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Abstract  

Background. The inflammatory response following myocardial infarction (MI) is 

prerequisite for proper healing of infarcted tissue, but can also have detrimental effects on 

cardiac function. Interleukin (IL)-1α and IL-1β are potent inflammatory mediators and their 

bioactivity is tightly regulated by IL-1 receptor antagonist (IL-1ra) and soluble (s) IL-1 

receptors (R).  

Objectives. We aimed to examine whether levels of soluble regulators of IL-1 signalling are 

changed during ST-elevation MI (STEMI) and their associations with parameters of cardiac 

injury and ventricular remodelling.  

Methods. Plasma levels of IL-1Ra, sIL-1R1, sIL-1R2 and sIL-1R accessory protein (sIL-

1RAcP) were measured by immunoassays in repeated samples from patients with STEMI 

(n=272) and compared to healthy controls (n=65).  

Results. IL-1Ra, sIL-1R1 and sIL-1R2 levels were all significantly elevated after STEMI, 

while levels of sIL-1RAcP were lower compared to controls. sIL-1R2 levels (at different time 

points) correlated positively with C-reactive protein, myocardial infarct size and change in 

indexed left ventricular end-diastolic and end-systolic volume (LVEDVi and LVESVi) 

measured by cardiac MR acutely and after 4 months, and negatively with LV ejection fraction. 

Patients with >median levels of sIL-1R2 in the acute phase were more likely to have 

increased change in LVEDVi and LVESVi. Importantly, sIL-1R2 remained significantly 

associated with change in LVEDVi and LVESVi also after adjustment for clinical covariates.  

Conclusion. Levels of sIL-1R2 are independently associated with parameters of LV adverse 

remodelling following STEMI. 

 

Keywords. interleukin-1, soluble receptors, myocardial infarction, STEMI, ventricular 

remodelling
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Introduction 

Inflammation has dual role in cardiovascular disease. It is suggested to play a pivotal role in 

all stages of coronary artery disease from development of atherosclerotic plaques to plaque 

rupture and thrombus formation, but is also involved in cardiac repair and remodelling 

following myocardial infarction (MI) [1, 2]. The inflammatory response following MI 

involves cytokine release and infiltration of neutrophils and monocytes, which is prerequisite 

for proper healing of damaged cardiac tissue. However, excessive inflammation may cause 

collateral damage and have detrimental effects on cardiac function both in the short and long 

term [1, 2]. Clinical trials have found that targeting interleukin (IL)-1 in acute coronary 

syndromes by recombinant IL-1 receptor antagonist (IL-1Ra) has anti-inflammatory effects 

accompanied by reduced ventricular remodelling [3, 4], and neutralization of IL-1 was very 

recently shown to induce a lower rate of recurrent cardiovascular events in patients with 

previous MI [5]. However, the regulation of IL-1 related molecules, in the complex IL-1 

system, following MI are still not clear. 

IL-1α and IL-1β are potent upstream mediators of inflammation and their activity is regulated 

at several levels (Figure 1) [6]. IL-1α is often classified as an alarmin and is typically 

membrane associated and rarely detectable in circulation [6]. Activation and secretion of IL-

1β is a two-step process involving inflammasomes [6]. IL-1 (both α and β) binds the type I 

IL-1 receptor (IL-1R1) resulting in recruitment of the co-receptor IL-1 receptor accessory 

protein (IL-1RAcP), which is required for signal transduction (Figure 1A). To avoid an 

excessive inflammatory response, IL-1 activity is tightly regulated at the receptor level [6]. 

IL-1 receptor antagonist (IL-1Ra) competes with IL-1 for binding to IL-1R1 (Figure 1B). 

Moreover, type II IL-1 receptor (IL-1R2) lacks the ability to initiate signalling and acts as a 

decoy receptor (Figure 1C). Finally, the extracellular domain of all IL-1 receptors may be 
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shed from the cell surface and act as soluble (s) negative regulators of IL-1 signalling (i.e., 

sIL-1R1, sIL-1R2 and sIL-1RAcP; Figure 1D-G). sIL-1R2 may be of particular importance 

since binding to IL-1 is nearly irreversible [6], whereas sIL-1R1 also binds IL-1Ra and may 

therefore also have an inflammatory effect.  

We have previously shown elevated levels of IL-1β during acute ST segment elevation MI 

(STEMI) and an association with subsequent left ventricular (LV) hypertrophy and 

remodelling [7]. Others and we have also shown that IL-1Ra is increased in the acute phase of 

MI [7-9], but not much is known about levels of the soluble IL-1 related receptors which 

clearly influence the net activity in IL-1 related pathways. Herein, we examined levels of 

soluble regulators of IL-1 signalling in STEMI as well as their associations with parameters of 

cardiac injury and ventricular remodelling. 

 

Material and methods 

Study population 

Samples from the previously reported Post-conditioning in ST-Elevation Myocardial 

Infarction (POSTEMI; www.clinicaltrail.gov; NCT00922675) trial [10] were investigated and 

consisted of 272 patients with first-time STEMI with symptoms of <6 hours and with typical 

changes in ECG with >1 mm elevation in the ST-segment in at least two contiguous extremity 

leads or >2mm elevation of the ST-segment in at least two contiguous precordial leads or 

new-onset left-bundle branch block and with successful opening of the occluded coronary 

vessel after one balloon inflation. Patients were randomized to standard reperfusion or to four 

repeated occlusions of the coronary vessel of one minute duration starting one minute after 

the first opening of the artery. Patients with previous MI or with renal failure (serum 
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creatinine >200 µmol/L), unstable patients with cardiogenic shock, pulmonary congestion, 

hypotension or cardiac arrest were not included in the study. Sixty-five healthy age and sex-

matched individuals were included as controls.  

The study was approved by the Regional Ethics committee and conducted in accordance with 

the principles of the declaration of Helsinki and all patients provided written informed consent. 

Cardiac magnetic resonance imaging (CMR) 

CMR was performed in the acute phase (median 2 days following MI) and after four months 

and has previously been described in detail [10]. Briefly, CMR was performed on a 1.5-T 

scanner (Philips Intera, release 11 or Philips Achieva, release 3.2, Philips Healthcare, Best 

Netherlands). The patients were examined in the same scanner at both occasions. Image 

analyses were performed on an extended MR workspace (Philip Medical Systems). LV 

volume analyses were performed on short axis images. Analysis of area at risk, defined as 

myocardium with signal intensity of more than two standard deviations above the signal 

intensity in non-infarcted remote myocardium, was performed on T2 weighted images in the 

short axis plane. Infarct size was determined in two- and four-chamber, long and short axis 

views 15 minutes following contrast injection (Gadolinium-DTPA 469 mg/ml, 0.15 mmol/kg, 

Magnevist, Schering AG, Germany). Myocardial salvage index (%) was calculated as follow: 

(area at risk- infarct size at 4 months/ area at risk) x 100. Microvascular obstruction (MVO) 

was defined as dark areas within the infarcted myocardium. 

Blood sampling protocol 

Blood samples were drawn before and immediately after the percutaneous coronary 

intervention (PCI) procedure, at day 1 following the procedure and after 4 and 12 months. 

EDTA-blood was placed on crushed ice and within 30 minutes centrifuged at 3000g for 20 

minutes at 4°C to obtain platelet-.poor plasma. Samples were stored at -80°C until analysis.  
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Immunoassays 

EDTA-plasma levels of sIL-1R1, sIL-1R2, sIL-1RAcP were analysed by enzyme 

immunoassays from R&D Systems (DuoSet), while IL-1Ra was measured using an enzyme 

immunoassay from Peprotech (Rocky Hill, NJ). 

Statistical analyses 

Differences between groups were analysed with the use of Mann-Whitney U tests. When 

comparing ≥3 groups, Kruskal-Wallis test with Dunn’s multiple comparison test was used. 

Univariate repeated measures ANOVA was used to assess changes in protein levels over time 

during STEMI. Associations between variables were assessed by means of Spearman 

correlation coefficient. To further assess possible associations between sIL-1R2 and LV 

remodelling, multiple linear regression analyses were performed with change in indexed LV 

end-diastolic volume (LVEDVi) and LV end-systolic volume (LVESVi) from STEMI to 4-

month follow-up as outcome variables, respectively. The following covariates were entered 

into the models based on either clinical relevance or an association with either sIL-1R2 or the 

dependent variable in univariable analyses with a p-value <0.2: Age, gender, hypertension, 

diabetes mellitus, time from symptom onset to PCI, infarct localization (anterior MI vs 

inferior or posterior MI), treatment with ischemic postconditioning, peak troponin T, peak C-

reactive protein (CRP), N-terminal brain natriuretic peptide (NT-proBNP) on admission and 

haemoglobin on admission. As a result of skewness, the following continuous variables were 

logarithmically transformed with the natural logarithm (ln): Time from symptom onset to PCI, 

troponin T, CRP, and NT-proBNP. Pairwise deletion was used to handle missing data in 

multivariable analyses. Collinearity was assessed by the variance inflation factor in all 

multivariable models. A p-value <0.05 was considered statistically significant. All analyses 

were performed by IBM SPSS Software, version 23.0 for Windows (SPSS Inc., Chicago, IL). 
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Results 

Temporal changes in plasma levels of IL-1 signalling regulators after STEMI  

We analysed plasma levels of regulators of IL-1 signalling in 272 patients with STEMI from 

the POSTEMI trial [10], and 65 healthy controls (age 66 [25, 75 percentile: 46, 68]; 52% 

men). Baseline characteristics are shown in Table 1. Samples were acquired immediately 

before and immediately after end of the PCI procedure, at day 1 after PCI (median 18.3 hours 

after PCI) and at 4-month and 12-month follow-up. At baseline, before PCI, the STEMI 

population was characterized by increased levels of IL-1Ra, sIL-1R1 and sIL-1R2 and 

decreased levels of sIL-1RAcP as compared with healthy controls (Figure 2). IL-1Ra levels 

peaked right after PCI, but remained elevated even one year after STEMI. sIL-1R1 levels 

were at their highest before PCI and thereafter decreased, ending up lower than controls at 4 

and 12-month follow-up. Notably, however, the elevated levels of sIL-1R2 and decreased sIL-

1RAcP levels remained stable throughout the study. The ischemic post-conditioning 

procedure did not affect levels of IL-1 regulators (data not shown). 

Levels of soluble IL-1 modulators in relation to measures of myocardial injury and 

remodelling as assessed by CMR after STEMI 

We then studied the associations between soluble regulators of IL-1 signalling and markers of 

myocardial damage and remodelling. There was no association between levels of IL-1Ra and 

sIL-1R1 and CMR data during the acute phase or CMR data after 4 months (Table 2, 

Supplementary Table S1 and S2). In contrast, sIL-1RAcP and in particular sIL-1R2 showed 

some interesting associations (Table 2, Supplementary Table S3 and S4). Whereas sIL-1RAcP 

was inversely correlated with infarct size measured acutely and at 4 months’ follow-up, sIL-

1R2 measured in the acute phase was associated with LV ejection fraction (LVEF) and infarct 
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size measured acutely (negative and positive correlation, respectively) and change in indexed 

LV end-diastolic volume (LVEDVi) and LV end-systolic volume (LVESVi) from acute 

STEMI to 4 months’ follow up (Table 2). Based on these data, we analysed sIL-1R2 further 

with respect to its association with markers of myocardial injury and LV remodelling.  

Soluble IL-1R2 is independently associated with measures of myocardial injury and 

remodelling after STEMI 

When the STEMI patients were dichotomized according to plasma levels of sIL-1R2 (i.e. 

above or below median) at different time points after STEMI, several significant findings 

were revealed. First, sIL-1R2 measured at day 1 were associated with infarct size (p=0.04), 

LVEF (p=0.03) and area at risk (p=0.003) during the acute phase (Table 3). Second, there was 

a significant association between presence of microvascular obstruction (MVO) and levels of 

sIL-1R2 measured immediately before and after PCI (Table 3; p=0.001 and p=0.009, 

respectively). Third, patients with high levels of sIL-1R2 before PCI also had lower LVEF 

determined by CMR at four months. Fourth, the change in LVEDVi and LVESVi from the 

acute phase to four months were significantly higher in patients with high (above median) 

compared to low (below median) levels of sIL1-R2 at admission (sampled immediately before 

and after PCI) and at day 1 (Figure 3A-B). Finally, sIL-1R2 at all sampling points during 

hospitalisation remained significantly associated with an increase in LVEDVi (≈3.2-3.9 ml/m2 

per standard deviation change in sIL-1R2) and LVESVi (≈2.4-3.0 ml/m2 per standard 

deviation change in sIL-1R2) also after adjustment for relevant clinical covariates in two 

multivariable linear regression models (Figure 3C-D; Supplementary Table S5 and S6).  

A similar approach with dichotomizing the patient group according to sIL-1RAcP 

levels, did not indicate any link between sIL-1RAcP and markers of LV remodelling, but 
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there was a significant association between infarct size measured at 4 months and sIL-1RAcP 

measured after PCI (p=0.004) and at follow up (p=0.008) (Supplementary Table S7). 

 

Discussion 

Dysregulated IL-1 signalling following MI can disturb infarct healing, but can also cause 

collateral damage and promote acute cardiac dysfunction and contribute to maladaptive LV 

remodelling. A complex regulation of IL-1 activity occurs at the receptor level, and here we 

show that levels of soluble regulators of IL-1 receptor signalling are changed in a population 

of patients with STEMI. Moreover, we show that plasma levels of sIL-1R2 remained elevated 

in the acute phase and during long-term follow-up, strongly associated with development of 

LV remodelling, as evaluated as change in LVEDVi and LVESVi, even after adjustment for 

multiple clinical covariates. 

Levels of soluble IL-1 regulators in disease states have been reported in a few studies, 

including our previous study in patients with chronic HF [11-13]. Herein we examined these 

IL-1 regulators following STEMI. Notably, our findings on the temporal changes in IL-1Ra 

and sIL-1R2 in STEMI patients resemble results from patients with septic shock [14]. While 

plasma IL-1Ra peaked with high values during acute STEMI and decreased markedly up to 

day 1, sIL-1R2 levels were moderately higher than in healthy controls, but intriguingly, this 

difference was sustained even 12 months after the ischemic event. IL-1R2 is a decoy receptor 

with greater affinity for IL-1β than IL-1Ra [6], and these effects are maintained also when IL-

1R2 is shed from the cell surface. Conversely, IL-1Ra has higher affinity for IL-1R1 than for 

IL-1R2 and this avoids that the decoy receptor neutralizes the receptor antagonist. Thus, IL-

1Ra and sIL-1R2 represent two complementary mechanisms of negative IL-1 regulation, and 

during and after MI they have distinct temporal profiles. Previous studies have demonstrated 
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an association between IL-1Ra and myocardial necrosis during MI [8, 15]. We did, however, 

not observe this in the present study, but the correlation with CRP supports the previously 

reported association with the acute phase response and that IL-1Ra may be a marker of acute 

inflammation. In contrast, the increase in sIL-1R2 was more moderate and persisted 

throughout the observation period. Interestingly, whereas IL-1Ra may be a marker of acute 

systemic inflammation, the increase in sIL-1R2 has been suggested to be more targeted to 

local tissue inflammation [12]. Thus, it is tempting to hypothesize that sIL-1R2 is a better 

marker of IL-1 activity in the infarcted heart than IL-1Ra which is primarily a reflection of the 

acute phase response, but this will have to be more thoroughly addressed in future studies.  

 While most cells express IL-1R1, expression of IL-1R2 is restricted with neutrophils 

and monocytes as major sources [12]. Anti-inflammatory stimuli (e.g. glucocorticoids and IL-

4) increase neutrophil expression of IL-1R2, while inflammatory signals (e.g. IL-1, tumour 

necrosis factor [TNF] and reactive oxygen species) promote the proteolytic cleavage and 

release of sIL-1R2 [12]. Neutrophils are centrally involved in initiating inflammatory 

processes, but are also essential in inflammation resolution, and this at least partly involves 

expression and release of IL-1R2 [16, 17], which may dampen the response to IL-1 in both 

macrophages and fibroblasts [18, 19]. Saxena et al. characterized the IL-1R expression profile 

in cells infiltrating the infarcted mouse myocardium [20] and demonstrated that the initial 

inflammatory phase of cardiac repair was characterized by cells primarily expressing IL-1R1, 

while IL-1R2 dominated in later stages [20]. This pattern fits well with what we observe 

during STEMI, with initially high levels of sIL-1R1 that decrease rapidly, while sIL-1R2 

levels remain elevated. We hypothesize that even after the acute stages of STEMI, there is a 

persistent non-resolving IL-1 mediated myocardial inflammation, at least partly kept under 

control by IL-1R2, as reflected by elevated plasma levels of sIL-1R2. 
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 Inflammation has been suggested to be a significant contributor to ventricular 

remodelling after MI [2, 15, 21]. The major finding in the present study was that high levels 

of sIL-1R2 during the acute phase were significantly associated with ventricular remodelling 

evaluated as change in LVEDVi and LVESVi from the hospitalization to 4 months. An 

explanation for the association between high sIL-1R2 levels and adverse myocardial 

remodelling could be that increased sIL-1R2 levels represent a counteracting mechanism to 

enhanced inflammation such as has been reported in septicaemia [14]. This intriguing finding 

may also indicate that inhibiting IL-1 signalling by this soluble receptor, that strongly and 

irreversibly bind IL-1, may be harmful during the acute phase. Whereas IL-1Ra has been 

suggested to have beneficial effects when administered during MI [3], the near irreversible 

binding of sIL-1R2 to IL-1 during the acute phase could potentially attenuate adaptive 

remodelling and infarct healing induced by IL-1 and thereby promote increased infarct size 

and maladaptive remodelling during follow-up. This concept could have important 

therapeutical consequences when targeting the IL-1 system during MI.  

Soluble IL-1RAcP appeared as the only IL-1 signalling regulator that was 

downregulated in the acute phase of STEMI. Soluble IL-1RAcP levels during the acute phase 

were also negatively correlated with infarct size both during the acute phase and at 4 months’ 

follow-up as assessed by CMR imaging. IL-1RAcP is the main signalling unit of the IL-1 

receptor complex [6]. However, when IL-1RAcP is solubilized, it turns into a negative 

regulator of IL-1 signalling [6]. This can potentially occur through inhibition of the 

interaction between IL-1R1/IL-1 and IL-1RAcP. However, sIL-1RAcP has also been shown 

to 100-fold increase the affinity of IL-1 bound to sIL-1R2 [22], and interestingly, sIL-1R2 and 

sIL-1RAcP bind pro-IL-1β with high affinity and block its processing by caspase-1 and 

thereby not only attenuate the effect of IL-1 but also its production [23]. The observed 

reduction of sIL-1RAcP could therefore have potentially pro-inflammatory net effects. 
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However, its interaction with sIL-1R2 is complex and the net effect of the demonstrated 

pattern with increased sIL-1R2 and decreased sIL-1RAcP is at present not clear.  

The present study has some limitations such as lack of exact data on lipid levels on the 

STEMI patients prior to admission (i.e., before start of statin therapy). Moreover, levels of IL-

1Ra have previously been found to be elevated in patients with stable coronary artery disease  

[24], but we do not know if levels the other soluble IL-1 regulators are affected by the 

atherosclerotic process per se. Future studies will have to address this issue, which could 

potentially affect how we interpret the effect of STEMI on levels of soluble levels of IL-1 

signalling. Nonetheless, our data demonstrate a complex regulation of the IL-1 system during 

STEMI, and suggest that sIL-1R2 could be a hereto unrecognized mediator and marker of 

myocardial remodelling in these patients. Our data also illustrate the delicate balance between 

too much and too little IL-1 activity following MI.  
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Figure legends 

 

Figure 1. Regulators of Interleukin (IL)-1 signalling. 

IL-1 (IL-1α or IL-1β) binds to IL-1 receptor 1 (IL-1R1), IL-1R accessory protein (IL-1RAcP) 

is recruited and signaling initiated (A). IL-1 receptor antagonist (IL-1Ra) binds IL-1R1 with 

high specificity, but does not trigger downstream signaling (B). IL-1R2 binds IL-1, but do not 

initiate signaling (C). Soluble (s) IL-1R2 binds and neutralizes IL-1 with high affinity (D), 

while sIL-1R1 has preferential affinity for IL-1Ra (E). Soluble (s) IL-1RAcP may either 

inhibit formation of the signaling complex (F) or stabilize the binding of IL-1 to sIL-1R2 (G). 

 

Figure 2. Temporal profile of soluble regulators of IL-1 signalling during the course of 

STEMI.  

Levels of (A) IL-1 receptor antagonist (IL-1Ra), (B) soluble IL-1 receptor 1 (sIL-1R1), (C) 

sIL-1R2 and (D) sIL-1R Accessory protein (sIL-1RAcP) were measured in 65 healthy 

controls and 255 STEMI patients before and immediately after percutaneous coronary 

intervention (PCI), at Day 1 (median 18.3 hours after PCI) and at 4 and 12 months’ follow-up. 

Circles and error bars indicate geometric means and 95% confidence intervals. **p<0.01, 

***p<0.001 and ****p<0.0001 vs controls (Kruskal-Wallis comparing controls and STEMI at 

different time points with Dunn’s multiple comparisons test). P-values in graphs indicate 

results of univariate repeated measures ANOVA on temporal profile in STEMI patients. 
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Figure 3. Soluble interleukin-1 receptor 2 (sIL-1R2) levels are associated with 

ventricular remodelling after STEMI.  

sIL-1R2 levels were measured before and immediately after PCI and at Day 1 (median 18.3 

hours after PCI). Change in indexed left ventricular end-diastolic volume (LVEDVi) and end-

systolic volume (LVESVi) were determined in 224 patients with ST-elevation myocardial 

infarction (STEMI) based on CMR in the acute phase and at 4-months’ follow-up. (A). 

Change in LVEDVi and (B) change in LVESVi according to low or high levels of sIL-1R2 

(i.e. < or > median) in the acute phase of STEMI. Bars are means ± 95% confidence intervals 

(CI). C and D. Forest plots of β coefficients, 95% CI and p-values from univariable (Uni) and 

multivariable linear regression analyses on associations between sIL-1R2 measured at day 1 

post-STEMI and changes in LVEDVi (C) and LVESVi (D). Model 1 adjusts for clinical 

variables, while Model 2 also includes C-reactive protein (CRP) and troponin T (TnT). 

Results from the most important adjustment variables are shown for comparison. Coefficients 

(β) are expressed as change in LVEDVi or LVESVi per 1 standard deviation (SD) change in 

the independent variable. Adm, admission; NT-proBNP, N-terminal pro-brain natriuretic 

peptide. **p<0.01 and ***p<0.001 vs <median (t-test). 
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Table 1. Baseline characteristics of the patient population in the POSTEMI trial. 

 

 
Patients with ST-elevation myocardial infarction 

(n=272) 

Age 60 (53, 67) 

Male gender 223 (82%) 

Body mass index (kg/m2) 26.6 (24.4, 29.1) 

Hypertension 73 (26.8%) 

Hypercholesterolemia 26 (9.6%) 

Diabetes mellitus 17 (6.3%) 

Current smoker 139 (51.1%) 

Time from symptom to PCI (min) 179 (123, 261) 

Anterior MI* 131 (48.2%) 

Multi-vessel disease 90 (33.1%) 

Peak troponin T (ng/L) 5865 (3302, 10337) 

Peak C-reactive protein (mg/L) 18 (7, 45) 

Admission NT-proBNP (pmol/L) 9 (5, 22) 

Admission creatinine (μmol/L) 70 (62, 81) 

Data are presented as median (25th, 75th percentile) or numbers (%). *Anterior myocardial 

infarction (MI) vs inferior or posterior MI. POSTEMI, postconditioning in ST-elevation 

myocardial infarction; PCI, percutaneous coronary intervention; NT-proBNP, N-terminal pro-

brain natriuretic peptide. 
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Table 2. Correlations between soluble IL-1 regulators and measures of cardiac injury and 

function.  

 

 IL-1Ra sIL-1R1 sIL-1R2 sIL-1RAcP 

Infarct size, acute 0.06 0.000 0.15* -0.19** 

Infarct size, 4 months 0.08 -0.02 0.09 -0.17* 

Ejection fraction, acute -0.14 -0.07 -0.15* 0.06 

Ejection fraction, 4 months -0.07 -0.06 -0.12 0.10 

Area at risk  0.07 -0.07 0.12 -0.11 

Myocardial salvage -0.03 -0.06 -0.10 0.09 

LVEDVi 0.10 -0.02 0.21** -0.04 

LVESVi 0.12 -0.05 0.16* -0.06 

Peak troponin T 0.10 0.01 -0.17** -0.17** 

Peak C-reactive protein 0.35** 0.03 0.19** -0.13 

Admission NT-proBNP 0.09 0.12 -0.20** -0.03 

Symptom to PCI time -0.03 -0.11 -0.06 -0.14* 

Correlations are based on plasma levels of interleukin-1 receptor antagonist (IL-1Ra), soluble 

(s) IL-1R1, sIL-1R2 and sIL-1R accessory protein (sIL-1RAcP) measured day 1 (median 18.3 

hours after PCI) after ST-elevation myocardial infarction (STEMI; n=255-272). LVEDVi 

(indexed end-diastolic volume of LV) and LVESVi (indexed end-systolic volume of LV) 

were calculated from cardiac magnetic resonance imaging acquired in the acute phase and 

after 4 months. NT-proBNP, N-terminal pro-brain natriuretic peptide. Numbers are given as 

Spearman’s rho correlation coefficients. *p<0.05, **p<0.01. 

 



Table 3. Myocardial injury and function measured by CMR according to sIL-1R2 values. 

 sIL-1R2 before PCI sIL-1R2 after PCI sIL-1R2 day 1 sIL-1R2 4 months 

 < median > median P-value < median > median P-value < median > median P-value < median > median P-value 

CMR in  

acute phase 

            

IS, %LV mass 15.8 18.2 0.07 16.6 17.9 0.45 15.5 19.2 0.04    

LVEF, % 52 51 0.30 52 51 0.40 53 49 0.03    

Area at risk, %LV 41.1 43.5 0.15 40.8 43.3 0.11 38.0 44.8 0.003    

MVO (presence) 41(39.4%) 68 (61.3%) 0.001 46 (41.1%) 64 (58.7%) 0.009 47 (44.8%) 57 (53.8%) 0.19    

LVEDVi, mL/m2 83.7 83.8 0.97 84.8 80.3 0.31 83.6 84.2 0.88    

LVESVi, mL/m2 38.8 39.9 0.66 41.2 38.7 0.97 38.2 41.5 0.22    

CMR after 

4 months 

            

IS, %LV mass 13.6 14.5 0.13 13.8 13.8 0.33 13.5 13.8 0.28 14.0 14.0 0.44 

LVEF, % 58 53 0.006 57 54 0.11 57 55 0.13 56 55 0.57 

MS, % 54.4 48.4 0.07 54.2 50.5 0.07 51.0 52.2 0.75 52.5 51.1 0.18 

LVEDVi, mL/m2 80.5 88.6 0.006 85.3 86.7 0.19 84.8 86.7 0.09 86.1 86.8 0.61 

LVESVi, mL/m2 33.3 39.8 0.002 36.4 38.0 0.11 35.9 38.0 0.08 37.9 37.9 0.54 

Levels of soluble interleukin-1 receptor 2 (sIL-1R2) were measured before and immediately after percutaneous coronary intervention (PCI), at Day 1 

(median 18.3 hours after PCI) and at 4-months’ follow-up in 255 ST-elevation myocardial infarction (STEMI) patients. Data are presented as median 

or numbers (%). P-values were determined by Mann-Whitney U test. CMR, cardiac magnetic resonance imaging; IS, infarct size; LV, left ventricle; 

LVEF, LV ejection fraction; MVO, microvascular obstruction; LVEDVi, indexed end-diastolic volume of LV; LVESVi, indexed end-systolic volume 

of LV; MS, myocardial salvage. 
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