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Problem Description

Kongsberg Defence Systems (KDS) is a business within Kongsberg Gruppen ASA.
KDS works within military and civilian development/production. In the line of prod-
ucts are rockets, simulators, space application products, and also KDS is developing
a small aircraft/missile. The process which describes the aircrafts performance is
given by the size and shape of the aircraft body, its wings and control surfaces. The
aircraft is controlled by regulating about its roll, pitch and yaw axes. The regulator
commands enter actuator servos and are transferred to actual mechanical deflections
of the control surfaces. How the transfer from regulator to surface deflections is done
has an impact on the aircrafts properties and is called control allocation.

In an earlier project work report, multiple control allocation methods were docu-
mented, e.g. Linear Programming, Quadratic Programming and Redistributed Pseu-
doinverse. All of these proved to be potential control allocation methods for aircraft
and missiles. MPC is a control algorithm which is used extensively in the process in-
dustry, but can also be applied as a control allocation method. It is expected to yield
good results for aircraft and missiles. This thesis will develop a control allocation
method based on MPC for processes with fast dynamics like aircraft and missiles.
Further, MPC’s performance will be compared to that of the previously mentioned
control allocation methods, in applications with different actuator configurations.

Proposal of progression:

e Give a summary of the control allocation methods Linear Programming and
Redistributed Pseudoinverse for flight control systems and document these.

e Develop a MPC control allocation (MPCA) method for flight control systems
to an aircraft /missile.

e Develop in cooperation with KDS, an aircraft/missile model with simple dy-
namics.

e Develop a simple autopilot to be used while testing control allocation methods.

e Test step response on the aircraft /missile model for the control allocation meth-
ods Linear Programming, Redistributed Pseudoinverse and MPCA.

e Document the results, make an assessment of the methods, with emphasis on
pros/cons and applications of the MPCA method.
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Supervisor: Tor Arne Johansen,
Department of Engineering Cybernetics, NTNU.
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Abstract

This thesis developes a control allocation method based on the Model Predictive
Control algorithm, to be used on a missile in flight. The resulting Model Predictive
Control Allocation (MPCA) method is able to account for actuator constraints and
dynamics, setting it aside from most classical methods. A new effector configura-
tion containing two groups of actuators with different dynamic authorities is also
proposed. Using this configuration, the MPCA method is compared to the classi-
cal methods Linear Programming and Redistributed Pseudoinverse in various flight
scenarios, highlighting performance differences aswell as emphasizing applications
of the MPCA method. It is found to be superior to the two classical methods in
terms of tracking performance and total cost. Nevertheless, some restrictions and
weaknesses are revealed, but countermeasures to these are proposed. The newly de-
veloped convex optmization solver CVXGEN is utilized successfully in the method
evaluation. Providing solve times in milliseconds even for large problems, CVXGEN
makes real-time implementations of the MPCA method feasible.
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Chapter 1

Introduction

Some control systems are designed with redundant actuators and effectors, for rea-
sons such as fault tolerance and design issues related to cost, response-time, size,
and flexibility. Examples include flight control systems [2], which will be studied in
this thesis, and dynamic positioning systems for ships using thrusters [3].

In aerospace applications, one usually talks about navigation of an aircraft in terms
of rotation about the three rotational degrees of freedom, called roll, pitch and yaw
for rotations about the x-, y- and z-axis, respectively. Traditionally for aircraft, each
of these rotations are tied to a group of control surfaces (effectors) - ailerons for
roll, elevator for pitch and rudder for yaw. These surfaces are intended to generate
moments about a single axis, but due to cross-coupling effects, this is often not the
case. An actuator is responsible for deflecting the individual effectors. The tradi-
tional surfaces are commonly split up to reduce individual actuator demands and
increase redundancy. In later years new aerodynamic controls like thrust vectoring!
have also been added to serve as moment generators on the aircraft body, in addi-
tion to control surfaces. Future control concepts include using large arrays of small
surfaces as moment generators [4].

Control algorithm design for systems with effector redundancy is challenging since
multiple combinations of the available control effectors can generate the same desired
control. In addition to this, actuator constraints (e.g. limited deflection) should be
accounted for. In order to systematically manage such control design challenges, one
may decompose the control problem into two parts - a controller that commands
a desired virtual control input and a control allocation module that maps the vir-
tual control input into the redundant actuators (Figure 1.1). Since there are more
degrees of freedom available in the actuator system than virtual control variables,
the available degrees of freedom in the actuator system can be used to satisfy ac-
tuator constraints and to meet secondary objectives such as fault tolerance, power

!Thrust vectoring is the ability of an aircraft, rocket or other vehicle to manipulate the direction
of the thrust from its engine(s) or motor in order to control the attitude or angular velocity of the
vehicle.
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consumption minimization, and actuator wear minimization.

Other benefits of having a split control configuration include easy reconfiguration
in case of actuator change, separated regulation tuning, and lastly that the control
allocation method can be arbitrary [5]. In general, the control allocation problem
can be formulated as an optimization problem with a main objective of minimizing
the difference between the resulting control effect and the desired virtual control
command, and where actuator and effector constraints show up in the problem’s
constraint set. The main difference between different control allocation methods are
related to how the optimization problem is formulated, which models are used, and
which numerical algorithm is employed to solve it.

r Control u Control ¢ Plant y
Allocation I

Law

Figure 1.1: Split control configuration

In the classic formulations of the constrained control allocation problem, the actua-
tor dynamics are neglected [2]. This is done under the assumption that the actuator
dynamics are orders of magnitude faster than the aircraft dynamics, and thus can
be ignored, or that all dynamic phenomena are accounted for by the controller that
commands the virtual control to the control allocation module. In some cases this
may be an unrealistic and inconvenient assumption, i.e. when the actuator dynamics
are limiting the control performance because response times and different dynamic
authorities of the actuators are not taken into account.

For systems where actuator dynamics are known, the interactions between the con-
trol allocation algorithm and the actuator dynamics working on the aircraft body
become more complex, requiring a more sophisticated control allocation method. Ac-
tuators can have different response times, e.g. a fast actuator can be used to achieve
fast transient response, while slow actuators can be used for steady state or trimmed
flight, to improve power efficiency. A Model Predictive Control (MPC) allocation
scheme will be able to optimally make use of such properties.

Sophisticated dynamic actuator models may be incorporated by using the MPC
framework to solve the constrained control allocation problem [6],[7],[8],[9]. MPC
is an optimization-based control algorithm which can be used in control allocation,
beeing able to handle actuator dynamics as well as actuator saturation. MPC utilizes
a model of the plant in predicting outputs and states, where in control allocation
this model describes the actuator dynamics. Because of the predictive nature of the
controller, the calculated control can pre-act to the actuator system dynamics to
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improve performance.

Implementing the numerical optimization problem for the optimal control alloca-
tion in real time is a challenging task and has been approached in a number of
ways - a few of which are discussed in this paragraph. There is a limited amount
of computing time available between successive samples, and the control allocation
module is required to have a solution available when this time ends. Instead of de-
manding that the optimal control allocation is computed exactly at each sample,
the dynamic online optimization approach in [10] will at each time instant move in
the direction towards an optimal control allocation, but optimality is achieved only
asymptotically. The method is extended to the case with actuator dynamics in [11].
While the dynamic online optimization approach reduces the online computational
requirements, one may also use multi-parametric programming to pre-compute an
explicitly represented piecewise affine solution function. The remaining online com-
putations correspond to the evaluation of a piecewise linear function resulting from
multi-parametric programming and explicit MPC [12], [13]. While this is highly
attractive from the online processing point of view, its memory consumption and
offline processing does not scale very well - in particular when considering control
efficiency matrices that are time- or state-dependent due to nonlinear or time-varying
characteristics like in fault tolerant control allocation [14]. Online optimization using
off-the-shelf or customized quadratic programming (QP) solvers are studied in the
context of linear actuator and effector models in [15], [16], [17], [18]. For nonlinear
effector models, the use of sequential quadratic programming is proposed in [19].

In this thesis another, fairly new, approach is pursued. A family of highly customized
QP solvers that are automatically generated using CVXGEN [20], [21] are employed
to solve MPC-based dynamic control allocation problems. CVXGEN has the unique
feature that the C code of the customized solvers is completely standard and stan-
dalone, i.e. portable, and extremely efficient since the key structural properties of
the QP problem are exploited in the automatic code generation. This leads to code
with only static data structures which is almost branch-free, and where for-loops
are rolled out for efficiency, leading to deterministic execution on pipeline processor
architectures. Performance improvement also comes for low software overhead as the
CVXGEN targets small-scale problems, in some contrast to most off-the-shelf solvers
that target large-scale problems. Orders of magnitude faster execution compared to
state-of-the-art off-the-shelf solvers have been reported on test problems, including
MPC problems [20],[21]. This makes it interesting to study CVXGEN’s performance
in challenging control allocation problems that are of relatively small scale compared
to typical MPC problems.

This thesis builds on the author’s previous project work on control allocation, where
several of the classical methods were implemented and tested on a 6DOF missile
model [22|. In the project work actuator dynamics were ignored, and the present
thesis will compare the performance of the most promising classical methods against
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that of the MPC allocation, this time taking actuator dynamics into consideration.
A new missile effector configuration where actuators have different dynamics is de-
veloped for this purpose.

The main ideas and results of this thesis are included in the article "Dynamic Model
Predictive Control Allocation using CVXGEN" by Hanger et al. This article is aimed
for submission at the Ninth IEEE International Conference on Control and Automa-
tion in Santiago, Chile. The article is included in Appendix E.

The paper is organized as follows. Chapter 2 introduces some background material
relevant to the thesis. In Chapter 3, the control allocation methods which are em-
ployed are presented in detail. In Chapter 4, the missile model used when testing
control allocation is derived. Chapter 5 presents the test setup, where implemen-
tation issues are discussed and a test plan is put forward. Chapter 6 presents the
results of the testing, and these are discussed in Chapter 7. Chapter 8 holds some
concluding remarks, aswell as a look at some potential further work.



Chapter 2

Background

This paper focuses on testing control allocation methods on a missile in flight. In
order to implement and test the control allocation methods, a framework must be
built, e.g. to provide the control allocation module with sensible inputs. Because of
this some background material is presented. Some of the concepts and components
that are presented will be part of the framework used while testing.

2.1 Flight Control Systems

Target Relative Terminal State

Dynamics ' Geometry ' Sensor ' Estimator

I

Flight Control Guidance

System ' Law

Figure 2.1: The flight control system as part of the homing loop.

The flight control system is the key element that allows a missile to follow the desired
steering commands. This system is typically an element in a homing loop. In a hu-
man controlled aircraft, there is no need for a homing loop, as all control commands
come from the pilot inputs like a stick or yoke, and pedals. Because a missile is an
autonomous aircraft, the control commands must be automatically generated, thus
the need for a homing loop. A simplified diagram of a generic homing loop is shown
in Figure 2.1. A short description of the various blocks follow.

The missile motion combines with the target motion to form the geometry between
the two, in the Relative Geometry block. The terminal sensor measures the line-
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of-sight (LOS) angle!, which is fed to the state estimator. This block will in turn
estimate the LOS angular rate, often by means of a Kalman Filter. The guidance
law block takes the LOS angular rate as input, and provides a steering command to
the flight control system, completing the loop.

In this thesis’ case, the goal of the guidance will not be hitting a target, but perform-
ing aerial maneuvers to stress and test the control allocation module within the flight
control system block. A typical maneuver is applying reference steps in horizontal
and vertical position where the amplitude can be increased incrementally, requiring
larger and larger control commands, increasingly making the CA module’s job more
challenging. Because of this, the actual setup will be much simpler than the one in
Figure 2.1. In fact, only the guidance law and flight control system blocks will be
utilized, as there will be no need for the others.

Turning the attention to the flight control system block, its basic elements are shown
in Figure 2.2.

Guidance Control Actuator Airframe

—} Autopilot —} ) —} . —} )
Law P Allocation Dynamics Dynamics

MU g

Figure 2.2: The elements of the flight control system.

The inputs to the flight control system come from the guidance law. This input
needs to be tracked to perform the desired maneuver. Further into the loop, the
autopilot takes the guidance command and feedback measurements and enter them
into a set of mathematical equations. The resulting output of these equations is
called the virtual control. More material on autopilots is presented in Section 2.2.

The control allocation module will take the virtual control command from the au-
topilot, and distribute the control among the available actuators (more on control
allocation in Section 2.3 and Chapter 3). The actuators will react to the control
signal in accordance to their dynamics described in the actuator dynamics block, in
turn creating moments about the missile according the equations of motion in the

!The angle between the inertial reference and the missile-to-target line-of-sight vector is called
the LOS angle.
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airframe dynamics block. Lastly, an Inertial Measurement Unit? (IMU) will provide
the feedback measurements to the autopilot.

The specifics of the actuator dynamics and the missile airframe dynamics are pre-
sented in detail in Chapter 4. Since all measurements made in an IMU are readily
available from the missile model, there is no real need for an IMU block, as they
can be fed back to the autopilot directly from the missile model. Of course, in a
real application such measurements must be made in an IMU, so it is reasonable to
display it as a part of the flight control system.

2.2 Autopilot

The missile autopilot has an important job in the flight control system. Using the
reference command from the guidance law, it utilizes a set of mathematical equations
to calculate the virtual control commands fed to the control allocation module. In
essence, it is the part of the system responsible for making the missile follow the ref-
erence trajectory. Missile autopilots are most often split into two parts - longitudal
and lateral.

A longitudal autopilot will control the pitching motion and therefore also the flight
height of the missile. Such an autopilot will take a height reference from the guidance
law, and by mathematical calculation create the pitching command which will make
the missile move as desired.

The lateral autopilot is responsible for making the missile turn. There are two main
groups of lateral autopilots, skid-to-turn (STT) and bank-to-turn (BTT). This pa-
per will use a BTT autopilot. This is because a missile with an asymmetrical cross
section (which most modern missiles have) will have larger acceleration capabilities
in the pitch plane than the yaw plane, and therefore needs to roll to maximize their
maneuverability. Another moment speaking for BTT autopilots is that modern mis-
sile engines often require small sideslip angles.

BTT autopilots can be designed using many techniques, e.g. PID control, Linear
Quadratic Control, backstepping and feedback linearization [23].

2.3 Control Allocation

This section presents some background material on control allocation in general,
since this subject is the main focus of the thesis.

2An IMU is an electronic device that measures an aircraft’s velocity, orientation, and grav-
itational forces. This is done using a combination of accelerometers and gyroscopes measuring
accelerations rates and rotational rates, respectively.
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2.3.1 Introduction

Adding a control allocation module essentially splits the control design into two sep-
arate parts; a control law for generating the desired control variables (also known
as the virtual control), and the control allocation part for the distribution of control
power. This has many benefits, some listed in [5] include easy reconfiguration in case
of actuator change, separated regulation tuning, and lastly that the control alloca-
tion method can be arbitrary. Because of this last fact there exists a lot of different
control allocation methods, ranging from simple to complex. A few of these meth-
ods are described in Chapter 3, and their performance will be evaluated in this thesis.

An increased number of control effectors compared to the number control variables
naturally leads to the need for a control allocation scheme. This is because the
relationship between individual effectors and which axis it generates moments about
becomes unclear, as some effectors can be used to generate moments about multiple
axes. Multiple combinations of the available control effectors can generate the same
desired moment in roll, pitch and yaw, bringing redundancy into the control system.
The redundancy can be exploited in a number of ways. In addition to performing
their primary guidance control tasks, the actuators may also be controlled to perform
some secondary objective. Examples include fuel minimization, drag minimization,
life-cycle optimization or radar cross section minimization. Another advantage is that
one also has some degree of backup control in case of actuator failure or damage.
The control allocation module’s job is primarily to generate the actuator commands
that satisfy the virtual control command, and if there is excess control power, this
should be made use of in one of the mentioned ways.

2.3.2 Control Allocation Problem Formulation

Consider the equation
Bi=u (2.1)

where u is the virtual control, B € R™*"™ is the control effectiveness matrix, ¢ is
the control vector, n is the number of control effectors, and m is the number of axes
to control. Aerospace applications of control allocation usually has roll, pitch and
yaw moments as the virtual control input u, making m = 3. The control allocation
problem can be described as finding a 0 satisfying (2.1), given B and .

The control effectiveness matrix B varies as a function of Mach number and angle
of attack, but is usually assumed constant at each sample instant for simplicity. In
addition, the control vector § is usually bounded:

5min S o S 5ma:v (22)

making the control allocation problem yet more challenging.
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2.3.3 Optimality and the Attainable Control Set

A system with four control effectors, i.e. § € R* and a virtual control input u € R3
will be considered when explaining these concepts. This is for simplicity - the results
could also be generalized for an arbitrarily dimensioned system.

The attainable control set €2 is the set of all attainable control vectors §. The space
of the attainable control vectors create a 4-dimensional box (since § € R*), where the
actuator bounds (2.2) create the outer limits of the box. This boundary is usually
denoted 9(2). The space €2 can be formulated by

Q:{ayammgaigémw, Vie{1,2,3,4) } (2.3)
The image of Q under the control effectiveness map B € R3*4 creates a 3-dimensional
space denoted ®. Since for most control allocation problems, n > n, the map from €2
to @ is not one-to-one. Control allocation methods try to determine controls § € €2,
given some desired virtual control input v € ®. Methods which can allocate controls
for all vectors in ® are termed optimal. Methods which allocate over a smaller set,
i.e. a subset II C ®, are termed non-optimal.

Because of their ability to allocate controls for all vectors in ®, optimal methods
generally give better results when tracking a virtual control input u. The reasons
for choosing non-optimal methods are that they in general are simpler to implement
and have faster execution. [24] presents a method for finding the attainable control
set. [25] reviews the geometry of the attainable objects.

2.4 Model Predictive Control

Model Predictive Control (MPC) is a control algorithm based on solving a finite
horizon open-loop optimization problem at each sampling instant. Such controllers
rely on an internal dynamic model of the process, used to predict the behaviour of
the system. The system to be controlled is usually described (or more commonly,
approximated) by one or more ordinary differential equations (ODEs). Because
MPC is a discrete algorithm, the ODEs are usually converted to discrete difference
equations. The MPC objective cost function is often on the form

T
Vi =3 Q) (2k i | k) —r(k+i | B) + RO(ak+i k) (@4
=1

where Z is the estimated state, r is the reference trajectory, @ is the optimal control
sequence and 7T is the prediction horizon length. The first term in V (k) represents
that the state x should track the reference r. The various states are weighed with
Q(7) to reflect relative tracking importance between states. The second term in the
cost function will penalize the use of control input u, with weighing factors R(7).



2.4 Chapter 2: Background

The main advantage of MPC is its ability to handle constraints. Both input con-
straints (bounds on wu), like the saturation of an actuator, and state constraints
(bounds on z), like keeping the level of a fluid between bounds, can be handled with
ease.

The system model is initialized with the most recent sample of the states, and the
controller uses the combination of these and the internal model to optimize the ob-
jective cost function such that the cost is minimized and all constraints are honored.
The controller will only use the first step of the calculated control sequence as plant
input. This optimization based approach is the main difference from conventional
control strategies, where a pre-computed control law is usually applied for each sam-
ple time. The basics of MPC are displayed in Figure 2.3.

A

—@— Reference Trajectory

—@— Predicted Output
Measured Output

= Past Control Input

Predicted Control Input

k k+1 k+2 k+T

Prediction Horizon

Figure 2.3: A discrete MPC scheme.

An explanation of Figure 2.3 follows. At time k the current plant state is sampled.
The cost function is minimized while honoring constraints, leading to a optimal con-
trol strategy for the horizon interval [ k, k + T ]. The predicted optimal output
is the blue line which converges towards the red reference, like reflected in the cost
function (2.4) . The optimal control input is shown in orange.

The control strategy explores state trajectories emanating from the sampled starting
point, and finds the one minimizing cost. Only the first control step is applied to the
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plant, and the plant state is then sampled again and the same procedure is repeated,
giving a new control step and a new predicted state path. Because the horizon keeps
beeing pushed forward, MPC is sometimes called receding horizon control (RHC).

The way MPC handles constraints allows for plant operation closer to the optimal
working point. It has been widely applied in the chemical and petroleum industries
because accounting for constraints is especially important in these applications. The
MPC strategy is also expected to behave well in a control allocation perspective,
because of its predictive nature and ability to handle actuator dynamics. Given
an estimate of the control allocated craft’s future trajectory, it enables the craft to
utilize actuators with different time constants to their full extent. This also opens
possibilities to restrict the use of costly actuators when not neccesary. This cost can
be either connected to e.g. a power/fuel consumption or radar cross section concern.
Model Predictive Control Allocation will be discussed further in Chapter 3.

For a detailed description of Model Predictive Control, see [26].

2.5 Missile Effector Configurations

A missile’s effector configuration plays a major role in the way it is controlled. Some
background on effectors is presented in this section, along with two configurations,
one of them tailored to be utilized with the MPCA.

A missile has a set of actuators, which control a set of corresponding effectors (con-
trol surfaces). The effectors are usually in the form of fins or flaps. When actuated,
these create forces about the missile body, causing it to move and therefore making
the missile able to steer and follow a desired trajectory. The actuator is the con-
trollable part of the actuator-effector setup, and the one considered in mathematical
derivation. Actuator control is denoted by the symbol J;, where the subscript de-
notes the individual actuator’s control. The set of all actuator controls forms the
control vector 4.

There are many ways to place the effectors on the missile, but the most usual is
to place them at the back end of the missile. Such missiles are categorized as tail-
controlled missiles. One regular effector configuration is placing four fins evenly
spread on the missile tail. If set perpendicular to the horizontal and vertical planes
of the missile, they resemble a + and this is subsequently called the "+ configura-
tion". If shifted by 45°, the setup is called "x configuration". The latter configuration
will be the basis for this thesis’ test configuration. This decision is made based on the
results of the previous project work, where the x configuration was found preferrable
to the + configuration in terms of performance and redundance utilization.

An x configuration missile is displayed in Figure 2.4. In the figure, the slanted thick
lines represent the missile’s wings. The rotation of the fins is chosen such that de-
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flection with the trailing edge down is positive.

J J

1 2

AN
5 5

3 4

Figure 2.4: Missile with four fins in x configuration. View from behind.

For such a missile, the control commands d;, ¢ € {1,2,3,4} can be combined to form
the axis specific control commands dr, dp and dy for roll, pitch and yaw, respectively:

0r = 01 —09+03—04 (2.5)
op = 01+ 083+ 03+0,
dy = —01+0d2+03—0d4

The main focus of this thesis is to use a Model Predictive Control Allocation scheme,
which account for actuator dynamics, and is able to make use of their different dy-
namic ranges. Because of this, another effector configuration is proposed. It builds
on the x configuration (Figure 2.4), but adds ailerons to the missile wings, see Figure
2.5. The ailerons are defined to have positive rotation with the trailing edge down.
This new configuration will be used when testing control allocation methods.

The four "regular" tail fins are controlled by fast actuators, while new wing ailerons
are controlled by slower actuators. These ailerons will be more efficient than the tail
fins in the roll plane, while having similar and lesser efficiency in the pitch and yaw
planes, respectively. The motivation for using this configuration is that the wing
ailerons can be used while in trimmed flight, i.e. "calm" conditions, while the tail
fins are added on when needed in agile flight. Because of the different dynamic au-
thorities of the actuator groups, MPCA is expected to handle this configuration well.

The control commands d;, ¢ € {1...6} can be combined to form the axis specific
control commands dg, dp and dy :
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& &

1 2

& 6

3 4

Figure 2.5: Missile with four fins and wing ailerons. View from behind.

Or = 01— 02+ 03— 04+ 05 — 06 (28)
op = 01+ 09+ 03+ 04+ 05+ bg .
Oy = —01+ 03+ 03— 04 — 5+ g (2.10)

2.6 CVXGEN

Part of this thesis is using and testing the new CVXGEN convex optimization solver,
released in 2010 by Jacob Mattingley and Stephen Boyd [27|. Testing this solver and
comparing it with others is interesting because it is state-of-the-art, and its applica-
tions may be used for both prototyping and real-time use.

Convex optimization is widely used because it has a number of applications, e.g. con-
trol, circuit design and networking [27]. Such problems can be solved reliably and
efficiently with well developed methods and tools [28], [29]. Parser solvers like CVX
[30] and YALMIP [31] accepts a convex optimization problem specified in high-level
language, but their solve times are in the scale of seconds or minutes, which makes
them unable for use in real-time systems. They also require extensive libraries and
have large footprints. However, in the development phase of algorithms or methods
based on convex optimization, they can be a good choice, as run-time and footprint
are usually not of great concern at an early stage (no real-time requirements).

Conventionally, the step from a general purpose parser solver to a specialized high-
speed solver requires significant development time, extensive modeling and specialist
knowledge of optimization and numerical algorithms. The work is also often done
by hand, limiting their applications.

13



2.6 Chapter 2: Background

CVXGEN is a software tool that automatically generates C-code that compiles into
a convex optimization solver, from a high level language specification. The C-code
of the customized solvers is completely standard, standalone and extremely efficient
because key structural properties of the QP problem are exploited. This leads to
code with only static data structures which is almost branch-free, with deterministic
execution on pipeline processor architectures. The generated solvers are very reliable
and robust [27], but also fast compared to parser solvers. With solve times in mi-
croseconds or milliseconds, the generated solvers lend themselves to implementation
in real-time applications with operation speeds in Hz or kHz. CVXGEN’s footprint
is also simple, generating a flat, library-free solver.

General Solver
Problem

Instance

> x*

Figure 2.6: General purpose parser solver structure. Turns a single problem instance
into a single optimal point.

Code
. Generator .
Problem Family Compiler Custom
. Pi Source Code
Description Solver
'
1
________________________ L]
]
1
Custom Solver
Problem
> x*
Instance

Figure 2.7: Automatic code generator solver structure. Provides optimal points for
many different problem instances.

The CVXGEN solver is currently available through a web interface on the project’s
web page http://www.cvxgen.com. An optimization problem specification can be
entered through a MATLAB-like programming language on the web interface. Syn-
tax specifics can be found in CVXGEN’s documentation [27]. The problem is entered
through a fixed and structured setup, specifying problem dimensions, parameters,
variables, cost function and constraints.

The custom C solver is automatically generated on the web interface by the click
of a button. After compilation it is available for download as a zipped archive. In
addition to C code, a MATLAB interface is also available, making the custom solver
available for e.g. prototyping and initial testing in the MATLAB environment. The
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MATLAB version will be utilized in this thesis.

The downloaded solver is used by calling a pre-made function, with the problem
instance’s specific parameters as function input. Solver settings can also be entered
when calling the solver. After the call, the solver solves the convex optimization
problem with respect to the instance parameters, and outputs the globally optimal
variables.

CVXGEN lends itself naturally to MPC problems, see |21] for a detailed overview.
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Chapter 3

Control Allocation Methods

The methods presented in this chapter are the Redistributed Pseudoinverse, Linear
Programming and Model Predictive Control Allocation. All three methods will be
implemented as part of a flight control system on a missile model. There are several
other methods, for an overview, see e.g. [32], [8], [33], [15] or [2].

3.1 Redistributed Pseudoinverse

If m = n, the control efficiency matrix B is square, and the control allocation problem
can be solved with by a simple matrix inverse:

§=B"lu (3.1)

For most control allocation applications, n > m, so an inverse is not possible. In this
case, a pseudoinverse can be used. The pseudoinverse solution is the 2-norm solution
to the control allocation problem (2.1). It can be formulated as a minimization

problem:
1

min

: §5T5 (3.2)

subject to (2.1).
Solving this problem explicitly [8] leads to the standard Moore-Penrose! pseudoin-
verse:
6 = BT(BBT)'u (3.3)
§ = Blu

where 1 denotes the pseudoinverse operation, Bf = BT(BBT)~1,

!The Moore-Penrose pseudoinverse is the most widely known type of matrix pseudoinverse,
named after E. H. Moore and R. Penrose, which independently described it in 1920 and 1955,
respectively.
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3.1 Chapter 3: Control Allocation Methods

The regular pseudoinverse approach can be extended by adding a weighting matrix
W e R™ ™ to the minimization problem (3.2), as done in e.g. [8]. The corresponding
minimization problem becomes

1
méingéTW(S (3.5)

subject to (2.1).
Solving for § gives the weighted pseudoinverse

= W iBT(BW1BT) 1y (3.6)
= B‘t[,u

where Bl;, = W1BT(BW-1BT)"1.

The redistributed pseudoinverse is an iterative version of the regular pseudoinverse,
which can guarantee that the actuator constraints are honored. The method also
goes by the name Cascaded Generalized Inverse (CGI), and is discussed in e.g. [8],
[32]. It allocates the control as a series of weighted pseudoinverse steps, though reg-
ular pseudoinverse also can be used. Only the weighted version will be presented,
but it is easily transformed to regular inverse by taking W = I.

In the weighted case, the method starts off by solving a weighted pseudoinverse,
§ = WIBT(BW-1BT)~ly. If any of the actuators saturate in this solution, they
are set to their constrained limits and removed from the next iterate. This can be
done by zeroing out or removing their corresponding columns in B and W. Then the
new problem &' = W/~ B'T(B'W'~1 B'T) "l is solved, where B’ and W' are the new
control effectiveness and weighting matrices without the saturated controls from the
previous step. If no control saturated during the first iteration, the solution is kept
and the method terminates.

If on the other hand the first iteration had saturated actuators, the iterative process
continues until no new actuators saturate, or all actuators saturate. This way, actu-
ator constraints are honored, while at the same time the control power is distributed
amongst the remaining actuators. The number of iterates is bounded by n, so an
upper convergence limit is always known. This makes the redistributed pseudoin-
verse a deterministic method in turns of run-time, but also fast since n usually is a
low number (under 10) for regular aerospace applications.

Though the method executes slower than only performing a single pseudoinverse, it
can guarantee not exceeding actuator bounds. It should be noted that this method
has no way of optimizing the control allocation with regard to some secondary ob-
jective when there may be excess control power available.
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3.2 Linear Programming

The control allocation problem (2.1) can also be solved using linear programming
(LP) techniques. This method can exploit the control redundancy by optimizing a
secondary objective if the primary one is feasible. The standard constrained control
allocation optimization problem is

min J(9) (3.8)

subject to (2.1) and (2.2). J(J) represents a linear scalar-valued function of the
control actuator positions to be minimized. This scalar-valued function can be for-
mulated in several ways, one of which is the error minimization formulation

H{Sin J =||Bd —ul|; (3.9)
subject to (2.2).

The error minimization formulation has a favorable property when the desired wu is
unattainable. While other formulations offer no guidance as to which solution to
use in this case, this formulation picks it by minimizing the objective error. The
error minimization formulation can be converted to a standard? linear programming
problem [34]:

mmJ—N~01mHF} (3.10)
[ S
subject to
S 0
_5 _5ma:v
) > | dmin (3.11)
—Bi+s —u
Bé+s U

where s € R™ is a vector of slack variables. This standard linear program can be
solved using ordinary linear programming solvers.

Now, if the linear program is solved and the solution is such that J = 0, the virtual
control u is attainable, and some “excess” control power may be available. In this
case, a secondary objective can be optimized for, e.g. as mention earlier, minimizing
fuel consumption. The ability to optimize with respect to a secondary problem comes
from the system’s actuator redundancy - multiple solutions to the control allocation
problem may exist, and solving a secondary problem may pick one of them which is
optimal in some manner. The secondary problem [8] can be formulated as follows

2Standard Linear Programming canonical form.
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3.3 Chapter 3: Control Allocation Methods

min J = Ws (3.12)
subject to
s 0
-0 _5ma;r
0 < | dmin (3.13)
—0+s —0p
do+s Op

where d,, is the control effector vector found in the primary problem and Wr;f e Rmx1

is a weighting matrix chosen to reflect what kind of secondary objective to optimize
for. One example is to have the actuators contributing most to the drag penalized
more, this in turn reducing fuel consumption. Another possibility is to penalize the
actuators most subject to wear, to extend actuator life.

Another secondary objective function can be formulated as [35]
min J = W/ (6 —6p) (3.14)

subject to (2.1) and (2.2). These constraints make sure the primary objective is
reached. Here Wg is a weighting matrix allowing for flexibility in the optimization,
and 9, is a preferred control vector, which also could be zero. This minimizes the ac-
tuator position from a preferred position, e.g. one that minimizes radar cross section.

The primary and secondary objective can also be merged together in what is called
a mixed optimization problem. A combination of the primary objective function and
the most recently proposed secondary objective function is

min J = IBS — ully + o [WE(5 = 6,)|11 (3.15)

subject to (2.2). Here « is a scaling factor weighing the relative importance between
objectives. « is usually small (<< 1) to reflect the importance of the primary objec-
tive. [15] converted this mixed optimization problem into a standard linear program,
which can be solved with any linear program solver.

3.3 Model Predictive Control Allocation

The previously described methods assume a static relationship between actuator
input and response, not taking different dynamic authorities of the actuators into
account. Actuators can have different time constants and delays, i.e. a fast actuator
can be used for good transient response, while slow actuators can be used for steady
state or trimmed flight. This can improve the power efficiency of the missile. Most
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Chapter 3: Control Allocation Methods 3.3

control allocation methods are unable to exploit such properties.

Section 2.4 discussed the optimization-based control algorithm Model Predictive
Control (MPC). This algorithm can be used in control allocation and is able to
handle actuator dynamics aswell as actuator saturation [6], [7], [9], [8]. In this sec-
tion, a Model Predictive Control Allocation scheme is developed to be used in this
thesis.

MPC uses a model of the plant in predicting outputs and states, and in control allo-
cation this model is that of the actuator dynamics. Because of the predictive nature
of the controller, the calculated control can pre-act to the actuator system dynamics
to improve performance.

Assuming that all control effectors have dynamics modelled as second order systems,
the model for effector ¢ will be on the form

i = A0 + Bs.0cmai (3.16)

where 6¢pq, ; is the commanded control input, and §; is the actual actuator response.
Note that §; is a two-dimensional vector, i.e. §; € R2, where §;(1) represents the ac-
tuator position, and §;(2) represents actuator velocity. The actuator position is the
most relevant, and will be the measure utilized in this paper. Actuator velocity and
belonging constraints can also be of interest, and is easily added to the MPCA for-
mulation. More on actuator modelling is presented in Section 4.8.

For a system with n effectors, the set of actuators can be combined to form a full
actuator model:

. As, 0 -~ 0
61 O ! ‘462 ... 0 51 ‘851 6cmd,1

o e ) N Bl : (3.17)
571 0 o Aén 571 B5n 5cmd,n

Often such a system is only denoted by

6 = Asb + Bsbema (3.18)

The MPC control allocation problem is posed as follows: For the constrained system

8(t) = Asb(t) + Bsbemalt)
7(t) = B&(t) (3.19)
5min S é S 5max

find d.y,q such that 7(t) tracks u(t) as closely as possible, u(t) beeing the virtual
control vector.
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Note that 0y, and dpuq can be scalars or vectors containing the various actuators’
constraints. If an actuator has no constraints, the corresponding entries in 8, d,nin
and 0,4 is simply removed. Since §; € R?, position and velocity constraints are
placed on odd and even numbers in 0,y /maq, Tespectively.

This model is used to predict the commanded control inputs 8cmd, the control § and
outputs 7,

bema = [ Oemalk+1[k), -, Semalk +T —1k) ] (3.20)
6 = [6(k+1lk), -, 6(k+Tk)] (3.21)
# o= [#k+1]k), -, 7(k+T|k)] (3.22)

where T is the length of the prediction horizon, and k is the current time step.

The MPC algorithm finds the optimal set of 3cmd by minimizing a cost function on
the form

T
J() = Y W) #k+ 5 k) — uk + )
j=1
’ T—1 n
+a > N W) Semai(k +5 —1) 2 (3.23)
j=1i=1

subject to (3.19).

In (3.23), W, is a weight matrix weighing the importance of tracking u at time j,
W, weighs how expensive actuator ¢ is to use and « weighs the relative importance
between the tracking and control terms. T is the prediction horizon length and n
is the number of actuators. Only the first commanded control sample 8.pq(k 4 1|k)
is applied to the actuators, the whole algorithm is repeated when computing the
consequtive 8.

A Model Predictive Control Allocation (MPCA) scheme for a re-entry vehicle is pre-
sented in [35]. [9] extends the MPCA by proposing an augmentation that guarantees
input-to-state (ISS) stability of the overall system while preserving performance. [7]
extends the MPCA by providing asymptotic tracking of time-varying control input
commands.

3.4 Motivational Test

To illustrate the potential of MPCA, a simple test is conducted. This will only test
the input/output performance of the CA module in the flight control system. To
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judge its performance, the MPCA is compared to a LP version of the same problem.

The system has one input u € R!, consisting of a sine with increasing and decreasing
frequency. There are two actuators §; and do, both modeled as second order systems
(3.16). Actuator 1 will be fast but expensive to use, while actuator 2 will be slow
and inexpensive. The actuator coefficients and corresponding cost weight are

wo,1 = 150, Cl = 0.7, W1 =1 w(),g = 10, <2 = 0.9, W2 =0.1 (3.24)

This means that the CA module should restrict the use of actuator 1, since actuator
2 costs less to use. In addition, actuator 2 will be more efficient than actuator 1,
indicated in the control efficiency matrix B,

B=[0308] (3.25)

The cost function used to compute the optimal set of actuator commands 8,4 is

T+1 T
Tupc =3 (70 = u®) + a3 (Widenan (1) + (Wabomaa(0))?)  (3:26)
t=1 t=0

The cost function (3.26) is minimized with respect to the constraint set

8(t + 1) = As8(t) + Bsboma(t), t=0...T (3.27)
7(t) = B&(t), t=0...T+1 (3.28)
Smin < O0(t) < Opmaz, t=0...T (3.29)

A second order extrapolation is used to predict the virtual control input for the
MPCA. A similar LP problem is formulated as comparison to the MPCA:

Jrp = [|Tema(t) — u(t)|l1 + 06<HW15cmd,1(t)H1 + HW25cmd,2(t)Hl) (3.30)

subject to
6cmd,min < 6cmd < 6cmd,ma:v (331)

where Tepg = Bbemg. A control allocation problem was tested on the MPC and LP
control allocation formulations. Simulation values is summarized in Table 3.1. In
the actuator response plots, the dashed lines represent actuator bounds. The total
cost Jyrpo and Jpp is also compared. Note that only the current sample is used in

the calculation of the cumulative value of Jy;pc (making it an instant cost like for
LP).

As seen in Figure 3.1, the MPCA tracks u with little error. The results of using LP
CA are less satisfactory, see Figure 3.2. Because this formulation ignores actuator
dynamics, it calculates that using only actuator 2 will be sufficient, as seen in Figure
3.4. The MPCA is aware of the actuators different dynamics, and utilizes them both
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Virtual Control [Degrees]

Virtual Control [Degrees]

Model Predictive Control Allocation — Virtual Input Tracking
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Figure 3.1: MPCA Virtual Control Tracking

LP Control Allocation — Virtual Input Tracking

50 100 150 200
Samples

Figure 3.2: LP CA Virtual Control Tracking
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3.4
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Figure 3.3: MPCA Actuator Response

LP Control Allocation — Actuator Response
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Figure 3.4: LP CA Actuator Response

25



3.4 Chapter 3: Control Allocation Methods

Cumulative Cost
900 T T

LP CA Cost

800F MPCA Cost

700

600 -

500

400

300

200

100

50 100 150 200
Samples

Figure 3.5: Cumulative Cost

a | 0.01
5m'in —20°
5max 20°

T 5

Table 3.1: Simulation values.

to achieve satisfactory tracking, see Figure 3.3. Lastly, one can look at the accu-
mulated cost in Figure 3.5, which summarizes why taking actuator dynamics into
account is beneficial when they span a large dynamic range.
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Chapter 4

Missile Model

In this section the missile model will be derived. The model will be used when testing
the control allocation methods, and will provide a more realistic setting than just
testing control allocation as an input-output block, and more like an actual flight
control system setup. This chapter makes use of a wide set of symbols, and the reader
is referenced to the missile model nomenclature in Appendix B for descriptions.

4.1 Coordinate Systems

When deriving equations of motion for aircraft, e.g. a missile, several coordinate
systems are commonly used to aid the derivation. The most utilized are

Body Coordinate System
Wind Coordinate System
Stability Coordinate System
Earth Coordinate System

This thesis will mostly consider the body and wind coordinate systems:

Body System

e Center in the missile center of gravity (CG).

e x-axis positive forward, through the missile nose.

e y-axis perpendicular to the body x-axis, and positive to the right of the x-axis.
e z-axis perpendicular to body x-y plane, positive downwards.

The axes of the body system usually have subscript "B".

Wind System

e Center in the missile center of gravity (CG).
e x-axis positive in the direction of the oncoming air (relative wind).
e y-axis perpendicular to the wind x-axis, and positive to the right of the x-axis.
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4.1 Chapter 4: Missile Model

e z-axis perpendicular to wind x-y plane, positive downwards.

The axes of the wind system usually have subscript "W". The body and wind
coordinate systems are shown in Figure 4.1, together with the stability axes. This
Figure also shows the angle of attack o and sideslip angle [, defined as

a:= arctan() (4.1)

B = arcsin(gr)

where v is the total speed vy = vVu? + v2 + w?.

v L
- X—AXIS

BODY

Z-AXIS (STABILITY)

Figure 4.1: Aircraft Coordinate Systems [1]
The model velocity vector is

vi=[uvwpqr]’ (4.3)

and the position/attitude vector

n=rgypze 0]’ (4.4)

where the elements are defined according to the body coordinate system in Figure
4.1. Subscript E denotes Earth Coordinate System. The rotation matrix between
the body and wind systems is

cos(a)cos(B) sin(B)  sin(a)cos(f)
R} = |—cos(a)sin(B) cos(B) —sin(a)sin(B) (4.5)
— sin(a) 0 cos(a)
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4.2 Kinematics

The kinematic equations for translation of the body-fixed coordinate system B (with
elements like in (4.3)) with respect to alocal NED coordinate system can be expressed
in terms of Euler angle rotations:

TR U u
yp | =REEP [v| =R, 4Ry oRuy | v (4.6)
ZE w w
This can be expanded to
(2| () —sp 0 cd 0 s6| |1 0 0 ]
YE s cp 0 0 1 0|0 cp —s¢ (4.7)
| 2 | | 0 0 1] [-s0 0 cf] |0 s¢ co |
(2] [cpcl)  —siped + cpslsp  spsp + cpepsh |
YE sel  cped + spslsy)  —chsg + sOshso (4.8)
| 2E | | —s0 s ccp
The kinematic equations for attitude become
q%b 1 s¢tf  cotd | |p
0l =10 co —s¢ | |q|, B #0 (4.9)

0 0 sp/cd cop/ch]| |r

For equations (4.7), (4.8) and (4.9), s, ¢ and ¢ represent the sin(-), cos(-) and tan(-)
operations, respectively.

4.3 Rigid Body Dynamics

The derivation of the rigid body dynamics is based on and adapted from [36] and
[37]. The aircraft rigid-body kinetic equations can be expressed as [38], [39]

m(V1 + g X 1/1) = 7 (410
Icare + 9 X (Icgl/g) = Ty (411)
where v :=[uvw |, vo:=[pgr],n:=[XY Z)Tandm:=[L M N |
The system can be written on compact form as
MRBI)—FCRB(V)I/ = TRB (4.12)
where
mlzxs 03><3:| [mS(VQ) 033
Mpp = Crp(v) = 4.13
b [ 03x3  lca rB(v) 03x3  —S(Icgre) (4.13)
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S(-) denotes the skew symmetric! operation. The inertia tensor Ioq is defines as

Icgi=| 0 I, 0 (4.14)

where I;; are moments of inertia and I;;, i # j are products of inertia. The elements
I,y and I, are zero because of the missile’s symmetry.

Trp is the vector of forces and moments acting on the missile body. This vector can
be split into two parts, one representing the forces of gravity, and the other those
from aerodynamics and control.

TRE = —9(n) + T (4.15)

Taking a closer look at the gravity part —g(n), it can be expressed as

mgsin(6) ]
—mg cos(0) sin(¢)
ol = ~(RYEO)T [ JG | | Tracesf)ine) (4.16)
0
- 0 -

where fg = [0 0 mg 7. Inserting (4.15) into (4.12) gives

Mpgpv + Crp(v)v +g(n) =7 (4.17)

which is the desired rigid body missile model formulation. Equation (4.17) can also
be expressed in component form:

m(t + quw — rv + gsin(6))
m(v + ur — wp — g cos(#) sin(¢))
)
)

m(w + vp — qu — g cos(f) cos(¢
Loap — Loz (7 + pq) + (Lo — Iyyqr
Iyyq + Ixz(p2 - 7"2) + (Im - Izz)pr
L7 —I..p+ (Iyy — Loe)pq + Ipqr =

Il
Z = NN <

4.4 Translational Dynamics

The missile translational dynamics can be derived by applying a force balance in the
wind coordinate system. The differential equations for missile wind speed V', angle
of attack a and sideslip angle 5 are derived in this section, and will ultimately be

LA skew-symmetric matrix is a square matrix whose transpose is also its negative.
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Chapter 4: Missile Model 4.4

used instead of the differential equations for u, v and w in the complete model.
The forces can be written as
Vv Pw |4 v
ZFW—m< 0|+ |qw| x |0 )—m rwV (4.24)
0

0 W —qwV

Force balance gives

F;r,vvengine -D+ mg}v/v = mV (425)
Fyv,[éngine -C+ ngI//V = mryV (426)
sz,[gngine - L+ mgL/V = —magwV (427)
where
gC‘E/V NED\T 0
oV =RYRFDT |0 (4.28)
v

9

W FB A

ai/,vengzne W T,engine

Fy,eng'me =Rp 0 (429)
W . 0
z,engine

By using Equation (4.25) the differential equation for V' can be found:
1

V= — (EYY gine — D +mg¥) (4.30)

T,engine

To find differential equations for « and 3, the relative angular rates between body
and wind axes is studied

D W 0 0
RY |q| — [aw | =RE |a| — |0 (4.31)
r W 0 I5]

By combining (4.31) with (4.26) and (4.27), the following expressions can be found

& = —pcos(a)tan(B) + g — rsin(a) tan(3)
R o w
+mv COS(,B) (Fz,engine L+ mg, ) (432)
: : 1/ w W
g = psin(a) — rcos(a) + e (Fy,engine —C +myg, ) (4.33)

In addition to (4.30),(4.32) and (4.33), the equation set (4.18) - (4.23) can be solved
with respect to p, ¢ and 7:
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4.5 Chapter 4: Missile Model

p= Imlzi—lﬁz (IZZL + LN + (IyyLoe — I2, — I2.)qr

Loz (Low — Iy + Izz)pQ) (4.34)
i— (M 4 L2 = 2) + (L — L)) (4.35)
i = o (Lol Lo + (12 = Ly + 12,)pg

LTy — Lo — La)ar) (4.36)

Equations (4.30), (4.32) - (4.36) form a system & = f(z, Fengine, Faero) fully de-
scribing the missile’s movements (Fepgine represent engine forces and Fepo represent
aerodynamic forces).

4.5 Aerodynamic Forces and Moments

This section will look further into the aerodynamic moments L, M, N and forces C,
D and L. Each of these depend on the dynamic pressure:

Q= %pVQ (4.37)

The moments about the missile axes can be approximated by

l l =
L = Qsl(CuaB+5:Cuop+ -Cur + ;wmiai)) (4.38)
l o -
M = Qsl (cMO + o+ 3 Ciac + 7-Chgd + ;(CM(;Z.&-)) (4.39)
N = Qsl{CngfB+ iC]\/pp + iCNTT + Y (CN&.(SZ') (4.40)
v v £

The forces working on the missile body is given by the equations

D = Qs(Cpo+Cpaa?) (4.41)
l . -

C = Qs(CesB+5:Cesh+ 7:Cerm + ;(ccgiai)) (4.42)

L = Os ((Jﬁaa + Loma+ Lot zn:(cw.ai)) (4.43)
v y ot 2 e

The sum terms ) ;" ,(Cj5,0:), j € {L, M, N,C,L} represent the forces and moments
generated by the missile actuators/effectors. The control vectors can be combined to
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Chapter 4: Missile Model 4.6

form their axis specific forms g, dp and Jdy like described in Section 2.5. This is done
to reduce the number of coefficients, essentially making the model less complex. In
addition to the axis specific forms of §, the corresponding sum of coefficients can be
defined, e.g. the lift coeffients for a missile with four actuators in the x configuration,

Crsp = Crs, —CLs, + Crsy — Cls, (4.44)
Crsp = Crs, +CLs, + Crsy, + Cls, (4.45)
Croy = —CLs +CrLs, +CLsy — CLs, (4.46)

Similar expressions can be found for the other drag, lift and moment coefficients.
This means that the last sum terms in Equations (4.38) - (4.43) can be replaced
with general terms containing dr, dp and dy and their corresponding coefficients.
The specifics of these is given by the control effector setup.

4.6 Complete Nonlinear Model

In the rest of the derivation, some simplifications will be made to the model equations:

e The terms mg? and mg;V in (4.32) and (4.33) have no significance on the
missile dynamics and will be removed.

o Cho in (4.38) is assumed to be neglible.

e All terms containing & and § in (4.39), (4.42) and (4.43) are assumed to be
very small and are neglected.

e For the lateral drag force C in (4.42), the effects of the yaw angular velocity r
are small and neglected.

e For the lift force £ in (4.43), the effects of the pitch angular velocity ¢ are small
and neglected.

Using these simplifications together with (2.5) - (2.7), the system (4.30), (4.32) -
(4.36) can be rewritten. The following equations are on the form & = f(z,u) ,
r=[VapBpqgr]’, u=[0rdp dy |, and describe the complete nonlinear model.
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4.7

1

E (Fx,w;ng'ine - QS(CDO + CDaa2) + mggv) (4:4:7)
1
—peos(@) tan(3) + g — rsin(a) tan(8) + s (F e
—Q5(Craa + Crs,0p + Crspdp + cwyay)) (4.48)
. 1
psin(a) — rcos(a) + — (Fy,engme
—Qs(CepB + Cespdr + Cespdp + Cesy 5y)) (4.49)
I..Qsl l l
Tonlon — 12, (CLﬁﬁ + 37 CLop + 37 C1er + Cropdr + Copdp + CMY(SY)
1..Qsl l l
+% (CN@B + VCNpp + VCNTT + CN5R5R + CN5P5P + CN5Y5Y)
1
+Iacachz — I;%z ((InyZZ - Ifz - Iiz)qr + I:vz(Iacac - Iyy + Izz)qp) (4-50)
Qsl l
7 (Crac+ 3C0qa + COrsp0r + Crspdp + Cursy Oy)
Yy
Loz, o0 9 1
+—(r" = p°) + 7—(Le2 — Lua)pr (4.51)
Ly Ly
1., Qsl l l
Toalon — 12, (CLﬁﬁ + 37 CLop + 3701 + Cropdr + Copdp + CMY(SY)
1.:Qsl l l
+% (CN@B + VCNpp + VCNTT + CN5R5R + CN5P5P + CN5Y5Y)
1
+m ((Im — Lo Ly + sz)pq + Loo(Lyy — Loz — Im)q'r) (4.52)

Simplified Model

For an aircraft, it is common to assume that the longitudal modes can be decoupled
from the lateral modes. The reason for this is that the aircraft fuselage has a length
much larger than its width and height. Also, the longitudal velocity is much larger
than the vertical and transverse velocities.

4.7.1

Longitudal Model

In the longitudal model, we ignore the effect of the lateral modes, and set the states
B=r=p=¢=0. Also, we neglect the roll and yaw inputs, i.e. g = dy = 0.

The equations for the longitudal model then become
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. Qs
. Qsl l
q = I—(CMaOé + VCqu + CM(Sp(SP) (4.54)
Yy
6 = ¢ (4.55)
s
aIZ/V = —Q—(Cgaa + C&SP(SP) (4.56)
This can be posed as a linear state space system Ziong = AiongTiong + BlongUiong:
a (—%0y, 21 0] [« _C‘Jl/s Crop
q| = %Zl a gzlv Cmq 0| |a| + ﬁCMap op (4.57)
0 0 1 of LO 0
with measurement yiong = ClongTiong + Diongliong,
CLZV_ 7:;33 Cra 1 0| | 733 Crsp
q | = 0 1 0] ¢+ 0 op (4.58)
0 0 0 1| 1|0 0

4.7.2 Lateral Model

In the lateral model, we ignore the effect of the longitudal modes, and set the states
a = q = 0 = 0, and the pitch input §p = 0. In addition to this, we assume cos(¢) ~ 1.

The equations for the lateral model are

: S
B = —r— S—V(chﬁ + Cesp0R + Cesy Oy) (4.59)
: I..Qsl l
p = m(CLB/B'F VCLpp'F VCLTT+CL5R5R+CL5Y6Y)

+ m(CNﬁﬁ-i- VCNpp"i' VCNTT+CN6R5R+CN(SY5Y)(4-60)
. 1,..Qsl 1
Po= g OBt O+ O+ Criag O+ Cri by )

+ m(@v@ﬁ + 7COnpp + ONe + O + Civsy 5y ) (4.61)
o = (4.62)
P (4.63)

S
aZV = —%(chﬁ + Ces,0r + Cesy Oy) (4.64)

This can be posed as a linear state space system Zj,; = AjatTiat + Blattiat, where

35



4.8 Chapter 4: Missile Model

2w =[Bproy] (4.65)
war = [ 0r Oy " (4.66)
95 Cep 0 ~1 00
K/(IZZCLB + I:EZCNB) ﬁ%(IzzCLp + ]szNp) ﬁ%(]zzCLr + IszNr) 0 0
Ajar = K(IszLB + I:E:ECNB) ﬁ%(]szLp + IxxCNp) ﬁ%(IxZCLr + ]xxCNr) 0 0
0 1 0 0 0
0 0 1 0 0
(4.67)
v Cesy v Cesy
H(IzzCLJR + I:szNJR) H(Izchéy + IaczCNéy)

Blat = K(IszLéR + IxxCNéR) K(IxZCL&/ + Ix:tCNéy) (468)

0 0

0 0

Qsl
Iacx Izz ._I%Z
has system matrices

where K = . The measurement y = [aZV prov]l = ClongTiong+DiongUiong

Crot = diag( [-%Ces 1 1 1 1]) (4.69)
22 Clsy —2Cespy
0 0
Dy = 0 0 (4.70)
0 0
0 0
4.8 Actuator Dynamics
The actuators are modeled using a second order approximation,
6 — 2Cwod — wid = wWidema (4.71)

where wy is the actuator’s natural frequency and ( is its damping ratio. emg iS the
commanded actuator input, while ¢ is the actual actuator response. Equation (4.71)
can be rewritten as a state-space system

d = Asd + Bsdoma (4.72)

where

d=[dido )T, di =96, dy=0 (4.73)
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Ay = [_02 L } . By— [02] (4.74)

It should be noted that actuator position d; is most relevant when such models are
used in a control allocation scope. Constraints on actuator velocity do can also be
present, but are ignored in this thesis.

Two examples of step responses are shown for a typical fast and slow actuators.

Fast actuator, ( = 0.7, wyg = 150

Actuator Step Response

- - -9

1.2} — 3%

Value

0 0.2 0.4 0.6 0.8 1
Time

Figure 4.2: Step response of a fast actuator

Slow actuator, ( = 0.95, wg = 10
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4.8

Actuator Step Response

1.2

Value

0.2 0.4 0.6
Time

0.8 1

Figure 4.3: Step response of a slow actuator
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Chapter 5

Test Setup

In this chapter, the control allocation test setup will be presented. This is to clarify
how the tests this thesis’ results are based on were conducted, and to make the tests
repeatable. First, the way the setup is implemented is explained in a module-wise
manner. Second, the control allocation methods utilized are discussed, followed by a
brief explanation of the various virtual control prediction methods used. Lastly, the
test plan is presented.

5.1 Implementation

In this section, the setup in which control allocation methods are tested is presented
in detail. The setup consists of several modules working together to simulate a flight
control system working on a missile body:

e Autopilot

Prediction Module
Control Allocation Module
Actuator Dynamics

Missile Airframe Dynamics

The setup is created using the MATLAB and SimuLink framework. Figure 5.1
presents an overview of the setup. The inner workings of the different modules are
presented in the sections that follow.

5.1.1 Autopilot

The missile autopilot is part of the flight control system, displayed in Figure 2.2.
The autopilot block consists of two loops. The outer position loop regulates the lon-
gitudal y position and the lateral z position to their reference values ¥,y and z.y,
which are given by the guidance law. Inside the position loop lies the angle loop,
regulating the missile roll, pitch and yaw angles. See Figure 5.2 for a detailed view
of the autopilot block. The output of the autopilot forms the virtual control vector
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5.1
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Figure 5.1: Test setup overview.
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u=1[0d% &5 & |7, which is fed to the control allocation module.

Measurements of z and y are obtained from the acceleration equations (4.56) and
(4.64),

2(t) = //agm) dt dt (5.1)
y(t) = //agv(t) dt dt (5.2)

Measurements of roll, pitch and yaw angles 6, ¢ and 1 are also obtained from the
model.

The horizontal and vertical positions are controlled by Pl-regulators, while all the
angles roll, pitch and yaw are controlled by P-regulators. These types of regulators
are chosen for simplicity, since the focus of this thesis is testing control allocation
methods. The bank-to-turn logic simply commands the missile to roll to turn, while
keeping the yaw angle as small as possible.

y 0 P
Y Horizontal .
ref orizon N Roll Angle 8,
> Position > >
Regulator
Regulator
BTT Pitch Angle 6 P -
Logic ) Regulator g
z . +
ref Vertical )
Yaw Angle Y
Position > S 9 —»
Regulator
Regulator
z ¥

Figure 5.2: Missile autopilot block.

5.1.2 Prediction Module

The model predictive control allocation needs an estimate of the future virtual con-
trol input u(k + i), i € {0...T}, where T is the prediction horizon and k is the
current time step.
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An Embedded MATLAB Function block implements this prediction. More on the
various ways of creating this prediction is discussed in Section 5.3. A block diagram
of the prediction module is shown in Figure 5.3.

6 R
& u Virtual v]
E Command —
Prediction
6 Y

Figure 5.3: Virtual control prediction block.

5.1.3 Control Allocation Module

The control allocation module is the heart of this test setup. It is implemented using
an Embedded MATLAB Function block, which executes the specific control alloca-
tion method.

The MPCA method, which is the main focus of this thesis, is implemented differ-
ently than the other methods that are considered. Because of the predictive nature
of the method, it needs an estimate of the virtual control @ throughout the prediction
horizon. In addition, it requires knowledge of the current actuator states . These
inputs are available from the Prediction and Actuator Dynamics blocks, and are fed
to the Embedded MATLAB Function block responsible for the control allocation.
This block makes an external call to the CVXGEN solver, which uses the current
data to solve the MPCA problem. The MPCA setup is shown in Figure 5.4. The
CVXGEN code for the MPCA problems can be found in Appendix C.

The other methods RP and LP do not require an estimate of u, just the current
value. Since the first value of the predicted vector @ is the current value u(k), this
can be used while ignoring the rest of the values in the vector. In addition the current
actuator state vector 8 is not needed and therefore ignored.

Besides from the mentioned modifications, the CA methods are implemented in the
same way as MPCA, with an Embedded MATLAB Function block. The LP method
uses an CVXGEN-generated solver, while the RP method is written directly in the
Function block. For CVXGEN code for the LP CA method, see Appendix C. The
code for the RP CA is found in Appendix D.
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It should also be mentioned that the control efficiency matrix B used in the control
allocation methods is constant in the simulations performed in is thesis. This is done
for simplicity. In a real application, this matrix would be a function of speed, air
density, angle of attack and sideslip.

—»0

N 1, emd

Model Predictive

Control Allocation » 6i, cmd

6 ’_-. 6n,cmd

Figure 5.4: MPCA block.

5.1.4 Actuator Dynamics

The actuator dynamics are simply implemented as transfer function blocks in the
Simulink diagram. The second order system (4.71) can be rewritten as a transfer
function

5 2
(8) = 0 D)
$% + 2Cwos + Wi

H(s) = (5.3)

5cmd
The individual control commands §; are combined to form the axis specific control
commands dg, dp and dy for roll, pitch and yaw in the manner described in Section
2.5. These are then fed to the missile model. See Figure 5.5 for a diagram.

5.1.5 Missile Model

The longitudal and lateral models are implemented in the Simulink diagram with
regular blocks. The longitudal model uses equations (4.53)-(4.53). The lateral model
uses equations (4.59)-(4.64).

It should be mentioned that such a decoupled model setup is valid only for small
angles, but this is assumed to be sufficient for testing control allocation. A diagram
of the model block is shown in Figure 5.6. The model data can be found in Appendix
A.
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1, emd 1

6 6! Axis ;rpoeciﬁc & P
(i i T H (5) —®  Control >

Commands

n, cmd n

Figure 5.5: Actuator Dynamics block.

Y
© 4—

Yy €4—

A 4

Lateral
Model
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P Longitudal
Model

Z 4—

0 ——
Figure 5.6: Model block.
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5.2 Control Allocation Methods

The three control allocation methods considered in this thesis represent three very
different types. The RP method is based on the pseudoinverse, and thus represents
a simple solution. It is able to take actuator saturation limits into consideration, but
ignores actuator dynamics. Still, this is a simple method which is easily implemented
without the use of optimization solvers, and this simplicity it is perhaps its strongest
trait.

The second method is the LP method, implemented with the mixed optimization
formulation (3.15). This is an optimization based method, and is optimal (Section
2.3.3), which serves as a contrast to the RP method, though more cumbersome to
implement. While being able to handle actuator constraints, it disregards the actu-
ator dynamics. Still, because of the optimality property, it is expected to perform
better than RP.

Being the main part of this thesis, the MPCA method is the last one to stand
trial. It is, as the LP method, optimization based and optimal. Aswell as handling
actuator constraints, it is the only method taking actuator dynamics into account.
Because of this last property, the method is expected to perform the best in a case
where actuators take on different dynamic ranges. In such a scenario the method
can set itself aside from others by exploiting its knowledge of the actuator dynamics
to increase the overall system’s performance. Note that this method is also the most
complex, but with the use of the CVXGEN solver, its implementation is simple and
the execution times are expected to be very low. The MPCA is designed to use a
sample time of T = 0.05s. It will have an prediction horizon of 7' = 5, which means
that the horizon will span T - T = 0.2s.

5.3 Virtual Control Prediction

As mentioned in Section 5.1.2, the MPCA module needs an estimate of the future
virtual control @(k + i), ¢ € {0...T}, where T' is the prediction horizon and k is
the current time step. This thesis considers three different ways of performing this
prediction.

The first, denoted type 1, is simply to hold the current virtual control value through
the prediction horizon, i.e. u(k +1i) = u(k), Vi.

The next approach, type 2, is based on curve fitting. The T last samples are remem-
bered, and a curve is fitted through the data using interpolation. A second order
interpolation is sufficient and has been tested to yield good results. The second order

polynomial is then used for extrapolation throughout the prediction horizon.

Last to be considered, denoted type 3, is an approach that uses knowledge of the
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missile reference trajectory. For the roll and yaw channel, a vector is formed by using
the derivative of a low-pass filtered version of y,.;. For the pitch channel, a low-pass
filtered and differentiated version of z..s is used. These prediction vectors can be
denoted tysp(k+1), i € { 0...T }. This vector is then merged with a vector of the
current virtual control values, like the one type 1 prediction generates:

a(k +1) = yu(k) + (1 —y)usp(i), i€ {0...T } (5.4)

where v = linspace(1,0,T) is a vector with 7" linear steps between 1 and 0. o is a
number between 0 and 1, typically 0.5, reflecting the importance between tracking
and prediction. This merging of the vectors makes for good tracking, while also
taking future dynamics into consideration.

5.4 Test plan

In this section the test plan is presented. It will consist of multiple tests, which will
be used to judge the performance of the Model Predictive Control Allocation scheme.
The plan will be split into five main tests.

5.4.1 Part I - Tail fins only

In this test, the missile will have tail fins only, i.e. be in the x-configuration (see
Section 2.5). The control efficiency matrix is

0.3 —03 04 —04
B=]08 08 06 06 (5.5)
—06 0.6 05 —05

All actuators 1, 2, 3, 4 (Figure 2.4) will have the same characteristics and cost weight,

wo =150, ¢ =0.7, W =1 (5.6)

These are considered to be fast actuator dynamics. Actuator limits are d,,;, = —20°,
Omaz = 20°.

This test will investigate a scenario where MPCA perhaps is not a good choice. The
method’s performance will be compared to that of RP and LP. The prediction for
the MPCA will be type 1.

5.4.2 Part Il - Trimmed flight

In this test, the missile will be in the new configuration with wing ailerons. The mis-
sile will be tasked with performing a simple maneuvre, simulating trimmed flight.
The performance of MPCA with type 1 prediction will be compared to that of RP
and LP.
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This test will investigate how the MPCA handles actuators with different dynamic
ranges, and how it is able to allocate only those with low cost when necessary. The
actuator characteristics and cost weight are summarized below.

wo,1 = 150, Cl = 0.7, W1 =1 wo,2 = 150, <2 = 0.7, W2 =1
wo,3 = 150, C3 = 0.7, W3 =1 wo4 = 150, C4 = 0.7, W4 =1 (57)
wo,5 = 15, C5 = 0.9, W5 =0.1 wo,6 = 15, <6 = 0.9, W6 =0.1

Actuators 1-4 are the fast tail fins, while actuators 5-6 are the slow wing ailerons
(This is reflected in the size of the actuators natural frequency wy - larger is faster).
See Figure 2.5 for actuator placements.

The control efficiency matrix is

03 -03 04 -04 08 -08
B=|08 08 06 06 07 0.7 (5.8)
-06 06 05 —-05 —-03 0.3

Actuator limits are £20° for the tail fins, and £10° for the wing ailerons.

5.4.3 Part IIT - Agile Flight

In Part IIT of the test plan, the missile is in the new configuration where the actu-
atos have the same characteristics as in the previous test (5.7). The control effiency
matrix B also similar (5.8). The actuator limits are +20° for the tail fins, and £10°
for the wing ailerons. In addition there are constraints on the commanded control,
—10° < demay; < 10° for j = {5,6}, i.e. for the wing ailerons (the reason for this
will become clear in Part IV).

The difference from Part II is that the missile reference trajectory consists of steps,
which will challenge the flight control system and control allocation. This scenario
is thought to emulate "agile" flight, and will investigate how the control allocation
module behaves when stressed.

The performance MPCA with type 1 prediction will be compared to that of RP and
LP.

5.4.4 Part IV - Honoring Actuator Constraints

This part of the test will be similar to that of Part III, except for one detail. In the
previous test, the MPCA problem formulation had constraints on d.,,q aswell as 9.
In this test these will be removed, revealing one of the weaknesses of MPCA.

The MPCA with constraints on d.,,q will be compared to the one without.
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5.4.5 Part V - Prediction Comparison

This test compares types of MPCA prediction on a missile in the new configuration,
with actuator characteristics like (5.7) and control efficiency matrix B like (5.8). The
types of prediction which are compared are type 1 and type 3. The former represents
a very simple approach, while the latter is more advanced and also is expected to
yield the best results. In the testing, the MPCA with prediction type 3 will be
denoted by "MPCA+", while the one with type 1 will be denoted only "MPCA".
The results of the two MPCA tests are compared to that of the RP method.
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Results

In this chapter, the results of the control allocation method testing are presented.
The tests are described in Section 5.4. Some preliminary comments are given to the
plots, but the main discussion follows in the next chapter.

6.1 Part I - Tail fins only

As mentioned in Section 5.4.1, this test will be on a missile with tail fins only. The
missile is given lateral and longitudal step trajectories to follow. This step and the
missile’s response for the different control allocation methods are shown in Figure
6.1. Clearly, all three methods perform very similarly.

Looking at the actuator response in Figure 6.2, one can observe that the it is almost
identical for the three control allocation methods though LP allocates the actuators

somewhat differently.

Lastly, the virtual control u and the actual control 7 = Bd is compared in Figure
6.3, where the same conclusions as above can be drawn.
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Figure 6.1: Part I - Tail fins only: Trajectory step response
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MPCA Actuator Response
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Figure 6.2: Part I - Tail fins only: Actuator response.
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Figure 6.3: Part I - Tail fins only: Virtual control tracking.
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6.2 Part II - Trimmed flight

The remaining parts of the test will be on a missile with the new configuration, tail
fins plus wing ailerons. The test specifics for Part II is found in Section 5.4.2. The
missile is tasked with following a longitudal trajectory.

In Figure 6.4, the reference trajectory and missile tracking performance for the lon-
gitudal and lateral cases are displayed. The three methods give roughly the same
tracking.

Further, the actuator response is displayed in Figure 6.5, where the actuator limits
are displayed as dashed black lines. Because of the weighting of the actuators (5.7),
the wing ailerons are utilized most. Looking at the virtual control tracking in Figure
6.6, the tracking is quite similar for all three methods, but the LP method causes
some oscillation at the end of the maneuvre.

Lastly, the cumulative cost can be seen in Figure 6.7.
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Figure 6.7: Part II - Trimmed flight: Cumulative cost.

6.3 Part III - Agile flight

The missile is tasked to follow an agile trajectory, which will increase the load on
the CA module. The test specifics were presented in 5.4.3.

Figure 6.8 shows the trajectory reference and corresponding missile response. The
three methods give very similar response.

Further the actuator response is shown in Figure 6.9. All actuators are held within
their limits, which are shown as dashed black lines. It can be noted that the LP and
RP methods have more oscillatory behaviour than the MPCA method, a behaviour

which also is present in the virtual control tracking in Figure 6.10.

Finally, the cumulative costs for the three methods are shown in Figure 6.11.
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Figure 6.11: Part ITI - Agile flight: Cumulative cost.

6.4 Part IV - Honoring Actuator Constraints

This test will look at two versions of the MPCA control allocation method. One
is equal to the one in Part III, while the other one is modified by removing the
constraints on dem,g. First, one can look at the trajectory tracking in Figure 6.12,
and note that they are very similar. The main difference is in the actuator response,
shown in Figure 6.13. Here one can see that the actuator limits, shown in dashed
black lines, are not honored.

This has connection to the actuator’s control commands §¢,g, shown in Figure 6.14.
The cumulative cost for the two MPCA versions are shown in Figure 6.15.
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Figure 6.15: Part IV - Honoring Actuator Constraints: Cumulative cost.

6.5 Part V - Prediction Comparison

This part compares the MPCA with different virtual control predictions, type 1
(denoted MPCA) and type 3 (denoted MPCA+), representing low- and high-tier
solutions, respectively. The RP method is also included in the test to serve as a
contrast to the MPCA versions. The missile is given longitudal and lateral step
trajectories to track, see Figure 6.16.

The actuator response is shown in Figure 6.17, and shows that the type 3 prediction
MPCA will allocate actuators already before the steps occur. This is not the case
for the one with type 1, as it has no means of predicting the step. Figure 6.18 shows
the virtual control tracking, where the type 3 prediction MPCA has a slightly better
tracking than the one with type 1.

Lastly, the cumulative cost is shown in Figure 6.19. It comes as no surprise that the

type 3 MPCA accumulates the least cost, while the type 1 MPCA and RP follow
suit.
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Figure 6.16: Part V - Prediction Comparison: Trajectory tracking.
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Chapter 7

Discussion

This chapter presents a discussion on the performance of the Model Predictive
Control Allocation method. The method is compared to the methods Linear Pro-
gramming and Redistributed Pseudoinverse, emphasizing drawbacks and advantages,
aswell as applications of the MPCA. The discussion is based on the results presented
in Chapter 6, which correpond to the test plan in Section 5.4. The performance of
the CVXGEN solver will also be evaluated. It is important to emphasize that the
various missile trajectories are of less importance - they are just a means of testing
the control allocation module, whose performance is judged by the actuator alloca-
tion and virtual control tracking.

7.1 Test with tail fins only

It follows naturally to start of with Part I of the results, found in Section 6.1. This
is a test where the missile is equipped with four tail fins which have similar and
fast dynamics. Looking at the step response in Figure 6.1, the three methods behave
quite similarly. One can note that the LP method is trailing slightly behind the other
two, and the reason for this is made clear by studying Figure 6.2. While the MPCA
and the RP method have very similar actuator response, the LP method chooses to
saturate §; and do while keeping the deflection of d3 and &4 low. This makes the
tracking performance poorer than for the two other methods, which again can be
viewed in Figure 6.3. Here, the LP chooses to track dy tighter than g, which is
a bad choice considering that this is a bank-to-turn missile, which utilizes roll to turn.

Setting the tracking performance aside, the main result of this test is that in such a
setup the performances of the three methods are very similar. Very little separates
the methods in terms of tracking trajectory and virtual control. This is because
the actuators all have similar and fast characteristics - in such a setup the MPCA
method can to a lesser extent exploit having knowledge of the actuator dynamics,
because they are so fast in the first place. This is made especially clear by comparing
the MPCA and RP method - two methods on the opposite side of the complexity
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scale - as they yield almost exactly the same actuator response.

Because of this, the MPCA method is perhaps not a good choice in a setup where all
actuators are fast, as it is unable to exploit its strong traits. Since a simple method
like the RP yield the same results, this is probably a better choice because it is
significantly less complex to develop and implement.

7.2 Performance in trimmed flight

Turning the attention to the next part of the test (Section 6.2), the situation is dif-
ferent. Now the missile is equipped with wing ailerons in addition to the tail fins.
These actuator groups have different dynamics, a setup which the MPCA method
can benefit from. This part of the test is simulating a trimmed flight scenario, i.e.
flight under calm conditions. As previously mentioned, it is desirable to use only the
wing ailerons under such conditions, as they are less costly than the tail fins. The
missile is given a sinusoidal longitudal trajectory to follow, while the lateral reference
is held at zero (see Figure 6.4). The reason for this is that lateral movement requires
control in two axes, i.e. m = 2. If only wing ailerons are utilized, n = m = 2, and
the autopilot will have a very hard time controlling the missile. In fact, it forces
allocation of the tail fins to perform the maneuvre. On the other hand, longitudal
movement requires only control in one axis, making m = 1. Now n > m, and the
control allocation module will be able to use only the wing ailerons as control, thus
making the trimmed flight test possible.

Looking at the actuator response in Figure 6.5, it is clear that the wing ailerons (on
the left side) are utilized the most. The LP method is unaware of the actuator dy-
namics, causing oscillation at the end of the maneuvre. The MPCA and the RP do
not suffer from this oscillation, but looking at the virtual control tracking in Figure
6.6 reveals that the MPCA provides better tracking performance. This is summa-
rized in the cumulative cost plot in Figure 6.7. The LP causes oscillations, and
accumulates a high cost because of the excessive actuator usage. The RP method is
unaware of the actuator dynamics, and is penalized cost-wise because of the trailing
tracking performance of the virtual control. The MPCA method is connected with
the lowest cost, well below that of the other methods.

Based on this, one can say that the MPCA method is well suited for use in a trimmed
flight scenario. It accomplishes the goal of using only the inexpensive wing ailerons,
though some residual allocation of the tail fins is present due to nonzero cost on
the wing ailerons. Compared to the other two methods, it is clear that the MPCA
exploits its knowledge of the actuator dynamics, causing the least usage of the tail
fins and the best tracking of the virtual control input.

The fact that the LP method causes oscillations shows that the choice of control al-
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location method actually influences the performance of the overall system. Because
of this the choice should not be arbitrary, but be a consideration between method
complexity and execution speed, which actuator constraints the method can handle,
which configuration the actuators are in, and finally how it behaves in the overall
flight control system.

A prime example of this is the LP method. In the previous project work done on
control allocation [22], the method was compared to the RP and QP methods on a
system where actuator dynamics were ignored, i.e. actuators had a transfer func-
tion equal to one. In that work, the LP method was considered to be the best of
the three. In the present thesis, where actuator dynamics are present and actuators
span different dynamic authorities, the method causes unwanted oscillations which
are unacceptable. With this fact in hand, one can draw the conclusion that the LP
method does not make the transition to a system with actuator dynamics very well,
rendering it less suitable for such systems. The RP method, though less complex,
surprisingly makes this transition better.

7.3 Performance in agile flight

Part 3 of the test sets the missile in a condition simulating agile flight. This is sim-
ulated by making the missile follow lateral and longitudal steps. This puts stress on
the control allocation module, forcing it to utilize all available actuators, not just
the wing ailerons. The trajectory and the missile response can be seen in Figure
6.8. Again, the three methods yield roughly the same response, but in the lateral
tracking the MPCA is somewhat better than the rest.

The actuator response in Figure 6.9 reveals that the LP method, like in the previ-
ous test, causes oscillations, but this time this is also the case for the RP method.
These methods are unaware of the slow actuator dynamics of the wing ailerons, and
commands them as if they would respond immediately, resulting in the unwanted
oscillation. Looking at the MPCA method, it shows no signs of oscillatory behaviour
and clearly allocates control in the most satisfactory manner. All three methods
allocate the tail fins similarily, though the LP method saturate the actuators more,
which is not desireable. If possible, the actuators should never be saturated - then
there always will be excess control power available in every direction, to handle dis-
turbances and unexpected commands.

In the virtual control tracking, Figure 6.10, the same conclusions as in the previous
paragraph can be drawn, and one can see that it is in the pitch axis that the oscil-
lations appear (this is probably related to that the pitch axis controllers have the
highest gains). Figure 6.11 shows the cumulative cost, and as for Part 2 of the test,
the MPCA accumulates the lowest cost, while the RP and LP method follow second
and third. This was to be expected, based on the oscillatory movements caused by
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the RP and LP movements, which create the need for additional actuator usage.

7.4 Honoring actuator constraints

In the next part of the testing, the missile is tasked with following the same step tra-
jectory as in part 3, but this time two versions of the MPCA method are compared.
The first version is equal to that of part 3, but the other is without constraints on
the control command §.y,g (Which is is the output of the MPCA).

The step trajectory and missile response is shown in Figure 6.12, and reveal that
the two versions of the MPCA yield almost identical missile response. What is more
interesting is how the actuators response, which is shown in Figure 6.13. For the
case without constraints on d.,,4, the wing ailerons exceed their limit values of £10°.
This is unacceptable since honoring these limits is one of the key properties of a
control allocator.

By looking at the actuator response for the case with constraints on §y,g in the same
figure, one can notice that the wing aileron responses are similar, but have smaller
slopes and most importantly do not exceed their limits. Some explanation for this
lies in the plot of the actuators commanded control d.,,q in Figure 6.14. For the case
with constraints on .., the command saturates on the limits, and thus the slope
of § is constrained. This also limits the actuators to ever exceed their limits. Next,
in the case without the constraints on d.,,q, the £10° limits are breached several
times. This in itself is of no particular concern, since the important bounds are on
0. By commanding a higher deflection than the limits, the control allocation module
can force the actuators to respond faster, since there is in this case no limits on the
actuator speed. This can of course be a good thing, in essence it is just exploiting
the knowlegde of the actuator dynamics to achieve better performance. The prob-
lem occurs when the actuator actually exceeds it limits. It is clear that the control
allocation module is aware of this since it suddenly switches commanded direction
when this happens. Looking back at Figure 6.13, this is reflected by observing that
the actuators have an oscillating motion about their limits, converging towards them.

One may ask why the actuator does not honor the constraints, considering that the
control allocation is aware of the actuator’s dynamics. The reason for this is prob-
ably based on the MPCA’s virtual control prediction. In this test, this prediction
is type 1, which is a vector repeating the current value of u. This is not a particu-
larly good prediction taking the future sudden step of the reference trajectory into
account. The MPCA receives no prediction of the future dynamics, and when the
virtual control u suddenly flats out, the damage has already been done since the
actuator has been commanded further than it should have been, with no chance of
honoring the bounds. The MPCA tries to compensate by reversing it’s direction,
but due to the dynamics of the actuator this does not happen instantaneously, thus
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the oscillation motion.

This reveals one of the weaknesses of the MPCA - for it to fully take use of its
knowledge of the actuator dynamics, it needs a reasonable prediction of the future
dynamics. By constraining the commanded control d.,,q one can make sure the ac-
tuator is held between its limits regardless of the quality of the prediction. This is
perhaps not such a bad solution, since the available power may not be large enough
to command the actuator to achieve such slopes as seen in the lower left plot in
Figure 6.14. In fact, the available power may be constrainted between [dmin, Omaz]
because the actuators are designed not to exceed these limits. By looking at Figure
6.15, the MPCA with constraints on d.,,q actually accumulates lower cost than the
one without.

7.5 On virtual control prediction

Part V of the test (described in Section 5.4.5) takes on various types of virtual con-
trol predictions. Three different types are described in Section 5.3, but only type 1
and type 3 are used in the test. These two represent simple and more complex solu-
tions respectively. Jumping to Figure 6.17, the type 3 prediction MPCA (MPCA+)
clearly is aware of the trajectory steps before they occur, since it allocates actuators
prematurely (middle row). It is also worth noting that the MPCA+ also saturates
the actuators less than the MPCA with prediction type 1 (top row), which is a de-
sireable property.

One would expect the MPCA+ with a 0.2s prediction window would make the mis-
sile’s step response (Figure 6.16) 0.2s faster, but this is clearly not the case. Though
the MPCA+ actually has a slightly faster response, it is very small and not clearly
visible on a 10-second scale. Where the benefits of using type 3 prediction becomes
clear is in the virtual control tracking (Figure 6.18). In this regard it can show off an
almost exact tracking, being able to track even directly after the reference trajectory
steps, which the MPCA type 1 can not. This is reflected by studying the acculu-
mated cost (Figure 6.19), where using type 3 prediction cuts the cost by roughly
20% compared to the MPCA type 1.

7.6 CVXGEN

Setting the control allocation method comparison aside, a short discussion on the
applied convex optimization solvers is held. In this thesis, the newly developed
CVXGEN solver is utilized when solving the MPCA problem, aswell as the LP CA
problem. The control allocation method testing was performed within the MATLAB
environment, and the CVXGEN online interface provides solvers for this environment
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directly.

The online interface is user friendly and intuitive, and the process of entering a prob-
lem to having an automatically generated custom solver ready to solve it is done in
minutes. Of course, since the interface is only available online there is a need for an
internet connection, which does restricts its availability. If the custom solver gener-
ator could be downloaded and installed as a program the flexibility would increase,
making the user experience even better. On the other hand, this may restrict the
rate of bug fixing and further code optimization. Since CVXGEN is, at the time
of this writing, not commercially available, the online solution will have to suffice,
but to the author’s opinion there is no doubt that the product has great potential.
During the span of the thesis’ writing, no errors were encountered and the solvers
always performed well.

The use of CVXGEN leads to a customized quadratic programming solver, and used
in the MATLAB environment the solver typically requires less than 1 millisecond
computation time on a powerful processor. This is considered to be very fast, and
there is no reason to assume that the custom c-code the CVXGEN interface can
generate executes any slower. This makes implementation on a microprocessor for
real-time applications feasible, although important aspects such as software code
verifiability needs to be addressed carefully.

The CVXGEN problem solve time also scales well with complexity. Figure 7.1 shows
the average solve time (in the MATLAB environment) for an MPCA problem where
m = 3, n = 6, and the prediction horizon T" was incrementally increased from 1 to 7.
CVXGEN works best when the number of nonzero KKT! entries are below 4000 [27].

A nearly linear relationship between problem complexity and average solve time can
be observed from T"=1 to T' = 6. On the step from T' = 6 to T" = 7 the slope in-
creases. This is also where the complexity (number of nonzero KKT entries) exceeds
4000, confirming that CVXGEN works best with complexity below this number. In
fact, when a problem complexity exceeds 4000, a warning is displayed in the CVX-
GEN interface, stating that a solution to the problem may not be found. MPCA
problem size statistics are presented in Table 7.1.

CVXGEN is also a handy tool in prototyping and testing, where the solve times are
of lesser concern but still important (shorter solve times allows for more rigorous
and frequent tests). The solve time difference from other commonly used convex
optimization parser solvers like CVX is staggering. Figure 7.2 shows a comparison
between CVX and CXVGEN for an MPCA problem where m =3, n =6 and T = 1.
Obviously CVXGEN is the better choice, especially when also considering that parser
solvers like CVX and Yalmip require the same amounts of code writing and adaption
as CVXGEN.

!Karush-Kuhn-Tucker conditions, which are important in solving optimization problems.
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Figure 7.1: CVXGEN solve time scaling.
Prediction horizon T 1 2 3 4 ) 6 7
Parameter entries 286 | 289 | 292 295 298 301 304
Original variables 24 45 66 87 108 129 150
Variables in solver 33 63 93 123 153 183 213
Equalities in solver 27 51 75 99 123 147 171
Inequalities in solver 24 48 72 96 120 144 168
KKT original non-zeros 249 | 639 | 1029 | 1419 | 1809 | 2199 2589
KKT non-zeros after fill-in | 372 | 993 | 1713 | 2433 | 3153 | 3873 4593
Solver generation time 1.85 | 9.55 | 24.25 | 48.3s | 82.0s | 111.5s | 159.2s

Table 7.1: MPCA Optimization Problem Size Statistics
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Chapter 7: Discussion
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Figure 7.2: CVXGEN vs CVX solve time comparison.
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Chapter 8

Conclusion and Further Work

This thesis has developed and tested a control allocation method based on the Model
Predictive Control algorithm. The MPCA method can handle actuator constraints
on position and velocity, aswell as accounting for actuator dynamics. This sets it
aside from other classical methods, which neglects these dynamics on the basis that
they are orders of magnitude faster than the missile dynamics, or that they are ac-
counted for in another part of the flight control system. This can in some cases be
an unrealistic assumption.

The MPCA method was compared to the Linear Programming- and Redistributed
Pseudoinverse control allocation methods in a setting where actuators have dynamics
spanning different dynamical authorities. Here, the MPCA outperformed the other
methods in regard to cost and tracking performance. Using knowledge of the actua-
tor dynamics, it can allocate different groups of actuators under different conditions,
which is beneficial with regard to aspects like power consumption and actuator wear.

In the various tests of the MPCA, some issues were also uncovered. The advan-
tages of MPCA do not really appear if used when the actuator set is fast and have
homogenous dynamics and cost. Because all actuators react almost immediately,
there is no need for a scheme planning the movements of the actuators in advance
- methods neglecting actuator dynamics perform just as well. Also, the quality of
the virtual control prediction needs to be a concern when designing the MPCA. One
test revealed that actuator limits may be violated if the prediction quality is low
and the MPCA has no bounds on actuator command. By adding such bounds, one
can ensure that actuator limits always are honored. By increasing the quality of the
prediction, cost is reduced and tracking performance increased.

CVXGEN is used to solve the MPCA problems, and performs the job brilliantly. The
solve times are very low, making implementation in a real-time application feasible.
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Chapter 8: Conclusion and Further Work

Further Work

In this thesis, the flight control system was designed with the goal of testing the
control allocation module. Because of this, other parts like the autopilot were not
emphasized. It would be interesting to implement the MPCA in a flight control
system tailored to a specific aircraft.

A further step could be taking the use of CVXGEN to the next level, by implement-
ing the MPCA on a microprocessor, using the custom ¢ code. This would probably
pose some challenges, but would reveal its potential in real-time applications.

More further work can be done in combining the autopilot and control allocation
into one unit. Since using the Model Predictive Control Allocation method requires
an estimate of the future virtual control, and this signal comes from the autopilot,
combining the two methods could be feasible. This would require an estimate of
the future trajectory, but this is often more available or easier to estimate than the
virtual control. Since the missile dynamics can be simplified into first order linear
differential equations, these can be incorporated into the hybrid MPC-autopilot-
control allocator, enabling it to account for the missile dynamics, further increasing
the module’s performance. This is an interesting yet not unrealistic goal for future
projects on MPCA.
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Appendix A

Model Parameters

Tables A.1, A.2 and A.3 presents the model parameters used in the simulations.

Table A.1: Model Parameters

Symbol | Value | Unit
Q | 55350 | g
m 200 kg
Lo 5| kgm?
L, 150 | kgm?
I. 150 | kgm?
I, 1| kgm?
1., 1| kgm?
\% 300 =
S 1 m?

l 1 m

Table A.2: Aerodynamic Control Parameters

Symbol | Value | Unit
C&;R 0.6 | rad=!
chR 0.6 | rad™"
CnNsp 0.6 | rad™!
Crsp 0.5 | rad™!
CC(SP 0| rad=!
Cnsp 0| rad—?
CM(gp 0.5 | rad=!
C&sy 0| rad—?
Cnsy 0.4 | rad™!
Cc(gy 04 | rad=!

85



Appendix A: Model Parameters

Table A.3: Aerodynamic Parameters

Symbol | Value | Unit
Cra 5.0 | rad™!
Cria —5.0 | rad™!
ng 0| rad=!
Cc@ 0.8 | rad™!
Cng 0| rad=!
Crr —0.7 | rad™t
Chny —8.0 | rad™!
Cnp 0.1 | rad—!
Cep | —10.0 | rad™!
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Appendix B

Missile Model Nomenclature

Longitudal (forward) velocity
Lateral (transverse) velocity
Vertical velocity

Roll rate

Pitch rate

Yaw rate

Roll angle

Pitch angle

Yaw angle

Angle of attack

Sideslip angle

Earth-fixed x position
Earth-fixed y position
Earth-fixed z position

Total speed

Speed relative to wind
Velocity vector

Position and attitude vector
Vector of forces and moments
Longitudal force

Lateral force

Vertical force

Roll moment

Pitch moment

Yaw moment

Longitudal drag force
Lateral drag forces

Lift force

WL & g

< 8
& =

RADZENNNXas « <8 n
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Appendix B: Missile Model Nomenclature

a
b

R;
R, ¢
R.
m
a;
Ica
Mgp
CrB
TRB
I;
I
gi
fa

w
i,engine
P
Q
S
l

CrLi
Cui
Cni
Cpi

Cci
Cri

i

Or
op
dy
Ziong
Ulong

Llat
Ulat

5cmd

wo
dq
do

Rotation matrix from b to a

Euler angle rotation about x axis

Euler angle rotation about y axis

Euler angle rotation about z axis

Mass

Acceleration along axis i

Inertia tensor

Rigid body inertia matrix

Rigid body damping matrix

Rigid body forcing vector

Moment of inertia

Product of intertia

Gravitational acceleration along axis i

Gravitational force

Engine force along axis i

Air density

Dynamic pressure

Reference surface area

Reference length

Partial derivative of the roll moment coefficient w.r.t variable i
Partial derivative of the pitch moment coefficient w.r.t variable i
Partial derivative of the yaw moment coefficient w.r.t variable i
Partial derivative of the longitudal drag force coefficient w.r.t variable i
Partial derivative of the lateral drag force coefficient w.r.t variable i
Partial derivative of the lift force coefficient w.r.t variable i
Control vector for actuator i

Roll control vector

Pitch control vector

Yaw control vector

Longitudal state vector

Longitudal input vector

Lateral state vector

Lateral input vector

Actuator control vector

Actuator commanded control vector

Actuator damping ratio

Actuator natural frequency

Actuator position

Actuator velocity
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Appendix C

CVXGEN Code

MPCA - x configuration
dimensions

end

parameters
A (n,n); B (n,4); C (m,n); D (1,4);
deltamax positive; deltamin negative;
alpha positive;
deltal0] (n);
u_des[t] (m), t=0..T+1

end

variables
delta_cmd[t] (4), t=0..T
deltalt] (n), t=1..T+1
y[t] (m), t=0..T+1

end

minimize
sum[t=1..T+1] (square(y[t][1] - u_des[t][1])+square(y[t][2]
- u_des[t][2])+square(y[t][3] - u_des[t][3]))
+ alpha*sum[t=0..T] (square(D[1]*delta_cmd[t] [1])
+ square(D[2]*delta_cmd[t] [2])+square(D[3]*delta_cmd[t] [3])
+ square(D[4]*delta_cmd[t] [4]))
subject to
delta[t+1] == Axdelta[t] + B*delta_cmd[t], t=0..T
y[t] == Cxdelta[t], t=0..T+1

deltamin[1] <= delta[t][1] <= deltamax[1], t=1..T+1
deltamin[2] <= delta[t][3] <= deltamax[2], t=1..T+1
deltamin[3] <= delta[t][5] <= deltamax[3], t=1..T+1
deltamin[4] <= deltal[t][7] <= deltamax[4], t=1..T+1

89




Appendix C: CVXGEN Code

LP CA - x configuration

dimensions
m=3; n=4;
end

parameters
B(m,n);
D(1,n);
deltamax(1l) positive; deltamin(1l) negative;
u(m) ;
alpha positive;
end

variables
delta(n);
end

minimize
norml (Bxdelta - u) + alpha*(norml(D[1]*deltal[1])
+ norml (D[2]*delta[2]) + norml(D[3]*deltal[3])
+ norml(D[4]*deltal4]))
subject to
-delta >= -deltamax;
delta >= deltamin;
end

MPCA - New configuration

dimensions
m=23; n=12; T = 4;
end

parameters
A (n,n); B (n,6); C (m,n); D (1,6);
deltamax (6) positive;
deltamin (6) negative;
alpha positive;
beta positive;
deltal[0] (n);
u_des[t] (m), t=0..T+1
end

variables
delta_cmd[t] (6), t=0..T
deltalt] (n), t=1..T+1
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Appendix C: CVXGEN Code

y[t] (m), t=0..T+1
end
minimize
sum[t=1..T+1] (square(y[t] [1]-u_des[t] [1]1)
+square(y[t] [2]-u_des[t] [2])+square(y[t][3]-u_des[t][3]))
+alpha*sum[t=0..T] (square(D[1]*delta_cmd[t] [1])
+square (D[2] *delta_cmd[t] [2])+square(D[3]*delta_cmd[t] [3])
+square (D[4]*delta_cmd[t] [4])+square(D[5]*delta_cmd[t] [5])
+square(D[6]xdelta_cmd[t] [6]) )
subject to
delta[t+1] == Axdelta[t] + Bx*delta_cmd[t], t=0..T
y[t] == Cxdeltalt], t=0..T+1
deltamin[1] <= delta[t][1] <= deltamax[1], t=1..T+1
deltamin[2] <= delta[t][3] <= deltamax[2], t=1..T+1
deltamin[3] <= delta[t] [5] <= deltamax[3], t=1..T+1
deltamin[4] <= delta[t][7] <= deltamax[4], t=1..T+1
deltamin[5] <= delta[t][9] <= deltamax[5], t=1..T+1
deltamin[6] <= delta[t][11] <= deltamax[6], t=1..T+1
end

LP CA - New configuration
parameters

B(3,6); D(1,6);
deltamax(1l) positive; deltamin(1l) negative;
u(3)
alpha positive
end

variables
delta(6)
end

minimize

norml (Bxdelta - u) + alpha*norml(Dxdelta)
subject to

-delta >= -deltamax;

delta >= deltamin;
end
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Appendix D

RP CA Embedded Matlab Code

RP CA - x configuration

function delta = redist_pseudoinv(u)

B = [ 0.3000 -0.3000 0.4000 -0.4000 ;
0.8000 0.8000 0.6000 0.6000 ;
-0.6000 0.6000 0.5000 -0.5000 1;

W = diag([1 1 1 11);

c = zeros(4,1);

pseudoctrl = mypseudo(B,B,W,c,u);
[sat,c,modmat] = satcheck(pseudoctrl,c);

if sat
while sat
pseudoctrl = mypseudo(B*modmat,B,W,-c,u);
[sat,c,modmat] = satcheck(pseudoctrl,c);
if sat==2
pseudoctrl = c;
sat=0;
end
end
end

delta = pseudoctrl;
end

function psctrl = mypseudo(B,Bc,W,c,ref)
psctrl = -c + pinv(B)*(ref+Bc*c);
end

function [sat,new_c,modmat] = satcheck(vec,c)
new_c = zeros(size(c));
maxVal=20%pi/180;
sat=0;
for i=1:length(vec)
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if c(i)==0
if abs(vec(i))>=maxVal
sat=1;
new_c(i) = sign(vec(i))*maxVal;
else
new_c(i) = c(i);
end
else
new_c(i) = c(i);
end

end
if abs(new_c(1))==maxVal && abs(new_c(2))==maxVal ...
&& abs(new_c(3))==maxVal && abs(new_c(4))==maxVal

sat=2;
modmat=eye (4) ;
else
modmat = diag(double((abs(new_c)~=maxVal)));

end
end

RP CA - New configuration

function delta = redist_pseudoinv(u)

B = [ 0.3000 -0.3000 0.4000 -0.4000 0.9 -0.9;
0.8000 0.8000 0.6000 0.6000 0.7 0.7;
-0.6000 0.6000 0.5000 -0.5000 -0.3 0.3];

W= diag([1 111 0.10.11);

c = zeros(6,1);

pseudoctrl = mypseudo(B,B,W,c,u);
[sat,c,modmat] = satcheck(pseudoctrl,c);

if sat
while sat
pseudoctrl = mypseudo(B*modmat,B,W,-c,u);
[sat,c,modmat] = satcheck(pseudoctrl,c);
if sat==2
pseudoctrl = c;
sat=0;
end
end
end

delta = pseudoctrl;
end
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function psctrl = mypseudo(B,Bc,W,c,ref)
psctrl = -c + W\B’*pinv(B*inv(W)*B’)*(ref+Bc*c);
end

function [sat,new_c,modmat] = satcheck(vec,c)

new_c = zeros(size(c));
maxVal=[ 20%pi/180 20%pi/180 20%pi/180 ...
20*pi/180 10*pi/180 10*pi/180 ];

sat=0;
for i=1:length(vec)
if c(i)==0
if abs(vec(i))>=maxVal(i)
sat=1;
new_c(i) = sign(vec(i))#*maxVal(i);
else
new_c(i) = c(i);
end
else
new_c(i) = c(i);
end
end

if abs(new_c(1))==maxVal(l) && abs(new_c(2))==maxVal(2)
&& abs(new_c(3))==maxVal(3) && abs(new_c(4))==maxVal (4)
&& abs(new_c(5))==maxVal(5) && abs(new_c(6))==maxVal(6)

sat=2;
modmat=eye (6) ;
else
new_c_pl = new_c(1:4);
new_c_p2 = new_c(5:6);

modmat = diag( [ double((abs(new_c_pl?’)~=maxVal(2)))
double ((abs(new_c_p2’) “=maxVal(6))) 1 );
end

end
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Appendix E

Conference paper

This appendix contains the article "Dynamic Model Predictive Control Allocation
using CVXGEN", written by Martin Hanger, Tor A. Johansen, Geir Kare Mykland
and Aage Skullestad. It includes the main ideas and results of this thesis, namely
the development of the MPCA formulation, and the use of CVXGEN to solve the
optimization. The paper is aimed for submission at the Ninth IEEE International
Conference on Control and Automation in Santiago, Chile.

The article starts on the next page.
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Dynamic Model Predictive Control Allocation using CVXGEN

Martin Hanger, Tor A. Johansen, Geir Kare Mykland and Aage Skullestad

Abstract— Control allocation deals with the allocation of
control among a redundant set of effectors, while taking into
account the individual constraints. The use of model predictive
control (MPC) for control allocation allows the response times
of the actuators to be accounted for, and in particular to take
advantage of predictions of the virtual control input as well as
differences in dynamic control authority and cost of use among
the actuators. The use of online quadratic programming (QP) is
essential for implementation of the optimal constrained control
allocation strategies. The main contributions of the present
paper are the investigation of using the software system CVX-
GEN and the MPC-based control allocation method. CVXGEN
synthesizes a customized portable and library-free C-source
code QP solver for the specific QP problem resulting from the
MPC formulation, exploiting structural properties of the QP
and optimizing the source code for execution speed. Two case
studies, one being a missile auto-pilot, illustrates the benefits of
using the MPC formulation, and the efficiency of CVXGEN.

. INTRODUCTION

Some control systems are designed with redundant actu-
ator and effectors, for reasons such as fault tolerance and
design issues related to cost, response-time, size, and flexi-
bility. Examples include flight control systems [2], dynamic
positioning systems for ships with using thrusters [8], and
airjet controlled paper motion in machines [4].

Control algorithm design for systems with input redun-
dancy is chalenging since the same control effect (like
a generalized force) can be generated by a number of
different actuator settings, and actuator constraints should
be accounted for. In order to systematically manage such
control design challenges, one may decompose the control
problem into two parts - a controller that commands a virtual
control input of minimal dimension (like the generalized
force), and a control allocation module that maps the virtual
control input into the redundant actuator settings. Since
there are more degrees of freedom available in the actuator
system than virtual control variables, the available degrees of
freedom in the actuator system can be used to satisfy actuator
constraints and to meet secondary objectives such as fault
tolerance, power consumption minimization, and actuator
wear minimization. In general, the control allocation problem
can be formulated as an optimization problem where certain
objectives are minimized subject to actuator and effector
constraints, and the constraint that the resulting control effect
fulfills the requirements of the virtual control command. The
main difference between different control allocation methods

M. Hanger and T. A. Johansen are with Department of Engineering

Cyberentics, Norwegian University of Science and Technology, Trondheim,

Norway. tor.arne.johanseneitk.ntnu.no
G. K. Mykland and A. Skullestad are with Kongsberg Defence Systems,
Kongsberg, Norway

are related to how the optimization problem is formulated,
which models are used, and which numerical algorithms is
employed to solveit. Thisis reviewed in the next paragraphs.

In the classic formulations of the constrained control
allocation problem the actuator dynamics are neglected [2],
under the assumption that all dynamic phenomena are ac-
counted for by the controller that commands the virtual
control to the control allocation module. This may in some
cases be an unreaistic and inconvenient assumption when the
actuator dynamics are limiting the control performance since
response times and different dynamic authorities of the actu-
ators are not taken into account. For systems where actuator
dynamics are known, the interactions between the control
alocation agorithm and the actuator dynamics working on
the aircraft body become more complex, requiring a more
sophisticated control allocation method. Actuators can have
different response times, i.e. a fast actuator can be used to
achieve fast transient response, while slow actuators can be
used for steady state or trimmed flight, to improve power
efficiency. A Model Predictive Control (MPC) allocation
scheme will be able to optimally exploit such properties.

Itisrelatively straightforwardto (re-)design abasic control
alocation algorithm to comply with actuator rate constraints,
e.g. [8], by incorporating this as a constraint on the change
in control inputs from the previous sample to the current
sample. More sophisticated dynamic actuator models may
be incorporated by using the powerful MPC framework to
solve the constrained control allocation problem [9], [10],
[14], [20]. MPC is an optimization-based control algorithm
which can be used in control allocation, beeing able to
handl e actuator dynamics as well as actuator saturation. MPC
utilizes amodel of the plant in predicting outputs and states,
where in control alocation this model describes the actuator
dynamics. Because of the predictive nature of the controller,
the calculated control can pre-act to the actuator system
dynamics to improve performance.

How to implement the numerical optimization for the opti-
mal control allocaiton in real time, is a challenging task. On-
line optimization using off-the-shelf or customized quadratic
programming (QP) solvers are studied in the context of
linear actuator and effector models in [1],[15],[3], [16]. For
nonlinear effector models, the use of sequential quadratic
programming is proposed in [5]. Instead of demanding that
the optimal control allocation is computed exactly at each
sample, the dynamic online optimization appraoch in [6]
will at each time instant move in the direction towards
an optimal control allocation, but optimality is achieved
only asymptotically. The method is extended to the case
with actuator dynamics in [18]. While the dynamic online



optimization approach reduces the online computational re-
quirements, and at the same time guarantees that closed
loop stability is not lost due to sub-optimality, one may
also use multi-parametric programming to pre-compute an
explicitly represented piecewise affine solution function. The
remaining online computations corresponds to the evalua-
tion of a piecewise linear function resulting from multi-
parametric programming and explicit MPC [7],[19]. While
this is highly attractive from the online processing point of
view, its memory consumption and offline processing does
not scale very well - in particular when considering control
efficiency matrices that are time- or state-dependent due to
nonlinear to time-varying characteristics like in fault tolerant
control alocation [17].

This key idea of the present paper is to employ afamily of
highly customized QP solvers that are automatically gener-
ated using CVXGEN [13],[11] to solve MPC-based dynamic
control allocation problems. CVXGEN has the unique fea
ture that the C code of the customized solvers is completely
standard and standalone, i.e. portable, and extremely efficient
since the key structural properties of the QP problem is
exploited in the automatic code generation that leads to code
with only static data structures and almost branch-free code
where for-loops are rolled out for efficiency and deterministic
execution on pipeline processor architectures. Performance
improvement also comes for low software overhead as the
CVXGEN targets small-scale problems, in some contrast to
most off-the-shelf solvers that target large-scale problems.
Orders of magnitude faster execution compared to state-
of-the-art off-the-shelf solvers have been reported on test
problems, including MPC problems [13],[11]. This makes it
interesting to study CVXGEN's performance in challenging
control allocation problems that are of relatively small scale
compared to typical MPC problems.

The paper is organized as follows. First the dynamic MPC-
based control alocation problem formulation is introduced.
Then the use of CVXGEN to address this problem is
described, before the computational performance is assessed
in a simulation benchmark study.

II. DYNAMIC CONTROL ALLOCATION

A. Optimization problem formulation

It is assumed that al control actuators have dynamics
which can be approximately modelled as second order sys-
tems,

5 — 2L wod — 038 = 0femg €

where 6¢ng is the commanded control input, and 6 is
the actuator response. { and wo are the actuators relative
damping ratio and natural frequency, respectively. Rewritten
in state-space form, the model for actuator i will be on the
form

8i = As 81 +Bs8cmai 2

For a system with K actuators and effectors, the model will
be

61 gl A52 . O 61 851 acmd,l
=] . ]
SK O . AEK 8K B5K 6Cn’Ki.K

©)

In a more compact form, this can be written
8 = As8 +BsSomd @

The corresponding MPC control allocation problem is posed
as follows: For the constrained system

8(t) = As8(t) + BsSoma(t)
7(t) = B3(t) ®)

5min§6 < 5max

find 8cma(t) such that (t) tracks 7*(t) as closely as possible,
where t*(t) is the virtual control input vector, B is the control
efficiency matrix and Omin, Omax ae the upper and lower
saturation limits of the effectors or actuators, respectively.

The system (5) is used to predict the commanded control
inputs 8 .y, the control commands & and outputs y through-
out the prediction horizon,

o = [Bana(KK), -, Sema(k+N—-1Jk) ] ()
6 = [d(k+1]k), 6(k+NJK) ] )
T = [T(k+1]k), Z(k+NJK) ] )

where N is the length of the prediction horizon, and k is the
current time step. The MPC algorithm finds the optimal set
of &¢mg by minimizing a cost function on the form

ZW
+a 2 ZWa

j=li=
subject to (5).

In the cost function, W is a weight matrix weighing the
importance of tracking T+ at time j. W, weighs the relative
cost of use of effector i € {1...K}. Asbefore, K is the num-
ber of control actuators. or > 0 weighs the relative importance
between the tracking term and the effector penalty term, and
is usually small. Only the first commanded control sample
dcma (KK) is applied to the actuator. The whole algorithm is
repeated when computing the consequtive é¢mg(k+ 1|k +1).

T(k+j [k)—7*(k+]) |2

8cmd| k"'l _1|k) ] (9)

B. CVXGEN Solver

The CVXGEN solver is currently available through a web
interfface http://www.cvxgen.com. An optimization
problem specification can be entered through a MATLAB-
like programming language. Syntax specifics can be found
in CVXGEN's user manual [12]. The problem is entered in
a fixed problem structure, specifying the problem’s dimen-
sions, parameters, variables, cost function and constraints.
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The library-free custom C solver is automatically gener-
ated. In addition to C code, a MATLAB interface is aso
available, making the custom solver available for e.g. proto-
typing and initia testing within the MATLAB environment.

The solver is used by calling a pre-made function, with
the problem instance’s specific parameters as function input.
Solver settings can also be entered when calling the solver.
After the call, the solver solves the convex optimization
problem with respect to the instance parameters, and outputs
the globally optimal solution.

CVXGEN lendsitsdf naturally to MPC problems, see [11]
for a detailed overview.

I11. CASE STUDIES

The examples will illustrate performance tradeoffs be-
tween control performance, accuracy and cost of actuation
(power, wear,...) that can be systematically adressed with
dynamic predictive control allocation. Furtermore, compu-
tational performance characteristics of the CVXGEN imple-
mentation are reported.

A. Smple test - actuatorgeffectors with different cost and
dynamic response

First, a simple test is conducted, comparing the perfor-
mance of similar MPCA and QP formulations. The virtual
control command t* is one-dimensional, consisting of a sine
with increasing and then decreasing frequency. There are two
actuators 0, and &,, with associated effectors, both modeled
as second order systems. Actuator 1 will be fast but expensive
to use, while actuator 2 will be slow and inexpensive. The
actuator coefficients and corresponding cost weight are

o1 = 150, gj_ = 0.7, W1 =1

o2 = 10, =09 W,=01
This means that the control allocation module should use
actuator/effector 1 only when necessary. In addition, effector

2 will be more efficient than effector 1, reflected in the
control efficiency matrix B=[ 0.3 0.8 ]. The virtual input
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prediction for the MPCA is done using a second order
extrapolation based on the current and most recent samples.

The virtual input tracking of the QP and MPCA methods
can be seenin Figures 1 and 2 respectively. It is clear that the
MPCA does a far better job than the similar QP formulation
when it comes to tracking t*. This is because the QP CA
ignores the actuator dynamics, leading to it commanding
mostly the slow actuator &, to deflect to track t*. As the
frequency of the virtual input increases, actuator 2 can not
follow, causing a larger tracking error. MPCA is aware of
the actuator dynamics and optimally combines both actuators
to meet the requirement of the virtual input. The actuator
response 81 and &, for the QP and MPCA methods can
be seen in Figures 3 and 4, respectively. In these plots the
actuator saturation limits are shown as dashed lines.

A comparison of the cost is shown in Figure 5, which
summarizes the two methods' performance.
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Fig. 5. Cumulative cost for QP CA and MPCA.

B. Missile auto-pilot

MPCA is aso tested in a more redlistic setup, as a part
of a missile flight control system. The missile dynamics are
approximated using decoupled longitudal and lateral models
[22]. Such models are vaid for small angles, but this is
assumed to be sufficient for testing control alocation.

The models are on the form

(10)
(11)

AjongXiong + BiongUiong

Xlong
' AatXiat + BiatUiat

Xat
where
Xiong=[0 Q6 ]T’ Uiong = Op
Xa=[BProv], Ua=[d]

Subscripts denote longitudal and lateral models, and symbols
are summarized in Table I.
The simulated missile has a mass of 200kg, flying at

p | Roll Rate o | Angle of Attack
g | Pitch Rate B | Sidedip
r | Yaw Rate or | Roall Control Moment
6 | Pitch Angle | & | Pitch Control Moment
¢ | Roll Angle | oy | Yaw Control Moment
v | Yaw Angle

TABLE |

SYMBOLSIN MISSILE MODEL

constant speed 300m/s, and has an inertia matrix

5 1 1
=10 150 O |kgm?
0 0 150

A new effector configuration is devel oped, tailored to be used
with MPCA. It combines tail control, four fins are placed
in an x-configuration, and wing control, where each wing
has an aileron. All actuators 61 g, are modeled as second
order systems (1). Subscrips 1-4 denote the tail fins, while
subscrips 5-6 represent the two wing ailerons. The actuator
characteristics and cost are summarized below.

o1 = 150, gj_ = 0.7, W1 =1
o2 = 150, §2 = 0.7, W2 =1
wmp3=150, {3=07, Ws=1
wp4 =150, $4=07, Wy=1

wos =10, {5=09, Ws=0.1
o6 = 10, CG = 0.9, WG =01

The new configuration has two main actuator groups span-
ning different dynamic authorities. The slow and inexpensive
wing ailerons are thought to be used while in trimmed flight,
while the fast, expensive tail fins will be added on in agile
flight.

The control alocation is part of a flight control system
together with a bank-to-turn autopilot, designed to follow
lateral and longituda references. The autopilot design has
two loops. The outer loop is controlling z and y position,
while beeing fed back missile latera and longitudal accel-
erations. This loop uses a bank-to-turn design to command
the inner angular control loop. All controllers within these
loops are PI- or P-controllers. The autopilot’s virtual control
output " = [ & & & |7 is the input to the control
alocation module, which computes a commanded control
dema.is 1 € {1,2,3,4,5,6}, which is applied to the actuators.
The actual actuator response 6i, i € {1,2,3,4,5,6} is mapped
with the control efficiency matrix B to form the control vector
7= 8r 8 & ]T. This vector isin turn input to the missile
model.

03 -03 04 -04 08 -08
B=)08 08 06 06 07 07
-06 06 05 -05 -03 03

An MPCA formulation like the one described in 11-A
is used, and a QP control allocation problem is used as
a comparison. The prediction for the MPCA is created by
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holding the current value throughout the prediction horizon
N, which spans five samples. The MPCA is designed with
sample time 0.05s, making the horizon 0.2s long.

The lateral and longitudal trajectory references are steps,
and the missile step responses are seen in Figure 6. The re-
sponses for MPCA and QP CA are relatively similar, though
the MPCA performs somewhat better in the longitudal step
case.

Looking at the virtual control tracking, the MPCA and
QP CA cases are shown in Figures 7 and 8, respectively.
It is clear that the MPCA, being aware of the actuator
dynamics, provides significantly better tracking of 7* than the
QP CA case. Also note that the choice of control allocation
method affects how the virtual control looks. The QP CA
induces undesirable oscillations and larger amplitudes in
the virtual control. Because of this the choice of control
allocation method should not be arbitrary, but a consideration
of method complexity, present constraints, actuator dynamics
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Parameter entries 155

Origina variables 78

Variables in solver 114

Equalities in solver 94

Inequalities in solver | 80
TABLE Il

MPCA OPTIMIZATION PROBLEM SIZE STATISTICSFOR MISSILE

EXAMPLE

and configuration. The actuator responses for MPCA and
QP are shown in Figures 9 and 10. Actuator limits are
shown as grey lines. Both methods use the wing ailerons
05 and Jg actively, which is a good thing since these are
inexpensive. The mentioned oscillations aso show up in
the actuator response in the QP case. These cause the QP
method to allocate the tail fins more, which the MPCA can
avoid. Beeing aware of the actuator dynamics, the MPCA can
exploit its knowledge to alocate actuators more efficiently,
leading to the previously mentioned improved virtua control
tracking.

Lastly, the cost is compared. The cumulative cost is shown
in Figure 11. As expected, the MPCA cost is well below that
of QP CA, mainly because of the latter methods excessive
actuator use and delay in virtual control tracking.

CVXGEN is used during this simulation, and it is in-
teresting to review the time consumption of the solver.
During the 10-second simulation, 1045 calls are made to the
model predictive control allocation function calculating the
commanded control input d¢yg. By isolating MATLAB on
one CPU and using the program’s profiler utility, it is found
that these calls took a total of 0.434 seconds (CPU time),
making each call on average consume 0.00041531 seconds
CPU time. Thisis considered to be very fast, taking the large
problem size into account. The MPCA problem size statistics
are summarized in Table Il. The solve time aso scales well
when using CVXGEN. A nearly linear relationship between
solve time and complexity was found in an experiment where
MPCA horizon was incrementally increased from N =1 to
N = 7, see Figure 12. In the step from N =6 to N = 7,
the complexity exceeds the recommended limit of CVXGEN
(4000 nonzero KKT entries), and the solve time increases
nonlinearily.

IV. CONCLUSIONS

It is shown that the dynamic constrained alocation prob-
lem for typical configurations can be solved efficiently using
MPC and CVXGEN.

The MPC formulation leads to improved overall control
performance compared to a more conventional static control
alocation method, and it is able to exploit an actuator con-
figuration with different dynamic properties. The developed
MPCA provides better virtua control tracking aswell as alo-
cating actuators more efficiently than classical formulations.

The use of CVXGEN leads to a customized quadratic
programming solver that typically require less than 1 mil-
lisecond computation time on a powerful processor. This may
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considered computationally feasible for implementation in
a flight control system, although important aspects such as
software code verifiability needs to be addressed carefully.
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