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Summary

The main objective in this thesis is to explore if a model predictive control
scheme can increase the energy efficiency in office buildings with waterborne
heating systems. The number of office buildings is constantly increasing,
which displays the importance of efficient control systems. Since the aim
is to decrease the energy consumption, improving the control systems in
existing buildings and developing smart control schemes for new buildings
are equally important. That is why the vision in this thesis is to design a
control scheme that theoretically can be introduced to all new and existing
office buildings. The model predictive controller’s objective is therefore to
minimize the supply water temperature to the heating system, while fulfilling
a set of defined indoor temperature demands.

The model is the most important tool when comparing different control
schemes. It is derived using an electrical analogy, and includes the most im-
portant thermodynamical relations in three rooms, a ventilation system, and
a district heating system. To achieve optimal control of the supply-water
temperature, a constrained optimization problem is introduced through a
model predictive control scheme. Two versions of the model predictive control
scheme are compared with a conventional control scheme. The first version is
an ordinary formulation with some ad-hoc solutions including time-varying
output constraints, while the second version is a robust formulation includ-
ing slack variables. The energy-consumption analysis imply that a 33 % - 34
% reduction potential is obtainable if a model predictive control scheme is
introduced.
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Chapter 1

Introduction

In industrialized countries, energy usage in buildings represents as much as
40 % of the total energy consumed (Nilsson et al. [2003]), and according to
Abel and Elmroth [2007], the building stock is increasing with 1 % to 2 %
yearly. Since the number of buildings is continously increasing, it becomes
even more important to optimize the energy consumption. The number of
buildings in the world is enormous, therefore the energy reduction potential
is huge.

Sector Energy consumption EU 2006
Households and services 38,70 %
Industry 27,50 %
Transport 31,40 %
Agriculture 2,40 %

38,70 %

27,50 %

31,40 %

2,40 %

Households and services

Industry

Transport

Agriculture

Figure 1.1: Sector-divided energy consumption within the European Union,
2006. Source: Eurostat.

The climate in buildings is controlled by Heating, Ventilation and Air Con-
ditioning (HVAC) systems. An important contribution that will lead to a

1



2 Chapter 1. Introduction

reduction in energy consumption, is to control these systems in an optimal
manner.

Figure 1.2: The OptiControl MPC control strategy. Source: OptiControl.

Since energy usage in buildings represents a huge energy consumer, the inter-
disciplinary project OptiControl was launched in 2007. Gyalistras and Gw-
erder [2009] states that by use of predictive control, the aim of the project is
to minimize the energy usage in buildings while maintaining (or even improv-
ing) the indoor climate, and reducing peak electricity demand. Gyalistras
and Gwerder [2009] focus on predictive control for several reasons.

• Disturbance predictions - in particular weather predictions - can easily
be included into the controller.

• Since MPCs include mathematical models of a process, complex dy-
namical systems with non-linear interactions can be dealt with in a
Multi-Input-Multi-Output (MIMO) manner.

• MPC formulations are intuitive (minimize energy usage without vio-
lating constraint a and constraint b, for example).

An introduction to MPCs will be given in Chapter 4.

Gyalistras and Gwerder [2009] examine both energy efficiency and control of
specific indoor climate aspects, like CO2 concentration and moisture. Since
different types of buildings will have different demands, the control system
has to be tailor made for each building. The focus in this thesis will be to
minimize the amount of heat supplied to an office building, but still fulfill
desired temperature demands. The main idea is that any building (old or
new) with a waterborne heating system can deploy such a control system,
without having to update all the components in the existing control system.

2



3

Figure 1.3: A lot of energy can be saved if the indoor climate is controlled
in an optimal manner. Source: www.zerobuildings.com.

In Oldewurtel et al. [2009a], the goal is to minimize the energy consumption
in a building by controlling the indoor temperature, in addition to the CO2
and illuminance levels, in a smart manner. The defined comfort demands
have to be fulfilled by using a minimal amount of energy. This is done by
individual control of each actuator1 and by feeding weather predictions into
the model.

In Oldewurtel et al. [2009b], the focus is yet again to keep the temperature,
CO2 and illuminance levels within a given comfort zone. However, the control
strategy differs from the previous case. Oldewurtel et al. [2009b] assume that
all the power in the system is given by an electric source, and propose a
strategy of how to reduce the peak electricity demand in the building. The
proposed strategy includes using an MPC control scheme, and incorporation
of real-time electricity prices into the MPC cost function2. The internal
controllers should then respond with respect to the electricity prices, by
responding gently when the prices are high, for example.

The reader should be aware that there are several ongoing projects concern-
ing energy efficiency in buildings using MPC control schemes, and only a few
of them are mentioned here. Morosan et al. [2010], Privara et al. [2010] and
Siroky et al. [2011] can be of interest in addition to the ones mentioned above.
The author of this thesis thinks it is of importance that the control system
should be designed in a general and high-leveled manner, such that it can
be applied to both old and new buildings by being independent of different

1Blind-positioning, ventilation and radiator outputs.
2Objective function and other MPC terms will be explained in Chapter 4.

3
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4 Chapter 1. Introduction

component compositions that exist in different buildings. There are several
arguments for choosing an MPC control scheme to increase energy efficiency,
and some of them are mentioned in Gyalistras and Gwerder [2009]. It is
intuitive to formulate the optimization problem: Minimize a cost function
with respect to certain constraints - minimize energy consumption while re-
specting indoor temperature demands. It it also appealing that disturbances,
like the weather, easily can be fed forward and included into the controller.
But most importantly, an MPC scheme is employed because of its ability to
operate near the system constraints, and thereby obtain the most profitable
operation (Maciejowski [2002]). The properties in general seem to make the
MPC a useful tool for minimizing the energy consumption in buildings.

Figure 1.4: The vision is to design a control system that is applicable in all
existing and new office buildings. Source: OptiControl.

It is important to have in mind that even though new buildings contain
state-of-the-art technology and are energy efficient, the total energy con-
sumption will still increase as long as existing buildings remain unchanged
(Abel and Elmroth [2007]). It is therefore very important to come up with
energy-saving measures that are applicable not only to new buildings, but
also to existing buildings. Abel and Elmroth [2007] mention two criteria that
must be fulfilled when working with energy efficiency in buildings. First,
when coming up with energy-saving measures, it is essential that the indoor-
climate properties in the building are maintained. No one is interested in

4



1.1. Outline of the report 5

working in a building where it is freezing cold even though it has a low
energy consumption, for example. Second, energy-saving measures and the
pertaining technical equipment should not demand more resources than the
actual energy-reduction potential. As mentioned above, the vision in this
thesis is to develop a high-level control scheme that theoretically is going to
be applicable in both existing and new buildings containing a waterborne
heating system. And as far as the author is aware of, no one has yet applied
a similar control scheme to office buildings. These criteria are the main rea-
sons why the purpose of this thesis is to explore whether an MPC scheme
can increase the energy efficiency in office buildings, or not. Details about
different control schemes that will be subject for implementation and testing
are elaborated in Section 2.6.

The work in this thesis is based on Magnussen [2010]. However, several
augmentations and improvements will be carried through. The model will
be expanded with several rooms, a ventilation system, and a more realistic
heating system. Outdoor temperatures generated from www.yr.no, and ther-
mal disturbances from people, equipment and lighting, will also contribute
to make the model more realistic. The model is going to be implemented in
Simulink exclusively, not partially Simscape and Simulink as in Magnussen
[2010]. A Kalman filter is going to be used instead of a Luenberg observer as
state estimator, while the MPC formulation will be different by changing the
objective function and by adding new constraints. In addition, measures to
make the MPC scheme more robust will be carried through. In other words,
Magnussen [2010] only forms the basis of this thesis.

1.1 Outline of the report

Chapter 2 concerns the derivation of the model that is going to be used
to compare the different control schemes. Initially, different modeling ap-
proaches that can be employed to derive thermodynamical models are listed,
before the building case that is used in the thesis is presented. Factors that
affect the indoor climate, succeeded by the heat balances in the largest room
are then elaborated. In this chapter, the reader also gets familiar with some
ventilation and district heating schemes, before the control strategies com-
plete the chapter. The conventional control scheme and the corresponding
simulations are topics for Chapter 3. Chapter 4 is the main chapter and it
starts off with an introduction to MPC control, necessary preparations that
have to be made before implementation, and a Kalman filter that must be

5
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6 Chapter 1. Introduction

included to estimate the system states. Tuning of an MPC controller, simu-
lations of the system, and ad-hoc solutions that has to be implemented are
then presented. Approaches for making the control scheme robust and the
corresponding simulations complete this chapter. The energy consumption
will be explored in Chapter 5, while a discussion is carried out in Chapter 6.
A conclusion and proposals for further work complete the thesis in Chapter
7.

Before the control schemes can be compared, a mathematical model of the
building has to be derived, and this is the subject for next chapter.

6



Chapter 2

The Model

In this chapter, a model of a building will be derived. In addition to math-
ematical descriptions, a short theoretical introduction will be given when
presenting new components.

First-principle modeling and black-box modeling1 are two common modeling
approaches and are both suited when deriving building models. Djuric et al.
[2007] use a black-box approach when deriving a building model. In their
work, heat equations are set up to describe the thermal relations in each zone
in the building, and the model is initialized by calibrating it with related
measurement data. This method is a good option if the measurements are
reliable, since the model gets tailor fit to the specific building. However,
instrument failure may lead to incorrect measurements, which may cause
model inaccuracy. It is important to develop a model that describes the
process in an accurate manner. Moreover, the model should not be more
complex than necessary because it is going to be employed in an optimization
problem. This will be discussed in more detail in Chapter 6.

Table 2.1 is taken from Table 5.1 in Gyalistras and Gwerder [2009], and it
shows a hierarchy of building models. Before choosing a level of control, the
purpose of the controller should be defined . Individual control of different
indoor climate aspects, like moisture control or CO2 control, is not going to be
subject for examination in this thesis. Therefore, L5 modeling is unnecessary
complex. The level of modeling complexity in this thesis will be between L3
and L4. Resistance-Capacitance networks (RC-networks) are used because

1Maciejowski [2002] defines these terms in the following way: A black-box model is a
model that uses system identification, and the emphasize is on the relationship between
input and output. A model of first-principle uses physical laws to derive a model.

7



8 Chapter 2. The Model

the electrical analogy makes it easier to examine all the thermal relations
combined together, or individually.

The foundation of the model will be based on Chapter 2.3 in Magnussen
[2010]. However, the model presented in Magnussen [2010] is going to be
expanded with the purpose of making it more realistic. The building model
will consist of 3 rooms and a ventilation system. Radiation noise from people,
equipment and lighting, outdoor temperatures, and a district heating system
will represent the rest of the model. The specific values in the model (areas,
materials, radiation rates) are taken from measurements in Bassengbakken
1 in Trondheim. This building contains a radio station, shops, and office
areas. In this thesis, a segment in one of the office floors will be subject for
modeling.

Table 2.1: Levels of modeling.

Modeling Characteristics Characteristics - Scope
level
L1 Verbal model Easily understandable characterization

of a building - communication with
non-specialists.

L2 Correlation model Linear combination between average
power use and external temperature,
design and rough energy-
demand calculations.

L3 Linear dynamical Simplest possible representation of a
model (thermal buildings´s thermal dynamics. Design
RC-network) and energy demand calculations of

buildings.
L4 Bilinear dynamical Representation of a building´s physical

model (thermal processes at intermediate precision and
RC-network) detail. Reliable energy and comfort

simulations.
L5 Detailed model Best possible representation and

based on building detailed simulation of a building´s
simulation software physical processes.

8



2.1. Building case 9

2.1 Building case

In Grini et al. [2009], information about Bassengbakken 1 in Trondheim can
be found. The building was built in 2001 and rehabilitated in 2004, and it
is drifted by Trondheim Kommune. The building consists mainly of offices
in addition to a business area at the 1st floor. The walls of the building
are constructed by bricks, gypsum, insulation (rock wool) and air gaps, and
windows account for 25.8 % of the total building area.

District heating supplied from Trondheim Energi AS represents the build-
ing´s heating system. The supply water temperature is 95 ◦C, while the
return temperature is controlled to 55 ◦C so that hot tapping water can be
ensured. These values will be disregarded this thesis because new supply-
water-temperature schemes are going to be introduced. Radiators are placed
below the windows in order to fulfill the defined indoor temperature demand
at 21 ◦C. A night-time temperature is not defined by Grini et al. [2009],
so this is set arbitrarily to 17 ◦C. Fresh air is supplied by a ventilation
system where a heat exchanger is used to heat up the supply air to 22 ◦C,
which is the desired temperature during winter time. A desired night-time
temperature is not defined, and is set to be 15 ◦C.

In order to be able to calculate the building‘s energy consumption, the water
flowing through the radiators and the ventilation system has to be deter-
mined. 22.15 % of the water runs through radiator A, 22.15 % through
radiator B and 26.79 % through radiator C. The flow through radiator C
is chosen larger since room C is the biggest2. The remaining 28.91 % flows
through the ventilation system. These values were decided by determination
of pipe dimentions and water flows in the system. The pipe dimentions and
water flows are chosen such that the water flow through the ventilation sys-
tem and the radiators constitutes the total flow through the heating system.
The choice of the values are discussed in Chapter 6. Except from radiators
and ventilation, important factors that provide heat to the building during
working hours are people, lighting, and other equipment like computers and
printers.

The building consists of 6 floors including a parking lot in the basement.
However, in this thesis only a segment in one of the office floors will be
investigated. This is done to prevent the model of becoming too large and
complex.

2The radiator size in room C is also chosen to be larger than in room A and B for the
same reason.

9



10 Chapter 2. The Model

4.5 m

2.5 m
6 m

2.5 m

A

B

C

Figure 2.1: A segment of one of the office floors in Bassengbakken 1 that will
be subject for simulation in this thesis.

Factors that affect the indoor climate

The heat in a room is determined by the internal heat and heat losses through
the building envelope3, and the internal heat is heat transferred from people,
equipment, walls, floor and ceiling (Abel and Elmroth [2007]). The temper-
ature in the room rises if the surface heat on the surroundings is higher than
the room temperature, and vice versa. Solar radiation leads to heat storage
in the building structure, which also affects the temperature in the room
(Abel and Elmroth [2007]).

Table 2.2: Notation in modeling.

Example Subscript 1 Subscript 2 Subscript 3 Explanation
(Location) (Identity) (Room)

θ36C Wall surface Towards Room C Wall surface temp.
temp. outdoor air towards outdoor

air in room C
θ1BC Wall (mass Towards Room C Wall (mass center)
(= θ1CB) center) temp. room B temp. between room

B and room C
θ2B Air Room B Air temp.

temp. in room B

Initially, the thermal relations in a room will be studied. Except from a
3A building envelope is the separation between the interior and the exterior environ-

ment.

10



2.2. The thermal relations in a room 11

different notation (see Table 2.2), these calculations will be the same as in
Magnussen [2010]. A complete overview of the variables can be found in the
nomenclature.

2.2 The thermal relations in a room

The thermal relations in a building include heat storage in the building struc-
ture (only walls in this model), inventory, and room air. In addition to this,
thermal radiation from radiators, window surface, people, equipment and
lighting constitute the thermal relations. Solar radiation will be left out be-
cause this is very hard to model accurately. It is impossible to know how
long the sun will affect the building, and how long it will be obstructed by
clouds during a day. If this was to be included, additional sensors would
have been needed to measure whether the sun radiates the building or not.
The author of this thesis is of the comprehension that including the affection
from the sun will contribute to a larger source of error, rather than making
the model more accurate.

Four simplifications are made to prevent the model of being too complex (the
third and fourth are from (Novakovic [1995])).

1. There are two sorts of walls. Walls towards outdoor air, and walls
towards other rooms.

2. Floor and ceiling will not be included in the model.

3. There is no heat accumulation in the windows.

4. The equipment in the room does not transfer heat to each other.

The only thing that separates the thermal relations in the rooms from each
other, is the number of walls towards other rooms and outdoor air. Therefore,
the calculations will only be derived for room C, since it faces both room A,
room B, and the outdoor air.

11



12 Chapter 2. The Model

R26C

R16C

R36C

R9C

R9C

R3AC

R4C

R4C

R10C

R5C

R6C

R8C

R2ACR2AC

θ16C

θ36C

θ2C

θ1AC

θ3BC

θ4C

θ5C

θ6

θ6

R7C

θ2A

R2BC

R2BC

θ1BC

R3BC

R4C

R9C

θ2B

A

B

C

θ3AC

Figure 2.2: Thermal relations in a room (room C). The figure is inspired by
Figure 19.1 in Novakovic [1995].

2.2.1 Heat balance of the wall (towards outdoor)

The heat balance of the wall towards the outdoor air is given by studying
Figure 2.2.

d

dt
(C6Cθ16C) = 1

R16C
(θ6 − θ16C) + 1

R26C
(θ36C − θ16C) (2.1)

C6C
dθ16C

dt
= 1
R16C

(θ6 − θ16C) + 1
R26C

(θ36C − θ16C) (2.2)

C6C
dθ16C

dt
+ ( 1

R16C
+ 1
R26C

)θ16C = 1
R16C

θ6 + 1
R26C

θ36C , (2.3)

where C6C is constant. By defining

12
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klCWlC (1−KlC)WlC

(1− kpC)WpC

kpCWpC

(1−KeC)WeC

keCWeC

Figure 2.3: Thermal disturbances in a room (room C). The figure is inspired
by Figure 19.2 in Novakovic [1995].

R1tC = 1
1

R16C
+ 1

R26C

, (2.4)

T1C = C6CR1tC , (2.5)

equation (2.3) can be written as

T1C
dθ16C

dt
+ θ16C = R1tC

R26C
θ36C + R1tC

R16C
θ6. (2.6)

Then (2.6) is Laplace transformed, so that the transfer functions can be
obtained:

L(· · · )⇒ (2.7)

T1Cθ16Cs+ θ16C = R1tC

R26C
θ36C + R1tC

R16C
θ6. (2.8)

13



14 Chapter 2. The Model

If the principle of super position is applied, the transfer functions become

θ16C

θ36C
(s) =

R1tC

R26C

1 + T1Cs
, (2.9)

θ16C

θ6
(s) =

R1tC

R16C

1 + T1Cs
. (2.10)

2.2.2 Heat balance of the wall (towards room A)

The heat balance of the wall towards room A is found in the same manner
as the previous case.

d

dt
(CACθ1AC) = 1

R2AC
(θ3AC − θ1AC) + 1

R2AC
(θ3CA − θ1AC) (2.11)

⇓

CAC
dθ1AC

dt
+ ( 1

R2AC
+ 1
R2AC

)θ2AC = 1
R2AC

θ3AC + 1
R2AC

θ3CA. (2.12)

The equation is then multiplied with R3tAC and Laplace-transformed. This
yields

T3Cθ1ACs+ θ1AC = R3tAC

R2AC
(θ3AC + θ3CA), (2.13)

where

R3tAC = 1
1

R2AC
+ 1

R2AC

, (2.14)

T3C = CACR3tAC . (2.15)

By applying the principle of super position, this results in

θ1AC

θ3AC
(s) =

R3tAC

R2AC

1 + T3Cs
, (2.16)

θ1AC

θ3CA
(s) =

R3tAC

R2AC

1 + T3Cs
. (2.17)

14



2.2. The thermal relations in a room 15

2.2.3 Heat balance of the wall (towards room B)

The heat balance of the wall towards room B is identical to the one towards
room A:

d

dt
(CBCθ1BC) = 1

R2BC
(θ3BC − θ1BC) + 1

R2BC
(θ3CB − θ1BC) (2.18)

⇓

CBC
dθ1BC

dt
+ ( 1

R2BC
+ 1
R2BC

)θ2BC = 1
R2BC

θ3BC + 1
R2BC

θ3CB. (2.19)

The Laplace-transformation leads to

T4Cθ1BCs+ θ1BC = R3tBC

R2BC
(θ3BC + θ3CB), (2.20)

where

R3tBC = 1
1

R2BC
+ 1

R2BC

, (2.21)

T4C = CBCR3tBC . (2.22)

Once again the principle of super position is employed, which yields

θ1BC

θ3BC
(s) =

R3tBC

R2BC

1 + T4Cs
, (2.23)

θ1BC

θ3CB
(s) =

R3tBC

R2BC

1 + T4Cs
. (2.24)

15



16 Chapter 2. The Model

2.2.4 Heat balance of the room air

The room air model is found in the same manner as the wall model, by study-
ing Figure 2.2 and Figure 2.3 and extracting the corresponding equations.

d

dt
(C2Cθ2C) = 1

R36C
(θ36C − θ2C) + 1

R3AC
(θ3AC − θ2C) + 1

R3BC
(θ3BC − θ2C)

+ 1
R5C

(θ5C − θ2C) + 1
R7C

(θ7C − θ2C) + 1
R8C

(θ6 − θ2C)

+ 1
R10C

(θ4C − θ2C) + keCWeC + klCWlC + kpCWpC

(2.25)
⇓

C2C
dθ2C

dt
+ ( 1

R36C
+ 1
R3AC

+ 1
R3BC

+ 1
R5C

+ 1
R7C

+ 1
R8C

+ 1
R10C

)θ2C

= 1
R36C

θ36C + 1
R3AC

θ3AC + 1
R3BC

θ3BC + 1
R5C

θ5C + 1
R7C

θ7C

+ 1
R8C

θ6 + 1
R10C

θ4C + keCWeC + klCWlC + kpCWpC .

(2.26)

The equation is multiplied by R2tC and Laplace-transformed. This yields

(T2Cs+ 1)θ2C = R2tC

R36C
θ36C + R2tC

R3AC
θ3AC + R2tC

R3BC
θ3BC + R2tC

R5C
θ5C

+ R2tC

R7C
θ7C + R2tC

R8C
θ6 + R2tC

R10C
θ4C

+R2tC(keCWeC + klCWlC + kpCWpC),

(2.27)

where

R2tC = 1
1

R36C
+ 1

R3AC
+ 1

R3BC
+ 1

R5C
+ 1

R7C
+ 1

R8C
+ 1

R10C

, (2.28)

T2C = C2CR2tC . (2.29)

16



2.2. The thermal relations in a room 17

This leads to the following transfer functions:

θ2C

θ36C
(s) =

R2tC

R36C

1 + T2Cs
, (2.30)

θ2C

θ3AC
(s) =

R2tC

R3AC

1 + T2Cs
, (2.31)

θ2C

θ3BC
(s) =

R2tC

R3BC

1 + T2Cs
, (2.32)

θ2C

θ5C
(s) =

R2tC

R5C

1 + T2Cs
, (2.33)

θ2C

θ6
(s) =

R2tC

R8C

1 + T2Cs
, (2.34)

θ2C

θ7C
(s) =

R2tC

R7C

1 + T2Cs
, (2.35)

θ2C

θ4C
(s) =

R2tC

R10C

1 + T2Cs
, (2.36)

θ2C

WeC

(s) = R2tCkeC
1 + T2Cs

, (2.37)

θ2C

WlC

(s) = R2tCklC
1 + T2Cs

, (2.38)

θ2C

WpC

(s) = R2tCkpC
1 + T2Cs

. (2.39)

2.2.5 Heat balance of the wall surface (towards out-
door)

When the heat balance of the wall surface is explored, it is assumed that all
the heat in this point (see θ36C in Figure 2.2) is directly transfered to the
thermal mass inside the wall, i.e. this point does not have a thermal mass.
The heat balance in this point is therefore static, thus dθ36C

dt
≡ 0.
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0 = 1
R26C

(θ16C − θ36C) + 1
R36C

(θ2C − θ36C) + 1
R4C

(θ5C − θ36C)

+ 1
R9C

(θ4C − θ36C) + (1− keC)WeC + (1− klC)WlC

+ (1− kpC)WpC

(2.40)

⇓

( 1
R26C

+ 1
R36C

+ 1
R4C

+ 1
R9C

)θ36C = 1
R26C

θ16C + 1
R36C

θ2C

+ 1
R4C

θ5C + 1
R9C

θ4C + (1− keC)WeC + (1− klC)WlC

+ (1− kpC)WpC .

(2.41)

The equation is then multiplied with R4tC and Laplace-transformed.

θ36C = R4tC

R26C
θ16C + R4tC

R36C
θ2C + R4tC

R4C
θ5C + R4tC

R9C
θ4C

+R4tC((1− keC)WeC + (1− klC)WlC + (1− kpC)WpC),
(2.42)

where
R4tC = 1

R26C
+ 1
R36C

+ 1
R4C

+ 1
R9C

. (2.43)

The following transfer functions are static since there are no derivatives in
the heat balance.

θ36C

θ16C
(s) = R4tC

R26C
, (2.44)

θ36C

θ2C
(s) = R4tC

R36C
, (2.45)

θ36C

θ5C
(s) = R4tC

R4C
, (2.46)

θ36C

θ4C
(s) = R4tC

R9C
, (2.47)

θ36C

WeC

(s) = R4tC(1− keC), (2.48)

θ36C

WlC

(s) = R4tC(1− klC), (2.49)

θ36C

WpC

(s) = R4tC(1− kpC). (2.50)
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2.2. The thermal relations in a room 19

2.2.6 Heat balance of the wall surface (towards room
A)

The heat balance of the wall surface towards room A is found in the same
manner as in the previous case.

0 = 1
R2AC

(θ1AC − θ3AC) + 1
R3AC

(θ2C − θ3AC) + 1
R4C

(θ5C − θ3AC)

+ 1
R9C

(θ4C − θ3AC) + (1− keC)WeC + (1− klC)WlC

+ (1− kpC)WpC

(2.51)

⇓

( 1
R2AC

+ 1
R3AC

+ 1
R4C

+ 1
R9C

)θ3AC = 1
R2AC

θ1AC + 1
R3AC

θ2C

+ 1
R4C

θ5C + 1
R9C

θ4C + (1− keC)WeC + (1− klC)WlC

+ (1− kpC)WpC .

(2.52)

The equation is multiplied with R5tAC and Laplace-transformed.

θ3AC = R5tAC

R2AC
θ1AC + R5tAC

R3AC
θ2C + R5tAC

R4C
θ5C + R5tAC

R9C
θ4C

+R5tAC((1− keC)WeC + (1− klC)WlC + (1− kpC)WpC),
(2.53)

where

R5tAC = 1
R2AC

+ 1
R3AC

+ 1
R4C

+ 1
R9C

. (2.54)

The transfer functions become

19
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θ3AC

θ1AC
(s) = R5tAC

R2AC
, (2.55)

θ3AC

θ2C
(s) = R5tAC

R3AC
, (2.56)

θ3AC

θ5C
(s) = R5tAC

R4C
, (2.57)

θ3AC

θ4C
(s) = R5tAC

R9C
, (2.58)

θ3AC

WeC

(s) = R5tAC(1− keC), (2.59)

θ3AC

WlC

(s) = R5tAC(1− klC), (2.60)

θ3AC

WpC

(s) = R5tAC(1− kpC). (2.61)

2.2.7 Heat balance of the wall surface (towards room
B)

The wall-surface transfer functions towards room B are presented without
derivation, since they are the same as towards room A.

θ3AC

θ1AC
(s) = R5tAC

R2AC
, (2.62)

θ3AC

θ2C
(s) = R5tAC

R3AC
, (2.63)

θ3AC

θ5C
(s) = R5tAC

R4C
, (2.64)

θ3AC

θ4C
(s) = R5tAC

R9C
, (2.65)

θ3AC

WeC

(s) = R5tAC(1− keC), (2.66)

θ3AC

WlC

(s) = R5tAC(1− klC), (2.67)

θ3AC

WpC

(s) = R5tAC(1− kpC). (2.68)
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2.2.8 Heat balance of the window surface

According to Assumption 3, there is no heat accumulation in the windows.
All the heat passing the windows is transfered either inside (air/wall) or
outside. This leads to a static heat balance.

0 = 1
R4C

(θ3AC − θ5C) + 1
R4C

(θ3CA − θ5C) + 1
R4C

(θ36C − θ5C)

+ 1
R5C

(θ2C − θ5C) + 1
R6C

(θ6 − θ5C)
(2.69)

⇓

θ5C = R6tC

R4C
(θ36C + θ3AC + θ3CA) + R6tC

R5C
θ2C + R6tC

R6C
θ6, (2.70)

where
R6tC = 1

3
R4C

+ 1
R5C

+ 1
R6C

. (2.71)

The static transfer functions yield:

θ5C

θ36C
(s) = R6tC

R4C
, (2.72)

θ5C

θ3AC
(s) = R6tC

R4C
, (2.73)

θ5C

θ3CA
(s) = R6tC

R4C
, (2.74)

θ5C

θ2C
(s) = R6tC

R5C
, (2.75)

θ5C

θ6
(s) = R6tC

R6C
. (2.76)
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2.3 Ventilation systems

Introduction

The introduction of ventilation systems are taken partly from Magnussen
[2010], and is based on Abel and Elmroth [2007]. The indoor climate in a
building will always have certain requirements, whether it is a hospital, a
school, or an office building. Generally, ventilation means that clean air is
supplied to a room, and the pollutants generated there are removed. How-
ever, in addition to the removal of pollutants, ventilation systems can remove
surplus heat from a building. This is especially the case in places like Scan-
dinavia, where the outdoor temperature most often is lower than the indoor
temperature. The air in the room is set in motion when air is supplied into
the room. This air flow speed can be high, low or varying, depending on how
sophisticated the system is (Figure 2.4). If warm air is supplied at ceiling
level, it may not mix with the polluted air, and the air quality will remain
poor. However, if cold air is supplied at high speed, this may be perceived as
unpleasant for the occupants. Depending on where the supply air is supplied,
what temperature it has, and at which speed, the air mixture in the room
will vary. For example, if cold air is supplied with low speed at floor level, it
will lead to a stratified air distribution, where the cold air displaces the the
pollutant and warm air (see Figure 2.4).

High speed
supply air

Low speed
supply air

Exhaust air Exhaust air
Stratifed
air distribution

Uniform
air distribution

Figure 2.4: Two common ventilation schemes. The figure is taken from
Magnussen [2010].

In order to save energy when heating the supply air, the air can be routed
through a duct buried in the ground, or by using a heat recovery unit 4.

Intelligent buildings may have variable air volume (VAV) ventilation, such
that different zones in a building (even in a room) can have different air flows.

4A heat recovery unit utilizes the heat from the exhaust air.
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2.3. Ventilation systems 23

During a day there may be unoccupied zones in open-planed offices, and it is
unnecessary to provide a constant air volume to these areas. It is desirable
to only provide supply air to occupied zones, and this can be achieved by
additional sensors and a VAV ventilation system. This will have a larger
initial cost than a conventional ventilation system, but it may be worth it
from a long-term point of view.

VAV and heat recovery units will increase the complexity level when mod-
eling. Therefore, a constant air volume (CAV) system will be used in this
thesis, and the supplied air will be heated by including a heat exchanger.

Water

θwi, ṁw, cw

θwo, ṁw, cw

Air θai, ṁa, ca

θao, ṁa, ca

θh,mh, ch, (UA)h

Figure 2.5: The heat exchanger in the ventilation system. The figure is
inspired by Figure 13.1 in Novakovic [1995].

The air in the ventilation system is heated when it passes through a heat
exchanger (see Figure 2.5). The input air has to maintain a certain tem-
perature to prevent it of being uncomfortable for the occupants. Since the
outdoor temperature fluctuates from day to day, this leads to a varying en-
ergy demand that is necessary to heat the input air. The water in the heat
exchanger circuit (Figure 2.5) is a mixture of water from the main supply
line, and outgoing water from the heat exchanger. A three-point valve (shunt
connection) ensures that the water in the heat exchanger circuit is sufficiently
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24 Chapter 2. The Model

warm. In order to be able to study the ventilation system, a heat exchanger
and a shunt connection have to be modeled.

2.3.1 Heat exchanger

The derivation of the heat exchanger model is based on the calculations in
Chapter 13 in Novakovic [1995]. It consists of a dynamical heat balance on
the water side, and a static heat equation on the air side. Novakovic [1995]
makes 5 assumptions to simplify the derivation.

1. Constant amount of water through the heat exchanger (ṁw = const).

2. Constant amount of air through the heat exchanger (ṁa = const).

3. No heat loss to the surroundings.

4. Direct connection between metal temperature in the heat exchanger
(θh) and the temperature of the incoming air (θai).

5. The metal temperature in the heat exchanger is equal to the outgoing
water temperature (θh = θwo).

The heat balance on the water side yields

d

dt
(mhchθh) = ṁwcw(θwi − θwo)− (UA)h(θwo − θai). (2.77)

According to Assumtion 5, θh = θwo, so the equation is written as

mhch
dθwo
dt

= ṁwcw(θwi − θwo)− (UA)h(θwo − θai), (2.78)

where (UA)h is the heat exchanger´s unknown heat-transmission number.
The heat equation on the air side is given by

ṁaca(θao − θai) = (UA)h(θwo − θai), (2.79)

where the received heat is equal to the produced heat (Assumption 3).

The water in Figure 2.5 is cooled by the incoming air, while the incoming
air gains heat from the water. These reactions are captured in the following
coefficients:

εw = θwi − θwo
θwi − θai

(2.80)
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2.3. Ventilation systems 25

is relative water cooling, while

εa = θao − θai
θwi − θai

(2.81)

is relative air heating. Equations (2.80) and (2.81) are evaluated at the
heat exchanger´s nominal conditions, i.e. design temperatures (see Appendix
A.2).

By combining (2.79), (2.80) and (2.81), (UA)h can be written as

(UA)h = εa
1− εw

ṁaca. (2.82)

The air coefficients can be replaced by the corresponding water coefficients
because the static heat balance is equal on the water side and air side (No-
vakovic [1995]),

(UA)h = εw
1− εw

ṁwcw. (2.83)

If (2.83) is inserted into (2.78), the unknown heat-transmission term is elim-
inated.

mhch
dθwo
dt

= ṁwcw(θwi − θwo)− ṁwcw
εw

1− εw
(θwi − θai) (2.84)

⇓
mhch
ṁwcw

(1− εw)dθwo
dt

+ θwo(1− εw + εw) = (1− εw)θwi + εwθai (2.85)

⇓

Th
dθwo
dt

+ θwo = (1− εw)θwi + εwθai, (2.86)

where
Th = mhch

ṁwcw
(1− εw). (2.87)

Equation (2.86) does not include information about the air going out of the
heat exchanger. By combining (2.80) and (2.81), this yields

θwo = 1− εw
εa

θao + 1− εw − εa
εa

θai. (2.88)

25



26 Chapter 2. The Model

If this is inserted into (2.86), θao is included in the model.

Th
d

dt
(1− εw

εa
θao + 1− εw − εa

εa
θai) + 1− εw

εa
θao + 1− εw − εa

εa
θai

= (1− εw)θwi + εwθai (2.89)

Th
dθao
dt

+ θao = 1− εw − εa
εa

(Th
dθai
dt

+ θai) + εaθwi + εwεa
1− εw

θai (2.90)

⇓

Th
dθao
dt

+ θao = Kh
dθai
dt

+ (1− εa)θai + εaθwi, (2.91)

where

Kh = Th
1− εw − εa

1− εw
. (2.92)

Equation (2.86) and (2.91) are then Laplace-transformed, before the principle
of super position is applied. This results in

θwo
θwi

(s) = 1− εw
1 + Ths

, (2.93)

θwo
θai

(s) = εw
1 + Ths

, (2.94)

θao
θwi

(s) = εa
1 + Ths

, (2.95)

θao
θai

(s) = 1− εa +Khs

1 + Ths
. (2.96)
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2.3.2 Shunt connection
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Figure 2.6: The shunt connection in the ventilation system. The figure is
inspired by Figure 10.1 in Novakovic [1995].

The following assumptions are made when the model is derived (Novakovic
[1995])

1. Constant pressure drop and therefore constant water amount in the
heat exchanger circuit.

2. Turbulent flow.

3. No heat loss to the surroundings.

The constant pressure over the shunt connection is given by

∆pCPz + ∆pIIz = ∆pSPz + ∆pIIIz = const, (2.97)

where
∆pIIz = ∆pA + ∆pB. (2.98)

The z subscripts indicate that the pressures vary with respect to the valve
position. The water amount through the control port, depending on the
pressure drop and capacity number (kvs), is defined by Novakovic [1995] to
be

Q̇CP = kvsfCP (z)
√

∆pCPz = Q̇maxfCP (z)
√

∆pCPz
∆pCP

. (2.99)

If (2.97) is solved with respect to varying pressure, this yields
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∆pCPz = ∆pCP
q2

fCP (z)2 , (2.100)

where fCP (z) is the control-valve characteristic. The same equation applies
for the shunt connection,

∆pSPz = ∆pSP
q2
s

fSP (z)2 . (2.101)

If (2.100) and (2.101) are inserted into (2.97), the relation between the shunt
valve and control valve appears:

∆pCP
q2

fCP (z)2 + ∆pII = ∆pSP
q2
s

fSP (z)2 + ∆pIII . (2.102)

Since the water flow in the heat-exchanger circuit is assumed to be constant,

qs = 1− q. (2.103)

Finally, by inserting (2.103) into (2.102), this results in an expression for the
relative water flow through the control valve,

q = 1
1 +
√

Ψ
(2.104)

Ψ =
∆pCP

fCP (z)2 + ∆pII
∆pSP

fSP (z)2 + ∆pIII
. (2.105)

The relative water flow through the shunt port is found by replacing z with
1− z in (2.105). The valve characteristics in this thesis are chosen to be the
same as in Section 23.5 in Novakovic [1995]. That is exponential control-port
characteristic and linear shunt-port characteristic.

fCP (z) = Rz−1
CP (2.106)

fSP (z) = (1− 1
RSP

)(1− z) + 1
RSP

. (2.107)

R denotes the relationship between volume flow at z = 1 and a fictive leakage
through the port at z = 0, R = Qmax

Qmin
. The heat balance in the shunt
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connection is trivial to set up by studying Figure 2.6.

θmo = (1− q)θmi + qθho (2.108)
θho = qθmi + (1− q)θho. (2.109)

Because of (2.105), the shunt connection model is nonlinear. In Chapter 4,
a linear MPC scheme will be introduced, and because this control scheme
demands a linear model, the shunt-connection model has to be linearized.
However, the linearization will not be derived explicitly here. When the total
model has been derived and implemented in Simulink, it will be linearized
using the MATLAB function linmod(system). This is explained in detail in
Chapter 4.

2.4 Heating systems

Introduction

The introduction to heating systems will be based on Abel and Elmroth
[2007]. A heating system has to be able to meet the demands of the building
it is installed in. Residential buildings, warehouses, and office building have
different demands when it comes to indoor climate, and the building owner
should choose a system which fulfills these demands in the best possible
way. The running costs should be kept low, but still guarantee a satisfying
indoor climate. There is a large number of different heating- and distributing
systems installed in buildings nowadays, but they will not be listed here.
Since a waterborne district heating system is used in Bassengbakken 1, this
will be the focus in this section. A district heating system (Figure 2.7)
consists of a few, but large heat generator plants, which are connected to
a distribution system. These distribution systems supply households and
buildings nearby with heat in form of water or steam. The fluid flow varies
with the load of the system. Control valves open when the system load
increases, so that the fluid flow is increased. The initial costs are large when
a district heating system is introduced, because of the construction of large
generation plants and comprehensive distribution systems. In other words,
district heating is a long-term investment that would fit poorly if a building
owner wishes to obtain a short-term profit. However, on a long-term basis,
such systems are efficient in both financial and environmental terms. It is
common to combine ordinary boiling and furnace systems with alternative
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Generation plant

Distribution system

Figure 2.7: A district heating system. This figure is taken from Magnussen
[2010].

heating, and this is easier utilized in district heating systems, compared to
local plants.

In a district heating system, a heat exchanger is used to transfer energy from
one fluid to another. These fluids are normally separated from each other
by a solid medium (Kreider et al. [2002]). As one fluid is heated, the other
one is cooled down. The supply water varies with outdoor temperature, but
is usually not lower than 60 ◦C. This is done to provide hot tapping water.
As mentioned before, tapping water is not taken into account in this thesis.
This will be elaborated in Chapter 6

2.4.1 Room heating

In buildings with waterborne heating systems, radiators are used to provide
heating to each room in the building, and they are placed below the windows
(Abel and Elmroth [2007]). Cold air penetrates windows more easily than
walls since windows are thinner and have higher U-values than walls (Ap-
pendix A). Because particles in warm air are more separated than in cold air,
cold air is heavier than warm air. This can lead to increased air movement
and to a stratified air distribution with cold air at floor level and warm air
at ceiling level. By placing the radiators below the windows, this unpleasant
effect is avoided because of the warm air emitted from the radiators.

Hot water is sent through a radiator to heat it up, and when the desired
indoor temperature has been reached, the supply water is bypassed (Figure
2.8). In order to be able to study how the radiator temperature varies during
the room heating, the radiator dynamics has to be described. This is not
done in Novakovic [1995], but the principle intuitive. The radiator gains heat
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θ

θ4

θout4α

1− α

Figure 2.8: Illustration of a radiator.

from the water flowing into it, while it dissipates heat when water is flowing
out. In addition to this, the radiator dissipates heat to the surrounding walls
and room air. If this is taken into account, the heat balance of the radiator
becomes

d

dt
(C4Cθ4C) = αwwρwcw(θ − θ4C)−Q4C , (2.110)

where 0 ≤ α ≤ 1 is the amount of supplied water that is sent through the
radiator. Q4C is the heat dissipation from the radiator to the surroundings,
and is given by

Q4C = 1
R10C

(θ4C−θ2C)+ 1
R9C

(θ4C−θ36C)+ 1
R9C

(θ4C−θ3AC)+ 1
R9C

(θ4C−θ3BC).
(2.111)

(2.110) and (2.111) is combined and Laplace transformed in the same manner
as earlier, and this yields

(C4Cs+αρwcwww+ 1
R10C

+ 3
R9C

)θ4C = 1
R10C

θ+ 1
R9C

θ36C+ 1
R9C

θ3AC+ 1
R9C

θ3BC .

(2.112)
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The transfer functions become

θ4C

θ
(s) =

κC

R10C

1 + T5Cs
, (2.113)

θ4C

θ36C
(s) =

κC

R9C

1 + T5Cs
, (2.114)

θ4C

θ3AC
(s) =

κC

R9C

1 + T5Cs
, (2.115)

θ4C

θ3BC
(s) =

κC

R9C

1 + T5Cs
, (2.116)

where
κC = 1

αρwcwww + 3
R9C

+ 1
R10C

, (2.117)

and

T5C = C4C

κ
. (2.118)

2.4.2 Heat exchanger

The district heating system consists of a heat exchanger and a shunt connec-
tion, and is therefore modeled in the same manner as the ventilation system.

Radiators

Shunt

Heat exchanger

Water from
a district heating
system

θdho

Ventilation

connection
θfb

θtb θθdhi

Figure 2.9: A simplified building structure that illustrates the heating system.
The figure is taken from Magnussen [2010].

Since the derivation of the heat exchanger dynamics is identical to the one
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in Section 2.3, the transfer functions are written directly.
θdho
θdhi

(s) = 1− εdhw
1 + T dhs

, (2.119)

θdho
θfb

(s) = εdhw
1 + T dhs

, (2.120)

θtb
θdhi

(s) = εbw
1 + T dhs

, (2.121)

θtb
θfb

(s) = 1− εbw +Kdhs

1 + T dhs
. (2.122)

The water flowing out of the building (see θfb Figure 2.9) is dependent of how
much heat that is used by the 3 radiators and by the ventilation system. The
temperature of the water flowing out of a radiator can be found by studying
Figure 2.8

θout4 = (1− α)θ + αθ4, (2.123)
and the temperature of the water flowing out of the ventilation system is
found by using (2.109). θfb is then calculated by multiplying the outgoing
temperatures with the percentage of water flowing through the different com-
ponents. These values and other building-specific information are found in
Section 2.1 and in Appendix A.

2.4.3 Shunt connection

The valve characteristics for the shunt port and controller port, and the heat
balances over the shunt connection are also identical to those given in Section
2.3.

fdhCP (z) = Rdh
CP

zdh−1 (2.124)

fdhSP (z) = (1− 1
Rdh
CP

)(1− zdh) + 1
Rdh
CP

, (2.125)

θdhmo = (1− qdh)θdhmi + qdhθdhho (2.126)
θdhho = qdhθdhmi + (1− qdh)θdhho . (2.127)
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2.5 Disturbances

As mentioned in Chapter 2, disturbances acting on the system from inside
the building include radiation from people, equipment, and lightning. The
outdoor temperature is the only disturbance from outside the building, since
solar radiation is left out.

Thermal radiation

In Grini et al. [2009], information concerning radiation from the different
sources can be found. Radiation from people (Wp) is 4.8 W/m2, radiation
from equipment (We) is 14 W/m2, and radiation from lighting (Wl) is 11.6
W/m2. These values are valid during working hours. Their values after
working hours are not measured in Grini et al. [2009], but they will be smaller
since the workers shut down their computers, turn of their lights, and go
home. The radiation values after working hours are given arbitrarily values
around 0 W/m2 - 3 W/m2. In addition to this, random white noise is added
to the disturbances because the mentioned values will fluctuate from day to
day (absence of workers and broken down equipment).

Weather

In order to get sensible results when comparing the conventional control
strategy with the sophisticated ones, it is desirable that the outdoor temper-
ature affecting the system is equal in all the cases. Therefore, hourly weather
data from www.yr.no over 4 days are used. If the simulation time exceeds
4 days, the values are repeated. Since the temperatures are given hourly,
they are interpolated such that the system behavior can be studied minute
by minute.

The interpolation algorithm is linear, and it also contains a restart function
when the simulation time exceeds 4 days. The outdoor temperatures are
found by using the principle of similitude. weatherforecast is an array contain-
ing hourly outdoor temperatures for Trondheim between Monday February
14 through Thursday February 18.
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Algorithm 1 Outdoor temperature (θ6) interpolated from hourly weather
data.
k = second− mod(second,hour)

hour

e1 = mod(k + 1, length(weatherforecast)− 1) + 1
e2 = mod(e1, length(weatherforecast))

if e2 = e1 then
e2 = e1 + 1

end if

θ6,i = weatherforecast(e1)
θ6,i+1 = weatherforecast(e2)
∆θ6 = θ6,i+1 − θ6,i

θ6 = θ6,i + ∆θ6
mod(second,hour)

hour
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2.6 Control strategy

As emphasized above, the objective in this thesis is to minimize the energy
consumption in an office building, but still maintain set indoor tempera-
ture demands. And as mentioned in Chapter 1, there are numerous differ-
ent projects concerning energy efficiency in buildings, and they use various
strategies when it comes to control. There are several different approaches to
ensure increased energy efficiency, and these different control strategies have
to be chosen carefully with respect to certain priorities.

• Is the control strategy supposed to be tailor fit to one specific building,
or should it be compatible with several buildings?

• Should the controller be low-leveled with careful control of indoor cli-
mate aspects, or should it be high-leveled by determination of set-
points?

It is the heat dissipated from the water that represents the actual energy
consumption in a building with a waterborne heating system. If the aim is
to reduce the energy consumption, i.e. decrease the amount of used water,
the radiators and ventilation systems have to be controlled individually. It is
common that both blind-positioning and radiators are controlled manually
in each office in a building, but if a low-leveled control strategy is going
to be applicable, all components have to support automatic control. This
could make it problematic to fulfill all the occupants desires when it comes
to indoor temperature and lightness in the office, and at the same time it will
probably lead to more expensive components. This will vary from building
to building, which implies that a low-leveled control strategy will have to
be tailor made for each building. Even though it is implied that a low-
leveled control strategy will lead to a large initial investment, it could be
economically beneficial in a long-term point of view.

2.6.1 Conventional control strategy

As mentioned in Chapter 1, the author of this thesis wants to keep the
control strategy high-leveled, such that the control system potentially can
be applied to all buildings with waterborne heating systems. Therefore, the
focus in this thesis will be to provide the system with smart set-points. The
control variable will therefore be the reference temperature of the supplied
water (θref in Figure 2.10 and Figure 2.11).
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Figure 2.10: A conventional control strategy.

Figure 2.10 presents a conventional control strategy. The determination of
θref is only dependent on the outdoor temperature (θ6), which means that
an algorithm decides various values for θref when θ6 varies. The running
costs of the system will depend on the amount of and the temperature of the
supplied water. An example of a conventional set-point regime is that θref is
70 ◦C when θ6 lies between −5 ◦C and 0 ◦C, while θref is 65 ◦C when θ6 lies
between 0 ◦C and 5 ◦C, and so on. Details of conventional control strategies
will be given in Chapter 3.

2.6.2 MPC strategy

The actual energy consumption is dependent on how much heat that dis-
sipates when the hot water passes the ventilation system and the radiators
in the building (Figure 2.9). However, if θref is minimized, potential heat
losses will be minimized, since there will be less energy available. The actual
consumption will not be subject for minimization in this thesis, but the focus
will be to ensure that the system contains the smallest sufficient amount of
energy.

When using an MPC scheme, a weather forecast and measurements of indoor
temperatures will be used when θref gets decided by solving a constrained
optimization problem (see Chapter 4). The purpose of this strategy is to
minimize θref without affecting the indoor climate negatively.
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Figure 2.11: An MPC strategy.
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2.7 Implementation

The building model presented in this chapter is implemented in Simulink,
and this is done by using the transfer functions derived above. The electrical
elements in Figure 2.2 and Figure 2.3 are given values based on a set of rules
in Chapter 19 in Novakovic [1995], and these calculations can be studied in
detail in Appendix A. The top-level Simulink diagram of the building model
with a conventional control scheme can be seen in Figure C.1. The walls of the
building are divided into two different types when implementing the model,
and they are walls facing outdoor air and walls facing other rooms. The walls,
in addition to the floor and the ceiling, could have been described by one heat
balance each to make the model as accurate as possible. However, to prevent
the model of being to complex, only two types of walls are included. The
floor and the ceiling are left out, which is the same as setting their U-values
equal to 0 (Appendix A).

As mentioned in Section 2.6, the control goal in this thesis is to keep the
water-supply temperature as low as possible, but at the same time maintain
a desired indoor climate. In order to do the latter part, internal controllers
have to be included to control the radiators and the ventilation system. PI
controllers are used when implementing these low-level controllers. The P-
term provides a desired gain while the I-term removes stationary deviation.
The controllers are given their proportional and integral gains by trail and
error. This can be done in a more sophisticated manner, but as stressed
above, low level control is not the main purpose in this thesis, which makes
trail and error sufficiently accurate.

In the next chapter, the conventional control scheme is introduced.
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Chapter 3

Introducing Conventional
Set-Point Determination

In order to have a foundation of comparison when examining the energy
consumption, the system will initially be implemented and simulated with a
conventional control strategy (Figure 2.10). This means that the determina-
tion of θref only will depend on the outdoor temperature.

According to Djuric et al. [2007], it is common that the supply-water temper-
ature varies in an approximately linear manner with respect to the outdoor
temperature. As Figure 3.1 implies, one is guaranteed hot supply water when
it is cold outside if θref is determined in the suggested manner. A similar
method is the square-pulse strategy suggested in Magnussen [2010]. It is
important that the water supplied to the building contains enough energy
such that the ventilation system and the radiators can fulfill the set temper-
ature demands. The simulations in this chapter will examine the correlation
between the supplied energy and the system´s internal behavior. θref´s set-
points will be decided according to Figure 3.1.

3.1 Indoor temperature behavior

As mentioned in Section 2.1, the desired indoor temperature is 21 ◦C during
the day and 17 ◦C during the night. Day time is defined as working hours
and include the first 12 hours of the day. Even though a normal working day
in Norway is 8 hours, working hours is set to 12 to cover flexible working
hours time and over time. Figure 3.3 shows the indoor temperature behavior
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Figure 3.1: The supply-water temperature (θ) varies with respect to the
outdoor temperature (θ6). This figure is similar to Figure 3 in Djuric et al.
[2007].

when the system switches from night mode to day mode in room A, B and
C, respectively. Note the starting time. The night-to-day behavior is studied
when the system has simulated for 1 day. This is to avoid that the initial
values in Simulink affect the temperature responses. It is more natural to
study the temperature responses when the system starts at its night-time
values. Therefore, all the night-to-day temperature responses in this thesis
will start after 1435 - 1440 minutes.

From night to day

If Figure 3.3a is examined, it is seen that θ2A goes from 17 ◦C to 21 ◦C in
about 26 minutes. θ4A increases at maximum rate from 23 ◦C until it is
saturated at 61.6 ◦C, which is actually lower than the supply-water temper-
ature. θ4A is saturated for 15 minutes before it settles at 32.9 ◦C while θ2A
reaches its desired value 21 ◦C. The temperature response is slightly un-
derdamped, and this is probably because the radiator is in saturation when
the desired temperature is reached. Figure 3.3b and Figure 3.3c present the
same temperature responses in room B and room C, but the response times
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Figure 3.2: Ventilation-air temperature (θ7), control-valve opening, and out-
door temperature (θ6) (from night to day).

are different. θ4B remains saturated for 30 minutes before θ2B reaches 21 ◦C
after 48 minutes. The responses are even slower for room C, θ4C is saturated
for about 70 minutes before θ2C reaches 21 ◦C after 88 minutes. These results
are reasonable considering the room areas. The heating process gets slower
as the rooms get larger, thus since room C is the largest one and room A is
the smallest (see Figure 2.1), these results make sense.

In Figure 3.2, it is seen that the ventilation-air temperature is heated from
the desired night-time temperature 15 ◦C to desired day-time temperature
22 ◦C in 1 minute. This quick response is reasonable because of the second
assumption made in Section 2.3.1, namely that there is a direct connection
between the heat exchanger’s metal temperature and the incoming air, and
that there is no heat loss to the surroundings. The valve in the ventilation
system is saturated only for a few seconds during the heating. Except when
the radiators are saturated during the heating, the supply-water temperature
(θ) remains to be 30 ◦C - 40 ◦C higher than the respective radiator temper-
atures. Intuitively, the more heat supplied to the system, the larger energy
consumption and energy losses will be the case. After examination of Figure
3.2 and Figure 3.3, it seems unnecessary to keep the supply temperature at
such high levels. Even though most of the unused heat is sent back into the
building (see θfb in Figure 2.9), the heat losses to the surroundings in a real
application will vary proportionally with the supply temperature.
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(a) Room A.
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(b) Room B.
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(c) Room C.

Figure 3.3: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator (from night to
day).
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Figure 3.4: Ventilation-air temperature (θ7), control-valve opening, and out-
door temperature (θ6) (from day to night).

Figure 3.5 presents the corresponding temperature responses when the sys-
tem switches from day mode to night mode. In room A, the indoor tem-
perature drops from 21 ◦C to 17 ◦C in about 128 minutes. As mentioned
in Section 2.4.1, the radiator does not participate actively when the room is
cooled, it drops to 17 ◦C and does not get any lower. The supply air from
the ventilation system is 15 ◦C during the night (Figure 3.4), thus it takes
explicit part in the cooling of the room. However, since the supply air is not
colder than 15 ◦C and because the building is well insulated, the cooling pro-
cess is slower than the heating process. As seen during the heating process,
the cooling process is slower for room B and room C than it is for room A.
Again, this is because of the different sizes of the 3 rooms. θ2B settles at 17
◦C after approximately 160 minutes, while θ2C settles at 17 ◦C after about
300 minutes.

During night mode it is even more evident that the supply temperature
seem higher than necessary. θ is about 50 ◦C higher than the radiator tem-
peratures, nor the ventilation system is dependent of such a high supply
temperature. The supply water is studied in more detail in the following
section.
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(c) Room C.

Figure 3.5: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator (from day to
night).
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Figure 3.6: Supply-water temperature (θ), water temperature returned from
the building (θfb), control-valve opening in the heat exchanger (%), and
outdoor temperature (θ6) (during 4 days).

As seen in Figure 3.6, a lot of the supplied heat (θ) is returned and sent back
into the heat exchanger (θfb). Therefore, the actual energy consumption is
not as high as the supplied heat alone may convey. The supply-water tem-
perature is strictly dependent of the outdoor temperature (θ6) as mentioned
above (see Figure 3.1), and the supply-water temperature varies between 61
◦C and 70 ◦C during 4 days. θfb has a larger dynamic area and fluctuates
between 62 ◦C and 45 ◦C. This makes sense because θfb depends on how
much energy that is used in the system, and this energy amount differs dur-
ing heating and cooling processes. The energy consumption will be studied
in more detail in Chapter 5 after the MPC set-point determination has been
introduced.
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Chapter 4

Model Predictive Control

The focus until now has been to model a segment of an office building with
a waterborne heating system. The system has been simulated with inter-
nal temperature controllers and a conventional control regime of the supply
water temperature. This conventional strategy determines set-point temper-
atures on the basis of the outdoor temperature. However, if Figure 3.5 and
Figure 3.3 are examined, the reader should be able to see that the radiators
do not exploit all the available energy in the water. To obtain an optimal
value for θref , a Model Predictive Control (MPC) scheme will be introduced.
This introduction is taken partly from Magnussen [2010], and it is based on
Maciejowski [2002] and Imsland [2007].

4.1 Introduction to MPC

MPCs are becoming increasingly common nowadays, and the control scheme
is preferred because

• it uses a process model (may be multivariable and nonlinear) to predict
the future behavior,

• it handles constraints on input variables (manipulated variables) and
states,

• and it uses mathematical programming to optimize future behavior.

Being able to place constraints on the manipulated variables and states makes
it possible to find the most profitable operation, or in this case, minimize the
energy consumption. The optimal solution is often found on a constraint.
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50 Chapter 4. Model Predictive Control

Constraints on the manipulated variables involve adjustment limits on valves,
and staying within given flow rates in pipes.

Depending on the complexity of the process, both linear and nonlinear MPCs
may be implemented. Nonlinear MPCs are more complex and time consum-
ing than linear MPCs when it comes to both the modeling and calculation
complexity. Nevertheless, they are necessary if e.g. the process has several
operating points (Imsland [2007]). The model derived in Chapter 2 consists
mainly of first-order transfer functions, except from the shunt connections
in the ventilation and district-heating system. Before implementing the con-
troller, the total Simulink model will be linearized, such that a linear MPC
can be used. Accurate valve dynamics in the shunt connections is not impor-
tant in this thesis, which implies that the nonlinear version is not necessary
to implement.

In linear MPCs, linear state-space models are used, and they are written in
a discrete form

x(k + 1) = Adx(k) +Bdu(k), (4.1)
y(k) = Cdyx(k), (4.2)
z(k) = Cdzx(k), (4.3)

where x is a n-dimentional state vector, u is an l-dimentional input vector, y
is anmy-dimentional vector of measured outputs, and z is anmz-dimentional
vector of outputs which are to be controlled. In this thesis, all the measured
outputs in the system are going to be controlled, Cdy = Cdz = Cd.

The objective function (also called the cost function) penalizes deviations
between the predicted controlled outputs, and a reference trajectory (desired
value). This is done at every time-step, k. The objective function may be
defined as

V (k) =
Hp∑

i=Hw

‖ẑ(k + i|k)− r(k + i)‖2
Q(i) +

Hu−1∑
i=0
‖∆û(k + i|k)‖2

R(i).
1 (4.4)

Hw, Hp and Hu are the Window Horizon (WH), Prediction Horizon (PH)
and Control Horizon (CH), respectively. The optimization starts at WH.
The behavior of the system is predicted until PH, while optimal inputs are
calculated until CH. It is assumed thatHu ≤ Hp andHw ≤ i ≤ Hp. ẑ(k+i|k)
denotes the predicted controlled outputs, r(k + i) the reference trajectory,
and ∆û(k + i|k) the change of the controlled inputs.

1The norm that is used here is defined by Khalil [2002]: ‖v‖2 = [
∑

i σi]1/2.
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The objective function has a form that leads to penalization of the error
vector (ẑ(k+ i|k)− r(k+ i)) and penalization of the change of control input
(∆û(k + i|k)) at each time-step, k. The penalties are determined by the
weight matrices, Q and R, which are

Q = diag
[
Q11, Q22, · · · , QHp

]
(4.5)

R = diag [R11, R22, · · · , RHu−1] . (4.6)
Q ≥ 0 and R ≥ 0. Values of Hw, Hp, Hu, Q and R are tuning parameters
since they all affect the closed-loop behavior of the plant (Maciejowski [2002]).

The objective function (4.4) can be rewritten in the following manner:
V (k) = [Z(k)− T (k)]T Q [Z(k)− T (k)] + ∆U(k)TR∆U(k), (4.7)

where

Z(k) =


ẑ(k +Hw|k)

...
ẑ(k +Hp|k)

 , (4.8)

T (k) =


r̂(k +Hw|k)

...
r̂(k +Hp|k)

 , (4.9)

∆U(k) =


∆û(k|k)

...
∆û(k +Hu − 1|k)

 . (4.10)

If Z(k) is written on a compact form
Z(k) = Ψx̂(k) + Υu(k − 1) + Θ∆U(k), (4.11)

Ψ, Υ and Θ are found by using (2.66) and (2.70) in Maciejowski [2002].
They become

Ψ =


Cd 0 · · · 0
0 Cd · · · 0
... ... . . . ...
0 0 · · · Cd





Ad
...

Ad
Hu

...
Ad

Hp


, (4.12)

Υ =


Cd 0 · · · 0
0 Cd · · · 0
... ... . . . ...
0 0 · · · Cd





Bd
...∑Hu−1

i=0 Ad
iBd

...∑Hp−1
i=0 Ad

iBd


, (4.13)
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and

Θ =


Cd 0 · · · 0
0 Cd · · · 0
... ... . . . ...
0 0 · · · Cd





Bd · · · 0
AdBd +Bd · · · 0

... . . . ...∑Hu−1
i=0 Ad

iBd · · · Bd
... ... ...∑Hp−1

i=0 Ad
iBd · · ·

∑Hp−Hu

i=0 Ad
iBd


. (4.14)

The tracking error matrix (ε) is defined as

ε(k) = T (k)−Ψx̂(k)−Υu(k − 1). (4.15)

This tracking error is the difference between the future target trajectory, and
the free response of the system2. However, the purpose of the MPC in this
thesis is to minimize θref . This means that all the diagonal elements in Q
will be set to 0 because there is no desired trajectory to follow. As the reader
should be aware of, the system input u(k) is not present in the objective
function (4.7). If the input-minimization objective is taken into account and
if the system input is included, the objective function can be rewritten as

V (k) = ∆U(k)TR∆U(k) + Z̃(k)TSZ̃(k), (4.16)

where

S = diag
[
S11, S22, · · · , SHp

]
(4.17)

is an additional tuning parameter. Z̃ is introduced such that u can be in-
cluded in the objective function.

Example 4.1 Decide Z̃

From Maciejowski [2002], û can be written as

û(k + i− 1|k) = u(k − 1) +
i−1∑
j=0

∆û(k + j|k). (4.18)

If this sum is written out for i = 1, 2, · · · , Hu, a pattern evolves. This
pattern will result in matrices that are going to be used in the objective
function. For i = 1,

û(k|k) = u(k − 1) + ∆û(k|k) (4.19)
2The free response is the response over PH if no input changes are made⇒∆U(k) = 0.
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and for i = 2

û(k + 1|k) = u(k − 1) + ∆û(k|k) + ∆û(k + 1|k). (4.20)

This should be done until i = Hu, but it is not necessary to include more
terms to see the pattern.

û(k) =


1 0 · · · 0
1 1 · · · 0
... ... . . . ...
1 1 · · · 1




∆û(k|k)
∆û(k + 1|k)

...
∆û(k +Hu − 1|k)

+


1
1
...
1

u(k − 1) (4.21)

û(k|k) can then be included in the objective function by defining

Z̃(k) = û(k|k) = ϑ∆u(k) + χu(k − 1). (4.22)

4.1.1 Feedforward - anticipate and cancel the distur-
bances

It is common with anticipation and removal of certain disturbances when de-
signing control systems. Feedforward control can actually be more efficient
than feedback control, because it is not necessary to wait until the distur-
bance has affected the system before it can be removed (as is the case in
feedback control). In order for this to be possible, measurements have to be
made, or a model of the disturbance must be available. Examples of dis-
turbances that can be removed by feedforward control are wind in dynamic
positioning systems on boats, or outdoor temperature in building-control sys-
tems. The reader should be aware of the demands that have to be fulfilled
in order for feedforward control to be possible:

• A reliable measurement, or a reliable model of the disturbance has to
exist,

• and the measurement has to be processed fast enough.

If one were to cancel the disturbances totally, the performance from distur-
bances to outputs would have to be known perfectly. Since this is rarely
the case in industrial systems, feedforward control is most often combined
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54 Chapter 4. Model Predictive Control

with feedback control. The feedback part then removes the part of the distur-
bance that is not taken care of by the feedforward, in addition to unmeasured
disturbances that affect the system.

Including feedforward into the MPC formulation is straightforward. The only
thing that has to be done is to include the effects of the disturbances into the
predictions (4.3). In this thesis, a weather forecast from www.yr.no is used
in the feedforward instead of measured disturbances. It is assumed that the
weather predictions are perfect, such that the weather presented in Section
2.5 is used to generate the feedforward in the MPC formulation. Recall
that the outdoor temperatures acting on the system always are generated by
Algorithm 1.

x(k + 1) = Adx(k) +Bdu(k) +Bd
dd(k) (4.23)

shows how feedforward is included into the model. The disturbance term in
(4.23) leads to an expansion of (4.11)

Z(k) = Ψx̂(k) + Υu(k − 1) + Θ∆U(k) + ΞDm(k), (4.24)

where

Dm(k) =


d(k)

d̂(k + 1|k)
...

d̂(k +Hp − 1|k)

 (4.25)

and

Ξ =


CdB

d
d 0 · · · 0

CdAdB
d
d CdB

d
d · · · 0

... ... . . . ...
CdAd

Hp−1Bd
d CdAd

Hp−2Bd
d · · · CdBd

d

 . (4.26)

The matrices Ψ, Υ and Θ remain unchanged. The output predictions will be
affected by the designer’s assumptions about the future disturbance behavior.
If the disturbance is measured, the most common thing to do is to assume
that the disturbance remains constant after the last measurement. That is
d(k) = d̂(k + 1|k) = · · · = d̂(k + Hp − 1|k). However, since Algorithm 1 is
used to generate a perfect weather forecast, equation (4.25) is filled with Hp

temperature predictions.
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4.1.2 Defining the constraints

To complete the MPC definition, the constraints have to be included. They
can be written as

E

[
∆U(k)

1

]
≤ 0⇔ −∆umin ≤ ∆u ≤ ∆umax, (4.27)

F

[
U(k)

1

]
≤ 0⇔ umin ≤ u ≤ umax, (4.28)

Z

[
Z(k)

1

]
≤ 0⇔ zmin ≤ z ≤ zmax. (4.29)

These inequalities are rewritten as
 FΓΘ
W

∆U(k) ≤

 −F1u(k − 1)− f
−Γ (Ψx̂(k) + Υu(k − 1) + ΞDm(k))− g

w

 . (4.30)

See Section 3.2.1 in Maciejowski [2002] for details.

Example 4.2 How to decide the input-constraint matrices F , f and F1

It is desirable to have the constraints on the form given in (4.30). In
order to achieve this, û(k) is written as in Example 4.1

û(k + i− 1|k) = u(k − 1) +
i−1∑
j=0

∆û(k + j|k). (4.31)

The system input in this MPC scheme is θref , and since the conventional
strategy introduced in Chapter 3 is no longer going to be used, θref is
given a maximum value of 80 ◦C and a minimum value of 20 ◦C. When
these values are included, the reader should be able to recognize a pattern.

20 ≤ û(k|k)⇒ 20 ≤ u(k − 1) + ∆û(k|k)⇒ −∆û(k|k) ≤ u(k − 1)− 20
(4.32)

û(k|k) ≤ 80⇒ u(k − 1) + ∆û(k|k) ≤ 80⇒ ∆û(k|k) ≤ −u(k − 1) + 80
(4.33)
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for i = 1,
20 ≤ û(k + 1|k)⇒ 20 ≤ u(k − 1) + ∆û(k|k) + ∆û(k + 1|k) (4.34)

⇒ −∆û(k|k)−∆û(k + 1|k) ≤ u(k − 1)− 20 (4.35)
û(k + 1|k) ≤ 80⇒ u(k − 1) + ∆û(k|k) + ∆û(k + 1|k) ≤ 80 (4.36)

⇒ ∆û(k|k) + ∆û(k + 1|k) ≤ −u(k − 1) + 80 (4.37)
for i = 2. The constraints on û(k) can now be written on the desired
form.

−1 0 0 · · · 0
1 0 0 · · · 0
−1 −1 0 · · · 0
1 1 0 · · · 0
... ... ... . . . ...
−1 −1 −1 · · · −1
1 1 1 · · · 1




∆û(k|k)

∆û(k + 1|k)
...

∆û(k +Hu − 1|k)

 ≤



1
−1
1
−1
...
1
−1


u(k−1)+



−20
80
−20
80
...
−20
80


(4.38)

The change of input is also penalized andW and w are derived in the same
manner as the example above. The input is constrained so that the MPC
cannot impress input changes larger than 5 and smaller than −5, −5 ≤
∆u(k) ≤ 5.

Example 4.3 How to decide the output-constraint matrices Γ and g

There are four system outputs in the system that need to get constrained,
and these are θ2A, θ2B, θ2C and θ7. Their desired values are defined in
Section 2.1. Since the temperatures have two different desired values
during a day, two optimization problems have to be solved to fulfill these
demands.

zmin1 ≤ Z (4.39)
[21, 21, 21, 22]T ≤ Z (4.40)

the first 12 hours and
zmin2 ≤ Z (4.41)

[17, 17, 17, 15]T ≤ Z (4.42)
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the last 12 hours during a day. Z is given by (4.24). Together, (4.40),
(4.42) and (4.24) result in constraints on the correct form

ΓΘ∆U(k) ≤ −Γ (Ψx̂(k) + Υu(k − 1) + ΞDm(k))− g. (4.43)

If (4.40) is written out as in Example 4.2, a pattern evolves such that Γ
and g can be found.

zmin1 ≤ Z(k|k) (4.44)
zmin1 ≤ Ψx̂(k|k) + Υu(k − 1)

+ Θ∆U(k|k) + ΞDm(k) (4.45)
−Θ∆U (k|k) ≤ Ψx̂(k|k) + Υu(k − 1) + ΞDm(k)− zmin1 (4.46)

for i = 1.

zmin1 ≤ Z(k + 1|k) (4.47)
zmin1 ≤ Ψx̂(k + 1|k) + Υu(k − 1)

+ Θ∆U(k + 1|k) + ΞDm(k + 1) (4.48)
−Θ∆U(k + 1|k) ≤ Ψx̂(k + 1|k) + Υu(k − 1)

+ ΞDm(k + 1)− zmin1 (4.49)

for i = 2.

The pattern reveals itself clearly, and the matrices can be written out

Γ =


−I 0 · · · 0
0 −I · · · 0
... ... . . . ...
0 0 · · · −I

 , (4.50)

and
g =

[
[21 21 21 22], · · · , zmin1

]T
. (4.51)

When 12 hours have past, the constraint changes from zmin1 to zmin2 .
Except from this, the calculations are identical.

57



58 Chapter 4. Model Predictive Control

Algorithm

Before defining the optimization algorithm, the objective function (4.7) is
written out (recall that diag

[
Q11, Q22, · · · , QHp

]
= 0)

V (k) = Z(k)TQZ(k) + ∆U(k)TR∆U(k) + Z̃(k)TSZ̃(k) (4.52)
= ∆U(k)TR∆U(k)

+ [ϑ∆U(k) + χu(k − 1)]T S [ϑ∆U (k) + χu(k − 1)] (4.53)
= ∆U(k)TϑTSϑ∆U(k) + 2∆U(k)TϑTSχu(k − 1)

+ u(k − 1)TχTSχu(k − 1) (4.54)
= ∆U(k)T

[
R+ ϑTSϑ

]
∆U(k) + 2∆U(k)TϑTSχu(k − 1)

+ u(k − 1)TχTSχu(k − 1) (4.55)
which is on the form

V (k) = const · I + ∆U(k)TG+ ∆U(k)TH∆U(k), (4.56)
where G can be defined as

G = 2ϑTSχu(k − 1), (4.57)
and H can be defined as

H = 2
[
R+ ϑTSϑ

]
. (4.58)

With these definitions, the form of the optimization problem becomes equal
to a regular quadratic programming problem (Maciejowski [2002]):

min 1
2∆U(k)TH∆U(k) + ∆U(k)TG (4.59)

subject to FΓΘ
W

∆U(k) ≤

 −F1u(k − 1)− f
−Γ [Ψx̂(k) + Υu(k − 1) + ΞDm(k)]− g

w

 (4.60)

This is clearly a quadratic programming (QP) problem. Imsland [2007] states
the key elements in the optimization.

1. Solve the QP problem at time-step (k) to obtain an optimal, feasible
input sequence.

2. Apply the first input in the input sequence (u(1), u(2), · · ·u(Hu − 1))
to the process.

3. Set k = k + 1, and go to step 1.
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4.2 Necessary preparations

Before running the system with an MPC controller, there are some prepa-
rations that have to be done. The first step is to obtain a discrete linear
representation of the system. The MPC controller needs the model to be
able to predict the future behavior of the plant (Qin and Badgwell [2003]).
However, it should be noticed that discrete time models are not necessary, a
continuous model can also be used. According to Maciejowski [2002], all that
is needed is to know the step-responses in the coincidence points3, and it is
necessary to be able to compute the free response at the coincidence points.
Nevertheless, a discrete time model is used in this thesis. Before discretizing
the model, it has to be linearized.

4.2.1 Linearization

The model derived in Chapter 2 is nonlinear, and in order to implement
an MPC control scheme, the system has to be linearized4. Egeland and
Gravdahl [2002] define a nonlinear system as

x(k + 1) = f(x,u, k) (4.61)
y(k) = h(x,u, k), (4.62)

given that f and (or) h is nonlinear. Linearization is done around a solution
of the system, often referred to as an operating point (Egeland and Gravdahl
[2002]). This operating point is a solution of the system (x0(k),u0(k)) that
satisfy

x0(k + 1) = f [x0,u0, k], (4.63)

which is the system equation (Egeland and Gravdahl [2002]). If the pertur-
bations ∆x,∆u and ∆y are defined from the operating point

x(k) = x0(k) + ∆x(k) (4.64)
u(k) = u0(k) + ∆u(k) (4.65)
y(k) = h[x0(k),u0(k), k] + ∆y(k), (4.66)

3At a coincidence point, the process output should be equal to a desired value.
4This is not the case for nonlinear MPC (NMPC), but this will not be elaborated in

this thesis.
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standard Taylor-series linearization around the operating point yield (Ege-
land and Gravdahl [2002])

x(k + 1) = f [x0(k),u0(k), k] + ∂f

∂x

∣∣∣∣∣
x0(k),u0(k)

∆x+ ∂f

∂u

∣∣∣∣∣
x0(k),u0(k)

∆u,

(4.67)

y(k) = h[x0(k),u0(k), k] + ∂h

∂x

∣∣∣∣∣
x0(k),u0(k)

∆x+ ∂h

∂u

∣∣∣∣∣
x0(k),u0(k)

∆u.

(4.68)

The linearized state-space system is then defined as (citemodsim)

∆x(k + 1) =

Ad︷ ︸︸ ︷
∂f

∂x

∣∣∣∣∣
x0(k),u0(k)

∆x+

Bd︷ ︸︸ ︷
∂f

∂u

∣∣∣∣∣
x0(k),u0(k)

∆u, (4.69)

∆y(k) =

Cd︷ ︸︸ ︷
∂h

∂x

∣∣∣∣∣
x0(k),u0(k)

∆x+

Dd︷ ︸︸ ︷
∂h

∂u

∣∣∣∣∣
x0(k),u0(k)

∆u. (4.70)

The linearization can easily be performed ’by hand’ if the system is small and
does not contain a large number of states. However, the system in this thesis
is complex and contains 26 states. Fortunately, there exist MATLAB functions
that can perform linearization. The system matrices are obtained by us-
ing linmod(Simulink model). During the linearization, the nonlinearities
should not get excited more than necessary, and therefore strongly discon-
tinuous and nonlinear terms should be considered removed (Imsland [2011]).
The operating point has to be chosen wisely in order for the linearized model
to be accurate.

The heat exchanger and shunt connection in the district-heating part of the
model is left out during the linearization, and there are two reasons why this
can be done. (1) It is the behavior from θ to θ2A, θ2B, θ2C , θ7 (see Figure 2.11)
that describes how different water temperatures affect the system outputs.
The behavior from θref to θ only describes the portion of main supply water
and the portion of return water from the building that constitute the water
that is sent into the building. The latter part is not necessary to describe the
behavior from input to output sufficiently accurate. (2) The district-heating
dynamics is removed because the MATLAB function that calculates θfb (Figure
2.9) contains logic that makes it discontinuous, and discontinuities are very
hard to linearize (Imsland [2011]).
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Figure 4.1: Behavior of θ2A, θ2B, θ2C and θ7 simulated with the Simulink
model and the linmod() model.

In addition to the removal of the district-heating dynamics, the thermal
radiation disturbances are removed and the internal controllers are chosen to
be P controllers with small proportional gains, when linearizing the system.
Again, this is done in order to not excite the nonlinearities in the system
simultaneously as the number of states in the model is limited. The number
of states in the linearized system is 17. The responses in Figure 4.1 do not
coincide with the specified desired temperatures (see Section 2.1). However,
they show that the system outputs respond equally to a given system input in
both the linearized system and in the Simulink system. This indicates that
the linearized model is accurate enough and can therefore be used further
when implementing the MPC.

61



62 Chapter 4. Model Predictive Control

After the linearization, the system is discretized using the MATLAB function
c2d(sys, time step). The time step should be chosen small enough such
that the faster dynamics also is described accurately in the discrete model.
Since different time steps will be used in the state estimator and in the MPC,
they will be presented and explained later.

4.2.2 Scaling

The matrices found during the linearization may have elements that differ
greatly in magnitude, which makes them badly scaled (Nocedal and Wrigth
[2006]). For example, f(x) = x1+107x2 will be very sensitive to changes in x2
compared to x1, which makes it badly scaled. Since the performance of opti-
mization algorithms is dependent on how the problem is formulated, scaling
is an important issue (Nocedal and Wrigth [2006]). According to Skoges-
tad and Postlethwaite [2008], a system can be scaled by making assumptions
about expected disturbances, reference changes, allowed input variations and
allowed output deviations in the system. The unscaled system can be for-
mulated as in (4.3),

x(k + 1) = Adx(k) +Bdu(k), (4.71)
y(k) = Cdx(k), (4.72)

where Bd can be divided into one disturbance part and one input part

Bdu(k) = Bduu(k) +Bddd(k). (4.73)

d(k) contains the disturbances in the system.

A normal scaling approach is to make the variables less than 1 in magnitude,
which is done by dividing each variable by its maximum expected or allowed
value (Skogestad and Postlethwaite [2008]),

Ds
u = umax, (4.74)

Ds
d = diag (d1max, · · · , dnmax)T , (4.75)

Ds
e = diag (e1max, · · · , e4max)T . (4.76)

umax is the largest allowed input change, d1max, · · · , dnmax are the largest ex-
pected changes in disturbances, and e1max, · · · , e4max are the largest allowed
control errors. The system in this thesis has 1 input (θref ) and 4 outputs
(θ2A, θ2B, θ2C and θ7). That is a Single-Input-Multiple-Output (SIMO) sys-
tem, which is a special case of a Multiple-Input-Multiple-Output (MIMO)
system.
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The scaled variables then become

us = (Ds
u)−1u, (4.77)

ds = (Ds
d)

−1d, (4.78)
ys = (Ds

e)
−1y, (4.79)

and if this is inserted into (4.72), the scaled system becomes

x(k + 1) = Adx(k) +BduD
s
uu

s(k) +BddD
s
dd

s(k), (4.80)
ys(k) = (Ds

e)
−1Cdx(k). (4.81)

As mentioned above, the number of states system in the linearized system is
17, and only 4 of them are being measured during simulation. In order for
the MPC to work, all the states have to be included. This is done by using a
state estimator. There are several different state estimators and among them
are Luenberger observers, Wiener filters and Kalman filters. According to
Simon [2006], the Kalman filter is the optimal estimator when the noise is
Gaussian, and it is the optimal linear estimator if the noise is not Gaussion.
A Kalman filter will therefore be implemented such that an estimate of the
entire state vector can be included in the MPC.

4.3 Kalman Filter

This section will be based on Brown and Hwang [1997] and Simon [2006]. In
the 1960s, R.E. Kalman formed an alternative solution of how to formulate
a Minimum Mean-Square Error (MMSE) filtering problem using state-space
methods, and his work was a contribution5 to the Wiener filter that was
formulated in the 1940s. One of the main features of the Kalman filter, the
one that separates it from the Wiener filter, is that it is recursive (see Figure
4.2). The results from the previous step is used to obtain the desired results
in the current step. Both the process noise and measurement noise have to be
modeled as vectors such that the recursive estimation formulation is possible,
and this denotes another important feature about the Kalman filter.

The filter can be defined both continuously and discrete. A discrete process
may arise if several events occur naturally in discrete steps, or that a contin-
uous signal is sampled at discrete steps. Nevertheless, most Kalman filters

5Kalman’s work is not based on Wiener’s, but it is an important contribution to MMSE
filters.
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are implemented in a discrete manner (Imsland [2011]). Process noise and
measurement noise are added to the formulation in (4.3) when the Kalman
filter equations are to be derived.

x(k) = Adx(k − 1) +Bdu(k − 1) +w(k − 1), (4.82)
y(k) = Adx(k) + v(k), (4.83)

where the process noise and measurement noise (w and v) are white, zero
mean, uncorrelated, and have known covariance matrices M(k) and N (k).

w(k) ∼ (0,M (k)), (4.84)
v(k) ∼ (0,N (k)), (4.85)

E[w(k)w(j)T ] = M (k)δk−j, (4.86)
E[v(k)v(j)T ] = N (k)δk−j, (4.87)
E[v(k)w(j)T ] = 0, (4.88)

where δk−j is the Kronecker delta function6. The goal is to estimate the
state vector x(k) based on knowledge about the system and availability of
the measurements y(k). The state vector estimate is divided into two parts
when formulating the Kalman filter equations, namely x(k)+ and x(k)−.
The + and − superscripts denote that the estimate is a posteriori or a priori,
respectively. A posteriori indicates that all the measurements including the
one in the current time step is used in the estimation, while a priori estimate
includes all the measurements excluding the measurement at the current
time step. It is important to notice that both the posteriori and the priori
are estimates of the same time step.

P (k) is used to denote the covariance of the estimation error. The covariance
matrix is also divided into a posteriori and a priori part, and these denote
the covariance of the estimation error of the posteriori and priori estimates,
respectively. The Kalman-filter gain K(k) is the last variable that has to be
introduced before the filter equations can be presented. The reader should
be aware of the numerous different representations of the Kalman-filter that
occur in literature, and even though these may seem different, they are math-
ematically equivalent (Simon [2006]).

The filter is initialized by setting

x(0)+ = E(x(0)), (4.89)
P (0)+ = E[(x(0)− x(0)+)(x(0)− x(0)+)T ]. (4.90)

6δk−j = 1 if k = j and δk−j = 0 if k 6= j.
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The Kalman filter is given by the following equations that have to be calcu-
lated at each time step k = 1, 2, · · · .

P (k)− = AdP (k − 1)+Ad
T +M(k − 1) (4.91)

K(k) = P (k)−Cd
T
(
CdP (k)−Cd

T +N (k)
)−1

(4.92)
= P (k)+Cd

TN (k)−1 (4.93)
x̂(k)− = Adx̂(k − 1)+ +Bdu(k − 1) (4.94)
x̂(k)+ = x̂(k)− +K(k)

(
y(k)−Cdx̂(k)−

)
(4.95)

P (k)+ = (I −K(k)Cd)P (k)− (I −K(k)Cd)T

+K(k)M (k)K(k)T (4.96)

=
(
(P (k)−)−1 −CdTM (k)Cd

)−1
(4.97)

= (I −K(k)Cd)P (k)−. (4.98)

Even though there are several expressions explaining the same variables, they
must be chosen wisely. For example, the first expression of P (k)+ is called the
Joseph version of the covariance and it is known that this is the most robust
and stable one (Simon [2006]). It is most common to use the first expression
of both P (k)+ and K(k). The time step in the Kalman filter is set to be 1
minute. This value is chosen such that the estimates of the fast ventilation
dynamics become accurate. As with other state estimators, the Kalman filter
also has to be tuned. This is done by choosing the values of the diagonal
covariance matricesM(k) and N (k). N (k) is given low values compared to
the ones in M (k) if the system measurements are reliable, and high values
if the measurements are not reliable. In the same manner, M (k) is given
high values if the designer do not trust the model, and given low values if
the model is to be trusted. However, it is not necessarily the case that the
model is assumed to be good ifM(k) is given low values. If the designer for
any reason do not want to emphasize certain state estimates, M (k) is given
low values at these points. A reason to provide these low values can be that
the system contains unobservable elements and therefore lacks information
about certain states. It is better not to do anything with unobservable states
than trying to estimate them with little or no information (Imsland [2011]).
Because of this it is common to give one of the matrices high values and give
the other one low values. If the measurements are considered reliable, this
may imply that the measurements are more reliable than the model, hence
provide lower values in N (k) compared with M (k). On the other hand, if
the measurements are unreliable it could be equally important to trust the
model.
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x̂(k)− = Adx̂(k − 1)− +Bdu(k − 1)

Execute time update

P(k)− = AdP(k − 1)+Ad
T +M

Measurement update

x̂(k)+ = x̂(k)− +K(k)(y(k)−Cdx̂(k)
−)

P(k)+ = (I−K(k)Cd)P(k)−(I−K(k)Cd)
T +K(k)NK(k)T

Compute Kalman gain

K(k) = P(k)−Cd
T (CP(k)−Cd

T +N)−1

Augment time
k = k + 1

Initialisation, x̂−
0 and P−

0

Measurement, y(k)

Figure 4.2: The Kalman-filter cycle (Ersdal [2011]).

The values of x(0)+ are taken from the Simulink model. If the initial states
are known perfectly, P (0)+ is set to diag(0, · · · , 0) (Simon [2006]). Since
the initial states are taken directly from Simulink, they are known per-
fectly. However, since some of the dynamics was left out when obtaining the
linearized model, P (0)+ is set to diag(10, · · · , 10) instead of diag(0, · · · , 0)
because the initial values are not assumed to be perfect. As mentioned above,
the system’s observability has to be examined in order to find out whether
some of the elements in M (k)) should be set to 0. The observability of
the system can be found by examination of the observability gramian. The
observability gramian is defined as

Wo(t) =
∫ t

0
eAd

T τCd
TCde

Adτdτ , (4.99)

and the system is observable if and only if (4.99) is nonsingular7 for t > 0
(Chen [1999]). The MATLAB function gram(sys, ’o’) returns the observabil-
ity gramian, which has the rank rank(Wo) = 15 < 17 = n, i.e. there are two
unobservable states in the system. The most common approach when explor-
ing the system’s observability is to check the rank of the observability matrix
(Equation (6.29) in Chen [1999]). However, the reader should be aware that
when this is calculated in MATLAB, numerical problems are likely to arise

7(4.99) is nonsingular if it has full rank.
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Figure 4.3: The Kalman-filter estimates (1− 8).

for large systems. Actually, MathWorks [2011] states that the obsv(A, C)
function is intended for educational purposes and is not recommended for
observability testing in real applications, because it is likely to be numeri-
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Figure 4.4: The Kalman-filter estimates (9− 17).

cally singular for most systems with more than a handful of states. Anyway,
the observability gramian implies that two of the elements in M (k) should
be set to 0. By following this and the other advises listed above, the values
in M (k) are found by trail and error. Since the district-heating dynamics is
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left out of the linearized model, this leads to a certain degree of uncertainty.
Therefore, the elements inM(k) are generally given high values because the
author does not trust the model. Similarly, the values in N (k) are given low
values because the author trusts and want to emphasize the measurements
(there is no measurement noise) in the system.

Figure 4.3 and 4.4 indicate that the estimates are fairly good. Almost every-
one have similar movement pattern as their corresponding states even though
they deviate to a greater or lesser degree when it comes to amplitude. As
long they have similar responses and are close to each other, the estimates
are suited to be used in an MPC scheme (Imsland [2011]). However, the con-
sequences of inaccurate estimates are more severe for two of the states. The
ventilation temperature (θ7) is a sum of two states, namely state 4 and 5. It
can be seen in Figure 4.3 that these estimates differ from their correspond-
ing states. However, if they are added they become equal to the measured
ventilation temperature. Since the measured value is trusted in the Kalman
filter and the model is not, the filter is of the opinion that it has estimated
the states correctly when the sum of the estimates is equal to the measured
value. It is known that the system is not observable, which means that there
exists a linear dependence in (4.99). It is likely that this linear dependence
consists of state 4 and 5, thus it is not enough information available to allow
both of them to be estimated correctly. This can be a problem because of
the defined constraints on the ventilation temperature. The optimizer may
not be able to fulfill these particular constraints if the estimates are wrong.
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4.4 Optimization
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Figure 4.5: The structure of an MPC controller, inspired by Figure 3.3 in
Maciejowski [2002].

After having obtained satisfying state estimates using a Kalman filter, the
MPC controller shown in Figure 4.5 is implemented. The last thing that
has to be done before running the system, is to make an algorithm that
solves the optimization problem. Since the optimization problem (4.59) is
a quadratic programming problem, it can be solved by using the MATLAB
function quadprog(H, G, Omega, omega), where H and G are given by
(4.58) and (4.57), respectively. Ω and ω contain the constraints, and are
given by Example 4.2 and 4.3

Ω =

F1
ΓΘ
W

 , (4.100)

ω =

 −F1u(k − 1)− f
−Γ (Ψx̂(k) + Υu(k − 1) + ΞDm(k))− g

w

 . (4.101)

The optimization problem has to be solved every time step. The time step
used in the MPC has to be equal to the time step that is used when the
system is discretized(Maciejowski [2002]). The MPC time step is set to 5
minutes because the author finds it unnecessary to calculate a new reference
supply-water temperature every minute. Beware that if different time steps
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are used in the Kalman filter and in the MPC, two separate discretized mod-
els are necessary (Imsland [2011]). Since the filter and the MPC examine the
system at different rates, the system matrices have to reflect this. Implemen-
tation of the MPC controller in Simulink is not straightforward (see Figure
C.3). Since the mux block in Simulink does not handle matrices, all of them
have to be transformed into vectors, and then transformed back again at the
Optimize block (see Figure C.4). MATLAB functions are written to take care
of this. The total Simulink diagram of the building with an MPC control
scheme can be studied in Figure C.2.

4.5 Tuning

After having implemented the MPC controller, the tuning parameters have
to be chosen wisely for the controller to work in an optimal manner. Recall
that the available tuning parameters are Hw, Hp, Hu, R and S. There is
some literature that deals with MPC tuning. Shah and Engell [2010] for
example, present a systematic tuning approach such that a desired closed-
loop performance for SISO systems is obtained. However, MPC tuning is
mostly a matter of experience (Maciejowski [2002]).

Hw decides when the defined constraints are going to be included into the
optimization problem (Maciejowski [2002]). The constraints on the system
input are hard constraints, which means that they can not be violated be-
cause of physically limitations8. The constraints on the system outputs are
pursuant to the defined indoor temperature demands. However, the margin
of error (the permitted deviation from set point) is not likely to be stricter
than plus minus 0.5 ◦C from the desired value, such that the output con-
straints do not have to be hard. Nevertheless, it is important that climate
demands are fulfilled at all times, which implies that Hw should be set to
1. Hu should be chosen sufficiently large such that no additional inputs to
the system are necessary. That is, when the system responds in the same
manner even though Hu is increased. θref (the system input) is especially
important when the system switches from night-to-day mode, and from day-
to-night mode. This is because the required water temperature varies when
the desired indoor temperature varies. By studying the slower transient
temperature responses in Chapter 3, this gives a pointer when choosing Hu.

8The The system is dimensioned to handle a supply water temperature between 20 ◦C
and 80 ◦C.
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Hu = 35 provides a good basis for the control horizon9. When it comes to
Hp, a rule of thumb is that the prediction horizon should be equal to or larger
than the largest time constant in the system. This is because the controller
ought to be able to predict the system behavior also nearby large transients.
However, the largest time constant the building model is 79 hours, which
seems like an unnecessarily long prediction horizon. Hp is therefore initially
set to 50. It should be noted that de Jager [2004] explores strategies of how to
reduce the prediction horizon, and presents predictions over infinite horizons
as unreliable and unrealistic.

A major problem that occurs when working with constrained optimization
is that the problem may be infeasible (Maciejowski [2002]). Constraints on
inputs and outputs may prevent the optimization algorithm of finding a valid
solution. It is important to have a back-up method if infeasible problems
occur, such that the process is guaranteed to get an input. Maciejowski
[2002] lists some back-up approaches that may be carried out. Two of them
are avoiding hard constraints on Z by introducing slack-variables, or actively
manage the horizons at each time step. If the controller reacts by imposing
a very large change of input if a constraint on a system output is barely
broken, this indicates that there is a hard constraint on Z. Violating hard
constraints makes the controller to react in an aggressive manner, which
seldom is optimal for any system. The introduced slack-variables are non-
zero only if the constraints of current interest are violated, and these non-zero
values are heavily penalized such that the optimization algorithm’s intuition
will be to keep them at zero if possible (Maciejowski [2002]). Slack variables
will be presented in more detail in Section 4.7.1.

The author of this thesis handles infeasible problems by

1. Introducing time-varying output constraints,

2. and by manipulating the system input.

The fact that the indoor and ventilation temperatures have different desired
values during night and day causes some difficulties when implementing the
output constraints. When the system is switching from night to day mode,
the desired temperatures changes, thus altering the output constraints. But
since the new desired temperatures are not reached instantly, the new output
constraints will be violated if they are not modified. The output constraints
have to be changed since the optimization problem does not contain a refer-
ence trajectory10. It is actually the output constraints that forces the system

935 time steps equals 175 minutes.
10The optimizer minimizes the magnitude and variation of the system input (4.59), and
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input to rise. This is done by using the estimated system output from the
current time step (ŷ(k)) as a constraint. This entails that the output con-
straints do not get violated in the transition from night mode to day mode,
simultaneously as the system input increases. However, a back-up method
concerning system-input manipulation should also be available in case of
constraint violations.

The optimization algorithm’s output is a change of system input (∆u(k)).
If one of the output constraints are broken, the optimization algorithm will
respond by imposing a large input change in order to fulfill the broken con-
straint. This may cause the previous input (u(k−1)) plus the change of input
to exceed the input constraints (4.38). The problem then becomes infeasible
and action has to be taken. One possibility is to use the input change that
was calculated in the previous time step (∆u(k − 1)), or one can simply set
the input change to 0 and proceed with the input from the previous time
step (u(k − 1)). As the next section will show, the latter approach leads to
satisfying responses and is therefore chosen.

4.6 Simulations

Now, when the MPC controller is fully implemented, it is interesting to
examine whether the supply water temperature (θ) behaves different from the
temperature of the approach presented in Chapter 3. If this is the case, how
does the system outputs react to the different behavior of θ? Desired system
characteristics are important to have in mind when tuning the controller.
Whether the building owner wants a quickly-responding system, or a low
energy consuming system, the controller parameters have to reflect these
wishes.

In Figure 4.6, the conventional-based reference and the MPC-based reference
are plotted together, and as implied earlier in this chapter, the two reference
schemes are different in great extent. When θconv varies with respect to the
outdoor temperature, it is seen that θMPC is time dependent. The desired in-
door and ventilation temperatures changes every 12 hours, and θMPC

ref clearly
adapts to these variations by dropping its reference temperature during the
night. θMPC

ref varies between 50 ◦C and 61 ◦C during the day, except from
peaks that occur once a day, while it is 35 ◦C - 36 ◦C during the night. As
stressed before, the MPC’s objective is to minimize θMPC

ref with respect to the

without variation in the constraints the optimizer will not be able to distinguish night and
day.
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Figure 4.6: MPC-generated reference (θMPC
ref ), corresponding supply-water

temperature (θMPC), conventional-based reference (θconvref ), corresponding
supply-water temperature (θconv), and outdoor temperature (θ6) (during 4
days).

defined constraints (4.30). Even when θMPC
ref is minimized, these constraints

make sure that it is large enough so that the indoor-climate demands will be
fulfilled. The Figure 4.6 indicates that θMPC

ref is lower than θconvref during the
entire simulation. The mentioned peaks that occur after every night-to-day
switch11 should be noticed. To keep the problem from becoming infeasible,
an ad-hoc measure (which do not necessarily react in the same manner every
time it is used) is implemented to soften the output constraints, and this
measure is the probable cause of these peaks. The pros and cons of using
this and the other ad-hoc solutions will be presented below. Also notice the
inverted peaks that occur after every night-to-day switch. This may seem like
a discontinuity, but the reason for the dip is that the ventilation system and
the radiators increase their temperatures immediately after the mode switch.
Therefore, the supply-water temperature (θMPC) decreases for a minute be-

11The system switches mode every 720 minutes (every 12 hours).
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fore it starts its increase. These peaks will be present to a greater or lesser
degree in all plots concerning the supply-water temperature. It is also seen
that θMPC

ref varies in some degree during the first night (from 720 minutes
to 1440 minutes). Since this behavior only occurs the first night, this seems
like an initial issue that is eliminated when the system has simulated for a
while. Actually, it is seen in Figure B.5a that this mentioned behavior only is
present during the first night. These small variations are therefore ignored.

Table 4.1: MPC tuning parameters.

Hw Hu Hp R S Extra
1 35 50 diag(1) diag(100) Feedforward

The indoor-temperature responses are quite different from the ones presented
in Chapter 3. By studying Figure 4.7a, it is seen that θ2A rises from 17 ◦C to
21 ◦C in about 62 minutes, which is significantly longer than the 26 minutes in
the conventional case (Figure 3.3a). This was expected and can be explained
by examination of θMPC and θ4A. The constraints on the system outputs lead
to a calm increase of the water temperature when switching from night to day
mode. Naturally, θ4A is increasing accordingly. θMPC

ref rises from 36 ◦C to 61
◦C in 80 minutes, and during this time θ4A increases with the same rate until
θ2A has settled on the desired 21 ◦C. Using the conventional control strategy,
θconvref is 67 ◦C (Figure 3.3) when the system switches mode. θ4A can therefore
increase at maximum rate which explains why the temperature response is
faster using the conventional control scheme. As mentioned at the beginning
in this section, it is up to the building owner to decide whether or not the
system should be fast, economically beneficial, robust, or a combination of
these. Pros and cons using a conventional strategy versus an MPC strategy
will be discussed in Chapter 6. The same tendency appears when studying
room B and C. θ2B uses 88 minutes before it settles at 21 ◦C in the MPC case
compared with 48 minutes in the conventional case. θ2C uses 133 minutes
using θMPC

ref as apposed to 88 minutes using θconvref .

The deviation in system behavior reveals itself most clearly when studying
the ventilation temperature. Using the MPC-generated reference, θ7 uses 43
minutes to reach the desired 22 ◦C compared with 1 minute in the conven-
tional case! θMPC ’s behavior is rather uneven when the system goes from
night mode to day mode, and this because θMPC

ref increases in steps. This
also explains the rough behavior of θ7. However, the most interesting system
feature occurs by examination of the valve openings in the ventilation system
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(a) Room A.
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(b) Room B.
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(c) Room C.

Figure 4.7: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator using the MPC
scheme (from night to day).
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(Figure 4.8) and in the radiators (Figure 4.7). The utilization of the available
heat has improved compared with the conventional system. During the heat-
ing period, all the valves are completely open which means that they exploit
the maximal amount of available energy. The valves are saturated for shorter
periods during heating in the conventional case as well, but not in the same
degree. The difference reveals itself clearly if the ventilation-temperature
response is plotted over a longer interval.
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Figure 4.8: Ventilation-air temperature (θ7), control-valve opening, and out-
door temperature (θ6) using the MPC scheme (from night to day).

Figure 4.9a presents θ7 during a period of 4 days. The valve opening varies
between 0.7 and 1.0 (except from being 0.07 1 minute a day) over the entire
period, and this suggests that θMPC almost is as low as it possibly can be
while still fulfilling the desired indoor temperatures. In Figure 4.9b, it is
seen that the valve opening in the conventional case is less open. However,
during the day-to-night switch a weakness of the MPC scheme is revealed.
Initially, θMPC

ref became too low such that θ7 was unable to reach its desired
night-time value. This is a violation of one of the output constraints and
should theoretically not occur. This weakness is likely to descend from the
Kalman-filter estimates. Recall that θ7 is one of the four system outputs in
the system and it consists of state 4 and 5 (see Figure 4.3). As mentioned in
Section 4.3, these states are not estimated correctly, and it is therefore not
surprising that the defined constraints on θ7 are disregarded by the optimizer.
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(a) MPC.
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(b) Conventional.

Figure 4.9: Ventilation-air temperature (θ7), control-valve opening, and out-
door temperature (θ6) using the MPC scheme and the conventional scheme,
respectively.
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This problem was solved by setting the system-input’s lower constraint to be
35 ◦C, which made sure that θ7 was able to fulfill its desired night-time
values. This, together with the remaining ad hoc solutions will be presented
below.

It should be mentioned that the temperature responses remain unchanged
when the system is simulated with and without feedforward action. The
outdoor temperature is slowly varying and its influence on the system outputs
is hardly noticeable because of the effective behavior of the feedback action.
Because of this, including future outdoor temperatures through feedforward
action is unnecessary.
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Day to night

Figure 4.11 indicates that the temperature responses from night to day are
identical using the MPC control scheme versus the conventional. The matter
of fact that θMPC drops to 35 ◦C during the night does not affect the ra-
diators day-to-night response. The day-to-night responses are therefore still
dependent on the radiator dynamics and the rooms inertia.
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Figure 4.10: Ventilation-air temperature (θ7), control-valve opening, and
outdoor temperature (θ6) using the MPC scheme (from day to night).

The ventilation-temperature response on the other hand, is slightly different
than before. Figure 4.10 shows that θ7 drops from 22 ◦C to about 15 ◦C
in 4 minutes and settles after a small overshoot. As mentioned above, the
system input’s lower constraint (35 ◦C) was introduced to ensure that θ7
did not drop below its desired night-time temperature. This is still violated,
but now only by under 0.3 ◦C and for a few minutes after the new input
constraint was introduced. This makes it acceptable, even though it strictly
speaking should have been taken care of by the output constraints. However,
it is interesting to ascertain that the valve opening in the ventilation system
still is almost wide open during the night time. This implies that the MPC
does an approved job maximizing the utilization of the available energy in
the supplied water.
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2150 2200 2250 2300 2350 2400 2450 2500 2550
16

18

20

22

time [min]

θ 2B
 [° C

]

2150 2200 2250 2300 2350 2400 2450 2500 2550
20

40

60

time [min]

te
m

p 
[° C

]

 

 

2150 2200 2250 2300 2350 2400 2450 2500 2550
0

0.5

1

time [min]

V
al

ve
 o

pe
ni

ng

θ4B θ

(b) Room B.
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(c) Room C.

Figure 4.11: Indoor temperature (θ2), radiator temperature (θ4), supply-
water temperature (θ), and control-valve opening of the radiator using the
MPC scheme (from day to night).
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Nevertheless, the MPC-control scheme does not function in an optimal man-
ner. The introduced ad-hoc solutions are likely to cause this sub-optimal
behavior.

Ad hoc

Theory and practice are two different things. The fact that the output con-
straints on θ7 are not fulfilled, and that the system reacts in an nervous
and aggressive manner close to constraints, enforces that measures have to
be taken. In Example 4.3, the output constraints are defined to be equal
to the desired day-time and night-time temperatures, and intuitively speak-
ing, these values make sense. However, when the system was simulated, the
reality proved to be different. Especially when the desired day-time temper-
atures was reached, θMPC

ref started to vary rapidly. A possible reason for this
is that the temperature in one of the rooms may have dropped by 0.1 ◦C - 0.2
◦C during the day. By defining the output constraints to be [21, 21, 21, 22]T ,
θMPC
ref responds by increasing instantaneously if one of the room-air temper-
atures happens to be 20.95 ◦C, for instance. The rapid variations occur
because the optimization problem becomes infeasible when one of the con-
straints get violated (Maciejowski [2002]). The optimizer reacts intensely in
order to reestablish the problem’s feasibility. This behavior is resolved by
redefining the day-time-output constraints to [20.8, 20.8, 20.8, 21.8]T and the
night-time constraints to [16.8, 16.8, 16.8, 14.8]T . It is common to operate
with a margin of error when it comes to desired indoor temperatures, which
make these new output constraints acceptable. Besides, the actual tempera-
ture control takes place inside each room and inside the ventilation system.
The output constraints are defined to ensure that θMPC

ref is high enough such
that the internal controllers are able to reach the desired temperatures. The
0.2 ◦C relaxation of the constraints does not harm this objective.

When the output constraints changes due to the switch from night mode
to day mode, the problem’s feasibility is yet again challenged. Immediately
after the change of mode, the system outputs are still equal to (or maybe
0.1 ◦C- 0.2 ◦C larger) their night-time values. If the day-time-output con-
straints are activated instantaneously after this mode change, they will most
certainly be violated. This is taken care of by making the output constraints
time dependent during the period the system outputs need before they have
adapted to their new desired values. Instead of setting the output constraints
to constant values, they are given a different value at each time step during
the transition period, namely ŷ(k). By setting the output constraints equal
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to ŷ(k), it is very likely that these will be fulfilled. In addition, the optimizer
will keep increasing the system input such that the constraints continue to be
satisfied with a certain margin (Figure 4.12). When the system outputs have
reached their desired day-time values, the day-time constraints are activated
and they remain constant until the next mode change. This measure can also
be called a relaxation of the day-time-output constraints. Since the output
constraints depend on the estimated outputs of an uncertain model, one is
not guaranteed to get equal controller responses from day to day, which re-
veals a drawback using this ad-hoc measure. This is the probable reason why
the peaks in 4.6a have different amplitudes. Introducing slack variables is a
measure that could have eliminated the ad-hoc solutions mentioned above.
This is the topic for Section 4.7.1.
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Figure 4.12: The MPC-generated reference (θMPC
ref ) increases in steps during

the period after the night-to-day switch.

The final special measure is that the lower input constraint is increased from
20 ◦C to 35 ◦C. As mentioned above, this is done because the constraints on
θ7 are disregarded. θMPC has to maintain a certain temperature to be able
to keep θ7 near 15 ◦C during night time, and the value 35 ◦C was found by
trail and error.

83



84 Chapter 4. Model Predictive Control

4.7 Making the MPC strategy robust

The definition of robust control is control of unknown plants with unknown
dynamics subject to unknown disturbances, which primarily concern uncer-
tainty and how the control system is able to deal with it (Rollins [1999]).
When exploring a controller’s robustness, two main items are how it responds
to large variations in the disturbances and how it responds to model errors
(Imsland [2011]). In this thesis, the disturbances are either slowly varying
(outdoor temperature) or relatively small in amplitude (noise from people
and equipment). However, since most of the Kalman-estimates in Figure 4.3
and Figure 4.4 deviates more or less from their real values, model uncertainty
is the main concern. This uncertainty motivates implementation of a more
robust control system.

The most common and often the first action that is taken to increase the ro-
bustness of a controller, is to restrict the change of system input (∆u(k)) (Im-
sland [2011]). This was already included in Section 4.1, so that the controller
used in the simulations presented above was to some extent robust. How-
ever, some of the ad-hoc solutions listed above contribute to make the control
scheme less robust, and should be removed. Especially the relaxation of the
system-output constraints. As mentioned above, the output constraints are
set to ŷ(k) when relaxed, which actually make them dependent of the un-
certain model. It can be seen in Figure 4.6a that θMPC

ref behaves differently
during the night-to-day switches. Shortly after these switches, small peaks
can be spotted in the figure. By setting the constraints equal to ŷ(k), the
optimization problem will constantly be on the feasibility limit, which makes
the probability of violation considerable. This may be the reason why the
peaks exist but also why the maximum value varies from day to day.

The softening of the output constraints should be solved in manner that
removes the chance of constraint violations. This can be done straightforward
by defining a constant set-point value that is valid only during the transition
(Figure 4.13). This will remove the uncertainty about ŷ(k) at every time
step, since θMPC

ref will increase at maximum allowed rate in order to reach the
defined set point. If this is carried through, the cost function (4.56) has to
be expanded to include Z(k) since Q no longer is equal to diag(0, · · · , 0). Q
should not be equal to diag(0, · · · , 0) during the transition after the night-
to-day switch, and it should be equal to diag(0, · · · , 0) otherwise.

A more theoretical approach is to introduce slack variables
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Figure 4.13: The output constraints may be softened by defining a desired
trajectory that is valid only during the transition from night to day.

4.7.1 Slack variables

This section will be based on Maciejowski [2002]. Slack variables are included
to soften the output constraints12 and are defined in such a way that they
are non-zero only if the constraints are violated. If a non-zero value occurs,
it is heavily penalized in the cost function such that the optimizer’s intuition
will be to keep them at zero if possible. The slack variables are added into
the cost function and the constraints as follows:

min 1
2∆U(k)TH∆U (k) + ∆U(k)TG+ ρ ‖s|2 (4.102)

subject to

Ω∆U(k) ≤ ω + s (4.103)
s ≥ 0 (4.104)

12Input constraints are often hard constraints (e.g. a valve opening) and are rarely
softened (Maciejowski [2002]).
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where ρ penalizes non-zero values of the slack variables. ρ = 0) leads to an
unconstrained problem, while ρ → ∞ denotes a hard-constrained problem.
A problem by having a quadratic penalization of constraint violations is
that activated constraints will, in some extent, be violated if ρ has a finite
value, even though this is unnecessary. A solution to this problem is to
penalize 1-norm13 or 2-norm of the constraint violations. If the 1-norm is
used to penalize the violations, every constraint is required to have their
own slack variable. As mentioned above, it is not desirable to soften the
input constraints, which means that the penalization values corresponding
to the system inputs are set to ∞. It can be shown that if ρ is chosen
to be large enough, the 1-norm-violation penalty leads to an exact penalty
method, which means that the constraints will not be violated unless the
problem becomes infeasible. In other words, as long as the optimizer is able
to find a feasible solution, the solution will be equal to the solution of the
original hard-constrained problem.

The implementation can be done by augmenting the state vector such that
the slack variables are included. And as implied by (4.102) and (4.104),
the objective function and the constraints must be expanded to include the
slack variables as well. Eric C. Kerrigan, one of Jan Marian Maciejowski’s
former PhD students, has written a MATLAB function that includes the slack
variables into the QP problem such that it can be solved using quadprog().
This function is found in Kerrigan [1999]. Before using the function, the
system designer has to decide which norm to use for penalization of constraint
violations, and choose the value(s) in the penalization vector. A 1-norm is
used in this thesis because of the ability to provide exact penalty. The
penalization values corresponding to system input and system-input change
are set to ∞ since it is desirable to keep these as hard constraints. Strictly
speaking, the constraints corresponding to system input do not need to be
augmented by slack variables. However, if Kerrigan’s function is to be used, it
is convenient to use exact penalization and set the system-input penalization
values to ∞. The penalization values corresponding to the system outputs
are set to 105. These are set to be high for the reason mentioned above,
namely that high enough values in ρ lead to exact penalization of constraint
violations.

Figure 4.14 presents how θMPC
ref behaves using the introduced slack variables.

The ad-hoc solution that made the output constraints time dependent are
now removed. It is seen that θMPC

ref is able to increase after the mode switches,
and this is done without feasibility issues. This is solely the work of the slack

13The 1-norm is defined by Khalil [2002]: ‖v‖1 = [
∑

i σi].
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Figure 4.14: Behavior of the MPC-generated reference (θMPC
ref ) and the cor-

responding supply-water temperature θMPC using the robust MPC scheme.

variables. Immediately after the mode switch, the system-output constraints
are changed, and this leads to violation. However, the slack variables allow
them to be violated, but the violation get heavily penalized. Further, this
causes θMPC

ref to rise since the optimizer tend to retain a hard-constrained
solution of the problem. θMPC

ref varies between 80 ◦C and 51 ◦C during day
time. The reason why it becomes as high as 80 ◦C is that the optimizer
tend to get the slack variables equal to zero and thereby fulfill the day-time
constraints, as fast as possible. When this is obtained θMPC

ref settles on a
lower and more appropriate value, which varies from day to day because of a
varying outdoor temperature. Because of the lower input constraint, θMPC

ref

is 35 ◦C during the night as before, except from the first 1440 minutes (the
first day). During the night time, θMPC

ref behaves unevenly like it did the first
night in Figure 4.6a. The reason is the same as before, namely that it is an
initial issue that is eliminated after the first night. Figure B.5b shows that
this behavior is only present the first night when the system is simulated for
8 days.

θMPC
ref ’s rapid increase draws notice to itself when the indoor temperatures
are examined in Figure 4.15. The tuning parameters are set to be the same
as in Table 4.1, such that the responses using the old scheme and new scheme
can be compared.

The indoor temperature in room A (θ2A) rises from 17 ◦C to 21 ◦C in only
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26 minutes, which is 36 minutes faster than the previous case and actually as
fast as in the conventional case. The reason for this is that θMPC

ref rises faster
and higher than in the previous case, thus the radiator (θ4A) increases its
temperature faster. The same tendency is seen in the other rooms. θ2B uses
53 minutes to reach 21 ◦C, which is 35 minutes faster than before and only
5 minutes slower than in the conventional case, while θ2C uses 97 minutes,
36 minutes less than in the previous case and 9 minutes slower than in the
conventional case. Due to the larger available heat amount during heating,
the radiators remain saturated for a shorter period than they did in Figure
4.7. The ventilation temperature in Figure 4.16 now uses 11 minutes to reach
the desired 22 ◦C as apposed to 43 minutes before. The indoor-temperature
responses and the ventilation-temperature response during a 4 day period
are found in Appendix B. The day-to-night responses are still similar as they
have been all along since the room inertia and radiator dynamics have not
changed.

There are several reasons why the controller has become more robust after
having introduced slack variables. First and most important, the ad-hoc
solution on the output constraints has been eliminated by the slack variables.
By using the estimated system output (ŷ(k)) as output constraints during
the night-to-day transitions contributes with extra uncertainty, given that
the Kalman filter does not estimate the states perfectly. This measure has
now been removed since the slack variables allow the output constraints to
be violated when it is needed. Another reason why the robustness of the
controller has increased is that the system is able to respond faster than
before. Figure 4.17 presents the behavior of θMPC

ref after the system has
switched from night mode to day mode. θMPC

ref now increases at maximum
rate, 5 ◦C per time step, so that the radiators are able affect the room
temperatures faster. The control system is therefore more suitable to take
care eventual unforeseen events. If a room temperature for some reason do
not increase from one time step to the next (if a window is opened), the
optimizer may stop to increase θMPC

ref if ŷ(k) is used as output constraints.
Such incidents are very unlikely to occur using slack variables.

88



4.7. Making the MPC strategy robust 89

1440 1460 1480 1500 1520 1540 1560 1580 1600
16

18

20

22

time [min]

θ 2A
 [° C

]

1440 1460 1480 1500 1520 1540 1560 1580 1600
20

40
60

80

time [min]

te
m

p 
[° C

]

 

 

1440 1460 1480 1500 1520 1540 1560 1580 1600
0

0.5

1

time [min]

V
al

ve
 o

pe
ni

ng

θ4A θ

(a) Room A.
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(b) Room B.
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(c) Room C.

Figure 4.15: Indoor temperature (θ2), radiator temperature (θ4), supply-
water temperature (θ), and control-valve opening of the radiator using the
robust MPC scheme (from night to day).
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Figure 4.16: Ventilation-air temperature (θ7), control-valve opening, and
outdoor temperature (θ6) using the robust MPC scheme (from night to day).
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Figure 4.17: The MPC-generated reference (θMPC
ref ) increases in steps at max-

imum allowed rate after the night-to-day switch in the robust MPC scheme.
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Chapter 5

Energy Consumption

As mentioned in Chapter 1, energy usage in buildings represent 40 % of the
total energy consmumption in industrialized countries. However, it should
be said that in European countries, the total heating demand to the build-
ing stock has decreased despite that the number of buildings is constantly
increasing, and this is because of energy-saving measures and new building
technology (Abel and Elmroth [2007]).

When studying the energy consumption in this thesis, there are two matters
that have to be addressed, namely

• the used amount of energy in the system, but also

• the amount of energy that is available in the system.

Intuitively, the most interesting matter is to examine the amount of used
energy. However, since the purpose of the MPC scheme is to minimize the
amount of available energy in the system, it is important to study the extent
of the variation between the control schemes. Nevertheless, even though heat
loss to the surroundings has been neglected in this thesis, this will always
be a concern when a hot fluid is transported through pipes. The amount
of energy that is used by the different control schemes is also subject for
examination. Although minimizing the amount of used energy was not the
purpose of the MPC, it is of interest to explore if removal of redundant heat
in the system actually affects the energy that is consumed.
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5.1 Calculating energy consumption

It is desirable to study the energy consumption on an hourly basis, to see
how the consumption varies during and after working hours, for example.
The energy is described as

E = ηdhwdhcwρw∆θdh. (5.1)

where ηdh [-] is the efficiency factor in the district-heating heat exchanger,
wdh [m3/h] is the water flow through the heat exchanger, and ∆θdh [◦C] is
the temperature difference between the supplied water and the water that is
returned from the building. The efficiency factor is given by the relationship
between the effect given into the system, and the effect supplied to the sys-
tem, ηdh = Pin

Psupplied
. It is assumed that no effect is lost, ηdh = 1. The amount

of water flowing through the heat exchanger is taken from a heat-exchanger
example in Novakovic [1995]. The reason why not the actual water amount
from Bassengbakken 1’s system is used will be discussed in Chaper 6.

This model is very simplified since it does not include any energy consum-
ing components, nor heat loss to the surroundings. However, it can detect
energy variations within hours, even seconds. This will be important when
investigating the energy levels using the various control schemes.

5.2 Case 1 - Conventional control strategy

Figure 5.1 presents how the amount of available and used energy in the
system varies during the day. As implied before, the available energy amount
is not time dependent by not behaving a certain way during night time
and day time, but by varying according to the outdoor temperature. When
studying Figure 5.1, it is seen that the energy consumption is larger during
day time compared to night time. Since the desired temperature values are
higher during the day, this result makes sense. An important reason why an
MPC scheme was introduced in the first place appears if the available energy
is compared with the used energy. The large difference indicates that the
amount of available energy in the system is unnecessary high as apposed to
the used energy, which in real life is likely to cause a sustainable heat loss to
the surroundings. When using the conventional control scheme, 13.45 % of
the available energy is used.
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Figure 5.1: Used amount of energy and available amount of energy in the
system using the conventional control scheme (during 4 days).

5.3 Case 2 - The MPC scheme

Figure 5.2 shows the available amount of energy and the used amount of
energy using the MPC scheme. As mentioned in Chapter 4, the available
energy is lower during the entire simulation when using the MPC scheme
instead of the conventional scheme. As apposed to the conventional case,
the available energy in the MPC case varies in a similar manner as the used
energy. This is simply because the available energy amount is time depen-
dent, and therefore decreases during night time when the demanded energy
level is lower than during day time. The used energy amount is almost iden-
tical as in the conventional case. This is not surprising since minimization
of the actual energy consumption was not the MPC’s objective. However, a
small decrease in used energy can be spotted, and this is an effect of the low
energy amount that is available during the heating of the rooms. Using the
MPC scheme, 20.29 % of the available energy is used. The reason why this
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amount is not not bigger will be discussed in Chapter 6. After Case 3 has
been presented, both the used energy and the available energy in the three
cases will be compared.
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Figure 5.2: Used amount of energy and available amount of energy in the
system using the MPC scheme (during 4 days).
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5.4 Case 3 - The robust MPC scheme

By studying Figure 5.3, it is seen that both the available amount of energy
and the used amount of energy are pretty similar as in Case 2. The increase
of θMPC

ref in the robust case constitutes the difference, by increasing faster
and further after the night-to-day switches. When the robust MPC scheme
is used, 20.03 % of the available energy is used. This amount is a bit smaller
than in Case 2, but on the other hand, the system responds quicker now
than when using the ordinary MPC scheme. System response versus energy
efficiency and other pros and cons using the three suggested schemes, will be
discussed in Chapter 6.
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Figure 5.3: Used amount of energy and available amount of energy in the
system using the robust MPC scheme (during 4 days).
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5.5 Comparison

It is clear that both the ordinary MPC case and the robust MPC case have
considerably less available energy during the simulation than the conventional
case, while the actual consumption is almost identical in the three cases. The
improvement from Case 1 to Case 2 is 0.43 %, and 0.083 % from Case 1 to
Case 3. However, be aware that the calculations of energy consumption
are inaccurate, since important factors like heat losses have been neglected.
As stressed before, heat losses to the surroundings and energy consumption
in general will increase the larger the amount of available energy becomes.
Thus, a reduction in available heat in the system can be seen as an energy
reduction potential. And this energy reduction potential is substantial when
an MPC scheme is used. If Case 2 is used instead of Case 1, the energy
reduction potential is 34 %. If this scheme is chosen, the building owner gets
a system with some uncertain ad-hoc solutions that does not respond as fast
as in Case 1, but that has a great energy reduction potential.

If Case 3 is chosen in stead of Case 1, the energy reduction potential is 32.92
%. As apposed to Case 2, Case 3 provides the building owner with a robust
control system that responds faster than Case 2 with nearly equal energy re-
duction potential. Given Case 3’s robustness and quick-responding abilities,
this is recommended rather than Case 2 exclusively, despite the fact that
the energy reduction potential is even larger in Case 2 than in Case 3. The
choice between Case 1 and Case 3 on the other hand, depends on the build-
ing owner’s demands and wishes. If a well known, conventional and quickly
responding control system is desirable, Case 1 should be chosen. However,
if the building owner is willing to compromise in terms of a well known and
quickly responding system, Case 3 provides a robust control scheme with a
considerable energy reduction potential.

96



Chapter 6

Discussion

Throughout this thesis, a model of a building has been derived by studying
the most fundamental thermodynamical relations and by using an electrical
analogy. Specific building information like wall thickness, insulation amount,
and window area are taken from Bassengbakken 1 in Trondheim. A venti-
lation system and a district heating system are also included. In order for
the system to be able to reach desired room temperatures and ventilation
temperatures, internal controllers are added to the system. The supply tem-
perature in the district heating system is decided either by

• a conventional control scheme that decides the supply temperature with
regard to the outdoor temperature, or

• by an MPC scheme that minimizes the supply-water temperature with
respect to a set of constraints.

In this chapter, simplifications done in the modeling, like neglecting floor
and ceiling, disregarding the influence from the sun, and arbitrarily choos-
ing certain values, will be justified. Problems during implementation and
the working procedure in general will be discussed. The control strategies,
including the preparations and simplifications that had to be done in order
for the MPC scheme to function properly, will be subject for deliberation.
Finally, the results will be evaluated. Are they realistic? What could have
been done to improve the control scheme?

Although the results imply that the proposed scheme will increase the energy
efficiency, it is far from theory to reality. Is the proposed idea actually
achievable? Will the conservative construction industry approve? And most
importantly, will building owners be willing to invest the time and the money
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that is needed in order to make implementation of such a solution in existing
and new buildings even possible?

6.1 Model review

The model that was derived in Chapter 2 was on a L3 level according to Ta-
ble 2.1. The fundamental thermal relationships in a building were described
using first-principle modeling. A simplification was to treat a segment of a
building, three rooms to be precise, as a total building. However, since the
fundamental thermal relations in a building are comprehended to a consid-
erable extent by studying three rooms next to each other (see Figure 2.1),
this simplification was acceptable. A more harsh simplification on the other
hand, was to neglect the floor and the ceiling when deriving the model. Heat
transmissions from rooms on the floor over or below are therefore not in-
cluded in the model. Regardless of the number of rooms, and the absence
or presence of a floor and a ceiling, the temperature responses in the system
would have remained similar, since the most fundamental thermal proper-
ties were described. Besides, considering that the model acted as a tool for
comparison of different control schemes, it was sufficiently accurate.

Specific building information like wall thickness, insulation material, U-values,
and type of heating system, were given by Grini et al. [2009]. However, pipe
dimensions and water amount in the heating and ventilation system were not
taken from Bassengbakken 1. Since only a segment of the building was sub-
ject for examination in this thesis, the author did not want to include pipe
dimensions and water amounts that were dimensioned for a large building.
The radiator-pipe dimensions were chosen by studying the actual system di-
mensions in an office of the same size as one of the rooms in the segment.
The dimensions in the ventilation system were chosen to be the same as an
example in Novakovic [1995]. In terms of the amount of water that is sent
to the radiators and the ventilation system, this was determined by intu-
ition. First, the water amount should increase for larger rooms. Second, the
ventilation system should get the largest amount of water because it prob-
ably is more demanding to heat up air from −6 ◦C to 22 ◦C than it is to
provide heat to a well insulated room containing disturbance elements that
emit heat. However, to hedge one’s bets, the amount sent to the different
consumers was chosen to be fairly equal. The different water amounts added
together then made up the total water amount in the system. This simplifi-
cation was rather gross, and in the hindsight’s spirit, this should have been
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carried out differently. By doing some research, it would have been possible
to figure out used typical water amounts for the different types of equipment.

The heat exchangers in the ventilation system and in the district-heating
system were derived using first order differential equations. Their thermal
abilities, like heat-transmission time constants, were given when initializing
the heat-exchanger transfer functions, which was done according to an exam-
ple in Novakovic [1995]. This made sure that heat-exchanger characteristics
became realistic. However, the values should have been evaluated in terms of
which application they were applied to. The heat transmissions might have
been too quick and therefore unrealistic. This could have been done dif-
ferently by obtaining the characteristics of similar systems, and apply these
in the model. However, even though the heat-transmission time constants
had been more realistic, this would not have affected the comparison of the
control schemes. When it comes to the radiators in the model, these were
modeled using a heat balance, and it was assumed that the valves in the ra-
diators were perfect1(see Figure 2.8), which is not realistic. However, exact
radiator dynamics was not a particular goal during the modeling. Initially,
they were modeled simply by using a time delay, but because this created
problems during the linearization of the model, the heat-balance model had
to be used.

Despite the simplifications (some of them harsh) that were carried out when
deriving the model, it should be emphasized that the model is suited for its
purpose. The goal was to derive a model such that one could examine how
the system responded when different control schemes were tested. As stressed
above, it was not a defined goal to derive a model as realistic as possible.
It was important that the model captured the most fundamental thermal
relations in a building, and last but not least, that the model was fitted for
optimization. Simulating completely realistic models often tend to be time
consuming, which makes simplification of the model necessary in order for
the MPC to be able to run in real time. The mentioned simplifications were
carried through to keep the model complexity and thus the number of states
at a moderate level.

1No dynamics, no slack. The valves opening were determined by a number between 0
and 1.
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6.2 Implementation and working procedure

One of the items in the feature-work section in Magnussen [2010] was to be-
come independent of Simscape, because MATLAB functions like
linmod(system) could not be used in Simscape. The reason why Simscape
was used in the first place, was because the electrical analogy used in the
model could be implemented by using electrical components instead of trans-
fer functions, which made the implementation less complex. Becoming inde-
pendent of Simscape was cumbersome, especially since the model had been
augmented with two additional rooms, a ventilation system, and a more
complex heating system than in Magnussen [2010].

A matter that should seem obvious when deriving and implementing large
models, is to test the model thorough in between the augmentations. In par-
ticular if the model is going to be used in further analysis. However, this was
not done thorough enough, and this caused problems when the model was
to be linearized. Different approaches were tested in the pursuit of a correct
linearized model. When the linearization of the entire system did not behave
as is should, the model was dismantled and re-linearized until it turned out
that the radiators were implemented in a way that kept the linearization from
becoming correct. The problem was that the radiators’ internal controllers
contained saturation and anti wind-up abilities, and this made the behavior
from the defined system input to the system outputs not obtainable. Satura-
tion is highly nonlinear and the MATLAB function that included anti wind-up
was discontinuous, which make linearization very difficult(Imsland [2011]).
However, when the radiators were modeled using a heat balance, the lin-
earized model became correct. Testing the model underway will delay the
implementation in some extent, but in the long run it is actually likely to be
time saving.

6.3 Control schemes

6.3.1 Conventional scheme

In order to be able to evaluate the proposed MPC scheme, a conventional
control scheme was introduced in Chapter 3 as a foundation of comparison.
In this scheme, the supply-water temperature varies in an approximately
linear manner with respect to the outdoor temperature. The amount of
available energy using this scheme never becomes low enough to slow down

100



6.3. Control schemes 101

the temperature responses in the system. Thus, the temperature responses
are dependent on the dynamics of the radiators and heat exchangers. This
results in a quickly-responding system that is robust considering that it will
be able to handle large variations in disturbances. On the other hand, such
control schemes do not seem to be very energy efficient with regard to avail-
able amount of energy versus used amount of energy. Nevertheless, as implied
in both Djuric et al. [2007] and in Nilsson et al. [2003], this is the most com-
mon way to control the supply-water temperature. A robust control scheme
is naturally important, and this scheme is undoubtedly robust, but it seems
unnecessary that the supply-water temperature should be that high (see Fig-
ure 3.1). As implied in Chapter 1, it seems like a majority of the research
within energy efficiency in buildings concern improvement of low-level con-
trol schemes. However, the author of this thesis believes that minimization
of the supply-water temperature will lead to increased energy efficiency.

6.3.2 MPC scheme

This was the main purpose of the thesis, and the reason why an MPC scheme
was introduced. A model forms the basis of an MPC scheme, so it was im-
portant that the derived model was both accurate, but also that its com-
plexity level was limited. This was ensured by, among others, leaving out
the district-heating dynamics and the thermal disturbances. As mentioned
before, the matrices that are obtained when linearizing the system can be
badly scaled, which again may affect the optimization problem negatively.
However, it turned out that the scaling did not improve the MPC scheme’s
behavior, such that the proposed scaling introduced in Section 4.2.2 was left
out.

Since only 4 of the 17 states in the model were measured, a state estimator
had to be included such that the MPC could be provided with an estimate of
the total state vector. A Kalman filter was used because it is fairly easy to
implement and not complex to tune. The estimates obtained by the Kalman
filter deviated more or less from their real values, but the responses were
similar. However, deviations in some of the estimates led to problems dur-
ing the optimization. The linearized model turned out to be unobservable,
which caused problems in the estimation. Errors in the estimates of state 4
and 5 in particular caused one of the output constraints in the optimization
problem to be repeatedly violated. Recall that this problem was resolved by
increasing the system input’s lower constraint. The controller would have
become more robust if the estimates had been fixed instead of including this
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ad-hoc solution, and this reveals another shortcoming in the control scheme.
Adding an additional measurement at state 4 or 5 could have made the model
observable, which again could have improved the estimates. Changing the
model or improving the initial conditions in the Kalman filter may also have
improved the estimates (Imsland [2011]). On the other hand, increasing the
system input’s lower constraint to 35 ◦C was a decent solution in this thesis,
because when the supply-water temperature is 35 ◦C, the control valve in the
ventilation system is almost entirely open. However, if the system had been
dimensioned differently, the system input could have been decreased further.
According to Nilsson et al. [2003], the supply-water temperature should not
be lower than 65 ◦C because hot tapping water has to be ensured. However,
by studying Figure 15 in Djuric et al. [2007], it is seen that hot tapping
water constitutes a negligible part of the energy consumption. This demand
is therefore ignored in this thesis. Hot water can be provided by a separate
supply line, for example. It seems unnecessary that the temperature of the
main water supply to the building have to be kept as high as 65 ◦C to satisfy
the least prominent consumer.

Tuning and results

Choosing the correct tuning parameters is important in order for the MPC
to function in an optimal manner. All the tuning parameters were kept
constant when simulating the system with the two MPC schemes, such that
comparison of the results should make sense. The initial tuning parameters
suggested in Section 4.5 turned out to function well. Recall that the control
horizon should be chosen to be large enough such that no additional inputs
to the system are necessary. θMPC

ref in both Figure 4.12 and Figure 4.17 settles
to constant values after 140 and 90 minutes, respectively, which imply that
no additional inputs are needed after this. Hu = 35 (175 minutes) covers this
with a safe margin. The prediction horizon was kept equal to 50. This may
seem odd since according to the mentioned rule of thumb, the prediction
horizon should be chosen to be equal to, or larger than, the largest time
constant in the system. However, this turned out to be unnecessary. When
the system was simulated with Hp = 450 and Hu = 80, the results remained
almost identical (compare Figure 6.1 and Figure 4.6a). The corresponding
indoor temperature responses using these horizons are found in Appendix
B. Besides, long prediction horizons can lead to numerical problems when
calculating Ψ (4.12), especially in unstable plants (Maciejowski [2002]). As
de Jager [2004] implies, the prediction horizon should be limited if it does
not affect the system response negatively.

102



6.3. Control schemes 103

0 1000 2000 3000 4000 5000
30

40

50

60

70

80

time [min]

te
m

p 
[° C

]

 

 

θMPC
ref

θMPC

Figure 6.1: The behavior of the MPC-generated reference (θMPC
ref ) does not

get affected by longer control or prediction horizons.

As mentioned before, infeasible problems were handled by setting ∆u(k) = 0,
thus use the same input as in the previous time step. This approach was not
very sophisticated, and this combined with the ad-hoc solution where ŷ(k)
periodically acted as output constraints, are likely to be the main reason for
the peaks and out-of-level behavior of θMPC

ref after every night-to-day switch.
Both the these ad-hoc solutions and the unequal behavior of θMPC

ref were
eliminated after the slack variables were introduced.

Recall that the constraints on the change of system input (∆u) were chosen to
be −5 ≤ ∆u ≤ 5. These values were arbitrarily chosen. If these constraints
had been chosen to be less strict, −10 ≤ ∆u ≤ 10, for example, θMPC

ref

could have avoided the overshoot and to reach high temperatures like 80 ◦C.
This is because the radiators would have increased their temperatures faster
if θMPC

ref could increase by 10 ◦C each time step, and thereby reached their
desired values as quick as before. On the other hand, in terms of the different
abilities of different heat exchangers, the chosen constraints on ∆u seemed to
be appropriate. Another measure that could have been taken to avoid such
high values of θMPC

ref , is to penalize violations of the slack variables in a less
strict manner. But, since θMPC

ref only is 80 ◦C for a few minutes before settling
on a lower value, the tuning of the MPC seem to be satisfying. However,
by applying an optimal set of tuning parameters, the overshooting response
that reached 80 ◦C could have been avoided.

Now, when the control schemes have been presented and the system has
been simulated with all of them, it seems obvious that either Case 1 or Case
3 should be chosen. The ordinary MPC formulation in Case 2 is really a
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checkpoint towards the robust formulation in Case 3. Besides, since Case 3

Table 6.1: Comparison of results. The conventional Case 1 is basis for com-
parison.

Night-to-day Energy Used amount
behavior reduction of available

θ2A θ2B θ2C θ7 potential energy
Case 1 26 min 48 min 88 min 1 min - 13.45 %
Case 2 62 min 88 min 133 min 43 min 34 % 20.29 %
Case 3 26 min 53 min 97 min 11 min 32.92 % 20.03 %

is almost as energy efficient as Case 2, in addition to its superior behavior,
and the fact that it is more robust, the choice between these two is obvious.
Deciding between Case 1 and Case 3 on the other hand, is a matter of
traditional and well known versus ambitious but unknown, since the indoor
temperature responses are pretty similar. The fact that it takes 9 extra
minutes to heat up an office landscape (room C) is nothing to speak of.

Potential improvements

Getting the Kalman-filter to work properly such that some of the ad-hoc
solutions could have been eliminated, should have been prioritized. A nim-
bly solution that probably would have improved the estimates, is to add
additional measurements. However, this would increase the investment in
terms of additional sensors, besides, in a real application not all states are
measurable. Another measure is to add integral action in the estimator, and
through knowledge about the system states, removed the stationary errors
between estimate and state.

Computational complexity is another major concern when solving constrained
optimization problems (Maciejowski [2002]), and no measures were taken
to handle this. The computational complexity can be reduced using input
blocking, by forcing the input to remain the same over a certain amount of
samples (Cagienard et al. [2007]). It is shown that input blocking provides
good results for stable systems.

If the optimization problem had been formulated differently, the ad-hoc solu-
tion on the output constraints and the introduced slack variables might have
been unnecessary. Recall that the matrix that penalizes deviations from the
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desired trajectory (Q) was set to be diag(0, · · · , 0) since no desired trajectory
was defined. If a desired trajectory had been created, the feasibility problems
during the transition from night to day would not have been an issue. This
could have been done by defining an additional optimization problem that
calculates an optimal desired input trajectory that would have been inserted
into the main optimization problem. This is also a matter of software and
would not demand extraordinary components in the building’s automation
system. However, the computational complexity would have been increased
because of the additional optimization problem.

It was mentioned above that the pipe dimensions and water amounts in the
system were chosen unwisely. Both the energy reduction potential and the
amount of used energy could have been improved if the system had been
dimensioned in an optimal manner. The indoor temperature responses in
both the MPC schemes (Figure B.1 and Figure 4.15) indicate that the valve
position in the radiators were more closed than open. As apposed to this,
the valve position in the ventilation system was accordingly more open than
closed (Figure 4.9a and Figure B.3). If more water had been sent to the
ventilation system, this would have increased the percentage of used amount
of available energy. However, this must be carried out with caution such that
the indoor temperature responses do not get too slow.

6.4 Credibility

The life span of buildings can be 10, 20 or 50 years. Such long lasting sys-
tems impose substantial demands when it comes to reliable control systems.
Thorough testing and further development is an absolute requirement if an
MPC scheme is going to be considered implemented in a building. In many
ways, it is the building owners that set the pace for development of smart so-
lutions in the construction industry. If the owner is renting out the building,
running costs are probably not a high priority, which makes development of
new technology, like the proposed MPC scheme, uninteresting. However, on
a long-term basis, a well-developed MPC scheme is likely to be economically
beneficial, which is interesting if the building owner is going to use the build-
ing. It should be repeated that the imposed high-level control scheme in
principle only need to be developed one time. The intention is that it should
be applicable in every existing building containing a waterborne heating sys-
tem. Nevertheless, testing have to be carried out before the control scheme
is put into use, but this cost represents a drop in the ocean considering the
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long-term energy-saving potential.

It should be mentioned that according to Nilsson et al. [2003], the largest
potential for increasing the energy efficiency in commercial buildings is to
decrease the internal heat generation, thus make the cooling systems more
efficient. Nevertheless, this may not be true in countries with cold winters,
like Norway. Actually, in Grini et al. [2009], it is seen that 46.7 % of the
delivered energy to Bassengbakken 1 is used to heat up ventilation and room
temperatures. As apposed to this, cooling of ventilation and room tempera-
tures represent 9 % of the delivered energy. This imply that there is a lot of
energy to be saved if the heating process of an office building is carried out
in an optimal manner.
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Chapter 7

Conclusion and Further Work

7.1 Conclusion

Throughout this thesis, a mathematical model of a building, including its
ventilation system and a heating system has been used to simulate indoor
temperature responses when different control schemes has been applied. A
conventional control scheme and two MPC schemes that generated supply-
water-temperature references in different manners were compared. The sim-
ulations implied that a considerable amount of energy can be saved when
using the MPC schemes. Given that a substantial amount of the supplied
energy to Bassengbakken 1 is used for heating purposes, the 33 % - 34 %
energy reduction potential imply that energy can be saved by introducing an
MPC control scheme. The MPC’s ability to minimize an objective function
and maintaining defined system demands at the same time, makes it highly
suitable for increasing the energy efficiency in buildings.

Case 2 had a greater energy reduction potential than Case 3, however, the
controller in Case 3 was more robust and the system responses were superior
when this was applied. If an MPC scheme is to be implemented, Case 3
is recommended. It was also interesting to ascertain that the generated
system inputs remained unchanged when using a finite and relatively small
prediction horizon, as well as a long prediction horizon. If the water amounts
in the system had been chosen differently, the used amount of the available
energy would have been improved. Regardless of this, this thesis implies
that the energy efficiency in buildings can be increased if an MPC scheme is
implemented.

107



108 Chapter 7. Conclusion and Further Work

7.2 Further work

Modeling

If heat losses to the surroundings from the ventilation system, and especially
from the district heating system, are included in the model, this may highlight
the importance of keeping the supply-water temperature as low as possible
in a more distinct degree.

Optimization

It should be a top priority to ensure that the state estimator is able to obtain
accurate estimates. This will make the control system more robust, and it
will make some of the ac-hod solutions superfluous. Another measure that
may increase the robustness of the system, is to add an additional optimiza-
tion problem that calculates optimal set-points for the MPC controller. By
doing this, the optimizer do not have to depend on the slack variables when
increasing the supply-water temperature from night to day.

Low-level control

It should be considered to optimize the low-level controllers in the system.
Even though this will make the control scheme tailor made, and therefore
building specific, this may decrease the actual energy consumption.

Include energy prices

In order to increase the energy efficiency further, electricity prices may be in-
cluded as a variable in the optimization problem. If hourly electricity prices
are available, the optimizer can predict how they vary and thus initiate high
energy-demanding tasks when the prices are low, and vice versa. These men-
tioned items may help leading the proposed MPC scheme forward towards a
future realization.
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Nomenclature

Building

θ6 [◦C] Outdoor air temperature

θ16C [◦C] Wall temperature (mass center), towards outdoor air, Room C

θ1AC [◦C] Wall temperature (mass center), towards room A, Room C

θ1BC [◦C] Wall temperature (mass center) between room B and C

θ2C [◦C] Room air temperature, room C

θ36C [◦C] Wall surface temperature, towards outdoor air, Room C

θ3AC [◦C] Wall surface temperature, towards room A, Room C

θ3BC [◦C] Wall surface temperature, towards room A, Room C

θ3BC [◦C] Wall surface temperature, towards room A, room C

θ3CA [◦C] Wall surface temperature, towards room C, Room A

θ3CB [◦C] Wall surface temperature, towards room C, Room B

θ3CB [◦C] Wall surface temperature, towards room C, room B

θ4C [◦C] Radiation temperature, room C

θ5C [◦C] Window surface temperature, room C

θ7C [◦C] Ventilation air temperature, room C

Aob [m2] Area of an object

C2C [W/K] Capacity of room air, room C

C6C [W/K] Outer wall capacity, Room C

CAC [W/K] Capacity of wall between room A and C
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CBC [W/K] Capacity of wall between room B and C

H [m] Room height

hmat [W/m2K] Convective heat-transmission coefficient of a material

keC [W ] Heat ratio due to electrical equipment, room C

keC [W ] Heat ratio due to lighting, room C

keC [W ] Heat ratio due to people, room C

R10C [K/W ] Convective heat transport from radiator to room air, room C

R16C [K/W ] Convective thermal resistance of wall (mass center) towards
outdoor air, Room C

R1tC [K/W ] Resultant thermal resistance of wall (mass center) towards
outdoor air, Room C

R26C [K/W ] Convective thermal resistance of wall (mass center) towards
outdoor air, Room C

R2AC [K/W ] Convective thermal resistance of wall (mass center) between
room A and C

R2BC [K/W ] Convective thermal resistance of wall (mass center) between
room B and C

R2tBC [K/W ] Resultant thermal resistance of room air, room C

R36C [K/W ] Convective thermal resistance of wall surface towards outdoor
air, room C

R3AC [K/W ] Convective thermal resistance of wall surface towards room A,
room C

R3BC [K/W ] Convective thermal resistance of wall surface towards room B,
room C

R3tAC [K/W ] Resultant thermal resistance of wall (mass center) between
room A and C

R3tBC [K/W ] Resultant thermal resistance of wall (mass center) between
room A and C

R4tC [K/W ] Resultant thermal resistance of wall surface towards outdoor
air, Room C

R5C [K/W ] Convective thermal resistance of window surface, room C
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R5tC [K/W ] Resultant thermal resistance of wall surface towards room A,
Room C

R6tC [K/W ] Resultant thermal resistance of window surface, Room C

R7C [K/W ] Convective heat transport with ventilation air, room C

R8C [K/W ] Convective heat transport with infiltration air, room C

R9C [K/W ] Thermal radiation from radiator, room C

T1C [s] Time constant of wall (mass center) towards outdoor air, Room C

T2C [s] Time constant room air, room C

T3C [s] Time constant of wall (mass center) between room A and C

T4C [s] Time constant of wall (mass center) between room B and C

Umat [W/m2K] U-value of a material

WeC [W ] Heat emitted from electrical equipment, room C

WlC [W ] Heat emitted from lighting, room C

WpC [W ] Heat emitted from people, room C

Heating system

α [-] Valve opening in the radiator, room C

ρmat [kg/m3] Density of a material

θ [◦C] Temperature of supply water that is sent into the building

θconv [◦C] Temperature of supply water that is sent into the building using
a conventional scheme

θMPC [◦C] Temperature of supply water that is sent into the building using
an MPC scheme

θout4 [◦C] Temperature of water flowing out of a radiator

θfb [◦C] Temperature of water flowing out of the building into the heat
exchanger

θdhhi [◦C] Temperature of water flowing into the heat exchanger

θdhho [◦C] Temperature of water flowing out of the heat exchanger

θdhi [◦C] Temperature of water flowing from a district heating distribution
line into the heat exchanger

111



θdhmi [◦C] Temperature of water flowing out of the district heating main
supply

θdhmo [◦C] Temperature of water flowing back to the district heating main
supply

θdho [◦C] Temperature of water flowing out of the heat exchanger, back to
the district heating distribution

θref [◦C] Reference temperature of supply water that is sent into the build-
ing

θconvref [◦C] Reference temperature of supply water that is sent into the build-
ing using a conventional set-point scheme

θMPC
ref [◦C] Reference temperature of supply water that is sent into the build-

ing using an MPC set-point scheme

θtb [◦C] Temperature of water flowing out of the heat exchanger into the
building

C4C [W/K] Capacity of the radiator, room C

cmat [J/kgK] Specific heat capacity of a material

fdhCP (z) [-] Control port valve characteristic in shunt connection towards dis-
trict heating

fdhSP (z) [-] Shunt port valve characteristic in shunt connection towards district
heating

Q4C [W ] Heat dissipation from the radiator to the surroundings, room C

Rdh
CP [-] Water-flow relationship between water flow through entirely open

and closed control valve

Rdh
SP [-] Water-flow relationship between water flow through entirely open

and closed shunt valve

T dh [s] Time constant of heat exchanger in the district-heating system

T5C [W ] Time constant of the radiator, room C

zdh [-] Valve opening of shunt connection

Ventilation

(UA)h [W/K] Heat exchanger’s heat-transmission number

∆pCPz [Pa] Pressure drop over an open control port
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∆pIIIz [Pa] Pressure drop over the shunt pipe by an open shunt valve

∆pIIz [Pa] Pressure drop over the pipe lines A and B

∆pSPz [Pa] Pressure drop over an open shunt port

ṁ7 [kg/s] The ventilation air amount

ṁ8 [kg/s] The infiltration air amount

ṁa [kg/s] Air flow through heat exchanger

ṁw [kg/s] Water flow through heat exchanger

Q̇CP [m3/s] Water amount through the control valve

Q̇max [m3/s] Maximum flow through a valve (z = 1)

εa [-] Relative air heating

εw [-] Relative water cooling

θh [◦C] Metal temperature in heat exchanger

θai [◦C] Air temperature flowing into the heat exchanger

θao [◦C] Temperature of the air flowing out of the heat exchanger

θhi [◦C] Temperature of water flowing into the heat exchanger

θho [◦C] Temperature of water flowing out of the heat exchanger

θmi [◦C] Temperature of water flowing out of the building’s main supply

θmo [◦C] Temperature of water flowing back to the building’s main supply

θwi [◦C] Water temperature flowing into the heat exchanger

θwo [◦C] Water temperature flowing out of the heat exchanger

fCP (z) [-] Valve characteristic control valve

fSP (z) [-] Valve characteristic shunt valve

Kh [s] Transfer function gain

kvs [-] Capacity number

mob [kg] Mass of an object

q [-] Relative water flow through the control valve

qs [-] Relative water flow through the shunt valve
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RCP (z) [-] Water-flow relationship between water flow through entirely open
and closed control valve

RSP (z) [-] Water-flow relationship between water flow through entirely open
and closed shunt valve

Th [s] Heat exchanger time constant

z [-] Valve opening of the shunt connection
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Appendix A

Calculation of Thermal Values

A.1 Building

The electrical elements in Figure 2.2 and Figure 2.3 in Section 2.2 have to
be determined in order to get the model to behave realistically. There are
a set of determination rules in Novakovic [1995], and these will be the base
of the following calculations. Specific thermal values are taken from Grini
et al. [2009]. The model contains convective thermal resistors, in addition
to thermal resistors due to radiation. Convection is heat transfered from a
fluid in motion to a solid object, and radiation is the heat that is absorbed,
reflected (or passed through) an object exposed of radiation (Hauge and
Støvneng [2009]).

R16C is the convective thermal resistance from the outside air through the
outer part of the wall, and this can be calculated approximately as

R16C ≈
1

U16CA6C
, (A.1)

and has the denomination [K/W ] (all the thermal resistors have this denomi-
nation). U16C represents the U-value 1 of the outer part of the wall. U-values
are denominated [W/m2K]. Typical U-values for outer walls are 0.2 W/m2

- 0.4 W/m2K. U16C is set to be 0.25 W/m2K. A6C is the area of the outer
1Abel and Elmroth [2007] defines the U-value as the quantity of heat per unit time

passing through a unit area of the structure when the difference in the temperature between
each side of the structure is 1 ◦C.
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120 Appendix A. Calculation of Thermal Values

walls in room C. From Figure 2.1 it can be seen that room C has two outer
walls, A6C = (4.5 + 6) ·H = (4.5 + 6) · 3 m2.

R2AC is the convective resistance from the thermal mass in the wall between
room A and C to the inner surface of the wall, and is calculated in the same
way as R16C .

R2AC ≈
1

U2ACAAC
, (A.2)

where U2AC = 0.5 W/m2K and AAC = 4.5 · 3 m2.

R2BC ≈
1

U2BCABC
, (A.3)

where U2BC = 0.5 W/m2K and ABC = 6 · 3 m2.

R36C is a convective resistance from the inner surface of the outer wall, to
the room air, and it is defined as

R36C = 1
h36CA6C

, (A.4)

where h36C is the convective heat-transmission coefficient by the inner surface
of the wall. It is set to 3 W/m2K.

R3AC is a convective resistance from the inner surface of the wall towards
room A, to the room air, and is calculated as above

R3AC = 1
h3ACAAC

, (A.5)

where h3AC = h36C .

R3BC = 1
h3BCABC

, (A.6)

h3BC = h36C .

R4C is the radiation between from the window to the inner part of the wall.

R4C = 1
h4CAwC

(A.7)

h4C is the radiation coefficient by the inner surface of the window, and is set
to 5 W/m2K. The window area (AwC) is 25.8 % of AC , which is the total
room area.
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A.1. Building 121

Convective resistance between the window’s inner surface and the room air,
R5C , is

R5C = 1
hwCAwC

, (A.8)

hwC is set to 3 W/m2K.

R6 is the convective thermal resistance between the window and the outside
air.

R6C = 1
UwCAwC

− 1
1

R4C
+ 1

R5C

, (A.9)

UwC = 1.2 W/m2K.

R7C is the convective heat transport from ventilation air to room air

R7C = 1
ṁ7ca

, (A.10)

where ṁ7 [kg/s] is the ventilation-air amount, and ca = 1005 J/kgK is the
specific heat capacity of air. The ventilation provides an air exchange of
8.9 m3/hm2. In order to get the correct denomination, this air amount is
multiplied by the air density and the area of the room, and divided by 3600
s.

R8C is convective heat transport from the infiltration air2 to the room air.
This variable is often described as units of air changes per hour (Kreider
et al. [2002]).

R8C = 1
ṁ8ca

, (A.11)

where ṁ8 [kg/s] is the infiltration air amount in. Typical values for the
infiltration air amount is 0.1 - 0.3 h−1. However, in Bassengbakken 1, the air
exchange per hour is 1.5 h−1. This is multiplied by the air density and the
volume of the room, and divided by 3600 s to get the correct denomination.

R9C is the radiation between from the radiator to the wall surface

R9C = 1
hradA4C

. (A.12)

The area of the radiator (A4C) is set to 0.75 · 2 m2, while a typical value for
hrad is 7 W/m2K.

R10C is the convective thermal resistance between radiator and room air
2Kreider et al. [2002] defines infiltration air as uncontrolled airflow through all the little

cracks and openings in a real building.
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122 Appendix A. Calculation of Thermal Values

R10C ≈ |RPROD
C −R9C |, (A.13)

where
RPROD
C = ∆θ4C

PRAD
C

. (A.14)

∆θ4C [◦C] is the temperature difference between the radiator surface and the
air temperature, while PRAD

C [W ] is the radiators effect. These values were
not defined in Grini et al. [2009] , and are therefore set arbitrarily to 30 ◦C
and 3200 W , respectively.

Since there are only two types of walls, no ceiling and no floor, 3 heat capac-
ities have to be calculated for the walls (outer walls, walls towards room A
and B).

Ctot
6C = δwA6Cρ6Cc6C (A.15)

The outer walls consist of bricks (30.56 %), gypsum (6.11 %), insulation (55
%) (rock wool), and air gaps (8.33 %). δw = 0.36 m is the total thickness of
the wall.

ρ6C = 0.3056ρbricks + 0.0611ρgypsum + 0.55ρinsulation + 0.0833ρair, (A.16)

where ρbricks = 830 kg/m3, ρgypsum = 800 kg/m3, ρinsulation = 1030 kg/m3

and ρair = 1005 kg/m3.

c6C is calculated in the same manner, where cbricks = 1800 J/kgK, cgypsum =
900 J/kgK and cinsulation = 31 J/kgK. The insulation values are taken from
Rockwool [2010] and Byggforsk [2004].

The walls towards room A and B consist of gypsum (18, 03 %), air gaps (40, 98
%), and insulation (40, 98 %). Except from this different composition, Ctot

AC

and Ctot
BC are calculated in the same manner as Ctot

6C .

The heat capacity of the air is dependent on the inventory in the room and
the room air itself. Cinventory is set to 50 times the C2C , which is

C2C = HACρaca. (A.17)

Cinventory is contributions to the heat capacity from office furniture, books,
computers and other equipment.
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A.2 Ventilation

The introduced variables relative heating and relative cooling in Section 2.3.1
are calculated by using the heat exchanger’s nominal (or design) tempera-
tures. This means that these variables are valid in a neighborhood of the
nominal values. The design temperatures are θwi = 70 ◦C, θai = 18 ◦C,
θao = 45 ◦C. The nominal value of the outgoing water temperature is depen-
dent of the remaining temperatures and is calculated by

θwo = θwi −
ṁaρaca
ṁwρwcw

(θao − θai), (A.18)

where ρw = 1000 kg/m3 and cw = 4200 J/kgK. ṁa = 0.857 m3/s and
ṁw = 2.05 · 10−4 m3/s are the air flow and water flow through the heat
exchanger, respectively. The heat exchanger consists of 67 % aluminum
(ρalu = 2700 kg/m3, calu = 900 J/kgK) and 33 % copper (ρcop = 8900
kg/m3, ccop = 390 J/kgK).

The pressure drops in Figure 2.6 are taken from an example in Novakovic
[1995]. ∆pCP = ∆pSP = 1736 bar and ∆pA = ∆pB = 150 bar. The relation-
ships between the volume flows through an open valve and a closed valve are
taken from the same example, RSP = RCP = 50.

A.3 Heating

The heat capacity of the radiator depends on its material and size.

C4C = δ4CA
rad
C ρsteelcsteel, (A.19)

where δ4C = 0.01 m, ρsteel = 7750 kg/m3 and csteel = 460 J/kgK.

The heat exchanger’s relative heating and cooling coefficients are calculated
in the same manner as in the ventilation system, but the nominal values are
slightly different. They are θtb = 78 ◦C, θfb = 48 ◦C and θdhi = 95 ◦C. θdho is
calculated as (A.18).

θdho = θdhi −
ṁb
wρwcw

ṁdh
w ρwcw

(θtb − θfb), (A.20)

ṁb
w = 6.57 · 10−4 m3/s and ṁdh

w = 6.57 · 10−4 m3/s are the water flows on
the building side and district-heating side, respectively.
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(a) Room A.
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(b) Room B.
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(c) Room C.

Figure B.1: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator using the MPC
scheme (during 4 days).
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(a) Room A.
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(b) Room B.
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(c) Room C.

Figure B.2: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator using the robust
MPC scheme (during 4 days).
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Figure B.3: Ventilation temperature (θ7), control-valve opening, and outdoor
temperature (θ6) using the robust MPC scheme (during 4 days).
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(c) Room C.

Figure B.4: Indoor temperature (θ2), radiator temperature (θ4), supply-water
temperature (θ), and control-valve opening of the radiator using the MPC
scheme with Hp = 450 and Hu = 80 (during 4 days).
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(a) Ordinary MPC scheme.
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Figure B.5: Behavior of the MPC-generated reference (θMPC
ref ), and the cor-

responding supply water temperature (θMPC) using the ordinary and the
robust MPC scheme (during 8 days).
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Simulink diagrams
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Figure C.1: The top-level Simulink diagram with a conventional control
scheme. 132
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Figure C.2: The top-level Simulink diagram with an MPC control scheme.
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Figure C.3: Overview of the MPC controller in Simulink.
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Figure C.4: A subsystem of the MPC controller in Simulink.
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