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Abstract

This master thesis contains modeling, analysis and control design for a
tethered airfoil. A path-following controller has been developed and proven
locally asymptotically stable. The guidance law is general, and applicable
to other path-following systems. The closed loop system is demonstrated
in simulations, where a certain level of robustness is concluded.



II



III

Preface

This master thesis is conducted during spring 2011 at the Department of
Engineering Cybernetics under the Norwegian University of Science and
Technology.

Investigating automated control of kites was initially motivated by my co-
supervisor Jan Hystad and his co-workers from Kraftkite. The e�ort on
solving this problem has lead to an increasing interest in the �eld for both
me and my fellow students.

I would like to thank my main supervisor Professor Kristin Y. Pettersen
for valuable help and throughout this semester. I would also like to thank
my co-supervisor Jan Hystad for inspiration and practical instruction of
�ying kites.

Also, I would like to thank my class and lunch-mates Trygve Utstumo,
Ola Hjukse and Erik Hannisdal for keeping up the spirit, and my girlfriend
Veronique Aalmo for invaluable inspiration throughout the every day.

Håvard Knappskog
Trondheim, June 6, 2011



IV



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Tethered airfoils . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Modeling 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Kinematic model . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Coordinate frames and transformations . . . . . . . . . . . . 10

2.4 Aerodynamic forces . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Kite model in state space . . . . . . . . . . . . . . . . . . . 20

3 Control design 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Path-frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The movement-frame . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Path error in cartesian coordinates . . . . . . . . . . . . . . 30

3.5 Path following system . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Guidance law . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Stability analysis of the nominal system . . . . . . . 32

3.6 Controller dynamics . . . . . . . . . . . . . . . . . . . . . . 38



VI Contents

4 Simulation 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Parametric curve in spherical coordinates . . . . . . . . . . 43
4.3 Simulation with ideal conditions . . . . . . . . . . . . . . . . 47
4.4 Simulation with wind turbulence . . . . . . . . . . . . . . . 53

5 Conclusion 59

6 Further work 61



List of Figures

1.1 Area of operation for a tethered airfoil. . . . . . . . . . . . . 2

2.1 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The local frame and the body frame. . . . . . . . . . . . . . 9

2.3 The body frame and the wind vector . . . . . . . . . . . . . 13

2.4 Overview of parameters and dimensions of the kite . . . . . 17

2.5 Aerodynamic coe�cients and glide ratio. . . . . . . . . . . . 18

3.1 Path frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Visualization of the set Ωc . . . . . . . . . . . . . . . . . . . 38

4.1 Parametric curve γ in θφ-plane. . . . . . . . . . . . . . . . . 45

4.2 3D trajectory, path-following system . . . . . . . . . . . . . 48

4.3 XZ-trajectory for the path-following system. . . . . . . . . . 49

4.4 XY-trajectory for the path-following system. . . . . . . . . . 50

4.5 XYZ path error. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Yawing angles, βb and βb,d. . . . . . . . . . . . . . . . . . . 51

4.7 Control input from simulation. . . . . . . . . . . . . . . . . 51

4.8 Control state δl. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Angle of attack, αaoa. . . . . . . . . . . . . . . . . . . . . . 53

4.10 3D trajectory, path-following system . . . . . . . . . . . . . 54

4.11 XZ-trajectory for the path-following system. . . . . . . . . . 55

4.12 XY-trajectory for the path-following system. . . . . . . . . . 55

4.13 Control input from simulation. . . . . . . . . . . . . . . . . 56



VIII List of Figures

4.14 Control state δl. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.15 Angle of attack, αaoa. . . . . . . . . . . . . . . . . . . . . . 57
4.16 Wind speed and direction in the xy-plane. . . . . . . . . . . 58



Chapter 1

Introduction

1.1 Motivation

The most obvious applications for tethered airfoils, often referred to as
kites, are propulsion, and power generation. Using kites for propulsion is a
proven concept, seen in the kitesur�ng sport. The world speed record for
sailing, was performed using kites for propulsion [2]. For power generation,
tethered airfoils have numerous bene�ts compared to traditional wind-mills,
as pointed out by [1],[6]. One of the key challenges yet to be solved for use
in industrial applications, either for propulsion or power generation, is a
reliable control system for automated operation.

1.2 Outline

A short description of the chapters contained in this thesis is given:

2 Modelling - A kinematic model is developed, including aerodynamic
forces and reference frames.

3 Control Design - With the kinematic model as a starting point, a con-
trol system for path following is proposed.
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4 Simulation - The closed loop system from the two previous chapters is
simulated and presented in this chapter.

5 Conclusion - Conclusions are drawn based on the results in this thesis.

6 Further Work - Suggested topics and issues for further work are pre-
sented in this chapter.

1.3 Tethered airfoils

The terminology kite and tethered airfoil are used interchangeably, although
the latter is more comon in literature. Figure 1.1 illustrates the concept of
a tethered airfoil. The airfoil is �xed to the ground, or some object on the
ground by a cable with length r. The movement is restricted to the spheri-
cal surface given by the cable length. The blue lines in Figure 1.1 indicates

xy

z

win
d

ca
b
le

Figure 1.1: Area of operation for a tethered airfoil.

the reachable area, which is limited by the wind direction, and the ground
in the xy-plane. The airfoil may neither �y passed the attachment point in
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upwind direction, nor �y below ground. This means x, z > 0.

There are di�erent ways to optimise the trajectory for a tethered airfoil.
When the trajectory is optimized with respect to the direction and the
amplitude of the force excerted on the cable, the actual position is of less
importance. This force is what generates either propulsion, or power. The
maximum force is achieved when �ying with high velocity, in the down-
wind (x-direction) sector. The least amount of force is achieved by hovering
stationairy close to the yz-plane.
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Chapter 2

Modeling

2.1 Introduction

Substantial e�ort has been made prior to this research on modelling teth-
ered airfoils. In particular, the model presented in [6] is highly detailed.
The purpose of this model, is the use of (nonlinear)model-predictive control
(MPC). Such a technique would only bene�t from a detailed model [12].
The control strategy attempted in this research, on the other hand, would
not necessarliry bene�t from a certain level of detail. The techniques used
in this thesis is reliant on analytical calculations to be performed on the
model. Therefore, the focus of the modelling in this chapter is to keep it
as simple as possible, without compromising the details needed to resemble
the behaviour of a real tethered airfoil.

2.2 Kinematic model

The following kinematic model is a recognised model for kinematics in spher-
ical coordinates. It has been presented in [8], also derived in detail in
the pre-project [11] to this thesis. The key elements are repeated for full
overview. The Euler-Lagrange equation is used to derive the model, with
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q = (θ φ r)T being the spherical coordinates.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi (2.1)

L(q, q̇, t) is given,

L(q, q̇, t) = T (q, q̇, t)− U(q) (2.2)

where T is the kinetic-, and U the potential energy.

Tkin =
1

2
m|ṗ|2 =

m

2

(
ṙ2 + r2 sin2(θ)φ̇2 + r2θ̇2

)
(2.3)

U = mgh = mgr cos(θ) (2.4)

m is the e�ective kinetic mass, given that the mass of the cable is distributed
along the distance r. If the cable is light compared to the mass of the kite
m, we assume m = m, and the result is given:

q̈ = S−1F
l

m
− a (2.5)

Where S ia a scaling matrix,

S =

r 0 0
0 r sin θ 0
0 0 1

 (2.6)

and a is the pseudo force:

a =

2 ṙr θ̇ − sin θ cos θφ̇2

2 ṙr φ̇+ 2 cos θ
sin θ θ̇φ̇

−r sin θφ̇2 − rθ̇2

 (2.7)

F l is the sum of forces given in the local system:

F l = F lg + F laer + F lc (2.8)
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r

φ

θ

xl

yl

zl

Figure 2.1: The earth and local coordinate systems. The spherical coordi-
nates q = (θ, φ, r)T are indicated in the �gure.

Where F lg is the gravity:

F lg = m

 g sin θ
0

−g cos θ

 (2.9)
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ans Faer and Fc is the aerodynamic and the cable force. For a more intuitive
understanding of the above equation, it is written in scalar form:

θ̈ =
Fθ
mr
− aθ (2.10)

φ̈ =
Fφ

mr sin θ
− aφ (2.11)

r̈ =
Fr
m
− ar (2.12)

This is a general kinematic model of a body in spherical coordinates, the
way it is presented in recognized literature, [1][6][8][9].

The model is adapted for the speci�c case where r is a constant param-
eter of the system. In this case, the cable force F lc will cancel out any other
force in the er-direction such that F l3 = 0:

F lc = −
(
F lg + F laer

)
3

(2.13)

Furthermore, two aditional states are added, the yaw βb of the kite body
around the cable and the �aps angle δl. With these modi�cations, the kite
model is given: 

θ̈

φ̈

β̈b
δ̇l

 =


(
S−1 F l

m − a
)

1(
S−1 F l

m − a
)

2
Mk
Ik
buu

 (2.14)

where Mk is the moment and Ik is the moment of inertia in the yaw-axis.
u is the control input, and bu is the actuator gain.
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zb = zl

Figure 2.2: This �gure shows the local frame and the body frame rotated
around the z-axis by the angle βb.
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2.3 Coordinate frames and transformations

In this section, the reference frames and the transformations between them
will be explained. The following right-handed orthogonal reference frames
are de�ned, with corresponding unit vectors in the x-, y- and z-direction:

• Earth frame Fe, unit vectors: ~ex, ~ey and ~ez.

• Local frame Fl, unit vectors: ~eθ, ~eφ and ~er.

• Body frame Fb, unit vectors: ~ei, ~ej and ~ek.

• Wind frame Fw, unit vectors: ~ew, ~et and ~en.

Any aditional orthogonal unitvectors will be given ~e1,p , ~e2,p and ~e3,p where
p indicates the corresponding frame, in this case the path-frame discussed
in Chapter 3. A rotation between any of the above frames is performed
with a combination of the following rotation matrices:

Rx(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.15)

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.16)

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2.17)

In equation (2.5), the forces are given in the local frame at the position of
the kite. The transformation between the earth frame and the local frame
is de�ned:

vl = Rlev
e (2.18)
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Where ve is any vector given in the earth frame, vl is given in the local
frame, Rle is the rotation matrix between the two frames. Rle consists of two
rotations, �rst one rotation around the z-axis, then around the y axis:

Rle = Ry(θ)Rz(φ)

=

cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)
− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

 (2.19)

Recall equations (2.15) - (2.17). Figure 2.1 shows the spherical coordinates
and the relation between the two frames.

While the kite is manoeuvred in space, it may rotate around its yaw-axis(z-
axis of the local-frame). This rotation is the transformation between the
local-frame and the body-frame:

Rbl = Rz(βb) (2.20)

Rbl =

 cosβb sinβb 0
− sinβb cosβb 0

0 0 1

 (2.21)

This rotation is illustrated in Figure 2.2. Note that the xy-plane is the same
for the two frames.

The aerodynamic forces are de�ned in the wind-frame. It is intuitive that
the sideforce should be in the xy-plane of the body frame. This deter-
mines the sequence of rotations between the body-frame and the wind-
frame. There are two rotations, �rst around the z-axis, second, around the



12 Chapter 2. Modeling

y-axis:

Rwb = Ry(αw)Rz(βs)

=

cosαw 0 − sinαw
0 1 0

sinαw 0 cosαw

 cosβs sinβs 0
− sinβs cosβs 0

0 0 1


=

cosαw cosβs cosαw sinβs − sinαw
− sinβs cosβs 0

sinαw cosβs sinαw sinβs cosαw

 (2.22)

This is illustrated in Figure 2.3. The yaw-angle βb is a known state of the
system, while the yaw-angle βs and the pitch-angle αw is a product of the
states, and the wind vector w. The angles αw and βs may be calculated
from the wind vector.

The relative, or the e�ective wind vector given in the local frame is de�ned
as:

wl
e = wl − ṗ = Rlew

e − ṗ (2.23)

With the wind set to be in the x-direction of the earth frame, and ṙ = 0,
the relative wind is calculated:

wl
e = Rlew

e − ṗl (2.24)

=

cθcφ cθsφ −sθ
−sφ cφ 0
sθcφ sθsφ cθ

w0
0

−
 rθ̇

rsθφ̇
0

 (2.25)

=

 wcθcφ− rθ̇
−wsφ− rsθφ̇

wsθcφ

 =

we1we2
we3

 (2.26)

The unitvectors of the wind-frame are ~ew, ~et and ~en. ~ew is in the direction
of the relative wind ~we. ~et is the transversal axis of the wind-frame, which
is perpendicular to both ~we and ~er. ~en = ~ew×~et completes the wind-frame.
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Figure 2.3: The relative wind vector is shown in the body frame.

The given properties lead to the following de�nition of the wind-frame:

elw =
we
|we|

=
1√

w2
e1 + w2

e2 + w2
e3

we1we2
we3


=

1√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2 + (wsθcφ)2

 wcθcφ− rθ̇
−wsφ− rsθφ̇

wsθcφ


(2.27)
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elt =
−we × er
|we × er|

=
1√

w2
e1 + w2

e2

−we2we1
0


=

1√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2

wsφ+ rsθφ̇

wcθcφ− rθ̇
0

 (2.28)

eln =
−we × (we × er)
|we × (we × er)|

=
we × e∗t
|we × e∗t |

=
1√

w2
e1 + w2

e2 + w2
e3

√
w2
e1 + w2

e2

−we1we3−we2we3
w2
e1 + w2

e2


=

1√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2 + (wsθcφ)2

√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2 −(wcθcφ− rθ̇)(wsθcφ)

(−wsφ− rsθφ̇)(wsθcφ)

(wcθcφ− rθ̇)2 + (−wsφ− rsθφ̇)2

 (2.29)

The above equations de�ne the Rlw:

Rlw =
(
elw elt eln

)
(2.30)

Furthermore, the above rotation is related to the body-frame:

Rbw = RwTb = RblR
l
w (2.31)

From this de�nition of Rwb given in equation (2.31), the angles αw and βs
may be calculated. The result is expanded for further calculations.

(
ebw ebt ebn

)
=

cosαw cosβs − sinβs sinαw cosβs
cosαw sinβs cosβs sinαw sinβs
− sinαw 0 cosαw

 = RblR
l
w

(2.32)
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Note the two elements of the above matrix indicated by a box. These allow
for the angles αw and βs to be extracted:

αw = − arcsin(ebw3) (2.33)

βs = − arcsin(ebt1) (2.34)

Under the assumption that |αw|, |βs| < 90◦, no quadrant corrections are
needed in the arcsin calculation. This assumption is valid as long as the
kite is not �ying backwards, which would be a faulty behaviour. αw and
βs needs to be expressed as functions of the states of the system for further
analysis.

ebw = Rble
l
w

=
1
√
...

 cβb sβb 0
−sβb cβb 0

0 0 1

 wcθcφ− rθ̇
−wsφ− rsθφ̇

wsθcφ

 (2.35)

ebw3 =
wsθcφ√

(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2 + (wsθcφ)2

(2.36)

ebt = Rbl e
l
w

=
1
√
...

 cβb sβb 0
−sβb cβb 0

0 0 1

wsφ+ rsθφ̇

wcθcφ− rθ̇
0

 (2.37)

ebt1 =
cβb(wsφ+ rsθφ̇) + sβb(wcθcφ− rθ̇)√

(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2

(2.38)
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Which leads to the �nal expression for αw and βs:

αw = − arcsin

 wsθcφ√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2 + (wsθcφ)2

 (2.39)

βs = − arcsin

cβb(wsφ+ rsθφ̇) + sβb(wcθcφ− rθ̇)√
(wcθcφ− rθ̇)2 + (wsφ+ rsθφ̇)2

 (2.40)

2.4 Aerodynamic forces

The unitvectors de�ning the wind-frame Fw are given in equations (2.27)-
(2.29). These will de�ne the direction of the aerodynamic forces. Three
aerodynamic forces and three moments are acting on the kite. Two of these
moments are cancelled out by the cable, such that only the moment around
the z-axis of the body frame is left. The forces and moments acting on the
body may be summarized:

• Drag force, Fd

• Crosswind force, Fc

• Lift force, Fl

• Yawing moment, Mk

The forces have the orientation of the wind-frame:

Fwaer =

FdFc
Fl

 (2.41)

From aerodynamics theory [10], the above forces and moments are given:

Fwaer =
1

2
ρairw

2
eA

 Cd
Ac
A Cc
Cl

 (2.42)
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Figure 2.4: Overview of parameters and dimensions of the kite.

Mk =
1

2
ρairw

2
ebACk − ckdβ̇b (2.43)

Where ρair is the density of the air at the altitude of the kite, ~we is the rela-
tive wind to the kite, A is the horizontal area, and Ac is the vertical surface
area of the kite. Cd is the coe�cient of drag, Cc the coe�cient of crosswind
force, Cl the coe�cient of lift, Ck the coe�cient of yawing-moment and Ckd
the damping coe�cient around the yaw axis.

All the above coe�cients are variables often determined by experiments
speci�c for an airfoil. For low speeds, and small αw and βs, several simpli-
�cations may be performed [14]. The aerodynamic coe�cients simpli�ed to
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be functions of the following:

• Angle of attack, αa

• Sideslip, βs

• Control input, δc
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Figure 2.5: Aerodynamic coe�cients and glide ratio.

Furthermore, if a symmetric airfoil is chosen, minimum lift and drag is found
in αa = 0 [10].

It was previously stated that αw and βs remains relatively small. For such
conditions, the coe�cient of drag is approximated, [14]:

Cd = kdC
2
l + Cdm (2.44)
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Which is a function of the coe�cient lift, where kd is a constant and Cdm
is the minimum drag.

The coe�cient of lift is approximated:

Cl = Cl,max sin(clsαa) (2.45)

Where cls represents the lift slope. Because the airfoil of the kite may be
con�gured with a constant `depower'- angle α0, the angle of attack is given:

αa = −αw − α0 (2.46)

Note that the sign is negative, due to the orientation of the wind-frame. The
relation between Cl and Cd, namely the glide-ratio GR = Cl

Cd
, is important

for the performance of an airfoil. The power output of a tethered airfoil is
almost proportional to the cube of the glide-ratio [11]. Figure 2.5 shows an
example of Cl, Cd and GR.

For the coe�cient of the crosswind force, a linear approximation for small
βs is chosen:

Cc = ccsβs (2.47)

The yawing moment consists of two components. There is the natural di-
rectional stability of the kite, and the �aps angle δl:

Ck = −cksβs + ck,δcδl (2.48)

where cks is the slope of Ck with respect to βs, and ck,δc is the slope with
respect to the δl. The �nal expression for the yawing-moment Mk is estab-
lished:

Mk =
1

2
ρairw

2
ebA (−cksβs + ck,δcδl)− ckdβ̇b (2.49)

where a natural damping factor ckdβ̇b is added.
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The aerodynamic force for use with the state-space model is summarised:

Fwaer =
1

2
ρairw

2
eA

 Cd(αa)
Ac
A Cc(βs)
Cl(αa)

 (2.50)

2.5 Kite model in state space

Starting with the kinematic model described in the previous sections:


θ̈

φ̈

β̈b
δ̇l

 =


(
S−1 F l

m − a
)

1(
S−1 F l

m − a
)

2
Mk
Ik
buu

 (2.14)

the following state vector is chosen:

x =



θ
φ
βb
θ̇

φ̇

β̇b
δl


(2.51)

Now, the state space representation of the model is given:

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7


=



x4

x5

x6(
S−1 F l

m − a
)

1(
S−1 F l

m − a
)

2
Mk
Ik
buu


= f(x, u) (2.52)
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Note that the above system only has 4 degrees of freedom, and only one
control input u. Thus the system of equation (2.52) is classi�ed as an
underactuated mechanical system [13]. This classi�cation is an important
property.
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Chapter 3

Control design

3.1 Introduction

Although automated control of kites is not a new concept in the academic
community, limited literature on the subject is available. Several research
groups have suggested the use of model predictive control to solve the prob-
lem. However, to the author best knowledge, there has not been performed
any analysis using path-referencing techniques or Lyapunov theory.

The system model of equation (2.52) is classi�ed as an underactuated sys-
tem. Such systems complicates the control problem as they have severe
limitations in the controllability. Tracking control and path following con-
trol has been developed both for aerial vehicles and marine vessels [3], both
being underactuated systems. While these systems have actuators for trans-
lational motion, the tethered airfoil does not. If a trajectory is a path in
space as a function of time, trajectory tracking would require control in
translational motion. Path following on the other hand, is more suitable
for controlling a tethered airfoil, as the airfoil may follow a predetermined
curve in space, independently of time.

In this chapter, a control strategy for path following along a general path
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on a spherical surface is proposed. The controller is inspired by the Line
of Sight guidance controller suggested in [3] for underwater vessels and 3D
path following in general.

3.2 Path-frame

In order to develop a path-following system, the path-error vector ~rpb, and
the dynamics of this needs to be de�ned.

The Path-frame Fp used in the following analysis is a geodesic reference
frame [4]. Given a path P parameterised by the vector ~r(s) where s is the
position along the path. The orientation of the path-frame is de�ned:

~e1p =
∂~r
∂s∣∣∣∂~r∂s ∣∣∣ (3.1)

~e2p = ~er × ~e1p (3.2)

~e3p = ~er (3.3)

(3.4)

This reference-frame is illustrated in Figure 3.1.

In the following, the angular velocity of the earth is neglected, such that the
earth-frame described in chapter 2.3 may be treated as an inertial frame.
The velocity of the path-frame ~vp is given as follows:

~vp = ṡ~e1p (3.5)
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P

cable

~ep1

~ep2

~ep3

βhpθp

βh

U

~ek

Figure 3.1: Path frame

As described in [5], the angular velocity of the path-frame is given by:

ωpep =

eeT3p ė
e
2p

eeT1p ė
e
3p

eeT2p ė
e
1p

 = ṡωpep/s (3.6)

= ṡ

eeT3p
∂ee2p
∂s

eeT1p
∂ee3p
∂s

eeT2p
∂ee1p
∂s

 (3.7)
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The skew symetric matrix Ωp
ep of ω

p
ep is used in vector products.

Ωp
ep =

 0 −ωpep3 ωpep2
ωpep3 0 −ωpep1
−ωpep1 ωpep1 0

 (3.8)

If the path-error ~rpb is set to be the vector from the closest point on the
path P to the body, it must be perpendicular to the path, meaning zero
error in the x-direction:

~rbp = y~e2p + z~e3p (3.9)

Now, the velocity of the body is related to the velocity of Fp.

~vb = ~vp +
e∂~rbp
∂t

(3.10)

= ~vp +
p∂~rbp
∂t

+ ~ωep × ~rbp (3.11)

vpb =

ṡ0
0

+

0
ẏ
ż

+ ṡ

 0 −ωpep/s3 ωpep/s2
ωpep/s3 0 −ωpep/s1
−ωpep/s2 ωpep1/s 0


0
y
z

 (3.12)

Rewriting the above equation:

vpb =

1− ωpep/s3y + ωpep/s2z 0 0

−ωpep/s1z 1 0

ωpep/s1y 0 1


ṡẏ
ż

 (3.13)

The above di�erential equation describes the relation between the velocity
of the kite and the Path-frame. It also describes the distance between the
path and the body as a function of time. However, there is a singularity in
the right hand matrix, for:

1− ωpep/s3y + ωpep/s2z = 0 (3.14)
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As suggested in [3], this may be solved by adding dynamics to the origin of
the Path-frame. The relative position of the body-frame to the path-frame
is rede�ned:

~rpb = x~e1p + y~e2p + z~e3p (3.15)

This is inserted into equation (3.12):

vpb =

ṡ0
0

+

ẋẏ
ż

+ ṡ

 0 −ωpep/s3 ωpep/s2
ωpep/s3 0 −ωpep/s1
−ωpep/s2 ωpep1/s 0


xy
z

 (3.16)

To cancel out the singularity, the x-dynamics is chosen:

ẋ = −kxx+ ωpep/s3y − ω
p
ep/s2z (3.17)

where kx > 0 such that x = 0 is exponetially stable when y = z = 0.
Equations (3.16) and (3.17) are rewritten to obtain state-space form:

1− ωpep/s3y + ωpep/s2z 0 0 1

ωpep/s3x− ω
p
ep/s1z 1 0 0

−ωpep/s2x+ ωpep/s1y 0 1 0

−ωpep/s3y + ωpep/s2z 0 0 1



ṡ
ẏ
ż
ẋ

 =

(
vpb
−kxx

)
(3.18)

The determinant is investigated,

det


1− ωpep/s3y + ωpep/s2z 0 0 1

ωpep/s3x− ω
p
ep/s1z 1 0 0

−ωpep/s2x+ ωpep/s1y 0 1 0

−ωpep/s3y + ωpep/s2z 0 0 1


=
(

1− ωpep/s3y + ωpep/s2z
)
−
(
−ωpep/s3y + ωpep/s2z

)
= 1 (3.19)

which proves the singularity of Equation (3.13) has been corrected. Equa-
tion (3.18) describes the path-error development in time, as a function of the
body-velocity. This is an important result in developing the path-following
controller.
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3.3 The movement-frame

Equation (3.18) relates the path-error development to the body velocity
given in the path frame. A few assumptions is made on the system (2.52)
before de�ning the relation between the two frames.

Assumption 1 The kite is operated in a manner such that the total ve-
locity U is bounded: Umin ≤ U ≤ Umax.

Assumption 2 The sideslip angle βh,s = βh−βb where βh = arctan
(
φ̇ sin(θ)

θ̇

)
is less than 90◦: |βh,s| < 90◦, and |β̇h,s| < β̇s,max

Assumption 3 The heading βh is controllable through the yawing angle
βb.

By de�ning a movement frame Fm, with the velocity ‖v‖ = U =
√
v2

1 + v2
2 + v2

3

in the direction of the �rst axis ~em1, such that vmb = (U 0 0)T , the rotation
between Fm and Fp is given:

Rpm = R3(βp)R1(θp)R3(βhp)

=

 cβpcβhp − sβpcθpsβhp cβpsβhp + sβpcθpcβhp sβpsθp
−sβpcβhp − cβpcθpsβhp −sβpsβhp + cβpcθpcβhp cβpsθp

sθpsβhp −sθpcβhp cθp


(3.20)

The three angles of rotation βp, θp and βhp are illustrated in the Figure 3.1.
The body velocity umb = (U 0 0)T , given in the path-frame is calculated:

Rpmu
m
b = U

 cβpcβhp − sβpcθpsβhp
−sβpcβhp − cβpcθpsβhp

sθpsβhp

 (3.21)

In the above rotation matrices, for the ease of notation, s and c is used for
sin and cos. While the angles βp and θp are functions of the relative position
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between the body and the origin of the path-frame, βhp is controllable. By
geometric relations, the angles βp and θp are de�ned:

βp =

{
0 for x, y = 0

arctan
(
x
y

)
elsewhere

(3.22)

θp = sgn(y) arccos

(
r + z

r

)
= sgn(y) arcsin

(√
x2 + y2

r

)
(3.23)

Note that either of these representations for θp may be chosen in the fol-
lowing calculations.
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3.4 Path error in cartesian coordinates

As previously stated, both the origin of the path-frame and the body-frame
is at all times positioned on the same spherical surface. This surface is de-
�ned by the distance r from the origin of the earth-frame. By this, a set D is

de�ned: D =
{
rbp ∈ R3 → R2

∣∣ x2 + y2 ≤ r2 ∩ z = −r ±
√
r2 − x2 − y2

}
such that rbp = (x y z)T is the vector from the path-frame to the body
frame. Any trajectories of the following system will allways stay in D.

The xyz-statespace equations of the path error in Equation (3.18) is de-
�ned:

ẋ = −kxx+ ṡωpep/s3y − ṡω
p
ep/s2z (3.24)

ẏ = (Rpmv
m
b )2 − ṡω

p
ep/s3x+ ṡωpep/s1z (3.25)

ż = (Rpmv
m
b )3 + ṡωpep/s2x− ṡω

p
ep/s1y (3.26)

Now, standard form is obtained:ẋẏ
ż

 =

 −kxx
(Rpmvmb )2
(Rpmvmb )3

+ ṡ

 0 ωpep/s3 −ωpep/s2
−ωpep/s3 0 ωpep/s1
ωpep/s2 −ωpep1/s 0


xy
z

 (3.27)

where the skew symmetric property of the last term becomes clear. The
rotation matix Rpm(β,θp, βhp) is given in Equation (3.21), where βhp is the
only controllable variable. For now, it is assumed that βhp is controlled to
some desired value βhp,d, with some error β̃hp = βhp − βhp,d. Inserting this
into the above equation yields:ẋẏ

ż

 =

 −kxx
−Usβpcβhp,d − Ucβpcθsβhp,d

Usθsβhp,d


+ ṡ

 0 ωpep/s3 −ωpep/s2
−ωpep/s3 0 ωpep/s1
ωpep/s2 −ωpep1/s 0


xy
z

+ g(x, y, z, β̃h)β̃h (3.28)
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A compact form of Equation (3.28) states the path-error system:

ż1 = f1(z1) + g(z1)z2 (3.29)

Where z1 = rbp, z2 = β̃h = βh − βhp,d, and g is the error gain vector:

g(x, y, z, β̃h) =

g1

g2

g3

 (3.30)

g1 = 0 (3.31)

g2 = U

(
sβp

sβhp,dsβ̃h + (cβ̃h − 1)cβhp,d

β̃h
− cβpcθp

cβhp,dsβ̃h + (cβ̃h − 1)sβhp,d

β̃h

)
(3.32)

g3 = Usθp
cβhp,dsβ̃h + (cβ̃h − 1)sβhp,d

β̃h
(3.33)

Where g2 and g3 are bounded above:

lim
β̃h→0

cβ̃h − 1

β̃h
= 0 (3.34)

lim
β̃h→0

sβ̃h

β̃h
= 1 (3.35)

By this result, the system in Equation (3.29) is interpreted as the nominal
system ż1 = f1(z1), perturbed by the error z2 through the error gain vector
g(z1).
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3.5 Path following system

The path error development of the nominal system in equation (3.28) is
given: ẋẏ

ż

 =

 −kxx
−Usβpcβh,d − Ucβpcθsβh,d

Usθsβh,d


+ ṡ

 0 ωpep/s3 −ωpep/s2
−ωpep/s3 0 ωpep/s1
ωpep/s2 −ωpep1/s 0


xy
z

 (3.36)

In the above system, βh,d may be designed to make the origin (x y z)T =
(0 0 0)T a stable equilibrium point.

3.5.1 Guidance law

The guidance law presented in [3] is proven to stabilize the vehicle to a
path-frame using a Line of Sight-technique(LOS). LOS means aiming at
some point (∆ 0 0)T ahead of the centre of the path-frame. In the case
with spherical coordinates, this is not possible. Inspired by this, an aiming
angle along the arc between the body- and the path-frame is chosen. This
is illustrated in Figure 3.1.

βhp,d = βh,∆ − βp

=

{
0 for x, y = 0

arctan
( y

∆

)
− arctan

(
x
y

)
elsewhere

(3.37)

3.5.2 Stability analysis of the nominal system

Now that all the angles of rotation between the movement-frame and the
path-frame is de�ned, a stability analysis for the nominal system may be
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sin (arctanx) = x√
x2+1

cos (arctanx) = 1√
x2+1

sin (arccosx) =
√

1− x2

cos (arcsinx) =
√

1− x2

Table 3.1: Trigonometric relations

performed. The three angles of rotation are given in Equations (3.22), (3.23)
and (3.37).

βp =

{
0 for x, y = 0

arctan
(
x
y

)
elsewhere

(3.22)

θp = sgn(y) arccos

(
r + z

r

)
= sgn(y) arcsin

(√
x2 + y2

r

)
(3.23)

By using the trigonometric relations listed in Table 3.1, the sines and cosines
of the three angles are calculated.

sin(βh,d) = sβh,∆cβp − cβh,∆sβp

=
y√

y2 + ∆2

|y|√
x2 + y2

− ∆√
y2 + ∆2

sgn(y)x√
x2 + y2

(3.38)

cos(βh,d) = cβh,∆cβp + sβh,∆sβp

=
∆√

y2 + ∆2

|y|√
x2 + y2

+
y√

y2 + ∆2

sgn(y)x√
x2 + y2

(3.39)

sin(θp) = sgn(y)

√
x2 + y2

r
(3.40)

cos(θp) =
r + z

r
(3.41)

sin(βp) =
sgn(y)x√
x2 + y2

(3.42)

cos(βp) =
|y|√
x2 + y2

(3.43)
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The above expressions is inserted into equation (3.36)

ẋ = −kxx+ (SMz1)1 (3.44)

ẏ = U

(
− sgn(y)x√

x2 + y2

(
∆√
y2 + ∆

|y|√
x2 + y2

+
y√

y2 + ∆2

sgn(y)x√
x2 + y2

)

− |y|√
x2 + y2

r + z

r

(
y√

y2 + ∆2

|y|√
x2 + y2

− ∆√
y2 + ∆2

sgn(y)x√
x2 + y2

))
+ (SMz1)2

= U
−���r∆xy − rx2y − (r + z)|y|2y + (�r + z)∆xy2

r(x2 + y2)
√
y2 + ∆2

+ (SMz1)2

= U
−rx2y − (r + z)|y|2y + z∆xy

r(x2 + y2)
√
y2 + ∆2

+ (SMz1)2 (3.45)

ż = U

(
sgn(y)

√
x2 + y2

r

(
y√

y2 + ∆2

|y|√
x2 + y2

− ∆√
y2 + ∆2

sgn(y)x√
x2 + y2

))
+(SMz1)3

= U
y2 −∆x

r
√
y2 + ∆2

+ (SMz1)3 (3.46)

Where the origin z1 = 0 is an equilibrium point:

lim
x→0

∣∣∣
y=0

ż1 = lim
y→0

∣∣∣∣
x=0

ż1 = 0 (3.47)

Now, a Lyapunov analysis of the nominal system in Equations (3.44) - (3.46)
is performed, using the following Lyapunov function candidate:

Vnom =
1

2
zT1 z1 =

1

2

(
x y z

)xy
z

 (3.48)
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The �rst derivative is calculated:

V̇nom =
(
x y z

)ẋẏ
ż



=
(
x y z

)
−kxx

U −rx
2y−(r+z)|y|2y+z∆xy

r(x2+y2)
√
y2+∆2

U y2−∆x

r
√
y2+∆2


+�����ṡωpep/s3xy −�����ṡωpep/s2xz −�����ṡωpep/s3xy +�����ṡωpep/s1yz

+�����ṡωpep/s2xz −�����ṡωpep/s1yz (3.49)

The skew symmetric terms in the above equation are conveniently cancelled
out.

V̇nom = −kxx2 +

(
U
−rx2y − (r + z)|y|2y + z∆xy

r(x2 + y2)
√
y2 + ∆2

)
y +

(
U

y2 −∆x

r
√
y2 + ∆2

)
z

= −kxx2 + U
−rx2y2 − (r + z)|y|2y2 + z∆xy2 + (x2 + y2)(zy2 −∆xz)

r(x2 + y2)
√
y2 + ∆2

= −kxx2 +
−rx2y2 − ry4 −�

�zy4 +����∆zxy2 + zx2y2 −∆zx3 +�
�zy4 −����∆zxy2

r(x2 + y2)
√
y2 + ∆2

= −kxx2 + U
zx2y2 − r(x2 + y2)y2 −∆zx3

r(x2 + y2)
√
y2 + ∆2

(3.50)

≤

(
U

−∆zx

r(x2 + y2)
√
y2 + ∆2

− kx

)
x2 (3.51)
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For the upper part of the sphere D, i.e. Dupper = {z1 ∈ D| − r ≤ z ≤ 0}, z
is given by z = −r +

√
r2 − x2 − y2.

V̇nom ≤

(
U

∆(r −
√
r2 − x2 − y2)x

r(x2 + y2)
√
y2 + ∆2

− kx

)
x2 (3.52)

Where if y = 0, limx→0
(r−
√
r2−x2−y2)x

r(x2+y2)
= 0. Under the assumption that

the velocity of the kite is bounded, Umin ≤ U ≤ Umax, the above expression
is maximized in the set Dupper, and the following is obtained:

V̇nom ≤
(
Umax
r
− kx

)
x2 ≤ 0 |kx>Umax

r
∀ z1 ∈ Dupper (3.53)

This proves that V̇nom is negative semi de�nite in Dupper. Before stability
is concluded, the same analysis is performed for the the lower part of the
sphere: Dlower = {z1 ∈ D| − 2r ≤ z < −r}, z is given by z = −r −√
r2 − x2 − y2.

V̇nom ≤

(
Umax

∆(r +
√
r2 − x2 − y2)x

r(x2 + y2)
√
y2 + ∆2

− kx

)
x2 (3.54)

Again, if y = 0, limx→0 U
∆(r+
√
r2−x2−y2)x

r(x2+y2)
√
y2+∆2

→ ∞, thus there is no constant

kx to keep the above equation negative semi de�nite. Now a subset Ωc is
de�ned:

Ωc =
{
z1 ∈ R3

∣∣ V (z1) ≤ (2r − δ)2
}
⊂ D (3.55)

where δ > 0 is some small positive number. The set Ωc excludes a small
circular area around the point (x yz)T = (0 0 −2r)T , such that for z ≤ −r,
x2 + y2 ≥ rc(δ)

2. This is illustrated in Figure 3.2. Using these properties,
Equation (3.54) is maximised in Ωc :

V̇nom ≤

(
Umax

r −
√
r2 − r2

c

rrc
− kx

)
x2 (3.56)
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V̇ ≤ (kc − kx) x2 ≤ 0
∣∣
kx>kc

∀ z1 ∈ Ωc (3.57)

where,

kc = max

(
Umax
r

, Umax
r −

√
r2 − r2

c

rrc

)
(3.58)

Now the recent results are inserted into equation (3.50):

V̇nom ≤ −(kx − kc)x2 + U
zx2y2

r(x2 + y2)
√
y2 + ∆2

− U y2√
y2 + ∆2

(3.59)

V̇nom ≤ 0 ∀ z1 ∈ Ωc (3.60)

Going back to the hard relation between z and x, y , z = −r±
√
r2 − x2 − y2,

it is seen that any nonzero z gives a nonzero x, y. Thus the set {V̇nom = 0} ⊂
Ωc contains no other trajectories than the trivial solution z1(t) = 0 ∀ t ≥ 0
By LaSalle's invariance principle, the equilibrium point z1 = 0 is a Locally
Asymptotically Stable (LAS) equilibrium point of the system (3.36) in the
set Ωc.
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Figure 3.2: Visualization of the set Ωc. Ωc is given by the surface of this
sphere, excluding the red area on the oposite side of the origin of the path-
frame, where the path-error system is not proven stable.

3.6 Controller dynamics

Although the kite-model is an underactuated system, a combination of the
states may still be in�uenced. For instance, the combination of θ̇ and φ̇

where the heading angle is de�ned βh = arctan
(
φ̇ sin(θ)

θ̇

)
is controllable.

In the following synthesis, the backstepping method will be used until the
control input is available.
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The nominal system of the path error z1 = rbp =
(
x y z

)T
is de�ned:

ż1 = f1(z1) (3.61)

Vnom =
1

2
zT1 z1 (3.62)

V̇nom = −W (z1) (3.63)

Where W (z1) is a positive semi-de�nite function. The full system with a
corresponding Lyapunov function is given:

ż1 = f1(z1) + g1(z1)z2 (3.64)

V1 =
1

2
zT1 z1 (3.65)

V̇1 = −W (z1) + g1(z1)T z1z2 (3.66)

where z2 = β̃ = βh − βh,d = βb − βb,d. The heading error z2 is included in
a second Lyapunov function.

V2 = V1 +
1

2
zT2 z2 (3.67)

V̇2 = −W (z1) + g1(z1)T z1z2 + z2(β̇b − β̇b,d) (3.68)

The control error is de�ned z3 = β̇b − α1 where α1 is a stabilizing term to
decide.

z3 = β̇b − α1 → β̇b = z3 + α1 (3.69)

Inserting β̇ into Equation (3.68) yields :

V̇2 = −W (z1) + g1(z1)T z1z2 + z2(z3 + α1 − β̇h,d) (3.70)

Now, α1 may be chosen to cancel out any perturbing terms:

α1 = −g1(z1)T z1 + β̇h,d −Kz2 (3.71)

V̇2 = −W (z1) + g1(z1)T z1z2 + z2

(
z3 − g1(z1)z1 + β̇h,d −Kz2 − β̇h,d

)
(3.72)

= −W (z1)−K1z
2
2 + z2z3 (3.73)
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Another step is added to the backstepping method, using z3 = β̇b − α and
ż3 = β̈b − α̇1:

V3 = V2 +
1

2
z2

3 (3.74)

V̇3 = −W (z1)−K1z
2
2 + z2z3 + z3

(
β̈b − α̇1

)
(3.75)

where β̈b is recognised from the kite model. Equation (2.49) de�nes the
dynamics of βb:

β̈b =
1

2Ik
ρairw

2
ebAc (−cksβs + ck,δcδl)− ckdβ̇b (3.76)

For simplicity, the above equation is rewritten.

β̈b = ω1 + ω2δl − ckdβ̇b (3.77)

Where the functions ω1 and ω2 are function of the wind vector ω and the
state vector x.

V̇3 = −W (z1)−K1z
2
2 + z2z3 + z3

(
ω1 + ω2δl − ckdβ̇b − α̇1

)
(3.78)

As recalled from Equation (2.52), the relation between the �aps angle δl
and the control input is simple, δ̇l = u. This state is easily controlled by
some high speed actuator.

Further assumptions are made.

Assumption 4 ω1 and ω2 are known, positive, bounded scalar functions.

Assumption 5 The state δl is controlled perfectly to a desired δl,d, that is
δl = δl,d

Now, δl may be considered a control input to the system.

δl,d =
1

ω2

(
−z2 − ω1 + ckdβ̇b + α̇1 −K2z3

)
(3.79)
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Inserting this into Equation (3.78), the following �nal result is obtained:

V̇3 = −W (z1)−K1z
2
2 −K2z

2
3 (3.80)

Because V̇3 = V̇1 −W1(z2, z3) where W1 is a positive de�nite function, it
is concluded for the path error system in Equation (3.27) that the origin is
Locally Asymptotically Stable (LAS).

Although the above result is conclusive, it underlies some assumptions. ω1

and ω2 are function of the wind vector ω and the states. Accurate state es-
timates are likely to be available, while the wind is a random process. Some
error will occur in the estimates of ω1 and ω2. The term α̇1 contains the
second derivative of βh,d, β̈h,d. When designing a curve in space, keeping
β̈h,d continuous, is a limitation.

Despite the fact that the controller proposed in Equation (3.79) contains
a few weaknesses, it is a solid result. The controller is, -to the authors
best knowledge-, the �rst to solve the problem of general path-following for
tethered airfoils, in ideal conditions.
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Chapter 4

Simulation

4.1 Introduction

The following simulations demonstrate a single tethered airfoil �xed to a sta-
tionary point on the ground. As the scope of this thesis is not to investigate
the optimality in di�erent trajectories with respect to power generation, the
path is chosen to facilitate analytical calculations, and to demonstrate the
concept of path-following control.

4.2 Parametric curve in spherical coordinates

The purpose of the following curve, is to demonstrate the control system
developed in this thesis. The curve is not optimised by any means, but
is designed to resemble a �gure eight-shaped path. Such a �ight pattern
is supported by several analysts in the �eld,[6], [8], and is a well known
technique for manoeuvring tethered airfoils. A parametric curve γ(ζ) is
de�ned:γ(ζ) = (θp(ζ) φ(ζ) r)T , and the velocity of this with respect to ζ,
γ′v(ζ) = Sγ′(ζ) where S is a scaling matrix due to the use of spherical
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coordinates. γ′v(ζ) is the parametric velocity in the local frame.

γ′v(ζ) =
st
2π

 cos (2ζ)
|sin(2ζ)| sgn (sin(ζ))

0

 ∀ ζ ∈ [0 2π] (4.1)

=

r 0 0
0 r sin(θ) 0
0 0 1

θ′(ζ)
φ′(ζ)
r′(ζ)

 (4.2)

In the above equation, st is the total length of the closed curve. The desired
parameterisation of the curve γ, is γ(s). To reparameterise, the distance s
travelled along the curve γ is calculated, [7]:

s(ζ) =

∫ ζ

0
|γ′v(t)|dt (4.3)

=

∫ ζ

0

st
2π

√
cos2(2t) + sin2(2t)dt (4.4)

=
st
2π
ζ (4.5)

ζ = 2π
s

st
(4.6)

Now, a substitution between ζ and s can be made. The expressions θ(s),
φ(s) and r(s) may be calculated using equations (4.1)-(4.2), and susbstitut-
ing ζ with s.

∂θp
∂s

= cos

(
4π

s

st

)
(4.7)

∂φp
∂s

=

∣∣∣sin(4π s
st

)
∣∣∣ sgn(sin(2π s

st
))

r sin
(
st

4πr sin
(

4π s
st

)
+ θ0

) (4.8)

∂r

∂s
= 0 (4.9)
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θ(s) =
st

4πr
sin(4π

s

st
) + θ0 (4.10)

φ(s) =

∫ 2π s
st

0

|sin(2t)| sgn(sin(t))

r sin
(
st

4πr sin(2t) + θ0

)dt (4.11)

r(s) = r (4.12)

Due to the complexity of the above integral, Equation (4.11) is solved nu-
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Figure 4.1: Parametric curve γ in θφ-plane.

merically. For the simulations a look-up table with interpolation in φ(s) is
used.

In the propagation of s in equation (3.18), the angular velocity ωpep is needed.
Based on the curve γ(s), the following method may be used to calculate ωpep,
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[5]:

Rpe = Rz(βp)Ry(θp)Rz(φp) (4.13)

ωpep = ωz(β̇p) +Rz(βp)ωy(θ̇p) +Rz(βp)Ry(θp)ωz(φ̇p) (4.14)

= ωpep/sṡ (4.15)

=

(
ωz(

∂βp
∂s

) +Rz(βp)ωy(
∂θp
∂s

) +Rz(βp)Ry(θp)ωz(
∂φp
∂s

)

)
ṡ (4.16)

where
∂βp
∂s is given:

∂βp
∂s

=
∂

∂s
arctan


∣∣∣sin(4π s

st
)
∣∣∣ sgn(sin(2π s

st
)
)

cos
(

4π s
st

)
 (4.17)

=
4π

st
sgn

(
cos(2π

s

st
)

)
(4.18)

Due to the discontinuity in
∂βp
∂s , the following simpli�cation is made in the

controller from Equation (3.79). As mentioned previously, the term α̇1

contains some terms that are di�cult to implement.

α̇1 =
∂

∂t

(
−g1(z1)T z1 + β̇h,d −Kz2

)
(4.19)

The terms ∂
∂t

(
g1(z1)T z1 + β̇h,d

)
are not implemented for the following sim-

ulations.

Recall from the equation for propagating the origin of the path frame along
the curve, where the 4×4-matrix was proven invertible in equation (3.19):


ṡ
ẏ
ż
ẋ

 =


1− ωpep/s3y + ωpep/s2z 0 0 1

ωpep/s3x− ω
p
ep/s1z 1 0 0

−ωpep/s2x+ ωpep/s1y 0 1 0

−ωpep/s3y + ωpep/s2z 0 0 1


−1(

vpb
−kxx

)
(3.18)
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4.3 Simulation with ideal conditions

The parameters used in these simulations are listed in Table 4.1, and the
pro�le of the lift and drag coe�cients is shown in Figure 2.5. The initial

Model parameter value

Kite:

m: E�ective mass 10
A: Horisontal wing area 20

Drag force:

Cdm: Minimum drag 0.05
kd: Drag constant 0.05

Lift force:

CL,max: Maximum lift 1.5
cls: Lift slope 1.5 π

CL,max

α0: De-power angle 5 π
180

Crosswind force:

ccs: Crosswind constant 1.1π
Yawing moment:

cks: Directional stability 0.5
ck,δ,c: E�ect of control input 1

Table 4.1: Model parameters

position is set:

xinit =



θ
φ
βb
θ̇

φ̇

β̇b
δl


=



85◦

−50◦

−30◦

−5◦/s
0
0
0


(4.20)
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Figure 4.2: 3D-trajectory for the path-following system.

The wind is free of noise, w = 10m/s, and the path frame is initiated in
s = 0:

γ(0) =

 60◦

−25.8◦

r

 (4.21)

with the total length of the closed path st = 240m.

Figures 4.2-4.4 illustrates the trajectory of a 10 second simulation with ideal
conditions. The kite converges to the reference path smoothly. As seen in



4.3. Simulation with ideal conditions 49

Figure 4.5, after convergence, there is some small ripple. This is due to the
two left out terms in the controller.
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Figure 4.3: XZ-trajectory for the path-following system.

The desired yawing angle βb,d and the actual yawing angle is illustrated in
Figure 4.6. βb follows the desired value closely. The control input and
the �aps angle seen in Figures 4.7 - 4.8 are fairly smooth. The oscillations
occur in the interconnection between the two circular parts of the curve.
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Figure 4.4: XY-trajectory for the path-following system.
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Figure 4.7: Control input from simulation.
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Figure 4.9: Angle of attack, αaoa.

As stated in Chapter 2, for the approximations of the aerodynamic co-
e�cients to be valid, the angle of attack is assumed to be small. Seen in
Figure 4.9, αaoa stabilizes around 7◦. This is well within reasonable limits
for the approximation, [10].

4.4 Simulation with wind turbulence

The initial position is set equal as in the case with ideal conditions. The
wind vector is modelled as lowpass-�ltered noise in both amplitude and
direction. Nominal wind speed w is set to: w = 6m/s. Other parameters
are kept the same as in the ideal case.
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Figure 4.10: 3D-trajectory for the path-following system.

In Figures 4.10-4.12 the trajectory of a 10 second simulation with wind
turbulence is plotted. As expected, some error is apparent. The response
is similar to the case with no turbulence.
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Figure 4.11: XZ-trajectory for the path-following system.
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Figure 4.12: XY-trajectory for the path-following system.
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Figure 4.13: Control input from simulation.

The control input u and the �aps angle seen in Figure 4.13 and 4.14 are
considerably more noisy in the case with wind turbulence.
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The wind speed and direction for the case with turbulence is presented
in Figure 4.16. The direction is given as the angle between the x-axis and
the wind vector in the xy-plane of the earth frame Fe.

Although the control system could not be proven stable for uncertainty in
model parameters and wind, the simulation result indicate some robustness
in the control system.
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Conclusion

In Chapter 2, a recognised model for tethered airfoils has been extended to
include dynamics for the orientation of the body-frame. This orientation,
the yawing angle in particular, is an important factor in understanding the
dynamics of the system, and play an important role in the control system
development. Although the model has not been compared to data from a
real tethered airfoil, the simulations show realistic behaviour. This conclu-
sion is drawn based on the authors experience with human-controlled kites
as well as comparison to simulations of similar models presented by [9],[6].

The proposed controller in Chapter 3 asymptotically stabilizes the body-
frame to a general path P, locally in the set Ωc. The set Ωc includes the
entire area of operation limited by the ground and the direction of the wind.
Path-following is concluded to be a well suited control strategy for a teth-
ered airfoil. To the author's best knowledge, the results presented in this
thesis is the �rst to conclude on stability in a path-following system for
tethered airfoils.

There are two parts of the control system: The line-of-sight inspired guid-
ance system, and the lower level controller, following the guidance law. The
guidance system is proven localy asymptotically stable, and is well suited
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for any system where path-following control with use of spherical coordi-
nates is desired.

Several studies [9] has been conducted on optimising trajectories for, and
the use of MPC in control of tethered airfoils. In MPC, feedback control
is needed to cope with model uncertainty [12]. The controller in Chapter 3
may serve as such a feedback controller.
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Further work

Path following control

The control system developed in this thesis, consists of a general guidance
controller and a backstepping controller to follow this. The guidance law is
applicable to any path-following system described in spherical coordinates,
or moving along a spherical surface. The guidance controller is not proven
Globally Asymptotically Stable on the described sphere. Although this is
not necessary for the kite-system, it may be desirable for other applications.

Smooth control

The controller developed in chapter 3, Equation (3.79) is designed to cancel
out any perturbing terms. It contains variables that may be noisy, or be
di�cult to implement. Such a controller would result in more rapid wear
and tear in actuators and other hardware.

State - and Parameter estimation For control systems that are based
on a kinematic model, including the one discussed in Chapter 3, parameter
estimation is an important issue, as the stability analysis may rely on the
model parameters. This should be addressed in relation to a robustness
analysis. State estimation is an obvious topic for further work, because in
any closed loop system needs state measurements or estimates to calculate
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the control input.

Robustness

The assumptions made in Chapter 3, state that full state measurements and
exact model insight is available. This is not the case for real systems, where
model errors and vague wind estimates are likely to occur. A robustness
analysis should be performed with the control system in order to conclude
on noise rejection and sensitivity to model errors.

Prototype testing

Last, but not least, one should test the control system in a real application.
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