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Abstract We explain the notion of a post-Lie algebra and outline its role in the
theory of Lie group integrators.

1 Introduction

In recent years classical numerical integration methods have been extended beyond
applications in Euclidean space onto manifolds. In particular, the theory of Lie
group methods [15] has been developed rapidly. In this respect Butcher’s B-series
[14] have been generalized to Lie–Butcher series [19, 20]. Brouder’s work [2]
initiated the unfolding of rich algebro-geometric aspects of the former, where Hopf
and pre-Lie algebras on non-planar rooted trees play a central role [5, 18]. Lie–
Butcher series underwent similar developments replacing non-planar trees by planar
ones [16, 21]. Correspondingly, pre-Lie algebras are to B-series what post-Lie
algebras are to Lie-Butcher series [9, 12].

In this note we explore the notion of a post-Lie algebra and outline its importance
to integration methods.
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2 Post-Lie Algebra and Examples

We begin by giving the definition of a post-Lie algebra followed by a proposition
describing the central result. The three subsequent examples illustrate the value of
such algebras, in particular to Lie group integration methods.

Definition 1 A post-Lie algebra (g, [·, ·], ◃) consists of a Lie algebra (g, [·, ·]) and
a binary product ◃ : g⊗ g→ g such that, for all elements x, y, z ∈ g the following
relations hold

x ◃ [y, z] = [x ◃ y, z] + [y, x ◃ z], (1)

[x, y] ◃ z = a◃(x, y, z)− a◃(y, x, z), (2)

where the associator a◃(x, y, z) := x ◃ (y ◃ z)− (x ◃ y) ◃ z.
Post-Lie algebras first appear in the work of Vallette [22] and were independently

described in [21]. Comparing these references the reader will quickly see how
different they are in terms of aim and scope, which hints at the broad mathematical
importance of this structure.

Proposition 2 Let (g, [·, ·], ◃) be a post-Lie algebra. For x, y ∈ g the bracket

!x, y" := x ◃ y − y ◃ x + [x, y] (3)

satisfies the Jacobi identity. The resulting Lie algebra is denoted (g, !·, ·").
Corollary 3 A post-Lie algebra with an abelian Lie algebra (g, [·, ·] = 0, ◃)
reduces to a left pre-Lie algebra, i.e., for all elements x, y, z ∈ g we have

a◃(x, y, z) = a◃(y, x, z). (4)

Example 4 Let X (M) be the space of vector fields on a manifoldM , equipped with
a linear connection. The covariant derivative ∇XY of Y in the direction ofX defines
an R-linear, non-associative binary productX ◃Y on X (M). The torsion T , a skew-
symmetric tensor field of type (1, 2), is defined by

T (X, Y ) := X ◃ Y − Y ◃X − !X,Y ", (5)

where the bracket !·, ·" on the right is the Jacobi bracket of vector fields. The torsion
admits a covariant differential∇T , a tensor field of type (1, 3). Recall the definition
of the curvature tensor R, a tensor field of type (1, 3) given by

R(X, Y )Z = X ◃ (Y ◃ Z)− Y ◃ (X ◃ Z)− !X,Y " ◃ Z.

In the case that the connection is flat and has constant torsion, i.e.,R = 0 = ∇T , we
have that (X (M),−T (·, ·), ◃) defines a post-Lie algebra. Indeed, the first Bianchi
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identity shows that −T (·, ·) obeys the Jacobi identity; as T is skew-symmetric it
therefore defines a Lie bracket. Moreover, flatness is equivalent to (2) as can be seen
by inserting (5) into the statement R = 0, whilst (1) follows from the definition of
the covariant differential of T :

0 = ∇T (Y,Z;X) = X ◃ T (Y,Z) − T (Y,X ◃ Z)− T (X ◃ Y,Z).

The formalism of post-Lie algebras assists greatly in understanding the interplay
between covariant derivatives and integral curves of vector fields, which is central
to the study of numerical analysis on manifolds.

Example 5 We now consider planar rooted trees with left grafting. Recall that a
rooted tree is made out of vertices and non-intersecting oriented edges, such that all
but one vertex have exactly one outgoing line and an arbitrary number of incoming
lines. The root is the only vertex with no outgoing line and is drawn on bottom of the
tree, whereas the leaves are the only vertices without any incoming lines. A planar
rooted tree is a rooted tree with an embedding in the plane, that is, the order of the
branches is fixed. We denote the set of planar rooted trees by OT.

OT =
{

, , , , , , , , , . . .

}
.

The left grafting of two trees τ1 ◃ τ2 is the sum of all trees resulting from attaching
the root of τ1 via a new edge successively to all the nodes of the tree τ2 from the
left.

◃ = + + . (6)

Left grafting means that the tree τ1, when grafted to a vertex of τ2 becomes
the leftmost branch of this vertex. We consider now the free Lie algebra L(OT)
generated by planar rooted trees. In [16] is was shown that L(OT) together with left
grafting defines a post-Lie algebra. In fact, it is the free post-Lie algebra PostLie( )

on one generator [16].
Ignoring planarity, that is, considering non-planar rooted trees, turns left grafting

into grafting, which is a pre-Lie product on rooted tree satisfying (4) [17]. The space
spanned by non-planar rooted trees together with grafting defines the free pre-Lie
algebra PreLie( ) on one generator [3].

Example 6 Another rather different example of a post-Lie algebra comes from
projections on the algebra Mn(K) of n × n matrices with entries in the base
field K. More precisely, we consider linear projections involved in classical matrix
factorization schemes, such as LU , QR and Cholesky [6, 7]. Let π∗+ be such a
projection on Mn(K), where ∗ = LU , QR, Ch. It turns out that both π∗+ and
π∗− := id− π∗+ satisfy the Lie algebra identity

[π∗±M,π∗±N] + π∗±[M,N] = π∗±([π∗±M,N] + [M,π∗±N]),
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for all M,N ∈ Mn(K). In [1] it was shown that M ◃ N := −[π∗−M,N] defines a
post-Lie algebra with respect to the Lie algebra defined on Mn(K). Corollary 3 is
more subtle in this context as it reflects upon the difference between classical and
modified classical Yang–Baxter equation [7, 8, 11].

3 Post-Lie Algebras and Lie Group Integration

We now consider post-Lie algebras as they appear in numerical Lie group inte-
gration. Recall the standard formulation of Lie group integrators [15], where
differential equations on a homogeneous spaceM are formulated using a left action
· : G × M → M of a Lie group G of isometries on M , with Lie algebra g. An
infinitesimal action · : g×M → TM arises from differentiation,

V · p := ∂

∂ t

∣∣∣∣
t=0

exp(tV ) · p.

In this setting any ordinary differential equation onM can be written as

y ′(t) = f (y(t)) · y(t), (7)

where f : M → g. For instance ODEs on the 2-sphere S2 ≃ SO(3)/SO(2) can be
expressed using the infinitesimal action of so(3). Embedding S2 ⊂ R3 realizes the
action and infinitesimal action as matrix-vector multiplications, where SO(3) is the
space of orthogonal matrices, and so(3) the skew-symmetric matrices.

To obtain a description of the solution of (7), we begin by giving a post-Lie
algebra structure to gM , the set of (smooth) functions from M to g. For f, g ∈ gM ,
we let [f, g](p) := [f (p), g(p)]g and

(f ◃ g)(p) := ∂

∂ t

∣∣∣∣
t=0

g(exp(tf (p)) · p).

The flow map of (7) admits a Lie series expansion, where the terms are differential
operators of arbitrary order, which live in the enveloping algebra of the Lie algebra
generated by the infinitesimal action of f . Recall that for a Lie algebra (g, [·, ·]),
the enveloping algebra is an associative algebra (U(g), ·) such that g ⊂ U(g) and
[x, y] = x · y − y · x in U(g). As a Lie algebra g with product ◃, the enveloping
algebra of (g, [·, ·], ◃) is U(g) together with an extension of ◃ onto U(g) defined
such that for all x ∈ g and y, z ∈ U(g)

x ◃ (y · z) = (x ◃ y) · z+ y · (x ◃ z)
(x · y) ◃ z = a◃(x, y, z).
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Many of these operations are readily computable in practice. Recall that g has a
second Lie algebra structure ḡ associated to the bracket !·, ·", reflecting the Jacobi
bracket of the vector fields on M generated by the infinitesimal action of g. As
a vector space, its enveloping algebra

(
U(ḡ), ∗

)
is isomorphic to U(g). The Lie

series solution of (7) is essentially the exponential in U(ḡ), which in contrast to the
operations of U(g) is in general difficult to compute. We are lead to the following:

Basic Aim The fundamental problem of numerical Lie group integration is the
approximation of the exponential exp∗ in

(
U(ḡ), ∗

)
in terms of the operations of(

U(g), ·, ◃
)
, where (g, [·, ·], ◃) is the free Post-Lie algebra over a single generator.

Remark 7 One may wonder why we use post-Lie algebras, which require flatness
and constant torsion, and not structures corresponding to constant curvature and zero
torsion such as the Levi-Civita connection on a Riemannian symmetric space. The
key is that the extension of ◃ onto U(g) allows for a nice algebraic representation
of parallel transport, requiring flatness of the connection ◃. Indeed, the basic
assumption is that ◃ extends to the enveloping algebra such that x ◃ (y ◃ z) =
(x ∗ y) ◃ z. From this follows

!x, y" ◃ z = (x ∗ y − y ∗ x) ◃ z = x ◃ (y ◃ z)− y ◃ (x ◃ z),

and hence R(x, y, z) = 0. For any connection ◃, the corresponding parallel
transport of g is

g + tf ◃ g + t2

2
f ◃ (f ◃ g)+ t3

3!f ◃ (f ◃ (f ◃ g))+ · · · .

If the basic assumption above holds, this reduces to the formula exp∗(tf ) ◃ g.
Recall that the free Post-Lie algebra over a single generator is the post-Lie

algebra of planar rooted trees postLie({ }) given in Example 5. Freeness essentially
means that it is a universal model for any post-Lie algebra generated by a single
element, and in particular the post-Lie algebra generated by the infinitesimal action
of a function f ∈ gM onM . For instance, if we decide that represents the element
f ∈ gM , then there is a unique post-Lie morphism F : postLie({ }) → gM such
that F( ) = f . Moreover, we then have, e.g.,

F( ) = F( ◃ ) = F( ) ◃ F( ) = f ◃ f,

or F([ , ]) = [f, f ◃ f ], and so on. This F is called the elementary differential
map, associating planar rooted trees and commutators of these with vector fields on
M . Hence, all concrete computations in gM involving the operations ◃ and [·, ·] can
be lifted to symbolic computations in the free post-Lie algebra postLie({ }).
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Revisiting our basic aim, we require a description of U(postLie({ })), which is
given as the linear combination of all ordered forests (OF) over the alphabet of
planar rooted trees, including the empty forest I,

OF =
{
I, , , , , , , , , , . . . , , , . . .

}
.

So an element a ∈ U(postLie({ })) could be, for instance, of the following form

a = 3I+ 4.5 − 2 + 3 + 6 + 7 − 2 · · · .

To be more precise, U(postLie({ })) consists of all finite linear combinations of this
kind, while infinite combinations such as the exponential live in Û

(
postLie({ })

)

and are obtained by an inverse limit construction [12]. Elements in the space
Û
(
postLie({ })

)
we call Lie–Butcher (LB) series. Note that all computations

on such infinite series are done by evaluating the series on something finite in
U(postLie({ })). Indeed, we consider Û := Û

(
postLie({ })

)
as the (linear) dual

space of U := U
(
postLie({ })

)
, with a bilinear pairing ⟨·, ·⟩ : Û × U → R defined

such that OF is an orthonormal basis, i.e. for ω,ω′ ∈ OF we have ⟨ω,ω′⟩ = 1 if
ω = ω′, and zero if ω ̸= ω′.

Two important subclasses of LB-series are

gLB :=
{
α ∈ Û(postLie({ }) : ⟨α, I⟩ = 0, ⟨α,ω ω′⟩ = 0 ∀ω,ω′ ∈ OF\{I}

}

GLB :=
{
α ∈ Û(postLie({ }) : ⟨α,ω ω′⟩ = ⟨α,ω⟩⟨α,ω′⟩ ∀ω,ω′ ∈ OF

}
,

where denotes the usual shuffle product of words, e.g., a I = I a = a,

ab cd = a(b cd)+ c(ab d).

Here elements in gLB are called infinitesimal characters, representing vector fields
onM and elements inGLB are characters, representing flows (diffeomorphisms) on
M . GLB forms a group under composition called the Lie–Butcher group. A natural
question is how does an element γ ∈ GLB represents a flow onM? The elementary
differential map sends γ to the (formal1) differential operator, i.e.,

F(γ ) =
∑

ω∈OF
⟨γ ,ω⟩F(ω) ∈ Û(g)M.

The flow map Ψγ : M → M is such that the differential operator F(γ ) computes
the Taylor expansion of a function φ ∈ C∞(M,R) along the flow Ψγ :

F(γ )[φ] = φ ◦ Ψγ .

1Neglecting convergence of infinite series at this point.
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Recall from Proposition 2 that any post-Lie algebra comes with two Lie algebras
g and g. Hence there are two enveloping algebrasU(g) andU(g), with two different
associative products. It turns out that U(g) and U(g) are isomorphic as Hopf
algebras [8, 9], such that the product of the latter can be represented inU(g). For LB-
series, the resulting two associative products in U(g) are called the concatenation
product and Grossman–Larson (GL) product [13]. Indeed, we have ω · ω′ = ωω′

(sticking words together). The GL product is somewhat more involved, i.e., for
α,β ∈ gLB we have α ∗ β = α · β + α ◃ β, see [9] for the general formula.
Interpreted as operations on vector fields on M , the GL product represents the
standard composition (Lie product) of vector fields as differential operators, while
the concatenation represents frozen composition, for α,β : M → U(g) we have
α · β(p) = α(p) · β(p).

The two associative products onU(g) yield two exponential mappings exp·, exp∗

between gLB andGLB obtained from these,

exp·(α) = I+α+1
2
α·α+1

6
α·α·α+· · · , exp∗(α) = I+α+1

2
α∗α+1

6
α∗α∗α+· · · .

Both send vector fields on M to flows on M . However, it turns out that the
Grossman–Larson exponential exp∗ sends a vector field to its exact solution flow,
while the concatenation exponential exp· sends a vector field to the exponential
Euler flow,

y1 = exp(hf (y0)) · y0. (8)

All the basic Lie group integration methods can be formulated and analysed directly

in the space of LB-series Û
(
postLie({ })

)
with its two associative products and

the lifted post-Lie operation. The Lie-Euler method which moves in successive
timesteps along the exponential Euler flow is one such example. A slightly more
intricate example is

Example 8 (Lie Midpoint Integrator) On the manifoldM a step of the Lie midpoint
rule with time step h for (7), is given as

K = hf (exp(K/2) · y0)
y1 = exp(K) · y0.

In Û
(
postLie({ })

)
, the same integrator 2→ Φ : gLB → GLB is given as:

K = exp·(K/2) ◃ (h ) ∈ gLB

Φ = exp·(K) ∈ GLB.
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We conclude by commenting that the two exponentials are related exactly by
a map χ : g → g, called the post-Lie Magnus expansion [8, 10, 11], such that
exp·(f ) = exp∗(χ(f )), f ∈ g. The series χ(f ) corresponds to the backward error
analysis related to the Lie–Euler method. In Û

(
postLie({ })

)
we find

χ( ) = − 1
2

+ 1
12

[ , ] + 1
3

+ 1
12

− 1
12

+ · · ·

This should be compared with the expansion β on page 184 in [16]. Chapoton and
Patras studied the equality between these exponentials in the context of the free
pre-Lie algebra [4].
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