
Master of Science in Engineering Cybernetics
May 2011
Jan Tommy Gravdahl, ITK
Tor Arne Johansen, ITK

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Development, Implementation and
Testing of Two Attitude Estimation
Methods for Cube Satellites

Kristian Lindgård Jenssen
Kaan Huseby Yabar

Development, Implementation and
Testing of Two Attitude Estimation

Methods for Cube Satellites

Kristian Lindgård Jenssen & Kaan Huseby Yabar

Department of Control Engineering

Submitted in Partial Ful�llment of the Requirements For the Degree of

MASTER OF SCIENCE

Norwegian University of Science and Technology

Spring 2011

Master's Committee:
Advisor: Jan Tommy Gravdahl

Abstract

As a part of the CUBESAT project at the Norwegian University of
Science and Technology (NTNU), this paper studies development and
comparison of attitude estimation methods for small cube satellites using
low-cost sensors. The algorithms are based on data from two vectorized
measurements as well as a gyroscope.

In this paper a new method for attitude estimation has been de-
veloped based on QUaternion ESTimation (QUEST). A major concern
with QUEST is that it cannot handle non-vectorized measurements such
as gyroscope data. Substantial improvements have been made to fuse
vectorized and non-vectorized measurements, making the new Extended
QUaternion ESTimation (EQUEST) more suitable for attitude estima-
tion. The well known Extended Kalman Filter (EKF) is derived and
implemented for comparison. Both methods have been developed and
simulated in MATLAB. The code have been rewritten using C language.
The methods are compared both theoretically and experimentally with
implementation and testing on an AVR microcontroller. Minimum power
usage and number of arithmetic operations were considered during the
software development.

Testing indicates that the EKF provides a smoother estimation than
the newly developed EQUEST. In contrast to EQUEST, the EKF is
able to estimate the magnetometer and accelerometer bias. However, the
EQUEST has a signi�cantly faster settling time and is less computational
costly. Compared to the EKF, EQUEST runs more than 5 times faster.
It also requires only 8% of the arithmetic operations of the EKF. Another
disadvantage with the EKF is tracking problems that occur when the two
vectorized measurements are close to parallel. With vectors close to paral-
lel, the mathematical formulation of the EKF makes tracking of a rotation
around the parallel axis extremely di�cult. These di�culties are hardly
observed in the EQUEST algorithm, which makes it very attractive for
attitude estimation.

The attitude control of CUBESATs is often done by magnetorquers,
which will a�ect the local magnetic �eld. Hence, control and estimation
should not be done simultaneously, resulting in the estimation and control
switching on and o�. For this reason, the long settling time of the EKF
makes the EQUEST even more attractive.

The results in this paper indicate that the newly developed EQUEST
is highly suitable for projects with either limited budget, space, weight or
computational power.

Preface

This project is the concluding thesis of our Master of Science degree provided
by the Norwegian University of Science and Technology. We would like to thank
our advisor, Professor Jan Tommy Gravdahl, for his motivating involvement
and valuable support. We would also emphasize or gratitude to the rest of the
student satellite project group, whom has been very helpful.

Trondheim May 26, 2011

Kristian Lindgård Jenssen & Kaan Huseby Yabar

�Take charge of your attitude. Don't let someone else choose it for you.�

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Project Background . 1
1.3 Previous Work . 2
1.4 Project Outline . 2

2 De�nitions and Notations 5

2.1 Coordinate Frame . 5
2.2 Rotation Matrix . 6
2.3 Axis-angle Representation . 7
2.4 Quaternions . 7
2.5 Quaternions to Euler Angles . 8
2.6 Extended Kalman Filter (EKF) 9
2.7 Quaternion Estimation . 10

3 Sensors 13

3.1 Magnetometers . 13
3.2 Gyroscope . 13
3.3 Accelerometer . 13
3.4 Sun Sensor . 14
3.5 Earth- and Horizon sensor . 14
3.6 Star Tracker . 15
3.7 Sensors Used for Testing . 15

3.7.1 Xsens MTi . 15
3.7.2 9-DOF Razor IMU . 16
3.7.3 CHIMU IMU . 16

4 Attitude Estimation 17

4.1 Attitude Estimation Using Extended Kalman Filter 17
4.2 Extended Quaternion Estimator 19
4.3 Solving the Extended Quaternion Estimator 21
4.4 Replacing the Accelerometer with Sun Sensors 24

5 Software Implementation 27

5.1 Establishing Communication Between the Atmega Microcontroller
and the Sensor . 27

5.2 Interrupt Handling . 28
5.3 Implementing the Kalman Filter in C 28
5.4 Implementing the EQUEST in C 30
5.5 Sleep Mode . 30
5.6 Watchdog Timer . 31
5.7 Run-time Counter . 32

6 Evaluating the Algorithms 33

6.1 Extended Kalman Filter . 33
6.2 Extended Quaternion Estimation 33

7 Designing Prototype 35

8 Simulations and Tests 41

8.1 Testing the Kalman Filter in MATLAB 41
8.2 Testing the EQUEST in MATLAB 44
8.3 Real-time Attitude Estimation Using EKF and EQUEST Imple-

mented in MATLAB . 47
8.4 Real-time Attitude Estimation EKF and EQUEST Implemented

on AVR Microcontroller . 50
8.5 Comparing EKF With EQUEST Implemented on AVR Micro-

controller . 52
8.6 Testing the Prototype . 57
8.7 Power Consumption . 67
8.8 Start-up Time . 67

9 System Integration 69

9.1 Integrating with Attitude Control 69
9.2 Integrating with the Rest of the System 69

10 Conclusion 71

10.1 Discussion . 71
10.2 Future Work . 71

A IAC 2011 Accepted Abstract 73

B IAC 2011 Paper 75

C ANSAT Workshop 2011 87

D Linearization 91

E Matrix Inverse Using LU Decomposition 97

F Prototype Userguide 99

F.1 Programming the Microcontroller on the Prototype Using AVR
Studio and AVR Dragon . 99

F.2 Output Attitude Data from Prototype to MATLAB 104

Nomenclature

ε Euler axis

q̂pre Predicted quaternions

λ Eigenvalue

ν Euler angle

ω Angular velocity

φ Roll angle

ψ Yaw angle

θ Pitch angle

ab Accelerometer measurement

B Magnetic �eld vector

b Measured directional unit vector

biasa Accelerometer bias

biasm Magnetometer bias

biass Sun sensor bias

D Weighting matrix for gyroscope

g Gravitational vector

h Measurement vector

K Kalman gain

M Orthogonal eigenvector matrix

mb Magnetometer measurement

q Quaternion

Qkal Process covariance matrix

r Known directional unit vector in inertial frame

Rab Rotational matrix representing a rotation from b to a

Rkal Measurement covariance matrix

S Weighting matrix for prediction term

s Sun vector

sb Measured Sun intensity

t Time

Ts Sampling time

u Input vector

V Weighting matrix for accelerometer and magnetometer

v Measurement noise

w Process noise

x State vector

z Measurement vector

List of Figures

1 Illustration of the BODY coordinate system. 5
2 Illustration of the NED coordinate system. 6
3 Linear prediction of attitude. 20
4 Picture of the prototype connected to an AVR Dragon. 36
5 Schematic drawing of the prototype. 38
6 Board drawing of the prototype. 39
7 Picture of the attitude estimation prototype. 40
8 Attitude estimation using Kalman �lter in MATLAB. 42
9 Accelerometer and magnetometer bias. 43
10 Attitude estimation using EQUEST in MATLAB. 45
11 EQUEST with and without prediction. 46
12 9-DOF Razor IMU. 47
13 Attitude estimation using EQUEST and EKF in MATLAB. . . 49
14 Schematic: Connecting the microcontroller to IMU. 51
15 Start-up phase of the two algorithms. 53
16 The two methods response to a rotation around the down-axis in

the NED frame. 55
17 The two methods response to rotations. 56
18 Testing the prototype while plotting the attitude live on a computer. 57
19 The ABB IRB140 with all the joints numbered. The prototype

is strapped to the robot, marked with the letter P. 58
20 The robot performs a maneuver making the prototype roll. . . . 60
21 The prototype output with a rotation in both roll and pitch with

the EKF marked. 61
22 The prototype output with a rotation in both roll and pitch with

the EQUEST marked. 62
23 The prototype output with a low magnetic �eld disturbance. . . 64
24 Moderate shaking of the prototype. 65
25 Heavy shaking of the prototype. 66
26 The toolbar to compile, con�gure and connect the AVR micro-

controller. 99
27 Con�gure project. 100
28 Platform selection. 101
29 JTAG connection. 102
30 Fuses. 103
31 Programming the microcontroller. 104

1 Introduction

1.1 Motivation

Attitude estimation is a crucial part of the Attitude Control and Determination
System (ADCS) for a satellite. In order to control the attitude to a known
reference, knowledge about the current attitude is required. Missions such as
taking photos of a speci�c location or to align the solar panels with the sun to
optimize battery recharging requires accurate information about the satellites
orientation. Many attitude estimation techniques exists, but their range of
application varies with size and price. The main challenge for this project lies
in the size and weight of the satellite. This induct limitations on the choice
of sensors in the attitude estimation. For instance, one of the most accurate
sensors, the star tracker, must be omitted from the satellite due to its size.
Instead, the attitude must be determined using sensors of small size and light
weight.

1.2 Project Background

This work is a subject to the CUBESAT [1] project at the Norwegian University
of Science and Technology (NTNU). The NTNU CUBESAT project is a part
of the Norwegian Student Satellite Program, ANSAT. The program wishes to
urge a cooperation between educational institutions and the industry as well
as increasing the interest for technological studies among pupils. Two other
Norwegian universities are in the same program, University of Oslo and Narvik
University College. Financial funding has been given NTNU by both NAROM
(Norwegian Centre for Space- related Educations) and Norwegian Space Centre.

A CUBESAT is a picosatellite where the dimensions of the cube has been
standarized to 10×10×10 cm, with a weight limited to 1.3 kg. Due to the low
budget of CUBESAT projects, commercial components are commonly used in
the design of a satellite. Previously there have been two CUBESAT projects at
NTNU. The �rst satellite, NCube1, was destroyed due to launch failure. Even
though the second satellite was launched successfully, communication was never
established. The main goal for this third satellite from NTNU, is to establish
communication with the satellite from the ground station in Trondheim. The
satellite that is under construction has been given the name NTNU Test Satellite
(NUTS) [2] . The project is now in the startup-phase, with the �rst students
being involved since January 2011. The total timespan of the project is 4 years,
with a planned launch in 2014. NUTS will be a double CUBESAT making the
dimensions 10×10×20 cm with the weight limited to 2.6 kg. Many challenges
are expected to occur due to the limited space, weight and budget.

The satellite is suppose to have a polar orbit, meaning that it will orbit with
an inclination of close to 90 degrees - passing near the magnetic poles. The
suggested payloads include a small IR camera and S-band radio. The camera
will be used for research purposes, and the S-band radio will be used for high
speed data transfer such as images from the camera.

1

1.3 Previous Work

Attitude estimation is an important part of several �elds, among them military
systems, navigation systems, rocket science and medical science. As mentioned,
two satellites have been developed at NTNU earlier, each containing attitude
estimation systems [3]. Svartveit [4] estimated the attitude by using a discrete
Kalman �lter based on measurements from magnetometer and sun sensor . The
solar panels were used as a crude sun sensor. The experiment Svartveit did,
indicated that the sun sensor seems to be inaccurate mainly due to the Earths
albedo e�ect. Ose [5] made further work in order to implement the extended
Kalman �lter (EKF) in MATLAB. Due to the complexity of the EKF, only a
linearized version was implemented on a microcontroller. Rohde [6] describes
implementation of the extended Kalman �lter on a microcontroller, but lack
of time resulted in incomplete implementation and testing. With respect to
all the challenges the previous NTNU students unveiled, this thesis base the
attitude determination system on a di�erent approach. The estimation is based
on two vectorized measurements as well as data from a gyroscope. Sabatini
[7] developed an extended Kalman �lter based on accelerometer, gyroscope and
magnetometer, for use in biomedical engineering. The extended Kalman �lter
developed in this project is adapted from the work done by Sabatini.

Attitude can also be estimated using quaternion estimation (QUEST). Markley
[8] describes how two vectorized measurements can be used to estimate orien-
tation. However, the method can only be used for vectorized measurements,
which makes the gyroscope unsuited. Psiaki [9] has extended the QUEST in
order to handle an arbitrary dynamic model and to estimate errors such as
rate-gyro biases. The extended QUEST (EQUEST) developed in this paper, is
based on the work done by Psiaki and Markley, with focus on integrating the
nonvectorized gyroscope measurements.

1.4 Project Outline

Section 2 contains background information to remind the reader of the most
essential theory. It is necessary to be comfortable with the background infor-
mation in order to understand the main concept of the attitude estimation.

Section 3 gives information about the di�erent sensors that can be used for a
satellite. A discussion about their weakness and strengthness can also be found
here. An approperiate sensor for the prototype is chosen.

Section 4 describes the attitude estimation in detail. The extended Kalman
�lter for the NUTS CubeSat is designed here. In addition the extended quater-
nion estimator is derived, including the mathematical derviation of the solution.

Section 5 explains the connection between the microcontroller and the sensor,
as well as interrupt handeling and additional features for the microcontroller.
The software development for both attitude algorithms are also described in
detail.

Section 6 demonstrates an evaluation and comparison of the two algorithms.
Here, both the run time and number of arithmetical operations are discussed.

2

Section 7 gives a detailed description of the prototype design. Every part of
the design process is described here, ranging from the selction of components to
the �nal prototype software implementation.

Section 8 describes all the testing. Testing includes simulations of both
algorithms in MATLAB, real-time attitude estimation in MATLAB, real-time
attitude estimation running on a microcontroller, comparison of the two algo-
rithms running on a microcontroller, prototype testing and power consumption
testing.

Section 9 covers the main challenges for future integration with the rest of
the satellite systems. The main focus is the integration with the attitude control
system.

Section 10 gives a brief discussion of the results and makes recommandations
for future work.

3

4

2 De�nitions and Notations

2.1 Coordinate Frame

The following frames have been used to describe the attitude of the satellite:
BODY: This frame is attached to the satellite. In the BODY frame the axes

coincide with the principle axes of inertia, and the positive z-axis is de�ned
as the vector pointing outwards from the quadratical side where the camera is
attached at the satellite. The x- and y-axis are ortogonal to the rectangular
sides of the cube. The body frame is illustrated in Figure 1.

Figure 1: Illustration of the BODY coordinate system.

NED: North-East-Down (NED) is an intertial frame de�ned relative to Earth's
surface with the x-axis pointing towards north, z-axis downwards perpendicular
to Earth's reference ellipsoid. The y-axis completes a right handed orthogonal
coordinate system, with the positive y-axis pointing towards East (See Figure
2). Earth's reference ellipsoid is a mathematically de�ned surface �tted to ap-
proximate the shape of the Earth.

5

Figure 2: Illustration of the NED coordinate system.

2.2 Rotation Matrix

A rotation matrix R is used to describe a rotation between two coordinate
frames[10]. It is common to describe the rotation from one frame to another as
three di�erent rotations. First a rotation ψ around the z-axis, then a rotation
θ around the rotated y-axis and �nally a new rotation φ around the current
x-axis. The entire rotation from frame �b� to frame �a�, is described as

Rab = Rz(ψ)Ry(θ)Rx(φ) (1)

A rotation matrix has the following properties:

det(R) = 1 (2)

R> = R−1 (3)

A vector in NED frame kn can be written in BODY frame kb using rotation
matrix as given below:

kb = Rbnk
n (4)

6

2.3 Axis-angle Representation

Euler's Theorem:

The most general motion of a rigid body with a �xed point is a
rotation about a �xed axis.

This theorem indicates that it is possible to get from one frame to another using
only one rotation about a �xed axis. This axis is called the Euler axis, and the
angle rotated is called the Euler angle. Instead of describing the rotation matrix
with three rotations, it can be described with one rotation around one �xed axis
as

Rab = cos νI + sin ν(εa)× + (1− cos ν)εa(εa)> (5)

where ε is the Euler axis and ν is the Euler angle. The di�erential equations
relating the Euler axis/angle to the angular velocity, ω, are stated as [11]

ν̇ = ε>ω (6)

ε̇ =
1

2

[
ε× − cot

ν

2
ε×ε×

]
ω (7)

As the equations above show, there are singularities at ν = 0 and ν = 2
π . To

avoid singularities the rotation can be represented using Quaternions.

2.4 Quaternions

An alternative to the rotations described by Euler angles is the Quaternions[12].
Quaternions are a mathematical way of representing rotations, with the conve-
nient property that it will always be de�ned. The quaternions are given by
equations (8) - (10)

q =

[
q13
q4

]
(8)

where

q13 =

 q1
q2
q3

 = [ε sin(ν/2)] (9)

q4 = cos(ν/2) (10)

Here ν is the rotation angle for axis-angle parametrization and ε is a unit vector.
Due to the possible spin in a satellite combined with the singularities in Euler
angles kinematics, an attitude estimator based on the unit quaternions instead
of the Euler angles is prefered. Another property with the unit quaternion is

7

that it will always satisfy the constraint qT q = 1. The rotation matrix can be
represented using quaternions [13]:

R(q) = (q24 − ‖q13‖2)I3×3 + 2q13q
>
13 − 2q4[q13×] = Ξ>(q)Ψ(q) (11)

where

Ξ(q) =

[
q4I3×3 + [q13×]

−q>13

]
(12)

Ψ(q) =

[
q4I3×3 − [q13×]

−q>13

]
(13)

[q13×] is the cross-product matrix:

[q13×] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (14)

By inserting equation (12), (13) and (14) into (11), the rotational matrix can
be written as:

R(q) =

 q21 − q22 − q23 − q24 2(q1q2 + q3q4) 2(q1q2 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q4q1)
2(q1q3 + q2q4) 2(q2q3 − q4q1) −q21 − q22 + q23 + q24

 (15)

The kinematic di�erential equation for unit quaternions is[14]:

q̇ =

[
q̇13
q̇4

]
=

1

2
Ξ(q)ω (16)

As Equation (16) shows, there are no singularities when representing the
kinematics with quaternions. This makes the design of the estimation methods
more robust.

2.5 Quaternions to Euler Angles

Because of the problem with singularity all attitude calculations are done using
quaternions. However euler angles are easier to understand. Therefore, to
illustrate the estimated attitude, the graphs are given with euler angles (roll,
pitch and yaw). To convert quaternions to euler angles the following equation
can be used [15]: φ

γ
ψ

 =

 atan2(R32, R33)
−sin−1(R31)

atan2(R21, R11)

 γ 6= ±90◦ (17)

where

8

R(q) =

 R11 R12 R13

R21 R22 R23

R31 R32 R33


This gives  φ

γ
ψ

 =

 atan2(2(q4q1 + q2q3), 1− 2(q21 + q22))
arcsin(2(q4q2 − q3q1))

atan2(2(q4q3 + q1q2), 1− 2(q22 + q23))

 (18)

2.6 Extended Kalman Filter (EKF)

The Kalman �lter is only appliable for linear problems. However, it is possible
to extend the �lter to also deal with nonlinear problems, but the �lter will
then lose some of its properties. The extended Kalman �lter is adapted for
nonlinear problems through a linearization of the nonlinear equations for each
iteration. Due to the linearization, the extended Kalman �lter is not necessarily
optimal and can diverge if initial errors are too large or if the system model is
inaccurate. The EKF is an iterative method where the estimates are based on
several measurements, as well as a process model.

De�ning the nonlinear system as

xk = f(xk−1, uk−1) + wk−1 (19)

zk = h(xk) + vk (20)

where x is state vector, f(.) describes the system dynamics, u is control
input, w is process noise h is measurment model and v is measurement noise.
Both noises are assumed to be zero mean Gaussian. The subscript k denotes the
discrete time. Using the system descibed above, the equations for the extended
Kalman �lter can be written as[16]:

Predict:

x̂−k = f(x̂k−1, uk−1) (21)

P−k = FkPkF
T
k +Qkal (22)

Update:

Kk = P−k H
>
k (HkP

−
k H

>
k +Rkal)

−1 (23)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k) (24)

Pk = (I −KkHk)P−k (25)

9

where x̂ denotes estimated state vector, P is error covariance matrix, K is
calculated Kalman gain and

Fk =
∂f

∂x

∣∣∣∣
x̂k−1,u

(26)

is the derivative of the nonlinear system with respect to the states, x.

Hk =
∂h

∂x

∣∣∣∣
x̂k−1

(27)

is the derivative of the measurement equations with respect to the states.
As these equations show, the nonlinear model is still used in predicting the

new states, whereas a linearized model is used for comparing the measurements
with the current states in the update phase and for computing the covariance
matrix and the Kalman gain. The Rkal matrix represents the measurement
covariance matrix, and the Qkal is a matrix representing the process covariance.

2.7 Quaternion Estimation

Another method for estimating the rotation matrix based on the sensor mea-
surements is the QUaternion ESTimator (QUEST)[9]. QUEST will minimize
the cost function de�ned as:

J1(q) =
1

2

n∑
j=1

1

σ2
j

(bj −Rib(q)rj)>(bj −Rib(q)rj)

=
1

2

n∑
j=1

1

σ2
j

(bTj bj − 2b>j R
i
b(q)rj + r>j rj) (28)

where rj are known unit vectors in the NED frame, and bj are unit vectors
of the measured observations in the body-�xed frame. σj are the standard
deviation of the measurement error. However, both rj and bj are unit vectors,
and this reduces the equation to:

J1(q) =

n∑
j=1

1

σ2
j

(1− b>j Rib(q)rj) (29)

Minimizing J1 is equal to minimizing

J2(q) = −
n∑
j=1

1

σ2
j

b>j R
i
b(q)rj (30)

or maxmimizing

J3(q) =

n∑
j=1

1

σ2
j

b>j R
i
b(q)rj (31)

10

The QUEST does not depend on inital conditions, which is a great advan-
tage. Another advantage is that the algorithm can be solved exactly by solving
an eigenvalue problem. However, the QUEST algorithm can only estimate the
attitude quaternions. The sensor biases remain unknown.

The mathematical formulation of QUEST requires vectorized direction input
vectors. This indicates that the QUEST algorithm will not be able to utilize
measurements such as the non-vectorized gyroscope data. The lack of possibili-
ties to integrate vectorized and non-vectorized measurements is a disadvantage
with QUEST and limits its range of application.

11

12

3 Sensors

3.1 Magnetometers

In attitude estimation, magnetometers are used to measure the local magnetic
�eld. By comparing the measured magnetic �eld with the Earth's magnetic �eld
at the current location, the attitude vector can be estimated. This means that
the satellite must know the real magnetic �eld for every position on its orbit.
A look-up table can be implemented on the satellite to keep track of the �eld
for a given position, but this might require an in�nite amount of memory. The
magnitude and the direction of the Earth's magnetic �eld varies with location
and altitude. In addition, the �eld slowly changes with time. This leads to
almost in�nite amount of combination, making the look-up table very large. The
look-up table can be made smaller if the table can be updated through ground
communication. Since the orbit of the satellite is known, the look-up table only
have to contain information about the magnetic �eld for the upcoming satellite
positions. Once the satellite is within range of communication, the table can
be replaced with updated �eld information. This form of look-up table requires
data from ground and is not very reliable. If communication fails, the satellite
will not be able to estimate correct attitude. Another disadvantage is that
updating the table will take some of the communication bandwidth which could
have been used to transfer other data. Instead of using look-up tables, a model
of the Earth's magnetic �eld can be implemented. Several models exists. A
balance between simple and accurate model is required for the estimation of
attitude.

3.2 Gyroscope

Gyroscopes measure angular velocity. Theoretically a gyroscope can track the
orientation of the satellite by integrating the change in velocity. In order to
provide good estimation the initial orientation must be correct and in addition,
the measurement errors should be small. All gyroscopes have some measurement
error which is called bias. Biases are usually constant or slowly varying. Because
of the biases, the orientation can not be tracked by only using gyros. Gyroscopes
can track orientation for a period of time depending on the size of the biases.
However, with time the attitude estimation will drift. Today, even cheap gyros
are small and can provide quite good measurement data.

3.3 Accelerometer

Accelerometers measure acceleration. On Earth the accelerometer can be used
to get a directional vector. If the object is still, or moving with a constant speed,
the only measured acceleration will be the gravity. Even with small accelerations
the gravity vector will be dominating for the measurements. Therefore, the
measured acceleration will indicate the direction of the gravity vector and can
be used to �nd the orientation of a slowly moving object. Note that if the

13

object do experience large accelerations, the estimation will fail to give correct
estimates for the attitude.

For the attitude estimation, the direction of the acceleration is more im-
portant than the magnitude. Hence, the measurements can be normalized and
compared with the normalized gravity vector in NED coordinates (

[
0 0 1

]
).

However, the satellite in orbit will experience almost no acceleration and regu-
lar accelerometers can obviously not be used. The gravity force in space can be
found using Newton's law of universal gravitation and is given below:

F = Gc
mass1mass2

dist2
(32)

where Gc is the gravitational constant, mass1 is the mass of Earth, mass2
is the mass of the satellite and dist is the distance between the satellite and the
Earth. For a low Earth orbit, the gravitational force is almost 0.9g. Due to the
ciruclair orbit of the satellite, the gravitational force and the centripetal force
balance each other, making the total acceleration 0g.

The accelerometer is still used in this project due to the simplicity of testing
on Earth.

3.4 Sun Sensor

Sun sensors vary with complexity and mission requirements. It could be as
simple as a light sensitive diode, or as complex as a optical telescope. The main
idea is to measure the direction to the Sun. Small and cheap sun sensors can be
bought and placed on each side of the satellite in order to detect the Sun angle.
Solar cells are not really sensors, but can be used to detect the direction to the
Sun by monitoring the output current. The output from a solar cell depends
on the angle between the solar panel and the sun rays. The amplitude of the
current varies by the cosine law [17].

The sun sensors mounted on the satellite will be sensitive to every light source
in space. In addition to the Sun, light re�ected by the Earth (Earth albedo) will
have a great in�uence on the sun sensors. In order to get an accurate estimate
of the Sun vecor, Earth albedo compansation in necessary. Calculating the Sun
vector without Earth albedo compansation can cause an angular deviation of
more than 20◦[18].

3.5 Earth- and Horizon sensor

An Earth sensor is a sensor that detects the direction to the Earth. This can
for instance be an infrared camera. Another sensor used to sense the direction
to the Earth is the horizon sensor. This is an optical instrument that detects
the boarder between the warm atmosphere and the cold cosmic background
radiation.

14

3.6 Star Tracker

One of the most reliable sensors are the Star trackers. This is an optical device
that measures the positions of stars relative to the sensor. The results are
compared with a star catalog that contains the position of many well known
stars stored in memory. By using simple geometry it is possible to determine
the position of the star sensor based on which stars the sensor sees.

3.7 Sensors Used for Testing

As mentioned above there exists many sensors that can be used for attitude
estimation. Which sensors to choose is a question of space, weight and �nan-
cial budget. The main limitations for the CUBESAT is the small amount of
space and weight. Limited power capacity must also be taken into considera-
tion. Because of those limitations sun sensors, gyros and magnetometers were
considered a better option than optical devices such as star trackers and Earth
horizon sensor.

For the development of attitude estimation methods, and for the prototype
design, the sun sensor was replaced by an accelerometer. This was done for
testing purposes. Estimating the attitude using sun sensors on Earth would
demand a proper test bench. The bench must at least contain a mounted light
source moving around the test bench to simulate the Sun, as well as a satellite
module with solar cells. Since the project is early in the start up phase, there is
no access to the required solar cells. Due to better testing options and limited
access to components, the prototype has been designed with an accelerometer
instead of a sun sensor. Section 4 will give a mathematical explanation why it
is possible to replace the sun sensor with an accelerometer for testing on Earth.

When selecting a sensor for the prototype, only magnetometers, gyros and
accelerometers were considered. They can either be bought seperatly or as a
complete module. Buying seperatly gives the opportunity to create an own
Inertial Measurement Unit (IMU) with desired speci�cations. Each sensor can
be choosen individually to best match the requirements of the prototype. Buying
a complete IMU gives limited sensor choice, but requires less work. A complete
IMU is more reliable as they already have been tested by companies specialized
in IMUs. For this project, buying a complete IMU was prefered. 3 di�erent
IMUs were used for testing and implementation. The sensors are decribed below.
All IMUs have 3-axis accelerometer, 3-axis gyro and 3-axis magnetometer.

3.7.1 Xsens MTi

Xsens MTi is a miniature, gyro-enhanced attitude and heading reference system.
It provides drift free 3D orientation. The sensor gives output in both quaternions
as well as raw sensor data. This sensor was mainly used to test the Kalman �lter
and the EQUEST in MATLAB (See Section 8.1 and 8.2). The Kalman �lter
uses raw sensor data as input. The estimated attitude is given as quaternions
making it possible to compare with the attitude calculations done by Xsens MTi.

15

The sensor cost about 2500 USD. The dimension of the sensor is 58 × 58mm,
which makes it unsuitable for the prototype. Xsens MTi is still a good sensor
for software test purposes.

3.7.2 9-DOF Razor IMU

The dimensions (49.53 × 27.94mm) of the 9-DOF Razor IMU also makes it
unsuitable for the prototype, but because of its simplicity, the sensor was used
to test both extended Kalman �lter and the extended quaternion estimation
(See Section 8.3, 8.4 and 8.5). It can easily be connected to computer using
serial RX and TX pins. The sensor operates with a baudrate of 38400bps and
can be con�gured to only send raw data separated by commas. The price of the
sensor is about 125 USD, making it a fairly cheap investment.

3.7.3 CHIMU IMU

The CHIMU is a miniature, low cost (350 USD) attitude heading reference
system. It can provide both raw data and orientation. The dimension of the
sensor is 25.4×21.0mm making it highly suitable for the prototype. The output
data is sent out as a message with de�ned structure. This sensor was used for
the prototype (See Section 7), but because of the fast improvement in small
electronics, and the fact that the accelerometer shall be replaced by sun sensors,
the �nal sensor selection for NUTS in 2014 must be chosen carefully.

16

4 Attitude Estimation

Attitude was estimated using extended Kalman �lter and extended quaternion
estimation. Both estimation methods use two independent directional vectors
and a gyroscope for attitude estimation. Hence, it is indi�erent wether the
methods are based on sun sensors measuring the direction to the sun, or ac-
celerometers measuring the gravitational force on Earth. The only di�erence
will be the input data and the reference vector for the algorithms. The methods
below are developed for an accelerometer, gyroscope and a magnetometer, but
the accelerometer can easily be replaced by sun sensors.

4.1 Attitude Estimation Using Extended Kalman Filter

The theory of the extended Kalman �lter was explained in section 2.6. There
are several ways to con�gure the extended Kalman �lter for attitude estimation
based on measurements from an IMU. Here, the state vector was chosen to
consist of the quaternions q, accelerometer bias biasa and the magnetometer
bias biasm. The state vector x is given below:

x =

 q
biasa
biasm


where q =

[
q1 q2 q3 q4

]>
, biasa =

[
biasa,x biasa,y biasa,z

]>
and

biasm =
[
biasm,x biasm,y biasm,z

]>
. The great advantage of estimating

the biases of the accelerometer and magnetometer is that the EKF will subtract
them from the measurements during the next iteration. This will increase the
precision of the measurements and give a more accurate attitude estimate.

In order to include the angular velocity as a state, a dynamical model of
the satellite can be used. An alternative is to use the measurements from the
gyroscope to estimate the dynamical model for the quaternions.

The di�erential equation for quaternions can be written in terms of angular
velocity ω =

[
ω1 ω2 ω3

]>
[7]

q̇ =
1

2

[
ω× ω
−ω> 0

]
q (33)

where

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (34)

Further, the accelerometer and magnetometer biases can be assumed to be
constant. Following di�erential equations can be written

˙biasa = 0 (35)

17

˙biasm = 0 (36)

The di�erential equation for the entire system is therefore

ẋ =

 q̇
˙biasa
˙biasm

 =


1
2

[
ω× ω
−ω> 0

]
0 0

0 0 0
0 0 0


 q

biasa
biasm

 (37)

Note that the system equation is linear, making the computation of the EKF
less complicated. However, an EKF is still necessary due to the nonlinearity in
the measurement model.

The system given in Equation (37), is given in continious time. To implement
this on a computer, a discretization is needed. The system is discretized using
zero-order hold with sampling time Ts. The discrete system will be given as

xk+1 =

 expm

(
1
2

[
ω× ω
−ω> 0

]
T s

)
0 0

0 I3x3 0
0 0 I3x3

xk (38)

with expm being the matrix exponential.
Since all the measurements are done in the body frame and the reference

model is given in the NED frame, the sensor model includes a rotational matrix
dependent on the unit quaternions. The rotational matrix introduce a non-
linearity in the measurement matrix. The measurement Equation (20) is given
by the sensor model below.

ab = Rbn(q)(gn + anreal) + biasba (39)

mb = Rbn(q)mn
real + biasbm (40)

where gn is the gravity vector and Rbn is the rotation matrix rotating a vector
from NED to BODY frame. In matrix form the measurement model is given by

[
ab

mb

]
=


abx
aby
abz
mb
x

mb
y

mb
z

 =

[
Rbn(q) 0

0 Rbn(q)

]


gnx + anreal,x
gny + anreal,y
gnz + anreal,z
mn
real,x

mn
real,y

mn
real,z

+

[
biasba
biasbm

]
(41)

Because of the nonlinearity in the measurement model, linearization is required
and is derived in Appendix D.

The measurement vector z consist of the measurements from accelerometer
ab and the magnetometer mb

18

z =

[
ab

mb

]
The angular velocity is not either a part of the measurement vector. As previous
mentioned, the measurements from the gyroscope will be indirectly integrated
in the EKF, through the dynamical model of the quaternions.

The vectors explained above are used in the equations in Section 2.6 to
iterativly compute the attitude of the satellite.

4.2 Extended Quaternion Estimator

As mentioned in Section 2.7, the QUEST algorithm is not able to utilize the
measurements from the gyroscope. However, it is possible to extend the QUEST
and implement an Extended QUaternion ESTimator (EQUEST) in order to
include the gyroscope measurements. The main idea behind the EQUEST is to
modify the cost function. This is done by adding another term, containing the
gyroscope measurements.

By tracking the rotation based on gyroscope measurements it is possible to
add a term to Equation (28) that will penalize aberrations from the rotation
matrix estimated by the gyroscope measurements only.

J4(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj −Rib(q)rj)>(bj −Rib(q)rj)
}

+
1

2
(q − q̂gyro)D(q − q̂gyro))

(42)
here q̂gyro is the estimated rotation matrix based on gyroscope tracking, and D
is a diagonal weighting matrix. The main idea by using the term q− q̂gyro is to
minimize the cost function. Note that the subtraction of two quaternions will
not result in an attitude quaternion.

The EQUEST can be expanded further by adding a prediction term. The
prediction is most suitable for applications where it is possible to forecast up-
coming orientation based on previous behavior. It can also be used to �lter out
noise. The slow and predictable change of attitude for the satellite makes it
possible to use previous attitude calculations to estimate the next orientation.
For a short period of time, the attitude change will be minimal. However, as
several attitude calculations are done in this period it is possible to establish a
linear relation between time and change of attitude. This is illustrated in Figure
3. A deviation from the predicted term can be penalized in the cost function
by adding the following term to Equation (42)

1

2
(q − q̂pre)>S(q − q̂pre) (43)

where q vector contains attitude quaternions, q̂pre is the predicted attitude based
on previous observations, S is state weight matrix.

19

Figure 3: Linear prediction of attitude.

Adding Equation (43) with (42) gives

J5(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj −Rib(q)rj)>(bj −Rib(q)rj)
}

+
1

2
(q − q̂gyro)>D(q − q̂gyro) +

1

2
(q − q̂pre)>S(q − q̂pre) (44)

subject to
q>q = 1 (45)

It is possible to rewrite both extensions to quadratic terms. By writing the
entire equation in quadratic form, the cost function can be minimized using
well-known optimization techniques[19].

Note that the EQUEST is still not able to estimate the biases. It is possi-
ble to estimate the biases using other methods, and then subtract them from
the measurements used in EQUEST. Due to computational costs, this is not
considered here.

20

4.3 Solving the Extended Quaternion Estimator

One option for solving the minimization problem given in (44) and (45) is to use
the Lagrangian multiplier method. However, the equation has to be rewritten
on the special form

J(x) =
1

2
x>Gx+ x>c (46)

where G is a positive de�nite matrix and c is a constant with respect to x. The
original QUEST criterion in (28) can be posed in the quadratic form [8]

g(q) = −q>V q (47)

where V is a symmetric matrix given by

V =

[
U − ϕI3×3 Z

Z> ϕ

]
(48)

with

U = L+ L> (49)

L =

n∑
j=1

1

σ2
j

(bjr
>
j) (50)

Z =

 L23 − L32

L31 − L13

L12 − L21

 (51)

ϕ = trace(L) (52)

The gyroscope tracking needs to be written in the same quadratic form in
order to solve EQUEST with Lagrangian multipliers.

1

2
(q − q̂gyro)>D(q − q̂gyro) =

1

2
(q>D − q̂>gyroD)(q − q̂gyro) (53)

=
1

2
(q>Dq − q>Dq̂gyro − q̂>gyroDq + q̂>gyroDq̂gyro) (54)

Since
(q̂>gyroDq)

> = q̂>gyroDq = q>Dq̂gyro (55)

we get

1

2
(q − q̂gyro)>D(q − q̂gyro) =

1

2
(q>Dq − 2q>Dq̂gyro + q̂>gyroDq̂gyro) (56)

further, the term q̂TDq̂ will be constant with respect to q. This term will not
a�ect the minimization problem, hence we can remove it from the equation.

21

Now the gyroscope part of the cost function can be written in quadratic form
as:

1

2
q>Dq − q>Dq̂gyro (57)

Exactly the same as above can be done to write the prediction term in quadratic
form:

1

2
q>Sq − q>Sq̂pre (58)

By adding Equation (57) and Equation (58) into Equation (47), the entire
EQUEST can be written in quadratic form as:

J6 =
1

2
q>(D + S − V)q + q>(−Dq̂gyro − Sq̂pre) (59)

Introducing new variables
κ = D + S − V (60)

ξ = −Dq̂gyro − Sq̂pre (61)

the problem will be to minimize

J(q) =
1

2
q>κq + q>ξ (62)

subject to
q>q = 1 (63)

The lagrangian equation is now given as

L =
1

2
q>κq + q>ξ +

λ

2
(q>q − 1) (64)

�nding the extremum of (64) can be done by �nding the derivative with respect
to q, and setting the equation equal to zero:

dL
dq

= κq + ξ + λIq = 0 (65)

q = −(κ+ λI)−1ξ (66)

by combining (63) and (66), the constraint now sounds

ξ>(κ+ λI)−2ξ = 1 (67)

The most positive real λ will give the global minimum for Equation (62) [9].
Further κ is a symmetric matrix, hence it can be decomposed as:

κ = M


−λ1 0 0 0

0 −λ2 0 0
0 0 −λ3 0
0 0 0 −λ4

M> (68)

22

where λi are the eigenvalues of κ, and M is an orthogonal eigenvector matrix.
During the calculations, it is important that the eigenvalues corresponds to the
correct eigenvector. By introducing

c =


c1
c2
c3
c4

 = M>ξ ⇔ ξ> = c>M> (69)

Equation (67) can be written as

c>M>

M

−λ1 0 0 0

0 −λ2 0 0
0 0 −λ3 0
0 0 0 −λ4

M> +


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ



−2

Mc−1 = 0

(70)
Since the diagonal matrix will a�ect the eigenvalues, and the inverse of an or-
thogonal matrix is the transposed of the orthogonal matrix this can be simpli�ed
to

c>M>

M

λ− λ1 0 0 0

0 λ− λ2 0 0
0 0 λ− λ3 0
0 0 0 λ− λ4

M>

−2

Mc− 1 = 0 (71)

Now since M is orthogonal, M>M=I. Further, the inverse of a diagonal matrix
can be computed element by element. Equation (71) can now be written as

c>


1

(λ−λ1)2
0 0 0

0 1
(λ−λ2)2

0 0

0 0 1
(λ−λ3)2

0

0 0 0 1
(λ−λ4)2

 c− 1 = 0 (72)

By writing this out we get

c21
(λ− λ1)2

+
c22

(λ− λ2)2
+

c23
(λ− λ3)2

+
c24

(λ− λ4)2
− 1 = 0 (73)

The optimal λ (λopt) will be larger than the smallest eigenvalue. After λopt
is identi�ed, it can be substituted back into Equation (66) to �nd the q that
minimizes the cost function.

In contrast to EKF, EQUEST is not able to estimate the bias in accelerom-
eter and magnetometer measurements. The state vector is therefore chosen to
be the quaternions

x = q =


q1
q2
q3
q4

 (74)

23

Equation (16) is used to estimate the q̂gyro term in EQUEST.
We propose to calculate the q̂pre term by using simple linear regression with

a window size of 10 samples. The next quaternion vector is predicted by using
the 10 latest samples, and �tting them to an equation for a line

y(t) = b0t+ b1 (75)

b0 will represent the slope of the line, while b1 is the measured value at t =
0. With n observations, b0 and b1 can be found by solving the following
formulas[20]:

b0 =

n
n∑
i=1

y(ti)ti −
n∑
i=1

ti
n∑
i=1

y(ti)

n
n∑
i=1

(t2i)−
(

n∑
i=1

ti

)2 (76)

b1 =

n∑
i=1

y(ti)
n∑
i=1

t2i −
n∑
i=1

ti
n∑
i=1

tiy(ti)

n
n∑
i=1

t2i −
(

n∑
i=1

ti

)2 (77)

The next q̂pre is estimated using the linear relation found with the last 10
samples using the values b0 and b1 as line parameters. Note that the prediction
term does not have to be linear. It should be adapted for the rest of the system.
In case of less strict restrictions on calculational power or time, the predicition
term might be an EKF. Obviously this would be to demanding for the attitude
estimation on board the satellite, but if computational power allows it this might
be a good solution.

4.4 Replacing the Accelerometer with Sun Sensors

It is easy to replace the accelerometer with any other directional measurement.
Below the accelereometer is replaced by a sun sensor in order to achieve atti-
tude estimation while orbiting. In the Kalman �lter, the states describing the
accelerometer must be changed to describe the sun sensors

x =

 q
biass
biasm


The new system matrix would then be

xk+1 =

 expm

(
1
2

[
ω× ω
−ω> 0

]
Ts

)
0 0

0 I3x3 0
0 0 I3x3


 qk

biass,k
biasm,k

 (78)

with the following measurement model for the sun sensors

24

sb = Rbn(q)sn + biass (79)

The measurement vector would also be changed to contain the sun measure-
ments

z =

[
sb

mb

]
where sb is the normalized Sun intensity measured in BODY frame calculated
from the measured Sun intensity from the solar sensors. This gives one mea-
surement in each direction x, y, z in BODY coordinates.

Since the sun vector is a directional vector, it could be implemented directly
in the QUEST or EQUEST algorithm. The replacement would only change
the known b and r vectors in Equation (28), where the sun vector replaces the
accelerometer/gravity vector.

To use the solar cells as sun sensors, let Intx+, Intx−, Inty+, Inty−, Intz+
and Intz− be measured intensity at solarcells on each side of the satellite. Sub-
script x means side perpendicular to the x-axis , subscript ” + ” indicates the
side on positive axis while ”− ” indicates the opposite. The measured intensity
sb can be desribed using the intensity from each side as following:

smeas =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1



Intx+
Intx−
Inty+
Inty−
Intz+
Intz−

 (80)

When replacing the accelerometer with sun sensors, a good albedo model should
be developed. This is because the sun sensors will be a�ected by re�ections from
the Earth, and could therefore experience great inaccuracy in the estimations.
Implementing an albedo model can compensate for these deviations.

25

26

5 Software Implementation

The software was written using C language an implemented on an ATMEGA2560,
ATMEGA2561 and an ATMEGA128 microcontroller. AVR studio was used as
development environment. Note that the ATMEGA 128 was not able to run
both methods due to memory issues. The code and description in this sec-
tion is written for the ATMEGA2560 and requires minor register changes to be
adapted for the ATMEGA2561.

5.1 Establishing Communication Between the Atmega Mi-
crocontroller and the Sensor

Communication between the microcontroller and the sensor is done using Uni-
versal Asynchronous Receiver/Transmitter (UART). To be able to use the UART
some prede�ned registers on the microcontroller must be set. Transmission and
reception can be activated by setting the RXEN and TXEN bits in the control
register UCSRB. The baudrate register must also be set before UART can be
used to send information. The baudrate register is 16-bit, split into two 8-bit
registers UBRR0H and UBRR0L. Note that the baudrate register value is not
the same as the baudrate for the communication. A formula is needed to con-
vert the desirable baudrate, Baud, to a value applied to the baudrate register,
Reg. The formula is given below:

Reg =
CPU

16Baud
− 1 (81)

where CPU is the clock rate. The code necessary for initilizing UART is sum-
merized below (A baudrate of 38400 was chosen here):

#include <avr/io.h>

#define BAUDRATE 38400

#define MYUBRR (F_CPU/16/BAUDRATE-1)

UCSR0B = (1<<RXEN1)|(1<<TXEN1);

UBRR0H = (unsigned char)(MYUBRR>>8);

UBRR0L = (unsigned char)MYUBRR;

A method was created to send data from the microcontroller to the sensor
and is given below:

void USART_vSendByte(uint8_t u8Data){

while((UCSR0A &(1<<UDRE0)) == 0);

UDR0 = u8Data;

}

The while loop runs until UDR register is ready for new data. This is done by
checking the UART data register empty �ag (UDRE), also found in UCSRA
register in microcontroller. An additional method was written to recieve data
from the sensor to the microcontroller. The code is given below:

27

char USART_vReceiveByte(void){

while((UCSR0A&(1<<RXC0)) == 0);

return UDR0;

}

Here, the while loop runs until data (one byte) have been recieved. When a
byte is recieved the UDR register will contain the data. The code given in this
section is the minimum code which is necessary to recieve and transfer data using
UART. The code can easily be adapted to almost any AVR microcontroller with
no or small changes in the code.

5.2 Interrupt Handling

Interrupts allows external events to pause the main program and execute an
interrupt service routine (ISR) before resuming the main program where it left
o�. Here, interrupts will be used with UART. Instead of continously checking
for incoming data from UART, interrupts can be used to notify when new data
arrives. In order to use interrupt two library headers must be added:

#include <avr/io.h>

#include <avr/interrupt.h>

To hadle interrupts from UART, global interupt must be allowed. In addi-
tion, the �recieve complete interrupt� must be enabled. This is done by setting
the bit RXCIE in UCSR0B register:

UCSR0B = (1<<RXCIE0);

sei();

The function �sei();� activates the global interrupt. Once the main program is
interrupted, the interrupt service routine is excecuted. The code which is to be
excecuted must be written inside the ISR function with correct vector name:

ISR(USART0_RX_vect) {

}

USART0_RX_vect is the name of the vector that handles the reception of a
byte via UART. The name may be di�erent for other AVR microcontrollers, but
can be found in the datasheet[21].

5.3 Implementing the Kalman Filter in C

In order to implement the extended Kalman �lter on the microcontroller, the
Kalman �lter was written using C language. Several di�uculties arrises when
the C language is used as several mathematical operations are not supported.
First of all, C do not support matrix multiplication which is an essential part of

28

the Kalman �ltering. Secondly the matrix inverse operation does not exist. The
third challenge is to �nd the transpose of a matrix. C supports two-dimensional
arrays which looks very similar to a matrix. Using double arrays makes the code
more complex. Therefore instead of using two-dimensional arrays, matrices were
transfered into a long one-dimensional arrays. An example is given below: 0 1 2

3 4 5
6 7 8

⇒ [
0 1 2 3 4 5 6 7 8

]
Using 3 for-loops, matrix multiplication can be implemented as following:

void matrisemul(double *CC, double *AA, double *BB,

int sizeAm, int sizeAn, int sizeBm,int sizeBn){

double sum;

for (int i = 0; i<sizeAn;i++){

for(int j = 0; j<sizeBn; j++){

sum = 0;

for(int k = 0; k<sizeBm;k++){

sum = sum + AA[i*sizeAn+k]*BB[k*sizeBn+j];

}

CC[i*sizeBn+j] = sum;

}

}

}

The method takes two matrices, written as one-dimensional arrays, as input.
The size of the matrices must also be sent to the method. The output is the
product of the matrices given as a one dimensional array.

For each iteration in the Kalman �lter, only two matrices must be trans-
posed. The code for transposing the matrices is therefore not written as a
method. The matrices which is to be transposed have dimensions 10 × 10 and
6 × 10 but again given in one dimensional arrays. The C code to �nd their
transposed is as following:

for(int i = 0; i < 10; i++){

for(int j = 0; j < 10; j++){

A_t[10*i+j]=A[j*10+i];

if(j<6){

H_t[6*i+j]=H[j*10+i];

}

}

}

Computing the inverse of a matrix is only possible if the matrix is positive-
de�nite. The matrix which is to be inverted in the Kalman �lter has properties
making it always invertable. It is a 6 × 6 symmetric matrix, meaning it is

29

Hermetian, and since every eigenvalue in Hermetian matrices is positive, the
matrix is positive de�nite. An e�cient way to compute the inverse of a matrix
is by performing an LU decomposition (See Appendix E). The algorithm for
inverse operation using LU decomposition can be found in �Numerical Recipes
in C�[23].

5.4 Implementing the EQUEST in C

The EQUEST was also written using C language. One of the great advantages
with the EQUEST, is the few aritmethic operations. There were only two di�-
culties when the code was rewritten from MATLAB to C: one matrix inversion
and one eigenvalue problem. However, it is only a matrix inverse of size 4-by-4.
Since the matrix is so small, it is more e�cient to invert it using the adjoint
method than the LU decomposition. For larger matrices, the adjoint method
tends to be very di�cult to follow as the operations are increasing with O(n!).
To solve the EQUEST, it is necessary to identify the smallest eigenvalue and
all eigenvectors of a symmetric 4-by-4 matrix. This is done by implementing
the cyclic Jacobi method which returns all eigenvalues and the corresponding
eigenvectors of the input matrix. The method was �rst formulated in 1846 by
the German mathematician Carl Gustav Jakob Jacobi[24], and is a common
way of identifying eigenvalues.

5.5 Sleep Mode

The attitude is not necessarily estimated continuously. For some period of time
the estimation is less important and energy can be saved by shutting down part
of the estimation system. On AVR microcontrollers, it is possible to shut down
unused modules, so called sleep mode. To enter the sleep mode, the SE bit in
SMCR (Sleep Mode Control Register) must be set to logic one and in addition a
SLEEP instruction must be executed. To wake up, an �enable� interrupt signal
must occur. To be able to use the sleepmode following library must be added:

#include <avr/sleep.h>

Instead of changing the SE bit to enter sleep mode, some simple commands
can be used:

set_sleep_mode(SLEEP_MODE_PWR_DOWN);

sleep_enable();

sleep_mode();

The �rst line sets the sleep mode. The microcontroller has six sleep modes,
each with di�erent active parts. SLEEP_MODE_PWR_DOWN command ac-
tivates Power-down mode, which turn o� every active clock and both oscillators.
The �sleep_enable()� command enables the sleepmode, while �sleep_mode()� is
the command that actually puts the micro-controller to sleep. In order to wake
up the controller pin change interrupt was chosen among the di�erent options.

30

Change in PORTB, PIN0 will deactivate the sleep mode. To activate pin change
interrupt on PORTB, the following code was required

PCMSK0 = (1<<PCINT0);

PCICR = (1<<PCIE0);

Once the value on PIN0 goes from high to low or from low to high, the inter-
rupt service routine runs. The interrupt service routine which deactivates the
sleepmode is given below

ISR(PCINT0_vect){

sleep_disable();

}

5.6 Watchdog Timer

In order to prevent endless loops in the code, it is wise to implement a Watchdog
Timer (WDT). This timer will increment itself until a selectable number is
reached, then the entire program will restart. In each code loop the watchdog
timer must be set to zero. If the code enters an endless loop, the WDT will
continiue to increment and reach the selected number. This results in the entire
micro controller to restart. It is important to select the number high enough,
to let the code �nish a code loop under normal circumstances.

To use the watchdog timer, the following library must be added:

#include <avr/wdt.h>

The following code enables the watchdog timer with a limit of 500ms before a
system restart:

wdt_enable(WDTO_500MS);

Before a new estimation starts, the watchdog timer must be reset.

wdt_reset();

During sleep mode the watchdog timer has to be turned o�. The method below
shows how to turn of the watchdog timer

void WDT_off(void){

wdt_reset();

MCUSR &= ~(1<<WDRF);

WDTCSR |= (1<<WDCE) | (1<<WDE);

WDTCSR = 0x00;

}

By not clearing the watchdog system reset �ag (WDRF) in the MCUSR register
the code will run an eternal loop of time-out resets. To prevent unintentional
time-outs the WDCE and WDE must take the value one before turning o� the
watchdog timer. The watchdog timer is turned o� by setting WDTCSR to zero.

31

5.7 Run-time Counter

A timer was implemented to be able to measure the run-time of the two algo-
rithms. The microcontroller has an integrated timer which can be used for this
purpose. To start the timer following code should be implemented

TCNT1 = 0;

TCCR1B = (3 << CS10);

By zeroing TCNT1 register, the timer is reset. The TCCRB register is set in
order to prescale the frequency to 1

64 of the clock frequency. To stop the timer
and get the result, the lines below were written:

sreg = SREG;

cli();

i = TCNT1;

SREG = sreg;

TCCR1B = 0;

sei();

In �rst line the global interupt �ag SREG is stored. Calling �cli()� disables
interrupts. The counter value is read from the TCNT register and the timer is
stopped by resetting the TCCRB register. �sei()� enables the interrupts.

32

6 Evaluating the Algorithms

Both the EKF and the EQUEST algorithms are suitable for estimating the
attitude of a satellite. As of today, the extended Kalman �lter is the most com-
mon estimator, and it has been tested in similar applications for decades. This
makes the EKF ideal for performance- and run time comparison for the newly
developed EQUEST algorithm. Both algorithms have been implemented and
executed on an AVR ATMEGA 2560 microcontroller. During the evaluation
the microcontroller was running at 8MHz. The ATMEGA 2560 can go up to
16MHz but running close to max speed is not recommended due to instability.
The prototype is designed with an ATMEGA 2561, running at 16MHz. The mi-
crocontroller was able to run both methods satisfactorily. Most of the variables
were implemented as �oating point numbers. Computational time can be saved
by changing from �oating point variables to �xed point, but this is left out for
further work.

6.1 Extended Kalman Filter

The EKF requires some matrix operations, among them matrix multiplication
and computing the inverse of a 6-by-6 matrix. Since the module should be used
on-board a satellite, the memory usage should be as optimal as possible. Hence,
it is not desirable to implement an entire math library in order to perform
the matrix operations. Therefore only the necessary methods have been imple-
mented at the microcontroller. The linearization contains quite a large amount
of numerical operations. The performance of the algorithm has been measured
both in expended run time and number of arithmetic operations. The expended
run time is found by setting a �ag at the start of each cycle, and then resetting
the �ag after the execution. The run time of the EKF is about 200 milliseconds.
By introducing a global counter in the algorithm, it is possible to detect how
many arithmetic operations each cycle executes. In average EKF required about
40 000 operations. During the design of the prototype, the implementation of
the EKF resulted in a stack over�ow at an ATMEGA 128 microcontroller. The
ATMEGA 128 has the exact same kernel as the ATMEGA 2561, but half the
memory.

6.2 Extended Quaternion Estimation

Compared to the EKF, the EQUEST requires less matrix multiplications, and
only a 4-by-4 matrix inversion. However, the eigenvalues and eigenvectors of a
4-by-4 matrix must be found. The EQUEST algorithm, does not require any
linearization. Number of arithmetic operations for the EQUEST was found to
be about 3200, which is only 8% of the EKF's operations. The run time for
EQUEST is about 40ms. This means that EQUEST is about 5 times faster than
the EKF. The ATMEGA 128 had no problems running the EQUEST algorithm.
However, larger memory might be needed to implement attitude control along
with the attitude determination. After implementation of both methods on the

33

same ATMEGA 2561, the memory was 31.0% full. Further details about the
design of the prototype follows in the next section.

34

7 Designing Prototype

In order to make a functional prototype a systematic design process is followed.
The procedure consists of the following steps, and is described in more detail
below:

1. Identify electrical components

2. Schematic design

3. Board design

4. Milling circuit board

5. Soldering components

6. Software implementation

There are several electrical components needed in order to make a functional
prototype. First all the necessary components were identi�ed. The sensor was
selected with the criteria discussed in Section 3, where the CIMU IMU was found
most suitable. The microcontroller was selected based on the earlier software
development being done on an ATMEGA 2560. To get a stable frequency, an
external crystal was used. In the microcontrollers datasheet[22], the crystal
setup is described. Two capacitors are used for the crystal connection, with
the values given in the datasheet. Also, two capacitors are placed close to the
microcontroller in order to ensure stable voltage.

After the components were selected, it was followed up by a logical con-
nection of all the electronic parts. A schematic drawing was created using the
freeware edition of Eagle by CADSOFT. In the schematic drawing all the com-
ponents are added to a blank drawing and then connected logically. Common
components exist in a library, whereas the sensor had to be drawn manually
with the correct size and input ports. The logical connections are determined
by looking through datasheets and deciding which pins to connect to each other.
The attitude estimation requires few components, and is fairly easy to connect.
The methods are implemented on a microcontroller. To make the prototype as
portable as possible it is designed with an USB connection for the computer.
The attitude data is transferred from the prototype to the computer so the
user can view the attitude live by opening a simple MATLAB �le. Since the
prototype is made for experimental use only, it will always be connected to a
computer during use. The prototype can operate with voltages between 3.3V
and 5.5V. The USB connection provides 5V. Hence, no power sources are im-
plemented on the device as it will be powered up through the USB connection.
When designing the attitude estimator for use in the CUBESAT, the power will
be provided from a battery within the satellite.

The acceleration, change in velocity and the magnetic �eld are measured by
an IMU connected to the microcontroller using RX/TX pins. A 10-pin header
(JTAG) is connected to the prototype making it possible to program it. A JTAG

35

connection is a standarized connection for programming and debugging an em-
bedded system. Figure 4 shows the prototype connected to the AVR Dragon
kit using a JTAG connection, while powered up through the USB connection.

Figure 4: Picture of the prototype connected to an AVR Dragon.

Further, a stable 16 MHz oscillator is provided by an external crystal. Us-
ing a crystal is a very common way to provide a more accurate frequency than
what the microcontroller can provide by itself. The logical connection with
all the components used is showed in Figure 5. The capacitors powering the
crystal was chosen to be 12pF , selected from the recommended values in the
microcontrollers datasheet (Recommended between 12-22pF). To avoid unin-
tentional resets, it is recommended that the reset pin, on the microcontroller,
is connected. According to the datasheet, the resistor should be at least 10kΩ.
Hence, the resistor connected to the reset, was selected to be 10kΩ. By connect-
ing a capacitor between the RESET pin and ground, the RESET is protected
from noise. This capacitor was chosen to be 100nF . Further, three capacitors
of 100nF were placed close to the microcontroller in order to provide stable
voltage.

The software was �rst designed and implemented on an ATMEGA 2560
microcontroller connected to an AVR STK600. This controller has 100 pins,
making it very hard to solder on a circuit board. Hence, another microcontroller
was used for the prototype. Two di�erent prototypes were designed, with the
only di�erence being the choice of microcontroller. During the �rst prototype
design, an ATMEGA 128 microcontroller was used. The ATMEGA 128 has the
same kernel as the ATMEGA 2560 and only 64 pins, making it easier to solder
on the circuit board. The change of microcontroller required minor changes

36

in the software - only register names needed to be modi�ed. Even though the
ATMEGA 128 has the same kernel as the ATMEGA 2560, it has only 128 kbytes
�ash memory while ATMEGA 2560 has 256 kbytes. This turned out to be a
major problem, as the microcontroller kept resetting due to stack over�ow. The
EQUEST algorithm was able to run without any problems, but the signi�cantly
more computational demanding EKF resulted in memory errors. Therefore, the
second prototype was designed with an ATMEGA 2561 microcontroller. The
ATMEGA 2561 has the same kernel, and the same memory as ATMEGA 2560,
only with 64 pins. In the second prototype, both methods managed to run
simultaneously without any complications. Hence this prototype was used for
further testing.

37

Figure 5: Schematic drawing of the prototype.

38

Based on the schematic drawing, the board was designed using same software
from CADSOFT. All the required components were automatically exported
from the schematic drawing, but the physical connections had to be drawn
manually. However, the program provides helping lines to determine which pins
to connect to each other. The board drawing gives a physical connection be-
tween all the components. In most cases some of the paths will overlap. Hence,
at least two layers are required. In Figure 6 the blue lines represent a physical
connection on the bottom side, whereas the red lines represent a path on the
top side of the board. The green circles are vias. A via is a hole in the board,
connecting paths at the top with those at the bottom.

Figure 6: Board drawing of the prototype.

The milling is done using a circuit board plotter from LPKF. The board
drawing was exported to the belonging software of the LPKF, and the machine
creates a circuit board. When the milling is done, all the vias must be stamped
to provide an electrical connection between the two sides.

With all the paths milled into the circuit board, the components can be
soldered to the board. This is a process that requires very high precision and

39

a steady hand. The size of the prototype is showed in Figure 7, here a ruler is
placed next to the prototype for comparison.

Figure 7: Picture of the attitude estimation prototype.

As mentioned, the prototype is programmed using the JTAG connection.
Since an AVR microcontroller is used, the programming is done using an AVR
Dragon development board. This board will not power up the unit through the
JTAG connection, hence the USB must be connected while programming. Note
that some development boards, such as AVR STK600, have power connected to
the JTAG. If such boards are used, the USB header should not be connected!
This may damage the development board. The complete connection for pro-
gramming is showed in Figure 4. Under testing the AVR Dragon board will
be disconnected, but the USB connection will remain connected. A detailed
description of how to use and program the prototype is given in Appendix F.

40

8 Simulations and Tests

8.1 Testing the Kalman Filter in MATLAB

In the �rst simulation, the Kalman �lter was implemented in MATLAB and
compared with estimations done by a sensor (Xsens MTi). Xsens MTi is an
attitude and heading reference system and can provide raw data output from
gyroscope accelerometer and magnetometer. It can also provide attitude quater-
nions using a built-in extended Kalman �lter. The Xsens sensor was connected
to the computer using an USB connection. By changing the orientation of the
sensor, data were created and sent to MATLAB. Both the raw data from the
IMU and the attitude estimation done by Xsens were recorded. The recorded
sensor data were used in the Kalman �lter in MATLAB and compared with the
recorded estimated attitude. As observed from Figure 8 the Kalman �lter esti-
mations in MATLAB are very similar to those done by Xsens. The estimated
biases for magnetometer and accelerometer are given in Figure 9.

41

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

Time (s)

ro
ll(

ra
d)

Kalman filter
Xsens calculation

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

Time (s)

pi
tc

h(
ra

d)

0 10 20 30 40 50 60 70
−2

−1

0

1

2

Time (s)

ya
w

(r
ad

)

Figure 8: Attitude estimation using Kalman �lter in MATLAB.

42

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6
x 10

−3

Time (s)

A
cc

el
er

om
et

er
 b

ia
s

(m
/s

2)

x−axis
y−axis
z−axis

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6
x 10

−3

Time (s)

M
ag

ne
to

m
et

er
 b

ia
s

(T
)

x−axis
y−axis
z−axis

Figure 9: Accelerometer and magnetometer bias.

43

8.2 Testing the EQUEST in MATLAB

This test is is similar to the one done with the Kalman �lter. Raw data from
Xsens were sent to EQUEST, and attitude for each time step was calculated.
The estimated attitude was compared with the orientation calculated by Xsens
(See Figure 10). As observed from the �gure, attitude estimated by EQUEST
is close to the attitude determined by Xsens.

Note that the deviation in the methods, displayed in Figures 8 and 10,
could either be results of estimation errors in the XSENS or in the developed
methods. However, the observed erorrs are insigni�cant, indicating that the
methods developed in this paper are able to estimate the orientation.

The linear prediction term will have a smoothering e�ect on the EQUEST
estimations. Figure 11 shows the di�erence between EQUEST with and without
a linear prediction term. The �gure clearly illustrates the �ltering e�ect of the
linear prediction term. This is especially observed in the yaw-angle. The noise
in the yaw-angle, mainly caused by magnetic �eld �uctuations, is reduced by
the prediction term.

44

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

Time (s)

ro
ll(

ra
d)

Extended QUEST
Xsens calculation

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

Time (s)

pi
tc

h(
ra

d)

0 10 20 30 40 50 60 70
−2

−1

0

1

2

Time (s)

ya
w

(r
ad

)

Figure 10: Attitude estimation using EQUEST in MATLAB.

45

0 2 4 6 8 10 12 14 16 18

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16 18

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16 18

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

With lin pred
Without lin pred

Figure 11: EQUEST with and without prediction.

46

8.3 Real-time Attitude Estimation Using EKF and EQUEST
Implemented in MATLAB

In order to test the real-time performance of the estimation methods, an inertial
measurement unit, 9-DOF Razor IMU, was connected to the computer using an
USB connection. The IMU contains 3-axis accelerometer, 3-axis magnetometer,
3-axis gyro and is illustrated in Figure 12. Through the USB connection, raw
data are sent continiously from the IMU to MATLAB. The raw data contains
the measured acceleration, magnetic �eld and the rotational velocity. By using
this data as input for the algorithms designed in MATLAB, the attitude can
be estimated in real time. This means that the methods will estimate the
orientation of the sensor continiously while it is rotated. A MATLAB program
was written to convert the attitude quaternions to a 3D plot of a cube with
the estimated orientation. This is a user-friendly way to observe the estimation
methods' ability to track rotations.

Figure 12: 9-DOF Razor IMU.

47

To evaluate the performance of the two methods with each other, data were
collected from the IMU and stored in a .txt �le. Both methods were implemented
in the same code in MATLAB, and data were read from the text �le. The
estimation of both algorithms are showed in Figure 13. The �gure shows that
both algorithms estimate the approximate same values for pitch, roll and yaw
angles. The largest di�erence can be spotted during the startup phase, where it
can be observed that the EKF is lagging behind the EQUEST. If the startup is
disregarded, the largest deviation between the two methods was measured to be
less than 10◦. In this test, the EQUEST was implemented without a prediction
term, implicating a higher vulnerability to disturbances.

48

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 13: Attitude estimation using EQUEST and EKF in MATLAB.

49

8.4 Real-time Attitude Estimation EKF and EQUEST Im-
plemented on AVR Microcontroller

To be able to estimate the attitude in space, the EKF and EQUEST must be
implemented on a microcontroller. A microcontroller with at least two commu-
nication ports is necessary. One port for communication between the IMU and
the microcontroller, and the other for communication between the computer
and the microcontroller. For the �nal product, there is no need for communi-
cation with a computer, but the second communication port is still needed for
communicating with the rest of the satellite. Communication was done using
universal asynchronous receiver/transmitter (UART), both with the sensor and
the computer. An ATMEGA2560 microcontroller from Atmel was found to be
appropriate for testing. This microcontroller was connected to a STK600 de-
velopment board. The connections between the microcontroller and all other
external units goes through the development board. The board provides easy
connection to external units using headers, with no need for soldering. Both the
sensor and the computer were connected to the microcontroller the connections
provided by the development board.

A schematic setup of all the connections are given in Figure 14. Note that, in
this test, both methods were implemented on the same microcontroller, but one
at a time. Both methods were able to track the rotation of the sensor displayed
with the 3D cube drawn in MATLAB. However, this gives no foundation to
compare the methods with each other. In order to compare the algorithms,
both methods must run simultaneously or with the exact same data input. For
instance, a sample data must be found by the sensor. Then the sample data
can be used as input for both algorithms.

50

Figure 14: Schematic: Connecting the microcontroller to IMU.

51

8.5 Comparing EKFWith EQUEST Implemented on AVR
Microcontroller

In order to compare the two algorithms, both were implemented on the same
microcontroller. They both ran simultaneously and by extracting data to a
computer, it was possible to compare the performance. The �rst di�erence in
the two algorithms can be observed in the start-up phase. The start-up is showed
in Figure 15. As the �gure indicates, the EQUEST has a fast settling time while
the EKF uses some seconds to identify the correct orientation. However, both
algorithms settles on the same position in the end. EQUEST calculates the �nal
attitude in one iteration. Hence a big jump can be observed between the inital
state and the �rst calculated attitude. Be aware that the EKF and EQUEST
had di�erent initial values, explaining the deviation in roll value at time 0.

It is noteworthy that the Kalman �lter takes so long to �nd the correct yaw
value. This is partial due to the testing being done in Trondheim, Norway. At
this location the normalized magnetic �eld vector has the value

B =
[

0.2631 0.0086 −0.9647
]

(82)

while the normalized gravitational vector in NED is

g =
[

0 0 1
]

(83)

It is easy to see that these two vectors are close to parallel. A rotation around the
down-axis in the NED frame will be hard to identify as neither the magnetic �eld
vector, nor the gravitational vector change signi�cantly in body coordinates.

52

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 15: Start-up phase of the two algorithms.

53

The large time di�erence in identi�cation of the yaw angle indicates that the
two methods should perform quite dissimilar when tracking a rotation around
the down-axis in the NED frame. Testing illustrated in Figure 16 strengthen
this statement. This �gure was taken after both methods had settled, and then
a rotation around the down-axis in the NED frame was performed. As the �gure
clearly shows, EQUEST is able to track the motion far better than the EKF.
The reason for the Kalman �lters fairly slow estimation of the yaw rotation can
be explained mathematically through the rotational matrices. The rotational
matrix for rotations strictly around the down axis can be written as

Rdown =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (84)

Remember that the state update in EKF is given as:

xk+1 = xk +K(zk −
[
Rg>

RB>

]
−
[
Biasa
Biasm

]
) (85)

Here, the state update is a product of the Kalman gain, K, and the deviation
from the measurements tracked by the rotational term. A rotation around
the down axis is described above. Since the gravitational vector is close to
parallel with the magnetic �eld, the rotational term in Equation (85) will now
be described as

Rg> =

 0
0
1

 (86)

RB> ≈

 0
0
−1

 (87)

Clearly, the rotational term fails to identify the rotational angle around the
down-axis due to the magnetic �eld being parallel with the gravitational vector.
As the measurements are B and g, there will be very small deviations from the
measurements to the rotated position.

As Figure 17 indicates, the EKF will be slower than the EQUEST when
tracking a rotation. However, both algorithms will be able to estimate the
attitude. Again, the greatest deviation is observed in the yaw angle, with a
maximum of almost 50◦.

54

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 16: The two methods response to a rotation around the down-axis in the
NED frame.

55

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 17: The two methods response to rotations.

56

8.6 Testing the Prototype

The �rst test of the prototype was a visual test performed by making a drawing
at the computer. The prototype estimates the attitude, and sends the estimated
quaternions to the computer through the USB connection. The quaternions
received by the computer is handled by a small MATLAB program, which plots
a 3D drawing of a cube on the screen in real time. The Figure 18 illustrates the
�rst testing. Note that this test does not assure that the attitude is estimated
correctly, but it gives a �ne indication that the algorithm is able to track the
rotations.

Figure 18: Testing the prototype while plotting the attitude live on a computer.

The second test is done to assure that the estimation methods are able to
calculate the correct attitude. Since both algorithms were implemented on the
same microcontroller, they were also able to run simultaneously. This makes
the prototype testing easier, as one test gives results for both methods. The
�rst test indicated that the prototype was able to track rotations. However, it
does not say much about the accuracy of the estimates. In order to test the
accuracy of the algorithms, the prototype was strapped to an ABB IRB 140
industrial robot. This is a programmable robot arm with 6 degrees of freedom.
The IRB 140 is shown in Figure 19, were all the six joints are numbered.

57

Figure 19: The ABB IRB140 with all the joints numbered. The prototype is
strapped to the robot, marked with the letter P.

Here the prototype is strapped to the robot and marked with the letter P
on the �gure. The robot does not provide an output for the true path followed.
In order to test the accuracy of the algorithms, the robot was programmed to
make one rotation at a time with a given angle. First the entire robot arm was
aligned such that a rotation in joint 5 would perform a pitch rotation for the

58

prototype, and a rotation in joint 6 would perform a roll rotation.
Figure 20 shows the output from the prototype when the robot makes a

90◦ rotation in joint 6, waits for 8 seconds and then rotates back to the initial
position. As the �gure indicates, there is no movement in neither pitch nor yaw
when the robot performs the rotation in joint 6. Also, the �gure suggests that
the EQUEST is slightly faster than the EKF. This has been showed in all the
previous tests, and due to the mathematical properties of the two algorithms it is
reasonable to draw this conclusion. Another advantage of this test, is the robots
ability of providing a constant rotational velocity and smooth movements. By
selecting a fairly low speed, realistic movements for an object �oating in space
can be simulated.

It is very hard to observe the accuracy of the two algorithms from the �gure
below. Figure 21 shows the robot performing a 90◦ rotation in joint 6, before
making a 60◦ rotation in joint 5. The results from the EKF is marked. The
�gure clearly indicates that the EKF is a bit inaccurate in both the roll and
pitch measurements. When the robot performed a 90◦ roll rotation, the EKF
estimated a rotation of 98.5◦. This gives an error of almost 10%. For a 60◦ pitch
rotation, the EKF estimated a total rotation of 71.5◦. This is an overshoot of
11.5◦, with a total error of more than 19%.

Output for the exact same test, only EQUEST values marked, is illustrated
in Figure 22. As can be read out of the �gure, the estimated roll with the
EQUEST method is about 89◦. This gives an error slightly above 1%. For the
pitch maneuver the EQUEST estimated a total de�ection close to 57◦. This
gives an o�set of 3◦, or 5%. These results indicates that the EQUEST algo-
rithm provides quite accurate estimates, while the EKF struggles with a small
overshoot.

The big deviation for the EKF can be caused by several factors. The in-
dustrial robot creates a large local magnetic �eld, disturbing the magnetometer
measurements. This might a�ect the EKF through the tuning parameters. Ide-
ally the EKF is tuned by indentifying the measurement uncertainty and the
model uncertainty. Obviously, the uncertainty of the magnetometer measure-
ment is highly a�ected by the �uctuations in the local magnetic �eld. Hence,
the magnetic disturbance from the robot will directly a�ect the tuning of the
EKF.

59

0 5 10 15 20 25 30 35 40

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 5 10 15 20 25 30 35 40

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 5 10 15 20 25 30 35 40

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 20: The robot performs a maneuver making the prototype roll.

60

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

X: 20.06
Y: −90.18

Time [s]

R
ol

l [
D

eg
]

X: 1.516
Y: 8.319

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

X: 37.09
Y: 66.07

Time [s]

P
itc

h
[D

eg
]

X: 21.28
Y: −5.473

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 21: The prototype output with a rotation in both roll and pitch with the
EKF marked.

61

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

X: 19.46
Y: −90.3

Time [s]

R
ol

l [
D

eg
]

X: 0.908
Y: −1.282

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

X: 34.96
Y: 57.67

Time [s]

P
itc

h
[D

eg
]

X: 20.36
Y: 0.7056

0 10 20 30 40 50

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 22: The prototype output with a rotation in both roll and pitch with the
EQUEST marked.

62

Several rotations among the yaw angle were also performed, with various
results. A yaw rotation is mostly measured by a change in the magnetic �eld.
There is a high concentration of electronic parts in each joint of the test robot,
as well as a high voltage power supply cabin close to the robot. This gives the
local magnetic �eld frequent- and variable �uctuations while the robot is moving.
Hence, it was impossible to conclude from the tests among the yaw angle, and
the results are omitted. The �gures from the tests with the robot indicate
�uctuations as the EKF and the EQUEST estimates di�erent yaw rotations.
As indicated in Figure 23, this problem was not observed during tests with low
magnetic �eld disturbance. These tests are done by rotating the prototype far
away from electronic components. Instead of using the robot to get accurate
rotations, the prototype was rotated by hand. When the prototype is still
the estimated yaw angles are close to equal, as indicated around time t = 60.
However, the EKF has problems tracking fast changes in angles.

One of the properties with the EKF, is the ability to �lter the output. The
linear term in EQUEST provides similar properties, but heavy �ltering will
reduce the accuracy of the estimation. To test the �ltering, the prototype is
exposed to both moderate and heavy shaking. This is also done by hand and
is given in Figures 24 and 25. During shaking, the �ltering properties of the
EKF clearly reveals itself. This is specially observed during heavy shake testing.
The EQUEST algorithm provides acceptable �ltering during moderate shaking.
Unfortunately, the EQUEST is not capable of �ltering too heavy disturbances.

63

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 23: The prototype output with a low magnetic �eld disturbance.

64

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]
EQUEST
EKF

Figure 24: Moderate shaking of the prototype.

65

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 10 20 30 40 50 60

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 25: Heavy shaking of the prototype.

66

8.7 Power Consumption

By using a multimeter, the power consumption of the prototype is easily moni-
tored. The voltage was supplied through the USB connection, providing 5V for
the entire test. During regular use, with the microcontroller running both algo-
rithms, the current was found to be 73mA. This gives a total power consumption
of 363 mW. By letting the controller go into sleep mode and then doing the mea-
surement again, the current went down to 61mA. This means that during eclipse
the power consumption can be reduced from 363mW to 305mW, only by acti-
vating sleep mode on the microcontroller. It should be kept in mind that the
power consumption of the microcontroller increases quadratically with the clock
speed. The sensor will still be running though. According to the datasheet, it
will use an average of 40 mA with the supplied voltage of 3.3V.

Measurements have also been done with the prototype running at 3.3V.
Powering down to 3.3V reduces the current usage to 45 mA during regular
use, and 34 mA while sleeping. However, the ATMEGA 2561 microcontroller,
attached to the prototype, demands voltage of at least 4.5V to operate at 16Mhz.
Hence, there are no guaranty that these results are accurate. By changing the
crystal the speed can be reduced to 8Mhz, resulting in the microcontroller being
able to operate at 3.3V. The CHIMU sensor will draw approximately the same
amount of current at 3.3V as it does on 5V. This means that the total power
consumption will be less at 3.3V for the sensor. The voltage for the sensor
should therefore be 3.3V, and the microcontroller should operate at the lowest
voltage possible while still being able to perform the attitude calculations.

It is impossible to power down the CHIMU sensor used for the prototype.
However, an alternative is to create an electronic switch by changing the proto-
type design. The switch should power down the sensor activated by a control
signal from the microcontroller. It is recommended to consider this option before
the �nal satellite construction.

8.8 Start-up Time

As described in Section 8.7, putting both the microcontroller and the IMU to
sleep may save essential amounts of power. The microcontroller should also be
set to sleep mode during attitude control. When the magnetic actuators are
on, the local magnetic �eld will be disturbed. If attitude is estimated during
this period, the estimations will be inaccurate. Since the microcontroller and
the IMU have to be on for some period and o� for some period of time, it is
important to know their start-up time. The microcontroller wakes up much
faster than the IMU, specially because the microcontroller can be set to sleep
mode instead of turning it o�. The IMU must be shut down since no sleep mode
exists for the IMU. The start-up time for the the IMU is given in datasheet and
is 0.1 sec. Therefore at least 0.1 sec is required before attitude can be estimated.

67

68

9 System Integration

9.1 Integrating with Attitude Control

The attitude control is mainly divided into two parts:

1. Control during detumbling: The CUBESAT will be sent to space using
a rocket containing several other satellites. The satellites are released
into space almost simultaneously using a mechanical device. In order to
avoid collision, the satellites are stacked on top of each other in an unsym-
metrical way. A spin is induced to the satellites movement because of the
mechanical device releasing it. This spin must be damped before the satel-
lite can be controlled to the desired orientation. The control process of the
damping, does not require any knowledge about the absolute orientation,
but only the change in angular velocity and info about the local magnetic
�eld. It means that during detumbling, gyro and magnetometer data can
be directly sent to attitude control instead of estimating the orientation.
Some logic must be implemented in order to send the data from the IMU
directly to the attitude control system. If both attitude estimation and
control are implemented on the same microcontroller, it is easy to send
the data. If the microcontroller is not capable of handling both control
and estimation, they might have to be implemented on two separate con-
trollers introducing some additional logic for the communicate between
them.

2. Control in orbit: To point the satellite toward the Earth, full orientation
must be known. The prototype estimates attitude in NED frame. For
control of the satellite in orbit, it is common to use orbit frame instead
of NED frame. To be able control the satellite correctly the estimated
attitude in NED coordinates must be transferred to orbit frame using
rotation matrices. As it is for the detumbling, it is also important for
control in orbit to be able to switch between estimation and control.

For both estimation and control, the model of magnetic �eld is required. The
NUTS will use an IGRF model in order to get the best possible data about the
magnetic �eld while orbiting [25]. If control and estimation are implemented on
same controller, they can share the same �eld model. If they are implemented
on separate controller, either two magnetic �eld models must be implemented
or some additional communication between the microcontrollers must be intro-
duced.

9.2 Integrating with the Rest of the System

The satellite contains several subsystems, not only the attitude determination
and control. Other required systems are power management, camera, ground
communication and much more. These parts does not require any attitude
sensor data, but may have interest of knowing the estimated orientation. The

69

estimated orientation is important for the camera to be able to take images of
locations of interest or it can be important for analytical reasons. Therefore
communication with the rest of the system must be established. The developed
prototype got two communication lines, one between the microcontroller and
the IMU, and the second between the microcontroller and the computer. The
communication between the microcontroller and the computer is not necessary
for the �nal satellite and can instead be used for communication with the rest of
the system. It is important to communicate both attitute data and subsystem
information through this communication line. If the estimation of the satellite
crashes, it should be possible to detect the error and restart it from another
system.

70

10 Conclusion

10.1 Discussion

Two methods were derived, tested and compared in this project. The QUEST
algorithm has been developed further to EQUEST, to include non-vectorized
measurements in the estimations. An Extended Kalman Filter was �tted for
the CUBESAT project at NTNU, and implemented with a sensor fusion model
instead of a dynamical model of the satellite.

The results given in this paper indicates that both the EKF and the EQUEST
are able to estimate the attitude for a satellite. Through testing, the EKF
proved its abilities of stable tracking of orientation. One of the greatest advan-
tages with the EKF was observed during shake testing. The �ltering e�ect was
able to reduce the noise during shaking, and the EKF still provided a stable
estimation.

In order to compare the two methods, they ran simultaniously with the
same input data. In all tests, the EQUEST tracked the attitude faster than the
EKF. The test done with the ABB robot indicated that EQUEST had better
accuracy than EKF. The EKF had some overshoot, but adjusted to the correct
value with time. The overshoot and inaccuracy in the EKF might have been
caused by poor tuning parameters. The tuning parameters of EQUEST is more
intuitivly chosen compared to those on EKF. Finding good tuning parameters
for the process covariance matrix for EKF is not easy and often many attempts
are required.

The power consumption was weighted during the development of the attitude
determination system. As mentioned earlier, the EKF was 5 times slower than
the EQUEST algorithm. This indicates that the speed of the microcontroller
running EQUEST, could be reduced to 1

5 and still estimate the attitude at
the same time as an EKF running at full speed. Remembering that the power
consumption of the microcontroller has a quadratic relationship with the clock
speed, EQUEST can save signi�cant amounts of power.

Another ability that makes the EQUEST useful with respect to the CUBE-
SAT project is the startup time. As the satellite will be controlled by magne-
tourqers, the local magnetic �eld will be greatly a�ected by the attitude control.
Hence, it is important that the attitude estimation and the attitude control is
strictly seperated. Since the estimated attitude will be inaccurate during con-
trol, the results would be useless. By switching the attitude determination o�,
power can be saved. Therefore a short startup time is preferred.

10.2 Future Work

It is crucial for the attitude estimation of the �nal satellite that the accelerometer
is replaced by a vectorized measurement. This could for instance be a sun
sensor, as described earlier, an Earth sensor or another vectorized measurement.
Replacing the accelerometer will not change the estimation methods, except for
the input reference and the measurement vector. If the sun sensor is chosen,

71

an albedo model should be implemented as well as a Sun reference model. By
following the recommended substitution in Section 4.4, it should be possible to
adapt the estimations.

Some software improvements can be done to the attitude determination.
Rewriting the code from �oating point variables to �xed point variables will save
both memory and computational time and should be done before the satellite
is launched.

Due to ionospheric radiation, the electrical components are vulnerable to
errors. It is very hard to estimate the lifespan of the electronics. Hence, two
attitude determination modules should be considered for implementation in the
�nal �ight module. The modules are small and light weighted and if the space
and weight budget allows it, multiple attitude estimation modules is recom-
mended.

Since attitude estimation is a subsystem of the entire satellite, some of the
improvements requires that other modules are completed. The attitude deter-
mination is partly based on the Earth's magnetic �eld. It is possible to improve
the accuracy of the estimations if one could measure and estimate the local mag-
netic �eld created by all the electronic components within the satellite. This
noise can be measured and feed forwarded to the attitude estimation in order
to subtract it from sensor output.

The sleep mode implemented on the microcontroller, discussed in Section 5,
should be handled from an external module in the satellite. Therefore commu-
nication must be established with other modules in the system.

The developed prototype is powered from the USB connection. Obviously,
this is not possible in the on-board �ight module. Hence a connection providing
power is needed for the �nal module. The �nal circuit board should be designed
and �tted for system integration. Instead of using the IMU selected on the
prototype, the �nal module should be designed with individual sensors �tted
for the application.

72

A IAC 2011 Accepted Abstract

This is the abstract submitted to the International Astronautical Congress 2011.
The abstract was accepted for an 15 minutes oral presentation on the main event
of the congress.

73

��������

�� � ���� �� �	
 ��

��� ����
�� �� �	
 ����
���� ����
����� �� ����

��
 ��� �
�	������� �	�� ���
� ����� �
�
����
�� ��� ���������� ��
�������

��������� �
�	��� ��� ��

 ���
����
� ����� �������� ���� �	

��������� �� ���
 ����� ���� ���� !��"�� ��������
� !��"�� ���
�
���
�
�
��� !��"�� ����
���
�
�

�� �	�� ���
� � �
� �
�	�� ��� �������

��������� 	��

� �
�
�
���
�
��
� �� #���
����� $��������� %#�$��& � ����� ����
��
���	 #�$�� �� �	�� �� ������ 	����
 �����
�����'
� �
����
�
��� ���	
�� ��������
 ���� ��
�������� ������
�
��� 	��

� ���
 �� ���

�
�����'
� ��� �����
�����'
� �
����
�
���� ��(��� �	
 �
� $"�
��
�
#���
����� $��������� %$#�$��& ���
 �����
�
 ��� �������

������
���� �	
 �
�� (���� $"�
��
�)����� *���
� %$)*& �� �
���
� ���
����
�
��
� ��� ���������� +��	 �
�	��� 	��

� �
�
���
� ���
�������
� �� ���,�+ �	
� �	
 ���
� 	��

� �
�����
� ����� - ����
����
 �	
 �
�	��� ��
 ������
�
��	 �	
��
������� ���
"�
���
������
���	 ����
�
������� ��� �
����� �� �� �./ �������������
� �������
���
� ����
 ��� ���

� �� ����	�
��� ��
������� �
�
 ������
�
� ������
�	
 �������
 �
�
����
��

�
����� �������
� �	�� �	
 $)* ������
� � �����	
�
��������� �	��
�	
 �
��� �
�
���
� $#�$�� �� �������� �� $#�$��� �	
 $)* �� �
�

��
������
 �	
 ����
���
�
� ��� ���
�
���
�
�
��� 0��
�
�� �	

$#�$�� �� 	����� � �����1������ ����
� �
������ ���
 ��� �� �
�� ����
���������� ������ -�����
� �� �	
 $)*� $#�$�� ���� ���
 �	�� 2
���
� ����
� �� ���� �
3���
� ���� 45 �� �	
 ����	�
��� ��
������� �� �	

$)* ����	
� �����������
 ���	 �	
 $)* �� ����(��� ���
�
�� �	�� �����
����
 �� $���	6� ����
��� ���
� �� �	
�
 ���������� �	
 ������������� �
��
��� ��� �	
 ����
��� 1
�� �
���� ��
 ������ ������
� 7��	 �
����� ����

�� ������
�� �	
 ���	
������� ����������� �� �	
 $)* ��(
� ����(��� �� �
�������� ������ �$8 ������"��
"��
�
�� ��9���� �	
�
 ��9�����
� ��

	����� �
�
��
� �� �	
 $#�$�� �������	�� �	��	 ��(
� �� �
�� ���������

��� �������

��������� �� �	
 :���� /
�����

�	
 �������
 ������� �� ��

���� �� ���
� ���

� ����
���3�
��� �	��	
���� �;
�� �	
 ����� ����
��� 1
�� 0
��
� ������� ���
��������� �	����
���

 ���
 ��������
������ �
������� �� �	

��������� ��� ������� �����	�
��� �� ��� �; *�� �	�� �
����� �	
 ���� �
������ ���
 �� �	
 $)* ��(
�
�	
 $#�$��
�
� ���
 ���������

�	
 �
����� �� �	�� ���
� �������
 �	�� �	
 �
��� �
�
���
� $#�$��
�� 	��	�� �����
�
 ��� ����
��� ���	
��	
� �����
�
���
�� ����
� �
��	� ��
������������� ���
�

B IAC 2011 Paper

The �nal paper submitted to the IAC2011 congress. This paper is written
in cooperation with Professor Jan Tommy Gravdahl using the style guidelines
provided by IAC.

75

A COMPARISON OF ATTITUDE DETERMINATION METHODS:

THEORY AND EXPERIMENTS

Kristian Lindgård Jenssen

Department of Engineering Cybernetics

Norwegian University of Science and Technology(NTNU)

N-7491 TRONDHEIM, NORWAY

kristian.jenssen@gmail.com

Kaan Huseby Yabar∗, Jan Tommy Gravdahl†

Abstract

In this paper two attitude determination methods are derived, implemented and compared. The QUater-
nion ESTimator (QUEST) algorithm is extended to include non-vectorized measurements, whereas the well
known Extended Kalman Filter has been implemented for performance comparison. The methods have
been developed for the Norwegian University Test Satellite (NUTS), as a part of the CubeSat project at
the Norwegian University of Science and Technology (NTNU). Due to the speci�cations of CubeSats, both
methods are customized for satellites with limited weight-, size- or �nancial budgets. The attitude estimation
is based on two vectorized measurements and data from a gyroscope. Both methods have been developed
and simulated in MATLAB. The code have been rewritten using C language. The methods are compared
both theoretically and experimentally with implementation and testing on an AVR microcontroller.

Testing indicates that the EKF provides a smoother estimation than the newly developed EQUEST. In
contrast to EQUEST, the EKF is able to estimate sensor biases. However, the EQUEST has signi�cantly
faster settling time and is less computational costly. Compared to the EKF, EQUEST runs more than 5
times faster. It also requires only 8% of the arithmetic operations of the EKF. Another disadvantage with
the EKF is tracking problems that occur when the two vectorized measurements are close to parallel. With
vectors close to parallel, the mathematical formulation of the EKF makes tracking of a rotation around the
parallel axis extremely di�cult. These di�culties are hardly observed in the EQUEST algorithm, which
makes it very attractive for attitude estimation.

For small satellites the magnetic �eld of the Earth is often used for attitude determination. A substantial
number of these satellites use magnetorquers for attitude control, a�ecting the local magnetic �eld. Hence,
control and estimation should not be done simultaneously, resulting in the estimation and control switching
on and o�. For this reason, the long settling time of the EKF makes the EQUEST even more attractive.

1. BACKGROUND

Attitude determination is an important subsystem in
satellites of all sizes. Knowledge of the satellites ori-
entation is crucial to perform space missions such as
nadir pointing control. Two common methods to esti-
mate the orientation are the Kalman Filter (KF) and
the Quaternion Estimator (QUEST) [1][2][3]. The
KF tries to fuse system dynamics, input data and
sensor measurements to estimate the best possible

attitude, whereas the QUEST calculates the attitude
by minimizing a cost function relating sensor mea-
surements with known references.

The equipment used for estimating the attitude
vary with price, power consumption and physical size.
The attitude estimation systems in this paper are
based on both the QUEST and the KF, designed es-
pecially for CubeSats [4]. A CubeSat is a picosatellite
where the dimensions of the cube has been standard-
ized to 10×10×10 cm, with a weight limited to 1.3

∗Department of Engineering Cybernetics - NTNU, Norway, kayabar@gmail.com
†Department of Engineering Cybernetics - NTNU, Norway, jan.tommy.gravdahl@itk.ntnu.no

Preprint submitted to Elsevier May 24, 2011

kg. NTNU takes part in a student CubeSat project,
designing a double cube - NUTS [5]. As the name in-
dicates, a double cube is 10×10×20 cm, with a weight
limited to 2.6 kg. The NUTS (NTNU Test Satellite)
project was started in September 2010. The project is
part of the Norwegian student satellite program run
by NAROM (Norwegian Centre for Space-related Ed-
ucation). The projects goal is to design, manufacture
and launch a double CubeSat by 2014. As main pay-
load an IR-camera is planned, as well as a short-range
RF experiment. The satellite will �y two transceivers
in the amateur radio bands. Ten students were in-
volved in the project �rst half of 2011.

Two satellites have been developed at NTNU
earlier, each containing attitude estimation [6] .
Svartveit [7] estimated the attitude by using a dis-
crete Kalman �lter based on measurements from
magnetometer and sun sensor. The solar panels were
used as a crude sun sensor. The experiment Svartveit
did, indicated that the sun sensor seems to be inac-
curate mainly due to the Earths albedo e�ect. Ose
[8] made further work in order to implement the ex-
tended Kalman �lter (EKF) in MATLAB. Due to
the complexity of the EKF, only a linearized ver-
sion was implemented on a microcontroller. With
respect to all the challenges the previous NTNU stu-
dents unveiled, this paper base the attitude determi-
nation system on a di�erent approach. The estima-
tion is based on two vectorized measurements as well
as data from a gyroscope. Sabatini [9] developed an
extended Kalman �lter based on accelerometer, gy-
roscope and magnetometer, for use in biomedical en-
gineering. The extended Kalman �lter developed in
this project is adapted from the work done by Saba-
tini to �t the satellite.

Attitude can also be estimated using quaternion
estimation (QUEST). Markley [3] describes how two
vectorized measurements can be used to estimate ori-
entation. However, the method can only be used for
vectorized measurements, which makes the gyroscope
unsuited. Psiaki [1] has extended the QUEST in or-
der to handle an arbitrary dynamic model and to es-
timate errors such as rate-gyro biases. The extended
QUEST (EQUEST) developed in this paper, is based
on the work done by Psiaki and Markley, with focus
on integrating the nonvectorized gyroscope measure-
ments.

2. THEORY

2.1. Coordinate Frames

The following frames have been used to describe
the attitude of the satellite

BODY: This frame is attached to the satellite. In
the BODY frame the axes coincide with the principle
axes of inertia, and the positive z-axis is de�ned as
the vector pointing outwards from the quadratic side
of the satellite. The x- and y-axis are orthogonal to
the rectangular sides of the cube.

NED: North-East-Down (NED) is an intertial
frame de�ned relative to Earth's surface with the x-
axis pointing towards north, z-axis downwards per-
pendicular to Earth's reference ellipsoid. The y-axis
completes a right handed orthogonal coordinate sys-
tem, with the positive y-axis pointing towards East.
Earth's reference ellipsoid is a mathematically de-
�ned surface �tted to approximate the shape of the
Earth.

2.2. Rotation Matrix

A rotation matrix R is used to describe a rota-
tion between two coordinate frames. It is common to
describe the rotation from one frame to another as
three di�erent rotations. First a rotation ψ around
the z-axis, then a rotation θ around the rotated y-
axis and �nally a new rotation φ around the current
x-axis. The entire rotation from frame �a� to frame
�b�, is described as

R
a
b = Rz(ψ)Ry(θ)Rx(φ) [2.1]

The rotation matrix can be represented using quater-
nions [10]

R(q) = (q
2
4 − ‖q13‖

2
)I3×3 + 2q13q

>
13 − 2q4[q13×] [2.2]

A rotation matrix has the following properties

det(R) = 1 [2.3]

R
>

= R
−1 [2.4]

A vector in NED frame kn can be written in BODY
frame kb using rotation matrix as given below

k
b

= R
b
nk

n [2.5]

2.3. Extended Kalman Filter (EKF)

The Kalman �lter is only applicable for linear sys-
tems. However, it is possible to extend the �lter to
also deal with nonlinear problems, but the �lter will
then lose some of its properties. The EKF is adapted
for nonlinear problems through a linearization of the
nonlinear equations for each iteration. Due to the
linearization, the EKF is not necessarily optimal and

2

can diverge if initial errors are too large or if the
system model is inaccurate. The EKF is an itera-
tive method where the estimates are based on several
measurements, as well as a process model.

De�ning the discrete nonlinear system as

xk = f(xk−1, uk−1) + wk−1 [2.6]

zk = h(xk) + vk [2.7]

where x is state vector, f(.) describes the system dy-
namics, u is control input, w is process noise, h is
the measurment model and v is measurement noise.
Both measurement and process noise are assumed to
be zero mean Gaussian. The subscript k denotes dis-
crete time. Using the system described above, the
equations for the extended Kalman �lter can be writ-
ten as [11]

Predict:

x̂
−
k = f(x̂k−1, uk−1) [2.8]

P
−
k = FkPkF

T
k +Qkal [2.9]

Update:

Kk = P
−
k H

>
k (HkP

−
k H

>
k + Rkal)

−1 [2.10]

x̂k = x̂
−
k +Kk(zk −Hkx̂−k) [2.11]

Pk = (I −KkHk)P
−
k [2.12]

where x̂ denotes estimated state vector, P is error co-
variance matrix, K is calculated Kalman gain and

Fk =
∂f

∂x

∣∣∣∣
x̂k−1,u

[2.13]

is the derivative of the nonlinear system with respect
to the states, and

Hk =
∂h

∂x

∣∣∣∣
x̂k−1

[2.14]

is the derivative of the measurement equations with
respect to the states.

As these equations show, the nonlinear model is
still used in predicting the new states, whereas a lin-
earized model is used for comparing the measure-
ments with the current states in the update phase and
for computing the covariance matrix and the Kalman
gain. Rkal is the measurement covariance matrix, and
Qkal is the process covariance.

2.4. Quaternion Estimation

Another method for estimation of the rotation
matrix based on the sensor measurements is the
QUaternion ESTimator (QUEST) [1]. QUEST will
minimize the cost function de�ned as

J(q) =
1

2

n∑

j=1

1

σ2
j

(bj − Rib(q)rj)
>

(bj − Rib(q)rj)

=
1

2

n∑

j=1

1

σ2
j

(b
T
j bj − 2b

>
j R

i
b(q)rj + r

>
j rj) [2.15]

where rj are known unit vectors in the NED frame,
and bj are unit vectors of the measured observations
in the body-�xed frame. σj are the standard devia-
tion of the measurement error. However, both rj and
bj are unit vectors, and this reduces the equation to

J(q) =

n∑

j=1

1

σ2
j

(1− b>j R
i
b(q)rj) [2.16]

Minimizing J is equivalent to maximizing

JQUEST (q) =

n∑

j=1

1

σ2
j

b
>
j R

i
b(q)rj [2.17]

The QUEST does not depend on initial conditions,
which is a great advantage. Another advantage is
that the algorithm can be solved exactly by solving
an eigenvalue problem. However, the QUEST algo-
rithm can only estimate the attitude quaternions.

2.5. Attitude Estimation Using Extended Kalman Filter

The theory of the EKF was explained in Section
2.3. There are several ways to con�gure the EKF
for attitude estimation based on vectorized measure-
ments and a gyroscope. Here, the state vector was
chosen to consist of the quaternions q and the biases
from both vectorized measurements bv1 and bv2. The
state vector x is given below

x =




q

bv1

bv2




where

q =
[
q1 q2 q3 q4

]>

3

bv1 =
[
bv1,x bv1,y bv1,z

]>

bv2 =
[
bv2,x bv2,y bv2,z

]>

The great advantage of estimating the biases of the
two vectorized measurements is that the EKF will
subtract them from the measurements during the
next iteration. This will increase the precision of the
measurements and give a more accurate attitude es-
timate. Since all the measurements are done in the
BODY frame and the reference model is given in the
NED frame, the sensor model includes a rotational
matrix dependent on the unit quaternions. The ro-
tational matrix introduce a non-linearity in the mea-
surement matrix. The measurement model z is given
by the two vectorized measurements as

z =


 v

b
1

vb2


 [2.18]

where

v
b
1 = R

b
n(q)v

n
1,real + b

b
v1 [2.19]

v
b
2 = R

b
n(q)v

n
2,real + b

b
v2 [2.20]

In order to include angular velocity as a state,
a dynamical model of the satellite can be used. An
alternative is to use the measurements from the gyro-
scope to estimate the dynamical model for the quater-
nions. The kinematic di�erential equation for unit
quaternions can be written as [9]

q̇ =
1

2


 ω× ω

−ω> 0


 q [2.21]

where

ω× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 [2.22]

with

ω =
[
ω1 ω2 ω3

]>

being the angular velocity measured in the body
frame. Further, constant bias can be assumed from
the two vectorized measurements:

ḃv1 = 0 [2.23]

ḃv2 = 0 [2.24]

The di�erential equation for the entire system is
therefore [9]

ẋ =




q̇

ḃv1

ḃv2




=




1
2


 ω× ω

−ω> 0


 0 0

0 0 0

0 0 0







q

bv1

bv2


 [2.25]

Note that the system equation is linear, making the
computation of the EKF less complicated. However,
an EKF is still necessary due to the nonlinearity in
the measurement model.

The system in Equation (2.25), is given in contin-
uous time. For computer implementation, discretiza-
tion is required. The system is discretized using zero-
order hold with sampling time Ts. The discrete sys-
tem will be given as

xk+1 =




z 0 0

0 I3x3 0

0 0 I3x3


 xk [2.26]

where

z = expm


 1

2


 ω× ω

−ω> 0


Ts


 [2.27]

with expm being the matrix exponential.

Note that the angular velocity is not a part of the
measurement vector, nor the state vector. As men-
tioned earlier, the measurements from the gyroscope
will be indirectly integrated in the EKF through the
dynamical model of the quaternions.

The vectors explained above are used in the equa-
tions in Section 2.3 to iteratively compute the atti-
tude of the satellite.

4

2.6. Extended Quaternion Estimator

As mentioned in Section 2.4, the QUEST algo-
rithm is not able to utilize the measurements from
the gyroscope. However, it is possible to extend
the QUEST and implement an Extended QUaternion
ESTimator (EQUEST) in order to include the gy-
roscope measurements. The main idea behind the
EQUEST is to modify the cost function. This is
done by adding another term, containing the gyro-
scope measurements.

By tracking the rotation based on gyroscope mea-
surements, it is possible to penalize aberrations from
the rotation matrix estimated by the gyroscope alone.

Jgyro(q) =
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.28]

here q̂gyro is the estimated attitude quaternion based
on gyroscope tracking, and D is a diagonal weighting
matrix. The main idea by using the term q − q̂gyro is
to minimize the cost function. Note that the subtrac-
tion will not result in an attitude quaternion.

The EQUEST can be expanded further by adding
a prediction term. The prediction is most suitable for
applications where it is possible to forecast upcoming
orientation based on previous behavior. It can also
be used to �lter out noise. The slow and predictable
change of attitude for the satellite makes it possible to
use previous attitude calculations to estimate future
orientation. For a short period of time, the attitude
change will be minimal. However, as several attitude
calculations are done in this period it is possible to
establish a linear relation between time and change
of attitude. This is illustrated in Figure 2.1. A de-
viation from the predicted term can be penalized in
the cost function by adding the following term

Jpre(q) =
1

2
(q − q̂pre)>S(q − q̂pre) [2.29]

where q vector contains attitude quaternions, q̂pre is
the predicted attitude based on previous observa-
tions, S is state weight matrix.

Figure 2.1: Linear prediction based on past orientations. Note

that the motion is exaggerated for illustrational purposes.

Extending Equation (2.17) with the two terms de-
scribed in (2.28) and (2.29) gives

JEQUEST = JQUEST + Jgyro + Jpre

=
1

2

n∑

j=1

{
1

σ2
j

(bj − Rib(q)rj)
>

(bj − Rib(q)rj)
}

+
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.30]

+
1

2
(q − q̂pre)>S(q − q̂pre)

subject to

q
>
q = 1 [2.31]

It is possible to rewrite both extensions to quadratic
terms. By writing the entire equation in quadratic
form, the cost function can be minimized using well-
known optimization techniques[12].

Note that the EQUEST is still not able to esti-
mate the biases. It is possible to estimate the biases
using other methods, and then subtract them from
the measurements used in EQUEST. Due to compu-
tational costs, this is not considered here.

2.7. Solving the Extended Quaternion Estimator

One option for solving the minimization problem
given in (2.30) and (2.31) is to use the Lagrangian
multiplier method. However, the cost function has to
be written on the special form

J(x) =
1

2
x
>
Gx+ x

>
c [2.32]

where G is a positive de�nite matrix and c is constant
with respect to x. The original QUEST criterion in
(2.15) can be posed in the quadratic form [3]

g(q) = −q>V q [2.33]

5

where V is a symmetric matrix given by

V =


U − ϕI3×3 Z

Z> ϕ


 [2.34]

with

U = L+ L
> [2.35]

L =
n∑

j=1

1

σ2
j

(bjr
>
j) [2.36]

Z =




L23 − L32

L31 − L13

L12 − L21


 [2.37]

ϕ = trace(L) [2.38]

The gyroscope tracking needs to be written in the
same quadratic form in order to solve EQUEST with
Lagrangian multipliers:

Jgyro(q) =
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.39]

=
1

2
(q
>
Dq − q>Dq̂gyro

−q̂>gyroDq + q̂
>
gyroDq̂gyro). [2.40]

Since

(q̂
>
gyroDq)

>
= q̂
>
gyroDq = q

>
Dq̂gyro [2.41]

we can rewrite (2.39) as

Jgyro(q) =
1

2
(q
>
Dq − 2q

>
Dq̂gyro + q̂

>
gyroDq̂gyro) [2.42]

Further, the term q̂TgyroDq̂gyro will be constant with
respect to q. This term will not a�ect the minimiza-
tion problem, hence it can be removed. Now the gy-
roscope part of the cost function can be written in
quadratic form as

Jgyro(q) =
1

2
q
>
Dq − q>Dq̂gyro [2.43]

Exactly the same as above can be done to write the
prediction term in quadratic form

Jpre(q) =
1

2
q
>
Sq − q>Sq̂pre [2.44]

By adding (2.43) and (2.44) with (2.33), the entire
EQUEST can be written in quadratic form as:

JEQUEST (q) =
1

2
q
>

(D + S − V)q

+q
>

(−Dq̂gyro − Sq̂pre) [2.45]

Introducing new variables

κ = D + S − V [2.46]

ξ = −Dq̂gyro − Sq̂pre [2.47]

the problem will be to minimize

JEQUEST (q) =
1

2
q
>
κq + q

>
ξ [2.48]

subject to

q
>
q = 1 [2.49]

The Lagrangian equation is now given as

L =
1

2
q
>
κq + q

>
ξ +

λ

2
(q
>
q − 1) [2.50]

The q that minimizes (2.48) is found as

dL
dq

= κq + ξ + λIq = 0 [2.51]

q = −(κ+ λI)
−1
ξ. [2.52]

By combining (2.49) and (2.52), the constraint can
be written as

ξ
>

(κ+ λI)
−2
ξ = 1 [2.53]

The largest positive real λ will give the global mini-
mum for Equation (2.48)[1]. Further κ is a symmetric
matrix, hence it can be decomposed as

κ = M




−λ1 0 0 0

0 −λ2 0 0

0 0 −λ3 0

0 0 0 −λ4



M
> [2.54]

where λi are the eigenvalues of κ, and M is an orthog-
onal eigenvector matrix. By introducing

c =




c1

c2

c3

c4




= M
>
ξ ⇔ ξ

>
= c
>
M
>
, [2.55]

(2.53) can be written as

c
>
M
>





M




−λ1 0 0 0

0 −λ2 0 0

0 0 −λ3 0

0 0 0 −λ4



M
>

+




λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ








−2

Mc− 1 = 0 [2.56]

6

Since the diagonal matrix will a�ect the eigenvalues,
and the inverse of an orthogonal matrix is the trans-
posed of the orthogonal matrix, this can be simpli�ed
to

c
>
M
>

Υ
−2
Mc− 1 = 0 [2.57]

where

Υ = M




λ− λ1 0 0 0

0 λ− λ2 0 0

0 0 λ− λ3 0

0 0 0 λ− λ4



M
> [2.58]

Now since M is orthogonal, M>M = I. Further, the
inverse of a diagonal matrix can be computed element
by element. Equation (2.57) can now be written as

c
>




1
(λ−λ1)2

0 0 0

0 1
(λ−λ2)2

0 0

0 0 1
(λ−λ3)2

0

0 0 0 1
(λ−λ4)2



c− 1 = 0 [2.59]

or

c21
(λ− λ1)2

+
c22

(λ− λ2)2
+

c23
(λ− λ3)2

+
c24

(λ− λ4)2
− 1 = 0 [2.60]

The optimal λ (λopt) will be larger than the smallest
eigenvalue[1]. After λopt is identi�ed, it can be sub-
stituted back into Equation (2.52) to �nd the q that
minimizes the cost function.

In contrast to EKF, EQUEST is not able to esti-
mate the sensor biases. The state vector is therefore
chosen to be the quaternion

x = q =




q1

q2

q3

q4




[2.61]

Equation (2.21) is used to estimate the q̂gyro term
in EQUEST. We propose to calculate the q̂pre term by
using simple linear regression with a window size of
10 samples. The next quaternion vector is predicted
by using the 10 latest samples, and �tting them to
an equation for a line

y(t) = b0t+ b1 [2.62]

b0 will represent the slope of the line, while b1 is the
measured value at t = 0. With n observations, b0 and
b1 can be found by solving the following formulas [14]

b0 =

n
n∑
i=1

y(ti)ti −
n∑
i=1

ti
n∑
i=1

y(ti)

n
n∑
i=1

(t2i)−
(

n∑
i=1

ti

)2
[2.63]

b1 =

n∑
i=1

y(ti)
n∑
i=1

t2i −
n∑
i=1

ti
n∑
i=1

tiy(ti)

n
n∑
i=1

t2i −
(

n∑
i=1

ti

)2
[2.64]

The next q̂pre is estimated using the linear relation
found with the last 10 samples using the values b0

and b1 as slope parameters. Note that the predic-
tion term does not have to be linear. It should be
adapted for the rest of the system. In case of less
strict restrictions on calculations power or time, the
prediction term might even be an EKF.

3. IMPLEMENTATION

3.1. Microcontroller

In order to test the estimation methods, both
EKF and EQUEST were implemented in MATLAB.
Both methods were later implemented on microcon-
trollers. During testing, an 8-bit microcontroller from
Atmel was used. In addition to the estimation meth-
ods, several important functions were con�gured. A
watchdog timer was implemented to reset the micro-
controller in case the software run into an endless
loop. Sleep mode for the microcontroller were also
con�gured. The satellite does not have to estimate
the attitude all the time. When no attitude data is
required, activating the sleep mode can save consid-
erable amount of power.

3.2. Implementing the Kalman Filter in C

In order to implement the extended Kalman �l-
ter on the microcontroller, it was written using C
language. This introduces some di�culties, as sev-
eral mathematical operations are not supported in
C. First of all, C does not support matrix multiplica-
tion which is an essential part of the Kalman �ltering.
Secondly the matrix inverse operation does not exist.
The third challenge is to �nd the transpose of a ma-
trix. Since the module should be used on-board a
satellite, the memory usage should be as optimal as
possible. Hence, it is not desirable to implement an
entire math library in order to perform the matrix op-
erations. Therefore only the necessary methods have
been implemented on the microcontroller.

C supports two-dimensional arrays which looks
very similar to a matrix. Using double arrays makes
the code more complex. Therefore, matrices were
transformed into one dimensional arrays before im-
plementation. An example is given below.




0 1 2

3 4 5

6 7 8


⇒

[
0 1 2 3 4 5 6 7 8

]

7

Using 3 for-loops, matrix multiplication can be im-
plemented. For each iteration in the Kalman �lter,
two matrices must be transposed. These matrices
have dimensions 10 × 10 and 6 × 10, and can easily be
transposed using two for-loops.

Computing the inverse of a matrix is only possible
if the matrix is positive-de�nite. The matrix which
is to be inverted in the Kalman �lter has properties
making it always invertible. It is a 6×6 symmetric ma-
trix, meaning it is Hermetian, and since every eigen-
value in Hermetian matrices is positive, the matrix
is positive de�nite. An e�cient way to compute the
inverse of a matrix is by performing an LU decompo-
sition. The algorithm for inverse operation using LU
decomposition can be found in [15]. The code in this
book is optimized for personal computers implying
minor changes to adapt it for a microcontroller.

3.3. Implementing the EQUEST in C

The EQUEST was also written using C language.
Two challenges arise when the code is rewritten from
MATLAB to C: one matrix inversion and one eigen-
value problem. However, it is only a matrix inverse
of size 4-by-4. Since the matrix is so small, it is
more e�cient to invert it using the adjoint method
than the LU decomposition. For larger matrices, the
adjoint method tends to be computational costly as
the number of operations increase as O(n!). To solve
the EQUEST, it is necessary to identify the smallest
eigenvalue and all eigenvectors of a symmetric 4-by-
4 matrix. This is done by implementing the cyclic
Jacobi method which returns all eigenvalues and the
corresponding eigenvectors of the input matrix [16].

4. RESULTS AND SIMULATIONS

4.1. Extended Kalman Filter

The performance of the algorithms have been
evaluated both in expended run time and number
of arithmetic operations. The expended run time is
found by setting a �ag at the start of each cycle,
and then resetting the �ag after the execution. The
run time of the EKF is about 200 milliseconds. By
introducing a global counter in the algorithm, it is
possible to detect how many arithmetic operations
each cycle executes. The linearization contains quite
a large amount of numerical operations. On average
EKF required about 40 000 operations.

4.2. Extended Quaternion Estimation

Compared to the EKF, the EQUEST requires less
matrix multiplications, and only a 4-by-4 matrix in-
version. However, the eigenvalues and eigenvectors
of a 4-by-4 matrix must be found. The EQUEST

algorithm, does not require any linearization. The
number of arithmetic operations for the EQUEST
was found to be about 3200, which is only 8% of
the EKF's operations. The run time for EQUEST is
about 40ms. This means that EQUEST is approxi-
mately 5 times faster than the EKF. The linear pre-
diction term will have a low-pass �ltering e�ect, as
high frequent changes in position will be suppressed.
This is illustrated in Figure 4.1. The �gure clearly
indicates that the EQUEST with linear prediction is
much smoother than without prediction.

Figure 4.1: EQUEST with and without linear prediction

4.3. Experimental Comparison of the Two Methods

Hardware con�guration

For testing purposes, a prototype was designed.
The prototype was based on an CHIMU Micro AHRS
IMU consisting of a three-axes accelerometer, magne-
tometer and gyroscope. The accelerometer can not
be used onboard the satellite. However, due to test
simplicity it was chosen as one of the vectorized mea-
surements for the prototype. Data from the IMU
is sent to an AVR ATMEGA2561 microcontroller,
where both attitude estimation methods are imple-
mented. A picture of the prototype is given in Figure
4.2.

8

Figure 4.2: Designed prototype

The following experiments are done using the pro-
totype running both methods simultaniously. The
estimated attitude from the prototype were contin-
iously sent to the computer for plotting through serial
communication.

Tracking

To compare the performance of the newly de-
veloped EQUEST with the well-known EKF, both
methods were implemented on the same microcon-
troller. They had the same input data and ran simul-
taneously sending the estimated attitude to a com-
puter. Figure 4.3 indicates that both methods are
able to track arbitrary rotations. The �gure shows
that the estimated orientation is almost identical for
both EKF and EQUEST. However, it can be ob-
served that the EQUEST has faster tracking than the
EKF. EQUEST and EKF solve the attitude problem
in quite di�erent ways. Whereas EQUEST solves the
problem in one iteration, the EKF iteratively calcu-
lates the solution. Hence, the EQUEST provides a
faster estimation for quick orientational changes.

0 5 10 15 20 25 30 35

−100

0

100

Time [s]

R
ol

l [
D

eg
]

0 5 10 15 20 25 30 35

−100

0

100

Time [s]

P
itc

h
[D

eg
]

0 5 10 15 20 25 30 35

−100

0

100

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 4.3: EKF vs EQUEST.

Start-up

One of the greatest di�erences between EKF and
EQUEST is observed during the start-up phase. The
EKF uses many iterations to converge towards the
correct attitude. For each iteration, the EKF will
improve the estimated orientation. The number of
iterations used by the EKF will be dependent on its
tuning parameters. In addition the start-up phase of
the EKF will be greatly in�uenced by the dissipation
of the vectorized measurements. Perpendicular mea-
surement vectors will give the fastest start-up phase.
However, the EQUEST will solve an eigenvalue prob-
lem to achieve the correct attitude in one iteration.
An example of the initial start-up is showed in Figure
4.4. The �gure clearly indicates the start-up di�er-
ences of the methods.

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 4.4: Start-up phase of the two algorithms.

9

Parallel input vectors

The performance of both methods are strictly de-
pendent on the two directional vectors. For optimal
results, the vectors should be close to perpendicular.
However, in some cases the two vectorized measure-
ments may be close to parallel. This is observed in
Figure 4.5, where an accelerometer and a magnetome-
ter were used as vectorized measurements for testing.
The normalized acceleration measured in NED coor-
dinates is

g =




0

0

1


 [4.1]

and the normalized magnetic �eld vector in Trond-
heim, Norway is

B =




0.2631

0.0086

0.9647


 [4.2]

with the Down-axis being the dominating value.
Both vectors are now close to parallel with the down
axis. Performing a rotation around this axis, will
cause problems for the EKF due to the mathemati-
cal formulation. The rotational matrix for rotations
around the down axis can be written as

Rdown =




cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


 [4.3]

Remember that the state update in EKF is given as

xk+1 = xk +K(zk −


 Rg

>

RB>


−


 bv1
bv2


) [4.4]

Here, the state update is a product of the Kalman
gain, K, and the deviation from the measurements
tracked by the rotational term. A rotation around
the down axis is described above. Since the gravi-
tational vector is close to parallel with the magnetic
�eld, the rotational term in Equation (4.4) will now
be described as

Rg
>

=




0

0

1


 [4.5]

RB
> ≈




0

0

−1


 [4.6]

clearly, the rotational term fails to identify the ro-
tational angle around the down-axis due to the mag-
netic �eld being almost parallel with the gravitational

vector. As the measurements are B and g, there will
be very small deviations from the measurements to
the rotated position.

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16

−100

0

100

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

Figure 4.5: The two methods response to a rotation around

the down-axis in the NED frame.

5. CONCLUSION

In this paper, two methods were derived, tested
and compared. The QUEST algorithm has been
developed further to EQUEST, to include non-
vectorized measurements in the estimations. An Ex-
tended Kalman Filter was �tted for the CubeSat
project at NTNU, and implemented with a sensor fu-
sion model instead of a dynamical model of the satel-
lite.

Testing indicates that both methods are able to
estimate the orientation using a single microcon-
troller. The methods were compared theoretically
and experimently. In contrast to EKF, the EQUEST
is unable to estimate the sensor biases. However, the
EQUEST uses only 8% of the arithmetical operations
required by the EKF. The runtime of the EQUEST
was measured to be more than 5 times faster than
the EKF.

NUTS will most likely be designed with a magne-
tometer as one of the vectorized measurements. As
the satellite will be controlled by magnetourqers, the
local magnetic �eld will be greatly a�ected by the
attitude control. Hence, it is important to seper-
ate the attitude estimation and the attitude control.
This is done through a turn-based switching between
estimation and control. This implies that a short
start-up phase for the estimation is preferred. As
the EQUEST solves the attitude problem in one it-
eration, it is more attractive for satellites using this
technique than the iterative EKF.

[1] Psiaki,M.L., "Attitude-Determination Filter-
ing via Extended Quaternion Estimation",
Journal of Guidance, Control and Dynamics,
Vol.23, No.2, March-April 2000.

[2] Cheng,Y. and Shuster,M.D, "Robustness and
Accuracy of the Quest Algorithm", presented
as paper AAS 07-102, 17th AAS/AIAA Space
Flight Mechanics Meeting, Sedona, Arizona,
January 28 - February 2, 2007.

[3] Markley,L.F. and Mortari,D., "Quaternion At-
titude Estimation Using Vector Observations",
The Journal of the Astronautical Sciences,
Vol.48, April-September 2000.

[4] CubeSat Design Speci�cation Rev. 12, The
CubeSat Program, Cal Poly SLO, Retrieved
May 2011.

[5] NTNU Test Satellite, Retrieved May 2011,
http://nuts.iet.ntnu.no

[6] Gravdahl,J.T., Skavhaug,A., Svartveit,K.,
Fauske.K.M. and Indergaard,F.M. "Three axis
Attitude Determination and Control System
for a picosatellite: Design and implementa-
tion", presented as paper IAC-03-A.5.07, IAC
2003.

[7] Svartveit,K., "Attitude determination of the
NCUBE satellite", Master Thesis, Department
of Engineering Cybernetics, June 2003.

[8] Ose, S.S., " Attitude determination for the Nor-
wegian student satellite nCube", Master The-
sis, Department of Engineering Cybernetics,
June 2004.

[9] Sabatini,A.M., "Quaternion-Based Extended
Kalman Filter for Determining Orientation by

Inertial and Magnetic Sensing", IEEE Transac-
tion on Biomedical Engineering, Vol.53, No. 7,
July 2006.

[10] Crassidis,J.L., Markley,F.L., and Cheng,Y.,
"Survey of Nonlinear Attitude Estimation
Methods", Journal of Guidance, Control, and
Dynamics, Vol.30, No.1, January-February
2007.

[11] Ribeiro,M.I., "Kalman and Extended Kalman
Filters: Concept, Derivation and Properties",
Institute for Systems and Robotics, Lisboa,
Portugal, February 2004.

[12] Nocedal,J. and Wright,S.J. "Numerical Opti-
mization", Springer Series in Operations Re-
search, 1999.

[13] Crassidis, Crassidis,J.L. and Markley,F.L.,
"Attitude Estimation Using Modi�ed Ro-
drigues Parameters", Proceedings of the
Flight Mechanics/Esitmation Theory Sympo-
sium, Cp-1996-3333, NASA Goddard Space
Flight Center, Greenbelt, MD, 1996.

[14] Weisstein,E.W., "Least Squares Fitting", From
MathWorld-A Wolfram Web Resource. math-
world.wolfram.com/LeastSquaresFitting.html

[15] Press,W.H., Teukolsky,S.A., Vetterling,W.T.
and Flannery,B.P., "Numerical Recipes in C
- The Art of Scienti�c Computation", Second
Edition, Cambridge University Press, pp. 43-
49, 1992.

[16] Jacobi,C.G.J., "Über ein leichtes Verfahren, die
in der Theorie der Säkularstörungen vorkom-
menden Gleichungen numerisch aufzulösen",
Crelle's Journal 30, pp. 51-94, 1846.

C ANSAT Workshop 2011

The NUTS project were presented on the ANSAT Workshop at Andøya Rock-
etrange in May 2011. Here follows the presentation, held by us, regarding the
attitude determination system of the student satellite.

87

Attitude Determination
ANSAT Workshop 2011

Kristian L. Jenssen & Kaan H. Yabar
Andøya Rocketrange

19.05.2011

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

2

Importance of Attitude Estimation

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

3

Principle Attitude Determination
— Attitude can be determined using two vectorized

measurements
— Sensors:

• Sun sensor
• Magnetometer
• Gyro
• Earth horizon sensor
• Star sensor

— Estimation methods:

• Kalman Filter (KF)
• Quaternion Estimator (QUEST)

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

4

Extended Kalman Filter (EKF)

— Nonlinear model
— Sensor fusioning
— Model prediction using gyroscope

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

5

QUEST

J(q) =
1

2

n∑

j=1

⎧
⎨
⎩

1

σ2
j

(bj − Ri
b(q)rj)

�(bj − Ri
b(q)rj)

⎫
⎬
⎭

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

6

Extending with Gyroscope

J(q) =
1

2

n∑

j=1

⎧
⎨
⎩

1

σ2
j

(bj − Ri
b(q)rj)

�(bj − Ri
b(q)rj)

⎫
⎬
⎭ +

1

2
(q − qgyro)

�D(q − qgyro)

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

7

Extending with Linear Prediction

J(q) =
1

2

n∑

j=1

⎧
⎨
⎩

1

σ2
j

(bj − Ri
b(q)rj)

�(bj − Ri
b(q)rj)

⎫
⎬
⎭ +

1

2
(q − qgyro)

�D(q − qgyro) +
1

2
(q − q̂pre)

�S(q − q̂pre)

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

8

Implementation

— Implementation
of ADCS

• Matrix
operations

• Runtime
• Power con-

sumption

— Prototype

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

9

EKF vs EQUEST

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 5 10 15 20

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

R
ol

l [
D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

P
itc

h
[D

eg
]

0 2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

Time [s]

Y
aw

 [D
eg

]

EQUEST
EKF

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

10

EKF vs EQUEST
EKF
— Well known
— Estimates

sensor bias
— Good filtering

effect
— Requires about

40000
arithmetic
operations

EQUEST
— Finds solution in one

iteration
— Requires about 3200

arithmetic operations
— About 5 times faster than

implemented EKF
— More intuitive tuning

parameters than EKF

www.ntnu.no Kristian L. Jenssen & Kaan H. Yabar, Attitude Determination

D Linearization
abx
aby
abz
mb
x

mb
y

mb
z

 =

[
Rbn(q)
Rbn(q)

]


gnx + abreal,x
gny + abreal,y
gnz + abreal,z
mb
real,x

mb
real,x

mb
real,x

+


biasa,x
biasa,y
biasa,z
biasm,x
biasm,y
biasm,z

 (88)

Let:

gnx + abreal,x = a1

gny + abreal,y = a2

gnz + abreal,z = a3

mb
x = m1

mb
y = m2

mb
z = m3

num = (q21 + q22 + q23 + q2
4
)

3
2

Then, the linearization is given as following:

∂abx
∂q1

=
1

num
(a1q

3
1 + 3a1q1q

2
2 + 3a1q1q

2
3 + a1q1q

2
4 − 2a2q1q3q4 + 2a2q

3
2

+ 2a2q2q
2
3 + 2a2q2q

2
4 + 2a3q1q2q4 + 2a3q

2
2q3 + 2a3q

3
3 + 2a3q3q

2
4) (89)

∂abx
∂q2

=
1

num
(−3a1q

2
1q3 − a1q32 − a1q2q23 − 3a1q2q

2
4 + 2a2q

3
1

+ 2a2q1q
2
3 + 2a2q1q

2
4 − 2a2q2q3q4 − 2a3q

2
1q4

− 2a3q1q2q3 − 2a3q
2
3q4 − 2a3q

3
4) (90)

∂abx
∂q3

=
1

num
(−3a1q1

2q3 − a1q22q3 − a1q33 − 3a1q3q
2
4 + 2a2q

2
1q4 − 2a2q1q2q3

+ 2a2q
2
2q4 + 2a2q

3
4 + 2a3q

3
1 + 2a3q1q

2
2 + 2a3q1q

2
4 + 2a3q2q3q4) (91)

91

∂abx
∂q4

= − 1

num
(−a1q21q4 − 3a1q

2
2q4 − 3a1q

2
3q4 − a1q34 − 2a2q

2
1q3 + 2a2q1q2q4

− 2a2q
2
2q3 − 2a2q

3
3 + 2a3q

2
1q2 + 2a3q1q3q4 + 2a3q

3
2 + 2a3q2q

2
3) (92)

∂abx
∂biasa,x

= 1 (93)

∂abx
∂biasa,y

=
∂abx

∂biasa,z
=

∂abx
∂biasm,x

=
∂abx

∂biasm,y
=

∂abx
∂biasm,z

= 0 (94)

∂aby
∂q1

= 1
num (2(a1(q1q3q4 + q32 + q2(q23 + q24))

+ a3(q4 ∗ (q22 + q23 + q24)− q1q2q3))

− a2q1(q21 + 3q22 + q23 + 3q24)) (95)

∂aby
∂q2

=
1

num
(2a1q

3
1 + 2a1q1q

2
3 + 2a1q1q

2
4 + 2a1q2q3q4 + 3a2q

2
1q2 + a2q

3
2

+ 3a2q2q
2
3 + a2q2q

2
4 + 2a3q

2
1q3 − 2a3q1q2q4 + 2a3q

3
3 + 2a3q3q

2
4) (96)

∂aby
∂q3

=
1

num
(−2a1q

2
1q4 − 2a1q1q2q3 − 2a1q

2
2q4 − 2a1q

3
4 − a2q21q3 − 3a2q

2
2q3

− a2q
3
3 − 3a2q3q

2
4 + 2a3q

2
1q2 − 2a3q1q3q4 + 2a3q

3
2 + 2a3q2q

2
4) (97)

∂aby
∂q4

=
1

num
(−2a1q

2
1q3 − 2a1q1q2q4 − 2a1q

2
2q3 − 2a1q

3
3 + 3a2q

2
1q4 + 2a2q

2
2q4

+ 3a2q
2
3q4 + a2q

3
4 + 2a3q

3
1 + 2a3q1q

2
2 + 2a33q1q

2
3 − 2a3q2q3q4) (98)

∂aby
∂biasa,y

= 1 (99)

∂aby
∂biasa,x

=
∂aby

∂biasa,z
=

∂aby
∂biasm,x

=
∂aby

∂biasm,y
=

∂aby
∂biasm,z

= 0 (100)

∂abz
∂q1

= − 1

num
(2a1q1q2q4 − 2a1q

2
2q3 − 2a1q

3
3 − 2a1q3q

2
4 + 2a2q1q2q3 + 2a2q

2
2q4

+ 2a2q
2
3q4 + 2a2q

3
4 + a3q

3
1 + a3q1q

2
2 + 3a3q1q

2
3 + 3a3q1q

2
4) (101)

92

∂abz
∂q2

=
1

num
(2(a1(q21q4 − q1q2q3 + q23q4 + q34) + a2(q21q3

+ q1q2q4 + q33 + q3q
2
4))− a3q2(q21 + q22 + 3(q23 + q24))) (102)

∂abz
∂q3

=
1

num
(2a1q

3
1 + 2a1q1q

2
2 + 2a1q1q

2
4 − 2a1q2q3q4 + 2a2q

2
1q2 + 2a2q1q3q4

+ 2a2q
3
2 + 2a2q2q

2
4 + 3a3q

2
1q3 + 3a3q

2
2q3 + a3q

3
3 + a3q3q

2
4) (103)

∂abz
∂q4

= − 1

num
(−2a1q

2
1q2 + 2a1q1q3q4 − 2a1q

3
2 − 2a1q2q

2
3 + 2a2q

3
1 + 2a2q1q

2
2

+ 2a2q1q
2
3 + 2a2q2q3q4 − 3a3q

2
1q4 − 3a3q

2
2q4 − a3q23q4 − a3q34) (104)

∂abz
∂biasa,z

= 1 (105)

∂abz
∂biasa,x

=
∂abz

∂biasa,y
=

∂abz
∂biasm,x

=
∂abz

∂biasm,y
=

∂abz
∂biasm,z

= 0 (106)

∂mb
x

∂q1
=

1

num
(m1q

3
1 + 3m1q1q

2
2 + 3m1q1q

2
3 +m1q1q

2
4 − 2m2q1q3q4

+ 2m2q
3
2 + 2m2q2q

2
3 + 2m2q2q

2
4 + 2m3q1q2q4

+ 2m3q
2
2q3 + 2m3q

3
3 + 2m3q3q

2
4) (107)

∂mb
x

∂q2
=

1

num
(−3m1q

2
1q3 −m1q

3
2 −m1q2q23 − 3m1q2q

2
4 + 2m2q

3
1

+ 2m2q1q
2
3 + 2m2q1q

2
4 − 2m2q2q3q4 − 2m3q

2
1q4

− 2m3q1q2q3 − 2m3q
2
3q4 − 2m3q

3
4) (108)

∂mb
x

∂q3
=

1

num
(−3m1q1

2q3 −m1q
2
2q3 −m1q

3
3 − 3m1q3q

2
4 + 2m2q

2
1q4 − 2m2q1q2q3

+ 2m2q
2
2q4 + 2m2q

3
4 + 2m3q

3
1 + 2m3q1q

2
2 + 2m3q1q

2
4 + 2m3q2q3q4) (109)

∂mb
x

∂q4
= − 1

num
(−m1q

2
1q4 − 3m1q

2
2q4 − 3m1q

2
3q4 −m1q

3
4 − 2m2q

2
1q3 + 2m2q1q2q4

− 2m2q
2
2q3 − 2m2q

3
3 + 2m3q

2
1q2 + 2m3q1q3q4 + 2m3q

3
2 + 2m3q2q

2
3) (110)

93

∂mb
x

∂biasm,x
= 1 (111)

∂mb
x

∂biasm,y
=

∂mb
x

∂biasm,z
=

∂mb
x

∂biasa,x
=

∂mb
x

∂biasa,y
=

∂mb
x

∂biasa,z
= 0 (112)

∂mb
y

∂q1
= 1

num (2(m1(q1q3q4 + q32 + q2(q23 + q24))

+ m3(q4 ∗ (q22 + q23 + q24)− q1q2q3))

− m2q1(q21 + 3q22 + q23 + 3q24)) (113)

∂mb
y

∂q2
=

1

num
(2m1q

3
1 + 2m1q1q

2
3 + 2m1q1q

2
4 + 2m1q2q3q4

+ 3m2q
2
1q2 +m2q

3
2 + 3m2q2q

2
3 +m2q2q

2
4

+ 2m3q
2
1q3 − 2m3q1q2q4 + 2m3q

3
3 + 2m3q3q

2
4) (114)

∂mb
y

∂q3
=

1

num
(−2m1q

2
1q4 − 2m1q1q2q3 − 2m1q

2
2q4 − 2m1q

3
4 −m2q

2
1q3 − 3m2q

2
2q3

− m2q
3
3 − 3m2q3q

2
4 + 2m3q

2
1q2 − 2m3q1q3q4 + 2m3q

3
2 + 2m3q2q

2
4) (115)

∂mb
y

∂q4
=

1

num
(−2m1q

2
1q3 − 2m1q1q2q4 − 2m1q

2
2q3 − 2m1q

3
3 + 3m2q

2
1q4 + 2m2q

2
2q4

+ 3m2q
2
3q4 +m2q

3
4 + 2m3q

3
1 + 2m3q1q

2
2 + 2m3q1q

2
3 − 2m3q2q3q4) (116)

∂mb
y

∂biasm,y
= 1 (117)

∂mb
y

∂biasm,x
=

∂mb
y

∂biasm,z
=

∂mb
y

∂biasa,x
=

∂mb
y

∂biasa,y
=

∂mb
y

∂biasa,z
= 0 (118)

∂mb
z

∂q1
= − 1

num
(2m1q1q2q4 − 2m1q

2
2q3 − 2m1q

3
3 − 2m1q3q

2
4 + 2m2q1q2q3 + 2m2q

2
2q4

+ 2m2q
2
3q4 + 2m2q

3
4 +m3q

3
1 +m3q1q

2
2 + 3m3q1q

2
3 + 3m3q1q

2
4) (119)

94

∂mb
z

∂q2
=

1

num
(2(m1(q21q4 − q1q2q3 + q23q4 + q34) +m2(q21q3

+ q1q2q4 + q33 + q3q
2
4))−m3q2(q21 + q22 + 3(q23 + q24))) (120)

∂mb
z

∂q3
=

1

num
(2m1q

3
1 + 2m1q1q

2
2 + 2m1q1q

2
4 − 2m1q2q3q4 + 2m2q

2
1q2 + 2m2q1q3q4

+ 2m2q
3
2 + 2m2q2q

2
4 + 3m3q

2
1q3 + 3m3q

2
2q3 +m3q

3
3 +m3q3q

2
4) (121)

∂mb
z

∂q4
= − 1

num
(−2m1q

2
1q2 + 2m1q1q3q4 − 2m1q

3
2 − 2m1q2q

2
3 + 2m2q

3
1 + 2m2q1q

2
2

+ 2m2q1q
2
3 + 2m2q2q3q4 − 3m3q

2
1q4 − 3m3q

2
2q4 −m3q

2
3q4 −m3q

3
4) (122)

∂mb
z

∂biasm,z
= 1 (123)

∂mb
z

∂biasm,x
=

∂mb
z

∂biasm,y
=

∂mb
z

∂biasa,x
=

∂mb
z

∂biasa,y
=

∂mb
z

∂biasa,z
= 0 (124)

95

96

E Matrix Inverse Using LU Decomposition

LU decomposition is a procedure for composing a square matrix A with dimen-
sion N into a product of a lower triangular matrix L and an upper triangular
matrix U :

A = LU (125)

Writing explicitly:


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33
...

...
. . .

 =


l11 0 0 . . .
l21 l22 0 . . .
l31 l32 l33
...

...
. . .



u11 u12 u13 . . .
0 u22 u23 . . .
0 0 u33
...

...
. . .


(126)

A =


l11u11 l11u12 l11u13 . . .
l21u11 l21u12 + l22u22 l21u13 + l22u23 . . .
l31u11 l31u12 + l32u22 l31u13 + l32u23 + l33u33

...
...

. . .

 (127)

Three types of equations occurs:

i < j li1u1j + li2u2j + · · ·+ liiuij = aij (128)

i = j li1u1j + li2u2j + · · ·+ liiujj = aij (129)

i > j li1u1j + li2u2j + · · ·+ lijujj = aij (130)

This gives N2 equations and N2 +N unknowns and can be solved using Crout's
method by just arranging the equations in a certain order [23]. LU decomposi-
tion can be used to �nd the inverse of a matrix by solving linear set. Let say
that it is desirable to solve for X in following linear set:

AX = B (131)

If B is set to be the identity matrix, then the solution X is the inverse of A:

AA−1 = I = B (132)

This means that with B being identity matrix, the inverse of A can be found
by solving a linear set. Following procedure can be used to solve the linear set
using LU decomposition:

Writing the decomposition:

97

AX = (LU)X = L(UX) = B (133)

Solve for Y :

LY = B (134)

Solve for X:

UX = Y (135)

The great advantage here is that U and L is triangular, which makes the equa-
tions trivial to solve.

98

F Prototype Userguide

F.1 Programming the Microcontroller on the Prototype
Using AVR Studio and AVR Dragon

To program the microcontroller, it is important to have knowledge about four
of the menus in the AVR Studio. These menus can be selected from the toolbar,
showed in Figure 26.

Figure 26: The toolbar to compile, con�gure and connect the AVR microcon-
troller.

In order to compile the code correctly, it is important to use the con�gura-
tions menu. In the con�gurations menu, the correct device and the operating
frequency should be selected. This is displayed in Figure 27. When the con-
�gurations menu is selected properly, the code can be compiled by pushing the
Compile button in the toolbar showed in the �gure above. After the compi-
lation, a .hex �le is created and placed in the Output File Directory, this �le
should be �ashed to the microcontrollers memory using the connect button.

99

Figure 27: Con�gure project.

Before using the connect button, the correct platform must be selected us-
ing the select platform button. Figure 28 illustrates the connection using an
AVR dragon on USB port. After selecting platform, the microcontroller can be
�ashed.

100

Figure 28: Platform selection.

Clicking the connect button opens the menu displayed in Figure 29. As
displayed in the �gure, there are eight tabs. In the �Main� tab, the correct
device should be chosen and con�rmed by clicking the �Read Signature� button.
The �Programming Mode and Target Settings� should be selected to �JTAG
mode�.

101

Figure 29: JTAG connection.

Under the �Fuses� tab, �OCDEN� and �JTAGEN� checkboxes should be
selected. Since the prototype uses an external crystal running at 16 MHz, �Ext.
Crystal Osc. 8.0- MHz� must be chosen in the �SUT_CKSEL� as given in
Figure 30.

102

Figure 30: Fuses.

After completing the settings explained above, the microcontroller should
be ready for �ashing. In the �Program� tab, the .hex �le created earlier should
be selected as �Input HEX File�, in the �Flash� section. The microcontroller is
�ashed by pressing the �Program� button.

103

Figure 31: Programming the microcontroller.

F.2 Output Attitude Data from Prototype to MATLAB

The data from prototype is sent to computer through the usb to serial connec-
tion. It is possible to get two di�erent illustrations of the output:

1. Display attitude as a 3D cube.

2. Display attitude with graph (roll, pitch and yaw).

To display the attitude as a 3D cube, attitude estimated either by EKF or
EQUEST must be sent to computer. It is important to note that the MATLAB
code is only designed for extracting data from one of the methods. For EQUEST
the microcontroller must be programmed such that the only remaining data sent
to computer is:

104

printf ("%d,%d,%d,%d,\n", (int) (equest_x[0]*10000),

(int) (equest_x[1]*10000), (int) (equest_x[2]*10000), (int) (equest_x[3]*10000));

For EKF, the line above can be replaced with:

printf ("%d,%d,%d,%d,\n", (int) (x[0]*10000),

(int) (x[1]*10000), (int) (x[2]*10000), (int) (x[3]*10000));

All other prints must be commented out. Since data from only one of the
methods can be displayed, running both methods will be super�uous. If you
want to run only the EKF replace all lines containing

method=1;

with

method=0;

For EQUEST, do the opposite. The MATLAB �le that should be executed is
named �microplot.m�.

If it is desirable to display the attitude as roll, pitch and yaw, attitude
data from both EKF and EQUEST should be extracted simultaneously. Again,
remove all prints and add following two lines:

printf ("%d,%d,%d,%d,%d\n", (int) (x[0]*10000),

(int) (x[1]*10000), (int) (x[2]*10000), (int) (x[3]*10000),1);

printf ("%d,%d,%d,%d,%d\n", (int) (equest_x[0]*10000),

(int) (equest_x[1]*10000), (int) (equest_x[2]*10000), (int) (equest_x[3]*10000),2);

For graph, the MATLAB �le �liveplotKALQUEST.m� should be executed. Note
that the serial port number in the MATLAB �le must be consistent with the
port connected to the prototype.

105

References

[1] CubeSat Design Speci�cation Rev. 12, The CubeSat Program, Cal Poly
SLO, Retrieved May 2011.

[2] "NTNU Test Satellite", Retrieved May 2011, http://nuts.iet.ntnu.no

[3] Gravdahl,J.T., Skavhaug,A., Svartveit,K., Fauske.K.M. and Inder-
gaard,F.M. "Three axis Attitude Determination and Control System for
a picosatellite: Design and implementation", presented as paper IAC-03-
A.5.07, IAC 2003.

[4] Svartveit, K., "Attitude determination of the NCUBE satellite", Master
Thesis, Department of Engineering Cybernetics, June 2003.

[5] Ose, S.S., " Attitude determination for the Norwegian student satellite
nCube", Master Thesis, Department of Engineering Cybernetics, NTNU,
June 2004.

[6] Rohde, J., " Kalman �lter for attitude determination of student satel-
lite", Master Thesis, Department of Engineering Cybernetics, NTNU,
July 2007.

[7] Sabatini,A.M., "Quaternion-Based Extended Kalman Filter for Determin-
ing Orientation by Inertial and Magnetic Sensing", IEEE Transaction on
Biomedical Engineering, Vol.53, No. 7, July 2006.

[8] Markley, L.F. and Mortari, D., "Quaternion Attitude Estimation Using
Vector Observations", The Journal of the Astronautical Sciences, Vol.48,
April-September 2000.

[9] Psiaki, M.L., "Attitude-Determination Filtering via Extended Quaternion
Estimation", Journal of Guidance, Control and Dynamics, Vol.23, No.2,
March-April 2000.

[10] Egeland, O. and Gravdahl, J.T, "Modeling and Simulation for Automatic
Control", Marine Cybernetics, pp. 218-223, 2002.

[11] Hall, C.D., "Attitude Measurements", Spacecraft Attitude Dynamics and
Control, March 18, 2003.

[12] Hamilton, W.R., "On Quaternions, or On a New System of Imaginaries
in Algebra", Philosophical Magazine, Vol.25, pp. 489-495, 1844.

[13] Crassidis, J.L., Markley, F.L., and Cheng,Y., "Survey of Nonlinear Atti-
tude Estimation Methods", Journal of Guidance, Control, and Dynamics,
Vol.30, No.1, January-February 2007.

[14] Crassidis, Crassidis, J. L. and Markley F. L., "Attitude Estimation Us-
ing Modi�ed Rodrigues Parameters", Proceedings of the Flight Mechan-
ics/Esitmation Theory Symposium, Cp-1996-3333, NASA Goddard Space
Flight Center, Greenbelt, MD, 1996.

[15] Vik,B., "Euler Angles from Quaternions", Integrated Satellite and Inter-
tial Navigation Systems, Department of Engineering Cybernetics, NTNU,
Trondheim, Norway.

[16] Ribeiro, M.I., "Kalman and Extended Kalman Filters: Concept, Deriva-
tion and Properties", Institute for Systems and Robotics, Lisboa, Portu-
gal, February 2004.

[17] Bhanderi,D.D.V., "Attitude Estimation From Magnetometer and Earth-
Albedo-Corrected Coarse Sun Sensor Measurements", Ph.D. Thesis, De-
partment of Control Engineering Aalborg University, August, 2005.

[18] Appel, P., "Spacecraft Attitude Determination with Earth Albedo Cor-
rected Sun Sensor Measurement", Acta Astronautica, IAA, 2004.

[19] Nocedal, J. and Wright, S.J. "Numerical Optimization", Springer Series
in Operations Research, 1999.

[20] Weisstein,E.W., "Least Squares Fitting", From MathWorld-A Wolfram
Web Resource. mathworld.wolfram.com/LeastSquaresFitting.html

[21] "Atmega128 Datasheet", Retrieved February 10, 2011,
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

[22] "Atmega2560/2561 Datasheet", Retrieved February 12, 2011,
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf

[23] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., "Nu-
merical Recipes in C - The Art of Scienti�c Computation", Second Edi-
tion, Cambridge University Press, pp. 43-49, 1992.

[24] Jacobi, C.G.J., "Über ein leichtes Verfahren, die in der Theorie der Säku-
larstörungen vorkommenden Gleichungen numerisch aufzulösen", Crelle's
Journal 30, pp. 51-94, 1846.

[25] Tudor, Z., "Design and Implementation of Attitude Control for 3-Axis
Magnetic Coil Stabilization of a Spacecraft", Master Thesis, Department
of Engineering Cybernetics, NTNU, June 2011.

	Title Page
	masteroppgave.pdf

