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Summary

Intraoperative ultrasound strain imaging of the brain visualizes
brain tissue deformation as an image. The hypothesis is that strain
and elastographic values can be used to complement conventional
B-mode image in the task of brain tumor segmentation. A key as-
sumption is that the natural pulsation of the cerebral arteries causes
deformation in the brain tissue that is measurable with ultrasound.

Strain values are found with a least-squares technique that esti-
mates the spatial derivative of axial velocity, which in turn is mea-
sured using a phase-based velocity estimator. A correlation coeffi-
cient is calculated for each estimate, giving an indicator of estimation
accuracy. Additionally a method for hiding estimates of bad quality
based on correlation coefficient thresholding is demonstrated. More-
over, a novel elastographic processing technique suitable for cineloop
display is introduced. This method extracts a stiffness parameter
from a series of strain images, producing an elastogram. A graphical
user interface allowing the user to change parameters and see the
corresponding result in real-time, minimizing the time needed for
parameter optimization, has been developed.

The method has been tested using an elasticity phantom. The
phantom elastogram cineloop shows a live image that visualizes the
difference between stiff and soft tissue well, portraying information
not found in the B-mode image. The conclusion is that the pro-
posed elastographic technique, combined with correlation coefficient
thresholding, produces elastograms that are suitable for real-time
display. This technique is not limited to imaging of the brain, and
could, with different parameters, be used for imaging other parts of
the body as well.

Clinical data sets from two brain tumor patients have been stud-
ied as well, where the estimated velocity, strain and elastographic
values is discussed in detail. In both patients the tissue movement
due to arterial pulsation was measurable with ultrasound. For one
patient, a correlation was found between tissue pathology and esti-
mated strain and elastographic values. For the second patient the
strain and elastographic processing broke down, and no similar cor-
relation was found.
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CHAPTER 1
Intraoperative ultrasound

Ultrasound is one of the major medical imaging modalities, with clinical
applications in many fields of medicine. Compared to other modalities such
as MRI or CT, ultrasound has several advantages such as the portability
of the scanner, low cost, and the ability to provide real-time imaging. Ul-
trasound emits no ionizing radiation and, together with MRI, is considered
as one of the safest modalities. Drawbacks includes a small field of view,
the difficulty of imaging through bone and similar structures, and the high
attenuation of ultrasound waves in tissue. In general this means that the
image quality can vary between patients and is influenced by the skill of
the sonographer.

Most people probably know ultrasound from its use in obstetrics (the
medical field dealing with child birth), where scanners are used to image the
fetus during pregnancy. However ultrasound is used in a number of different
clinical settings, such as cardiovascular (heart and blood vessels), gastroen-
terology (digestive system) and urology (urinary tracts and reproductive
system).

The use of ultrasound in neurology (nervous system), more specifically
ultrasound imaging of the brain, has received relatively little attention. The
reason for this is that the brain is surrounded by bone, which reflects most
of the incoming ultrasound waves, which makes imaging difficult. Never-
theless, by taking advantage of the thinner areas of the skull and restrict-
ing imaging to only measure blood flow, a method known as transcranial
Doppler ultrasound (Markus, 2000) is used non-invasively on the brain.
Transcranial sonography (Meyer-Wiethe et al., 2009) and transcranial tu-
mor ablation (Jagannathan et al., 2009) are other ultrasound techniques
which have been used on the intact skull, with varying degree of success.
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CHAPTER 1. INTRAOPERATIVE ULTRASOUND

If a brain tumor is to be removed surgically, a part of the scull is tem-
porarily removed (a procedure known as a craniotomy) to give the surgeon
access to the brain. By using ultrasound during such a surgery, the brain
can be imaged directly through the hole in the skull, giving much better
imaging conditions. The surgical removal of a tumor is a complex procedure
which deserves to be studied in more detail. What follows is an explana-
tion of some of the typical clinical steps a brain tumor patient at St. Olavs
hospital (Trondheim, Norway) will go through.

1.1 Surgical removal of brain tumors

What is a tumor?

A tumor is an abnormal collection of tissue caused by excessive cell growth.
If the tumor is malignant (as opposed to benign), there is a serious health
risk to the patient which might ultimately lead to the death of the patient.
A malignant tumor is likely to grow uncontrollably, or spread (metastasize)
to other parts of the body, though it is rare that a tumor which originates
in the brain to metastasize. A brain tumor is thus a tumor located in the
brain.

A brain tumor patient’s symptoms can range from no symptoms at all,
to degraded memory, speech impediments, worsening of motor function or
other neurological conditions. In general brain tumors affects each patient
differently, depending on the location, size and type of tumor. If a patient
is suspected to have a brain tumor, the patient will typically be scheduled
for an MRI brain scan.

An initial MRI brain scan

The MRI scan provides an excellent anatomical view of the brain, and is
of great help when determining the position and size of the tumor, as the
tumor is often easily distinguishable in the image. An MR image from a
tumor patient is shown in Fig. 1.1, where even for the untrained eye it is
easy to see that there is an abnormality.

For some patients the best treatment is to physically remove the tumor,
or parts of it, through surgery. If the medical team decides that the tumor
should be surgically removed, the team will first try to define the borders
of the tumor as good as possible based on the MR images. It is important
to locate critical nearby neurological paths and structures that must not
be damaged during surgery, a task which might require new scans such as
functional MRI (fMRI) or diffusion tensor imaging (DTI). These kind of
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1.1. SURGICAL REMOVAL OF BRAIN TUMORS

Figure 1.1: Preoperative MR image of a tumor patient. The tumor is visible
in the upper right quadrant of the brain.

scans provides the surgeon with more information than the anatomical MR
image alone.

A key step in the pre-surgical planning is the decision on how to reach
the tumor, with the goal of doing as little damage to healthy tissue as
possible. Of course none of these steps are an exact science and every case
is unique, thus it is important that the team has good enough images on
which they base their decision.

Navigated neurosurgery

With the preoperative planning finished, the neurosurgery is scheduled.
New MR images are taken the day before surgery, with parameters opti-
mized to provide images that are fed to a navigational system which is used
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CHAPTER 1. INTRAOPERATIVE ULTRASOUND

during surgery. A new brain scan also gives as up-to-date information as
possible, which could be important since tumor might have changed in size
since the initial MR scan.

During surgery, the surgeon uses the MR images as a guide to locate
the tumor and important neurological structures, much like a conventional
map is used to navigate in terrain. To assist the surgeon with this task, a
multimodal neuronavigation system SonoWand (Sonowand AS, Trondheim,
Norway) is used. The SonoWand system enables the surgeon to physically
point (using a pointer tool) anywhere on, or inside, the patient’s brain and
the system will mark the same point in the MR image. This is illustrated
in Fig. 1.2. The system has the ability to do 3D ultrasound recordings
during surgery, and these recordings can be used for navigation in the same
way as the MR images are used. A screenshot from the system, when using
both MRI and US images for navigation, is shown in Fig. 1.3.

Figure 1.2: The SonoWand system shown together with the pointer tool
used for navigation. Image courtesy of (Rygh, 2008)

The motivation behind using ultrasound in addition to MRI is to get
real-time information along with the ongoing surgical resection. Just the
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1.1. SURGICAL REMOVAL OF BRAIN TUMORS

Figure 1.3: Screenshot from the SonoWand system. The upper image shows
the preoperative MR scan, while the lower image shows intraoperative US
superimposed on the MR image.

fact that the patient might be lying in a different position than during the
MR recordings, can make the brain move with respect to the skull, causing
the MR ”map” to be inaccurate.

Further more the craniotomy can cause the brain to shift, causing dis-
crepancies compared with the preoperative images.The combination of such
accuracy-decreasing effects occurring due to the brain moving or changing
shape is known as brain shift. The advantage of using ultrasound is that
it is not affected by brain shift, since new recordings can be made at any
time. Naturally as more and more of tumor is removed the validity of the
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CHAPTER 1. INTRAOPERATIVE ULTRASOUND

preoperative images decreases as well.

An ultrasound recording is usually made after the craniotomy, but before
the resection is started. The probe, covered in sterile draping filled with
acoustic gel, is placed directly on the dura mater. This allows the surgeon
to recognize for any brain shift that may have occurred. As the surgery
continues, the surgeon will periodically use ultrasound to monitor the degree
of tumor removal and to locate and avoid critical neurological structures.

Finally, shortly after surgery the patient will undergo a new MRI scan,
so that the result of the operation can be assessed.

1.2 Ultrasound based tumor segmentation

Perhaps needless to say by now, brain surgery is a complex procedure where
a great deal of responsibility lies in the hands of the neurosurgeon. Thus
it is important that the surgeon is able to separate between tumorous tis-
sue which should be removed, and healthy tissue which should be left un-
touched. The clinical usefulness of intraoperative ultrasound in this kind
of surgery is thus dependent on the ability to successfully separate between
tumor tissue and healthy tissue.

For some patients, the tumor is clearly visible on the conventional ul-
trasound B-mode image, an example being the tumor already depicted
in Fig. 1.3. In other cases however, it may not be possible to clearly identify
the tumor borders from the B-mode image. This is seen in Fig. 4.13, on
page 48, where the separation between tumorous and healthy tissue is not
possible from B-mode alone. A good discussion on the challenges of using
B-mode during brain tumor surgery, and how such challenges are related to
the outcome of the operation, can be found in (Solheim et al., 2010). Such
difficulties makes it natural to investigate if other ultrasound techniques can
complement B-mode with respect to tumor segmentation, and has been the
motivation behind this thesis.

1.3 Goal of thesis

The normal B-mode image shows the strength of the ultrasound signal that
is echoed back from the tissue when the tissue is insonated. Using signal
processing other quantities than echo strength, such as for example flow
velocity, can be imaged. A technique known as strain imaging attempts to
image the amount of compression in the tissue, which again can be related
to tissue stiffness.
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1.4. STRUCTURE OF THESIS

Knowing that tumors in general are stiffer than healthy tissue (Souchon
et al., 2003; McKnight et al., 2002), and that tissue stiffness in general is
uncorrelated with echo strength (Ophir et al., 1999), it is reasonable to
believe that strain imaging could potentially be used to complement B-
mode in the task of tumor segmentation. This idea is the key motivation
behind this Master’s thesis. Initial results on the topic has been published
by my co-advisor Tormod Selbekk, in (Selbekk et al., 2005) and (Selbekk
et al., 2010).

This thesis builds upon preliminary work, a “Master’s project”, done by
the author in the fall of 2010. The project studied different axial velocity
estimators for use in strain estimation of the brain (Boerstad, 2010). Three
key issues were identified during the course of the project work, and these
issues serve as the primary goal of this thesis:

1. It was found that image quality varied significantly with change of the
estimation parameters. Manually tuning parameters to achieve bet-
ter results was cumbersome, and there was no guarantee that good
parameters for one data set could be used successfully on another.
Thus a method to quickly and intuitively optimize algorith-
mic parameters is desired

2. It was difficult to separate between “true” strain and elastographic
estimates, and estimates that were simply a result of noise. We need
a way to better evaluate if the estimated values are just a
result of noise, or if they represent actual elastic properties

3. The methods were only tested on simulations and on phantom data.
A natural next step was to study the results from the estimators on
clinical data. We want to study if there is any relationship
between the pathology of the tissue and the estimated strain
and elastographic quantities.

1.4 Structure of thesis

Chapter 2 deals with the theory behind the velocity, strain and elastographic
estimators. Then chapter 3 presents a MATLAB graphical user interface
that allows for fast, manual optimization of algorithmic parameters, to-
gether with a presentation of the ultrasound scanners and elastographic
phantom used in this thesis. Finally the pulsation of the carotid artery is
studied.
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CHAPTER 1. INTRAOPERATIVE ULTRASOUND

The following chapter 4 shows algorithmic results, based on an elasto-
graphic phantom, and clinical results from two brain tumor patients. The
results and findings are then discussed in detail in chapter 4. Finally chapter
5 provides a conclusion, together with suggestions for future work.

In addition to these chapters, appendix A contains the key parts of
the estimation source code, appendix B an ad hoc description of how to
tune parameters, and appendix C contains the algorithmic and acquisition
parameters used to generate all results.
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CHAPTER 2
Theory

Imaging tissue stiffness using ultrasound is often referred to as elastography,
a term first introduced by (Ophir et al., 1991). The term was used to
describe a method where the local axial strain distribution in tissue, caused
by an externally applied force, was estimated using ultrasound. Since the
term was originally coined, elastography has become an umbrella term to
cover a wide variety of modalities that image elastic properties in tissue.

Today most of the literature reserve the term elastography for techniques
which image true elastic properties such as Young’s modulus. Nevertheless
it is common to find papers which present strain images and name them
elastograms, which can lead to a confusing mix of terminology. In this thesis
the term strain imaging is used when talking about imaging axial strain,
while elastography is reserved for the post-processed image which attempts
to give a better indication of relative tissue stiffness. The image that this
processing produces is the elastogram.

A key difference from the setup originally used by Ophir, is that we do
not use an externally controlled force to cause compression. Instead we rely
on the natural pulsation of the arteries to cause tissue deformation, and
measure the strain this pulsation causes. This means that we have do not
control the strain-generating force, which is a significant challenge and is
discussed in more detail later. The fundamental signal processing we use
however, is based on the same general idea of Ophir.

The major steps in the elastographic signal chain are velocity estimation,
followed by strain estimation, followed by elastographic processing. Note
that since the project (Boerstad, 2010) covered the velocity estimation step
in detail, only a brief summary will be presented here.
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CHAPTER 2. THEORY

2.1 The two-dimensional autocorrelation

function

The following section on mathematical notation is copied directly from (Boer-
stad, 2010), with a slight change of notation for consistency:

”Assume that the RF signal data available consists of M depth sam-
ples, N scan lines and O frames. The RF data can be represented as a real,
3-dimensional signal x[m,n, o], with the lower-case indexes m,n, o repre-
senting the depth, scan line and frame number respectively. The depth
samples m are ordered increasingly with distance from the transducer, the
scan lines n from left to right according to the image displayed on the screen,
and the frames o ordered increasingly with time of acquisition.

The analytical signal x+[m,n, o] is then defined as:

x+[m,n, o] = x[m,n, o] + i · H{x[m,n, o]} (2.1)

where H{·} represents the 1D Hilbert transform along the depth dimension

of the signal. ”
The 2D autocorrelation estimate of x+ at lag [u, v], at a fixed point in

space-time given by [m,n, o] is defined as

γ′[u, v;m,n, o] =

m+d(U−1)/2e∑
i=m−b(U−1)/2c

o+V−v−1∑
k=o

x+[i, n, k]x∗+[i+ u, n, k + v] (2.2)

with ∗ denoting complex conjugation. Using the same terminology
as (Loupas et al., 1995), the parameter U ≥ 1 is known as the range gate
while V ≥ 2 is known as the ensemble length. While Loupas presents an
autocorrelation estimate based on a single range gate and pulse ensemble,
Eq (2.2) represents how to apply Loupas’ idea to a 3-dimensional dataset.
In fact Eq. (11) in (Loupas et al., 1995) is a special case of Eq. (2.2), with
range gate equal to the number of samples (U = M).

Eq. (2.2) can be extended to also include samples from N scan lines,
with N ≥ 1, in an attempt to get a a more accurate autocorrelation estimate
at the cost of lower lateral resolution. Then the autocorrelation function
becomes

γ[u, v;m,n, o] =

n+d(N−1)/2e∑
j=n−b(N−1)/2c

γ′[u, v;m, j, o] (2.3)

10



2.2. THE 2D-AC AND 1D-AC AXIAL VELOCITY ESTIMATORS

2.2 The 2D-AC and 1D-AC axial velocity

estimators

The first step in the signal chain is the estimation of the velocity along
the ultrasonic scan lines, i.e the axial velocity. For an explanation of the
physical situation, and the derivation of phase-based velocity estimators,
see (Boerstad, 2010).

Any fundamental book on ultrasound contains a discussion on the Doppler
effect, together with the Doppler equation

f =
2va
c
f0 (2.4)

with f being the frequency shift seen by an observer standing at the point
of origin, of an echoed wave with frequency f0, va is the axial velocity of
the object reflecting the wave, and c is the speed of sound. The shift in
frequency is known as the Doppler effect. Pulsed based methods actually
do not make use of the Doppler effect (Jensen, 1996), but Eq. (2.4) is still
valid, but with slightly different meaning. The frequency f now denote the
frequency of the signal resulting from sampling a sequence of pulse returns
at a constant depth. Rearranging Eq. (2.4), we can solve for axial velocity
to get

va =
c

2

f

f0
(2.5)

Now from (Barber et al., 1985) an estimate for the frequency f can found
using the autocorrelation function by

f̂ =
1

2π

arg{γ[0, 1]}
TPR

(2.6)

with TPR being the time between pulse returns, and having omitted the
specific space-time location [m,n, o] for simplicity. By combining Eq. (2.5)
and Eq. (2.6) we get the 1D-AC axial velocity estimator

v̂a =
c

2(2πf0)

arg{γ[0, 1]}
TPR

(2.7)

The term 1D is used because the autocorrelation function γ[u, v] is only
evaluated at one lag along a single dimension.

Using a similar idea to Barber, (Loupas et al., 1995) showed that the
center frequency f0 of the imaging pulse could be estimated as

f̂0 =
1

2π

arg{γ[1, 0]}
Ts

(2.8)
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CHAPTER 2. THEORY

with Ts being the time between depth samples. By combining this result
with the 1D-AC estimator, a new estimator emerges as

v̂a =
c

2

Ts

TPR

arg{γ[0, 1]}
arg{γ[1, 0]}

(2.9)

which is known as the 2D-AC estimator.

The correlation coefficient as an estimation quality
indicator

A correlation coefficient is a ratio that measures the degree of correlation
between two signals. We define the correlation coefficient (c) as the mag-
nitude of the ratio of the autocorrelation at one slow-time lag over the
autocorrelation at zero lag

c =
O

O− 1
·
∣∣∣∣γ[0, 1]

γ[0, 0]

∣∣∣∣ (2.10)

where the scaling factor is needed because the no-lag estimate γ[0, 0] in-
volves one extra correlation-pair matrix compared with γ[0, 1]. The scaling
factor ensures that c = 1 if the RF-signal matrices are stationary, and
decreases towards zero with increasing signal decorrelation.

The signal to noise ratio (SNR) of velocity estimates is known to increase
with an increasing correlation coefficient (Souchon et al., 2003), meaning
that the correlation coefficient can be used as an indicator of the quality of
the estimates.

2.3 Strain and elastic parameters

Formally, the strain ε of an object that has been deformed along one axis
is defined as the quantity:

ε =
∆L

L0

=
l − L0

L0

(2.11)

with ∆L being the difference between the final length l of the object and
the pre-deformation length L0. The quantity ε is also sometimes known as
the engineering strain or Cauchy strain.

It is important to note that strain is not a true elastic property of a
material, a strain value by itself is not a parameter that quantitatively
characterizes an object. This is because the amount of deformation ∆L,

12



2.3. STRAIN AND ELASTIC PARAMETERS

and thus the strain, is dependent on the stiffness of the object and the
force that caused the compression. The relationship between deformation,
applied force and stiffness of an object is well known to most engineers, it
is Hooke’s law

F = −kx (2.12)

where F is the force needed to compress a uniform object by a length x
from its initial length, with the object having a spring constant (stiffness)
k. If we divide both sides of Eq. (2.12) by the cross sectional area A0 that
the force is acting on, while using the definition stress as σ = F/A0, we get

σ = − k

A0

x

=
−kL0

A0

x

L0

= E ε (2.13)

where E is the elastic property known as Young’s modulus, which is a true
material property. For so-called linear-elastic materials Young’s modulus is
constant over wide range of stress-strain values, giving a linear relationship
between stress and strain. Unfortunately, from in-vitro research done on
swine brains (Miller and Chinzei, 1997, 2002), the Young’s modulus in brain
tissue has been shown to vary significantly with a change in the stress-
strain relationship. The researchers conclude: ”The stress-strain curves
are concave upward for all compression rates containing no linear portion
from which a meaningful elastic modulus might be determined.” (Miller
and Chinzei, 1997). This makes it difficult to characterize brain tissue even
knowing the Young’s modulus, without additional information about stress
or strain.

Despite the limitations, quantifying tissue strain could still potentially
provide clinically useful information due to the fact that

• If a tissue region is compressed by a uniform force, the strain distri-
bution in the tissue will vary with the stiffness of the different tissue
regions.

• If the compression is caused by an internal force, such as natural pulsa-
tion, abnormal strain values could potentially indicate a pathological
condition.

To determine if natural pulsation strain imaging of the brain could aid
with tumor segmentation, it is natural to investigate if there is a statistical
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CHAPTER 2. THEORY

difference in strain values from tumors versus strain values from normal
tissue. If such a relationship can be shown consistently across different pa-
tients, then the clinical usefulness of strain imaging could be shown without
making assumptions about stress distribution or Young’s modulus.

Generating tissue deformation

From Eq. (2.13) it is seen that for there to be any strain at all, the tissue
needs to be put under some form of mechanical stress. In other parts of
the human body, research groups have relied on several different mechanism
to generate this stress, including a freehand technique (Shiina et al., 2003;
Hall et al., 2003), natural pulsation of arteries (Dighe et al., 2008; Cespedes
et al., 2000), the expansion/contraction of the heart (Heimdal et al., 1998),
using ultrasonic compression techniques (shear waves or acoustic radiation
pressuse) (Bercoff et al., 2004; Nightingale et al., 2002) or using a vibrating
mechanical actuator (vibrography) (Pesavento et al., 2000).

In intraoperative ultrasound strain imaging of the brain, the methods
presented in literature have been natural pulsation (Selbekk et al., 2005,
2010), freehand palpation (Uff et al., 2009) and vibrography (Scholz et al.,
2005, 2007). A recent article has also looked at using shear waves to map
elasticity in animal brains (Mace et al., 2011), an interesting technique with
obvious potential to be used on the human brain as well.

This clinical strain images presented in this thesis have all relied on
natural pulsation of the arteries to generate strain. The reasoning behind
this is because this eliminates the need to externally apply any deformation
to the brain, avoiding any possible side effects such external deformation
might cause (if any). The data sets used for strain processing are the same
ones that are already being recorded to do conventional B-mode imaging,
meaning that the imaging set-up does not have to be changed.

2.4 Velocity based strain estimation

If the local echo delay that occurs between a pre- and post-compression scan
line is known, then the axial strain of a segment of length ∆z is (Cobbold,
2007, page 563)

ε =
c0

2∆z
(τl − τu) (2.14)

with τl and τu denoting the echo delay at the lower (furthest away from the
transducer) and upper endpoint of the segment respectively. The velocity
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2.4. VELOCITY BASED STRAIN ESTIMATION

matrix V̂ [m,n] is proportional to the local delays

τ̂ [m,n] =
2 TPR

c0
V̂ [m,n] (2.15)

with TPR being the time between the pulse returns.
We now considerer an axial segment along a single scan line. Let the

segment be centered at depth m, with the end points at ml = m+ d∆m/2e
and mu = m− b∆m/2c, with ∆m is the total number of samples from the
segment. The tunable parameter ∆m thus controls the length of the axial
segment, with the relationship

∆z = ∆mTs
c0
2

(2.16)

where Ts is the RF sampling period.

Central Difference Strain Estimation

We can combine the three equations, eq. (2.14), eq. (2.15) and eq. (2.16),
and define the local axial strain matrix as

ε̂[m,n] = κ · V̂ [ml, n]− V̂ [mu, n]

∆m
(2.17)

using the definition κ = 2TPR / (c0Ts). The fractional term in Eq. (2.17)
represents the numerical differentiation of V̂ [m,n] in the axial direction,
with axial length ∆m. From the theory of finite differences we recognize
the numerator term (if ∆m is even) as the central difference formula. We
thus name Eq. (2.17) the central difference strain estimator. This was the
estimator that was used in (Boerstad, 2010).

Least-squares Strain Estimation

We recognize the central difference estimate in Eq. (2.17) as the slope of the
straight line that goes through the velocity estimates V̂ [ml, n] and V̂ [mu, n],
scaled by κ. In the preliminary project (Boerstad, 2010) it was found that
an axial segment length corresponding to a ∆m = 90, or 3.465 mm, gave
good results for the phantom data. With central difference estimation only
the velocity samples from the endpoints ml and mu are used, while the
samples located in the interior of the segments are discarded. A natural
idea is to include these interior estimates when estimating the velocity slope
as well. This can be done by using classical least-squares line fitting.
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CHAPTER 2. THEORY

Since we only estimate axial strain, we can limit ourselves to study
the velocity vector v[m] from a single axial segment, where the segment is
centered at depth m and length given by ∆m. Assuming that velocity is
linear with depth, which is equivalent to assuming linear elasticity, within
the segment we can write the relationship

v[m] = a ·m+ b (2.18)

where the index m is a natural number restricted by mu ≤ m ≤ ml. The
strain in this segment is then given by εm = a · κ. We can reformulate
Eq. (2.18) into matrix form as

v[mu]
v[mu + 1]
v[mu + 2]

...
v[ml]

 =


mu 1
mu + 1 1
mu + 2 1

...
...

ml 1


[
a
b

]
(2.19)

and by using compact notation as

v = A

[
a
b

]
(2.20)

Instead of the true velocity vector v, only the inaccurate (noisy) measure-
ment vector v̂ is known. The parameters â and b̂ that minimizes the sum of
the squared error between the linear model and the estimates, i.e minimizes∑

m(v̂[m]− â ·m− b̂)2, is given as the well-known least-squares solution[
â

b̂

]
=
[
ATA

]−1
AT v̂ (2.21)

The idea of using least-squares ultrasound strain estimation is not new, and
has been covered in (Kallel and Ophir, 1997).

2.5 Elastographic processing

The strain estimators presented earlier calculate the average strain experi-
enced over the small time-period it takes to gather the number of RF frames
needed in velocity estimation. Showing these frame-to-frame strain values
in real time can be problematic if the strain is generated by a periodic force,
such as arterial pulsation, because the strain values will themselves be peri-
odic. In a color-coded image this means that to the operator, regions with
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2.5. ELASTOGRAPHIC PROCESSING

constant stiffness will show a sinusoidal change in color with time. Since we
ultimately want to quantify relative stiffness of regions, it would be more
natural to have an image where regions of equal stiffness are shown with a
fixed color over time. In an attempt to achieve this, an elastographic post
processing algorithm has been developed.

This elastographic processing is a three step procedure, using the raw
strain data as input. The steps are

1. Finding strain magnitude. By taking the absolute value of strain,
the strain signal gets a DC component which we assume is related to
tissue stiffness.

2. Low pass filtering (in slow time direction). This extracts the
slowly varying and DC component of the strain magnitude signal,
resulting in a signal that is fairly stable over time.

3. Adaptive normalization. It is the relative difference in strain mag-
nitudes in an image that we are interested in. By normalizing each
frame according to the statistical properties of the same frame, a mea-
sure of relative stiffness is achieved.

Adaptive Normalization

An adaptive normalization method was also used in the preliminary project,
though there were some problems with the method. The old method was
based on the mean value µ and the standard deviation σ of the all the
pixels in the input frame, where the input frame was the strain magnitude
matrix. For an input frame ε̂[m,n], values which were above or below the
three-sigma bounds µ± 3σ, were thresholded to µ± 3σ respectively. Then
the thresholded image was shifted and linearly stretched so that the values
of the normalized frame Ê[m,n] covered a range of 0 to 1 inclusive, by:

Ê[m,n] =
ε̂[m,n]− (µ− 3σ)

6σ
(2.22)

As mentioned there was problems with the thresholding, shifting and
scaling done in Eq. (2.23). Images containing noisy regions would cause
the standard deviation σ to become large, resulting in an image in where
the dynamic range was decided by the noise and not the fundamental,
underlying strain signal. Similarly an image which consists only of noise
would be scaled to cover the entire colormap, from soft to stiff, which is not
acceptable in a clinical setting.
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CHAPTER 2. THEORY

We propose to take advantage of the correlation coefficients when cal-
culating the image statistics. By not including estimates with a correlation
coefficient below a certain threshold in these calculations, the effects of
noisy estimates can be excluded. Also instead of stretching the values to
cover the entire colormap, we instead suggest to just scale, without shifting
and thresholding, the image by an adaptive factor as:

Ê[m,n] =
ε̂[m,n]

β (ε̂, C)
(2.23)

where β is a coefficient that is calculated from the entire input frame ε̂ and
the corresponding correlation coefficient frame C.

β is calculated as a two step process. First the strain magnitude values
ε̂[m,n] that have a correlation coefficient C[m,n] below a set threshold, are
fixed to zero. Then β is chosen as the value which bounds a user-specified
percentage of the values in the image. We have found, through trial-and-
error, that a value of 98 % seems to give good results. This means that
β is chosen to be the value which 98 % of the pixel values are below, and
the remaining 2 % are above. This leads to an image which shows relative
stiffness, where a value close to/or above 1 represents soft areas, while stiffer
areas will have a value closer to zero.

One has to be careful when scaling an image like this, because it be can
difficult to determine if values are realistic or not, since they are adaptively
scaled. Further more the input frame is the low-pass filtered absolute value
of strain, which can enhance noise if the signal is fluctuating around zero.
Nevertheless this method is shown to give good results if the fundamental
strain signal is periodic and is not so noisy that it fluctuates around zero.

2.6 Median filtering

The median filter is an order-statistics filter, widely used to in the field
of digital image processing. The median filter replaces a pixel value with
the median of the pixel values in an m by n neighborhood of the pixel.
This technique can be powerful when it comes to removing noisy outliers,
without over-smoothing or corrupting the original image. The median filter
has been found to outperform simpler averaging filters for images which has
been corrupted by impulse-like noise (Gonzales and Woods, 2008). We use
the median filter as a simple post-processing technique to improve the visual
appearance of the strain and elastographic images.
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CHAPTER 3
Implementation

A major challenge in the preliminary project was the time-consuming test-
ing of different algorithms and their parameters. The typical workflow was
to load RF data, do all the signal processing on each frame and subse-
quently stitch the resulting images into a video/cineloop. If a single param-
eter changed, this entire process would have to be repeated to observe the
effect, which was cumbersome.

To solve this problem a MATLAB framework, complete with a graphical
user interface (GUI), was developed. The GUI allows the user to specify any
algorithmic parameter, and choose which estimators to use, from a control
panel and directly observe the results at any step of the signal chain. As an
example, this allows the user to see, in real-time, how changing a velocity
estimation parameter will affect the velocity, strain and elastographic im-
ages. This not only makes it faster to optimize parameters, but also makes
it easier the understand different steps in the signal chain. The GUI also
allows the user to scroll between frames, so that values at different points
in the time can be evaluated easily. This is important because there can be
a big difference in the strain signal at different points in the cardiac cycle.

When loading RF data the program will read acquisition parameters as
well, so that the aspect ratio and axis labeling is handled automatically.
The framework was designed to be modularized, so that any part of the
signal chain can be interchanged if a new estimator is to be implemented.
This makes it easy to test new algorithms as well. The MATLAB framework
and GUI can be freely obtained from the author by request.
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3.1 The graphical user interface

A screenshot of the MATLAB GUI
is shown to the right. While
it may not be a feast for the
eyes, the GUI is an invaluable
tool in parameter optimization
once it is known what the dif-
ferent switches and inputs con-
trol:

RF filtering
These settings control the band-
pass filter that filters each RF
scan line in the axial direction.
“f low” and “f high”, given in
MHz, are the lower and upper
cut-off frequencies for the band-
pass filter, while “order” is the
filter order. The filter is gen-
erated by the fir1(..) func-
tion.

Velocity estimation
The “Range”, “Lat.” and “Ens.”
gate settings control the autocor-
relation parameters explained ear-
lier in section 2.1. “2D correla-
tion” enables the 2D-AC estimator,
if disabled the 1D-AC estimator is
used instead. The “f dem” param-
eter is only used for 1D-AC esti-
mation, and controls the demodula-
tion frequency f0 in Eq. (2.7). The
“Phase unwrap” option enables ax-
ial phase unwrapping along the scan
lines (using the unwrap(..) func-
tion), which can undo the effect of
aliasing in certain cases. The cut-
off and order inputs control the op-
tional slow-time filtering of the velocity estimates.
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Strain estimation
Controls the length of the axial strain segments by setting the parameter
∆m used by the strain estimators. The drop-down menu allows the user
choose between least-squares and the central-difference estimation.

Color settings
This panel controls how the images are presented. The range of the col-
ormap can be inputted manually, using the “Min” and “Max” boxes, or
the user can let the program automatically pick the range by pressing the
“Auto” button. The “colorBar” button produces a color bar which visually
shows the mapping between colors and values. The user can also enable
median filtering, and change the median filter parameters in the “Axial”
and “Lateral” input boxes.

Figures
These checkboxes decide which images are displayed at any given time. In
addition to the output from the algorithmic steps, the raw RF signal from
a single scan line can be viewed (“RfLine”), or the PSD of the same line
(“RfLineFreq”). The PSD figure can be useful to have enabled when tuning
the RF filter.

Visualization
Allows the user to alpha blend the output image with the B-mode image in
the background, with a user supplied alpha value. The CC threshold option
enables correlation coefficient thresholding, with the given threshold.

Elastography
Enables/disables the elastographic processing. The “order” parameter sets
the order of the LPF used on the strain magnitude frames. The “thr”
parameter is the correlation threshold used in the adaptive scaling in
Eq. (2.23).

Slider and playback
By moving the slider at the bottom of the GUI with the mouse, the user
can navigate back and forth through the data set. Dragging the slider to
the right will advance to the next frame, and to the left to the previous
frame. All open figures are updated as soon as calculations have finished.
The PLAY button plays through the entire data set.
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Example of usage

A screenshot from the program is shown in Fig. 3.1, on page 27, where
the outputs enabled are the strain image, the elastographic image, and
the RF line in time and in frequency. This allows the user to compare the
difference between strain and elastographic processing, while simultaneously
inspecting the raw RF signal. If the slider is moved to the next frame, the
four figures will update their result accordingly. In this example alpha
blending has been enabled, with an alpha value of 0.6. This means that
the elastographic and strain images are semi-opaque, so that parts of the
B-mode image is blended in the data. The data set used in this screenshot
was recorded at the Sintef lab, using an elasticity phantom.

3.2 The ultrasound scanners used

The clinical data available has been acquired using two different systems.
Retrospective recordings from the time period 2004–2008 were available,
and these recordings were made with a System FiVe (GE Vingmed Ultra-
sound, Norway) scanner.

The primary system, used for development and testing, was a 2011
SonixMDP scanner (Ultrasonix, Canada). At the time of writing one in-
traoperative, clinical recording has been made with this system, this was
recorded in April 2011.

The MDP system has the capability to operate in “research mode,” an
option which gives the user great freedom to alter parameters involved in
the entire ultrasound signal chain. Given this opportunity, we wanted to see
if results could be improved by changing the transmitted pulse. In order to
find a suitable transmit pulse for strain estimation, we must first understand
what kind of pulses the SonixMDP system is capable of transmitting.

The SonixMDP pulser

An ultrasound system has a circuit responsible for generating the electronic
pulse which the ultrasound transducer converts to pressure waves. This
circuit is known as a pulser, and the pulser in the MDP scanner is a tri-level
pulser, i.e it can generate three possible voltages; Either a fixed positive,
zero, or a fixed negative voltage. The MDP pulser is a discrete circuit,
clocked with a frequency of 40 MHz. Consequently the pulser output can
only change at fixed points in time, with a resolution of 1/(40 MHz) = 25 ns.
If we require a pulse to consist of at least one positive and one negative
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3.2. THE ULTRASOUND SCANNERS USED

part, the lowest fundamental period possible is 50 ns. For such a pulse, the
fundamental transmit frequencies ftx achievable is governed by the relation

ftx =
40

n
MHz, n = 2, 4, 6 . . . (3.1)

A pulse may be described by the transmit frequency and a specified
amplitude pattern. To describe a tri-level pulse, the same convention as
the MDP system is adopted: The symbols {+, 0, –}, corresponds to a
positive/zero/negative amplitude lasting a half period of the fundamental
period. As an example, a pulse with ftx = 5 MHz and waveform ”+ – +”
is shown in Fig. 3.2. Note that pulses are not uniquely described by ftx
and the waveform; As an example the pulse p1 = {+−, ftx = 5 MHz} and
the pulse p2 = {+ +−−, ftx = 10 MHz} are identical. By not allowing the
repetition of the same symbol twice, this ambiguity is removed. This means
that only alternating pulses, in the form of {+−+ . . . } are allowed. In this
way the parameters that define a pulse can be restricted to the number of
half periods (Nhp) and the transmit frequency ftx.

Choosing the transmitted pulse

To look into the effects of changing the pulse form and frequency, a high
attenuation phantom was used. The phantom had an attenuation coefficient
of 0.7 dB/(MHz cm), which is similar to that of the brain (Cobbold, 2007).
The probe used was the “L14-5/38” supplied by Ultrasonix, which is a
linear probe usable from 5 to 14 MHz according to the manufacturer. The
RF sampling frequency was 40 MHz.

During initial experimenting with pulses, we noticed little visible change
in the image with increased transmit frequency. This was unexpected, as
an increase in transmit frequency should give increased axial resolution and
decreased penetration. To investigate this phenomenon, the power spectral
density (PSD) of the received RF signal was studied for four different pulse
lengths, transmitted at both 5 and 10 MHz. The PSD was estimated using
Welch method on each scan line, and then averaging the resulting PSDs
from each scan line. The imaging depth was set to around 2.5 cm.

The plot in Fig. 3.3 shows the theoretical power spectrum of the 5 MHz
pulses together with the estimated power spectrum of the echo signal. The
spectrum from the 5 MHz pulses show a main lobe centered around 5 MHz,
as expected. It is seen that the width of the main lobe decreases for every
increase in the number of half-periods Nhp. This is well known from Fourier
theory; a longer pulse in the time domain gives a more narrow banded pulse
in the frequency domain.
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The same plot, but for 10 MHz pulses, is shown in Fig. 3.4. The received
spectrum from these pulses have a main lobe located somewhere in the 4–6
MHz range. This came as a surprise since we had expected a main lobe
centered around 10 MHz. This explains why there was little difference in
the image when switching between 5 and 10 MHz, since in both cases most
of the signal energy is around 5 MHz anyway.

However when comparing the received spectrum to the theoretical spec-
trum, a possible explanation for the apparent lack of energy at 10 MHz
can be found. Notice that since the temporal length of the 10 MHz pulses
are half the length of the corresponding 5 MHz pulse, the width of the
main lobe increases accordingly. If, for simplicity, we assume that the
entire received signal is from exactly 2.5 cm depth, the attenuation is
0.7 dB/(MHz cm) · 4 MHz · 5 cm = 14 dB at 4 MHz, and correspondingly
35 dB at 10 MHz. This is a difference in attenuation of 21 dB.

Looking at the theoretical spectrum for the 10 MHz, five half-period
pulse, shown in black, the side lobe centered at 4 MHz is approximately
10 dB lower than the main lobe at 10 MHz. The received signal now shows
that the 10 MHz lobe is around 10 dB lower than the 4 MHz lobe. This
means that the main lobe has been attenuated around 20 dB more than the
side lobe, which is close to what our simplified calculations predicted. In ad-
dition to frequency-dependent attenuation, the probe itself has a frequency
response, which judging by the received signal is probably more favorable
for pulses in the 5 MHz range.

Thus there seems be be three reasons as to why imaging at 10 MHz
is difficult with the MDP system: Significant side lobes are generated by
short pulses at 10 MHz, the high frequency-dependent attenuation of brain
tissue, and the frequency response of the probe. Due to these factors, it
was decided to use 5 MHz pulses for imaging.

By inspecting the B-mode image the number of half-periods was set
to 3. If the number of half-periods was increased above this, a noticeable
degradation in axial resolution was seen. A shorter pulse gave penetration
problems, with little signal seen in the depth of the phantom.

It is not known what kind of pulse form was used for the GE system,
only that the center frequency was 8 MHz.

3.3 The elasticity phantom

A data set from an elasticity phantom has been used to test the algorithms,
filters and features implemented. This data set is the same that was used
in the Master’s project. Using an elasticity phantom, we know the stiffness
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distribution a priori, so it is easier to judge if the results seen are correct or
not.

The elasticity phantom is made of a uniform material, but has three stiff
inclusions with higher Young’s modulus than the “background” material.
The echogenicity of the background and the inclusions is the same, so the
inclusions will not be visible in the B-mode image. The imaging probe is
fixed to a motor which pushes the probe down on the phantom, compressing
it with a sinusoidal force. Due to the time-varying compression the phantom
material will move with respect to the probe, leading to a measurable, time-
varying velocity distribution in the phantom.

The B-mode and strain image of the phantom, from a single frame, is
shown in Fig. 3.5 on page 31, with the inclusions clearly visible in the strain
image, while they are not visible in the B-mode image. Since the velocity
estimation results were covered in detail in (Boerstad, 2010), they will not
be covered again in this thesis. Specifically the phantom data will be used to
show the effects of all methods that were not a part of project, namely least-
squares strain estimation, the updated elastographic processing, correlation
coefficient thresholding and median filtering.

3.4 Arterial pulsation

The key assumption behind our strain imaging setup, is that the defor-
mation caused by pulsation of the cerebral arteries is strong enough to be
detected by ultrasound, and is sufficient to generate measurable tissue de-
formation. From the intraoperative B-mode cineloops, no visible motion
is seen. The hypothesis it that there is still some movement present in the
RF signals, and that this movement can be estimated. Nevertheless due to
the lack of visible movement, we know that the motion generated, if any, is
very small.

The lack of visible motion makes it difficult to judge if estimated velocity
values are real, or if they are simply caused by noise. Lacking a model of
the pulsation of the cerebral arteries, we are also uncertain of what pattern
to look for. We assume that the measured velocity will at least be periodic,
with a period following the pulse of the patient.

To attempt to quantify the shape of the velocity curve, we have looked
at the arterial pulsation in a more accessible part of the body, namely the
carotid artery. The carotid artery supplies the head with blood, and there
is one on each side of the neck. While the dilation of the cerebral arteries
will be different from that of the carotid artery, we hope that this can give
us a rough idea of the shape we look for.
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An ultrasound recording of the left carotid artery was made, over sev-
eral heart cycles. The probe was aligned along a sagittal plane, and was
attempted positioned so that the axial direction was perpendicular to the
carotid artery wall. In other words the probe was placed so that the move-
ment was purely axial. A single b-mode frame from the recording is shown
in Fig. 3.6, on page 32, with the carotid artery wall outlined in red. The
pulsation of carotid artery is large and is easily seen in the B-mode cineloop.

Since the movement is visible on the B-mode image, the wall displace-
ment can easily be tracked with time. To crudely estimate the displacement,
a single point on the anterior carotid wall was tracked, with a simple neigh-
borhood search for each frame. Once the displacement is known, we can
differentiate with respect to time to find the velocity.

The tracked wall displacement, over a period covering roughly four car-
diac cycles, is shown as the top curve in Fig. 3.7. The wall displacement
is clearly of a periodic nature, as expected. Some high-frequency noise is
seen in the displacement curve, which could be a result of poor tracking or
shaking of the operator holding the probe. Nevertheless, a clear, pulsatile
pattern is seen. The carotid artery diameter and pressure relationship has
been found to be linear (Sugawara et al., 2000), so we assume that the dis-
placement curve is roughly proportional to the pressure within the carotid
artery.

The numerical derivative of the displacement curve is shown in the lower
plot in Fig. 3.7. This curve is quite noisy, but there is a clear spike pattern,
most likely caused by the systole. It is difficult to say how relevant the
velocity curve from the carotid artery is to velocity curves from the brain,
but at the very least we would expect to see some sort of spike pattern in
the cerebral arteries as well.

26



3.4. ARTERIAL PULSATION

Figure 3.1: Sample screenshot from the MATLAB program. Top left shows
the strain window, top right shows the elastographic window, bottom left
shows one of the RF lines in the time domain, and bottom right shows the
same RF line in frequency domain.
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Figure 3.2: The pulse {+−+, ftx = 5 MHz} illustrated in the time-domain
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Figure 3.3: The top plot shows the PSD for 5 MHz pulses with 2, 3, 4 and
5 half periods. The bottom plot shows the estimated PSD of the received
echo-signal when transmitting these pulses.
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Figure 3.4: The top plot shows the PSD for 10 MHz pulses with 2, 3, 4 and
5 half periods. The bottom plot shows the estimated PSD of the received
echo-signal when transmitting these pulses.
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Figure 3.5: The B-mode and strain image from a single frame of the phan-
tom data
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CHAPTER 4
Results

This chapter is divided into two parts. The first part presents the results
from the algorithms, based on the elasticity phantom. Then our findings
from intraoperative, clinical data sets is presented. The acquisition param-
eters for the phantom and clinical recordings in shown in Table. C.1, in
appendix C on page 73. Appendix C also contains the algorithmic param-
eters used to generate all the figures in this chapter.

4.1 Central-difference vs least-squares

strain estimation

A comparison between the central-difference (CD) and the least-squares
(LSQ) strain estimators is shown in Fig. 4.1. The estimators are compared
with two different velocity inputs. The first input, shown in the top row,
was produced with using a long range gate (M = 60), which smoothes
the velocity estimates in the axial direction. The difference between the
estimators on this input is not very noticeable.

The second input, shown in the bottom row, was produced with a shorter
range gate (M = 6), which means that the velocity estimates are noisy in
the axial direction. The difference between the estimators is easily notice-
able, with the CD values being more noisy than the LSQ values.
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(b) LSQ, M = 60
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(c) CD, M = 6
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Figure 4.1: The output of CD (left column) and LSQ (right column) strain
estimation for two different input, where the difference between the input
is the range gate M. The length of an axial segment (∆m) is 90 samples
for all images

4.2 Elastographic processing

In order to illustrate the effect of elastographic processing, it is necessary to
look at both the strain and elastographic values over time. Strain values,
from two of the inclusions and from the background material, is shown
in Fig. 4.2. It is seen that the shape of the strain curve does not change
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much in the three different regions, but the amplitude varies with regions
stiffness. As discussed in section 2.5, these strain images do not look good
when displayed in a cineloop, because of the large variation in strain with
time.
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Figure 4.2: Strain image from the phantom in the top left, with extracted
strain values over time from the three regions marked in the image

The elastographic processing is used to solve this problem, and the out-
put of the three intermediate steps, that is strain magnitude, low pass fil-
tering and adaptive scaling, is shown in Fig. 4.3. It is seen that the relative
stiffness signal is much smoother than the raw strain signal.

The elastographic image and curves corresponding to the strain image
just shown, is illustrated in Fig. 4.4. It is seen that the elastographic curves
are much smoother than the strain corresponding strain values. A big differ-
ence in relative stiffness between the soft background and the stiffer inclu-
sions is also seen. Note that a lower elastographic value means corresponds
to a lower strain magnitude, which in general means a stiffer material.
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Figure 4.3: The different steps of elastographic processing. Top left: Raw
strain. Top Right: Strain magnitude. Bottom left: Low pass filtered strain
magnitude. Bottom Right: Final result after adaptive normalization

4.3 Median filtering

To illustrate the effect of the median filter, a strain image with and with-
out 3x3 median filtering enabled is shown in Fig. 4.5. The strain image
was made with input data that used a low lateral gate (see appendix for
algorithmic values), to deliberately show discontinuities in the lateral direc-
tion. It is seen that the median filter removes most of these discontinuities,
without any visible degradation of spatial resolution.

4.4 Correlation coefficient thresholding

The correlation coefficients from the phantom data is shown in Fig. 4.6. It
is seen that the correlation coefficients decrease with depth in this image.

It was mentioned in section 2.2 that the correlation coefficients could
be used to hide noisy estimates from the images, by correlation coefficient
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Figure 4.4: Same curves as in Fig. 4.2, shown after elastographic processing

thresholding. The effect of such a thresholding, on the elastographic image,
is shown for two different thresholds in Fig. 4.7. It is seen that the more
of the noisy estimates at the bottom of the image are removed with an
increasing threshold.
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(a) Without median filtering (b) With 3x3 median filter
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Figure 4.5: Strain image shown with and without 3x3 median filtering
enabled
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Figure 4.6: The correlation coefficients of the velocity estimates.
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4.5 Clinical data set 1 - hippocampal tumor

The patient had a tumor located in the hippocampus, with a long-axis di-
ameter of approximately 15 mm. The screenshot in Fig. 1.3, which was used
to illustrate the SonoWand system in Chapter 1, is from the same patient
and gives an informative view of the tumor location. It is pointed out that
the ultrasound image in the screenshot was recorded with the SonoWand
system, which is why the image is not identical to the one presented here,
which is from the Ultrasonix system.
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Figure 4.8: B-mode and strain image of a brain tumor in the hippocampus.
The cyan rectangle marks a region of healthy tissue, the green rectangle
a region of tumorous tissue and the red a region from of a ventricle. The
tumor is the oval shaped object enclosed by the white boundary.
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The intraoperative B-mode and strain frame from this patient is shown
in Fig. 4.8. The region that is believed to be the tumor has been identified
manually based on the B-mode image, with our interpretation of the tumor
border shown in white. The dark structures in the lower left corner, and on
the right hand side at around 25 mm depth, are believed to be fluid-filled
ventricles. It is seen that the strain values in these regions fluctuate sig-
nificantly with small changes in position, and fall outside both the positive
and negative range of the color map. The remaining strain values are of
low amplitude and do not seem to follow any obvious pattern.

Velocity and strain curves

Three regions of interests (ROIs) have been marked by colored rectangles
in Fig. 4.8, and the velocity and strain over time from these regions have
been extracted. The first region represents what is believed to be healthy
tissue, the second region tumorous tissue and the third region represents an
area of high noise (from a ventricle). The spatially averaged velocity and
strain curves from these regions are shown in Fig. 4.9.

These curves reveal that the estimates suffers from a low signal-to-noise
ratio, and it is difficult to extract any useful information at all from the
curves due to noise. To see if there is any periodic components in the
curves, which could be caused by arterial pulsation, the estimated PSD of
the velocity curve from the tumor region is shown in Fig. 4.10.

The PSD of this velocity curve, shown in blue, reveals two peaks. One
at around 1 Hz and another around 10 Hz. To extract the 1 Hz signal
component, a low pass filter was used. The filter response and the resulting
filtered signal PSD is also shown in Fig. 4.10.

The filtered curves are presented in Fig. 4.11. The velocity curves from
the normal and tumorous tissue now appear to have a clear, periodic pattern
with a fundamental frequency of 1 Hz. These same curves has shapes that
are significantly different than the shape of the curve from the noisy region.
The maximum velocity measured is around -0.1 mm/s, disregarding the
results from the noisy region.

Looking at the filtered strain curves, to the right in Fig. 4.11, does
not provide much information. A periodic pattern is seen in the strain
curve from the tumorous tissue, while the curves from the normal tissue
and noisy region appear more random. The three strain curves all have
different shapes.
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Figure 4.9: Velocity (first column) and strain curves (second column), ex-
tracted from the ROIs shown in Fig. 4.8

Elastographic values

The elastographic image and corresponding curves are shown in Fig. 4.12,
with correlation coefficient thresholding enabled. It is seen from the elas-
togram that a large portion of the estimates are removed, meaning that
they have a lower correlation coefficient than the visible values. The elas-
tographic image itself reveals no obvious structures, and looks noisy.

Inspecting the elastographic curves shows that the values from the noise
region are far above the range of the color map. The remaining curve from
the tumorous and healthy tissue show some fluctuation with time, with the
tumorous tissue values mostly being higher than the ones from the healthy
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Figure 4.11: The low pass filtered velocity and strain curves, unfiltered
curves shown in Fig. 4.9
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Figure 4.12: The elastogram (top left) shown with correlation coefficient
thresholding enabled. Elastographic curves from healthy tissue (top right),
tumorous tissue (middle right) and a region of noise (bottom right) is also
shown
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4.6 Clinical data set 2 - metastasis

The B-mode and strain image from the second data set is shown in Fig. 4.13.
The entire tumor border cannot be clearly identified from the B-mode im-
age, but the part of the border which can be determined is shown in white.
It is unknown if the upper left region of this image is made up of tumorous
or healthy tissue. This tumor is a metastasis ; it has spread to the brain
from another part of the body.

The strain image indicates uniform strain values inside the tumor, and
a sharp transition of the strain values is present in the upper part of the
image. We also see a region in the lower right corner where there is low
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Figure 4.13: Intraoperative B-mode and strain image of the metastasis.
The red rectangle marks a region non-classifiable tissue region. The green
rectangle represents tumorous tissue, while the cyan rectangle represents
healthy tissue. Parts of the tumor border is outlined in white.

signal strength, leading to what appears to be noise in the strain estimates.

Velocity and strain curves

The velocity and strain curves from the ROIs marked in the B-mode image
are shown in Fig. 4.14. Though only 1.5 seconds of data is available, a
periodic pattern with frequency around 1 Hz looks to be present in the
velocity curves. The peak velocity is around −0.4 mm/s. The velocity
curves from the three regions all seem to follow the same governing pattern.

A periodic shape, similar to that of the velocity values, is seen in all the
strain curves. The peak strain values are around −0.12 % for the normal
tissue, −0.08 % for the unknown tissue, and −0.04 % for the tumorous tis-
sue. In general the normal tissue shows the highest strain amplitude, the
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unknown tissue slightly lower amplitude, and the tumorous tissue shows
the lowest amplitude.

0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

S
tr

a
in

 [
1
0

−
3
]

Unkown tissue

0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

S
tr

a
in

 [
1
0

−
3
]

Tumorous tissue

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

Time [s]

S
tr

a
in

 [
1
0

−
3
]

Normal Tissue

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

Time [s]

V
e
lo

c
it
y
 [

m
m

/s
]

Unkown tissue

0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

Time [s]

V
e

lo
c
it
y
 [

m
m

/s
]

Tumorous tissue

0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

V
e
lo

c
it
y
 [
m

m
/s

]

Normal Tissue

Figure 4.14: Velocity (first column) and strain curves (second column),
extracted from the ROIs shown in Fig. 4.13

Elastographic image

The elastographic image, with correlation coefficient thresholding, together
with the elastographic curves from the ROIs are shown in Fig. 4.15. It is
seen that the estimates in the lower region of the image have been removed,
due to low correlation.

The elastographic values in the healthy and the unknown tissue regions
fluctuate some over time, while the values from the tumor are fairly sta-
tionary. A clear relationship between the elastographic values are seen; The
healthy tissue is always has a higher elastographic value than the unknown
tissue, which again always has higher values than the tumorous tissue.
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Figure 4.15: Elastogram with correlation coefficient thresholding, together
with elastographic values over time.
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CHAPTER 5
Discussion

We start with discussing the algorithmic results from all three data sets,
and then continue by looking at, and interpreting, the findings from the
clinical data sets.

5.1 LSQ estimation

Our experience with the least-squares strain estimator is that it produces
images of equal or better quality than the central-difference estimator, de-
pending on the input. If the velocity data are smooth in the axial direction,
then the difference between the methods is subtle. This was illustrated
in Fig. 4.1 (a) and (b), which used a large range gate in the velocity es-
timation step, resulting in low-noise velocity estimates at the expense of
decreased axial resolution. The figure shows no significant difference be-
tween the two estimators.

If the velocity estimates are noisy in the axial direction, then the LSQ
estimator gives better results, as seen in Fig. 4.1 (c) and (d). The fact the
the difference between the methods increases with noise, can also be seen by
looking at the strain estimates at different depths. The difference between
the two estimators increases with depth, and we know from the correlation
coefficients in Fig. 4.6, that the estimates at the bottom of the phantom
are more noisy.

While not shown in the results, we also found that the difference be-
tween the estimators is reduced by using a shorter axial length ∆m. This is
not surprising as the LSQ estimator degenerates to the CD estimator with
∆m = 1. However, decreasing ∆m results in more noisy estimates (Boer-
stad, 2010). For a theoretical discussion of the statistical properites of
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strain estimation using least-squares see (Kallel and Ophir, 1997), which
predicts that LSQ estimation will give improved SNR compared with CD
estimation, which agrees with our findings.

The only advantage we see with using the CD estimator, is that it
is slightly faster to compute. However with the implementation given in
appendix A, the LSQ estimator implemented in MATLAB, uses less than
0.01 seconds to compute a typical strain image. Thus we see no reason to
not use the LSQ estimator.

5.2 Elastographic processing

The degree of success of the elastographic processing has been found to be
strongly dependent on the input data. The idea behind the processing, as
discussed in the theory chapter, section 2.5, is based on the assumption
that the input strain values are periodic, and that the SNR is at least high
enough to avoid that the strain values fluctuate around zero due to noise.

If these assumptions are not met, as was the case for the first clinical
data set, then the elastographic processing can produce worse result than
showing just strain alone. The reason for this is that the absolute value step
of the elastographic processing amplifies noise. As seen in the elastographic
curves from the fist clinical data set, in Fig. 4.12, the values from the noisy
regions are very large. The reason that the values are so large, is because
they are not included when calculating the scaling parameter β, because
they have too low correlation. This also means that these extreme values
can be hidden from the image by correlation coefficient thresholding.

If on the other hand the strain values have sufficient SNR and are pe-
riodic, the elastographic processing produces good images that are suitable
to be displayed as a cineloop, and coul be used for real-time image. This is
a big improvement from strain images, which are very difficult to interpret
when displayed as a cineloop. Both the elastographic values from the second
clinical data set, in Fig. 4.15, and especially from the phantom, in Fig. 4.4,
illustrate the usefulness of this kind of processing.

5.3 Median filtering

It was noted in the theory chapter, section 2.6, that the median filter is
very efficient in removing outliers from an image. We have never seen any
issues with outliers in the axial directions at any step of our signal chain,
but outliers can exist in the lateral direction. This is because the velocity
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estimation is done independently for one, or possibly more depending on the
lateral gate parameter, scan line. An example of such lateral discontinuities
was seen in Fig. 4.5, where the lateral gate parameter was set to 1. From
the same figure we see that the median filter does a good job in removing
such noise, as predicted by theory. The noise removal happens without
noticeably affecting spatial resolution, though this will naturally vary with
the size of the median filter. A filter size of 3x3 seems to give good results
on all our images.

5.4 Correlation coefficient thresholding

The correlation coefficient thresholding has been found to be a very valuable
tool to identify noisy areas in the image. This is especially important when
looking at the elastographic image, since as we have explained, the elas-
tographic image can amplify noise under certain conditions. By enabling
CC thresholding, this removes the possibility of not being able to separate
between regions of low correlation and actual strain/elastographic values.

The CC thresholding does a good job to remove noise, as illustrated
in Fig. 4.7, and since the user can control the threshold he can quickly get
a feel for which of the estimates are of high quality, and which are not. The
CC thresholding works well for all three data sets, as can be seen from the
three elastograms, in Fig. 4.4, Fig. 4.12 and Fig. 4.15, which all have CC
thresholding enabled.

5.5 Clinical findings - velocity

measurements

The peak measured tissue velocity, from regions with well correlated esti-
mates was around 0.1 mm/s for the first data set, and around 0.4 mm/s for
the second data set. According to (Selbekk et al., 2005), MRI studies have
found peak tissue velocities to be between 0.4 and 2.0 mm/s, depending on
the study. The velocity values we found thus seem low, and there is also a
big difference in peak velocity amplitude between the two data sets. How-
ever since we only measure the velocity in the direction of the ultrasound
beam, the velocity estimates will vary greatly with the angle between the
beam and the true velocity vector. Assuming that the two tumors were
imaged at different angles, and knowing that the tumors were located in
different parts of the brain, it is plausible that there could be large differ-
ence in the peak amplitude of the measured velocity. Since the MRI studies
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measured the velocity vector magnitude, it is also reasonable that our axial
velocity measurements will measure lower values.

The most important aspect of the velocity measurements is to determine
if they are able to measure tissue movement caused by arterial pulsation.
From both data sets, the velocity estimates that remained after correlation
coefficient thresholding, were all found to have a periodic pattern with a
fundamental frequency close to 1 Hz. The velocity curves from the two
data sets, in Fig. 4.11 and Fig. 4.14, both seem to show a “spiking” pattern
with a time interval of about 1 s. This pattern is quite similar to the one
found from the velocity curve that was calculated from the tracking the
carotid artery, shown in Fig. 3.7. In fact even the characteristic ”down-up-
down-up” pattern arising around the 1 s mark in the second data set, can
also be seen in the carotid artery velocity curve. Further more the shape of
the velocity curves, at different regions within the same data set, did not
change significantly, except for regions with noise.

From these findings we feel confident that the tissue movement due to
arterial pulsation in the cerebral arteries is measurable with ultrasound,
and that it is the pulsation that causes the pattern seen in our velocity
curves.

5.6 Clinical findings - strain measurements

If we make the simplifying, and perhaps unrealistic, assumption of linear
elasticity of the tissue, we would expect the strain curves to have a shape
similar to that of the velocity curves, though with more noise since we are
calculating a spatial derivative.

Looking first at the filtered strain curves from data set no. 1, in Fig. 4.11,
it is seen that only the strain curve from the tumorous tissue has a shape
similar to the velocity curve. The tumorous strain values thus also have a
periodic form. The strain in the normal tissue however, indicates compres-
sion and expansion in an almost random order, a phenomenon that arterial
pulsation is unlikely to cause, there is no clear periodic pattern seen either.
We believe that the strain values in the tumorous tissue could be realistic,
but that the strain processing has broken down in the normal tissue, and
in the noisy regions.

A possible reason for the strain processing failing for the normal tissue,
could be that the tissue deformation is too small to be measured accurately.
This is supported by the fact that the the peak velocity in the normal tissue
was about half that of the tumorous tissue. If there is less movement there
will also be less tissue deformation. We have also looked at strain curves
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from other regions in the image, which are not shown, and have found that
the strain processing seems to break down from all regions of the normal
tissue, where the velocity is low. This break down is also seen in the strain
image itself, where no realistic pattern is found. This illustrates the major
challenge with pulsation based strain imaging, that we can not control the
force that generates the strain and must simply hope that the pulsation
force is great enough.

The strain curves from the second data set however, shown in Fig. 4.14,
all have the same shape as the velocity curves. This what we expected to
see, which gives us reason to believe that the measured strain values are
realistic. Since the curves have similar shapes, we can compare the strain
amplitudes to attempt to say something about the stiffness of the differ-
ent tissue regions. We saw that there was a significant difference between
the tumorous tissue (low strain), unknown tissue (medium strain) and the
healthy tissue (high strain). The strain values indicate that tumor tissue is
stiffer than healthy tissue, and as discussed in section 1.3 this is in agree-
ment with other studies. Further more this indicates that strain values
could be used to separate between tumor tissue and healthy tissue, which
was what we hoped to see. Naturally, positive data from only one patient
is not enough to confirm this, but it is nevertheless a good sign.

The strain image itself, in Fig. 4.13, shows ordered structures. From
the strain image one could hypothesize that the sharp transition in strain
values at the upper part of the image could represent the tumor border. If
this is the case, then there is complementary information about the tumor
in the strain image, compared with just using B-mode. To validate this
interpretation, tissue samples would have to be gathered so that the exact
tumor border could be found. This kind of histopathology has not been
performed.

5.7 Clinical findings - elastographic values

The strain values from the first data set did not seem to be correct, which
will naturally lead to bad results in the elastographic image as well. The
performance of the elastographic processing when the strain values are of
low quality has already been discussed, so we refrain from commenting on
them again.

It is more interesting to look at the results from the second data set,
which had more realistic strain values. We see that the elastogram and
elastographic curves, as was shown in Fig. 4.15 on page 50, shows more
smooth results compared with the strain curves. Especially combined with
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the correlation coefficient thresholding, the elastogram gives an good indi-
cation of relative tissue stiffness, with values that are suitable for real-time
display. Importantly we see that the elastographic values from the healthy
tissue are higher than the values from the unknown tissue, which again are
higher than the tumorous tissue values.

This elastogram could be presented to the surgeon in real-time. If indeed
we can validate that there is a relationship between elastographic values
and tissue pathology, this image would be of real clinical use during tumor
resection.

5.8 Sources for error

We have seen contradicting results from the two clinical data sets. For
one data set the strain processing appeared to break down, while for the
other data set the processing worked well. A possible reason causing this
difference is that we only measure strain in one dimension, when tissue
deformation is in fact a multi-dimensional quantity. Our processing assumes
that tissue deformation in the axial direction is always large enough to be
measured, an assumption that is probably unreasonable. There might also
be more than one artery that generates pulsation, further complicating the
situation. The tumor location with respect to cerebral arteries and the
position of the ultrasound probe with respect to the tumor will also affect
the strain measurements. This makes it unreasonable to directly compare
strain values between patients.

There is also a problem with the measure velocities being so small, even
small movements of the probe could generate large errors in the velocity
measurement. This requires that the surgeon is able to hold the probe
in a fixed position, which could be a practical problem. It is not trivial to
introduce a device to hold the probe in an already crowded operating room.
Naturally the small amplitudes make the velocities more difficult to detect
as well.

Sources for errors common to all ultrasound imaging, can naturally pro-
duce errors in the velocity and strain estimation as well. For example,
side lobes in the transmit/receive beams can cause signals from structures
outside the beam focus to be picked up, affecting estimation accuracy. A
phenomenon which can have a potentially big negative impact on the qual-
ity of the estimates is static reverberations. Such reverberations will corrupt
the velocity estimates, and can “drown” the tissue-motion signal that we
are trying to measure. Static reverberations could be attempted filtered
away with a high pass filter acting in the slow-time dimension. Naturally
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the ever-present thermal noise in the electronics will degrade the SNR as
well. All in all, the combination with the high attenuation of ultrasound
waves in brain tissue, the low amplitude of the velocity signal, and the fact
that we only measure quantities in one dimension seriously degrades our
estimates.
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CHAPTER 6
Conclusion

6.1 The estimators and MATLAB

framework

We have found that the strain and elastographic estimation methods imple-
mented seem to be well suited for imaging tissue stiffness under the presence
of a low-frequency periodic and sufficiently strong force.

The least-squares based strain estimator gives improved results com-
pared with the central-difference estimator, and is our strain estimator of
choice. The correlation coefficient thresholding technique have been es-
pecially useful, and does a great job in identifying, and removing, mea-
surements of low quality. This low quality estimate removal work well in
collaboration with the elastograms.

These estimators, combined with the MATLAB framework and GUI, are
not restricted to being used on the brain, and could be used for other parts
of the body as well. The processing would likely work good with freehand
palpation as well. This would probably require a different tuning of the
parameters, but with given the GUI and the tuning guide in appendix B,
this should not take long.

6.2 Clinical results

The clinical results have revealed the complexity of doing arterial pulsation
based, one dimensional strain imaging. There is no guarantee that there
will be enough compression of the tissue in the dimension that is being
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measured, which will cause the strain processing to break down. Thus we
do not believe that the strain imaging methods presented in this thesis will
work on all patients.

Nevertheless, from one data set we saw strong indications that strain
and elastographic values could aid in tissue segmentation. Thus for certain
patients we believe that our method can have clinical usefulness.

We point out that only two clinical data sets have been studied in this
thesis, and that more clinical data is needed before any certain conclusions
can be made.

6.3 Suggestion for improvements and

further work

First of all, more clinical data needs to be studied. Two data sets is not
enough to produce any statistically significant data, and thus future work
would naturally include looking at more data sets. The MATLAB GUI
should allow new data sets to be studied quickly, so this is a matter of
gathering more recording more clinical data.

Another way to validate the strain and elastographic measurements is by
performing histopathology. The author is no expert on medical regulations,
but it is likely that the results must be validated against such a “gold
standard” anyway, before the method is allowed used in the operating room.

On the acquisition side, the obvious idea is to look at strain values in
more than one dimensions. An easy way to quickly decide the potential
usefulness of such a technique, is to do a study of the angle dependence
of strain values. Doing multiple recordings from the same patient, with
different angles, and studying the resulting strain values would provide such
information. If it is found that the angle dependence is significant, which
we suspect it is, a multi-dimensional strain estimator would most likely give
better results.

A different possibility for improvement could be to make use of the
electrocardiogram (ECG) signal. Since the arterial dilation is caused by
the heart beating, the ECG signal could be used to time events in the heart
cycle. We have seen that the strain values show a “spiking” pattern once
every heart cycle, and this spike has good SNR compared with the strain
values from different parts of the cardiac cycle. It is possible that by using
the ECG signal to extract this spike and average the corresponding image
over several cycles, a stiffness image of better quality than the elastogram
could probably be produced
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6.3. SUGGESTION FOR IMPROVEMENTS AND FURTHER WORK

Another idea is to look at strain generation using some sort of exter-
nal force. This would give similar imaging conditions for each patient, and
avoids a lot of the problems with pulsation based strain imaging. Unfortu-
nately the clinical effects of external deformation to the brain is unknown,
so such a technique must be done with care.
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APPENDIX A
Source code and

implementation details

The AC function

To implement Eq. (2.3) efficiently on a set of RF frames can be challenging,
but by using built-in MATLAB functions it can be calculated elegantly.
The autocorrelation function is only needed for three different lags, but for
all spatial locations. The three lags needed are γ[0, 0], γ[0, 1] and γ[1, 0].
Only autocorrelation estimates which have a full range and lateral gate are
kept, this is enforced by providing the ’valid ’ option to the convolution
function in MATLAB.

We let the input be a set of RF frames, where the number of frames is the
ensemble length O. The frames are stacked in a three-dimensional matrix
X representing the signal x+[m,n, o]. The code provided below calculates
the three values of the autocorrelation function at all spatial locations, and
stores the results as three matrices. Note that the code consists only of
matrix calculations and built-in functions, avoiding loops which can often
suffer from performance penalties in an interpreted langue like MATLAB.

1 % gamma[0,1]. Note that the last row of X is ignored, so ...
that gamma[0,1] and gamma[1,0] have the same dimensions.

2 gamma 0 1 = X(1:end−1,:,1:end−1).*conj(X(1:end−1,:,2:end));
3

4 % The third dimension is the ensemble length
5 gamma 0 1 = sum(gamma 0 1, 3);
6
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7 % The range gate and lateral gate computations can be ...
solved using convolution

8 gamma 0 1 = conv2(gamma 0 1, ones(U,1), 'valid');
9 gamma 0 1 = conv2(gamma 0 1, ones(1,V), 'valid');

10

11 % Note that the two convolutions above could be ...
expressed as a single 2D convolution with the kernel ...
ones(U,V). However since ones(U,V) is a separable ...
kernel, it is faster to perform two 1D convolutions ...
instead.

12

13 % Same procedure for gamma[1,0]
14 gamma 1 0 = X(1:end−1,:,:).*conj(X(2:end,:,:));
15 gamma 1 0 = sum(gamma 1 0, 3);
16 gamma 1 0 = conv2(gamma 1 0, ones(U,1), 'valid');
17 gamma 1 0 = conv2(gamma 1 0, ones(1,V), 'valid');
18

19

20

21 % And for gamma[0,0]. Again ignoring the last row
22 % to keep the same dimensions as the other matrices
23 gamma 0 0 = X(1:end−1,:,:).*X conj(1:end−1,:,:)
24 gamma 0 0 = sum(gamma 0 0,3);
25 gamma 0 0 = conv2(gamma 0 0, ones(U,1), 'valid');
26 gamma 0 0 = conv2(gamma 0 0, ones(1,V), 'valid');

Central-difference strain estimation

We see that Eq. (2.17) can be represented as a convolution between V̂ [m,n]
and the row-vector h with ∆m+ 1 rows defined by:

h(n) =


κ/∆m if n = 0,

−κ/∆m if n = ∆m,

0 otherwise.

Given the vector h(n) above, it is trivial to implement the central-difference
estimator by convolution in MATLAB:

1 h = zeros(dlta m + 1,1);
2 h(1) = kappa/dlta m;
3 h(dlta m+1) = −kappa/dlta m;
4 S = conv2(V,h,'valid');
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Least-squares strain estimation

MATLAB has many built-in functions to find least-squares solutions to
linear systems, examples are the backslash operator ”\”, the function lscov
or the function pinv. A naive implementation is to iterate through the entire
velocity matrix and apply one of these functions to each axial segment,
solving Eq. (2.21) for each segment. For a velocity matrix of size 1000 by
128 this approach takes about 5 seconds, and can not be used for real-time
imaging. Fortunately, since only the slope of the straight line, and not the
offset, is needed, the least-squares solution can be found with convolution.

This is seen by first assuming that ∆m is chosen such that all the
velocity estimates will be used in strain estimation. We let the number of
velocity estimates be n, which means that ∆m = n + 1. The matrix A in
eq. (2.20) becomes:

A =


1 1
2 1
...

...
n 1


Then the matrix

[
ATA

]−1
AT in (2.21) is needed, and is found by first

calculating:

ATA =

[
1 2 · · · n
1 1 · · · 1

]
1 1
2 1
...

...
n 1


=

[
n(n+1)(2n+1)

6
n(n+1)

2
n(n+1)

2
n

]

The inverse is found by using the general inverse rule for a 2x2 matrix:

[
ATA

]−1
=

12

n(n2 − 1)

[
1 −n+1

2

−n+1
2

(n+1)(2n+1)
6

]
= a(n)

[
1 −n+1

2

−n+1
2

(n+1)(2n+1)
6

]

Only the first row of
[
ATA

]−1
AT is needed, since this is the row that is
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involved in calculating â. The first row of
[
ATA

]−1
AT is a vector h(n):

h(n) = a(n)
[
1, −n+1

2

] [1 2 · · · n
1 1 · · · 1

]
= a(n)

([
1 2 · · · n

]
−
[
n+1
2

n+1
2
· · · n+1

2

])
which is equivalent to:

h = κ
12

n(n2 − 1)

([
n n− 1 . . . 1

]
−
[
n+1
2

n+1
2
· · · n+1

2

])T
By convolving this vector with the velocity matrix, the least-squares solu-
tion is found for the axial length ∆m = n− 1.

The following MATLAB code, where V is the velocity matrix, calculates
the strain matrix in around 0.01 seconds, a significant speed-up compared
with the 5 seconds it took with the naive implementation. This shows the
importance of avoiding for-loops and using only built-in functions when
optimizing for speed in MATLAB.

1 h = kappa * 12/(n*(nˆ2−1)) * ( (n:−1:1) − (n+1)/2 )';
2 S = conv2(V,h,'valid');

Adaptive scaling

Letting frame be the input frame, cFrame be the correlation coefficient
matrix, the following MATLAB code implements the adaptive scaling:

1 thr = 0.9; % Corr. coefficient threshold (set in GUI)
2 tol = 0.98; % The percentage of pixels that are to be ...

bounded
3 cFrame(cFrame > thr) = 1;
4 cFrame(cFrame < = thr) = 0;
5 bounds = stretchlim(c2.*frame, [0, tol]);
6 frame = frame./bounds(2);

where stretchlim is a function which comes with the image processing tool-
box, that finds the upper bound that tol % of the matrix elements are
below.

70



APPENDIX B
How to tune parameters

The tuning of estimation parameters is always a question of trade-offs, and
the trade-off is usually a choice between noise and spatial resolution. The
guide presented here is the way the parameters have been tuned for all data
sets in this thesis, a tuning which can be performed quickly using the GUI.
This is an ad hoc method, and is not guaranteed to give optimal parameters,
but we have found that it gives images that are “optimal enough” in some
sense.

The easiest way to understand what each parameter effects, is simply
to play around with the values in the GUI, and observing the effect on the
image. Doing this, one quickly gets a “feel” for what parameters do and
how they influence each other.

The idea behind this procedure is easy. Start by having the parameters
optimized for spatial and temporal resolution as possible. This will corre-
spondingly give an extremely noisy image. Then optimize for one dimension
at a time (axial, lateral, temporal), by increasing the corresponding param-
eters, until the noise is at an acceptable level. We have found that it is
better to have some noise, than to risk missing information due to poor
resolution. Keep in mind that the values suggested here must be changed
if the acquisition parameters are different from the ones we use.

Procedure:

1. Velocity parameters. Start by having both the velocity and strain
image visible, so the effects can be easily seen. Set the range gate equal
to the length of the transmitted pulse (usually somewhere around 10
samples), lateral gate to 1 and ensemble length 2. Increase the lateral
gate until lateral noise seems to be at an acceptable level. A value less
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than 6 is usually sufficient. We have not found that any improvements
by increasing the ensemble length, though it is likely that this could
have an effect if the FPS (which in practice is the PRF in our case),
is very high.

Now investigate the velocity and strain frames from different points
in time by moving the slider. If the values jump up and down, enable
the low pass filter with a low order. Keep increasing the order until
the image looks good for most or all frames.

2. Strain parameters. We recommend to always use the LSQ estima-
tor. By looking only at the strain image, increase the axial length
from 2 samples and up to a maximum of about 100, in steps of ten
or so. Pay attention to structures in the image, if they start to “wash
out”, the axial length is too long and should be reduced.

3. Elastographic parameters. Enable the elastographic window to
observe the effects. Pick a frame where there is little strain. If the
elastographic image looks good for this frame, it will also look good
for frames where there is a strong strain signal. Increase the LPF
order until you are satisfied with the result, but be reasonable. The
correlation parameter is set the same as the one used for correlation
coefficient thresholding, explained next.

4. Post-processing. The median filter can be enabled if there is a lot of
noise, though this is usually not necessary. The filter usually produces
a nicer image, so we usually keep it enabled. Enable the correlation
coefficient with a low coefficient, say 0.6. Keep increasing it in steps of
say 0.1, until the noisy areas are gone. A value of 0.7 to 0.95 usually
gives good results.
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Acquisition and algorithmic

parameters

This appendix shows the acquisition parameters that were used during
recording of the three data sets. In addition to this, the algorithmic param-
eters used to produce all the figures from the “Results” chapter is given.
N/A means not applicable, meaning that the parameter is not available, not
involved or not relevant to the figure in question. Remember that the effect
of most of the algorithmic values will change with acquisition parameters as
well. For example a range gate of 30 samples represents a different physical
range at 10 MHz sampling frequency than at 20 MHz sampling frequency.

Table C.1: Acquisition parameters from the three data set

Phantom Data set 1 (2011) Data set 2 (2004)
System SonixMDP SonixMDP System FiVe
Probe FLA 5–14 MHz FLA 5–14 MHz FLA 10-MHz
Transmit freq 10 MHz 5 MHz 8 MHz
RF sampling freq 20 MHz 20 MHz 20 MHz
No. scan lines 128 96 174
No. depth samples 1032 1304 776
Height x Depth N/A 50x28 mm 30x32 mm
No. frames 194 290 79
FPS 49 58 46.2
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Table C.2: Algorithmic parameters used - 1 of 3

Fig. 4.1, Fig. 4.7 Fig. 4.11
Fig. 4.4 Fig. 4.12
Fig. 4.2

Data set Phantom Phantom Data set 1 (2011)
Velocity estimation
Estimator 2D-AC 2D-AC 2D-AC
Range gate (M) 6 samples 6 samples 30 samples
Lateral gate (N) 3 lines 3 lines 5 lines
Ensemble length (O) 2 frames 2 frames 2 frames
LPF order 4 N/A 15
LPF cut-off freq 2 Hz N/A 2 Hz
Strain estimation
Estimator LSQ LSQ LSQ
Axial length (∆m) 90 samples 90 samples 70 samples
Elasto. processing
LPF order 10 3 10
LPF cut-off freq 2 Hz 2 Hz 2 Hz
Post processing
Median filter (axial x lateral) 3x3 N/A 3x3
Correlation thresholding Fig. 4.1: Off. N/A 0.95

Fig. 4.2: Off
Fig. 4.4: 0.95
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Table C.3: Algorithmic parameters used - 2 of 3

Fig. 4.8 Fig. 4.6 Fig. 4.5
Fig. 4.10
Fig. 4.9,

Data set Data set 1 (2011) Phantom Phantom
Velocity estimation
Estimator 2D-AC 2D-AC 2D-AC
Range gate (M) 30 samples 6 samples 15 samples
Lateral gate (N) 5 lines 3 lines 1 lines
Ensemble length (O) 2 frames 2 frames 2 frames
LPF order N/A N/A 4
LPF cut-off freq N/A N/A 2 Hz
Strain estimation
Estimator LSQ N/A LSQ
Axial length (∆m) 70 samples N/A 70 samples
Post processing
Median filter (axial x lateral) 3x3 N/A N/A
Correlation thresholding N/A N/A N/A
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APPENDIX C. ACQUISITION AND ALGORITHMIC PARAMETERS

Table C.4: Algorithmic parameters used - 3 of 3

Fig. 4.13
Fig. 4.14
Fig. 4.15,

Data set Data set 2 (2004)
Velocity estimation
Estimator 2D-AC
Range gate 20 samples
Lateral gate 3 lines
Ensemble length 2 frames
LPF order N/A
LPF cut-off freq N/A
Strain estimation
Estimator LSQ
Axial length 60 samples
Elasto. processing
LPF order 10
LPF cut-off freq 2 Hz
Post processing
Median filter (axial x lateral) 3x3
Correlation thresholding 0.98
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