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Problem Description

It is crucial for high-precision managed pressure drilling (MPD) operations
that the pressure at critical locations is estimated accurately. To determine
the pressure profile of the well, certain parameters should be estimated as
well. In particular, choke flow characteristics and annular friction and density
stand out as good candidates for estimation as they are encumbered with
uncertainties, difficult to tune offline, and slowly varying.

Objective

The objective of the thesis is to continue the work on observers for estimation
of the bottom hole pressure during drilling. The sub tasks are to:

1. Compare the moving horizon observer with an unscented Kalman filter.

2. Use information on process and measurement noise to further improve
the moving horizon observer by utilizing covariance information from
the unscented Kalman filter as weighting.

3. Develop a non-linear friction model for the annular friction using basis
functions, and implement this into the moving horizon observer and
compare with a simpler friction model.
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As far as the laws of mathematics refer to reality, they are not certain, and
as far as they are certain, they do not refer to reality.

- Albert Einstein
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Abstract

To avoid hole stability problems in an increasingly fierce drilling environ-
ment, the demand for accurate control of the pressure profile during drilling
operations is rising. As standard instrumentation of drilling rigs have poor
measurement of the bottom hole pressure, there is a need for estimation.
However, a precise model of a drilling process is difficult to obtain, so a com-
petent observer, using a simpler, lower order model, should be satisfactory.

In this master thesis several approaches on estimation are discussed to-
gether with a suggested improvement in the annular friction model. The
estimators tested are: First, the moving horizon observer, which is presented
together with prior work by the author and Marcel Paasche [19]; Second,
the unscented Kalman filter, which is a new estimation candidate introduced
together with regularization to compensate for the slow update and lack of
availability in bottom hole pressure measurements. Last, different combina-
tions of the two observers are proposed.

All observers are tested in simulations and good performance is found
for both the MHE and UKF. Parameter adaptation is found to be effective
for both observers, but the UKF encounters some minor observability is-
sues when the system is not sufficiently exciting. Different combinations of
the two observers increase computational complexity, unfortunately without
achieving better accuracy in estimates. The estimates are deteriorated when
the alternative friction model is tested, and it is thus considered a failed
attempt to improve the simple third order Kaasa model.
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Chapter 1

Background

1.1 Motivation and Introduction to Drilling

Although there has been a minor decrease in worldwide oil consumption
over the last two years, the growth in Asia Pacific, Africa and Middle East
continues (Figure 1.1) and is inevitable for years to come. In particular, their
strive for a better standard of living increases energy demand. Renewable
energies have become a primary focus area, but hydrocarbons still account
for a large part of the total primary energy supply [6].

As of today, the already produced reservoirs still hold large amounts
of crude oil and gas that potentially can be extracted and new reservoirs
with complex formations are yet to be discovered. Thus, the importance
of exploiting greater percentages of these complex and difficult reservoirs is
compelling and precise drilling methods are essential in the progress.
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Figure 1.1: World Oil Consumption. The area-specific plots are scaled to
more easily grasp the development in consumption

To better understand this work, consider the simplified drill rig illustrated
in Figure 1.2. The drill bit cuts the rocks, either by using compressive failure
or by shearing off slices, while drill collars provide weight on the bit to help
ease the task. Collars are part of the entire drill string, coupled with a motor
attached to the top drive of the derrick, which makes the bit turn at the
bottom of the well bore.

During drilling, the length of the drill string is gradually increased by
adding stands of pipe (approximately every 27 meters), referred to as making
a pipe connection. Sections of steel pipe, casings, are placed in the bore
hole and cement is often filled in the open space outside the casings to help
maintain robustness of the well. By adding sets of subsequently smaller hole
sizes drilled inside each other, a smaller bit can be used further into the well,
where the potentially more uncertain and unstable formations can be found.

There is a constant need to remove generated cuttings and maintain pres-
sure down hole. Drilling fluid, known as “mud”, circulates through the bit
and carries the cuttings up through the annulus where it exits through a
choke. After exiting, the fluid returns to the mud tanks, where the cycle
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starts over. The “Rotating control device” in Figure 1.2 seals off the annulus
from the outside while mud-flow out of the annulus is controlled by a choke.
This allows for better pressure control, but it is not standard in conventional
drilling techniques.

Controlling the pressure is important to prevent uncontrolled reservoir
influx and, among other issues, prevent bore holes from collapsing, minimize
loss of mud when drilling into depleted sections of reservoirs, reduce danger
when drilling into high pressure zones and avoid skin damage which can lower
production later on. Kicks (Oil, natural gas and/or water flowing up the
annulus) may occur and eventually turn into blowouts (uncontrolled release
of crude oil/natural gas from an oil /gas well), which leads to large financial
losses, devastating environmental disasters and possible loss of human and
animal lives.

Topdriv . .
. OPAe N Rotating Control Device

/" From

", Main &Y
“\ Pumpji
Drill ng
Sea Level
Seabed
/’;7Annulus
N
T T Casing
Dri_l} Eit i
- - Drill String
BN —
LN

Figure 1.2: Example of Drilling System

1.2 Estimation of Well Pressure

As described in Section 1.1, accurate control of annular pressure during
drilling is of great importance. Managed pressure drilling (MPD) has emerged
as a result of this demand, and TADC Underbalanced Operations Committee



& Managed Pressure Drilling Committee have defined MPD as “an adaptive
drilling process used to more precisely control the annular pressure profile
throughout the well bore.” Further, they define the objectives to be “to ascer-
tain the down hole pressure environment limits and to manage the annular
hydraulic pressure profile accordingly”.

The annular pressure profile is difficult to obtain, and the bottom hole
pressure (BHP) is therefore often the variable chosen for control. Since the
measurements are gathered normally by using mud-pulse telemetry, they are
not only characterized by slow sampling, but also by their absence at certain
points of the drilling procedure, e.g. during pipe connections. Pressure
drop due to friction and movement of the drill string, and reservoir influx are
factors that affect the certainty of the BHP, and the pressure should therefore
be estimated.

OLGA [5] is a powerful, market-leading multiphase simulator for engi-
neering the flow of oil, water and gas in wells, pipelines and receiving facili-
ties. However, simulations often have to be combined with tuning of certain
parameters which can be done via automatic methods such as parameter es-
timation or via a well trained, experienced operator. The former is desirable,
as it in the long term will have reduced costs in comparison to the latter.
Therefore, several attempts to estimate and control the BHP have been car-
ried out, often using low order models. [4] uses an unscented Kalman filter
(UKF) to estimate friction parameters and choke coefficients for an MPD
application. Down hole pressure predictions are shown to be fairly accurate,
despite the estimates showing unwanted behavior. [16] uses the UKF together
with nonlinear model predictive control (NMPC) to keep the well pressure
within the pressure restrictions of a reservoir formation. Successful control
of the downhole pressure is provided, but again unwanted behavior, i.e oscil-
lations are found in state and parameter estimates. [20], [24] and [25] uses
the moving horizon observer, an adaptive observer and the extended Kalman
filter respectively to estimate the bottom hole pressure during drilling. [17]
demonstrates automatic coordinated control of pump rates and choke valve
during surge and swab (increase and decrease of pressure in well respectively)
operations, and results are very promising compared to both manual control
and the case of only automated choke line pump control.

The wired drill pipe technology [27] has been of major interest in combina-
tion with MPD, and makes use of electrical wires, built into every component
of the drill string, so that electrical signals can be carried to and from the sur-
face. The data transmission rate is much greater than that of telemetry and
mud-pulse. National Oilwell Varco delivers the product “Intelliserv” which
is “the only high-speed, high-volume, high-definition, bi-directional broadband
data transmission system that enables downhole conditions to be measured,
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evaluated, monitored and actuated in real time.” Technology similar to the
wired drill pipe can be important in MPD. However, difficult drilling condi-
tions motivate further development of accurate estimation methods that also
help to keep costs at a minimum.

1.3 Scope and Emphasis

This thesis simulates and continues to develop good estimation methods for
a standard drilling scheme. The unscented Kalman filter is proposed as
an alternative to the moving horizon observer, previously presented in the
author’s project assignment (See Section 1.4). Main goals are to:

1. Test performance of the unscented Kalman filter on a standard drilling
scheme.

2. Compare performance of the unscented Kalman filter with the moving
horizon observer.

3. Model annulus friction using basis functions.

4. Use information from the unscented Kalman filter to further improve
performance of the moving horizon observer.

1.4 Previous Work in Project Assignment

Prior to this thesis, the author has written a project assignment on the mov-
ing horizon observer. The assignment focused on the regularized nonlinear
moving horizon observer presented in 2] and work done by Marcel Paasche
[20]. Further, it discussed the implications of process noise modeling i.e ac-
knowledging the presence of model errors. The observer theory on the moving
horizon observer presented in the project assignment is re-used in this thesis
and results obtained are presented to compare performance to the unscented
Kalman filter.

1.5 Report Outline

The project is divided into four main sections:

1. In Section 2, the well known “Kaasa Model” is presented and described.
Also, minor changes that affect this thesis are made, including the
updated model of annulus friction;



2. In Section 3, the regularized nonlinear moving horizon observer and
unscented Kalman filter are presented along with changes that may
positively affect the accuracy of the estimation. Also, some thoughts
around different aspects of implementation are given;

3. In Section 4, simulations and results are presented to demonstrate per-
formance of the estimators;

4. In Section 5, conclusions are drawn and recommendations for future
work are given.



Chapter 2
Modeling

2.1 Model Summary

The model used in this project is based on the Kaasa model presented in [23],
originally developed in [11], with minor changes. It is a fairly simple third
order model that shows both pressure and flow dynamics for the system in
Figure 2.1.

The Kaasa model defines the system with the following three first-order
differential equations and outputs:

pc = Va(qmt — {choke + Qback + Qres — ‘/a) (21)
. Ba

Pp = Vd@p — Qbit) (2.2)

. 1

Quvit = M(pp — Pec — qum’t - 02 |q12it - QTes| (sz’t + qres) (23)

+(pd — pa)ghvit)

Y1 = DPe (24)
Y2 = DPp (25)
Ys = pe+ it + paghu (2.6)

where p. is the choke pressure, p, is pump pressure, gy is the flow rate
out of the drilling bit, genere and g, are the choke (Section 2.1.1) and pump
flow rates respectively, gpqer 18 the back-pressure pump flow rate and ¢, is
reservoir influx or out flux. Ay, is the bit’s depth and ¢ is gravity. (., B
, Va, Vg and pg,pq are the bulk modulus’, volumes and average densities for
the annulus and drill string, respectively and V, is the change in volume of

7
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the annulus. The transition to resulting differential change in ¢;; from net
pressure difference is done by M = M, + My ,where M; = p; fol ﬁ(@d:v ,
integrating the inverse of the area over the entire length of the annulus/drill
string. Last, #; and 6, are friction parameters for the annulus and drill
string respectively. It is notable that the flows in the annulus and drill string
originally were modeled as turbulent, whereas later the annulus flow, as in
this project, was modeled laminar. This is seen in 2.3 where 6, is multiplied
by Grit — qres (laminar), while 6, is multiplied with |gpie — Gres|(Qpit — Gres)
(turbulent). Imsland [7] concludes that a quadratic model for annulus flow
is not optimal, and different test data obtained from the North Sea points in
the direction of laminar flow. The third output is a measurement of py;, i.e.

Doit = De + 01qpit + paghuit (2.7)

The above model is considered as

T = f(@,w) (2.8)
Yo = h(wy,ue) (2.9)

with state vector z; € RY, input vector u, € R}, and output vector y, € Ry at
discrete time ¢. f(z,u;) describe how the state vector propagates from z; to
x141 with time step At and h(x;) maps the state vector to its corresponding
output. For parameter estimation, the state vector is augmented with n,
parameters with p, = p;1. Hence, the dimension of the state vector is
ng + np. For simplicity, n, will denote the number of states and augmented
parameters in the following.
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Control
Choke

& oot __pO
Z

Backpressure
Pump

Qb pE

/" %
Drillstring -7 ¢ \ Annulus

hlm

Drill Bit

Figure 2.1: Modeled system

2.1.1 Choke Model

The flow through the choke is an important part of the model, and the plant-
model mismatch is highly dependent on this term. In this project, as in [23],
the classic orifice equation

/2
Qchoke = Kczz p—(Pc—po) (210)

where K. = A.Cy4, A, being the opening of a fully open valve and C,; being
the choke valve discharge coefficient, has been used. z, is the normalized
valve opening taking values between zero and one, and py is the pressure
at vena contracta (the location of minimum cross closest to the orifice in a
fluid stream). A couple of assumptions have been made. First, py has been
approximated with the pressure downstream. Second, the orifice equation is
based on assumptions of incompressible and steady flow, which is not valid
for our system. Therefore, these assumptions have been neglected.
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For implementation and fitting purposes, (2.10) is modified to
Gchoke = chz(zz) (pc — Do) (211)

where K, = A.Cy, /p% and g,(z,) is fitted to experimental data. Note that
pa here is lumped into K.

2.1.2 Back Pressure Pump

The back pressure pump is used to control the choke pressure p. if it is
necessary after the pump is fully stopped, i.e. ¢, = 0. The term enters
therefore directly into equation (2.1). A back pressure pump is not present
in the scenario used for simulations in this work.

2.1.3 Reservoir Influx and Out flux

Reservoir influx (¢..s > 0) and out flux (¢,.s < 0) represent possible unwanted
gasses and fluids pushing into the well bore, and mud losses due to formation
holes or areas with low pressure. A reservoir influx or out flux is expected
to enter at the drilling bit and is thus added to the annulus friction term
since it has to travel to the choke through the annulus. Intuitively, the term
also enters directly into equation (2.1). Under normal conditions ¢,.s can be
neglected and it is thus for simplicity set to zero in this work.

2.1.4 Drill Bit Check Valve

Drill bit check valves are added to the drill string to prevent mud fluids
from traveling up to the surface, i.e. keeping the bit flow positive (g; > 0).
Equation (2.3) should therefore be modified to

%(pp — Pe — elqm't — 92 ‘Qbit - QTes| (Qbit + %"es)
Qit = § +(pd — Pa)ghuit), gir >0 (2.12)
max(ﬁ(pp — Pe + (pa — pa)gheit), 0), Qrir < 0

which prevents g,; from decreasing once it is zero.

2.1.5 Friction Model

Friction is the single most complex and uncertain factor to model and a
wide varity of techniques can be applied. Previously, this thesis presented
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the laminar and turbulent model for the annulus and drill string frictions
respectively as they appear in the Kaasa model [11]. This section discusses
another modeling technique which makes use of function approximation.

2.1.5.1 Approximating Functions

An unknown function h(z) that describes the friction is approximated with
a normalized weighted average of N local approximators hx(z), that is

ha(z)
) = Y on(@iua) = o) | " 213)
) Iy (@)
where
¢i(x) = ) (2.14)

> wi(2)
is a basis funcion which for each x forms a partition of unity, i.e the sum
of all the function values at = is 1 and there is a neighborhood of x where
all but a finite number of the functions are 0. w;(z) is the local weighting
function which in this thesis is chosen as

wi(:v)z{( ’”> e —al <p (2.15)

0 , otherwise

which gives a pyramid form for each w;(z). ¢; marks the top of the pyramid
and p; the width at its base.

2.1.5.2 Approximating Friction

The “real friction” is assumed to be a function of the flow at the bit (and
slowly varying, but this is omitted in further analysis for simplicity) and is
denoted as F(qp;). Since the model of the friction, F'(gy:), is not accurate,
i.e. F(quit) # F(qpit), model error is parametrized with a parameter vector
0 € R™ and accompanying basis functions, ®(qyit) = (d1(qbit); --» g (qoit))* -
The local approximator introduced in the prior section is defined as

hilapi) = F (i) 0 (2.16)

Further, an approximator F(qbit)q)(qbit)Té is constructed, where there exist
a @ such that
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Fai) (i) 0 = F(quir) (2.17)

Last, annulus and drill string frictions are defined as f,(qi¢)” 0, and fa(quie)* 04
respectively, where f(qui:) = ®(quit)F(qpis)”. The state equation for qy; and
measurement equation for py; are modified according to the above:

) 1
Qit = M(pp — Pe — fal@vit) 00 — fa(@it) 0a + (pa — pa)ghuiz) (2.18)

Ys = Dc+ fa(Qbit)Tea + paghbit (219)



Chapter 3

Observer Theory

3.1 Nonlinear Moving Horizon Observer (NMHE)

This section discusses the “Regularized Nonlinear Moving Horizon Observer”
(RNMHE) as it has been developed in [2], based on the moving horizon
principle. The goal is to apply the theory on the model discussed in Chapter
2, similar to what has been done in [20].

The principle of a moving horizon in control and estimation theory is
widely known. In model predictive control (MPC), one optimizes a cost
function over a forward prediction horizon to acquire an optimal input over
a control horizon [15]. In a moving horizon estimator however, the hori-
zon is backwards in time. The goal is to obtain a state trajectory which
fits measured data well, and is consistent with an assumed model. Unfortu-
nately, data may not excite all outputs for every point in time which can be
problematic, especially for combined state and parameter estimation with an
augmented state vector, which is central in this project.

A convergent estimator has been investigated earlier [20] , seeking to
minimize the weighted and regularized least squares criterion

J(Eong Ten, I) = [[Wi(Yy — H(@en, Up)) |
+ ([ M(2—ny — i’thHZ, (3.1)

13
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where

I Yt—N

Y, — yt—{\fﬂ ’ (3.2)
| U
TN = f@_N_14-1,U-N-1), (3-3)
h(Z—n )
R h O fut_N(i’t_Nyt)
Ht(*rt—N,t7 Ut> == . ) (34)
ho f“1o...0 f”t*N(ft—Nﬂt)

fut — f(xh ut); (35)
h't = h(l't, U/t)7 (36)

Ty _n, is the optimal state estimate, I; = COU(Yt— Ny +vy Yty Ut— Ny ooy Ug) CATTIES
all prior outputs and inputs for the horizon N, and M; and W, are time-
varying weight matrices. In brief, M, is the penalizes errors in every state the
same and it is implemented as A -1, , where A is an adjustable gain. To force
the observer to penalize errors in particular states or parameters more/less,
one can increase/decrease the corresponding value on the diagonal of M, i.e.
A=wy... w,]".

W, which weights error in measurements, is not as simple. Sui Dan et al.
|2] derives how W, shall be calculated for systems which are not asymptoti-
cally stable and have model errors, as is often the case with mixed state and
parameter estimation. In short, it aims for zero weight on components that
are either unobservable or unexcited. The adaptive law for W, is defined as

WG Ul = o 3.7
where
Ut—N
v, = | (3.8)
u
the Jacobian 22(¢_,, Uy) describes sensitivity of output changes towards

changes of the different states, and « is a sufficiently small scalar. The



3.2. UNSCENTED KALMAN FILTER (UKF) 15

elements (0;,s, i = 1,..,n,) of the diagonal matrix S; in the singular value
decomposition (SVD) of the Jacobian

0H , .

oy Fne U = Usvp,SiVsvp. (3.9)
that are zero or close to zero point out modes that are not observable nor
have exciting input. The weight on these modes are effectively reduced to

zero by setting

1 .
1 _ i if 05 2 >0 (310)
05,4t 0 , otherwise
where ¢ is a tuning parameter, and choosing
1 + 77T
Wy = EVSVD,tS&tUSVD,t (3-11)
where Sy, = d@ag(gél1 e o L t). A more in-depth explanation is provided

by Sui Dan et al. [2].

3.2 Unscented Kalman Filter (UKF)

The Extended Kalman filter (EKF) has been the most common way to deal
with estimation of nonlinear systems. It propagates the power density func-
tion (PDF) through a linearization around the equilibrium of the nonlinear
system. This means that one has to linearize the system at each time step.
Julier et al. |9] discusses the limitations of the EKF, briefly summarized here:

e Calculating the linearizations can be difficult, error-prone and time-
consuming as the Jacobian of higher order systems can be hard to
obtain, or may not exist.

e A linear approximation of the error propagation has to be more accu-
rate than what is often achievable for the linearized transformation to
be reliable.

This section discusses another approach for state estimation widely known
as the unscented Kalman filter (UKF) or sigma-point Kalman filter.

The algorithm used for the UKF in this thesis is presented in [12], originally
developed by Julier et. al. ([8], [10]), and repeated below.
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The augmented state vector is defined as

xy = Ty |, (3.12)

where x;, z, and z, holds process states, process noise and measurement
noise respectively. Augmentation is not necessary, but makes further calcu-
lations more straight forward as sigma points for process noise and measure-
ment noise covariance also has to be generated later on which will become
clearer when Equations (3.14)-(3.28) are examined.

The augmented state dimension is given by the sum of the process, process
noise and measurement noise dimensions respectively

N =n, +ny, + ny, (3.13)

and the augmented covariance matrix is a diagonal matrix defined as

P, 0 0
rr=|0 P 0 |. (3.14)
0 0 P,

where P,, P, and P,, are the process, process noise and measurement noise
covariance matrices respectively.
2N +1 sigma points are then calculated based on the present state covariance:

= &, i=0
Gl = 478, i=1,.,N , (3.15)
= &0, —~S, i=N+1,..,2N

where S; is the ith column of the square root of the covariance matrix

S = \/E (3.16)

and

y=VN+X , X=0a*(N+k)—N, (3.17)

where o and k are tuning parameters. & is chosen > 0 to ensure semi-positive
definiteness of the covariance matrix, and 0 < o < 1 controls the sigma point
distribution. Van der Merwe [26] concludes that « ideally should be a small
number, i.e. the sigma point distribution should be kept dense.

The ith sigma point is the ith column of the sigma point matrix
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Xk

X?,kq = XZk—l

X1

where the superscripts z, v and m refer to states, process noise and measure-

ment noise respectively.
The sigma points are transformed through the state-update function

, (3.18)

X’:Lc,k/k—l - f(XZx,k’—l’ X.Zk_17 Uk_]_)7 7/ - 0, 1, ceey 2N (319)

The a priori state estimate and a priori covariance are calculated as the
weighted sum of the sigma points:

2N

T, = Z(wi,mxikz/kz—l)v (3.20)
i=0
2N

Pro= > (Wi X8y — ) (wieXTy g — 2)7 (3.21)

=0

where the weights w; ,,, and w; . are defined as

A
= 2 = 22
Wo,m N 1=0, (3.22)
A
W, = N+)\+<1_a2+6) i=0, (3.23)

1

— i.c — ‘:1,...,2N, 324
’ Ye T o) (3:24)

where [ is a non-negative weighting parameter used to incorporate the zeroth
sigma point for the calculation of covariance. Van der Merwe [26] states that
the optimal value is § = 2 for Gaussian priors.

The mean and covariance of the measurement vector are calculated as

2N
Up = Z(wi,in,k/kq) (3.25)
i=0
2N
Py = Z(w@ch,k/k—l — U ) (Wi Yige—1 — g)" (3.26)
i=0
where
Yirm-1 = XS XTur), i=0,1,...,2N (3.27)
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Finally, the cross variance and Kalman gain are calculated according to

2N

Pry, = Z(wi,cxik/k—l - iﬂl;)(wi,cYLk/k—l - gkz_)T (328)
=0

Ky, = Py, Py (3.29)

and the unscented Kalman filter estimate and its covariance are calculated
using the standard Kalman update equations (for derivation see Appendix

A):

T, = &, + Ki(yr — 0y) (3.30)
Py, = P, — KyPy K} (3.31)

3.2.1 UKF with Missing Measurements

The unscented Kalman filter as presented in the previous section requires
that measurements are available at all times. If one or more measurements
are absent, the calculation of the state estimate in (3.30) will have difficulties
as the measurement vector y; will contain components without given values.

An immediate solution is to zero out corresponding columns in the Kalman
gain matrix K} so that the particular components in question do not take part
in Equations(3.30)-(3.31). However, this will greatly affect Equation(3.31),
as semi-positive definiteness of the covariance matrix no longer can be guar-
anteed, potentially introducing complex numbers in Equation (3.16). Only
applying the Kalman gain with zeroed out columns in the state update equa-
tion (3.30) could be an option, but it is not desirable as the obvious relation
between Equation (3.30) and (3.31) will be disturbed. There are better so-
lutions which will be investigated further.

3.2.1.1 Applying Last Available Measurement

The easiest solution is to continue to run the filter with the last known mea-
surements, which will work satisfactory in periods when new measurements
are arriving frequently. However, there may be times when measurements
are absent for longer periods of time and consequently much of the dynamics
can to a large extend be neglected. Pipe connection during drilling is a valid
example of this particular situation with lasting absence of the bottom hole
pressure (BHP) and therefore requires a different, more complex solution.
Also, if measurement update frequencies are low for a given system, esti-
mates in between updates may neglect a big part of that system’s dynamics
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and requirements for precision may not be met as the estimates will try to
track the measurements.

3.2.1.2 UKF with Regularization (RUKF)

A third solution is to utilize the a priori estimates calculated in (3.20) and
approximate replacements for the missing measurements. This can be done

by

U = h(ZTx, m, uy) (3.32)

where m is measurement noise, u; is the current input and z, holds the
state measurements still available together with the a priori estimates of the
remaining states. More precisely

1=1,...,n,.

B vir if yix € R is a measurement of z;
T = . . .
Z;, if the measurement of z;; is unavailable

(3.33)
Further, the measurement vector is updated according to
ik 1f Yok € R excists ,
Yik = %k . Yik . , i=1,..mn, (3.34)
Uik if yir is unavailable

This solution is the most clever one as it makes use of all the information
available and it does not require interchanging of more filters, which easily
can complicate implementation.

To demonstrate the performance of this solution consider the van der
Pool oscillator given by the two first order equations

j,’l = XT3 (335)
iy = p(l—ad)ry+a; p=0.2 (3.36)

with output vector y = [x; x5|T. If direction of time is reversed, i.e. both
equations are multiplied with —1, this system is unstable for certain initial
conditions, in particular those which start outside an unstable limit cycle [13].
Those which starts within, will lead the system to converge to the equilibrium
[0 0]T. This example is carried out on the van der Pool oscillator with
reversed time as it demonstrates the differences better.

Process and measurement noise is added to the system, both with co-
variance of 1073I,. Since it is not the point of this example to illustrate
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convergence from offset initial conditions, they are chosen equal to one an-
other, zp = &9 = [0.1 0.1]7. Also, P,, = I and a, 3, and x are set to 1, 2
and 0 respectively. u is set to 0.2 in the plant and 0.3 in the model to get a
small, but still significant plant-model mismatch.

Figure 3.1 illustrates how poorly the observer performs when the measure-
ment of x5 is lost for the period 200 — 400s. During this part of simulation,
estimates are calculated based on the last measurement that was available
to the observer.
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Figure 3.1: States for van der Pool oscillator where observer applies last
available measurement at all times
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Comparing that result to Figure 3.3, which make us of the regulariza-
tion presented in Equations (3.32)-(3.34), it is probable that utilizing the
information the measurement of x; provides and carry out estimation with
regularized UKF instead of just applying the last available measurement is
increasing performance considerably. By examining Figure 3.2, which plots
the absolute differences between estimation errors for the two cases presented
above, it is clear that for this test scenario performance is indeed enhanced.
The peaks in Figure 3.2 indicate where the errors are largest, i.e at every local
maximum of the curve in Figures 3.1 and 3.3 during the period 200 — 600s.
The oscillative behavior in the error difference is easily explainable by observ-
ing that the amplitude of the estimates are lower than for the measurements
for the said period and thus they have to cross path at some point, forcing
the error difference to zero at the point of intersection.

0.02 ‘ :
‘ — Error difference for x1
0.01r B
0 | L | | e, |
0 100 200 300 400 500 600 700
0.015 ‘ :
— Error difference for x2
0.01- _
0.005+ B
0 | | i L I}
0 100 200 300 400 500 600 700

Figure 3.2: Additional estimation error for van der Pool oscillator without
regularization? le ||ETT0Tw/regularization - ETTOTwo/regularizationH
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Figure 3.3: States for van der Pool oscillator with regularized UKF
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3.2.2 Covariance Tuning

To achieve satisfactory estimation with a Kalman filter, tuning of the co-
variance matrices is crucial. For the unscented Kalman filter presented in
Section 3.2 these matrices are denoted P, and P,,, where the subscripts in-
dicate process noise and measurement noise respectively. Primarily, it is the
ratio between P, and P,, that is decisive for good performance, but it is
also important to have a fitting, mutual relation among the elements in the
matrices. This is usually done by the inverse quadratic method of Bryson &
Ho [1|. Here, the matrices are defined as

0 Py 0 Py

where P, , is the unadjusted version of P,, i.e

P’UICP’U,O

¢ is introduced for the purpose of being able to adjust the ratio between
P, and P,, as discussed earlier in this section.
The elements on the diagonal of P, , are calculated according to

).

where dx; is the maximum allowed estimation error in states, i.e maz|x; —
Similarly, the elements on the diagonal of P,, are calculated according to

U w

where 0y; = maz|y; —y;|. y; is the mean value of the stationary measure-
ment and y; is the largest observed deviation from this value. It is important
to stress that these calculated values will only work as initial guesses for the
covariance matrices and additional tuning of the diagonal elements and ( is
required. This is also emphasized by Bryson & Ho [1].

3.3 Observer Combinations

Two separate observers are evaluated in this thesis, but it is also interesting
to look into possible combinations of the two. This Section presents four



3.3. OBSERVER COMBINATIONS 25

different ways to utilize the unscented Kalman filter in the moving horizon
observer.

3.3.1 Prefiltering MHE with UKF

There are two terms in the least squares criterion (3.1) for the moving hori-
zon observer introduced in Section 3.1. The first term penalizes model errors
for an entire optimization horizon in the sense that real measurements are
compared to estimates the model provides for a particular initial state at
the horizon’s beginning. The second term minimizes the deviation between
the state estimate #;_y,; and an initially calculated z;_y (3.3). It forces the
solver to find a solution close to the model-based estimate z;_y which may
not be optimal at all. Therefore, calculating z; y using a one-step unscented
Kalman filter may increase performance considerably and estimates will po-
tentially converge more rapidly to the optimal state estimate zy_y,. The
latter may easily prove to be false as the UKF simulation itself may increase
computational complexity more than the MHE decreases it and this will be
investigated thoroughly when results are presented.

3.3.2 Utilize Covariance Information

The unscented Kalman filter does not require much computer utility and it
can thus be run in parallel with the moving horizon observer. Rao et al. [21]
suggests the use of covariance information from the extended Kalman filter
as the weighting matrix M, in Equation (3.1). In particular

M, = RP;! (3.37)

where P, is the process covariance and R is a scaling factor. The covariance
matrix is obtained from the one step UKF that prefilters z;, . As T;_y is an
estimate provided by the Kalman filter, it is intuitive to vary the weighting
of the error according to the covariance related to that particular estimate.
If the covariance is high, M; will contain smaller elements which will weight
their corresponding errors less. Doing so is intuitive since the difference
between 7;_n and Z;_n; far from represents deviation from any optimal
estimate as Z;_y indeed is just an estimate itself.

3.3.3 UKF in MHE

As discussed in Section 1.4, the project assignment explored different aspects
of the moving horizon observer. Its main goal was to better the observer by
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looking into changes to the cost function, combined with improvements to
the third order model. In particular, the effects of process noise in the model
was examined by modifying the system equations to

pc = Va(Qbit — Gchoke t Qback — Va) + v (338)
. P
Pp = 7(% — Qyit) + V2 (3.39)
d
. 1
Qvit = M(]?p — Pe — O1qpit — 0 |Qbit‘ Qvit + (Pd - pa)ghbitu (3-40)

with v; and v, being the modeled error in the states p. and p, respectively.
All other variables and output equations were the same as previously defined
in Section 2.1. Due to the projects time frame, this simple implementation
was all that was tested, but other approaches were briefly discussed. In
summary, some parts of the system equations are more undetermined than
others, and one can therefore aim to target the parts that are associated with
higher uncertainties. For this particular set of equations, several variables
are, or contain, candidates for estimation, and they are thus also potential
targets, e.g. the 0.s , pis and @epore. One can therefore model the process
noise in sum with these variables, e.g. —(qehoke + v1) in (3.38).

The new proposed constrained, weighted and regularized least squares
criterion presented in the project was

(@ Ten, Vi It) = |[Wa(Ys — Hi(2-n)) ||
+ IMi(@ng — 2| P+ NV (3.41)
where
Vt—N
vio= | (3.42)
U.t
I = [yen- Y usn...u)?, and M;, W; and N; are time-varying weight

matrices. M; and W, are defined as before in Section 3.1, while

N, =T'Q for some scalar I' > 0 and 2 € R™*N™vthat has a 1 at every entry,

weighting the sum of the process noise for the entire window. The noise was

free to vary to minimize the errors in estimates and states, but the direct

weighting || V;V;||? were added to prevent the values in V; from blowing up.
The modifications discussed above did provide promising results, but the

additional time complexity was a considerable drawback. The number of
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optimization variables became huge (number of variables added to the sys-
tem equations multiplied by the size of the moving horizon), and available
machine power could not carry out simulations in a satisfactory way. In par-
ticular, the moving horizon had to be decreased to close to a fourth of its
original size to keep a 3 hour real-time simulation within 24 hours.

As a result of these problems, combined with the promising results pro-
vided, this thesis seeks to find another approach that can possibly achieve
similar performance. Therefore, using the unscented Kalman filter in com-
bination with the MHE can be a clever solution, even though it is possible
that time complexity again will be an issue. Section 3.1, in particular Equa-
tion (3.4) explains how the estimate is propagated through the model during
optimization and by simply exchanging it the idea of process noise can be
incorporated in the MHE without having to add several more optimization
variables. The unscented Kalman filter will consequently, for each iteration
of the optimization problem, estimate states and measurements for the entire
horizon that minimizes the cost function (3.1).

3.3.4 Using UKF to Obtain z; from zy y,

An even simpler approach which is far less time consuming then the one
described in Section 3.3.4 is available. Here, the actual optimization problem
is carried out normally by the regularized nonlinear moving horizon observer
presented in Section 3.4 and the optimal estimate z7_y , is found accordingly.
However, the current estimate Z; is not found by iterating 2 y, through
the state model, but rather by using 77 y, as initial state condition for
a separately tuned UKF. In this way, the effects of process noise can be
incorporated nicely without a large time punishment.

3.4 Parameter Adaptation

To improve estimation, certain parameters in the model are estimated. When
looking for parameters to estimate there are several options available, but
to obtain an accurate model, it is important that one chooses those that
are encumbered with high uncertainty. In this thesis a combination of the
following parameters have been estimated:
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| Parameter | Description |

K, Flow gain for choke-flow model
Pa Density in annulus
0, Slowly varying friction parameter

Table 3.1: Estimated parameters

3.4.1 Choke-flow Model Flow Gain K.

In Section 2.1.1 the choke model is presented. It is emphasized that the
flow gain K. is a parameter with great uncertainty, and it is therefore a first
priority for estimation.

3.4.2 Density of Mud in Annulus p,

To come up with a mud mixture so that the density is equal throughout
the mud is a near impossible task. Further, the availability of measurements
that can paint a good picture of the changes in mud density in the annulus
is limited and uncertain. Therefore, p, seems like another natural choice for
adaptive estimation. The fact that p, is tuned offline based on measurements
not available online, further motivates this choice.

3.4.3 Slowly Varying Friction Parameter 6,

Section 2.1 briefly discusses the modeling of friction, in particular the fact
that annulus friction for simplicity is modeled as laminar. Together with the
fact that 6 enters directly into Eq. 2.7 for py;;, the friction factor seems like
another natural choice for estimation. Similar to p,, #; is tuned offline and
in turn depends directly on p,. This motivates a combination of these two
parameters for estimation, together with the obvious choice of K..

3.5 Implementation

To test the performance of the observers thoroughly they have to be imple-
mented in a simulation environment like MATLAB. Marcel Paasche ([19])
explains in more detail how this is done, but some important aspects are also
discussed in this thesis, among them the implementation of the unscented
Kalman filter.
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3.5.1 Model Iteration

Several methods are available to integrate a discrete model from one time
step to another, but especially for the MHE, the observer itself demands
considerable computational power. Therefore, a couple of simple methods
are evaluated for use, namely the Euler and midpoint methods which iterate
the model according to

Tr1 = o + At - f(t,2),
and

At JAN?
Thy1 = Tg + At - f(t + 7,1} + 7 . f(t,l’)),

respectively. They are examined on the simple test system

which has the exact solution

z(t) = .

Figure 3.4 illustrates how the two different methods perform for different
integration step lengths compared to the exact solution. A few key observa-
tions are made: First, it is evident that the midpoint method outperforms
the Euler method considerably with all four step lengths (At). Second, none
of the methods are close to the exact solution for large Ats and the Euler
method requires an even smaller At to approach the exponential.



30

150

150

Exact solution

————— Euler method

Midpoint method

Exact solution

2.5
Time [s]

CHAPTER 3. OBSERVER THEORY

150

150

Exact solution

——————- Euler method
Midpoint method

Exact solution

I I I I ]
25 3 3.5 4 4.5 5
Time [s]

/ -——-— Euler method /
Midpoint method /’ Midpoint method

100 - / 100 -

~——— Euler method

50+ 50

0 0.5 1 15 2 Tmfef)[s] 3 35 4 4.5 5 0 0.5 1 15 2 T‘mZéS[S] 3 3.5 4 4.5 5
Figure 3.4: Accuracy of Euler (dashed, blue) and midpoint (dotted, black)

methods for © = z, Upper left: At = 1, upper right: At = 0.5, lower left:
At = 0.2 , lower right: At =0.1

Shannon’s version of the Nyquist-Shannon sampling theorem states that
“if a function x(t) is limited to the band from 0 to W cycles per second it is
completely determined by giving its ordinates at a series of discrete points
spaced ﬁ seconds apart” [22]. This theorem is complex to apply to the
system in this work, so a sufficient integration step length is best found by
trial and error. Running the simulations with a too high At will cause un-
wanted oscillatory behavior and At is therefore decreased until performance
enhancement is saturated. The same approach is applied when the integra-
tion method is chosen. It is found that the simple Euler method with a
small integration step length performs satisfactorily and it is thus no use in
applying the more complex midpoint method. This concur with the results
presented in Figure 3.4, in particular the two lower plots which demonstrates
behavior with the lowest integration time steps.



3.5. IMPLEMENTATION 31

3.5.2 Normalization

The pressure at the bit p; has a magnitude of around 240barg while the
choke pressure p,. is varying between 10 and 30barg. Consequently, the solver
will penalize errors in pp;; more since its magnitude is higher and all errors
are combined in a scalar penalty in the cost function. This scaling problem
affects several other variables too and thus some sort of scaling is required.
Ranges are thus defined for the variables that enter the cost function and
normalization is carried out by dividing the variables with the maximum
value of their range.

3.5.3 Solver for Least Squares Criterion in MHE

The least squares criterion in the moving horizon observer has to be min-
imized. For this project the TOMLAB Optimization Environment [18] is
used for fast and robust large-scale optimization in MATLAB. A wide va-
riety of solvers are available, among them ucSolve which is chosen for this
particular optimization problem. ucSolve solves unconstrained nonlinear op-
timization problems with simple bounds on the variables, using several of the
most popular search step methods (e.g. the Newton and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) methods) for unconstrained optimization.
Almost every classical optimization problem makes use of an objective
gradient and a Jacobian matrix to minimize/maximize a particular cost func-
tion. More optimization variables give larger Jacobians, which is time con-
suming to work with from a computational complexity point of view. These
matrices may be quite sparse and efficient methods that utilize the sparsity is
available [3]. However, in this project, ucSolve is used as solver at all times.

3.5.4 Additional UKF Implementation Changes

The framework used in this work is developed by Marcel Paasche to simulate
performance of the moving horizon observer. Briefly, it contains scripts and
functions for model iteration, input controller, the moving horizon observer
and cost function, parameter calculations, data loading, simulation evalua-
tions and more. Also, the framework has the great benefit of being able to
set up several simulations in an excel spreadsheet before execution so that
multiple simulations can be carried out without any problems.

Marcel Paasche’s work made it easier to implement and simulate the per-
formance of the unscented Kalman filter as it just had to be integrated with
the scripts and functions that already existed. The filter was first imple-
mented on the less complex van der Pool oscillator (Section 3.2) to simplify
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troubleshooting and initial testing. Further, a similar function to what al-
ready existed for the MHE in the framework was created together with a
variable that chose which of the two observers to apply during simulation.



Chapter 4

Simulation and Results

4.1 Grane Data

Simulations are performed in combination with data from Statoil’s Grane
field. However, all parameters are not known, so their values have to be de-
cided. First, mud density is assumed to be constant throughout the annulus,
and can therefore be calculated using p = pgh + pg, which for conditions
during zero flow gives

DPuit,pd — Pe,pd ' (41)

P = ghyit

Then, average drill string mud density is calculated as

Daiff
& Pe ghyit’ (4.2
where pg; ¢y makes up for the difference in pressure between pump and choke.
This number is a tuning parameter, as the logs can not determine it precisely
due to an assumed pressure release valve. Further, the annulus and drill
string volumes are calculated with basic geometric considerations using data
obtained from Grane, but these will not be displayed here. Last, friction
factors are calculated using steady state values obtained from the Grane

data, resulting in the simple equations

it,ss — FMe,ss T FPa h %
91 — pbt,z p,< Pad bt’ (43)
Qbit,ss
— Pbit,ss + ss + h %
92 — Po t,¢ q];p, Pdg bt. (44)
bit,ss

33
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Grane data also provides the normalized check-valve opening (Figure 4.1),
which is equal for all simulations in this section.

=

—— ZC

/T

2000 4000 6000 8000 10000 12000
t[s]

Normalized opening
o
[$))

OO

Figure 4.1: Normalized choke valve opening (0: closed, 1: fully open)

All parameters used are summarized in Table 4.1, with their respective de-
scriptions.

Parameter ‘ Value ‘ Description ‘

V., 11.8 Annulus volume

Va 4.6 Drill string volume

B 8000 Annulus bulk modulus

B 10000 | Drill string bulk modulus

Pa 0.0118 | Average density annulus

Pd 0.0115 | Average density drill string

K, 1 Flow gain for choke-flow model
Do 0 Pressure downstream

0, 420 Annulus friction factor

65 135310 | Drill string friction factor

M 65000 | Volume flow to pressure transition
Rt 1827.6 | Vertical depth of bit at t =0

g 9.81 Gravitational force

Table 4.1: Chosen and tuned parameter values, calculated from data from
Statoil’s Grane field

4.1.1 Measurement Updates

In addition to parameter values Grane also provides measurements of p.,
pp and py;;. However, different update frequencies has to be handled as
measurements of new choke and pump pressures are available at f,. , = 1Hz,
while pressure at the bit only is updated at f,,, = 0.05Hz. Estimation
commences when a new measurement of p. and p, arrives, but the 19 seconds
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in between has to be handled in a clever way. The approaches are different
for the two observers tested in this thesis.

4.1.1.1 Moving Horizon Observer

The moving horizon observer has a receding horizon which reduces the conse-
quences of this problem if the size of the window is carefully decided. Choos-
ing a large window will include more information about how the system is
evolving with time, as several measurements of p. and p, will be included.
Also, it is desirable to include a certain number of py;; measurements, but be-
cause of the low update frequency the horizon will be intolerable large from a
computational complexity point of view. Thus, it is even more important to
keep the horizon so that it just includes a new measurement and by defining

included measurements of py;;
ben

this particular requirement is met. Unless otherwise stated, N = 40 is used
throughout this thesis, i.e. two measurements of p,; are included in each
estimation.

It follows from the different update frequencies that the measurement
vector, Y; (3.2), has to be modified since most of its entries do not hold a
value. This is done by first defining the matrix

N =

}/67‘7‘07‘ = Y;f - H<xt—N,t7 Ut)

where Y; and H(z;—n,, U;) are defined as before (Section 3.1). Further, each
element in Y,,., that corresponds to an empty element in Y;, is assigned a
zero value. Last, to compensate for the arisen, skewed weighting in the least
squares criterion (3.1), Yeror is modified according to

/ Y, - N
Yermr — _error 7
N—-M
where M is equal to the number of zeros in Y,,..,.. This ensures that the
terms in the cost function are weighted correctly.

4.1.1.2 TUnscented Kalman Filter

The unscented Kalman filter does not make use of a horizon and is thus even
more vulnerable to lack of measurements. Therefore, this thesis presented
different approaches to manage the problem in Section 3.2.1. Particularly, the
UKF with regularization (Section 3.2.1.2) demonstrated promising behavior
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in initial tests and is thus the main focus for the pure UKF results presented
in this section.

Another solution, that was introduced in Section 3.2.1.1, is to keep up
estimation with the last known measurement. This is a solution that seem-
ingly will provide good performance, but as mentioned earlier, concerns of
neglecting system dynamics in the relatively long period between updates
are present.

4.2 Parameter Estimation and Freezing

The regularized NMHE developed by Sui Dan et al. [2] and summarized in
Section 3.1 possess a unique ability to freeze parameters when there is little
information available in the system. This is done, as mentioned in Section
3.1 and thoroughly explained by Sui Dan et al. |[2], by effectively setting
the weight on these parameters to zero when observability and excitation are
low. Consequently, the observer can estimate a larger number of variables
satisfactory without doing so at the sacrifice of performance.

However, this is not the case for the unscented Kalman filter where every
process state and parameter is estimated without regard to observability.
Particularly, when measurements of py;; are absent there may not be enough
information in the system to properly estimate K., p, , #; or other desirable
variables. These assumptions are taken into consideration when evaluating
the UKF results.

4.3 Nonlinear Moving Horizon Observer (NMHE)

Most of the work and results on the nonlinear moving horizon observer were
done in the project assignment written prior to this thesis. Therefore, the
results presented in this section are given mostly for comparison purposes,
but they will be as carefully examined and discussed as the rest. First, a
simulation of the system with no parameter adaptation is executed, using
calculated values from the Grane data (Section 4.1). Then, a combination of
three adaptive parameters are tested to hopefully improve performance.

4.3.1 No Adaptation

The first simulation is of the system without any modeled process noise
nor parameter adaptation, and it shows promising behavior for the RNMHE
(Figure 4.2). The first two states, p. and p,, quickly converge to the measured
values, and the same holds for the estimate of the bottom hole pressure, py;.
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There is no measurement for the flow at the bit, and consequently nothing
of particular interest can be said about the third state, ¢;. However, as
anticipated from the system equations, clear correlations are found with p,
and p..

Simulation of the first pipe connection, which takes place during the sec-
ond half hour of simulation, gives reliable estimates for py;. It is crucial
to get good estimates during this particular phase, as availability of online
measurements normally is absent. However, as seen from Figure 4.2, there
do exist measurements in this particular data set. They are included solely
for comparison and validation purposes, and consequently not used as inputs
to the observer.

After the first pipe connection and throughout the rest of the simulation,
estimation accuracy worsens dramatically, and py;; is off by values approach-
ing 10 bargs which is completely unacceptable. This easily traces to the error
in the estimate of p., which in turn is affected greatly by gcpore. Confirmation
is to a great extent found by comparing Figure 4.2 with 4.3, where a distinct
correlation between g.uore and the estimation error for p. can be seen . This
highly motivates estimation of the flow gain for the choke-flow model, K..
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Figure 4.2: MHE without adaptation: Measured states and bottom hole pres-
sure (solid, blue), estimates (dashed, red), logged measurements py; (dotted,
black)
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Figure 4.3: MHE without adaptation: Volume flow in pump (solid, blue) and
choke (solid, green)

4.3.2 Adaptation of Flow Gain K,

The preceding Section motivated estimation of flow gain K, as changes in
estimates were correlated with q.pore. Figure 4.4 clearly demonstrates how
adaptation to K. dramatically increases performance and the changes are
easily traced to gepore (Figured.5) as expected. In particular, the estimates of
p. are significantly better throughout simulation and p, also improves slightly,
especially in the period between the two pipe connections of the simulated
scenario. During pipe connections on the other hand, performance is about
the same, which can be explained by a relatively good tuning of p, and 6; in
combination with a decent overall state estimation.
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Figure 4.4: MHE with adaptation to flow gain K.: Measured states and bot-

tom hole pressure (solid, blue), estimates (dashed, red), logged measurements
poir (dotted, black)
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Figure 4.5: MHE with adaptation to flow gain K. Volume flow in pump
(solid, blue) and choke (solid, green)
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4.3.3 Adaptation of Flow Gain K., Annulus Density p,
and Annulus Friction Factor 6,

In pursuit of an even better estimate, a combination of adaptive K., p, and
0, is tested. The rationales behind this choice are many. First, the annulus
density directly affects Equation (2.3) for g and (2.7) for py;. Second, the
density and friction factor are tuned to steady state information, which it
is reasonable to anticipate does not hold for transient behavior that occurs
during pipe connections. It is also important to recognize the way the choke
model is implemented where p, is lumped into K., as mentioned in Section
2.1.1. As steady state values used for offline tuning of #; and p, are directly
related, it makes sense to try out a combination of these two parameters for
estimation.

Unfortunately, the overall accuracy of the observer is only barely in-
creased. By examining Figure 4.7 and comparing it to Figure 4.4 only a small
improvement in the estimate of p, is found when down-links (a communica-
tion from the surface to the bottom hole assembly (BHA), e.g. instructions
to change drilling direction) are sent at approximately 4000, 6000 and 10 000
seconds. This affects the estimate of ¢;; which enters directly into Equation
(2.7) for pyi, and by careful examination of the plots of py;;, with and without
adaption of p, and 0, a minor decrease in estimation error is found.

However, the improvements are small, and it may be that the enhance-
ments obtained by only adapting K. are close to what is achievable. That
being said, the estimated parameters can be hard to obtain online and adap-
tation is therefore desirable for all of them. This section provides valuable
results that demonstrate that performance can be kept high, despite uncer-
tainties in several different model parameters.
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Figure 4.9: MHE with adaptation to flow gain K., annulus density p, and
annulus friction factor 6;: Volume flow in pump (solid, blue) and choke (solid,
green)

4.4 Annulus Friction Modeling

The modified friction model of the annulus was introduced in Section 2.1.5
and makes use of error parametrization and basis functions to approximate
annulus friction. Figure (4.10) shows how the moving horizon observer, with
adaptation to K. and 6; for i« = 1,...,4, performs with the new proposed
friction model. Unfortunately, the estimates with this friction modeling at-
tempt deteriorate, but some minor promising behavior is found. After the
last pipe connection to about the 10000s mark the estimate of py; is better
than in most of the other simulations. Also, during the first pipe connection
the estimate tracks the measurement well. However, the large peaks seen at
around 1500s, 4000s, 6000s, 8500s and 10000s are completely unacceptable.
It may be that tuning and further investigation can improve the estimates,
but due to particularly large computational load (Section 4.7) this was not
prioritized and the attempt was considered a failure.
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Figure 4.11: MHE with adapting friction model and adaptation to flow gain
K.:Volume flow in pump (solid, blue) and choke (solid, green)

4.5 Unscented Kalman Filter (UKF)

To see if the unscented Kalman filter can perform as well as the moving
horizon observer, the UKF is tested on the same drilling scenario as in the
prior section. Two filters are presented that utilize the measurement of py;;
in slightly different ways. The first UKF only updates the measurement for
Pt When a new measurement is available, whereas the second one applies the
measurement that was received at the prior update at all times. The latter
opens the possibility of a unique tuning of the filter.

4.5.1 Ignoring Last Available Measurement

The results presented in this section is of the unscented Kalman filter with
the regularization introduced in Section 3.2.1.2 and it only utilizes measure-
ments of py;; when they arrive. The said regularization is applied both when
measurements of py;; are arriving at 0.05H z and during pipe connection when
they do not exist at all. Simulations with no parameter estimation, adapta-
tion to K., and adaptation to K., #; and p, are presented.
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4.5.1.1 No Adaptation

Simulations of the unscented Kalman filter without any parameter adapta-
tion, i.e. pure UKF, is presented in Figure 4.12. Immediately it is evident
that the UKF performs better than the MHE (Figure 4.2) when no parame-
ters are estimated. Both p. and p, have very high precision which to a large
extent improves py;, in contrast to the MHE results presented in Section
4.3.1. By further examination, a few similarities are found among the two
observers. The jump in p,; at approximately 1500s is found in both simu-
lations together with the peak just before the 8000s mark. These errors are
most likely a consequence of unmodeled phenomena and without parameter
adaptation they are near impossible to remove.

During pipe connections, the pure UKF outperforms the pure MHE slightly
with more consistency in the estimates. The overall performance is good and
promising for further analysis.

The choke and pump flows (Figure 4.13) do not differ noticeably from the
ones associated with the pure MHE. However, the correlation between errors
in estimates of choke and pump pressures on the one hand, and choke flow
on the other, is not found for the UKF. This can be explained as simple as
that the UKF and MHE are two different observers, but it may also be that
tuning is a decisive factor for the MHE that needs closer consideration.
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4.5.1.2 Adaptation of Flow Gain K,

Introducing parameter adaptation enhances performance for the UKFE as well
as it did for the MHE, but as the UKF already performed relatively well the
improvements are minor. Still, changes are found in key parts of simulation,
i.e. during pipe connections. In particular, at around 3000s, 8000s, and 9000s
(Figure 4.14) the estimates track the logged measurements of py; closer than
in the prior section. Also, as experienced with the moving horizon observer,
adapting to K. changes the choke flow considerably.

Figure 4.16 illustrates how K, varies with time and resemblance to K.
estimated by the MHE (Figure 4.5) is immediately recognized. It seems as
though K. decreases with time which can be explained with sediment in the
choke. This is supported in that after de-clogging at approximately 5200s,
where the choke is fully opened for a short period of time , the estimate rises
considerably before it decreases slowly again. This is an unmodeled progress
that K. seemingly incorporates in its estimate.
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4.5.1.3 Adaptation of Flow Gain K. , Annulus Density p, and
Annulus Friction Factor 6,

Section 4.2 discussed the possible effects of an increasing number of estimated
variables with regards to observability. By evaluating Figure 4.17, the results
of this Section confirm the expressed concern. Performance is unfortunately
not enhanced, but more or less kept steady. Still, the estimates for p. and
pp are impressively accurate while py;; has the same errors at approximately
the same places as before. However, it is satisfying to see that the parameter
adaptation also works well for the unscented Kalman filter.

From the parameters (Figure 4.18) a few key observations can be made:
First, p, barely changes at all, mostly due to a tuning that penalize its
derivative. This was done because a more freely varying p, deteriorated the
estimate of py;;, probably as a result of the observability issues discussed
in Section 4.2. Second, the estimated friction factor is slowly increasing
throughout simulation after an initial jump at the beginning of the first
pipe connection. This jump can be explained in that no substantial change
in inputs and outputs are seen before this point and that the observability
increases with growing excitation. The slowly increasing estimate may be
traced to changes in the volume, V,, as drilling proceeds since larger volume
in this case implies longer ways for the mud to travel which in turn implies
more friction in the system. Last, the estimate of K. differ from the prior
section. However, the same trend with the decreasing value before and after
de-clogging of the choke is found. The choke (Figure 4.19) flow is similar to
what is seen in prior sections.
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annulus friction factor #;: Volume flow in pump (solid, blue) and choke (solid,
green)

4.5.2 Applying Last Available Measurement

Since the unscented Kalman filter so heavily depends on consistent mea-
surements, the less complex solution is to continue the filter with the last
available measurement, as discussed in Section 3.2.1.1. Simulation of this
particular approach provides the seemingly best results for the observer, but
by further investigation this is a statement with modifications. However, it
opens possibilities for some alternative tuning which will be discussed in this
section.

4.5.2.1 No Adaptation

Figure 4.20 and 4.21 indicates how the estimate tracks the measurement of
Prir With very high precision. It clearly demonstrates how well the UKF
performs with consistent measurements and a worthy model. However, by
examining the estimate and measurement of py; closer (Figure 4.21)and re-
membering the update frequency of the latter, it becomes evident that much
of the dynamics in the 20s periods between arrival of new measurements are
lost. Also, the general worsened performance seen in the estimates of the
states weakens the observers credibility. The poor performance in p. and p,
is very similar to that of the moving horizon observer without any parameter
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adaptation, while the estimate of ¢; is very different from anything seen in
other simulations with its rapid changes and oscillations.

Figure 4.23 reveals that during pipe connection the observer yields unique
results. None of the other well tuned estimations carried out in this thesis
manage to capture the oscillatory dynamics of the pipe connection this pre-
cise. If similar results are demanded for prior observers it will require tuning
that will increase performance at the expense of accuracy during other parts
of simulation which is not desirable. However, the results are included since
they clearly indicate that phenomena during pipe connections can be repro-
duced with a simple model.

More specifically, the ratio between the covariances of the process noise
and measurement noise are changed dramatically in magnitudes of up to 10°
with far less uncertainty put on the model. Since a measurement for py; is
available at all times, there is seemingly so much information in the system
that the estimate of py; does not drift off during regular drilling, i.e. no
pipe connection. Room is therefore left to rely more heavily on the model
when this particular measurement is unavailable, allowing gp;; to change more
freely.

Towards the end of the pipe connection the estimate seems to drift off
to higher values, which is hard to explain intuitively. However, as this phe-
nomena just appears in this particular section, one is lead to believe that
it is connected to the increased model dependency. Landet [14] describes a
similar phenomena where no immediate pressure increase is found in p, after
flow is initiated at the pump after a period of zero flow. For the particular
result in this section this specific argument can not be used as the estimated
pump pressure actually is lower than the measured pressure. However, it is
expected that the deviation in pp,; can be traced to some model error related
to initiation of flow from zero flow.

This section is only included as an interesting side result and is thus not
explored further. The filter is implemented in a way that can cause unwanted
behavior in other drilling scenarios when py;; may be absent for even longer
periods of time and the general performance does not increase reliability for
the observer.



38 CHAPTER 4. SIMULATION AND RESULTS

30 \ \
'S 20
3
=}
< 10
O | | | | |
0 2000 4000 6000 8000 10000 12000
t[s]
v 7 T ~ T
~— = i . —_— pp
=) U
g --P
§. p,hat
AN
x
4000 6000 8000 10000 12000
t[s]
3000 ‘ i ‘
_ Iu: ;'J""vl /.n.:,.‘,::' . “,.'n-|I qbit
'S 2000 fre #rre e, v o . s ',.'\n"" S N
g J"u F.‘ ? VA e, o w A ) bt ot hat
= \ .
@ 1000 \ o y [
x "l N 1 'I"I
b i y )
0 W ; ; I —h | i
0 2000 4000 6000 8000 10000 12000
t[s]
250
Ppit
=240 N =~ ~Poighat
2, ' I
- 1
230
| | | | |
0 2000 4000 6000 8000 10000 12000

t[s]

Figure 4.20: UKF without adaptation, using last measurement: Measured

states and bottom hole pressure (solid, blue), estimates (dashed, red), logged
measurements py;; (dotted, black)
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Figure 4.21: UKF without adaptation, using last measurement: Measured
states and bottom hole pressure (solid, blue), estimates (dashed, red)
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Figure 4.23: UKF without adaptation, using last measurement: Measured
states and bottom hole pressure (solid, blue), estimates (dashed, red), logged
measurements py; (dotted, black)

4.6 Observer Combinations

To see if different combinations of the two observers can have a positive effect
on the estimate of py;, further simulations are carried out. First, instead of
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calculating z,_ with simulative propagation, prefiltering is applied. Second,
the covariance calculated by the UKF during the prefiltering is utilized as
state error weight matrix in the MHE. Last, UKF is used in two different
ways inside the moving horizon estimation as a way to model process and
measurement noise.

4.6.1 Prefiltering with UKF in MHE

Unfortunately, all predictions made in Section 3.3.1 are not confirmed by the
results presented in this section. Examining Figure 4.24 reveals a very similar
simulation to what has been seen before and in comparing it to Figure 4.4 it is
hard to spot severe improvements in the estimate of py;;. Overall performance
may even be slightly worsened, but this can relate to poor tuning.

The only noticeable betterment occurs in p, and p. from 1800s — 2500s
which only improves py;; some, but enhances the observers liability. It may
be that during zero flow in qp; the prefiltering technique provides the opti-
mization problem with an Z; n that makes different, more fitting solutions
feasible.

However, by closer inspection a significant improvement is found. Figure
4.26 plots the first 100s of the simulation scenario used in this thesis and
clearly indicates that the prefiltering causes the estimate of p,; to converge
more rapidly. Consequently, it is probable that the prefiltering causes the
moving horizon observer to be more robust to changes and sudden discrep-
ancies as it will converge to an area around the true value of the pressure
again faster. This observation also holds for the other estimates, but only
Figure 4.26 is included. Estimation of K. remains nearly unchanged (Figure
4.25).
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4.6.2 Utilize Covariance Information

The weight suggested in Section 3.3.2 is easy to implement as the prefiltering
already is present in the code. However, the results are disappointing as
they do not improve measurements at any point of the simulation. Actually,
performance is overall worsened as seen by comparison to the initial MHE
presented in Section 4.3.2 (Figure 4.4).
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4.6.3 UKF in MHE

Completely integrating the unscented Kalman filter in the moving horizon
observer as discussed in Section 3.3.3 is by far the most complex combination
of the two observers, which is reflected in the duration of the simulation (A
time complexity analysis is presented in Section 4.7). Unfortunately, there is
little correlation between performance and time complexity and the results
are yet again not very distinguishable from prior results, with relatively good
performance during pipe connections and satisfactory accuracy elsewhere,
but slightly more oscillatory behavior overall is found. As it was briefly
discussed in the project assignment, reaching a threshold for how well the
MHE or any other observer can perform based on the simple Kaasa model is
very likely and the several new and different approaches investigated in this
thesis strengthen the suspicion.

The estimate of K. seems to vary more than before, but this can be a
tuning issue. As a consequence of the long simulation times for this particular
approach, careful tuning was downgraded. It is also noticeable that for this
combination the choke flow (Figure 4.31) acts as if K, was not estimated.
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4.6.4 Using UKF to Obtain z; from 7y y,

Figure (4.32) shows how the simple approach to incorporate noise in the
moving horizon observer performs. Again, the results do not differ very much
from previous ones, and bearing in mind the increased computational load,
this observer does not exceed expectations neither. However, the results are
important as they can close some of the many open doors and narrow the
search for a better observer.
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4.7 Comparison of Time Complexity

For near all systems that make use of an observer there are requirements on
time complexity that has to be met. For the drilling scenario presented in
this thesis estimation commence every time a new measurement of p, and p.
is available, more precisely every second. Consequently, it is strongly desired
that each iteration of the observer does not exceed 1s. Of course, imple-
mentations and simulations performed in MATLAB have great potential for
improvement, but analysis of time complexity still paint an important picture
of how achievable it is to run the observer in real time.

| Observer | Horizon | Duration /estimation

MHE 40 ~0.5s
MHE + K. 40 ~0.7s
MHE + K., p, and 6, 40 ~1.5s
MHE + K. + adaptive friction model | 40 ~Ts
UKF - ~0.04s
UKF + K, - ~0.04s
UKF + K., p, and 6, - ~0.05s
UKF using last measurement - ~0.04s
MHE + K. + prefiltration w/UKF 40 ~1s
MHE + K. -+ covariance weighting 40 ~1.3s
MHE + K. + integrated UKF 10 ~3.7Ts
MHE + K. + iteration with UKF 40 ~A4.7s

Table 4.2: Time Complexity for every estimation scheme, all with integration
time step At = 0.2

Table 4.2 presents approximate values for simulations done on the entire
10795s long (~ 3 hours) drilling scenario provided by the Grane data. The
numbers are taken from one single run and has to be considered as tenta-
tive and are only included for discussion purposes, especially for the MHE
where weighting in the cost function influences computational load drasti-
cally. Also, what other tasks the computer performed during simulations
affect the duration. The numbers in the table clearly demonstrates that the
unscented Kalman filter is far superior to the moving horizon observer with
regards to computational complexity. Whereas several of the simulations
with a variant of the moving horizon observer exceed an average duration
time per iteration of 1s, the unscented Kalman filter is not even close to this
limit. In particular, the moving horizon observers with no adaptation and
adaptation to K. are well within the requirement, while adding adaptation
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to p, and #; demands just a bit too much computational power. However,
implementation on a lower level is likely to increase the efficiency noticeably
so minor exceedings are tolerable.



Chapter 5

Conclusion and Future Work

5.1 Conclusion and Future Work

To conclude, several aspects of bottom hole pressure estimation have been
discussed and tested in this master’s thesis. First, it has been confirmed
that work in the author’s project assignment “Estimation of Bottom hole
Pressure During Drilling using Parameter Adaptation and Modeled Process
Noise” and work done by Marcel et al. ([19]) provide good estimates, and
that the regularized nonlinear moving horizon observer has a unique ability
to adapt to uncertain parameters in the model.

Second, an alternative friction model has been presented, using a basis
function technique, and simulations have been carried out. This attempt
turned out as a complete failure in that it was impossible to get satisfactory
estimates, but it was not unexpected as similar work has been indicating the
same.

Third, and most important, it has been shown that the unscented Kalman
filter is a simple and accurate observer that is just as suitable as the moving
horizon observer, and by acknowledging that much work point to the un-
scented Kalman filter outperforming the extended Kalman filter, the UKF
is a good candidate for bottom hole estimation. It was anticipated that
the unscented Kalman filter would have minor observability issues when sev-
eral parameters was adapted and simulations have proven this to be correct.
However, the importance of being able to estimate parameters online is con-
siderable so this is an area for future work. The unscented Kalman filter
performed particularly good during regular drilling, but as expected, it en-
countered the same problems as the moving horizon observer during pipe
connections. Still, the largest deviations in estimates are found during stop-
ping and re-initiation of the mud flow where oscillatory behavior that may be

75
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unmodeled, or impossible to capture with good overall tuning, is observed.
In this regard, it was shown that by letting the UKF use the last avail-
able measurement of py; for estimation in the 20s gap between each update,
alternative tuning could be applied and the oscillatory behavior could be
captured.

Last, several combinations of the two observers were tried out, but un-
fortunately none of them provided particularly good results: By prefiltering
Z;_n used in the moving horizon observer with a 1-step unscented Kalman
filter instead of ordinary simulative propagation, estimates were shown to
converge faster to an area around the measurements. Utilizing the covari-
ance information provided by the 1-step UKF as weight in the moving horizon
observer had shown good results in other work, but did not enhance perfor-
mance for simulations in this thesis. Combining the two observers completely,
using the unscented Kalman filter instead of model iteration inside the op-
timization problem solved by the moving horizon observer, only proved to
be computationally demanding without any improvements in measurements.
A simpler approach where the optimization problem was carried out as nor-
mal, but the iteration from an optimal estimate N steps ago to a current
estimate was performed by the UKF, did not provide any refreshing neither.
It is evident that the unscented Kalman filter is a competent candidate for
estimation of the bottom hole pressure during drilling.

There is of course much work yet to be done, other than the already
mentioned, with regard to the problems presented in this thesis. It may seem
as though improvements to the simple Kaasa model used is needed to further
enhance performance of any observer applied. Also, there is currently some
activity on suitable controllers for the bottom hole pressure for somewhat
higher order models that require an sufficiently accurate estimator, and it
would be interesting to try to pair the two, especially since all observers
tested in this thesis adapt well to the choke flow K., which gives a more
accurate choke characteristic for the controller. With more time in hand,
initial tests and simulations could have been performed, but the author is
confident that future candidates and researchers will complete this task.
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Appendix A

MMSE Derivation of Kalman
Filter

The estimation error is defined as

Substituting in the estimator
Ty = T, + Ky (A.2)

where K}, is the Kalman gain and g is the error between the measurement
and its prediction, i.e.

=Y — Uy (A.3)

yields
T =T, — Ki(yr — 95, ) (A4)

where

Here, the fact that E[gx] = 0 is utilized under the assumption of an
unbiased estimator.

The covariance of the update is found by taking outer products and ex-
pectations of the update (A.2) resulting in

Pﬂck = Pa; - Pmkﬂng - Kkp@kwk + KkPZ?kz?ng (A6)

where the error covariance P,, is defined as
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Py, = Bl77;] = Bl(ay — @x)(xr — 31)"] (A7)
and the cross covariance P, g, as
Poge = Bl ] = Elwn — ) (s — )" - (A-8)

Further, minimizing the expected value of the magnitude of the estimation
error is the same as minimizing the trace of the covariance matrix, i.e

otr(Py,)

0K, = 0— Pwk@k - Pz}kfﬂk + QKkPQk??k (AQ)
Ky, = kaﬂk (Pﬂkz?k)_l (A.lO)

Last, substituting (A.10) into (A.6) gives

b= & — Kilye = 9) (A.11)
P, = P:;—Kkpgkgkf(,{ (A.12)



Appendix B
MATLAB Code

B.1 Unscented Kalman Filter

1]11-05-11 GUNI UKF + Kc estimation commence when measurement
arrives

2 function [ ukf transfercache ] =...

3 ODobserver _UKF( y, u, ukf, transfercache )

4 A% Get wvariables from memory

5

6 / Dimensions

7 nx = transfercache.model.nx;

8 ny = transfercache.model.ny;

9 np = transfercache.model.np;

10 nv = ukf.nv;

11 nn = ukf.nn;

12 N = nx + np + nv + nn;

13

14 transfercache.Nmemory (1) = [];

15 transfercache.Nmemory (end+1) .u = u;

16

17 4 Integration step length

18 T_delta = transfercache.T_delta;

19

20 / Get UKF wariables from memory

21 alpha = ukf.alpha;

22 beta = ukf.beta;

23 kappa = ukf.kappa;

24 lambda = ukf.lambda;

25 gamma = ukf.gamma;

26

27 4 Get moise from memory

28 v = ukf.v;

29 n = ukf.n;
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4 Get additional wariables
a = ukf.X_a;

X = ukf.P_x;

v = ukf.P_v;

n = ukf.P_n;

m = ukf.w_m;

w_cC = ukf.w_c;

x_hat = ukf.x_hat;
xa_hat = [x_hat; v; nl;
P_a = blkdiag(P_x, P_v, P_n);
P_a = 0.5%(P_a+P_a’);
S = sqrtm(P_a);

Y_k = zeros (ny,2xN+1) ;

4 Obtain 1/step length
Mcycle = size(transfercache.Nmemory(end-1).u,2);

/ Allocation

y_k_ = zeros(ny,1);

P_ky = zeros(ny,ny);

P_kxy = zeros (nx+np,ny);
x_k_ = zeros (nx+np,1);
P_kx_ = zeros (nx+np,nx+np);

A t1f checks <if new measurement arrives
if transfercache.memory.flag NM(1)

A% For k = 1,2,....,tnf Calculate 2N+1 sigma points
for k = 1:2%N+1
if k==

X_a(:,k) = xa_hat;
else if k <= N+1
X_a(:,k) = xa_hat + gammax*S(:,k-1);

else
X_a(:,k) = xa_hat - gammax*xS(:,k-(N+1));
end
end

end
4 Divide into respective matrices
X_x = X_a(1l:(nx+np),:);
X_v = X_a((nx+np)+1:(nx+np)+nv,:);
X_n = X_a((nx+np)+nv+l:(nx+np)+nv+nn,:);

A% Time -update equatendions and set up wetights
for k = 1:2%N+1
for j=1:Mcycle
X_x(:,k) = 0ODmodel(X_x(:,k),
transfercache.Nmemory (end-1) .u(:,j),...
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X_v(:,k), X_n(:,k), transfercache);

end

if k == 1
w_m(l,k) = lambda/(N+lambda) ;
w_c(1l,k) = lambda/(N+lambda)...
+ (1 - alpha~2 + beta);

else
w_m(1l,k) = 1/(2*x(N+1lambda)) ;
w_c(1l,k) = w_m(1,k);

end

end

A% Calculating apriorti state estimate and apriorst
covariance
for k=1:2%xN+1

x_k_ = x_k_ + w_m(1,k)*X_x(:,k);
end
for k=1:2xN+1
P_kx_ = P_kx_
+ w_c(1,k)*(X_x(:,k)-x_k_D)*(X_x(:,k)-x_k_)?;
end

A} Measurement -update equations:
for k = 1:2*%N+1
Y _k(:,k)
= 0Dcalch(X_x(:,k), X_n(:,k), transfercache);
end

A/ Calculating mean and covariance of measurement
vector

A Mean of measurement wvector
for k=1:2%xN+1

y_k_ = y_k_ + w_m(1,k)*Y_k(:,k);
end

Z Covartance for measurement vector and cross wvariance
for k=1:2%N+1
P_ky = P_ky + w_c(1l,k)*...
(Y_k(:,k) - y_k_)*(Y_k(:,k) - y_k_)7;
P_kxy = P_kxy + w_c(l,k)*...
(X_x(:,k) - x_k_)*(Y_k(:,k) - y_k_)7;
end

4 Calculating Kalman gain
K = P_kxy/P_ky;

Z Use a priori estimates to calculate missing
measurement
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if isnan(y(3))...

|| (transfercache.memory.dT_Count(3) ~= 1)
y_bar = ...
0Dcalch([y(1:2);x_k_(3)],n,transfercache);
y (3) = y_bar(3);
else

transfercache.memory.dT_Count (3) =
transfercache.memory.dT_Count (3) + 1;
end

/ UKF estimate and covarians
x_hat = x_k_ + Kx(y - y_k_);

4 Make sure that gbit 4sn’t negative
if x_hat(3) < 0

x_hat (3) = 0;
end

/ Calculate covariance matriz
P_x = P_kx_ - KxP_ky*K?’;

/ Save wariables

ukf.x_hat = x_hat;
ukf.P_x = P_x;
ukf.y_hat = y_k_;
end




B.2 Friction Modeling

1| function [Fr_a Fr_d transfercache] =

2 ODfrictionFunction(q_bit, transfercache)
3

4 / Get wartiables from memory

5 a = transfercache.model.thetal;
6 d = transfercache.model.theta?2;
7 N = transfercache.friction.N;

8 c = transfercache.friction.c;

9 u = transfercache.friction.u;
10 theta = transfercache.friction.theta;
11

12 / Define model of friction

13 F_a = a*q_bit;

14 F_d = d*abs(q_bit)*q_bit;

15

16 / Initialization

17 sum_w = 0;

18

19 Z Calculate Omega

20 for j=1:N

21 if abs(q_bit - c(j)) < u

22 w(j,1) = (1 - ((abs(q_bit-c(j))/ud)));
23 else

24 w(j,l) = 0;

25 end

26 sum_w = sum_w + w(j,1);

27 end

28

29 / Calculate Ph1

30 for k=1:N

31 phi(k,1) = w(k,1)./sum_w;

32 end

33

34 4 Calculate frictions

35 f_a = phixF_a’;

36 f_d = phixF_d’;

37 Fr_a = f_a’xtheta;

38 Fr_d = f_d’*xtheta;

39

wl| 4 4 Use regular model

al| /) Fr_a = F_a;

42 Fr_d = F_d;
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