4f

0.2f i ‘\ WH M H\Th i MI \l”‘\ UW‘H’H“‘ ”W“l‘ ‘ m {

Jo T PR S e e

Amplitude [V]
)
N

-0.4f H

-0.61 7

-0.81 7

_1, 4

0 5 10 15 20 25 30
Time [s]

Figure 2.2: Blue: Measured SEMG signal (scaled) of biceps at rest and duribg su
maximal isometric contractiorRed: Rectified and low-pass filtered and scaled SEMG
signal.

However, a frequently used measure of the muscle activifydsnoisiness” of the
signal. In its simplest form an EMG signal processor corsita rectifier and a low
pass filter. The red line in figute 2.2 shows the result of tpisration.

2.2 Myoelectric control systems

Many different myoelectric control systems for prosthetiave been developed. In the

simplest caséhreshold contromay be used to give an on/off control of a function (e.g.
open/close handRroportional controlcan give the user control of the speed or force of
one or more motors by relating it to some value increasing mitiscle activation.

2The measurement is from an experiment performed by the matlibe University of Twente.
3Where the muscle generates force without changing length.

2.3. CLASSIFICATION 11

In this thesispattern recognition controwill be used, allowing a user to control
several functions (i.e. motor movements) in an on/off fashi Figurd 2.8 shows an
overview of the main parts in a complete pattern recognitimmirol system. This thesis
will treat the software part of this diagram.

The origin and measurement of the SEMG signal was discusssekctio 2.1 and
feature extraction and classification aspects are disduss®ction 2.8.

The low-level feedback consists of sensory informationrfrithe prosthesis (e.g.
touch sensors, position or speed of motors) which is usedéycontroller to create
correct actuations. One of the major drawbacks of prostivetitrol based on EMG is
the lack of feedback (proprioception) which healthy pessmteive from the muscles
that are missing on an amputee. This can be acquired thraggHdvel feedback such
as vision or tactile stimulation (e.g. vibration).

Human Hardware Software
Brain Muscle SEMG Processin Featur_e- CIaS.S'f" Controller Prosthesi
extractio cation
low-level
feedback

high-level feedback

Figure 2.3: Pattern recognition control system overvieas®&l on (Oskoei & Hu 2007).

2.3 Classification

2.3.1 Problem overview

This section will present the signal classification probkmd some solutions. The sec-
tion is based on the works of Theodoridis & Koutroumbas (3008

The problem of classification is to study sowlgectand labeling it with aclassof
a pre-defined set of classes. In the context of this thesis;lisses are motion classes
performed by a subject and the object is a set of measuredeameeter and EMG
signals. A motion class may be the specific movement of a esifaiht (e.g. wrist
flexion) or a grip involving several joints (e.g. clenchimgffist).

When a certain motion is performed several times, the riegutheasurements will
never be exactly the same. This is not simply due to noisesuandrtainties in the
measurement equipment, but the SEMG signal is hon-detestigiim nature. However,
the muscles will be activated in roughly the same way evenetiso the measured
signals will have roughly the same properties.

12 CHAPTER 2. BACKGROUND

There are several aspects of the measured SEMG signal thdtersdudied for clas-
sification purposes. One may for instance look at the powdresignal, its frequency
contents or the number of times the signal crosses zero pende Such aspects are
calledfeaturesof the signal.

Based on a set of measurements, several different featagdencalculated, some
resulting in a single number and some resulting in severalbass. All these feature
values can then be stacked into a vector, which is calfedtare vector

A general classifier works by comparing this feature veat@xisting feature vectors
that are already classified. To label a feature vector withsgsds calleatlassifying The
existing feature vectors that the classifier uses is cdflettaining dataof the classifier.

2.3.2 Solution outline

Given a problem consisting of three classes described bystatar features. The
feature-vector now consists of two elements and is a poittieR? plane. One solution
of the classifier problem is to divide this plane into threguailly exclusive regions. In
this case a given feature vectolies in one (and only one) region, and the resulting class
is then said to be the one associated with this réjion

An example of such a feature-space division is shown in figudeNote that in this
case the class divisions are straight lines. These spegifec df classifiers are called
linear classifiers, and are the ones used throughout this thesis.

0

f2

* >
o0

f1 >

Figure 2.4: Example of a classification scheme with thressela (A, B and C) and two
feature valuesfq and f,). The feature spacéR€ plane) is divided into three mutually
exclusive regions, one for each class.

This concept generalizes to any number of classes and anlyanaffeatures. In the
general case there aclasses antfeature values, in which case tié feature-space

4What is done on the border may be arbitrary.

2.3. CLASSIFICATION 13

is divided intoM mutually exclusive regions.
Because there are many ways of creating these regions, dwamlimited to linear
constraints, many different linear classifiers have beeeldped.

2.3.3 Least squares method (LSM)

The least squares method is a computationally simple metzadoes not assume any-
thing on the training data set (e.g. class separability).

For each class an output is defined that is a linear combmafithe feature vector
elements. This linear combination is chosen such as to nurien error in the least
squares sense.

Given a training set oM classes andll feature vectors of lengthwith class asso-
ciation. For each classa weight vectomw; is chosen such that it minimizes the cost

function
N

Iw) =3 (—xgw)? (2.1)
K=1
wherey is the desired output arxlis the feature vector. This is chosen as a positive
number (i.e. 1 in this thesis) fgk if xx belongs to clasg and a non-positive (i.e. 0 in
this thesis) if not.
(Z2.3) can be solved as a standard least squares problenhengtimalw; is given

by

wi=(X"X) X Ty (2.2)
where
Xi X1 X120 X yi
X X21 X2 -t X y
X=| 2 |=|" "7 T ly=|" (2.3)
X\ XN1OXN2 XN Y

A subtle “trick” can be done in order for the output to be adéineombination of the
feature vector elemengnda constant. This is done by adding a 1 as the last element in
the feature vector, giving a new vector

— X
X= { 1] (2.4)
which gives the newX matrix
)?I X—lr 1 X11 X122 - Xy 1
)?; X; 1 Xo1 Xo2 -+ Xy 1
X = = = i . . (2.5)
: 01 : : oo
X4 xy 1 N1 XNz e Xni

14 CHAPTER 2. BACKGROUND

We now haveM optimal linear combinations; of Xx. These have the property that
they come closer to 1 asapproaches the training feature vectors of classd come
closer to 0 ax approaches the training feature vectors of all other ctasthe classi-
fication algorithm can then simply calculate all the lineambinations and choose the
classi for whichx" w; is maximized.

Note that(X "X)~X T in (Z.2) is called thesseudoinversef X which can be eval-
uated efficiently in software. Another simplification is ttal the linear combinations
may be evaluated at once by

Gx (2.6)
where
v@
Wy
G=) (2.7)
Wy

Similarly, all thew vectors may be calculated at the same time by

G=[wr wy -—wy |=(X"X)X"Y (2.8)
where
Y11 Y1 - Ywm1
Y12 Y22 - Ym2
Y=[y1 y2 = ym]=|". . . . (2.9)
YIN YN o YMN

To demonstrate the computational elegance of this methedotlowing MATLAB
shippet trains an LMS classifier (i.e. calculates@matrix)

G = X\Y,;

and classification is done by

[, class] = max(G*[x; 1]);

Figurd 2.5 illustrates how this works in practice. Two cézs@ed and blue) are given
by a set of feature vectors with length= 1 (i.e. scalars). Training the LMS classifier
produces two (one for each class) linear combinations oféhture vector (a scalar)
plus a constant, resulting in a line R?. These linear functions are plotted, as well as
the maximum value (gray). One can see that the feature isifitabas red if it is below
a value of about 1.5 and blue otherwisel. # 2 the feature vectors are distributed in the
R? plane and the linear combinations would be plané&3pand so on.

2.3. CLASSIFICATION 15

12

0.8

0.6

classification value

-0.2 ! I I
0.8 1 12 14 16 18 2 2.2

feature value

Figure 2.5: Example of LMS classification with two classed analar features. The
gray line shows the maximum of the classification values.

16 CHAPTER 2. BACKGROUND

2.3.4 Linear discriminant analysis (LDA)

TheLDA classifier creates the linear class separations by studyastatistical proper-
ties (i.e. mean and covariance) of several feature veaborsach class acquired during
training.

An existing MATLAB implementation of this classifier as peeged in (Englehart,
Hudgins, Parker & Stevenson 1999) was supplied by the sigpesv

2.4 Signal features

2.4.1 Feature expressions

Sectior 2.411 will present the most commonly used featur&MG prosthesis control
based on (Zardoshti-Kermani, Wheeler, Badie & Hashemi 18&®stani & Moradi
2003, Fougner 2007, Bach 2009, Englehart et al. 1999, Rdekgiehart & Hudgins
2006). All features are calculated on a time-series of dsiB§IG channel. This time-
series ofN samples is called @indow of length N

Average absolute value (AAV)

This is one of the most intuitive and commonly used signaifie and is simply given
by

1 N
AAY = —§ x| (2.10)
N2
This feature is easy to calculate, has linear time compléRi&V € O(n)), and can
be easily implemented analogously in hardware. However significantly dependent
on the quality of the electrode-skin interface, which maybanged over time (e.g. by
sweat).
Variance (VAR)

The unbiased variance estimation given by

1 N
VAR = = i;x,- (2.11)

is another commonly used feature. Note that (2.11) assumesgpected value of zero,
which is the case for EMG signals. This value is related topgbwer of the signl

5 The signal poweP is the “energy per sample”, given by

E
P=— =
N

Zl-

N
Y (6 —w?
i=1

2.4. SIGNAL FEATURES 17

but has the same problems as AAV. Easy to calculate and heer ltime complexity
(VAR € O(n)).

Willison amplitude (WAMP)

The Willison amplitude, introduced in (Willison 1963), aus the number of times the
difference between two consecutive samples exceed a fireedé¢hreshold value. This
can be expressed mathematically as

N—-1
WAMP = Zi f (1% — Xit1) (2.12)

where

F(x) = { 1 if x> threshold (2.13)

0 otherwise

Willison himself used a threshold value of 1Q0, but other values have been used
by others. Easy to calculate and has linear time compleXW&NIP € O(n)).

Zero crossing (ZC)

The zero-crossings feature, as the name suggests, coamgrtiber of times the signal
crosses zero, and is given by

N-1
2C= 3 san(-xx1) (2.14)
i=
where
1 ifx>0
sgr(x)_{ 0 otherwise (2.15)

Instead of using > 0 in (2.I%) one can use= threshold where the threshold is
some positive value. Easy to calculate and has linear timgptxity (ZCe O(n)).

which gives
- H2

wherepis the average value amdis the biased variance estimate

18 CHAPTER 2. BACKGROUND

Number of turns (NT)

Counts the number of turning points of the signal; the nunatbé@mes the signal slope
changes sign. This can be calculated by

N—2
NT = ZSgn(—(Xi+1—>ﬂ)(Xi+2—>ﬂ+1)) (2.16)
1=
where
1 ifx>0
sgnx) = { 0 otherwise (2.17)

Easy to calculate and has linear time complexity @D(n)).

Average amplitude change (AAC)

Calculates the average absolute amplitude change betwwenonsecutive samples,
given by

1 N—-1
ARC =5 i; X1 — Xi| (2.18)
Easy to calculate and has linear time complexity (AA©(n)).

Myopulse percentage rate (MYOP)

Calculates the fraction of samples exceeding a given tbtdsgiven by
1N ’
MYOP = —) treshx) (2.19)
N2,

where
1 if x> threshold

trestx) _{ 0 otherwise (2.20)

Easy to calculate and has linear time complexity (MY©B(n)).

Histogram (HIST)

Creates binsof amplitude values, ranging from the minimum to the maximwaiue.
Then counts the the number of samples in each bin, resuftinggature values. Boost-
ani & Moradi (2003) used nine bins of unknown levels. Easydlz@late and has linear
time complexity (HISTe O(n)).

2.4. SIGNAL FEATURES 19

Auto-regressive coefficients (AR)

This feature fits a'th order AR filte to the window. A 4'th order model is widely used,
as increasing past this does not generally infer an increaskssifier performance.
Quadratic time complexity (AR O(n?)) using Levinson-Durbin recursion (which is
used by the interndlevi nson function in MATLAB).

Cepstral coefficients (CC)

Cepstral coefficients are widely used in speech and musigretion applications, and
may also be used with EMG signals. Fougner (2007) defineddhtare as finding the
Fourier transform of the logarithm magnitude spectr@mon the other hand, define this
to be theinverseFourier transform of the logarithm magnitude spectrum rtmies that
different techniques are used in practice. The followingresgsion is given in (Kang,
Cheng, Lai, Shiu & Kuo 1996, Boostani & Moradi 2003) and usegapers such as
(Pattichis & Elia 1999).

Ci=ar Cn=—3%; (1K) acnk—an (2.21)

wereg; is thei’'th cepstrum coefficient and is thei’th AR coefficient.
With the definition in Xavier & Rodet (2003) the DFT and IDFTgatithms domi-
nate the time complexity. Using the FFT and IFFT gives€0(nlogn).

Wavelet coefficients

The Fourier transform contains information on a signalfedan frequency, but looses
time domain information. Because myographic signals éottansitory characteristics,
this is not necessarily an optimal feature.

Thewavelet transforns a mathematical transformation similar to a windowed keyur
transform that have proved to give good results for EMG dfiaation. With the wavelet
transformation, analysis can be done on time-localizedetsbof the data without the
limiting precision of a windowed Fourier transform.

2.4.2 Correlation between features

With pattern recognition methods where several featuresiaed, it is important that
the features give information on different aspects of thynali (i.e. that they are as
uncorrelated as possible). Otherwise one is basicallyimpsbmputation time, as an
increased number of features in this case does not incrleaswailable information.

6

n
yi=c+ 21Xi +€
i=

whereg is a white noise with zero mean and some variance.

20 CHAPTER 2. BACKGROUND

Some of the features mentioned in secfion 2.4.1 are inéljtivorrelated, such as
AAV and VAR. As shown in[(2.70) AAV is essentially the sum ofthbsolute sample
values, whereas VAR is essentially the sum of the absolutgkavalues squared, as
shown in [Z.111). Obviouslyx| is significantly correlated witk?, so one would expect
AAV and VAR not to complement each other very well.

Another example is AAV and AAC defined in(Z]10) afd (2.18)pextively. An
EMG signal generally looks like white noise around zero hvamplitude increasing
with muscle activation. Obviously, when the amplitude oftsa signal increases, the
amplitude change between consecutive samples will inerasisvell.

On the other hand, ZC and NT are independent on the amplitudiésh intuitively
suggests that they are less correlated with AAV and AAC.

A quantitative study of the correlation between differezatiires was done using the
developed software for measurement and feature extradtluese results are presented
in chaptef 6.4]4. Note that in order to represent the numbexrswo-dimensional array
only scalar features were calculated.

2.4.3 Calculation time

All of the features presented in section 214.1, with the pkoca of the wavelet coef-

ficients, were implemented in MATLAB. In order to investigdhe calculation time a

simple test was carried out. Vectors of random numbers vifbrdnt lengths were used
as input for each feature, and the execution time was redorBer each input vector

and feature, the calculation was done 100 times and thetirestime was averaged
over these trials. The vector lengths were multipledle 1000 samples. The results
are shown in figure 2 6.

Note that the actual times used are not really importanthey &re obviously ex-
clusive to the computer on which the test ran. FurthermaseMATLAB is such a
high-level language, the results will not necessarily liedhme for a low-level imple-
mentation (e.g. written in C). Note however that the timesiarthe millisecond scale,
which means that there will be no problem in calculating tiast enough on the com-
puter used during development.

More important is the time usage relative to the other festuand the time usage
relative to different data set size for the same feature.r&helts show that the AR and
cepstral coefficients are the most computationally dermmndi

A similar study was done in (Bach 2009) which included watéatures. His
approach (e.g. input data size) is not documented, but ubmdVATLAB wavelet
toolbox he concluded that calculation of wavelet featuoesk tabout 35 to 650 times
longer than that of AAV. However, these features were notémgnted in this thesis.

2.4. SIGNAL FEATURES 21

Time used [ms]

AAV AAC AR CcC HIST MYOP NT VAR WAMP ZC

Figure 2.6: Calculation time of implemented features wiffedent signal lengths. The
base length i& = 1000.

22

CHAPTER 2. BACKGROUND

Function specification

3.1 Main usage overview

The complete system is meant to be used as a demonstratohitiitiors, stands or in
classroom settings. As a minimum the prosthesis must beditaitle by a single person
to demonstrate its functionality to an audience. If posshmwever, spectators should
be able to use the system, with as little training and conditjom time as possible.

Where a regular prosthesis must be robust enough to workithgay again with
little or no need for reconfiguration, this system may neetlaming for each eventitis
to be used for.

Since the software is primarily to be used by a few people gitbd knowledge of
the system, and due to the time constraints of the thesis,veorlr handling is not a
high-priority goal. It is much more important that the systes functional in normal
cases, than that unexpected events should be treatedttorrElee software will not
protect the user from himself; if the user makes an error mfigaration (e.g. sets the
sample rate too high), the system may display an error anglgiraquire restart.

3.2 Contextual goals

Given that the system will include real-time acquisitiorB®flG and accelerometer sig-
nals it is obvious that this may be a tool for researches amiests to test prosthesis

23

24 CHAPTER 3. FUNCTION SPECIFICATION

control schemes in practice. A secondary goal is thereforedke the system easily
extendable and to achieve a well-documented and modulavaref design.

As this is a system primarily meant for one specific purposksan of hardware, the
limits on both hardware and software follow the availapifior the department where
this thesis is written. In practice, this means that anywearie or hardware that is readily
available for students and employees at the departmentecarrdquirement to run the
system. Furthermore, the department will benefit from awsok platform written in
programming languages that students and employees areatignsed to.

3.3 Specification overview

The system contains two modules, thestrunning on a computer and the low-level
controller running on the NXT. When working together, thetacquires measurements
and calculates set-points for the NXT. These set-pointsheme communicated and the
NXT controls the servos.

In addition, these nodes should have the ability of workimdgpendently. For the
host, this means that one should be able to run the measuiearehcalculations, but
instead of communicating the set-points they are somehowrsto the user instead.
For the NXT, this means that instead of accepting set-p&iots the host, the set-points
are read from a file on the NXT to perform a pre-defined movement

There are currently 7 servos used, but the servo contrslt&pable of 8 connections.
Adding an eight servo should therefore require a minimahglesin code.

Furthermore, the NXT has several additional, unused pboatsrhay be used in the
future. This requires a flexible communication protocoMizen the nodes, making it
less cumbersome to add additional information exchangethése ports may be used
for sensors and not merely actuators, the NXT should be aldertd messages back to
the host, both as a response (e.g. the host requests infomnand by its on initiative
(e.g. an NXT event occurs). This requires the host and the MXTave both send and
receive capabilities.

3.4 Host

The host software is where the analog signals are gathecethammajority of the cal-
culations are done. It acquires the measurements and perfbe high-level aspects of
the control scheme, communicating set-points to the NXT.

3.4.1 Measurement

The software should be able to acquire and handle measutefram any combination
of the 16 EMG and accelerometer sources, even though thentinardware setup limits

3.4. HOST 25

this to 8.

There is no need for individually selecting separate acogleter components (X, Y
or Z). However, one should be able to acquire only the EMGaigimly the accelerom-
eter signals, none or all signals for each electrode unit.

The sample rate, window size and window update rate shoutdggurable.

3.4.2 Training

During the training phase a number of motion classes arerstmthe user in sequence.
The user mimics the motion depicted on the screen and thetselgources are measured
and stored in memory.

The user may choose any humber of classes to train, and dasgptions may be
added, removed or edited from outside the software soure. co

For each class there is a preparation and a sample phaseurgtied of these phases
should be configurable, and the complete training sequergeb® repeated a defined
number of times. The order in which the classes appear tostiernay be sequential or
randomized according to the configuration.

3.4.3 Feature extraction and classifier training

Once the training is complete a feature vector is calcultaedach measured window.
The feature calculations should be easily edited and new atded from outside of the
software source code. The user may decide which of the &laifeatures to extract.

Once the feature extraction is complete, a classifier shioeittlained based on a set of
feature vectors with class relationship.

3.4.4 Demonstrator

Once the classifier training is complete, the user may rursyiseem. In this mode a
window is measured from the configured sources, and a festater is calculated.
This feature vector is inputted to the classifier, which otgghe current motion class.
This motion class is then displayed to the user.

Each class may have a set of speed servo set-points asdorititét. If the NXT is
connected, these set-points are sent to the NXT which deritre servos.

3.45 Save/load

At any time one should be able to save the current state ofptbkcation to a file. The
state includes all configuration, active measurement diéegs and calculations.

26 CHAPTER 3. FUNCTION SPECIFICATION

3.5 NXT

The function of the NXT unit is to control the servo motors b fprosthesis model.
It will have two modes. In theontroller mode it accepts motor set-points from the
host and realizes these set-points on the sevos. The ses@biould be set in a unit
intuitively related to the angle of the motorized joints. dddition, the host should be
able to set the raw control set-points of the servos (i.e. ptiise-width of the PWM
signals). Both position and speed set-points should becstgah

Furthermore, the position and speed of the servos shoulddumable over the same
communication channel, again in a unit intuitively relatedhe angle of the motorized
joints.

In the demomode the software makes the model move in a predefined way. The
purpose of this mode is to demonstrate the possibilitiee@fitodel and to serve as an
eye-catcher. The model hand may for example wave to or pbart audience.

3.5.1 Goals

The primary goal of the NXT software is that it ought to be rstbenough to operate
for long periods of time without reprogramming or even riésgtthe NXT. Once pro-
grammed, one should be able to utilize every aspect of theehtwatdware over the
communication channel.

Software platforms overview

4.1 NXT

4.1.1 NXT-G (LabVIEW)

The NXT comes with a limited, “LEGO-like” version of the Lab&\W programming
language G, called NXT-G. In addition, LabVIEW comes withX¥Nadd-on that allows
one to create LabVIEW programs that run on the NXT with reguébVIEW code with
limited block support. All of the NXT features are supporiedNXT-G.

The communication between a NXT-G program running on the NMXd a regular
LabVIEW program running on a computer is very straight-fardvand robust. Both
wired USB and wireless bluetooth is supported. However, NXihfers significant
overhead in execution as it is a very high-level programntémguage, resulting in a
performance loss. A significant overhead is also inferrettiénNXT-host communica-
tion, gaining robustness with the cost of communicatioredpe

As this is the way the NXT was meant to be programmed from theufaaturer,
good support and a lot of example code is available.

27

28 CHAPTER 4. SOFTWARE PLATFORMS OVERVIEW

4.1.2 Next Byte Codes (NBC) and Not eXactly C (NXC)

Next Byte codes (NBC) is a simple, open-source, assemkdyldinguage that can be
used to program the NXT. Not eXactI)@(E a high-level open-source language, similar
to C, built on the Next Byte Codes (NBC) compiler.

The NXC syntax is very similar to ANSI C, but there are coristsaon the number
of functions and variables specific to the NXT.

4.1.3 MATLAB and Simulink

Both MATLAB and Simulink have toolboxes that can generate-level code that can
run on the NXT. Most NXT features are supported, includingi@ sensors, low-level
I2C and serial communication. Available freely onfine

4.1.4 1eJOS NXJ

leJOdlisa tiny, open-source Java Virtual Machine that is porteti@d\NXT. In addition,
[eJOS NXJ is a set of tools and Java APIs to help code for argranothe NXT. [eJOS
currently supports the following features

e Object oriented programming

e Preemptive threads

e Multi-dimensional arrays

e Recursion

e Synchronization

e Exceptions

e Javatypes

e Most of thej ava. | ang, j ava. util andjava. i o classes
e A well-documented robotics API

1eJOS comes bundled with an API for the full Oracle Java VM #iaplifies host-
NXT communication on the host side. A developer plugin far opular Java IO
Eclips@ is also available. The project was started in 2006 and iIdrs@ictive develop-
ment. The newest release (IleJOS NXJ 0.9) was released May218t1.

Lhttp://bricxce.sourceforge.net/nbc/
http://www.mathworks.com/academia/lego-mindstormssoftware/legomindstorms-matlab.html
3http://lejos.sourceforge.net/nxj.php

4Integrated developer environment

Shttp://eclipse.org

4.2. HOST 29

4.15 C/C++

The ARM?Y chip could be programmed with machine code comfited assembly, C or
C++. Several such compilers exists, both free (e.g. the émradt ICCARM Embedded
Development Suite) and commercial (e.g. the IAR Embeddetkiémch). The main
advantage of such a compiler is that it provides complet@eatcess to the hardware
with absolutely no overhead. Specialized libraries for $pecific hardware platform
exist, such as LibNX§. One would expect this to significantly increase the utiloa
of the available processing power on the NXT. However, onglevnot be able to utilize
the existing LabVIEW libraries that are specifically desidrior the NXT.

As a result, the development time for a program with equalistitess would (from
experience) be higher when opting for the C/C++ softwaréfquian then a high-level
language.

4.1.6 Other platforms

There are interpreters and compilers for many differenglmges available, including
Lud], Rub)@, Add], Pytho@, c#9 and even Haskéfl. These were not considered
in great detail as they seem to have a small user group conhpiatee other platforms
discussed. In addition, these languages are not commaadhhysstudents or employees
at the department.

4.2 Host

As the host can run any operating system, the options hengractically endless. The
only limit is that the National Instruments DAQ modules mhstsupported, but this is
generally the case on most major platforms. However, masicel of NXT software

platform has a logical host counterpart to facilitate comination between the nodes.

4.3 Choice

The decision was taken to use LabVIEW for both the host andNtK&. Considering
that National Instruments is the main line of hardware ufleid,seems to be the most
natural choice.

Shttp://code.google.com/p/libnxt/
http://hempeldesigngroup.com/lego/pbLua/
8http://ruby-nxt.rubyforge.org/
Shttp://libre.adacore.com/libre/tools/mindstorms/
10http://code.google.com/p/nxt-python/
Uhttp:/inxtnet.codeplex.com/ and http://www.mindsgs.aiét/
nttp://hackage.haskell.org/package/NXT

30 CHAPTER 4. SOFTWARE PLATFORMS OVERVIEW

In addition, LabVIEW offers a tight integration with MATLABvhich is a great
tool for performing the control system calculations. Thamdrical user interface in
LabVIEW is extremely easy to create compared to regularmaragiing languages. The
DAQmx drivers and NXT communication API are specifically idegd for LabVIEW
which results in a very robust platform. Finally, both LalEWW and MATLAB are
available for students and employees at the department.

The main shortcoming of this choice is performance, maixigegienced on the
NXT. Should it be experienced, however, that the LabVIEWfplan introduces such
high overheads that the communication and execution sgaedliiced to unacceptable
levels, this choice must be reevaluated.

Since LabVIEW offers integration with native code and thETNramework, a pos-
sible solution, in the event that the NXT software is unataely slow, is to re-program
the NXT and write a communication protocol in native codeisMwould allow the host
software to still run in LabVIEW.

Software design and implementation

5.1 System overview

Figure[5.1 shows a schematic diagram of the different pdrthe system and their
relationship. The analog signals of the Trigno EMG and agosheter measurement
system are measured by two NI DAQ modules. Note that the disgatem needs a USB
connection to the host in order to activate the analog osatplihe host communicates
with the NXT over either bluetooth (BT) or USB which again anomicates over?C
with the model.

This section will present the design and implementatiorhefttost and NXT soft-
ware (red boxes in figufe §.1). The focus will be on giving akeyel view and under-
standing of the system, but source code of some key featulledso be shown.

5.2 Code terms

The following terms and code structures will be used thraughhis chapter. These
are considered “best practice” approaches by Nationalumsnts themselves, and are
commonly used in academic LabVIEW applications such asofElVijayakumar, Zink

& Hansen 2007, Hosek, Prykari, Alarousu & Myllyla 2009). Fopre information
please refer to the provided links to the LabVIEW develomerezarticles.

31

"MBIAIBAO WBISAS T'G ainbi4

Control system

Measurement
Computer
USB
T BT
N A USB\ S N
Trigno —» DAQPad————— » Host
- \ S
A usB
Electrodes > PCI

Model

12C
NXT «——»

/

NXTServo

V2

~

Servos

A

NOILVLININITdNI ANV NOISTA FIVMLH0S 'S d31dVHD

5.3. DESIGN PATTERN IMPLEMENTATIONS 33

Standard error in/out functionality] Requires a VI to have an error input and output.
If the error input contains error information, this is patsa to the error output.
In this case the VI may choose not to complete its tasks ateddseturn immedi-
ately. If the error input contains no error, the error outpilitcontain information
on an error that occurred inside the VI, if any.

Functional global variablé? A local variable encapsulated in a VI that allows different
access methods and is not reentrable. Most commonly badherewrite access
is given, but some VIs may include an initialize option or magk the write
option. Can be implemented using a local variable or a wioitgo Iwith a shift
register. In practice, more than one local variable may leel irsside the VI.

Dynamic event registratior[ﬁ Events may be registered dynamically using a control
reference. In this way events can be handled in a sub-Vladsté the VI con-
taining the control. Once registered, some events may labléid or re-enabled.

Producer/consumer architecturd The producer/consumer architecture consists of one
or more producer-loops and one or more consumer-loops.o8fid have access
to a synchronization variable, such as a queue. The prosipoeduce some value
(e.g. a measurement) and adds it to the queue. The consumiefevsomething
to be added to the queue, read the element and process &l{ewss it on a graph).

5.3 Design pattern implementations

This section will demonstrate the implementation style @bV/IEW design patterns that
are frequently used in the developed software. Each desijerp will be demonstrated
with an example. These examples are fictional and simplistitthe core concepts of
the design patterns nevertheless remain the same.

Some examples may seem so easy to implement in ordinary vgaigsraake the
proposed implementation seem bloated. Note that in peattiese design patterns are
used in much larger pieces of software, such as the devekyséein, where abstraction
and modularization are critical concepts.

5.3.1 Functional global variable

A functional global variable is one or more local variables&psulated in a VI that
allows different access methods and is not reentrable. Tffezaht access method are
specialized for the needs of the specific variable.

http://zone.ni.com/reference/en-XX/help/371361GMibncepts/using_standard_error_in/ and

http://zone.ni.com/reference/en-XX/help/371361Gh&bncepts/using_standard_error_out/
Zhttp://labviewwiki.org/Functional_global_variable
3http://zone.ni.com/reference/en-XX/help/371361Gh@bhcepts/using_events_in_labview/
“http://zone.ni.com/devzone/cda/tut/p/id/3023

34 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Consider a variable containing a single struct with two edats, a string and a num-
ber. We want to be able to read from and write to this variabieaddition we have a
special action called initialize, which may perform somgiafization action. Finally,
we want to be able to set the numeric element of the variatifeowt changing the string
value. Standard error-out functionality should be used.

Figure[5.2 shows the front panel of this functional globalalsle. Besides the error
wires it contains three inputs and one output. Paéi on input is an enum control
specifying the available actions or access methods. VEhae in andNunmeric in
controls are used to set the value wiehi on isWit e andSet numeri ¢ respectively.

Action (Read)
:)I Read
Valuein Value var Value out
String String String
Murneric Murneric Murneric
J.“‘
\._.JICI IU IU
MNumeric in
J‘II
0
error in (no error) error out
status code status code
4| o Pils
source source

Figure 5.2: Functional global variable example front panel

Figure[5.8 shows the standard error-out functionality, el as the general block
diagram layout. A switch case structure is used to perforaction based on th&t i on
input value. All cases are shown in figlire]5.4.

Note that the output is always given, even in the write actiases. This is part of
the design pattern and is useful for signal routing to syeoikcution order. In addition,
the VI may change the input value before writing and outpgtit (e.g. by limiting the
numeric to a certain range in this example).

5.3.2 Dynamic event registration

Events may be registered dynamically using a control refege In this way events
originating in a control can be handled in a sub-VI insteadhef VI containing the

5.3. DESIGN PATTERN IMPLEMENTATIONS 35

Value var
M No Error [
Action (Read) ["Read", Default vt
Value out
................. Iﬂ'v'aIuE'-,-'ar>: @l
error out
=
% Error 't

Figure 5.3: Functional global variable example. Block d#m showing the standard
error out functionality.

["Read"”, Default 't 1 "Write" 't

|ﬂ'\.-'aIL|E'-,-'a|'=: é

1 "Set numeric” 't

|ﬁ'v'aIL|E '-,-'arbj rbﬁvalue var
l %

Mumeric

1] "Initialize" 't

e et
o Value var
| -

Figure 5.4: Functional global variable example. Block dégs for each action case.

36 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

control.

Consider a simple application containing two elements, menc control and a
boolean indicator. The indicator is to display whether or the value of the numeric
control exceeds a value of 5. Once started, the applicationld run until aborted by
LabVIEW (i.e. no dedicated stop button on the front panel).

Figure[5.b shows the front panel and an ordinary (i.e. stiyicegistered) even
structure that performs this task. Note that this eventtire may not be placed in any
other VI but the one that is running the front panel, as théroband indicator are used
directly and the event structure refers to an event origigan this VI.

= |[CI] "Murneric"; Value Chang 'P

Mumeric Greater than 57

I@

I|source

: Numeric Greater than 57

:jg_') | -

Figure 5.5: Dynamic event registration example. Front pand block diagram using
ordinary,staticallyregistered events.

Inferring dynamic event registration means that the evieatsire may be contained
by another VI (called dandlerfor cases like this). In this case references to the original
front panel objects are used to read and write the contralegal Figuré¢ 516 shows the
implementation of the handler using dynamic event redistnaThe new block diagram
of the main VI is shown in figurlg5.7.

Mumeric ref, =] |['Cl] <MNumeric ref.»: Value Change '}

a Mumeric ref. [4 Reg Events D N Boolean ref. 3]
- b Valoe Change - % =c Bool (strict) §
Boolean ref. I l> --------- » Value

ﬂ (A &

Figure 5.6: Dynamic event registration example. Front pand block diagram of the
dynamic handler.

Note that the handler does not know or care which VI calls éaming that this VI
may now be reused by any other piece of software.

5.3. DESIGN PATTERN IMPLEMENTATIONS 37

Greater than 57 Murneric
Murneric Greater than 57 R
=

Figure 5.7: Dynamic event registration example. New maifMtk diagram using the
dynamic handler.

5.3.3 Producer/consumer architecture

The producer/consumer architecture consists of one or producer-loops and one or
more consumer-loops. These loops both have access to a Quféeeproducers produce
some value (e.g. a measurement) and adds it to the buffer.cdimumers wait for
something to be added to the buffer, read the element an@égsdic(e.g. shows it on a
graph).

LabVIEW offers several synchronization primitives thatyne used as a buffer, out
of which thequeuewas chosen. Eaalodein this architecture can bepgoducer a node
that enqueues elements on the buffer, @moasumer a node that dequeues elements
from the buffer. In the general case there may be more tharboffier. In this case a
node may be aonsumer-producesr even gproducer-produceor consumer-consumer
however the latter two cases are not used in the developtdsef

In order to terminate the producer and consumer loops, axdegueeue is used. This
is called thestop quedi Enqueueing any element in this queue signals that all loops
are to terminate. This is done by either the main applicgog. when the user presses
a stop button) or the nodes themselves (e.g. if an error esdoside a loop).

Figure[5.8 shows an overview of the relationships of thefferént nodes where two
buffers are used.

Consider the case where we have two loops, one producer andomsumer. The
producer produces numbers one by one through some proetthdlconsumer is un-
aware of. The consumer on the other hand uses those numbewsiie purpose that he
producer is unaware of.

For this example we will assume that the producer simply pced random numbers,
and the consumer adds these to a waveform chart. In addition)d anything go wrong
during execution of any Ioﬁboth loops are to terminate. Finally, the front panel should
have a stop button to stop both loops and exit the application

Figure[5.9 shows the block diagram of an implementationguie producer/con-
sumer architecture that satisfied the specification. Natettie producer and consumer
loops would benefit from being separate sub-VIs. This woetflire the use of a refer-
ence for the chart in the consumer loop, as discussed iros@&B.2. Note also that a

5This is a special case of@mmand queuhich may contain information on an action that should be
performed by each loop (e.g. start, stop, initialize, mesti.).
6in this case, nothing reallgango wrong, but for the sake of demonstration.

38 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Figure 5.8: Producer consumer architecture overview. Téekbhorizontal lines repre-
sent buffers (i.e. queues) and the green lines represestdpeueue.

5.3. DESIGN PATTERN IMPLEMENTATIONS 39

lossy enqueue is used in this implementation. This mean# the number of elements
in the queue is equal to the buffer $z¢he oldest element in the queue is discarded.
This ensures that deadlocks can not occur.

Handle stop button.

14

SEC .
s

Consumer, 50ms timeout on dequeue to ensure stop queue is read.

Figure 5.9: Producer/consumer example block diagram.

"Specified upon queue creation. In this example the bufferisimnlimited as no size is specified.

40 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

5.4 Host-NXT communication

5.4.1 Overview and terms

The communication between the host and the NXT revolvesrardlie central type
definition,messagelt consists of two parts, headerand apayload

The header contains information on the message structdra #iag telling whether
the sender awaits a reply or not. This can be calculated asé#ue payload, with the
exception of the response flag which needs to be set separBtel payload consists of
a variable-length message type identifier string and a tgpendent data field.

The act of turning a message instance to a string (i.e. a bydg)afor sending
is calledflatteningthe message. Similarly, the act of turning a received stirtg a
message instance is called-flattening Figure[5.1D shows the message type definition
and flattened, binary representation.

Message
— M:zepﬁylm Content Representation
wﬂgﬂ‘ L package length unsigned byte
E— Data type length unS|_gned byte
oo data length unsigned byte
response? unsigned byte
Data length
o message type string
Response? data strin g
@

Figure 5.10: Message type and flattened structure.

Since the native LabVIEW flatten/un-flatten functions woifftedently on a PC and
the NXT, a custom flattening/un-flattening scheme was impleed.

Because the native LabVIEW NXT communication API suppontsaximum of 58
bytes per transmission and a message may be of variablélendiarger than this limit,
the packettype is introduced. The packet type consists of three byftesacture infor-
mation (analogous to the message header) and a varialgititléata field. A flattened
message can teplit into one or more packets, and the receiverjcimthese to create a
flattened message.

Similar to messages, a packet is turned to a string by flaigetie packet and the
packet type is remade by un-flattening. Figure b.11 showpahket type definition and
flattened representation.

5.4. HOST-NXT COMMUNICATION 41

Packet
Mumber of packets
IU
Packet number -
o Content Representation
[:"“ length number of packets unsigned byte
J packet number unsigned byte
Data data length unsigned byte

data string

Figure 5.11: Packet type and flattened structure.

Implementation and usage

Figure[5.12 shows an example of how the different messagedgfinitions relate to
each other in the source code. This example shows how a neepsgtpad is turned
to a set of flattened strings on the sender side, and how tmederaed to a message
instance on the receiver side. Note that all the VIs useddrersehared between the host
and the NXT.

1) Add header information to
the message payload, forming

a message, The F means that 5) Parse each

we do not expect the receiver | (3] Split string string to a 7} Unflattened the

to send a response. to one or more packet. flattened message
packets. to @ message.

Sent N

] |simulated transmission

- Received

.....................

2} Flatten the 6] Join all packets
message to a 4) Flatten each to form a flattened
string. packetto a message.

string.

Figure 5.12: Message/packet example block diagram.

The front panel of this example after it has been run is shoviigure[5.18.

42 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Sent Received
Type
Message header Message payload
| GENERIC_MESSAGE
T
Data Package length S
T | GENERIC_MESSAGE
Hello, werld! Thisis a long
message split into several Tvoe lenath Data
packets. Notet.hat.package H Hello, world! This is a long
L:!grr::rislewng;:;holzt:e message split into several
- Data length packets. Note that package
single packet. - length > 58 which is the
142 maximum length on a
Response? single packet.

Figure 5.13: Message/packet example front panel.

5.4.2 Message payload types

This section will discuss the different message payloa@sypsed in the developed
software. All the types discussed in this section refer éntlessage paylodfield of the
message type definition in figure 5110.

Each payload type has its own type definition. The act of gbimm such an instance
to a message payload is calledmposinga message. In the other direction, the act of
going from a message payload to an instance of a given mepsatgad type is called
parsingthe message payload.

The following payload types are implemented. The message figld is the same
as the payload type name unless otherwise specified.

GET_SERVO_STATE Sent from the host to the NXT. Instructs the NXT to read the
position and speed of each servo and transnSiERV/O_STATE message back to
the host. Shown in figuie 5.114.

SERVO_STATE If sent from the host to the NXT with th8ET_SERVO _STATE type
field, it instructs the NXT to realize the given servo positand speed set-points.
May also be sent from the NXT to the host with tBe SERVO STATE RESP type
field as a response toGET_SERVO STATE message. Shown in figure 5115.

SET_SERVO_POS Sent from the host to the NXT. Instructs the NXT to realize the
given servo position set-points. The speed is calculateld that the servos reach
their set-points in the same time as the time differenceedine last message was
received. Shown in figufe 5.]16.

SET_SERVO_SPEED Sent from the host to the NXT. Instructs the NXT to realize the
given servo speed set-points. Based on whethernheenent ? flag is set, the

5.4. HOST-NXT COMMUNICATION 43

position set-points are chosen to the their maximum or mininvalues respec-
tively. Shown in figuré 5.37.

SET_SERVO_SPEED_FAST Sent from the host to the NXT. This is a special version
of SET_SERVO SPEED that is specifically designed for the 7 servos currently in
use. The NXT will also use a servo I/O function specialized#servos. This
optimization significantly increases the available serpdate rate at the cost of
modularity. Shown in figure 5.18.

The following figures show the data type and flattened reptatien of all the
message types listed above. The position and speed vales &p explained in sec-
tion[5.5.1. Note that a word here is an integer using two bytes

GET_SERVO_STATE

Position value type Content Representation
PWI width \—I . 3
position type unsigned byte

Speed value type speed type unsigned byte
PWM width per 24 us < |

Figure 5.14:GET_SERVO STATE message type and flattened representation.

SERVO_STATE

Position value type Content Representation
PWM width _] i .
position type unsigned byte
Speed value type speed type unsigned byte
PWM width per 24 us 7 | number of entries unsigned byte
| Sevostates motor id unsigned byte
fo | " position unsigned word
forearm pronation/supiration T I SpeEd unSigned byte
Position value
motor id unsigned byte
Spedudke position unsigned word
speed unsigned byte

Figure 5.15:SERVO_STATE message type and flattened representation.

44 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Content Representation
value type unsigned byte
number of entries unsigned byte
motor id unsigned byte
position unsigned word
motor id unsigned byte
position unsigned word

Figure 5.16:SET_SERVO POS message type and flattened representation.

Content Representation
value type unsigned byte
number of entries unsigned byte
motor id unsigned byte
speed unsigned byte
increment? unsigned byte
motor id unsigned byte
speed unsigned byte
increment? unsigned byte

Figure 5.17:SET_SERVO_SPEED message type and flattened representation.

5.4. HOST-NXT COMMUNICATION 45

SET_SERVO_SPEED_FAST

Speed value type
PWM width per 24 us < |

"f."e"‘e“‘? 2 Content Representation
Increment? 1 value type unsigned byte

speed motor 0 unsigned byte

ncrement? 2

ncrement? 3 speed motor 6 unsigned byte
increment? 0 unsigned byte

ncrement? 4

ncrement? 5 increment? 6 unsigned byte

Increment? &

L (%] L (%] L (%] L
=l - IRSl LT RRE - PRl LRl LIRS LR -]
m m m m m m m
m m m m m m m
o o L, o o -8 o
(=] L - [*%] (¥} - (=}

Figure 5.18:SET_SERVO SPEED FAST message type and flattened representation.

Implementation and usage

Figure[5.19 shows an example of how the composers and paedets to each other
in the source code. Each message type has its own compospaeset. The com-
posers are generally located on the host and the parsere dfWdh. The exception is
the SERVO_STATE message type for which the composer and parser are shared.

1) Composes a message payload from 3] Parses the message payload to
the given SET_SERVO_STATE instance. a new SET_SERVO_STATE instance.
Sent ,_|com=. FAFEE Received

2] This is now a message payload instance. Can be turned
to a message by adding header information and sent and
received as any other message.

Figure 5.19: Compose/parse example block diagram.

An overview of all composers and parsers is shown in figuré.5The two on the
far right are polymorphic composers and parsers, addedyforeconvenience.

5.4.3 Send and receive algorithms

Both the host and the NXT have send and read capabilitieseeetwach other. The
LabVIEW offers a basic API for this purpose, and this is elyeitte same for commu-
nication over USB and bluetooth. USB communication was tisemlighout the thesis

46 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

COMF. COMF. COMF. COMF. COMF. COMF.

GET SERVO SET SET SET
SERYO STATE SERYO ZERVO SERVO
STATE FOZ SFEED | FF.FAST

FARZEFR| |FARZER| |FARSER| |FARZER| |FARSER| |FARSER

GET SERVO SET SET SET
SERYO STATE SERYO ZERVO SERVO
STATE FOZ SFEED | FF.FAST

Figure 5.20: Compose and parser VIs. All composers retudnadinparsers accept a
message payload.

work, but bluetooth could be used in the future with abs®jute code change. This API
is designed to be robust and “fool proof”. If a message issmtied, it is guaranteed
not to contain any errors when received. A minimum amounbofimunication initial-
ization is needed. If the USB cable is disconnected duriagsimission, the program
can continue as if nothing happened when it is connectedhagi#owever, successful
transmission require the receiver to call the read API as#imee time as the sender sends
a message, and the high-level Vls for this are designed utithéimeout.

A communication module was built on this API for both the hastl the NXT.
This module offers methods to send and receive messages iypgbs specified in sec-
tion[5.4.1. For each method a timeout is given to preventldekd in the case that
connection is lost during transmission.

There are two send and receive methods implemenggd)ar andbroadcast The
regular method was designed and implemented first and igrisgito be robust and
modular. Using this method a message can be of any length #irfgeviransmitted in
several smaller packets, where each packet is acknowldnjgtbe receiver.

After this was implemented, the overhead delay in sendingglesbyte message
was found to be significantly higher than expected. To oiinthe servo update rates
the newer and faster methodooadcast was implemented. This method operates on
the same message type, but a maximum of 58 bytes can be ttwtsniihe message
is still acknowledged by the receiver. Due to lack of time Boadcast method is only
implemented as a receiver on the NXT and sender on the host.

Regular method

Figurd5.21 shows a state diagram of the send algorithm. [§oeithm startsirni r ans_r eq
where it sends the stringrans_req until it is acknowledged. It then loops in the
trans_pkg state until all packets are sent, and waits foA@K string for each packet.

If at any time something goes wrong (i.e. nothing or somethinexpected is re-
ceived) the function either falls back to theans_req state or exits, depending on
whether the time limit of the function has been reached.

5.4. HOST-NXT COMMUNICATION 47

receive nothing
[used time< timeout]

trans_req

E: Sendrans_req

receive
anything else
[used time< timeout]

receive
anything else
[used time< timeout]

receive
ACK

receive nothing
[used time> timeout

trans_pkg receiveACK

receive
anything else E: Send packe [more left]
[used time> timeout]
receiveACK receive
anything else

[last]

[used time> timeout]

Figure 5.21: Send message state diagfandenotes an action performed when entering
the state.

48 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Figure[5.2P shows a state diagram of the receive algorithme. algorithm starts in
rec_req where it waits for the stringirans_r eq to be received. It then loops in the
rec_pkg state until all packets are received, and transmitdGhstring upon receiving
a packet.

If at any time something goes wrong (i.e. nothing or somethinexpected is re-
ceived) the function either falls back to thec_r eq state or exits, depending on whether
the time limit of the function has been reached.

receive nothing
[used time< timeout]

receive anything else

) [used time< timeout]

/sendwait_for_trans_req

receive anything else
[used time< timeout]
/sendwait _for_trans_req

receivet rans_req

receive nothing
[used time> timeout]

receive
anything else
[used time> timeout]

receive packet
[more left]

receive packet [last] receive anything else

[used time> timeout]

Figure 5.22: Receive message state diagr&mn.denotes an action performed when
entering the state.

Note that the timeouts are only checked when something wuteg occurs. This
means that, if there are no packet losses, once the pachkstrissions are started, they
will complete successfully even if the functions take longecomplete than the speci-
fied timeout.

These functions are implementer separately for the hostN as they use dif-
ferent low-level communication APIs. However, they botlide the state diagrams
discussed here.

5.5. NXT SOFTWARE 49

Broadcast method

The broadcast VIs have the same signatures as the regulananéts. They differ in
that only 58 bytes may be transmitted. It is made for optitndreand should be used
whenever one knows at compile-time that a message may nexegethis length.

The sender in this case simply re-sends the message atriegetsals until it times
out or receives an acknowledgment. Similarly, the receigads until it times out or
receives a message where it sends an acknowledgment antsretu

Implementation and usage

The Visin figuré’5.213 are responsible for communication s&hd and receive messages
operate on the message type definition shown in figuré 5.10.

COMM. CORM. COMM, COMM.
SEHD ERQAD.| |RECEIVE WaIT
MEGE, MG, MEG, FOR

GOMM.

COMM. CORE, COMM, COMM.
SEHD RECEIVE| |RECEIVE WaIT
MEGE, M=G EROAD. FOR

MG, GOMM.

Figure 5.23: Send and receive VIs.

5.5 NXT software

5.5.1 Servo controller
Low-level API

The NXTServo-v2 controller comes with LabVIEW support d&hbie onlin8. This is
simply a wrapper for the NXT2C API with some useful register mappings.

This code was used as provided by the manufacturer, but uppection several
suboptimalities were found. For one, both the servo speggasition values are written
even if only one of these values were changed, and the sehageds always read.

Considering that there seems to be a several millisecondhead/delay in calling
the PC API, this can become a bottleneck when handling fast updtgs. To overcome
this a separate writing mode, called fiast mode, was implemented in addition to the
supplied API. The fast mode is used with tBeT SERVO SPEED FAST message type

8http://www.mindsensors.com/index.php?module=pagésnas
&PAGE_user_op=view_page&PAGE_id=93

50 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

and differs from the manufacturer’s API in that it assumesctly 7 servos and is able
to write the position and speed of all servos in only two woiperations.

Each servo is enumeratediot or _i d. ct| which is shared between and used through-
out the host and the computer software. The servo numbdosvftthe definition in
table[1.2.

NXTServo-v2 controller

The NXTServo-v2 controller operates on PWM widthpis for position set-points and
PWM width change irus per 24ps for speed set-points. If a position set-pdits
written and the associated speed regiSter greater than zero, the controller increases
or decreases the PWM width t8each 24us until the positiorP is reached. II5=0
thenP is written at once and the servo moves as fast as possible.

The servos accept pulse widths between g®and 250Qs, although the construc-
tion of the hand limits the movement of the servos much moae this. The position
set-points are given in a 16-bit unsigned word, and the spetgoints are given in a
single byte.

When the servo controller receives power it initializes bitimg 1500 ps to all
servos. This is a standard neutral position for the servasab it is not the natural
position of the hand, a separate initialization is done wherNXT application starts.

Set-point value types

The host should not have to worry about the pulse widths osgheos, so there is a need
for an additional, more useful unit type for both positiomapeed. The NXT therefore
operates with thposition value typandspeed value typiype definitions. Conversions
between the different types are done by the VIs shown in figiia.

SERVO SERVO ZERWOD SERVO
O FROM TQ FROM
FWH FiaiH FiWr Fr

FOz FOz ZFEED SFEED

Figure 5.24: NXT servo value type conversion VIs.

As the maximum and minimum servo PWM widths are NXT-speciffoimation,
all unit types are available when sending set-points batwleehost and the NXT. Note
that in sectio 5.4]1 all message types are shown to accejisigned word for position
set-points and an unsigned byte for speed set-points. ifgppbint numbers with a
known range (i.e. -1 to 1 or 0 to 1) are transformed to an umsldiyte/word by linear
interpolation (e.g. floating point numbers between 0 anceT@apped to unsigned bytes
between 0 and 255) before sending. This is done by the Visslhmfigure[5.24.

5.5. NXT SOFTWARE 51

[-1,11 1WaRD [0,1] UEYTE
TQ T2 O O
UWaRD [-1,1] UEYTE [a,1]

Figure 5.25: Integer/double interpolation utilities.

The only currently implemented and used position type, tlitégh to the raw PWM
width, is theUnit [-1...0... 1] position type. This type represents the position with a
floating point number from -1 to 1, where 0O is a neutral staté-arand 1 are the extreme
positions. For servos that operate in only one directiomftbe neutral position the
range from 0 to 1 is used. For values in between a linear inlatipn is performed to
find the corresponding pulse width.

The only currently implemented and used speed type, iniaddib the raw PWM
width change, is th&nit [0. .. 1] speed type. This type represents the speed as a fraction
of the maximum speed value.

Servo limits

The servo limits are configured servo_get linits.vi. For each servo the -1, 0
and 1 position points are defined, which makes up the maximuimmum and neutral

value. Note that some servos rotate clock-wise and othenstenclockwise, meaning
that the -1 value may be higher or lower than the 0 and 1 valb@sie servos operate in
one direction only, and this is represented by having theesaatue for the -1 and O or 1
and 0 values. In addition, the maximum speed is defined fdr sewo.

Integration with other NXT software modules

All the servo I/O operations are encapsulated in the funeliglobal variablear _servo_state. nxt. vi .
This VI remembers the state of each servo and allows otheo\esad and write the state

of all servos or a single one. It also supportsfit mode discussed earlier. Figlire 5.26

shows the most important VIs for this purpose.

SERVOD ZERYO SERVO SZERVO

STATE ZET SET SET
VAR, MOTOR STATE STATE
STATE FRZT

Figure 5.26: NXT servo VIs.

52 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

5.5.2 Controller mode

The controller mode combines the communication and se@arlbdule parts to form
the perform the main functionality of the NXT. The NXT stamty initializing the servos
to their neutral state, before entering an eternal loophiglbop a message is received
and acted upon. No receive timeout is specified, so the pmogid run until aborted
from outside (i.e. the user presses the back button on the) NXT

Figure[5.2¥ shows the top-level block diagram with explamat Note that the
broadcast communication mode is used in this block diagrRegular mode can be
used by replacing the VI labelé) with conm recei ve_nessage. nxt . vi .

Mailbox 1 ~}
Mailbox 1 v}
COMM. COMM. COMM. GUI E
] e | g b
HMEE. RESF. STATE
1] Initialize 2) Receive a 3] Act upon 4) Create 5) Draw 6) return to 2)
servo state. message (no| [the received and send servo state EI
timeout). message. response. to screen.
L _

Figure 5.27: Controller mode top-level block diagram.

5.5.3 Demo mode

When the NXT enters the demo mode, it starts by reading afsgdiemo file. It first
reads the very first bytes of the file that constitutes a moeetifier string. This mode
identifier may be eithePOS or SPEED, and determines the further structure of the file as
well as the operation of the NXT. Talle b.1 shows the strectdithese files.

The NXT then operates by reading a set of bytes which is ctestéo a set of set-
points based on the position/speed value type. These s#@re then actuated and
the NXT continues reading the file. The delta time flag of theedpecifies theninimum
time interval for the onset of each set-point set. Given thie-deterministic execution
time, there is no guarantee that the actually used time wilemceed this limit.

When the set-points are positions, the speed is calculatddthat the servos reach
their destinations in the same time as the time since thedagioints were read.

Note that theSPEED mode was not fully implemented. The file format is supported
and speed-set points are supported by the servo modules s®¢lclusively due to time
constraints.

5.6. HOST SOFTWARE 53

Table 5.1: Demo file structures.

(a) Position mode (b) Speed mode
Content Representation Content Representation
mode length (3) unsigned byte mode length (5) unsigned byte
mode PCS) string mode SPEED) string
value type unsigned byte value type unsigned byte
delta time [ms] unsigned byte delta time [ms] unsigned byte
number of servos (n) unsigned byte number of servos (n) unsigned byte
setpoint 0 unsigned word setpoint 0 unsigned byte
setpointn unsigned word setpointn unsigned byte
setpoint 0 unsigned word setpoint 0 unsigned byte
setpointn unsigned word setpointn unsigned byte

5.6 Host software

5.6.1 Architectural overview

The main application consists of sevesab-applicationsA sub-application is the top-
level module type in the application architecture. Each-application is a VI whose
front panel is never shown and that never returns (until gieation is aborted). All
GUI controls that a sub-application needs are given asepéers when the VI call is
made. A sub-application communicates with the rest of th@iegtion through func-
tional global variable VIs. The complete application cetsiof the following sub-
applications; Measurement, Training, Calculation and bem

The other main module type is tg&Ul handler These operate similarly to sub-
applications, except that they do not communicate with ahgropart of the system.
GUI handlers operate exclusively on the graphical userfexte (e.g. enables or disables
choices based on a configuration selection). They may read fut not write to global
variables. The general structure of a GUI handler is an estentture with a dynamic
event terminal surrounded by a never-ending while loop.

An illustration of the modularization of the main applicatiis shown in figure5.28.

The main application works by first initializing itself anden calling every sub-
application and GUI handler in parallel. In this way, all sytiplications contain their

54 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Control
references

Functional global
variables

GUI handle

Figure 5.28: Application architecture overview. Note tkizdre may be several sub-
applications and GUI handlers.

own internal state. The only loop running in the main appiwaafter this is a loop
containing the boolean controls configured with latchingchamisms. The LabVIEW
architecture demands that these be read only one place tottee(i.e. to avoid race
conditions), and this must be in the VI that contains thes{i.e. the main application
VI).

5.6.2 Measurements

The EMG and accelerometer measurements are acquired by dtionl Instruments
data acquisition modules. These both support the NI DAQmasuement drivers
which are integrated with LabVIEW.

Before a measurement is started, a measuremaskis created. To this task all
the analog input channels are registered, with a name, anguut pin identifier and a
maximum and minimum value.

For each channel theon-referenced single-ended (NRSE&@asurement mode is
used. This means that each channel is measured with respadigle-node analog
input sense (AISENSE) that is independent on the measutesystiem ground.

After all channels are registered to the task, a timer issteged as well. The follow-
ing two sample modes are used.

Finite samples Acquires a given number of samples. Uses hardware timingsare
that exactly the given number of samples are returned. drdedelay of about
10 ms for each read operation. Read operations are blochltsy ¢

Continuous samplesStarts acquiring samples and saves them to a hardware .buffer
Once the task is started, each consecutive call to get thplsamwill return the

5.6. HOST SOFTWARE 55

buffered samples. Runs until the task is stopped. Ensua¢athsamples are lost,
as long as the buffer does not overflow. Read operations aréloaking and
may return zero samples.

To ensure that no data is lost in between read operations;ahiénuous sample
mode is used when the system is running. For the trainingesesp) however, the finite
samples mode is used, as only one read operation per classdgthand this ensures
acquisition of an exact number of samples.

Implementation and usage

The output of the DAQmx call is an array of wavefofsHowever, the rest of the
application operate on a custom type definitigndow This type definition is shown in
figure[5.29, as well as the VIs used for measurement. The kliagikkam of an example
using these Vs is shown in figure 5130.

Window

Window length [samples]

i'\.!‘o‘"‘_“_"
ot WAVEF. WIHDOW MERGE
A O TQ WIHDOW
0 wWIHDoW| | WAYEF.
. sais (b) Window/waveform Vls.
7:)10 Sourcell
MEAZ. MEAZ.
EMGOL ZREATE xln}
TAZK TASE

Values

(c) Measurement Vis.

(a) Windowtype definition.

Figure 5.29: Measurement type definitions and VIs.

5.6.3 Feature calculations

Since features are calculated by mathematical expresaiahalgorithms, a textual lan-
guage is much better suited for this job than LabVIEW. Beeanfsthe mathematical

9A waveform is a standard LabVIEW data structure containinguaay of floating point numbers, a delta
time flag and some metadata.

56

CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Will read 50 samples with 1200
Hz and use all channels on the
Oth electrode unit.

o
=

M samples per read
Window length e

=
=1
=

=
[
=]
=

Sample rate [Hz]

L
the task.

4} Transform the
measurement to
a window type.

Window

+ ACCOY =

= = : p— ; — =]
um [+ EMGOS Teas HERE. w ey (55
0 ACCO9X | TAsK TRER e o]
5) Return

1) Create
the task.

+ ACCO9Z -

3) Clear
the task.

Figure 5.30: Measurement example block diagram.

aspects of feature calculations, MATLAB was the languagehafice for feature im-
plementation. As mentioned, LabVIEW offers a tight integna with MATLAB, and
reference MATLAB code for many features are readily avdddioom the works of
(Hakonsen 2010).

For future use it is important that features may be addecshgddor removed without
editing the software code. To achieve this the applicagaronfigured with the path to
a directory containing a set of MATLABfiles. Everymfile in this directory is then
assumed to be a MATLAB function with a known function sigmratu

All features accept two arguments and return a single resllie. The first argu-
ment,dat a, is a matrix where each column is a time series from a sepsoatee. The
second argumentonfi g, is a structure containing the sample rate and the ID of each
source (see section 5.6.5). All features must return a ve€real numbers with at least
one element.

When the feature directory is added to the MATLAB search pattich is done pro-
grammatically, a function can be called based on its namis.i§kone by the following
code

% Get the function to call
f = str2func(feature);

% Cal cul ate

result = f(data, config);

wheref eat ur e is the feature function name (file name excluding extension)

Because some features are specific to either EMG or acced¢gosignals, the user
may select what the input of each feature should be. This eaeither EMG only,
accelerometer only, both or none. If no inputs are chosem fieature, this feature is
simply not calculated.

The application can then loop over this selection, creaethrect sub-set of input
signals for each feature, and concatenate all outputs tiecthe final feature vector.
This is performed byal c_extract _feature_vector.vi and the implementation is
shown in figur¢ 5.31.

5.6. HOST SOFTWARE 57

Features
f——FDEL]

N Loop over all features
B & b

% Create MATLAB data format
data = values’;

% Create config struct
config = struct(...
‘rate’, 1000/dt,...
'SOUFCEs’, SOUrCES...

)3

Feature selection filenarme
emg?
acct

% Use the correct dataset
if useEmg <=0
data = getAccData(data, sources);
|elseif usehcc <=0
data = getEmgData(data, sources);
end

Window

_____ ﬁE

FIELDE |

% Get the function to call
f = str2func(feature);

% Calculate
result = f{data, config); error out

@yj

Figure 5.31:cal c_extract _feature_vector.vi block diagram.

error in (no error)

The following features were implemented in MATLAB and araiéable in the ap-
plication; AAC, AAV, AR, CC, HIST, MYOP, NT, VAR, WAMP and ZC.

5.6.4 Classifier training and classification

To enhance the future usefulness of the software, the saftarghitecture is specified
to handle several different types of classifiers. The ebabmost straightforward way
of doing this is to make each classifier have their own set sf ®hd use a switch-case
on some classifier type identifier whenever the system needsdess these VIs. The
obvious drawback of this method is that whenever a new ¢ies introduced a new
case must be added everywhere it is used in the code.

Another option is to use MATLAB scripts in the same way as igaléor features.
However, classifiers can be a much more complex than feat@ksssifiers may for
instance be adaptive, have a state and require memory irebetexecutions, whereas
features are stateless.

What is needed is a structure that allows the software toat@@mn a definition of
what a classifier should be able to do (i.e. be trained andpara classification),
without knowing anything about how it is implemented. Thizisture must be able to
store it's own data structure (e.g. a matrix for the LDA and&lassifiers). This is a
textbook example of where tlabject orienteddesign pattern is most useful.

58 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Object oriented programming (OOP) is, in National Instratfeeown words, a new
and advanced addition to LabVIEW. Although there are sigaift differences between
OOP in LabVIEW and in a text-based language such as Java oy tGe-+nost funda-
mental aspects remain the same. These include

e Encapsulation of a data structure.
e Member functions, both static and non-static.
e Class hierarchy, including overriding functions.

e Member function visibility, including public (i.e. visiblto all other functions),
private (i.e. visible to the class only) and protected (tisible to the class and all
sub-classes only).

e Casting to a more specific (i.e. towards the base class) ontora general (i.e.
towards the child class) class version.

LabVIEW classes are contained in kvcl ass file, and can be instantiated from a
file path. This makes it ideal for use in this specific casehasapplication only needs
to know where the class is located on disk to use it. Thus, vaheaw classifier is added
and to be used, the application is simply given this new pattead of the old one, and
no further code change is neefid

Implemented classifiers

Figure[5.32 shows a class diagram of the two implementedifiers. The base class,
C assifier, has two member fields. These store the configuration presené time
of training. Only those that are critical to the executiae.(ithe feature and class se-
lection) are stored. Thus, the classifier is not concernedtatither configurations (e.g.
window length, sampling rate etc.) even if changes here maguyce sub-optimal clas-
sification. Both of these fields are available for readingigto public getter functions.
However, since the fields are private, they may not be writteyy any other class than
C assi fier, which writes these in ther ai n function. To ensure that these are written
correctly, all sub-classes are required to unconditigrelll the base implementation in
thetrai n function. This condition is supported by LabVIEW OOP, ang anb-class
that fail to adhere to this demand will give a compile error.

The internal data structure for both tBleassi fier LDA andC assifier LMSis a
matrix of real numbers, calle@ This field is private and is only used in the respective
cl assi fy overrides.

101n fact, a classifier could be created outside the context@fapplication project. However, this is un-
practical simply because the input and output values of tamber functions are typedefs contained in the
project.

5.6. HOST SOFTWARE 59

Cassifier (Qlassifier LDA)

- Feature selection q/t -G]
- Cass IDs

+ Read Feature Sel ection

+ Read Cass |Ds
+train <]\fCI assifier LMB|
L - G

|t classify J

Figure 5.32: Class diagram of the classifier classes.

J

Both classifiers are implemented using a MATLAB back-endhiLDA classifier
an existing MATLAB implementation was used, whereas a neplémentation was
done for the LMS classifier. As both are linear classifierassification boils down to
a matrix multiplication, and both classifiers use the follmgvcode for classification,
contained in th&lod assi fy function.

% Actual classification
[val, i] = max(G[x 1]");

% CGet classld
id = classlds(i);

The LMS classifier training boils down to a pseudo-inversérixanultiplication.
Training is performed by ther ai nLMS method containing the following code.

% Create the training matrices
classlds = unique(target);
nVal = size(data,2);
Y = zeros(nClass, nVal);
for iClass=1:nCl ass;
class = classlds(iClass);
Y(iClass,:) = (target == class);
end
X = [data’ ones(nval ,1)];

% Actual training
G=(X\Y)";

Implementation and usage

A class member function VI looks just like a regular VI, buh#s an instance of the
object as an input and output. Theai n andcl assi fy function Vls for the LMS
classifier are shown in figures 5133 dnd 5.34 respectivelye Mt the only difference
between these VIs and those of the LDA is the type of the olxjgett and output, and
that thet r ai nLMS function is replaced withr ai nLDA.

60 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Mo Error Vt

Do the actual classifier
training in MATLAR.

Classifier LM5 out

Classifier LMS in

Class features

Feature selection

Features Sfeatures

error out

%

error in (no error]
= ...
Call parent method. This
is needed as it saves the
cenfiguration to be used
when classifying later.

Figure 5.33: LMS rai n function VI.

[No Error 't

Read class identifiers
used when training Call the MATLAB doClassify function to do
Classifier LMS in preoureds the actual classification. Classifier LMS out

| 0BJ : =
Class ID

Feature vector

|[nn| m]
error in (no error)
| Fan :

Toaf

Figure 5.34: LM| assi fy function VI.

5.6. HOST SOFTWARE 61

5.6.5 Application configuration files
Signal routing

All channel names are enumeratedour ce_i d. ctl. The EMG channels are labeled
EMX01, EMX2, ..., EMGLI6. The accelerometer channels are labéd€d01X, ACCO1Y,
ACQ01Z, ...,ACC16X, ACCL6Y, ACC16Z. The numbers refer to the numbers on the Trigno
electrode units.

The channel routing is located irt Conput er / Conf i g/ sour ces. t xt . Each row in
this file assigns an enumerated channel name to a LabVIEWkasknel in the follow-
ing format;<channel id>=<task channel >.

As an example, the following lines assigns the EMG channghef'th and 10'th
electrode units to the first and second analog input pinsefirtbdule with idDev4:

EMG09=Dev4/ ai 0
EMG10=Dev4/ ai 1

Classes

All classes have an unique string identifier, a label and lastiiation file name. The
available classes are located. ihConput er/ Confi g/ cl asses. txt. Each row in this
file adds a new class available for training in the followirggnhat; <i d> <l abel >
<i mge>. Note that the white-space characters are tabular chasa@tee image field is
the absolute path tojapg file.

As an example, the following lines creates the “wrist fleXiand “wrist extension”
classes:

WRI ST_FLEXI ON Wist flexion <some path>\wrist flexion.jpg
WRI ST_EXTENSI ON Wist extension <some path>\wrist extension.jpg

Servo set-points

Each class can have a set of servo set-points associated. Witltese set-points are lo-
cated in. / Conput er/ Confi g/ servo_set poi nts. txt. Each row in this file associates
a class with a set of servo set-points in the following format> <set poi nt s>. Note
that the white-space character is a tabular charactersdtoi nt s field consists of 7
floating point numbers separated by white-space. The i'thbrer in this list gives the
set-point of the i'th servo, enumeratechiot or i d. ct| discussed in sectidn5.5.1. The
set-points are given in the “unit” speed type, as discussélte same section. The class
identifiers must match those defined in the class-file digzliabove.

As an example, the following lines defines the wrist flexiod amist extension set-
points.

62 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

WRI ST_FLEXI ON 0 01 0 0 0 O
WRI ST_EXTENSI ON 0 0-1 0 0 0 O

5.6.6 Sub-application: Measurement

The measurement sub-application is a very simple one. fistifon is to measure the
selected signals with the selected source configuratiosh,display the results to the
user. Figuré5.35 shows a state diagram of the sub-appilicati

stopped

4 | E: Update GuI

start

error stop

stopping
E: Send stop commanh

Figure 5.35: Measurement sub-application state diagram.

The sub-application is implemented as a producer-consarokitecture. When the
measurement is running a producer communicates with ther@Aqrivers to acquire a
set of measurements that are then added to a buffer. Frorbufies a consumer pulls
the measurements and displays them in a graph.

In addition, a GUI handler monitors the buffer and displagstate (i.e. the number
of elements waiting to be consumed). This is useful as istithtes whether there is
enough processing power to perform all tasks without dats ¢o delay.

5.6.7 Sub-application: Training

The training sub-application handles all the trainingatedl aspects of the application.
When a training sequence is started with a given configurati@lass sequence is cre-
ated based on the selected classes.

For each class a producer-consumer relationship is estalliwith a measurement
and a GUI loop. When the measurement is done the loops exitthendata is added
to a training data set. Once all classes are trained, thesdaia saved to a functional
global variable, so that it may be used by other sub-apdicat

5.6. HOST SOFTWARE 63

The training may be paused or aborted at any time. In the pleaiate the user may
return to a previous class and continue the training fromethmverwriting existing data.

If the target functional global variable already contairesrting data, the user may
either overwrite with, append with or discard the new datgotUpressing the abort
button, the user is prompted with a warning message, and etagnrto the training if
the abort command was a mistake on his or her part.

Figure[5.36 shows a state diagram of the sub-application.

user input

° stopped / save saving
E: Update GUI E: Show save optionis
7
all loops stopped all loops
start [no data exists] stopped
| save ;
done[more left] [data exists]
v
running done[last] stopping
E: Update GU > E: Send stop comman|
E: Start loops L—p}j
—

pause

Yy

pausing
E:
Send stop commanb

all loops
stopped

aborting

Y

back

y
paused /
E: Show abort option: abort E: Update GUI decrement
class number

cancel

Figure 5.36: Training sub-application state diagram.

5.6.8 Sub-application: Classifier training

The classifier training sub-application calculates a diasdased on the available train-
ing data and the current configuration. Since this is donesingle step, it is the simplest
sub-application, coding-wise, as no producer-consunietioaship is needed.

Figure[5.3V shows the block diagram of this sub-applicatibrNote the dynamic
event registration and global functional variable usagebfath the training data and
current classifier.

64 CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

[0] < Classify button>: Value Change *
| fy ge TH———

T = Clust (strict) &
Value ¥ | Window |EI'|§It|'|’—|

+ Training | +Read v

TR,
pata | Befmz]
UAR

Source configuration
&

Main tab
==
Selected freatures

]

5 = Arr (strict) §

Value

error in (no errer)

Classify button

g 4 Reg Events ﬁ i
F Value Change *

Figure 5.37: Classifier training sub-application blockgam.

5.6.9 Sub-application: Demo

The demo sub-application brings the measurement modtlegradined classifier and
the NXT together to function as the demonstrator that is thgiral purpose of the
application. Measured signals are classified and the apptefservo set-points are
communicated to the NXT, which actuates these on the servos.

Figure[5.38 shows an overview of the communication flow betwtne different
modules and loops during normal execution. The signalsxaiaiaed in tabl€5]2.

Again a producer-consumer architecture is used. The memsunt loop produces a
measurement by contacting the DAQ hardware, and adds thessumements to a buffer.
The calculation loop consumes the measurement from thferad produces a class
identifier which is added to a second buffer. Lastly, the camitation loop consumes a
classification from this buffer and communicates the appat@servo set-points to the
NXT.

The NXT simply awaits a communication, and upon receivingates the received
set-points on the servos.

The status of each buffer is displayed in the same way as im#@surement sub-
application.

Figure[5.39 shows the block diagramdzfmo_r un. vi . This function initializes and
runs the producer-consumer architecture for the demo ppleation. Note that in ad-
dition there is a GUI controller handling the stop-buttout this is outside the scope of
this function. The communication loop is only created if tiser enables it, meaning
that the demonstration must be restarted in order for cleaimgthis setting to take ef-
fect. This is done because the communication loop triesitialize the communication,
resulting in an error if the NXT is not connected.

"MOJ} Uonew.ojul uonelado piepuels :8e'G ainbi4

Matlab

Measurement hardware Host
DAQ Measurement
1
(2 start
3
4
Calculation
5
6
Classifier
Model 7
Servo controller l
end 10 f
11
15
NXT
Servo
12
14
Communication Communication
13

FHVYMLHO0S 1SOH "9°S

<9

66

CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Table 5.2: Explanation of labels in figure 5.38

Label

Explanation

1

N

00 ~NO Ol

10
11
12
13
14

15

The measurement loop makes a call to the DAQmMX
drivers that communicate with the DAQ hardware.

The call returns a set of measured time series.

The measured window is added to the measurement
buffer.

The calculation loop polls the measurement from the
buffer.

A MATLAB script is called for each feature.

Each MATLAB script returns an array of feature values.
A feature vector is handled to the classifier instance.

The classifier may call a MATLAB script to perform the
calculations.

The MATLAB script returns a class identifier.

The classifier returns a class identifier.

The class identifier is added to the communication buffer.
The communication loop polls the class identification
from the buffer.

A set of servo set-points corresponding to the class iden-
tifier are communicated to the NXT.

The commuication loop on the NXT receives and parses
the set-points and gives them to the servo module.

The servo module communicates with the servo con-
troller over PC to actuate the set-points.

5.6. HOST SOFTWARE

67

Buffer sizes

Stop queue out

g E
il
¥
=
o
c
m
E

ource configuration

w
Q
c
A
m
i

o [=
a

o

in (no error)

f

m

uffer calc

|

m

uffer measure

2

Current classification

Gom)

2

Classification settings

error out

d

MXT settings

:

R ———— |
% =t Clust (strict)

Value

W | Communcate with NXT?

Figure 5.39: Demo sub-application core top-level bloclgdian.

68

CHAPTER 5. SOFTWARE DESIGN AND IMPLEMENTATION

Results

6.1 NXT software

All the NXT functionality is contained in a single applicati. Upon entering this appli-
cation a simple menu is displayed, operated by the arrow atedt buttons on the NXT.
There are two main modes, “demo” and “controller”. The colter mode has a second
parameter which is the send/receive method the applicailibase. In addition, a servo
test mode is available.

When selecting the demo mode, a new menu is shown where thenaseselect
which demo file to rufk Screenshots of these menus are shown in flgute 6.1.

When the controller mode is entered the servos are inédlio their neutral posi-
tion, and the NXT starts listening to communication from Huest. After receiving a
message and updating the servos, the servo state is didpaytbe screen agos> /
<speed> with values given in PWM width. Screenshots of these meneshown in
figurel6.2.

The servo test application is useful when changes to the hiadebeen done. It
allows manual position control of each servo. After sefeg servo the position can be
increased or decreased by pressing the arrow buttons.ifigyélse enter button returns
to the servo menu. Screenshots of these menus are shownrig{Gigu

1 Note that this menu must be changed in code as the NXT doesippo file listings programmatically.

69

70 CHAPTER 6. RESULTS

Figure 6.1: NXT menu, “demo” application.

Figure 6.2: NXT menu, “controller” application.

Figure 6.3: NXT menu, “test servos” application.

6.2. HOST SOFTWARE 71

6.2 Host software

The host application is designed to allow the user to efftgasonfigure, train and run
the controller. Itis easy to use and feels robust and bugy-Bereenshots of the different
aspects of the application user interface are shown in fiffidethrough6.31.

Every aspect of the functional specification presented aptat 3 is covered, as well
as some additional ones. For instance, the training dataomayported to a MATLAB
mat file. This enables the application to be used exclusivelytéaraining module, and
all processing to be done off-line.

Another additional feature is the option of analyzing featuafter completing a
training sequence. When this option is chosen, severdifixrs are trained based on
the selected features, and displayed to the user. Evenltibagesults are only plotted
in R? (e.g. as in figur€6.12) when the true feature space is mugkrlahis still gives
an indication on what features are likely to perform well ba turrent data set.

The classifier may be configured with two options. If the tdttiansitions?” flag is
checked, the only class transitions allowed are thoseiagter leaving the “no move-
ment” class. Although it makes the controller slower to eperthis will in some cases
reduce the number of errorous classifications.

The other classifier option is the “classification hystes&sumber. If this number is
set toN, the controller must receivd 4+ 1 consecutive classifications of clasi order
to change the current class do This slows the controller down, but has proved to be
essential for the model to move smoothly, and is very effedit removing unwanted,
rapid class changes.

When running the demonstrator the user may select whethetdo communicate
with the NXT. In addition, the speed of the NXT servos may hebyea slide bar. The
value of this bar (in the rangf®, 1)) is multiplied to the configured servo speed set-
points. If the speed is set too high, the user must concentinathard to achieve fine
tuning control of the model. If set too low however, the mobletomes unacceptable
slow. This slide bar enables the user to change the speed-tirta which has proved
to be a valuable option.

72 CHAPTER 6. RESULTS

Information | Configuration | View data | Training | Run

Operator | Jom Bersvendsen

Subied|mn Bersvendsen Openstate Save state

Date 16,0611

Information

Figure 6.4: Information tab. Allows the user to save or loghf an application state
file. The input fields are used to add information to a save@ stad are all optional.

6.2. HOST SOFTWARE 73

Information | Cenfiguration

EMG sources ACC sources Source configuration Buffer sizes

. EMENL . GE N samples per read Measurement
@ emcoz @ Accn2 §%00 — fo

. EMGE . SCEt Max samples in window Communication
@ @AcH By &

. EMGDS . AEED Sample rate [Hz]

@ emco6 @ Accos : -

@ Emcor @ Acco?

@ emcos @ Accos

) EMG09 @ Accos

) EMGL0 @ acco

D EMGIL @ rccn

D EMG12 @ acaz

@ emaiz @ Accz

@ ema4 @ acas

@ emGis @ acas

@ emai6 @ Accs

Figure 6.5: Configuration tab. Allows the user to configure aelect which sources to
use.

74 CHAPTER 6. RESULTS

Buffer status

(B> statmeasuring | [Stop messuring |

The graph below shows the moving window of the measured signals using the current settings.
The channel offset slider can be used to visually separate the channels.
The tank shows the current buffer status. If this bar rises over ~75% of its maximum size, there is a high likelihood of data loss.

£
3
2 115-
a.
E
<

e Bk
i

Channel offset [V]

Figure 6.6: View data tab. Measures and displays data bas#teaurrent configura-
tion.

6.2. HOST SOFTWARE 75

View data Training

Configuration | Train | Results | Classification |

Classes Training times Training configuration
' Nomovement
| Wrist flexion
() Wrist extension
@ Wrist supination
@ Wrist pronation
' Power grip
' Hand open
') Fine pinch grip

Repetitions Random order?

ES
¥3 9

Ffrepare [=]
g3

$ample s]
G

Figure 6.7: Training configuration tab. Allows the user tofigure a training sequence.

76 CHAPTER 6. RESULTS

Information | Configuration vwswdsta\Trammg Run
on | Train
Number of

Wrist flexion 1 18

Prepare Sample

I

Pause

Figure 6.8: Training running tab. The training sequencelmamaused, restarted and
aborted.

6.2. HOST SOFTWARE 77

| Configuration | Train | Results | Classification |

Selecta class H

Fine pinch grip Save taiiatiab

145

Amplitude

i e)

| | ' | ' ' ' | | ' ' ' | '
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000
Time

Channel offset [V]
(m
bl

0

Figure 6.9: Training results tab. Upon completing a tragng®quence the user may
inspect the signals visually. These may also be exportedABLMB for offline pro-
cessing.

8 CHAPTER 6. RESULTS

date | Training | Run

Configuration | Train | Results | Classification

Feature selection
& Analyze features.

Figure 6.10: Classifier training tab. The user may selectirthet of each feature. The
“analyze features” option displays the classification amshin figure$6.12 and 6.113.

6.2. HOST SOFTWARE 79

Information | Configuration | Viewdata | Training | Run ‘

|W‘ Measure Communicate MXT settings Classification settings
top
0 13 . Communcate with MXT? Broadcast? Fast? Strict transitions?
57 35% 4 ~J J 2
S £ Speed gain Class. hysteresis
O- e O- = %
N .
0 g

Wrist extension

Figure 6.11: Demonstrator tab. The user may configure thesifization and the host-
NXT communication.

80 CHAPTER 6. RESULTS

6.3 Controller

With four electrodes, two on the wrist flexors and two on théstextendors, one can
control the following classes with almost no error in cléisation; no movement, wrist
flexion, wrist extension, power grip, hand open, underarongtion and supination.
For this to work best the training set ought to be at least wyetitions of at least two
seconds of sampling per class. Note that with only one tdgest(i.e. the author) one
cannot conclude that these results will reproduce for aikers.

Using at least a single classification hysteresis (i.e. tiwdlar, consecutive clas-
sifications must occur in order to change class) proved toitbéte avoid oscillations
and rapid class change in between motion classes. Requiongthan two consecutive
classifications turned out to infer such high delays (witl® &z window update rate) as
to make the system very hard to use.

6.4 Classifier performance

There are several aspects of the classifier that can be dtindiee context of this thesis.
The following two terms are used throughout secfion 6.4. Séparabilityof a classifier

is the percentage of feature vectors in the training dataatieeclassified correctly by the
classifier. However, this not the whole story, as the col@rahay make classification
errors even with a training set separability of 100 %, sinfj@gause the EMG signals are
non-deterministic. Theerformanceof a classifier is the percentage of feature vectors
from a test data set that are classified correctly.

The strategy for calculating these were to separate theingatata into two parts.
The first is used to train a classifier and calculate its séjlyaand the second is used
to calculate the performance.

The separability and performance of LDA and LMS classifiesisg different, two-
dimensional feature spaces are discussed in sdcfion 6.4.1.

Note that when visualizing and analyzing the classifiers itdcessary to reduce the
feature-space to comprehensible sizes. In practice, Hiarespace can easily BE0
using various features and eight electrodes.

6.4.1 LDA and LMS classifier performance

Figured 6.1R and 6.13 show the LMS and LDA classifier schemdssaparability for
different features on the same data set. Two electrodes uss@, one on the wrist
flexors and one on the wrist extendors. All the calculatedufes are scalar, so the
feature space is alway’’, making visualization easy.

By visual inspection, the LDA classifier seems to performsistently better than the
LMS classifier. However, the LDA training time is consistgritigher than for the LMS
classifier. Tests on different training data set sizes ledahat the LDA training takes

6.4. CLASSIFIER PERFORMANCE 81

close to twice the time compared to the LMS classifier. Howeabe actual calculation
time for the MATLAB scripts are done in a matter of millisectson a standard desktop
computer, so for the purpose of this thesis this does noefatt

Figured 6.14 and 6.15 show the classifier schemes and penficenwhen only half
the training data set of sectibn 6.4.1 is used for classif@ning. Note that most sepa-
rability values are now reduced compared to figlires|6.12 iR 6

6.4.2 LDA and LMS classifier separability with multiple features

So far only two scalar features were used at one time. Thigtseis an easily plotted,
two-dimensional feature space, but the performance is Inatya acceptable. This is
specially true when the number of classes increase. Totige¢s what impact the num-
ber of features have on classifier separability and perfoomahe following experiment
was carried out.

For a given data set\ different feature values were calculated. Then, for each
combination ofh feature values out dfl possible, LMS and LDA classifiers were trained
and their separabilities calculated. This was repeateiéoeasingy, and for eact the
LSM and LDA classifiers with highest separability were kept alefined a®ptimal
The performance of these classifiers were then calculated.

The dataset was recorded using the same electrode conifiguaatin section 6.41.1,
but two additional classes were introduced. The availaddguires were AAV, ZC, NT,
MYOP, WAMP and AR. Since the AR feature has four values (iaefficients) and the
others are scalar, 9 feature values were available for eltfh &gnal. Two electrodes
were used, resulting in a maximum feature spadg’§f

Figure[6.16(Q) shows the results for= 2, and figure$ 6.16(b) arid 6.18(c) show
the results for alh. The figure clearly demonstrates that the LDA performs $icgmtly
better than LMS for small feature spaces, but the differeleceease as the feature space
grows. Another interesting observation is that the curvesat strictly increasing. In
other words, there are some features gratharmfulfor the classification.

2 The main application uses a few seconds on training, evamgththe actual MATLAB script executes
in milliseconds. This may be due to overheads in transfgriidnge amounts of data between LabVIEW and
MATLAB, but as it poses no real problem this was not inveggdaurther.

82

CHAPTER 6. RESULTS

LMS (92.5 % separability)

LDA (99.4 % separability)

003~ ‘ 0.03=

0025/ 1 0.025
: | 2
| 002} : 3
<4 o <]
° °
Ko} < :
@ o o .
= 0.015} : 1 50015}
o el 9] :
@ =

0.01p7" B

0.0050 0.04 0.06 0.08 0'OO"O 0.04 0.06 0.08

Medial electrode AAV Medial electrode AAV
%107 LMS (75.6 % separability) X107 LDA (93.8 % separability)
Q Q
< <
[} (]
° °
g 8
S 4 °
° 2
3 [
s s
Q Q
© ©
— § - 35
0.01 0.015 0.01 0.015

Medial electrode AAC

100

Medial electrode AAC

LDA (95.0 % separability)

@
o

Lateral electrode ZC
D
o

20

Lateral electrode ZC

1007

N
(=}

20

80

@
=

Figure 6.12: Comparison between LMS and LDA classifier pemémce in theR? fea-
ture space.Red: no movementBlue: wrist flexion, Black: wrist extensionGreen:

power grip.

6.4. CLASSIFIER PERFORMANCE 83

LMS (83.8 % separability) LDA (86.3 % separability)
120 T 120 T
110 110
= =
> 100 > 100
o k=3
g g
& 90 & 9
5} [}
I I
Q Q
< 80 < 80
- -
70 70
600 50 100 600 50 100
Medial electrode NT Medial electrode NT
LMS (95.0 % separability)
. — 0.6

0.6 T

4

(3
4
3

Q
i

0.4f: -

o
w

0.35“

Lateral electrode MYOP
Lateral electrode MYOP

o

)
o
)

o
ok

Lateral electrode WAMP
Lateral electrode WAMP

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Medial electrode WAMP Medial electrode WAMP

Figure 6.13: Comparison between LMS and LDA classifier pemémce in theR? fea-
ture space.Red: no movementBlue: wrist flexion, Black: wrist extensionGreen:
power grip.

84

CHAPTER 6. RESULTS

LMS (82.5 % correct)

LDA (96.3 % correct)

0.03—= T 0.03~

0025/ 1 0.025
: | 2
| 002} : 3
<4 o <]
° °
Ko} < :
@ o o .
= 0.015} : 1 50015}
5] ol 5] :
@ =

0.01p" B

0.0050 2 0.04 0. 0.08 0'OO‘)O 2 0.04 0.06 0.08

Medial electrode AAV Medial electrode AAV
%107 LMS (75.0 % correct)

Lateral electrode AAC

%107 LDA (88.8 % correct)

Lateral electrode AAC

0.01
Medial electrode AAC

LMS (92.5 % correct)

100 SRR e

0.005 0.01 0.015
Medial electrode AAC

0.015 0

LDA (93.8 % correct)

@
o

Lateral electrode ZC
D
o

20

1007

80

@
o

Lateral electrode ZC
ey
o

20

%0 40 60 80
Medial electrode ZC

60 80
Medial electrode ZC

Figure 6.14: Comparison between LMS and LDA classifier pemémce in theR? fea-
ture space.Red: no movementBlue: wrist flexion, Black: wrist extensionGreen:

power grip.

6.4. CLASSIFIER PERFORMANCE

85

LDA (87.5 % correct)

120 T 120 T
110 110
= =
> 100 > 100
o k=3
g g
3 90 8 9
5} [}
I I
Q
£ 80 g 80
- -
70 70
600 50 100 600
Medial electrode NT Medial electrode NT
LMS (92.5 % correct)
0.6 — —_—— — - 0.6
0.5 0.5
o o
[e) [e)
> >
= . = -
o 0.4f - © 04f: - -
K K ~
& &
2 8 :
203 203}
[[Lo
Q Q
© ©
- -
0.2 0.2
O.% O.%
80— 80—
70} - 70}
o o :
s 60 s 60
< <
= 50 = 50
[} [}
° °
I I
g 40 g 40
(7} (7}
© ©
= 30 = 30
8 8
S 20 S 20
10 10

0 50 100 150 200
Medial electrode WAMP

100 150 200 250 300
Medial electrode WAMP

Figure 6.15: Comparison between LMS and LDA classifier pemémce in theR? fea-
ture space.Red: no movementBlue: wrist flexion, Black: wrist extensionGreen:

power grip.

86

CHAPTER 6. RESULTS

LMS (69.2 % separability)

06—

05}

N
IS

Lateral MYOP
o
w

0.2}

LDA (89.2 % separability)

Lateral AR(4)

%.l 0.2 0.3 0.4 0.5 0.6
Medial MYOP

031 0.2 0.3 0.4
Medial MYOP

(a) Separability with feature spa&®. Red: no movementBlue: wrist flexion, Black: wrist extension,
Green:power grip,Magenta:underarm pronatioriyellow: underarm supination.

100 o 000 &0 000 (‘)) 100
© ° o oo 0.0 o° o
o5t o 5 00 Sy
. s ° _ 95F °
— . X ° o 00w °
S @ ° o ° ® o0 0
E é 90F ; o
< S 85-
=% o} o
g sor o
« g ° °
a % 80
O 757 8
o o °
00 75t
65 . 70 ° .
0 15 20 0 15 20

5 10
Number of feature values

(b) Separability with increasing feature spaéted:

LDA, Blue: LMS.

5 10
Number of feature values

(c) Performance with increasing feature spaRed:
LDA, Blue: LMS.

Figure 6.16: Comparison between optimal LMS and LDA classifiseparability and
performance for different feature space sizes.

6.4. CLASSIFIER PERFORMANCE 87

6.4.3 Feature/classification combinations

Because the LDA and LMS classifiers work in different wayseatdire set resulting in
good separability for a LDA classifier does not necessanlgal for a LMS classifier.

To study this, the following experiment was done. For eachlmoation of 4 feature
values of the lateral and 4 of the medial electrode, a LDA ahd& classifier was
trained and its separability was calculated. Note that &adure space is exactly the
same size for each classifiék¥). The same dataset as presented in seEfion] 6.4.2 was
used.

Figure[6.1V shows the class separability for all classifiéfbe values are sorted
such that combination 1 has the highest separability, andatst combination has the
lowest (this is done separately for the LDA and LMS classsjierThis figure clearly
demonstrate the importance of using correct features,edifference in separability
from the best to the worst combination can easily be 25 %. MWw@ethere are several
combinations resulting in the same separability.

100

95F

901

85f

801

Class separability [%]

751

70
0

0.5 1 15 2
Comb. number sorted for LMS and LDA x 10
Figure 6.17: LMS and LDA performance with different featw@mbinations. The x
axis shows the combination number, ranging from the bestaaviorst separability for
each classifielRed:LDA, Blue: LMS.

Figure[6.18 shows the separability of the 50 best LMS and Lb#lginations. One
can see that the LDA generally outperforms the LMS, but fonsdeature value com-
binations, the LMS has the highest separability. Featuezten is therefore dependent
on the classifier in use.

6.4.4 Correlation between features

Having independent features is important in order to @ilize available processing
power of the platform where calculation is done, as usingiheaorrelated features
does not increase the classification quality. For this thesirk processing power was

88

CHAPTER 6. RESULTS

98

oo 100
0000000000000
000000000000000000000000000000000000!
96+ ° °
95¢
— ° o o oo
S IS s °
2. g4fo00000000000 o o 06 6 0 =
- o o
£ oo © 00060000060000000600000000000C0000000D B %0 R o0 oo . °e
3 = 90r
3 ° o0 6 oo 5 o0 ° °
@ 92 1 8
g o e oo ° o op 8 o €g i g0 s °
2 [oo o oo
00 6000 o gl o o
2] o o
@ 90 °] ° °
5 8 ° ° °
(8] o (@] o <)
o0
b °
88} 80 H
6 5 °
86 - - . . 75
0 10 20 30 40 50 0 10 20 30 40 50

Comb. number sorted for LMS

Comb. number sorted for LDA

Figure 6.18: LMS and LDA separability with different featlzombinations. The x axis
shows the combination number, ranging from the best to thretvgeparability LMS (a)
and LDA (b).Red:LDA, Blue: LMS.

superfluous as a desktop computer was used, but for usageaatuahprosthesis this is
not the case.

The correlation between different feature values was tatled for the same dataset
as used in sectidn 6.4.1. Pearson’s correlation coeffigigah by

~ cov(X,Y)
Pxy = Ox Oy (6.1)
was estimated by _ _
S (X = X) (% ~Y) (6.2)

Pxy = — =
\/ZiNzl(Xi - X)Z\/ZiN:l(Yi -Y)?

whereX represents the average value of dlsamples. The results are shown in ta-
bled6.1 and6]2.

AAV is generally highly correlated with AAC and VAR, wherea€, NT and MYOP
are less correlated with other features. These resultsargreement with the conclu-
sions suggested in chapfier 214.2.

One can also see that whereas AAV and VAR are always hightgleted, AAV and
AAC are highly correlated when the muscle is active (i.e.ifixand power grip for the
medial side, extension and power grip for the lateral sid#)is seems to be the case
between AAV and WAMP as well.

6.4. CLASSIFIER PERFORMANCE

89

Table 6.1: Feature correlation, electrode on medial sidenderarm.
(a) No movement

AAV AAC MYOP NT VAR WAMP ZC

AAV 0.21 [JOI82Y 0.0077 | 0.44
AAC 0.45 0.35 043 0.062 0.38
MYOP 0.029 0.28
NT 0.37 0.25 0.062
VAR 0.1 0.25
WAMP 0.12
ZC
(b) Wrist flexion
AAV AAC MYOP NT VAR WAMP ZC
AAV 0.38 0.46
AAC 0.42 0.22
MYOP 0.12 | 0.43 0.33
NT 0.43 0.41 0.015
VAR 0.34
WAMP 0.24
ZC
(c) Wrist extension
AAV AAC MYOP NT VAR WAMP ZC
AAV 0.086
AAC 0.032
MYOP 0.076
NT
VAR
WAMP
ZC
(d) Power grip
AAV AAC MYOP NT VAR WAMP ZC
AAV 0.0027

0.18

0.052 0.092 0.085

90 CHAPTER 6. RESULTS

Table 6.2: Feature correlation, electrode on lateral sidmderarm.
(a) No movement

AAV AAC MYOP NT VAR WAMP ZC

AAV 0.016 0.24 0.47
AAC 0.17 0.33 0.24 0.17 0.26
MYOP 0.054 0.093 0.34
NT 0.019 0.33 0.00025
VAR 0.24 0.11
WAMP 0.097
ZC
(b) Wrist flexion
AAY AAC MYOP NT VAR WAMP ZC
AAV 0.37
AAC 0.096 = 0.38
MYOP 0.36
NT 0.016 0.085 0.073
VAR 0.42 0.48
WAMP 0.29
ZC

(c) Wrist extension

AAV AAC MYOP NT VAR WAMP ZC

(d) Power grip
AAV AAC MYOP NT VAR WAMP ZC

Conclusion

Through this thesis a working control system for a 7 degréégedom hand prosthesis
model controlled by electromyographic and acceleromédggass has been developed.
It has been an ambitious project with a very satisfying tsswaf which the author is
truly proud.

7.1 Controller

The controller is training based, meaning that each useragahique controller. Every
algorithm used can fit to any number of electrodes and degfde=edom. This training
is done in a minute or two, and configuration is done from a &ngaphical user
interface.

Using four electrodes and a training sequence of a coupleirdites, the author
was able to control the hand using 7 motion classes. The tdyalecision is limited
by the time delay from a movement is performed til the handstaoving. This time
delay was definitely noticeable, but the achieved precigiaa certainly good enough
for demonstration purposes.

Some classes were harder to consistently classify coyrtbeth others, such as pinch
grip. However, when using eight electrodes instead of fiis,may be easier to achieve.

The performance of the controller was thoroughly analyzesihg different classi-
fiers and features. This gives insight into how differenssifier and feature combina-
tions perform for myoelectric prosthesis control.

91

92 CHAPTER 7. CONCLUSION

7.2 Host software

In addition to implementing a controller and fulfilling tharfctional specification, al-
most every aspect of the host software is designed withdugntension in mind. New
motion classes may easily be added, as well as new classifidrieatures.

The MATLAB back-end enables developers to change featurdkassifiers in a
powerful, high-level language, and without knowledge & tiabVIEW code.

It is the author’s own conclusion that the developed soféwamot merely a con-
troller as assigned in the thesis problem description dtsigftware frameworklesigned
to be easily extended in the future. Much effort has beenrptd making the software
modular, and to make as many aspects as possible config@aldpposed to hard-
coded. Each of thd50 Vis in the developed software has a few descriptive lofes
text in its documentation available in the LabVIEW editardasome are more heavily
documented. The structure of the LabVIEW project, file narfileshierarchy and the
VI icon practices are very strict and well structured.

The LabVIEW platform has proved to be a great choice of satvpdatform for the
host and the application has a robust and bug-free feeliiig to

7.3 NXT software

The NXT was programmed in NXT-G using the LabVIEW NXT toolkBecause the
overheads in the native communication APIs (both USB, bloiitand ¥C) were much
higher than expected, the NXT has become the bottleneckeo$ybtem, limiting the
servo set-points update rate. However, with some effost tipidate rate has been in-
creased to acceptable levels, although the delay from a idahown on the screen to
the model starts moving is noticeable. On the other handl ait/IEW NXT toolkit
makes it easy to create robust code, and the NXT softwars fegj-free and is easy to
use.

Suggested future work

8.1 Controller changes

The analysis of the classifier performance demonstratéahertance ofeature selec-
tion. In an optimal case, the classifier would always use the featihat give optimal
performance for the given subject at the given time. For tysis in this thesis, a
simple brute-force approach was used, which takes too nimehttd be used in practice.
However, many resources are available on feature seledtioluding Theodoridis &
Koutroumbas (2008). Implementing such an algorithm wontaiease the demonstrator
performance.

8.2 Software changes

8.2.1 Error handling

As mentioned earlier, the software does not perform anyr4raadling, which is an
addition that would benefit the user. Error-wires are usedutphout the source code
to facilitate error-handling implementation in the futubeit errors are most commonly
displayed and cleaned. An overview of possible errors an@gsponding actions should
be developed, before changing the appropriate VIs to adbehés specification.

93

94 CHAPTER 8. SUGGESTED FUTURE WORK

8.2.2 Code “tweaks”

Through my experience developing with the designed soévrmmework, some subtle
possible improvements were found that were not implementéiks is strictly due to
time constraints, as none of these aspects are hard to iraptem

o Make the base classifier object store more configuratioas gource configura-
tion). As it is now, the user may train a classifier then chambieh electrodes to
use. If the user then tries to run the demonstrator, an eragroncur because the
new source configuration is applied to an unsupported fi@ssi

In order to fix this, the classifier should store the sourcdigaration used during
training. This is done for the feature selection and trajnitass selection, so it
could easily be done the same way for source configuration.

e Combine broadcast and regular communication mode VIs. Asribw, the re-
ceiver must know in advance what communication mode theesemgks. This
is not particularly troublesome, but at the same time ndtyredegant. A possi-
ble solution is to have each transmission contain a single (@¢g. the first one),
identifying the communication mode (e.g. 1 for broadcadt@for regular mode).

e When demonstration is running on the host, the measurenuigr Istatus bar
does not contain as much information as it could. A betteicatdr of the system
performance would be the difference between the number akored samples
actually read and the number specified in the configuratfdhid number is high,
it means that classification and feature calculation tatesrtuch time.

This would be very easy to fix, simply change the input of thiédmngraph.

e The broadcast send/receive method is only implementechaesen the host and
receiver on the NXT. Implementing this in the other direstieould be useful for
when the NXT needs to communicate back to the host.

e The speed type used now is a number between 0 and 1. Howegpeddy the
direction an additional flag is needed when sending. Thiddcba simplified
by using the same -1 to 1 uword as for position, where the saarthines the
direction. The only thing to note is that the precision aalé when using an
uword is much larger than the NXTServo-v2 allows.

8.3 Changes in the system layout

Through my experience with the system, having two nodes @a$ NXT) feels rather
superfluous. As it is now the host performs all the work wita éxception of the?C
communication with the servo controller. For a future pebjevould suggest removing
one of these nodes.

8.3. CHANGES IN THE SYSTEM LAYOUT 95

Removing the NXT is the most natural approach, as a compsiteeeded anyway
(i.e. for the data acquisition and training). This could lome by replacing the NXT
with a simple circuit board with a serial interface, whichsispported by LabVIEW.
This board would not need any logic, it could be a byte-tceligdinsfer from UART to
I2C. Another option would be to replace the NXTServo-v2 calgravith another servo
controller supporting a USB or USART interface.

One could also move in the other direction, i.e. from the cotaptowards the NXT.
Note that a computer would still be needed to acquire theassgbut implementing the
control scheme on the NXT will take the system in the directiban actual prosthesis
implementation. For this purpose the LabVIEW NXT toolkitlivdertainly be inade-
guate, but a low-level C implementation could perform quitdl given the high clock
speed of the ARM7.

96

CHAPTER 8. SUGGESTED FUTURE WORK

Bibliography

Bach, P. F. (2009), Myoelectric signal features for uppablprostheses, Master’s thesis,
Norwegian University of Science and Technology.

Bersvendsen, J. (2010), Prosthesis simulator based otopidSourse work at the Nor-
wegian University of Science and Technology.

Boostani, R. & Moradi, M. H. (2003), ‘Evaluation of the foreaemg signal features
for the control of a prosthetic hand®hysiological Measuremeg#(2), 309.

Chan, F.,, Yang, Y.-S., Lam, F., Zhang, Y.-T. & Parker, P. @Q0Fuzzy emg classifi-
cation for prosthesis controlRehabilitation Engineering, IEEE Transactions on
8(3), 305 -311.

Elliott, C., Vijayakumar, V., Zink, W. & Hansen, R. (2007N\ational instruments lab-
view: A programming environment for laboratory automatérd measurement’,
Journal of the Association for Laboratory Automatib?(1), 17 — 24.

Englehart, K., Hudgin, B. & Parker, P. (2001), ‘A waveletskd continuous classifica-
tion scheme for multifunction myoelectric contrdBjomedical Engineering, IEEE
Transactions od8(3), 302 — 311.

Englehart, K., Hudgins, B., Parker, P. A. & Stevenson, M.94)9 ‘Classification of
the myoelectric signal using time-frequency based reptasens’,Medical Engi-
neering and Physic21(6-7), 431 — 438.

Fougner, A. L. (2007), Proportional myoelectric controbahultifunctional upper-limb
prosthesis, Master’s thesis, Norwegian University of 8céeand Technology.

Hakonsen, K. S. (2010), Utvikling og evaluering av en flekisjonell armprotesemodell,
Master’s thesis, Norwegian University of Science and Tetbugy.

Hosek, P., Prykari, T., Alarousu, E. & Myllyla, R. (2009) palication of labview: Com-
plex software controlling of system for optical coherermmaography’ Journal of
the Association for Laboratory Automatidd(2), 59 — 68.

97

98 BIBLIOGRAPHY

Huang, H.-P., Liu, Y.-H. & Wong, C.-S. (2003), Automatic erfegture evaluation for
controlling a prosthetic hand using supervised featurenmgimethod: an intelli-
gent approachn ‘Robotics and Automation, 2003. Proceedings. ICRA '03.EEE
International Conference on’, Vol. 1, pp. 220 — 225 vol.1.

Kang, W. J., Cheng, C. K., Lai, J. S., Shiu, J. R. & Kuo, T. S.98R ‘A comparative
analysis of various emg pattern recognition methotfedical Engineering and
Physics18(5), 390 — 395.

Kehtarnavaz, N. (2007), Labview graphical programmingrmment,in ‘Digital Sig-
nal Processing System Design’, 2 edn, Academic Press igtoh, pp. 5 — 56.

Mallat, S. (2009)A wavelet tour of signal processing: The sparse y8agdn, Academic
Press.

Muzumdar, A. (2004)Powered upper limb prostheses: control, implementatiod an
clinical application Springer-Verlag.

Oskoei, M. A. & Hu, H. (2007), ‘Myoelectric control systenmesurvey’,Biomedical
Signal Processing and Contrad(4), 275 — 294.

Parker, P., Englehart, K. & Hudgins, B. (2006), ‘Myoelectsignal processing for con-
trol of powered limb prostheses)purnal of Electromyography and Kinesiology
16(6), 541 — 548. Special Section (pp. 541-610): 2006 ISEK Cesgy

Pattichis, C. S. & Elia, A. G. (1999), ‘Autoregressive angsteal analyses of motor unit
action potentials’Medical Engineering and Physi@i(6-7), 405 — 419.

Theodoridis, S. & Koutroumbas, K. (200&attern Recognitiod edn, Elsevier.

Vignolo, L. D., Rufiner, H. L., Milone, D. H. & Goddard, J. C.§21), ‘Evolutionary
cepstral coefficientsApplied Soft Computin@l(4), 3419 — 3428.

Willison, R. G. (1963), A method of measuring motor unit aityi in human musclein
‘Proceedings of the Physiological Society’, pp. 35—-36.

Xavier, W. H. & Rodet, X. (2003), Discrete cepstrum coeffitgeas perceptual features,
in ‘Proceedings of the International Computer Music Confeeén

Zardoshti-Kermani, M., Wheeler, B., Badie, K. & Hashemi, (R995), ‘Emg feature
evaluation for movement control of upper extremity pros#s, Rehabilitation
Engineering, IEEE Transactions @&t4), 324 —333.

List of figures

Me ge/packet example block diagram. 41
g 42
4 GE] RVO STATE message type and flattened representation. 43
43
44
44
45
4

100 LIST OF FIGURES

MS and L DA performan "ﬁ‘. 83

4 | MS and L DA performancei®qd 84
MS and | DA performance iR continued 85

LIST OF FIGURES

101

C.2 Front panel of Vlin figurl

102 LIST OF FIGURES

Developer’s guide: Hardware

This short guide will serve as a quick reference to the hareaapects of the system.

Servo warning

The thumb abduction/adduction servo has been discon-
nected on the model, because connecting it results in a
short-circuit.

A.1 Power supply

Power warning

When external power is used for the servo motors, this
power sourcanust be disconnecteghenever the NXT

is turned off or disconnected from the servo controller.
If this is not done there will be noise on the PWM
lines resulting in chaotic movement of the hand.

The NXT may be used as a power supply for the servos. Howearee the batteries
are drained so quickly, using an external power source mmetended.

a-1

a-2 APPENDIX A. DEVELOPER’S GUIDE: HARDWARE

The power source should be at 8.0 V and support a maximumrdwiabout 2.0 A.
The normal power drain is much less than this, but when rgeéveral motors at once,
the current peaks about this value.

A.2 Trigno/host connections

This section describes all connections of the analog sigaslused by the developed
software “out of the box”. Note that the signal routing maydbanged in software as
described in the software developer’s guide.

Tabled’A.1 and_AJ2 show the connection schemes of the anajogls from the
Trigno system to the DAQPad-6016 and PCI-6025E respeygtivdl pin numbers and
names refer to the manufacturer’s datasheets.

The wire colors refer to those on the cable provided by Delgfs the Trigno sys-
tem. Note that the wires in this cable are twisted in groupsvof The twisted cables
always have alternating colors (e.g. the gray/tan wire isted with the tan/gray wire).

Note that the accelerometer signals exhibit a fixed 48 mydeden the time a sensor
detects an event to the time the analog signal is reproduced.

A.3 NXTServo-v2 controller

The NXTServo-v2 controller operates on PWM widthpis for position set-points and
PWM width change inus per 24ps for speed set-points. If a position set-pdhis
written and the associated speed regiSter greater than zero, the controller increases
or decreases the PWM width t8each 24us until the positiorP is reached. I5=0
thenP is written at once and the servo moves as fast as possible.

The servos accepts pulse widths between|&0énd 250Qus, although the construc-
tion of the hand limits the movement of the servos much moae this. The position
set-points are given in a 16-bit unsigned word, and the spetgdoints are given in a
single byte.

When the servo controller receives power it initializes bitimg 1500 ps to all
servos. This is a standard neutral position, but as this istmatural position of the
hand, a separate initialization is done when the NXT aptitioastarts.

A.3. NXTSERVO-V2 CONTROLLER a-3

Table A.1: Trigno to DAQPad-6016 connections. By DAQPaditmmame and DAQPad
input pin.

DAQPad inputs Trigno outputs Wire colors

Name Pin Name Pin Main Stripe
Al O 1 EMG9 51 Tan
All 4 EMG 10 49 Tan
Al 2 7 EMG 11 47 Yellow Tan
Al 3 10 EMG12 45 Tan
Al 4 17 AX9 50 Tan
Al5 20 AX10 48 Tan
Al 6 23 AX11 46 Tan
Al7 26 AX12 44 Tan
Al 8 2 AZ9 17

Al 9 5 AZ 10 15

Al 10 8 AZ 11 13 Yellow
Al 11 11 AZ12 11

Al 12 18 AY9 16

Al 13 21 AY 10 14

Al 14 24 AY 11 12

Al 15 27 AY 12 10

AISENSE 13 GND 22

DAQpad inputs Trigno outputs Wire colors

Pin Name Pin Name Main Stripe
1 AlO 51 EMGY9 Tan
2 Al 8 17 AZ9 Tan

4 All 49 EMG 10 Tan
5 Al9 15 AZ10 Tan

7 Al 2 47 EMG11 Yellow Tan
8 Al 10 13 Az11 Tan Yellow
10 AI3 45 EMG 12 Tan
11 Al1ll 11 AzZ12

13 AISENSE 22 GND

17 Al4 50 AX9

18 Al12 16 AY9

20 AI5 48 AX10

21 AI13 14 AY 10

23 Al6 46 AX11

24 All4 12 Av 11l

26 Al7 44 AX12

27 Al15 10 AvY 12

a-4 APPENDIX A. DEVELOPER’S GUIDE: HARDWARE

Table A.2: Trigno to PCI-6025E connections. By PCI input eaand PCI input pin.

PCl inputs Trigno outputs Wire colors
Name Pin Name Pin Main Stripe
ACHO 3 EMG 13 42 White

ACH1 5 AZ 13 8
ACH2 7 EMG 14 40
ACH3 9 AZ 14 6
ACH4 11 EMG15 38
ACH5 13 AZ15 4
ACHG6 15 EMG16 36
ACH7 17 AZ16 2
ACHS8 4 AX 13 41
ACH9 6 AY 13 7 White

ACH10 8 AX 14 39 Yellow White
ACH11 10 Ay 14 5 White Yellow
ACH12 12 AX15 37 White
ACH13 14 AY 15 3 %-
ACH14 16 AX16 35 Tan White
ACH15 18 AY 16 1 White Tan
AISENSE 19 GND 43 _ White

PCl inputs Trigno outputs Wire colors
Pin Name Pin Name Main Stripe
3 ACHO 42 EMG 13 White
4 ACHS8 41 AX13 White
5 ACH1 8 AZ 13 White
6 ACH9 7 AY 13 White
7 ACH2 40 EMG14
8 ACH10 39 AX14 Yellow White
9 ACH3 6 AZ 14 White
10 ACH11 5 AY 14 White Yellow
11 ACHA4 38 EMG15

12 ACH12 37 AX15
13 ACH5 4 AZ15 White
14 ACH13 3 AY15 White
15 ACHS6 36 EMG 16 White
16 ACH14 35 AX16 Tan White
17 ACH7 2 AZ16 White [IBFOWAY
18 ACH15 1 AY16 White Tan
19 AISENSE 43 GND [JiGfagll White

Developer’s guide: Software

This is short guide will serve as a reference for developkasging software configu-
rations or extending the software. This is a practical guidiemore information please
refer to the main thesis.

B.1 Installation

For the development a 32-bit version of Windows 7 was usea folowing software
needs to be installed.

LabVIEW The version used during developmentwas LabVIEW 2010 Psafeal De-
velopment System.

LabVIEW NXT toolkit This is freely available from the NI Developer Z&hié not
included with the LabVIEW installation.

VI package manager This is an application that manages additional packagdsdior
VIEW. Specifically it is needed to easily download and irlstalrtain Open-G
packages. Available freely (the community edition) orfline

http://zone.ni.com/devzone/cda/tut/p/id/4435
2http://jki.net/vipm

a-6 APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

LabVIEW packages Using the VI package manager, install the following package
e U Control Suite: System Controls 2.0, contains controls used by
the host application.
e nirsc_htm _hel p_common
e oglib_appcontrol
e oglib_array
e oglib_error
e oglib file
e 0oglib |vdata
e oglib_lvzip
e 0oglib_mi5
e oglib string
e 0oglib_dynamcpal ette

All packages, except the first one, are dependencies ofathieo package written
in open-g, that will allow LabVIEW to export MATLARB files.

LabVIEW mat i o package Download therat i 0 package freely available onlifeThe
downloaded file can be opened in the VI package manager atallégsfrom
there. The version used during development was 0.1-8.

MATLAB The version used during development was MATLAB R2010b (D)1L1

B.2 LabVIEW project structure and practices

All LabVIEW code for both the host and NXT software is contdnn a single Lab-
VIEW project. All source files are located in one of the foliag three folders.

Computer Contains code that is used exclusively on the host.
NXT Contains code that is used exclusively on the NXT.
Shared Contains code that is used on both the host and the NXT.

Within the NXT folder each VI is categorized further. Vis tlaae written exclusively
for the NXT that does not make sense to run anywhere elsededg that handles the
NXT display or buttons) get the file extensiomxt . vi as opposed to the regulari .

Shttp://sourceforge.net/projects/matio-labview/

B.3. CONFIGURATION a-7

B.2.1 Vlicon practices

All VIs have an icon that follows a strict rule. Each icon cists of a white background
with a black frame, and up to four lines of text. For the noritd the first line is
a color-coded identifier of the VI type (e.g¢omm for communicationfrain. for
training), and the rest of the lines make a descriptive text.

The exceptions to this rule are the main executable Vls that ltheir names writ-
ten in the center of the icon, and the NXT-specific VIs thatehavslightly different
background frame. Examples of all these icon types are shhofigure[B.1.

COMM. COMM.
MAIN MaIH WaIT WaIT
AFF AFF FOFR FOR
COMM. GOMM.

@ (b) © (d)

Figure B.1: Examples of VI icons. Main executable VIs for htg and NXT (b).
Normal VIs for host (c) and NXT (d).

B.3 Configuration

Configuration files warning

All configuration files must end with a line-break in
order for LabVIEW to parse them correctly. Windows
(CRLF), UNIX (LF) and Mac (CR) line breaks are
supported.

B.3.1 Application configuration

The functional global variabkar _confi g_app. vi M contains the application configura-
tion. This configuration can be changed by writing a new dételue to thefppl i cati on
Configuration variabl e control. Below is a description of each field.

Config file pinout Absolute path to the analog channel pinout file. Value usethdu
developmentis/ Conput er/ Confi g/ sources. t xt.

Config file training classes Absolute path to the training classes file. Value used during
developmentis/ Conput er/ Confi g/ cl asses. txt .

“4Located in. / Conput er/ VI / Confi gur at i on/

a-8 APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

Config MATLAB script path This path will be added to the MATLAB work path.
Note that sub-folders areotadded. Value used during developmenti€onput er/ Mat | ab.

Config classifier class pathAbsolute path to the classifiet vcl ass class file. Value
used during developmentisConput er/ O asses/ C assifier LDA Cassifier
LDA. I vcl ass.

Config features path Absolute path of the folder containing the featuréiles. This
path will be added to the MATLAB work path. Note that sub-feld arenot
added. Each file is assumed to be a proper feature functiolne Wesed during
developmentis/ Conput er/ Mat | ab/ Feat ur es.

Config file servo set pointsAbsolute path to the set-points file. Value used during de-
velopmentis / Conput er/ Confi g/ servo_set points. txt.

B.3.2 Analog channel pinout file

All channel names are enumeratedour ce_i d. ct| . The EMG channels are labeled
EMX01, EMX2, ..., EMGL6. The accelerometer channels are label€@1X, ACCO1Y,
ACQ01Z, ...,ACCL6X, ACCL6Y, ACC16Z. The numbers refer to the numbers on the Trigno
electrode units.

The channel routing is located irt Conput er / Conf i g/ sour ces. t xt . Each row in
this file assigns an enumerated channel name to a LabVIEWtesinel in the follow-
ing format;<channel id>=<task channel >.

The following file defines the connection routing as usedridudevelopment.

EMG09=Dev4/ ai 0
ACC09X=Dev4/ ai 4
ACC09Y=Dev4/ ai 12
ACC09Z=Dev4/ ai 8
EMG10=Dev4/ ai 1
ACC10X=Dev4/ ai 5
ACC10Y=Dev4/ ai 13
ACC10Z=Dev4/ ai 9
EMG11=Dev4/ ai 2
ACC11X=Dev4/ ai 6
ACCl11Y=Dev4/ ai 14
ACC11Z=Dev4/ ai 10
EMG12=Dev4/ ai 3
ACCl12X=Dev4/ ai 7
ACC12Y=Dev4/ ai 15
ACCl12Z=Dev4/ ai 11
EMG13=Dev5/ ai 0
ACC13X=Dev5/ ai 8
ACC13Y=Dev5/ ai 9
ACC13Z=Dev5/ ai 1
EMG14=Dev5/ ai 2

B.3. CONFIGURATION a-9

ACC14X=Dev5/ ai 10
ACC14Y=Dev5/ ai 11
ACC14Z=Dev5/ ai 3
EMG15=Dev5/ ai 4
ACC15X=Dev5/ ai 12
ACC15Y=Dev5/ ai 13
ACC15Z=Dev5/ ai 5
EMG16=Dev5/ ai 6
ACC16X=Dev5/ ai 14
ACC16Y=Dev5/ ai 15
ACC16Z=Dev5/ ai 7

Note thatDev4 refers to the DAQpad, aniev5 to the PCI card. This is specific to the
computer on which the application runs, and can be changdédtixe “Measurement
& Automation Explorer” application that comes bundled wlithbVIEW. These are lo-
cated undeMy Systeni Devices and Interfaces and can be changed by renaming
the device in question.

B.3.3 Training classes file

All classes have a unique string identifier, a label and atiltion file name. The
available classes are located. ihConput er/ Confi g/ cl asses. txt. Each row in this
file adds a new class available for training in the followirggnhat; <i d> <l abel >
<i mge>. Note that the white-space characters are tabular chasa@tee image field is
the absolute path tojag file.

The following file defines the classes used during developmen

NO_MOVEMENT No movement .\ Comput er\ | mages\ nomov. j pg
WRI ST_FLEXI ON Wist flexion .\ Comput er\ | mages\ wflex.jpg
WRI ST_EXTENSI ON Wist extension .\ Comput er\ | mages\ wext.jpg
WRI ST_SUPI NATI ON Wist supination .\ Comput er\ | mages\ wsup. j pg
WRI ST_PRONATI ON Wist pronation .\ Comput er\ | mages\ wpron.jpg
POWER_GRI P Power grip .\ Comput er\ | mages\ pgrip.jpg
HAND_OPEN Hand open .\ Comput er\ | mages\ open. jpg
FI NE_PI NCH_GRI P Fine pinch grip .\ Comput er\ | mages\ pi nch. | pg

Training classes warning

The NO_MOVEMENT class is special in that it is used
explicitly when the “strict transitions” controller mode
is enabled. This class is therefore assumed to exist
and be the first in the list

a-10 APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

B.3.4 Servo set-points file

Each class can have a set of servo set-points associated. Witlese set-points are lo-
cated in. / Conmput er/ Confi g/ servo_set poi nts. txt. Each row in this file associates
a class with a set of servo set-points in the following formaat> <set poi nt s>. Note
that the white-space character is a tabular characters@tmi nt s field consists of 7
floating point numbers separated by white-space. The i'thver in this list gives the
set-point of the i'th servo, enumeratedrnnt or _i d. ctl. The set-points are given in
the “unit” position type, as discussed in secfion 5.5.1. @lass identifiers must match
those defined in the class-file discussed above.

The following file defines the set-points used during deveiept.

NO_MOVEMENT 0 0 0 0 0 0 O
WRI ST_FLEXI ON 0 01 0 0 0 O
WRI ST_EXTENSI ON 0 0-1 0 0 0 O
WRI ST_SUPI NATI ON -1 0 0 0 0 0 O
WRI ST_PRONATI ON 1 0 0 0 0 0 O
POWER_GRI P 0 0 0 1 1 0 1
HAND_OPEN 0 0 0-1-1 0-1
FI NE_PI NCH_GRI P 0 0 0 0 1 0 1

Note that if there are no servo set-points defined for a class@vector is used.

B.4 Features

All features are MATLABmiles in the configured feature folder. Each file is assumed
to contain a function accepting two arguments and returairayv-vector. The follow-

ing code snippet demonstrates how the AAV feature is impfeateand represents the
method signature that is common for all feature files.

% EMGaav Cal cul ate average absolute value

% EMGaav(DATA, CONFIG) calculates the AAV of DATA

% DATA: A nSanples x nSources matrix where each colum is a
% time series froma separate source (i.e. channel).

% CONFI G: A struct containing the fields

% rate: Sample rate in Hz.

% sources: A list of source identifiers. The ith
% el ement corresponds to the ith column
% i n DATA.

function AAV = EMGaav(data, config)
AAV = mean(abs(data));
end

B.5. REQUIRED MATLAB BACK-END a-11

B.5 Required MATLAB back-end

The classifier and feature MATLAB scripts rely on some MATLABctions that need
to be in the search path when the system runs. The followin@ M8 scripts must be
placed in the path configured int the application configoradiiscussed in section B.3.1.

dod assi fy. m Used by both the LDA and the LME assi fy functions.
get AccDat a. m Used by the feature extraction LabVIEW function.
get EngDat a. m Used by the feature extraction LabVIEW function.

t rai nLDA. m Used by the LDA classifier.

t rai nLMS. m Used by the LMS classifier.

In addition, there are some methods that are not needed Igoftweare as is, but
might be useful for future classifier and feature implemeora

i d21 abel . m Creates a source label (eEM31) from a source id.
i sSEng. m Returns whether the supplied source id is an EMG signal.
i sAcc. m Returns whether the supplied source id is an acceleromigteals

B.6 Servo limits (NXT)

The servo limits are configured sBervo_get linits. vil. The default value of the
indicator gives the servo limits. For each servo three osipoints are given (-1, 0
and 1 points) in PWM width inus. In addition, the maximum speed is given in PWM
width ps per 24us. Element in this array refers to senicas defined imot or _i d. ctl .
Figure[B.2 shows the values used during development.

Servo limits

1PWM -1 PWM
|1180 1840
0PWM [0 PWM
11180 1840

APWM -1 PWM
|zooo 12100
0PWM 0 PWM
11470 | 2100
1PWM 1PWM 1PWM 1PWM
|?4o 12020 |1050 11470
Max speed |Max speed |Maxspeed |Maxspeed |Maxspeed |Max speed |Max speed
10 |40 50 150 || 100 10 || 100

11490
0 PWM
1940
1 PWM

Figure B.2:servo_get |ints.vi default output values as used during development.

SLocated in. / NXT/ VI / Ser vo/

a-12 APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

B.7 NXT demo files

The NXT demo files are downloaded using the NXT terminal add fromTool s

- NXT tools - NXT terninal. Because the current NXT firmware does not support
directory listings, the list of available demo files must barged in code. This is done
in appl i cation_deno. nxt. vi.

To generate a demo file with the structure shown in figure seX¥dHowing MAT-
LAB script can be used.

% GENERATE DEMO FI LE

% generate_file_pos(FlILENAME, CONFI G, DATA) writes a demo-file to the
% given file that may be run on the NXT.

%

% FI LENAME: The name of the file to wite. WII be overwritten if
% al ready existing.

% CONFI G: A cluster containing the following fields:

% type: POS or SPEED.

% dat atype: Setpoints type

% 0=PWM, 1=[-1,1] for POS

% 0=PWM per 24 us for SPEED

% dt: Time to sleep (in ms) between the onset of
% each setpoint.

% DATA: An nSetpoints*nServos matrix containing the set-points.

% Jorn Bersvendsen, jornb87@mail.com
% 24. May 2011

function generate_file(filename, config, data)
% Open file reference
file = fopen(filename, "w+');

% Error handling

if file == -1
disp(['Error: Could not open/create file ',...
filename, ...
" for writing.']);
return;
end

% Accept data in both column and row order
s = size(data);
if s(l) < s(2)

data = data’;

s = size(data);

end
nPoints = s(1);
nMotors = s(2);

% Wite type (POS/SPEED)
fwite(file, length(config.type), 'uint8);

B.8. TRIGNO ANALOG OUTPUTS a-13

fwite(file, config.type, 'char*1");

% Wite config

fwite(file, config.datatype, "uint8");
fwrite(file, config.dt, "uint8);
fwite(file, s(2), "uint8");

b setpoint type
b delta time
o number of servos;

XXX

% Wite data
for i=1:nPoints
for j=1: nMotors
if strcmp(’ SPEED’, config.type)
% SPEED type
fwrite(file, data(i, j), "uint8");
el se
% POS type
d = data(i, j);

% Check for [-1, 1] unit type
if config.datatype == 1

d = floor((max(-1, mn(1, d)) + 1) * 32767);
end

fwrite(file, d, "uintl16");
end
end
end

% Wite carrige return
fprintf(file, "\r");

% Cl ose file
fclose(file);
end

B.8 Trigno analog outputs

In order to activate the analog outputs the Trigno baseostatiust be connected to a
computer by USB. Running the “Trigno Analog Output” applioa provided with the
Trigno system activates the analog outputs.

APPENDIX B. DEVELOPER’S GUIDE: SOFTWARE

[Desys Trigno Analog Output |
@ DELSYS Trigno Wireless EMG System BID-0134

[> s | [piiamee] [@i || 0w ||
=
(550 59 ()
==
I

L

[z
n Sy J
1

Figure B.3: Screenshot of the Trigno analog output appdoat

Quick guide to LabVIEW

This chapter will give an overview of the LabVIEW programmilanguage and devel-
opment environment. It is based on (Elliott et al. 2007, Hasteal. 2009, Kehtarnavaz
2007).

LabVIEW (LaboratoryVirtual I nstrumentatiofengineeringWorkspace) is a graph-
ical programming language. The source code for a prograrotisvritten but drawn,
similar to a flowchart diagram.

The main unit of execution, similar to a function/method égular programming
languages such as C, is the Wiftual Instrument). A VI has three parts; a front panel,
a block diagram and a connector pane.

Thefront panelis analogous to a method declaration in C and defines a method b
its inputs and outputs. However, the front panel is also plycal user interface in that
all (i.e. almostall) inputs and outputs are intractable. The intractabpeiis are called
controlsand outputs are calleddicators

Theblock diagramis analogous to the method source code in C. Every control and
indicator is represented as an object on both the front pamelthe block diagram.
However, many different front panel objects are represktite same way on the block
diagram. A boolean control on the block diagram may be a $watca button on the
front panel. Similarly, slides, knobs, dials an gauges #ireepresented as numeric
controls on the block diagram.

Since LabVIEW is a graphical programming languages, thes\alled using an
icon on the block diagram instead of a function name in thecmcode. Theonnector

a-15

a-16 APPENDIX C. QUICK GUIDE TO LABVIEW

panedefines how the VI looks and is used on the block diagram.
Examples of different block diagram structures with explaons are shown in fig-

ure[C.1.

While loop. Flat sequence structure.
N Runs for 5 iterations. - — Dooo0onDoo0o000000000C
i=0,1,2 3.4 Terminates when T is wired Executed first. Executed second.

e Lo £ 3y

to the terminate terminal.

\Waits for 100 ms. | | [[Adds twe numbers.

[=

Generates an array

output containing 1300

Runs for 5 iterations.
i=0,1,23,4

02,468 -
5
= E——
- _ OoooOoooooooooooooon

Event structure. Switch case.

MATLAE node. Performs an action when Used for numbers,
Calculates 13 * input. an event occours. strings and bocleans.
- Control Indicator
i 500 HE (- -
MATLAB script] [0] Timeout fi.e. input). False {i.e. output).

-1 * . H - -
out =in*13; TI.I’T'IEd DL!tforSOCI ms. Boolean Executed if 7is F String
Display dialog box to user.

.................. Was F
Type| |Timeout
oK

Figure C.1: Commonly used LabVIEW block diagram structures

Note that there is one contrddol ean) and one indicatorg ri ng) in this code,
both on the switch case in the lower right corner. Their repn¢ation on the front panel
is shown in figur€ Cl2.

Boolean String Boolean String
iWa =F @ Was T

Figure C.2: Front panel of the block diagram in figlirelC. Lragteecution with different
boolean control values.

	Title Page
	Introduction
	Reader's guide
	Work methodology
	Thesis context
	Hardware

	Background
	The myoelectric signal
	Anatomy and origins
	Surface EMG measurement
	Nature of the surface EMG signal

	Myoelectric control systems
	Classification
	Problem overview
	Solution outline
	Least squares method (LSM)
	Linear discriminant analysis (LDA)

	Signal features
	Feature expressions
	Correlation between features
	Calculation time

	Function specification
	Main usage overview
	Contextual goals
	Specification overview
	Host
	Measurement
	Training
	Feature extraction and classifier training
	Demonstrator
	Save/load

	NXT
	Goals

	Software platforms overview
	NXT
	NXT-G (LabVIEW)
	Next Byte Codes (NBC) and Not eXactly C (NXC)
	MATLAB and Simulink
	leJOS NXJ
	C/C++
	Other platforms

	Host
	Choice

	Software design and implementation
	System overview
	Code terms
	Design pattern implementations
	Functional global variable
	Dynamic event registration
	Producer/consumer architecture

	Host-NXT communication
	Overview and terms
	Message payload types
	Send and receive algorithms

	NXT software
	Servo controller
	Controller mode
	Demo mode

	Host software
	Architectural overview
	Measurements
	Feature calculations
	Classifier training and classification
	Application configuration files
	Sub-application: Measurement
	Sub-application: Training
	Sub-application: Classifier training
	Sub-application: Demo

	Results
	NXT software
	Host software
	Controller
	Classifier performance
	LDA and LMS classifier performance
	LDA and LMS classifier separability with multiple features
	Feature/classification combinations
	Correlation between features

	Conclusion
	Controller
	Host software
	NXT software

	Suggested future work
	Controller changes
	Software changes
	Error handling
	Code ``tweaks''

	Changes in the system layout

	Bibliography
	List of figures
	Developer's guide: Hardware
	Power supply
	Trigno/host connections
	NXTServo-v2 controller

	Developer's guide: Software
	Installation
	LabVIEW project structure and practices
	VI icon practices

	Configuration
	Application configuration
	Analog channel pinout file
	Training classes file
	Servo set-points file

	Features
	Required MATLAB back-end
	Servo limits (NXT)
	NXT demo files
	Trigno analog outputs

	Quick guide to LabVIEW

