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AbstractThis paper investigates modifier-adaptation schemes based on Gaussian processes to
handle plant-model mismatch in real-time optimization of uncertain processes. Building upon
the recent work by Ferreira et al. [European Control Conference, 2018], we present two improved
algorithms that rely on trust-region ideas in order to speed-up and robustify the approach.
The first variant introduces a conventional trust region on the input variables, whose radius is
adjusted based on the Gaussian process predictors’ ability to capture the cost and constraint
mismatch. The second variant exploits the variance estimates from the Gaussian processes to
define multiple trust regions directly on the cost and constraint predictors. These algorithms
are demonstrated and compared on a Williams-Otto reactor benchmark problem.
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1. INTRODUCTION

Real-time optimization (RTO) systems are well-accepted
by industrial practitioners, with numerous successful ap-
plications reported over the last few decades (Darby et al.,
2011). These systems rely on first-principles models, and
in those processes where the optimization execution period
is much longer than the closed-loop process dynamics,
steady-state models are commonly employed to conduct
the optimization (Marlin and Hrymak, 1997). Tradition-
ally, the model is updated in real-time using the available
measurements, before repeating the optimization. This
two-step RTO paradigm is both intuitive and popular, yet
it can hinder convergence to the actual plant optimum due
to lack of integration between the model-update and op-
timization steps, especially in the presence of plant-model
mismatch (Tatjewski, 2002; Chachuat et al., 2009). This
has motivated the development of alternative adaptation
paradigms in RTO, such as modifier adaptation (Marchetti
et al., 2009).

Similar to two-step RTO, modifier adaptation (MA) em-
beds the available process model into a nonlinear opti-
mization problem that is solved at each RTO execution.
The key difference is that the process measurements are
now used to update so-called modifiers that are added
to the cost and constraint function in the optimization
model. This methodology greatly alleviates the problem
of offset from the actual plant optimum, by enforcing that
the KKT conditions determined by the model match those
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of the plant upon convergence. However, this desirable
property comes at the cost of having to estimate the cost
and constraint gradients from process measurements.

Recent advances in MA schemes are reviewed in the
survey paper by Marchetti et al. (2016). The nested MA
scheme proposed by Navia et al. (2015) removes the
need for estimating the plant gradients by embedding the
modified optimization model into an outer problem that
optimizes over the gradient modifiers using a derivative-
free algorithm. Gao et al. (2015) combined MA with a
quadratic surrogate trained with historical data in an
algorithm called MAWQA. Likewise, Singhal et al. (2016)
investigated data-driven approaches based on quadratic
surrogates. More recently, Ferreira et al. (2018) considered
the use of Gaussian processes (GP), trained from past
measurement information, as the modifiers for the cost
and constraint functions.

This paper further develops MA schemes based on GP.
Two improved algorithms are presented, which rely on
trust-region ideas in order to speed-up and robustify
the original algorithm by Ferreira et al. (2018). The
first variant introduces a conventional trust region on
the input variables, whose radius is adjusted based on
the accuracy of the GP predictors to capture the cost
and constraint mismatch. The second variant exploits the
variance estimates from the GPs to define trust regions
directly on the cost and constraint predictors. The rest of
the paper provides background on MA and GP in Sec. 2,
describes the new trust-region MA-GP schemes in Sec. 3,
and illustrates their performance in Sec. 4.
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2. PRELIMINARIES
2.1 Modifier Adaptation

The problem of optimizing the steady-state performance
of a given plant subject to operational or safety constraints
can be formulated as:

min G (u) = go (u,y”(u)) (1)

uel

s.t. GP (u) := g; (u,yP(u)) <0,
where u € R™ and yP? € R™v are vectors of the plant input
and output variables, respectively; g; : R™ x R™ — R,
i = 0...,n4, denote the cost and inequality constraint
functions; and & C R™» is the control domain, e.g. lower
and upper bounds on the input variables, u® < u < uY.

Notice the superscript (-)” used to indicate plant-related
quantities.

1=1...n4

The challenge is of course that an exact mapping yP(-) is
unknown in practice, and the output yP(u) can only be
measured for a particular input value u, in the manner
of an oracle. However, provided that a parametric (ap-
proximate) model of the plant’s input-output behavior is
available, y(u, -), one may solve the following model-based
optimization problem instead:

min Go (u) := go (u,y(u,0)) (2)
s.t. G (u) := g; (u,y(u,0)) <0,
where 8 € R™ is a vector of adjustable model parameters.

1=1...n4

In the presence of model mismatch and process distur-
bances, the optimal solution value of the problem (2)
could greatly differ from that of (1). On-line optimization
takes advantage of the available measurements in order
to compensate for such uncertainty and adapt the model-
based problem in order to get closer to the actual pro-
cess optimum. In a modifier-adaptation scheme (Marchetti
et al., 2009), the measurements are used to correct the
cost and constraint function values at a given iterate u”,
in order to determine the next iterate u*+1:

u* ™ € argmin Go(u) + (A,)Tu (3)
ueld

s.t. G (u) + el + (AE)T[u—u*] <0,
1=1...n4
where 5’&1 € R are zeroth-order modifiers for the con-
straints, and /\’éi € R™ are first-order modifiers for the
cost and constraints.

The use of modifiers is appealing in that a KKT point
u® for the corrected model-based problem (3) is also a
KKT point for the original problem (1), provided that the
modifiers satisfy (Marchetti et al., 2009):

Egi = Gf(uoo) - Gi(uoo)a

G, = VGP(u™®) — VGi(u™), i=0...n,

1=1...n4

A simple update rule for the modifiers that fulfills the
foregoing conditions upon convergence is:

eort = (L=meg +0[GT (") - Gi(u")]

A = (L=m)AG, +1[VGE (") - VGi(u")]
where the tuning parameters n € (0,1] may be reduced
to help stabilize the iterations. The biggest burden with

this approach is estimating the gradients VG? (u*) of the
cost and constraint functions at each RTO iteration. Finite
difference methods and linear system identification meth-
ods may be applied, but they require perturbation and
additional plant evaluations. Better approaches include
the use of rank-one updates (Rodger and Chachuat, 2011),
transient measurements (Frangois and Bonvin, 2013), or
directional derivatives (Singhal et al., 2016).

2.2 Gaussian Processes

GPs are an interpolation technique developed by Krige
(1951) and popularized by the machine learning commu-
nity (Rasmussen and Williams, 2016). GP regression aims
to describe an unknown function f : R™ — R using
noisy observations, y = f(u) + v, where v ~ N(0,02) is
Gaussian distributed measurement noise with zero mean
and (possibly unknown) variance o2

2.
GPs consider a distribution over functions, and they

can be seen as a generalization of multivariate Gaussian
distributions,

fC) ~GP(m(), k()
where the mean function m(-) can be interpreted as the
deterministic part of the function; and the covariance func-
tion k(-,-) accounts for correlations between the function
values at different points.

Our focus herein is on a constant mean function, m(u) :=
¢, alongside the squared-exponential (SE) covariance func-
tion (Rasmussen and Williams, 2016):

1
k(u,u’) := o2 exp <—2(u —u)TA(u - u’))
where o2 is the covariance magnitude; and A :=
diag(A1 - -+ Ap,) is a scaling matrix. Underlying the choice
of the SE covariance function is the assumption that the
inferred function f is both smooth and stationary.

Maximum  likelihood  estimation is  commonly
applied to infer the unknown hyperparameters
U = [c 0, 0p M\ ... A\p,]T, including o, in case

the measurement mnoise variance is also unknown.
Consider N (noisy) function evaluations, denoted by
y = [y1 - yn|" € RY, with corresponding inputs
collected in the matrix U := [u; --- uy] € R"«*N . The
log-likelihood of the observed data, ignoring constant
terms, is given by:

£(®) = 5 W(K(U)]) ~ 5(y ~ 10TK(U) ™ v - 1¢)

with K;;(U) = k(u;,u;) + 026;; for each pair (i,j) €
{1...N}?; and the Kronecker delta function d;;.

The predicted distribution of f(u) at an arbitrary input
point u, given the input-output data (U,y) and the
maximum-likelihood estimates of ¥, follows the Gaussian
distribution
f()|U,y ~ N(py(u),0%(w))

with

r(w) o= x(u, U)K(U) Ly + 0

a]%(u) =02 —r(u,U)K(U) ' r(u,U)"
and r(u,U) := [k(u,uy) - -- k(u, un)]. The mean (i in this
context is the prediction made by the GP at u, while the
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variance UJ% provides a measure of the uncertainty around
this predictor.

3. METHODOLOGY
3.1 Basic MA scheme with GP modifiers (MA-GP)

The use of GPs to describe the plant-model mismatch in an
RTO context was first proposed by Ferreira et al. (2018).
The main idea entails the training and use of GPs in order
to correct the cost and each constraint separately,

G? - Gl ~ gP (MtsGmU(%G,;) ’
The resulting modified optimization problem that is solved
at each RTO iteration is given by

a1 € argmin [Go + ik, |(w) (4)
ueld

1=0...n4

st [Gi + pse,)(v) <0,
where /“ngGi denotes the predictor of the GP trained with
the input-output data set (U*, §GF); and 6G¥ comprises
measurements of the mismatch §G;(-) := G} (-) — G,(-) at
input points in the matrix U*.

1=1...n4

Algorithm 1 Basic MA-GP scheme

Input: GP predictors ugGi, i1 =0...n4, trained with the
data sets (U%,6GY)
Repeat: for £k =0,1,...
(1) Solve the modified optimization problem (4)
(2) Filter the new operating point u**!
(3) Obtain measurements of the cost and constraint func-
tions GY(uf*1), i =0...n,
(4) Update the data sets (UF! §GF1) i =0...n, with
the measurements at u**!, and the corresponding GP

predictors //gg !

A statement of the basic MA-GP scheme is provided in
Algorithm 1. A set of GPs are trained for the cost and
constraint mismatch as part of the initialization phase,
and there is of course considerable freedom regarding the
choice of this initial training set. For instance, an initial
sample could be obtained in a given control subdomain
using Sobol sampling.

The training set is updated in Step 4 as the iterations
progress. In order to prevent overfitting and numerical
difficulties in constructing the GPs and to be able to track
a moving plant optimum, Ferreira et al. (2018) keep a
limited number of historical records in the input-output
data set; for instance, the N nearest-neighbors to the
new point u**! obtained in Step 1. Moreover, the current
iterate uf*! need not be included in Ut should it
be within a given radius of an existing point in U*, or
uFt! could be substituted for an existing nearby point
in UF! instead. In any case, the predictors of the cost
and constraint GP need recomputing after updating U¥*+1!,
thereby reducing the plant-model mismatch.

Similar to the classical MA approach (Sec. 2.1), the
solution point u**! of the modified problem (4) could be
filtered in order to reduce the step-size and help stabilize
the MA-GP scheme. One simple filter consists in taking
(1 — n)u* + nu*t! instead of ub*! as the next iterate,

with 7 € (0,1]. Claimed advantages of MA-GP over the
classical MA with linear correction terms are a greater
simplicity since estimates of the gradients VGf(u’“) are
no longer required at each RTO iteration, a lower number
of plant evaluations to reach a plant optimum, and a
superior ability to handle measurement noise. However,
tuning such schemes to achieve convergence may not be
straightforward in the first place.

8.2 MA-GP scheme with input trust region

Inspired by globalization techniques based on trust-region
ideas developed in derivative-free optimization (Conn
et al., 2000) and surrogate-based optimization (Eason and
Biegler, 2016), we propose a simple extension of the basic
GP-MA scheme in Sec. 3.1 that relies on an adaptive trust
region in input space. The optimization problem (4) is
modified as follows:

d* e arg min (Go + pic,) (0" + d) (5)

s.t. [Gi+ phe J(ub +d) <0, i=1...n,
|d < Ak, WP +deu

where A¥ > 0 denotes the radius of a trust region in input
space; and dFt! € R™ is the predicted step.

Algorithm 2 MA-GP scheme with input trust region

Input: GP predictors pg , i = 0...ng, trained with the
data sets (UY, §GY); initial operating point u® € I/; initial
i g
and maximal trust region radii 0 < A < A; trust-region
parameters 0 <y <M <nm3<land 0<t; <1<ty
Repeat: for £k =0,1,...
(1) Solve the modified optimization problem (5)
(2) Obtain measurements of the cost and constraint func-
tions GF (u* +d* 1), i=0...n,
(3) Compute the ratio p*+1 as per Eq. (6)
(4) Update the trust region radius
(a) If GY (u* +d*F™) > 0 for some i = 1...n, or
L <
Ak+1 = tlAk
(b) Else if p"*1 > 53 and ||d*F1]| = AR
AFHL = min{t, AF A}
(c) Else:
Ak:+1 = Ak
(5) Update the operating point
(a) If GY (0¥ +d*F) > 0 for some i = 1...n, or
L <y
uktl .= uk
(b) Else:
ubtl = uk 4 gkt
(6) Update the datasets (U1 §GF) i =0...n, with
the measurements at u* + d**!, and the correspond-

ing GP predictors ,u’ggl

A statement of the MA-GP scheme with input trust
region (MA-GP-ITR) is provided in Algorithm 2. The
initialization of the cost and constraint GPs, as well as
the data set and GP updates in step 6, are identical to
the basic MA-GP scheme in Sec. 3.1. Notice that there is
also considerable flexibility in the choice of the trust region
parameters 1y, n2, 13, t1, t2. A common setting in trust-
region methods, which is also the setting used throughout
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the case study in Sec. 4,is 1 =12 =0.1,173 = 0.9,¢; = 0.5
and to = 2.

The filtering step 2 in Algorithm 1 is replaced with the
update steps 4 and 5 in Algorithm 2. The decisions about
moving the trust-region center (current operating point)
or changing its radius are based upon:

(i) the ratio of actual cost reduction to predicted cost
reduction,
GE (") — G (u* +d**)
[Go + ufg,J(u%) — [Go + pig, J(uh + d*+1)
(6)
(ii) the violation of any inequality constraint i =1...ng,

GP (u* + ") > 0

k+1 .
prth =

The trust-region radius A**! is reduced whenever the
accuracy ratio p®t! is too small or a plant constraint
is violated after implementing the predicted step d**!.
Conversely, A1 is increased if the optimization problem
(5) takes a full step and the modified cost provides a good
enough prediction of the plant cost variation around this
point. Otherwise, the trust-region radius stays unchanged.
As for the operating point update, the full step d**! is
accepted when no constraint violation is triggered and
the accuracy ratio p**! is large enough. Otherwise, the
operating point remains unchanged, which would entail a
back-tracking in a practical RTO setup. Notice that such
a back-tracking strategy assumes that the initial point
u® satisfies all the plant constraints. Determination of a
feasible point u® could be via the solution of an auxiliary
feasibility problem prior to running Algorithm 2—see, e.g.
(Bajaj et al., 2018).

3.8 MA-GP scheme with multiple predictor trust regions

The basic MA-GP scheme and the MA-GP scheme with
ITR detailed in Sec. 3.1 & 3.2 take advantage of the
GP predictors p5G, in correcting the cost and constraint
functions, but neither of them exploit the associated
variance terms U?Gi. We now present another extension of
Algorithm 1 that relies on multiple adaptive trust regions
in the predictor space. The optimization problem (4) is
modified as follows:

u" ! € argmin [Go + ,ulgco](u) (7)
ueld

s.t. [Gi+ phe J(w) <0, i=1...n,

U?Gi(u) SA;{:, i=0...n4

where 0'§Gi denotes the standard-deviation associated with
the predictor ,u]gGi in the GP trained with the input-output

data set (U* §GEK); and AF > 0 denote separate trust-
region radii for the predictions made by the cost and
constraint GPs.

A statement of the MA-GP scheme with multiple predictor
trust regions (MA-GP-MPTR) is provided in Algorithm 3.
The initialization of the cost and constraint GPs, as well
as the data set and GP updates in step 6, are here again
identical to the basic MA-GP scheme in Sec. 3.1. The trust
region parameters 71, 12, 13, t1, t2 are moreover the same
as in Algorithm 2.

Algorithm 3 MA-GP scheme with multiple predictor
trust regions

Input: GP predictors ,ugGi and error functions UgGi, 1=
0...ng, trained with the data sets (U°, §G?); initial and
maximal trust region radii 0 < A? < A;, i = 0...ny;
trust-region parameters 0 < 11 < 2 < 13 < 1 and
0<ti <1<ty
Repeat: for £ =0,1,...
(1) Solve the modified optimization problem (7)
(2) Obtain measurements of the cost and constraint func-
tions GF(uF*1), i =0...n,
(3) Compute the ratio p**1 as per Eq. (6)
(4) Update the predictor trust region of the cost
(a) Tf pEH1 < 1
N TAY
(b) Else if pF*! > 53 and o} (u) = Af:
AR = min{t, A%, A}

(c) Else:
AGTh = Af
(5) Update the predictor trust region of each constraint
1=1...n4

(a) If GP(u**+1) > 0:
AR = ¢ AR
(b) Else if GY(uF*!) <0 and o}, (u) = A¥:
Aiﬁ'l = min{ta A¥, A}
(c) Else:
AFFL .= AF
(3 ° K3
6) Update the data sets (UF+1, §GF+1) i = 0...n, with
A g
the measurements at u**!, and the corresponding GP

predictors ,u}gg !

The decisions about changing the radii of the predictor
trust regions are different for the cost and the constraints.
Adaptation of the trust region for the cost predictor
is based on the same ratio of actual cost reduction to
predicted cost reduction as in Eq. (6),

G () - G ()

[Go + ufg,J(u¥) — [Go + pfg, J(uh+1)
Essentially, the trust region radius AISH is reduced when
the accuracy of the cost predictor is insufficient, increased

when the accuracy is high and the cost trust-region con-
straint is active, and kept the same otherwise.

k+1 . _
prth=

By contrast, adaptation of the trust region for a constraint
predictor is directly based on the violation of the corre-
sponding plant constraint. The trust-region radius Ai—”l is
reduced when the ¢th plant constraint is violated, increased
when that constraint is inactive and the corresponding
trust-region constraint is active, and kept the same oth-
erwise. Notice also that back-tracking is irrelevant here in
the presence of constraint violation, since a predictor trust

region is not centered around a particular operating point
k1
u "t

The consideration of multiple trust regions on the cost and
constraint predictor errors presents several advantages.
Distinguishing between the cost and constraints could
make the approach more resilient to poor scaling in larger
problems, instead of having a joint trust region for all the
inputs. Imposing a trust region on the predictor error is
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also more versatile, as it could account for measurements
scattered across the entire feasible region in order to
overcome convergence to local optima. The price to pay
for this globalization however, is that the predictor trust
region constraints introduce extra nonconvexity in the
modified optimization subproblems.

4. CASE STUDY

We consider a Williams-Otto benchmark problem to
demonstrate and compare the various MA-GP schemes
presented in Sec. 3. A continuous stirred-tank reactor
(CSTR) is fed with two streams of pure components A
and B, with respective mass flowrates Fa and Fg. The
reactor operates at steady state and under the temper-
ature T;. The chemical reactions between these reagents
produce two main products P and E, through a series of
chemical reactions that also produce an intermediate C
and a byproduct G:

A+B—C
B+C—P+E
C+P—G

Structural plant-model mismatch is introduced in the
problem by assuming that the approximate model only
knows about the following (incorrect) two reactions, which
do not consider the intermediate C:

A+2B—P+E
A+B+P—G

The complete set of mass-balance equations and kinetic
rate equations for both reaction systems are reported, e.g.,
by Mendoza et al. (2016).

The optimization problem consists in maximizing the
economic profit by manipulating the feedrate Fg and the
reactor temperature T}, subject to operating constraints
on the residual mass fractions of A and G at the reactor
outlet:

min G := (1043.38Xp + 20 92Xe) (Fa + Fg)  (8)
— T79.23Fa — 118.34Fp
s.t. CSTR model (Mendoza et al., 2016)
Gi1:=Xa—-012<0
Gy := X —0.08<0
Fs € [4,7], T, € [70,100]
where X; denotes the mass fraction of species i. We assume
throughout that (indirect) measurements of the cost Gg
and inequality constraints G, Gy are available, which are

corrupted by Gaussian noise with zero mean and standard
deviation o, = 0.5, 0g, = 0g, = 0.0005.

A graphical depiction of the optimization problem (8) is
presented in Fig. 1. This plot shows the contour lines
of the plant cost (multicolor thin lines), as well as the
plant constraint limits (blue lines). Notice the gap between
the unconstrained plant and model-based unconstrained
optima (blue and red pentagrams), as an illustration of
the plant-model mismatch in this problem.

Also shown in Fig. 1 is a comparison between the paths
followed by the three MA-GP schemes in Algorithms 1,
2 and 3 (black, red and magenta lines). We implemented
these algorithms in MATLAB, using the (local) NLP solver
fmincon as part of the Optimization Toolbox for solving the

100 - *

Infeasible region

95

90

85

80

Reactor Temperature [ °C]

75

=

70 i i i - / oo o5

4 4.5 5 5.5 6 6.5 7
Mass Flowrate of B [kg.s-1]

Figure 1. Graphical representation of the optimization
problem (8) and comparison of the paths followed
by the MA-GP schemes in Algorithms 1, 2 and 3.
Blue pentagram: unconstrained plant optimum.
Red pentagram: unconstrained model-based opti-
mum. Black pentagrams: sample points used to
initialize the cost and constraint GPs. Blue lines:
plant constraints. Black line: iterates of MA-GP
scheme (Algorithm 1). Red line: iterates of MA-GP-
ITR scheme (Algorithm 2). Magenta line: iterates
of MA-GP-MPTR scheme (Algorithm 3).

optimization subproblems, and the Statistics and Machine
Learning Toolbox for training and prediction of the GPs
describing the cost and constraint mismatch. Following
Ferreira et al. (2018), we used 5 sampling points (black
pentagrams) to initialize the cost and constraint GPs, and
the last 10 measurement points (at most) in the data sets
U” for rebuilding these GPs at each RTO iteration. The
initial operating point u® corresponds to the sample point
farthest to the right.

All three MA-GP schemes converge to the constrained
plant optimum, where both inequality constraints are
active, despite the presence of plant-model mismatch.
The iterates cluster around the plant optimum upon
convergence, showing that the GPs are indeed effective at
describing the mismatch in the presence of measurement
noise.

The iterations of the basic MA-GP scheme (Algorithm 1)
— here with a filter parameter value of n = 0.4 — follow an
infeasible path after the second iterate and up until they
reach the plant optimum. Likewise, the second iterate of
the MA-GP-ITR scheme (Algorithm 2) violates the plant
constraints, but then the back-tracking implemented in
Step ba drives the iterates back to the feasible region
after updating the constraint GPs and adapting the trust-
region size accordingly. This constraint violation could be
circumvented by reducing the size of the initial trust region
AV, in order to prevent the cost and constraint GPs from
extrapolating too far from their respective training sets.
Notice also that the MA-GP-ITR scheme requires fewer
steps than the basic MA-GP scheme to reach the plant
optimum in this case, which is attributed to the use of a



E.A. del Rio Chanona et al. / IFAC PapersOnLine 52-1 (2019) 52-57 57

rather conservative filter value in the latter. It is indeed
one of the main advantages of the proposed MA-GP-ITR
scheme that an adaptive trust region is employed instead of
setting an a priori value for the filter parameter 7, resulting
in RTO schemes that are both faster and easier to tune.

By contrast, the MA-GP-MPTR scheme (Algorithm 3) fol-
lows a very different path to the plant optimum. Imposing
a trust-region on the cost and constraint predictors, rather
than on the inputs, constrains the iterate u**! to remain
close to points in the training data set U*. This explains
why the first MA-GP-MPTR step deviates significantly
from the direction of the unconstrained model-based opti-
mum. The rest of the path to the plant optimum is fast,
albeit taking smaller steps as limited by the trust regions
of both the cost and constraint GPs. Here, trust-region
constraints are active during the first 3 iterations only,
corresponding to the GPs of G; and G5 in the 1st iteration,
to the GP of GGy in the 2nd iteration, and to the GP of G5
in the 3rd iteration. Overall, the main benefit of defining
a trust region on the GP predictors’ accuracy is making
sure that extrapolation of the cost and constraint GPs
away from their training remains under control, thereby
improving the reliability of the RTO scheme.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Building upon recent work by Ferreira et al. (2018), this
paper has presented two improved RTO schemes combin-
ing modifier adaptation and GPs for handling structural
plant-model mismatch, yet without the need for comput-
ing plant gradients explicitly. The first scheme (MA-GP-
ITR) entails the use of similar trust-region ideas as in
derivative-free or surrogate-based optimization, instead of
a simple filtering of the inputs, in order to speed-up the
iterations and facilitate tuning. The second scheme (MA-
GP-MPTR) takes advantage of the error estimates in the
GPs to define multiple trust regions directly on the GP
predictors, thereby constraining the extrapolative capabil-
ity of the GPs and improving reliability. The counterpart
of this globalization however, is the need to handle extra
nonconvexity introduced by such predictor trust regions
in MA-GP-MPTR, whereas MA-GP-ITR features convex
trust regions. A comparison between these two schemes
and the original MA-GP scheme by Ferreira et al. (2018)
has been carried out on a simple benchmark problem,
showing a better performance in terms of convergence
speed and mitigating plant constraint violations.

As part of future work, we will investigate the applica-
tion of both improved MA-GP schemes to larger-scale
RTO problems. Building on existing work connecting
the modifier-adaptation and trust-region frameworks (e.g.,
Bunin, 2014), we shall moreover investigate the conver-
gence properties of both schemes, including their ability
to guarantee (local) optimality upon convergence and their
global convergence properties.
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