
Master of Science in Engineering Cybernetics
June 2011
Thor Inge Fossen, ITK

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Nonlinear Observer Design for GNSS
and IMU Integration

Harald Nøkland

Nonlinear Observer Design for
GNSS and IMU Integration

Harald Nøkland
June 2011

Master’s Thesis for the Degree of
MSc in Engineering Cybernetics

Department of Engineering Cybernetics
Faculty of Information Technology,
Mathematics and Electrical Engineering
Norwegian University of Science and Technology

ii

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name:	 	 	 	 Harlad	 Nøkland	
Department: Engineering	 Cybernetics	
Thesis Title (English): Nonlinear	 Observer	 Design	 for	 GNSS	 and	 IMU	 integration
Thesis Title (Norwegian): Ulinære	 tilstandsestimatorer	 for	 GNSS	 og	 IMU	 integrasjon	

Thesis Description: The purpose of the thesis is to develop nonlinear observers for integration of
global navigation satellite system (GNSS) and low-cost inertial measurement unit (IMU) data to be
used onboard unmanned vehicles. This involves development of fault-tolerant solutions and
experimental testing of the algorithms.

The following items must be considered:

1. Literature study: Give an overview of different methods for GNSS and IMU integration.
2. Methods and software: Develop software for simulation and testing of the extended Kalman

filter (EKF) and nonlinear algorithms of Mahoney et al. and Hua. The observers should make
use of the IMU accelerometers, gyros and magnetometer measurements, GNSS positions or
pseudo-range measurements and optionally measurements for wind speed and altitude.

3. Fault tolerance: Include low-level quality check on signals such that the system is capable of
handling signal freeze, drop out, drift and wild points. Other fault-tolerant scenario should
also be considered, for instance dead-reckoning capabilities.

4. Simulator: Develop an unmanned aerial vehicle (UAS) simulator that generates all
measurements needed for numerical testing of the observer algorithms. Faults and error
handling should be simulated as events which can be triggered by an operator.

5. Experimental testing and verification: Mount the Xsens MTi-G attitude and heading reference
system and GPS antenna on a car for logging of time-series. Compare the performance of the
nonlinear observers with the build-in EKF solution (navigation filter).

6. Report: Present your findings and experimental results in the report.

Start date: 2011-‐01-‐17	
Due date: 2011-‐06-‐13

Thesis performed at: Department	 of	 Engineering	 Cybernetics,	 NTNU
Supervisor: Professor	 Thor	 I.	 Fossen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	
 	 	

iv

Abstract

In order to efficiently control an unmanned vehicle, knowledge about the position,
velocity and attitude (orientation) is needed. This thesis address this problem,
and designs a navigation system for local navigation using low-cost sensors. Two
loosely coupled GNSS/IMU integration filters are developed using a direct state
estimation approach.

The first is a quaternion based multiplicative extended Kalman filter (MEKF). A
multiplicative filter differs from the usual EKF in how the attitude is represented,
which is done by a quaternion product. The filter avoids the singular covariance
matrix caused by the constraint on the quaternion. Two versions of the filter are
developed: one using the q-method to get a measurement of the attitude; and one
using vector measurements directly.

The second is a nonlinear observer, termed HuaMahony. It is derived by combining
two nonlinear algorithms proposed by Mahony et al. and Hua. The resulting
nonlinear observer is able to estimate the linear acceleration as well as gyro bias.
The nonlinear observer is written on an EKF-like discrete-time corrector-predictor
formulation.

Both the multiplicative extended Kalman filter and the nonlinear observer are
tested and verified through simulations and experimental data. Tests are carried
out to examine how different disturbances affects the estimates and to compare the
performance results.

Simulation results shows an average dynamic accuracy of <0.5 deg RMS for the
attitude estimates, for both observers. The results from the experimental tests
shows an average roll, pitch and yaw accuracy of (0.3 0.3 2.0) and (0.8 0.7 4.4)
deg RMS for the MEKF and HuaMahony observer respectively, where it has been
assumed that the Xsens MTi-G built-in EKF estimates are the true values.

An advantage of the MEKF is quicker convergence from initial errors, while an ad-
vantage of the HuaMahony observer is less computational load. Results show that
the HuaMahony is three times faster than the MEKF when it comes to execution
time.

v

vi

Preface

This thesis is the final work of the Master of Science (MSc) program provided by
the Norwegian University of Science and Technology (NTNU). It has been carried
out at the Department of Engineering Cybernetics (ITK).

I would like to thank my supervisor professor Thor I. Fossen for his guidance. Also
I would like to thank my brother Arild Nøkland for many valuable discussions.
Finally, I would like to thank my fellow student Jakob Jakobsen for lending me the
Xsens MTi-G unit, which have been used to record experimental data.

Harald Nøkland
Trondheim, June 2011

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-Art Navigation Systems 2

1.2.1 Attitude Aiding . 2

1.2.2 Position and Velocity Aiding 3

1.2.3 Direct and Indirect Integration 3

1.2.4 Integration Filter . 4

1.3 This Thesis . 4

1.4 Contributions . 5

2 Background 7

2.1 Reference Frames . 7

2.2 Notation . 8

2.3 Transformation between BODY and NED 9

2.3.1 Quaternion Differential Equation 10

2.4 Transformation between NED and ECEF 10

2.4.1 Transformation from Cartesian to Ellipsoidal ECEF Coordi-
nates . 11

2.4.2 Transformation from Ellipsoidal to Cartesian ECEF Coordi-
nates . 12

2.5 Transformation between ECEF and ECI 12

ix

x CONTENTS

3 Sensor and Navigation Systems 13

3.1 Inertial Measurement Unit (IMU) . 13

3.1.1 Gyro measurement . 14

3.1.2 Gyro error model . 14

3.1.3 Accelerometer measurement 14

3.1.4 Accelerometer error model . 15

3.1.5 Magnetometer measurement 15

3.1.6 Magnetometer error model 16

3.2 Global Positioning System (GPS) . 16

3.2.1 NED Coordinates from Longitude and Latitude 16

3.2.2 GPS error model . 17

3.3 Xsens MTi-G . 17

3.3.1 Configuration . 18

3.3.2 Exporting Data . 18

4 The q-method 21

4.1 Derivation of the q-method algorithm 21

4.2 Using the q-method . 24

5 Extended Kalman Filter Design 27

5.1 Discrete Multiplicative Extended Kalman Filter 28

5.2 Attitude Estimation . 28

5.2.1 Assumptions . 30

5.2.2 Attitude Model . 30

5.2.3 Measurement Equation . 32

5.2.4 Discrete-Time Matrices . 32

5.2.5 Alternative Measurement Equation 33

5.3 Position, Velocity and Attitude Estimation 34

5.3.1 Assumptions . 34

5.3.2 Position, Velocity and Attitude Models 34

5.3.3 Measurement Equation . 34

5.3.4 Discrete-Time Matrices . 35

5.3.5 Alternative Measurement Equation 36

CONTENTS xi

6 Nonlinear Observer Design 39
6.1 Attitude Observer . 39

6.1.1 Discrete-Time Corrector-Predictor Formulation 40
6.2 Position, Velocity and Attitude Observer 41

6.2.1 Discrete-Time Corrector-Predictor Formulation 42

7 Simulator 45
7.1 Simulator Model . 45
7.2 Simulator Parameters and Measurement Noise 46

8 Implementation 49
8.1 Numerical Properties of Different Attitude Representations 49
8.2 Using the q-method . 50
8.3 Saturation for δε . 50
8.4 Dead-reckoning . 51
8.5 Low-Level Signal Check . 51
8.6 Magnetic Distortion Compensation 53

9 Simulation Results 55
9.1 Description of Case Studies . 56
9.2 Case 1: Perfect Data . 60
9.3 Case 2: Noise Only . 60
9.4 Case 3: Gyro Bias . 60
9.5 Case 4: Local Magnetic Disturbance 61
9.6 Case 5: Accelerometer Bias . 62
9.7 Case 6: Variable Force . 62

10 Experimental Results 65
10.1 Main Results . 68
10.2 Lever Arm Compensation . 69
10.3 Initial error . 70
10.4 Linear Accelerations . 71
10.5 Measurement Equation . 72
10.6 Execution Time . 72
10.7 GPS Outage . 73

xii CONTENTS

11 Conclusions 75

12 Further Work 77

Bibliography 79

A Matlab Code 83

A.1 Multiplicative Extended Kalman Filter 83

A.2 Multiplicative Extended Kalman Filter (q-method) 86

A.3 Nonlinear Observer HuaMahony . 88

A.4 q-method . 90

B Simulink Diagrams 91

C CD Content 95

Chapter 1

Introduction

Today all sorts of unmanned vehicles are becoming increasingly popular. Applica-
tions include data acquisition, surveillance or hazardous missions without the risk
of human lives. Currently it is widely used for military purposes, however a great
potential also exist for civilian or research purposes.

In order to efficiently control an unmanned vehicle, knowledge about the posi-
tion, velocity and attitude (orientation) is needed. This is generally provided by a
navigation system, however commercial high-quality navigation systems are rather
expensive. This motivates the development of a navigation system using low-cost
sensors. Typical inertial sensors that are used for navigation purposes are ac-
celerometers, gyros and magnetometers. Together they form an inertial measure-
ment unit (IMU). In addition, global navigation satellite systems (GNSS) are often
used, such as GPS.

1.1 Motivation

The purpose of this thesis is to develop a GNSS/IMU integrated navigation system,
using a low-cost IMU. It is to be used onboard an unmanned aerial vehicle (UAV)
in order to provide estimates of position, velocity and attitude. It is an important
part of a motion control system, which usually is divided into the following tasks
(see Figure 1.1):

• Guidance system: Path planning and trajectory generation, providing set-
points to the control system.

• Control system: Manipulating the actuators such that the setpoints are
reached.

1

2 CHAPTER 1. INTRODUCTION

• Navigation system: Keeping track of the current position, velocity and atti-
tude. Provides feedback to the control system such that it knows when the
setpoints are reached. Also it may provide feedback to the guidance system
such that it for instance can recalculate the path if the current position is
way of.

1.2 State-of-the-Art Navigation Systems

Traditional inertial navigation systems (INS) integrate the angular velocity out-
put from a gyro to get the attitude. Similarly the acceleration output from an
accelerometer is integrated once to get the velocity, and twice to get the position.
However the signal output of a low-cost IMU typically contains high noise levels
and time-varying biases, which cause an unlimited drift in the estimates (Gade
2009). To remedy this problem different aiding techniques are applied to estimate
the biases and update the position, velocity and attitude estimates.

1.2.1 Attitude Aiding

A common attitude aiding technique is to apply vector measurements of known
inertial directions. Such measurements can be obtained from: a magnetometer
which measure the Earth’s magnetic field; an accelerometer which measure the
gravity together with the acceleration of the vehicle; a star tracker which measure
the direction of a star; or a sun sensor which measure the direction of the sun.

In fact the attitude can be algebraically reconstructed if measurements of two of
more known nonparallel inertial directions are available. Wahba (1965) formulated
this as an optimization problem. An approximate solution is given by the QUEST
algorithm (Shuster and Oh 1981), while Davenport’s q-method provides an exact
solution to the optimization problem (Keat 1977). Either the algebraically recon-
structed attitude or the vector measurements can be used as an aiding technique.

AircraftControlGuidance Navigation

System System System

Estimated position, velocity and attitude

Figure 1.1: Block diagram showing how the navigation system relates to the other
tasks of a motion control system. Figure is reproduced from Fossen (2011)

1.2. STATE-OF-THE-ART NAVIGATION SYSTEMS 3

1.2.2 Position and Velocity Aiding

Advances made on global navigation satellite systems (GNSS) makes it possible
to obtain accurate measurements of position and velocity. However it depends on
good satellite coverage, and fails to give measurements during periods of signal
loss. Integrating GNSS and IMU gives a redundant navigation system capable
of handling GNSS dropouts, at least for a short period. The level of integration
of a GNSS/IMU integrated navigation system is often divided into three main
architectures based on how tight the coupling is, namely (Vik and Fossen 2001,
Schmidt and Phillips 2010):
loosely coupled is a an integration filter which makes use of GNSS position and
velocity measurements. A drawback of this design is that when the number of
visible satellites is less than four, GNSS measurements are unavailable. Examples
of loosely coupled integration filters can be found in: Fiorenzani et al. (2008),
Ellingsen (2008), Vasconcelos, Silvestre and Oliveira (2011), Vasconcelos, Cardeira,
Silvestre, Oliveira and Batista (2011), Hua (2010), Vik and Fossen (2001).
tightly coupled is a an integration filter which makes use of satellite pseudo range
measurements. An advantage of this design is that the pseudo range measurements
will provide information although there is less than four visible satellites. Another
key feature is velocity feedback to the GNSS receiver correlator loops, making a
more robust system. Examples of tightly coupled integration filter can be found
in: Wendel and Trommer (2004), Yi and Grejner-Brzezinska (2006).
deeply coupled (also named ultra-tightly) is a an integration filter which encapsulat-
ing the GNSS correlator loops. This allow the most optimal use of GNSS and IMU
raw data, making a highly robust system. Examples of deeply coupled integration
filter can be found in: Abdel-Hafez (2010), Babu et al. (2008)
Generally the performance and robustness increase with tighter integration, at the
cost of increased complexity and possible lack of redundancy (Vik n.d.).

1.2.3 Direct and Indirect Integration

In addition to the different levels of integration, there are two different ways of
choosing the modeling variables for the position, velocity and attitude known as
direct and indirect integration (Vik and Fossen 2001, Maybeck 1979):
indirect integration estimates the errors based on error models of the position,
velocity and attitude. The error estimates provided by the integration filter are
then used to update the position, velocity and attitude acquired by integration
of accelerometer and gyro outputs. The integration filter can be designed with a
slow update rate due to the slow dynamics of the error model. This method is
computational advantageous if the integration filter runs on a separate computer.
(Vik and Fossen 2001)
direct integration estimates the position, velocity and attitude directly in the inte-
gration filter. This method is advantageous when only one computer is used because

4 CHAPTER 1. INTRODUCTION

it avoids the additional propagation of an error model. However, if a Kalman filter
is used for integration, the indirect method may still be more efficient, as a high
update rate of the covariance matrix is computational intensive. (Vik and Fossen
2001)

1.2.4 Integration Filter

The the body-fixed measurements of angular velocity and acceleration is related
to the position, velocity and attitude through differential equations, known as the
strapdown inertial navigation equations (Vik n.d.). The equations are nonlinear,
thus nonlinear algorithms are most suitable for integration of GNSS and IMU.
Usually an extended Kalman filter (EKF) is used, but other methods are also
used.

A survey of modern nonlinear attitude estimation methods is presented in Cras-
sidis et al. (2007). There has recently been an increasingly interest for nonlinear
observers (Vik and Fossen 2001, Mahony et al. 2008, Martin and Salaün 2008, Hua
2010, Fossen 2011, Vasconcelos, Cardeira, Silvestre, Oliveira and Batista 2011).
Nonlinear observers offer an easier to tune and less computational alternative to
the EKF. In addition stronger proofs of stability and convergence can be achieved.

1.3 This Thesis

This thesis designs a navigation system for local navigation using low-cost sensors.
Two loosely coupled GNSS/IMU integration filters are developed using a direct
state estimation approach.

The first is a quaternion based multiplicative extended Kalman filter (Markley
2003). A multiplicative filter differs from the usual EKF in how the attitude is
represented, which is done by a quaternion product. The filter avoids the singular
covariance matrix caused by the constraint on the quaternion. Two versions of the
filter are developed: one using the q-method to get a measurement of the attitude;
and one using vector measurements directly.

The second is a nonlinear observer. It is derived by combining two nonlinear
algorithms proposed by Hua (2010) and Mahony et al. (2008). The advantage of
Hua (2010), which is linear acceleration estimation, is combined with the advantage
of Mahony et al. (2008), which is gyro bias estimation. The nonlinear observer is
formulated on an EKF-like discrete-time corrector-predictor form.

Both the extended Kalman filter and the nonlinear observer are tested and veri-
fied through simulations and experimental data. Tests are carried out to examine
how different disturbances affects the estimates. and to compare the performance
results. It is desirable to find out whether the nonlinear observer can provide
competitive performance compared to the extended Kalman filter.

1.4. CONTRIBUTIONS 5

1.4 Contributions

The main contributions and work done in this thesis are:

Chapter 1: Literature study and learning about existing methods.

Chapter 3: Coding of a C-program which can decode and extract data from the
experimentally recorded binary log files.

Chapter 4: Derivation of the q-method in a slightly different way compared to
Keat (1977). Coding of the q-method in Matlab.

Chapter 5: The multiplicative extended Kalman filter is described in Markley
(2003). However this thesis derives a different attitude model based on a
discrete-time approach. Another contribution is the derivation of an analytic
vector expression (5.21) and (5.17) for the partial derivative of the rotation
matrix with respect to the vector part of the quaternion, when the rotation
matrix is parametrized by the error quaternion (5.2). I suppose someone
already have done this, but I have not been able to find it.

Chapter 6: Design of a nonlinear observer by using nonlinear algorithms of Hua
(2010) and Mahony et al. (2008). In addition writing the nonlinear observer
on a discrete-time corrector-predictor formulation.

Chapter 7: Simulink implementation of the simulator.

Chapter 8: Matlab implementation of the nonlinear observers, including methods
to handle different sampling rates of GNSS and IMU, dead-reckoning and
other fault tolerant solutions.

Chapter 9: Testing and verification through simulations.

Chapter 10: Recording of experimental data and testing.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter contains a brief summary of navigation fundamentals. This is based
on Fossen (2011) and Vik (n.d.).

2.1 Reference Frames

The different reference frames used here are described as follows:

ECI

The Earth-Centered Inertial (ECI) frame {i} = (xi, yi, zi) is an inertial frame fixed
in space. The origin of {i} is located at the center of the Earth. It is defined with
the x-axis pointing towards the vernal equinox, and the z-axis pointing along the
Earth’s rotation axis. The y-axis completes the right handed orthogonal coordinate
system.

ECEF

The Earth-Centered Earth-Fixed (ECEF) frame {e} = (xe, ye, ze) has its origin
fixed to the center of the Earth. It is defined with the x-axis pointing towards
the intersection of 0◦ longitude (Greenwich meridian) and 0◦ latitude (Equator).
The z-axis points along the Earth’s rotation axis, and the y-axis complete the right
handed orthogonal coordinate system. The ECEF frame rotates relative to the ECI
frame with the Earth rotation rate ωe = 7.2921 · 10−5 rad/s. Both Cartesian and
ellipsoidal coordinates (longitude, latitude, height) are used to represent position
in the ECEF frame.

7

8 CHAPTER 2. BACKGROUND

Table 2.1: Overview over velocity and angular velocity vector
Frame Vector Comment
BODY vbb/n = [u, v, w] Surge, sway and heave.
BODY/NED ωbb/n = [p, q, r] Roll, pitch and yaw rate
NED vnb/n = [vN , vE , vD] North, east and down velocity
NED/ECEF ωnn/e = [ωN , ωE , ωD] Function of change in long. and lat.
ECEF veb/e = [vxe

, vye
, vze

] Velocity in frame given by GPS
ECEF/ECI ωee/i = [0, 0, ωe] ωe is angular velocity of Earth

NED

The North East Down (NED) frame {n} = (xn, yn, zn) is defined relative to the
Earth’s reference ellipsoid (World Geodetic System 1984). The z-axis points down-
ward perpendicularly to the tangent plane of the ellipsoid, and the x-axis points
towards true north. The y-axis point towards east to complete the orthogonal
coordinate system.

BODY

The body-fixed reference frame {b} = (xb, yb, zb) is a moving and rotating coordi-
nate frame that is fixed to the vehicle. The x-axis points in the forward direction,
the y-axis to the right side and the z-axis downward. The position and orientation
of the vehicle are described relative to the inertial frame (approximated by {n} for
local navigation).

2.2 Notation

Throughout this thesis vectors are written in bold, while matrices are written in
capital letters, non-bold. The vectors have superscripts denoting which frame it
is decomposed in. In addition some vectors have subscripts showing which frames
the vector is relative to. Consider the following examples

vnb/n = linear velocity of {b} with respect to {n} expressed in {n}

ωbb/n = angular velocity of {b} with respect to {n} expressed in {b}
peb/e = position of {b} relative to {e} expressed in {e}

An overview of some common vectors are given in the Tables 2.1 and 2.2.

2.3. TRANSFORMATION BETWEEN BODY AND NED 9

Table 2.2: Overview over position and attitude vectors
Frame Vector Comment
BODY/NED q = [η, ε1, ε2, ε3] Orientation of BODY relative to NED
NED pnb/n = [N,E,D] NED position
NED/ECEF Θen = [l, µ] Orientation of NED relative to ECEF
ECEF peb/e = [x, y, z] ECEF position

2.3 Transformation between BODY and NED

The attitude is represented by the singularity free unit quaternion

q =

η
ε1
ε2
ε3

 =
[
η
ε

]
(2.1)

where η is the real part and ε is the imaginary part. A unit quaternion satisfies
qTq = 1. The inverse unit quaternion

q−1 =
[

η
−ε

]
(2.2)

represent a rotation in the opposite direction. The quaternion product of two unit
quaternions is also a unit quaternion

q1 ⊗ q2 =
[

η1η2 − εT1 ε2
η1ε2 + η2ε1 + ε×1 ε2

]
(2.3)

which represent a composite rotation. A rotation matrix R ∈ SO(3) has the
following properties

RTR = RRT = I, detR = 1, R−1 = RT (2.4)

The rotation matrix from BODY to NED is given by

Rnb (q) = I3×3 + 2ηS(ε) + 2S2(ε) (2.5)

where S is the skew-symmetric matrix

S(x) = −ST (x) = x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (2.6)

It is worth mentioning that q and−q represent the same rotation matrix. Hence,
the unit quaternions have double coverage of SO(3).

10 CHAPTER 2. BACKGROUND

2.3.1 Quaternion Differential Equation

Given the body-fixed angular velocity vector ωbb/n = [p q r]T , the differential
equation for the quaternion can be written as

q̇ = 1
2T (q)ωbb/n (2.7)

T (q) =

−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 =
[

−εT
ηI3×3 + S(ε)

]
(2.8)

or alternatively

q̇ = 1
2Ω(ωbb/n)q (2.9)

Ω(ωbb/n) =

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

 =
[

0 −(ωbb/n)T
ωbb/n −S(ωbb/n)

]
(2.10)

or alternatively

q̇ = 1
2q ⊕

[
0

ωbb/n

]
(2.11)

2.4 Transformation between NED and ECEF

The rotation matrix from NED to ECEF is given by

Ren(Θen) =

 −sin(µ) cos(l) −sin(l) −cos(µ) cos(l)
−sin(µ) sin(l) cos(l) −cos(µ) sin(l)

cos(µ) 0 −sin(µ)

 (2.12)

where the vector Θen = [l, µ]T consist of the longitude l and latitude µ.

2.4. TRANSFORMATION BETWEEN NED AND ECEF 11

Table 2.3: WGS-84 parameters
Parameter Comments
re = 6 378 137 m Equatorial radius of ellipsoid (semi-major axis)
rp = 6 356 752 m Polar axis radius of ellipsoid (semi-minor axis)
ωe = 7.292115 · 10−5 rad/s Angular velocity of the Earth
µg = 398 600.5 · 109 m3/s2 Gravitational constant of Earth
e = 0.0818 Eccentricity of ellipsoid

2.4.1 Transformation from Cartesian to Ellipsoidal ECEF
Coordinates

The measurements of satellite navigation systems (GPS, etc) are often presented
as the ellipsoidal parameters longitude l, latitude µ and height h. The reference
ellipsoid used for satellite navigation systems is WGS-84. The most important
parameters of the ellipsoid are listed in Table 2.3. The transformation from Carte-
sian coordinates (xe, ye, ze) to longitude, latitude and height (l, µ, h) is usually done
iteratively. The longitude can easily be found from

l = arctan
(
ye
xe

)
(2.13)

The latitude and height can be found using the following algorithm:

1. Compute p =
√
x2
e + y2

e and e =
√

1− r2
p

r2
e

2. Compute the approximate value µ(0) from

tan(µ(0)) = ze
p

(
1− e2)−1 (2.14)

3. Compute an approximate value N(0) from

N(0) = r2
e√

r2
e cos2(µ(0)) + r2

p sin2(µ(0))
(2.15)

4. Compute the ellipsoidal height by

h = p

cos(µ(0))
−N(0) (2.16)

5. Compute an improved value for the latitude by

tan(µ) = ze
p

(
1− e2 N(0)

N(0) + h

)−1
(2.17)

12 CHAPTER 2. BACKGROUND

6. Check for another iteration step: if µ = µ(0) then the iteration is completed.
Otherwise set µ(0) = µ and continue with step 3.

2.4.2 Transformation from Ellipsoidal to Cartesian ECEF
Coordinates

The transformation from longitude, latitude and height (l, µ, h) to Cartesian coor-
dinates (xe, ye, ze) is given by

 xe
ye
ze

 =

 (N + h) cos(µ) cos(l)
(N + h) cos(µ) sin(l)

(r
2
p

r2
e
N + h) sin(µ)

 (2.18)

where N is the radius of curvature in prime vertical obtained from

N = r2
e√

r2
e cos2(µ) + r2

p sin2(µ)
(2.19)

2.5 Transformation between ECEF and ECI

The rotation matrix from ECEF to ECI is given by

Rie(ωeiet) =

 cos(ωet) −sin(ωet) 0
sin(ωet) cos(ωet) 0

0 0 1

 (2.20)

where ωe is the Earth rotation rate (see Table 2.3).

Chapter 3

Sensor and Navigation
Systems

Typical inertial sensors that are used for navigation purposes are accelerome-
ters, gyros and magnetometers. Together they form an inertial measurement unit
(IMU). In addition, global navigation satellite systems (GNSS) are often used.
Several GNSS systems exists, such as GPS (American), GLONASS (Russian) and
GALILEO (European). This chapter describes what the IMU and GPS measures
and the mathematical modeling of those measurements. The device used in this
thesis is the Xsens MTi-G unit (Xsens 2009d).

3.1 Inertial Measurement Unit (IMU)

The IMU contains a cluster of three gyros, three accelerometers and three mag-
netometers that measures angular velocity, acceleration and magnetic field respec-
tively (see Figure 3.1).

ab
imu = [ax, ay, az]

TIMU
Accelerometer

Gyro

Magnetometer

ωb
imu = [ωx, ωy, ωz]

T

mb
imu = [mx,my,mz]

T

Figure 3.1: Block diagram showing the IMU assembly and its signals.

13

14 CHAPTER 3. SENSOR AND NAVIGATION SYSTEMS

3.1.1 Gyro measurement

An error free gyro (gyroscope) measure the angular velocity of the body frame
relative to the inertial frame about the sensor axis. Thus a cluster of three gyros
with the sensor axes mounted orthogonal and aligned with the body axes measures
the three component vector

ωbb/i = ωbe/i + ωbn/e + ωbb/n (3.1)

where ωbe/i is the Earth’s rotation rate, ωbn/e is a function of change in longitude
and latitude, and ωbb/n is the roll, pitch and yaw rate. However the gyro used in this
thesis is not accurate enough to measure the Earth’s rotation rate nor the transport
rate over the curved Earth surface if the gyro has a velocity (Xsens 2009d). For
local navigation we consider NED to be the inertial frame, that is the NED frame
is not moving, and use the approximation

ωbb/i ≈ ω
b
b/n (3.2)

3.1.2 Gyro error model

Assuming small scale-factor errors and small misalignment errors, the gyro output
can be modeled as (Fossen 2011):

ωbimu ≈ ωbb/n + bbgyro +wgyro (3.3)

where bbgyro = [bp bq br]T represent gyro bias in roll, pitch and yaw rate, and
wgyro ∈ R3 is bounded unmodeled errors and measurement noise. The bias is
modeled as a slowly time-varying disturbance

ḃ
b

gyro = wbgyro (3.4)

where wbgyro ∈ R3 is Gaussian white noise.

3.1.3 Accelerometer measurement

An error free accelerometer measure the specific force on the body frame along the
sensor axis. Thus a cluster of three accelerometers with the sensor axes mounted
orthogonal and aligned with the body axes measures the three component vector

f b = abb/i −R
b
ng

n (3.5)

3.1. INERTIAL MEASUREMENT UNIT (IMU) 15

where abb/i is the linear acceleration of the moving body with respect to {i} ex-
pressed in {b}, and gn ≈ [0 0 9, 81]T m/s2 is known as plumb bob gravity.
For local navigation we consider NED to be the inertial frame, that is the NED
frame is not moving, and use the approximation

abb/i ≈ a
b
b/n (3.6)

3.1.4 Accelerometer error model

Assuming small scale-factor errors and small misalignment errors, the accelerometer
output can be modeled as (Fossen 2011):

f bimu ≈ abb/n −R
b
ng

n + bbacc +wacc (3.7)

or alternatively

f bimu ≈ Rbn[v̇nb/n − gn] + bbacc +wacc (3.8)

where bbacc = [bu bv bw]T represent accelerometer bias in x, y and z direction,
and wacc ∈ R3 is bounded unmodeled errors and measurement noise. The bias is
modeled as a slowly time-varying disturbance

ḃ
b

acc = wbacc (3.9)

where wbacc ∈ R3 is Gaussian white noise.

3.1.5 Magnetometer measurement

An error free magnetometer measure the strength of the magnetic field along the
sensor axis. Thus a cluster of three magnetometers with the sensor axes mounted
orthogonal and aligned with the body axes measures the three component vector

mb = Rbnm
n (3.10)

where mn = [mN mE mD]T represent the magnitude and direction of the
Earth’s magnetic field. The magnetic field is different around the globe and in
fact time-varying as well. In our area (Trondheim, Norway) it is approximately
mn ≈ [13 605 439 49 864]T nT, which is found from an online calculator1.

1http://ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp

http://ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp

16 CHAPTER 3. SENSOR AND NAVIGATION SYSTEMS

GPS

l, µ, h

vngps = [vN , vE , vD]T

pngps = [N,E,D]TTransform l, µ, h

to N,E,D

l0, µ0, h0

Figure 3.2: Block diagram showing the GPS signals, and the transformation to
NED coordinates.

3.1.6 Magnetometer error model

Assuming small scale-factor errors and small misalignment errors, the magnetome-
ter output can be modeled as (Fossen 2011):

mb
imu ≈ Rbnmn + bbmag +wmag (3.11)

where bbmag is the local magnetic disturbance, and wmag ∈ R3 is bounded unmod-
eled errors and measurement noise. The local magnetic disturbance is modeled as
a slowly time-varying disturbance

ḃ
b

mag = wbmag (3.12)

where wbmag ∈ R3 is Gaussian white noise.

3.2 Global Positioning System (GPS)

A GPS measures/calculates the position and velocity in the ECEF frame. The
position is usually presented as the ellipsoidal parameters longitude l, latitude µ
and height h over ellipsoid (WGS84), while the velocity is usually presented in
NED. For local navigation we consider NED to be the inertial frame, thus we need
to transform the GPS position measurement to NED coordinates. This can be done
by assigning the origin of the NED frame to a fixed point in ECEF. The following
GPS measurements are then calculated with respect to this point (see Figure 3.2).

3.2.1 NED Coordinates from Longitude and Latitude

The GPS measurement can be transformed to NED coordinates by the following
steps:

3.3. XSENS MTI-G 17

1. Determine longitude, latitude and height of reference point (l0, µ0, h0) and
calculate the corresponding ECEF coordinates pe0 := pen/e by using (2.18).
This will be the origin of the NED frame.

2. Transform the GPS measurement to ECEF coordinates peb/n by using (2.18)
and calculate the displacement in NED by

pnb/n = Ren(l0, µ0)T [peb/e − pe0] (3.13)

3.2.2 GPS error model

Assuming that the GPS position measurement has been transformed to NED co-
ordinates, the GPS output can be modeled as (Fossen 2011):

pngps = pnb/n +Rnb r
b
ant +wpos (3.14)

vngps = vnb/n +Rnb S(ωbb/n)rbant +wvel (3.15)

where rbant is the location of the antenna andwpos,wvel ∈ R3 is bounded unmodeled
errors and measurement noise.

3.3 Xsens MTi-G

The device used in this thesis is the Xsens MTi-G (see Figure 3.3). It contains a
three-axis IMU (see Table 3.1), a GPS receiver and a barometer. Sampling rates
for the IMU and GPS is 100 Hz and 4 Hz respectively The unit also have a built-in
extended Kalman filter (EKF) which provides estimates of position, velocity and
attitude (see Table 3.2). These estimates is considered to be the true values during
experimental testing of the nonlinear observers developed in this thesis. The MT
Manger application can log data from the unit to a binary file (.mtb). MTB files
can later be exported to ASCII text data. More information about the unit can be
found in the user manual Xsens (2009d).

Figure 3.3: The Xsens MTi-G with GPS antenna

18 CHAPTER 3. SENSOR AND NAVIGATION SYSTEMS

Table 3.1: Calibrated IMU data performance specification. Reproduced from Xsens
(2009d).

Gyro Accelerometer Magnetometer
Dimensions 3 axes 3 axes 3 axes
Full Scale ±300 deg/s ±50 m/s2 ±750 mGauss
Linearity 0.1 % 0.2 % 0.2 %
Bias stability (1σ) 1 deg/s 0.02 m/s2 0.1 mGauss
Scale-factor stability
(1σ)

- 0.03 % 0.5 %

Noise 0.05 deg/s/√Hz 0.002 m/s2/√Hz 0.5 mGauss (1σ)
Alignment error 0.1 deg 0.1 deg 0.1 deg
Bandwidth 40 Hz 30 Hz 10 Hz

Table 3.2: Performance specification of the Xsens MTi-G built-in EKF. Reproduced
from Xsens (2009d).

Roll/Pitch Yaw Position
Static accuracy < 0.5 deg RMS < 1 deg RMS 2.5 m CEPDynamic accuracy 1 deg RMS 2 deg RMS

3.3.1 Configuration

MT Manager has been configured to log RAW inertial and GPS PVT data mes-
sages. This is the most powerful option as it is possible to reprocess the data with
different EKF scenarios. The main difference between these scenarios is which sen-
sors and assumptions are used in the EKF. The aerospace nobaro2 scenario has
been chosen. It makes use of the accelerometer, gyro, magnetometer and GPS.
The sampling rate for the EKF is set to 100 Hz.

3.3.2 Exporting Data

It is easy to export MTB files to ASCII text data with the MT Manger (Xsens
2009c). Table 3.3 contains a overview of the data directly exported from MT
Manger. The IMU measurements are factory calibrated with respect to misalign-
ment, scale-factor and temperature. The calibrated data is unprocessed, i.e. only
the physical calibration model is applied to the AD-converters. There is no addi-
tional filtering applied to the data.

MT Manger does not support export of all data of interest, i.e. unprocessed GPS
position and velocity data. Therefore, a custom C-program that decodes the mes-
sages in the binary file and exports them to ASCII text data was made (source
code is included on the CD). Table 3.4 contains an overview of the data of interest.

2see Xsens (2009d)

3.3. XSENS MTI-G 19

Table 3.3: Data exported from MT Manager
Data Comment/Unit
Cal Accelerometer acceleration (m/s2)
Cal Gyro angular velocity (rad/s)
Cal Magnetometer magnetic field (arbitrary units) normalized to earth field

strength
EKF Attitude quaternion
EKF Position longitude (deg), latitude (deg) and height (m)
EKF Velocity NED velocity (m/s)

Table 3.4: Data extracted with custom C-program
Data Comment/Unit
GPS Position longitude (deg), latitude (deg) and height (m)
GPS Velocity NED velocity (m/s)
GPS Fix true/false
GPS age when the value decrease, new GPS data is available

For more information about the structure of the MTB file and different messages
see Xsens (2009b).

20 CHAPTER 3. SENSOR AND NAVIGATION SYSTEMS

Chapter 4

The q-method

Davenport’s q-method is an algorithm which determine the attitude from a set of
vector measurements (Keat 1977, Shuster and Oh 1981). It can be described as
finding a rotation matrix which satisfies

rni = Rnb b
b
i i = 1, ...,m (4.1)

where rn1 , ..., rnm are a set of reference unit vectors, which are m known directions
(e.g. the direction of the gravity force or the Earth’s magnetic field) in the NED
coordinate system, and {bb1, ..., b

b
n} are the observation unit vectors, which are

the same m directions measured in the body coordinate system. In order for
the rotation matrix to be fully determined there must be at least two nonparallel
measurements. This can be formulated as an optimization problem where we wish
to find an optimal Rnb that minimizes the objective function

f(Rnb) = 1
2
∑

ai|rni −Rnb b
b
i |2 (4.2)

where a1, ..., am are a set of non-negative weights.

4.1 Derivation of the q-method algorithm

The derivation shown here is inspired by Keat (1977) and Shuster and Oh (1981),
but it is not identical. Superscripts will be dropped in the following for simplicity.
The q-method transforms the objective function into a quadratic function in the
quaternion, then solves this to get the optimal quaternion describing the attitude.
First we can rewrite the objective function as:

21

22 CHAPTER 4. THE Q-METHOD

f(R) = 1
2
∑

ai|ri −Rbi|2

= 1
2
∑

ai[ri −Rbi]T [ri −Rbi]

= 1
2
∑

ai(rTi ri − rTi Rbi − b
T
i R

Tri − biRTRbi)

= 1
2
∑

ai(−2rTi Rbi)

= −
∑

air
T
i Rbi (4.3)

where it is used that RRT = I. Terms independent of R has been canceled since
they don’t affect the optimal R. The rotation matrix R can be expressed as a
function of the quaternions (2.5):

R(q) = I3×3 + 2ηε× + 2ε×ε×

= I3×3 + 2ηε× + 2εεT − 2εT εI3×3

= η2I3×3 + 2ηε× + 2εεT − εT εI3×3 (4.4)

where it is used that ε×ε× = εεT − εT εI3×3 and η2 + εT ε = 1. By inserting
(4.4) into (4.3) the objective function can now be written as a function of the
quaternions:

f(q) = −
∑

air
T
i [η2I3×3 + 2ηε× + 2εεT − εT εI3×3]bi

= −
∑

ai(η2rTi bi + 2ηrTi ε×bi + 2rTi εεT bi − εT εrTi bi)

= −
∑

ai(η2rTi bi − η(r×i bi)
T ε− ηεT (r×i bi) + ...

εTrib
T
i ε+ εT birTi ε− εT εrTi bi)

= −η2σ + ηzT ε+ ηεTz − εTSε+ εT εσI3×3

=
[
η εT

] [−σ zT

z −S + σI3×3

] [
η
ε

]
= qTKq (4.5)

where the introduced variables are

4.1. DERIVATION OF THE Q-METHOD ALGORITHM 23

B =
∑

airib
T
i (4.6)

σ = tr(B) =
∑

air
T
i bi (4.7)

S = B +BT =
∑

ai(ribTi + birTi) (4.8)

z =
∑

ai(r×i bi) (4.9)

K = KT =
[
−σ zT

z −S + σI3×3

]
(4.10)

The optimization problem has been reduced to

min
q∈R4

f(q) = qTKq (4.11)

s.t.

qTq − 1 = 0 (4.12)

The Lagrangian function and it’s gradient for the problem is

L(q, λ) = qTKq − λ(qTq − 1) (4.13)
OqL(q∗, λ∗) = 2Kq∗ − 2λ∗q∗ (4.14)

where the superscript ∗ denotes the optimal value and λ is the Lagrange multiplier.
The first order optimality conditions often known as the KKT-conditions becomes
(Nocedal and Wright 2006)

Kq∗ = λ∗q∗ (4.15)
(q∗)Tq∗ = 1 (4.16)

Thus, the optimal point q∗ must be an eigenvector of K with λ∗ as the corre-
sponding eigenvalue. Equation (4.15) is independent of the normalization of q∗
and, therefore, (4.16) does not determine λ∗. However, by examining the objective
function in the optimal point

f(q∗) = (q∗)TKq∗ = λ∗(q∗)Tq∗ = λ∗ (4.17)

it’s seen that f will be minimized when λ∗ is the smallest eigenvalue of K. Hence
the optimal point q∗ is the eigenvector of K belonging to the smallest eigenvalue
of K.

Kq∗ = λminq
∗ (4.18)

The q-method algorithm can be summarized as follows:

24 CHAPTER 4. THE Q-METHOD

• Compute the symmetric 4×4 matrix K

• Compute the normalized eigenvector belonging to the smallest eigenvalue of
K

4.2 Using the q-method

The direction of the gravity gn and the Earth’s magnetic field mn is known, and
can be assumed to be constant for local navigation. Under a weak acceleration as-
sumption (v̇nb/n ≈ 0), the magnetometer and accelerometer gives us two observation
vectors mb and gb respectively. By solving the objective function

f(Rnb (q)) = a1|mn −Rnb (q)mb|2 + a2|gn −Rnb (q)gb|2 (4.19)

we get a measurement of the optimal unit quaternion describing the attitude (see
Figure 4.1). Afterwards a loosely coupled Kalman filter can be used to filter the
measurements. It is important that the corresponding vectors have equal length.
Preferable should all vectors be unit vectors, because this gives more intuitive
weighting between the terms.

The q-method, as it is derived here, has been implemented and tested in Matlab.
The code is given in the Appendix. To verify the method, a wide range of attitudes
with their associated observation vectors have been generated. In Figure 4.2 it can
be seen that the calculated quaternion follows the true quaternion exactly. In this
case it was not added any noise to the observation vectors. When the observation
vectors are corrupted by noise, the determined attitude is noisy as well (see Figure
4.3), which shows the need of additional filtering.

abimu

IMU q-method
mb

imu

mn gn

q

Figure 4.1: Block diagram showing the q-method signal flow.

4.2. USING THE Q-METHOD 25

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Quaternion

et
a

η

true
q−method

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ep
s1

 ε
1

true
q−method

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ep
s2

 ε
2

true
q−method

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time [sec]

ep
s3

 ε
3

true
q−method

Figure 4.2: Verification of the q-method implementation.

26 CHAPTER 4. THE Q-METHOD

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Quaternion

et
a

η

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ep
s1

 ε
1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ep
s2

 ε
2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time [sec]

ep
s3

 ε
3

true
q−method

true
q−method

true
q−method

true
q−method

Figure 4.3: The effect of noisy observation vectors.

Chapter 5

Extended Kalman Filter
Design

The linear Kalman filter (KF) is simply an algorithm which produce optimal min-
imum variance estimates, under the assumptions of Gaussian white noise and a
linear observable system. However, as the inertial navigation equations are nonlin-
ear the extended Kalman filter (EKF) will be used, which is the nonlinear variant
of the usual KF. In the EKF the nonlinear system is linearized about the currently
best estimate. It is commonly used in inertial navigation and many other fields.
Stability and convergence of the EKF has been proven in Jouffroy and Fossen
(2010), under the assumption of a lower and upper bounded covariance matrix.

In this chapter an extended Kalman filter for integration of GPS and IMU is
derived. The goal is to estimate the position, velocity and attitude. The attitude
will be represented by the singularity free unit quaternion. Special care must
be taken when designing a quaternion based extended Kalman filter (Vik n.d.).
Because of the constraint on the quaternions, the covariance matrix P will be
singular, and hence has an eigenvalue equal to zero. To maintain this singularity is
very difficult due to the accumulation of round-off errors in a numerical filter. In
fact, this zero eigenvalue can even become negative and the filter becomes unstable.
There exist several methods to deal with this singular covariance matrix. Most of
them tries to reduce the dimension so that three parameters are used instead of
four to describe the covariance of the four quaternions. The multiplicative extended
Kalman filter (MEKF) handles this in an elegant way.

27

28 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

5.1 Discrete Multiplicative Extended Kalman Fil-
ter

This section contains a brief introduction to the multiplicative extended Kalman
filter (MEKF), a more in depth explanation can be found in Markley (2003). The
attitude is represented as the quaternion product

q = q̂ ⊗ δq(δε) ⇔ Rnb (q) = Rn
b̂
(q̂)Rb̂b(δq) (5.1)

where q̂ is some unit reference quaternion, representing the rotation from the ref-
erence frame {b̂} to the NED frame {n}. Moreover

δq(δε) =
[√

1− δεT δε
δε

]
(5.2)

is the attitude error, representing the rotation from the body frame {b} to the
reference frame {b̂}. The MEKF computes an unconstrained estimate of the three-
component δε, while using the four-component q̂ to provide a globally non-singular
attitude representation.

The filter proceeds in three steps: time propagation, measurement update, and
reset. The discrete measurement update assigns a finite post-update value to δε̂k.
In order to avoid the need to propagate two representations of the attitude, the
reset operation moves the attitude information from δε̂k to q̂k, then δε̂k is reset to
zero. Since true quaternion is not changed by this operation, (5.1) requires

q̂k−1 ⊗ δq(δε̂k) = q̂k ⊗ δq(0) = q̂k (5.3)

Given the discrete nonlinear system on the form

xk+1 = fk(xk,uk) + Γkwk (5.4)
yk = hk(xk) + vk (5.5)

the discrete multiplicative extended Kalman filter algorithm can be summarized in
Table 5.1.

5.2 Attitude Estimation

In this section we want to design a discrete multiplicative extended Kalman filter
for attitude estimation. By integrating attitude measurements and gyro measure-
ments, we achieve two things:

5.2. ATTITUDE ESTIMATION 29

Table 5.1: Discrete Multiplicative Extended Kalman Filter

Design matrices Qk = E[wkw
T
k] = cov(wk) ≈ σ2

wk
I

Rk = E[vkvTk] = cov(vk) ≈ σ2
vk
I

Initial conditions x̄0 = x0
P̄0 = P0 = E[(x0 − x̂0)(x0 − x̂0)T]
q̂0 = q0

Hk = ∂hk

∂xk

∣∣∣
xk=x̄k

Kalman gain matrix Kk = P̄kH
T
k [HkP̄kH

T
k +Rk]−1

State estimate update x̂k = x̄k +Kk[y − h(x̄k)]
Error covariance update P̂k = [I −KkHk]P̄k[I −KkHk]T +KkRkK

T
k

Move error q̂k = q̂k−1 ⊗ δq(δε̂k)
Reset error δε̂k = 0

Φk = ∂fk

∂xk

∣∣∣
xk=x̂k

State estimation propagation x̄k+1 = fk(x̂k,uk)
Error covariance propagation P̄k+1 = ΦkP̂kΦTk + ΓkQkΓTk

30 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

• Low-pass filtering of the attitude measurements

• High-pass filtering of the gyro measurements

5.2.1 Assumptions

For this section we make the following assumptions:

• The vehicle has constant speed v̇nb/n = 0 and the accelerometer bias is zero
bbacc = 0. These states are not observable without an additional position or
velocity measurement. Later these assumptions will be relaxed.

• The local magnetic disturbance is zero bbmag = 0. For a well calibrated mag-
netometer, this is a reasonable assumption.

Consequently, we can write the accelerometer (3.8) and magnetometer (3.11) model
as

f bimu = −gb +wacc (5.6)
mb

imu = mb +wmag (5.7)

5.2.2 Attitude Model

The time-derivative of δq is found by differentiating

δq = q̂−1 ⊗ q (5.8)

which is from the definition in (5.1). Considering that the resulting model will be
used in a discrete-time filter, one can argue that because there is no time propaga-
tion of q̂ in the discrete filter, q̂ will be constant between each sample. Hence we
can treat q̂ as a constant when differentiating. This means that the change in the
error quaternion equals the change in the true quaternion. The following show the
derivation of the time-derivative of δq:

5.2. ATTITUDE ESTIMATION 31

δq̇ =
[
δη̇
δε̇

]
= q̂−1 ⊗ q̇

= 1
2 q̂
−1 ⊗ q ⊗

[
0

ωbb/n

]
= 1

2δq ⊗
[

0
ωbb/n

]
= 1

2Ω(ωbb/n)δq

= 1
2

[
0 −(ωbb/n)T

ωbb/n −S(ωbb/n)

] [√
1− δεT δε
δε

]
(5.9)

which gives the following vector part

δε̇ = 1
2[ωbb/n

√
1− δεT δε− S(ωbb/n)δε]

= 1
2 [I3×3

√
1− δεT δε+ S(δε)]ωbb/n (5.10)

Because of the unit constraint on the error quaternion, it can be constructed from
the vector part an any time. Thus it is sufficient to only estimate the vector part
in the filter. In fact, this kind of model reduction is the goal in order to avoid the
singular covariance matrix.

For each iteration in the filter, the attitude information in the error quaternion will
be moved to q̂, in the reset operation. This ensures that the real part of the error
quaternion will be small. Consequently, the possible problems of a model reduction
discussed in Vik (n.d.), Lefferts and Schuster (1982) are efficiently avoided.

Finally, the state variables in the filter are chosen to be x = [δε1, δε2, δε3, bp, bq, br]
= [δε, bbgyro] and the input is u = ωbimu. Substituting (3.3) into (5.10), together
with (3.4) the attitude model can be written as

[
δε̇

ḃ
b

gyro

]
︸ ︷︷ ︸

ẋ

=
[1

2 [I3×3
√

1− δεT δε+ S(δε)][ωbimu − b
b
gyro]

03×1

]
︸ ︷︷ ︸

f(x,u)

+ I6×6︸︷︷︸
Γ

[
wgyro
wbgyro

]
︸ ︷︷ ︸

w

(5.11)

where w ∈ R6 is Gaussian white noise with zero mean and variance σ2
w.

32 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

5.2.3 Measurement Equation

By using the q-method, we get a measurement of the attitude q. Input to the q-
method is the magnetometer and accelerometer (recall from section 4.2). We calcu-
late δε by using (5.8), then extracting the three last elements. Another approach
is to change the reference vectors to mb̂ = Rb̂n(q̂−1)mn and gb̂ = Rb̂n(q̂−1)gn,
then the q-method will calculate δε directly. In either way we get the following
measurement equation

y = δεqmetod = δε︸︷︷︸
h(x)

+ wε︸︷︷︸
v

(5.12)

where v ∈ R3 is Gaussian white noise with zero mean and variance σ2
v .

5.2.4 Discrete-Time Matrices

Discretizing the system with the Euler method gives

xk+1 = xk + hf(xk,uk)︸ ︷︷ ︸
fk(xk,uk)

+ hΓ︸︷︷︸
Γk

wk (5.13)

yk = h(xk)︸ ︷︷ ︸
hk(xk)

+vk (5.14)

The discrete-time matrices needed in the filter becomes

Qk ≈ σ2
wk
I6×6

Rk ≈ σ2
vk
I3×3

fk(x̂k,uk) = x̂k + h

[
1
2 [ωbimu − b̂

b

gyro]
03×1

]

Φk = ∂fk
∂xk

∣∣∣∣
xk=x̂k

= I6×6 + h

[
− 1

2S(ωbimu − b̂
b

gyro) − 1
2I3×3

03×3 03×3

]
Γk = hI6×6

Hk = ∂hk
∂xk

∣∣∣∣
xk=x̄k

=
[
I3×3 03×3

]
where the filter property that δε̂k = 0 has been used.

5.2. ATTITUDE ESTIMATION 33

5.2.5 Alternative Measurement Equation

Instead of using the q-method, we can use the magnetometer (5.7) and accelerom-
eter (5.6) directly in the measurement equation. After inserting (5.1) it looks like
this

y =
[

mb
imu

f bimu

]
=
[

Rb̂b(δq)TRn
b̂
(q̂)Tmn

−Rb̂b(δq)TRn
b̂
(q̂)Tgn

]
︸ ︷︷ ︸

h(x)

+
[
wmag
wacc

]
︸ ︷︷ ︸

v

(5.15)

where v ∈ R6 is Gaussian white noise with zero mean and variance σ2
v . We need

to develop an expression for the linearized measurement matrix Hk. This involves
linearizing the transposed rotation matrix, which is a bit complicated. To make it
easier to see how the Jacobian is calculated we can temporarily write h as

h(x) =
[

Rb̂b(δq)Tmb̂

−Rb̂b(δq)Tgb̂

]
=
[

R(δq)Tm
−R(δq)Tg

]
(5.16)

We now define

W (ε,v) := ∂

∂ε

{
R(δq(ε))Tv

}
(5.17)

= ∂

∂ε

{
[I3×3 − 2

√
1− εT εS(ε) + 2εεT − 2εT εI3×3]v

}
=2 ∂

∂ε

{
1
2v +

√
1− εT εS(v)ε+ (vT ε)ε− (εT ε)v

}
=2
{

+
√

1− εT εS(v)− S(v)ε εT√
1− εT ε

+ vT εI3×3 + εvT − v2εT
}

= + 2
√

1− εT εS(v)− 2√
1− εT ε

S(v)εεT + 2vT εI3×3 + 2εvT − 4vεT

This expression is derived by hand, but it is double checked with Matlab to verify
the correctness. The updated discrete-time matrices becomes

Rk ≈ σ2
vk
I6×6

Hk = ∂hk
∂xk

∣∣∣∣
xk=x̄k

=
[

W (δε̄k, Rnb̂ (q̂)Tmn) 03×3
−W (δε̄k, Rnb̂ (q̂)Tgn) 03×3

]

34 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

5.3 Position, Velocity and Attitude Estimation

In this section we want to design a discrete multiplicative extended Kalman filter
for position, velocity and attitude estimation. This will be done by expanding the
attitude filter from previous section to include position and velocity as well. By
integrating GPS measurements and accelerometer measurements we achieve two
things:

• Low-pass filtering of the GPS measurements

• High-pass filtering of the accelerometer measurements

5.3.1 Assumptions

When introducing GPS measurements, the assumptions about constant speed and
zero accelerometer bias made in previous section can be removed.

5.3.2 Position, Velocity and Attitude Models

The state variables in the filter are chosen to be x = [δε, bbgyro, p
n
b/n, v

n
b/n, b

b
acc]

and the input is u = [ωbimu, f
b
imu]. From (3.9) and by inserting (5.1) to (3.8) we

get a model for the position and velocity. Together with the attitude model (5.11)
we can write the full model as

δε̇

ḃ
b

gyro
ṗnb/n
v̇nb/n

ḃ
b

acc

︸ ︷︷ ︸

ẋ

=

1
2 [I3×3

√
1− δεT δε+ S(δε)][ωbimu − b

b
gyro]

03×1
vnb/n

Rn
b̂
(q̂)Rb̂b(δq)[f bimu − b

b
acc] + gn

03×1

︸ ︷︷ ︸

f(x,u)

+ I15×15︸ ︷︷ ︸
Γ

wgyro
wbgyro
03×1
wacc
wbacc

︸ ︷︷ ︸

w

where w ∈ R15 is Gaussian white noise with zero mean and variance σ2
w.

5.3.3 Measurement Equation

By using the q-method, we get a measurement of the state δε (recall from section
5.2.3). A feed forward term from the states is needed to cancel Rbnv̇nb/n + bbacc in
(3.8) before using the q-method. Expanding (5.12) with GPS position (3.14) and
velocity (3.15) measurement, then inserting (5.1), gives the following measurement
equation

5.3. POSITION, VELOCITY AND ATTITUDE ESTIMATION 35

y =

 δεqmetod
pngps
vngps

 =

 δε

pnb/n +Rn
b̂
(q̂)Rb̂b(δq)rbant

vnb/n +Rn
b̂
(q̂)Rb̂b(δq)S(ωbimu − b

b
gyro)rbant

︸ ︷︷ ︸

h(x)

+

 wε

wpos
wvel

︸ ︷︷ ︸

v

(5.18)

where v ∈ R9 is Gaussian white noise with zero mean and variance σ2
v .

5.3.4 Discrete-Time Matrices

Discretizing the system with the Euler method gives

xk+1 = xk + hf(xk,uk)︸ ︷︷ ︸
fk(xk,uk)

+ hΓ︸︷︷︸
Γk

wk (5.19)

yk = h(xk)︸ ︷︷ ︸
hk(xk)

+vk (5.20)

We need to develop an expression for the linearized model Φk. This involves lin-
earizing the rotation matrix. It looks a lot like the expression in (5.17), but this
time it is not the transposed rotation matrix. To make it easier to calculate the
Jacobian Φk we can define

V (ε,v) := ∂

∂ε
{R(δq(ε))v} (5.21)

= ∂

∂ε

{
[I3×3 + 2

√
1− εT εS(ε) + 2εεT − 2εT εI3×3]v

}
=2 ∂

∂ε

{
1
2v −

√
1− εT εS(v)ε+ (vT ε)ε− (εT ε)v

}
=2
{
−
√

1− εT εS(v) + S(v)ε εT√
1− εT ε

+ vT εI3×3 + εvT − v2εT
}

=− 2
√

1− εT εS(v) + 2√
1− εT ε

S(v)εεT + 2vT εI3×3 + 2εvT − 4vεT

Now consider the case for ε = 0, that gives

V (0,v) =− 2S(v) (5.22)

36 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

which is exactly the case we get when calculating ∂v̇nb/n/∂δεk, after the filter prop-
erty δε̂k = 0 is inserted. The discrete-time matrices needed in the filter becomes

Qk ≈ σ2
wk
I15×15

Rk ≈ σ2
vk
I9×9

fk(x̂k,uk) = x̂k + h

1
2 [ωbimu − b̂

b

gyro]
03×1
v̂nb/n

Rnb (q̂)[f bimu − b̂
b

acc] + gn
03×1

Φk = ∂fk

∂xk

∣∣∣∣
xk=x̂k

=

I15×15 + h

− 1

2S(ωbimu − b̂
b

gyro) − 1
2I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 I3×3 03×3

−2Rnb (q̂)S(f bimu − b̂
b

acc) 03×3 03×3 03×3 −Rnb (q̂)
03×3 03×3 03×3 03×3 03×3

Γk = hI15×15

Hk = ∂hk
∂xk

∣∣∣∣
xk=x̄k

= I3×3 03×3 03×3 03×3 03×3
Rn
b̂
(q̂)V (δε̄k, rbant) 03×3 I3×3 03×3 03×3

Rn
b̂
(q̂)V (δε̄k, S(ωbimu − b̄

b

gyro)rbant) Rn
b̂
(q̂)Rb̂b(δq̄)S(rbant) 03×3 I3×3 03×3

where the filter property that δε̂k = 0 has been used.

5.3.5 Alternative Measurement Equation

Instead of using the q-method, we can use the magnetometer (3.11), accelerom-
eter (3.8), GPS position (3.14) and velocity (3.15) measurement directly in the
measurement equation. After inserting (5.1) it looks like this

y =

mb

imu
f bimu
pngps
vngps

 =

Rb̂b(δq)TRn

b̂
(q̂)Tmn

Rb̂b(δq)TRn
b̂
(q̂)T [v̇nb/n − gn] + bbacc

pnb/n +Rn
b̂
(q̂)Rb̂b(δq)rbant

vnb/n +Rn
b̂
(q̂)Rb̂b(δq)S(ωbimu − b

b
gyro)rbant

︸ ︷︷ ︸

h(x)

+

wmag
wacc
wpos
wvel

︸ ︷︷ ︸

v

(5.23)

5.3. POSITION, VELOCITY AND ATTITUDE ESTIMATION 37

where v ∈ R12 is Gaussian white noise with zero mean and variance σ2
v . The

updated discrete-time matrices becomes

Rk ≈ σ2
vk
I12×12

Hk = ∂hk
∂xk

∣∣∣∣
xk=x̄k

=
W (δε̄k, Rnb̂ (q̂)Tmn) 03×3 03×3 03×3 03×3
−W (δε̄k, Rnb̂ (q̂)Tgn) 03×3 03×3 03×3 I3×3
Rn
b̂
(q̂)V (δε̄k, rbant) 03×3 I3×3 03×3 03×3

Rn
b̂
(q̂)V (δε̄k, S(ωbimu − b̄

b

gyro)rbant) Rn
b̂
(q̂)Rb̂b(δq̄)S(rbant) 03×3 I3×3 03×3

38 CHAPTER 5. EXTENDED KALMAN FILTER DESIGN

Chapter 6

Nonlinear Observer Design

Tuning of the Kalman filter is a difficult and time consuming task. The elements
in the measurement covariance matrix R can often be found in the data sheet for
the sensors, but the elements in the process covariance matrix Q is often difficult to
relate to physical quantities. Also the Riccati equation is computational extensive.
This is some of the reasons why there has been an increasing interest for nonlinear
observer design the last decades (Fossen 2011).

In this chapter a nonlinear observer for integration of IMU and GPS is derived. The
observer is made of a combination of two nonlinear algorithms recently proposed
by Hua (2010) and Mahony et al. (2008). Later the performance of the nonlinear
observer will be compared with the extended Kalman filter to see whether it has
competitive results.

6.1 Attitude Observer

Mahony et al. (2008) has proposed an observer, termed the explicit complementary
filter, that provides attitude estimates as well as gyro bias estimates. Vectorial
measurements, such as gravitational and magnetic field directions, are used di-
rectly without algebraic reconstruction of the attitude. It remains well conditioned
in the case where only a single vector direction is measured. The observer is well
suited for implementation on embedded hardware platforms. Local exponential
and almost global stability of the observer error dynamics have been shown with
Lyapunov analysis, for 2 or more independent inertial directions. The accelerom-
eter measurement is approximated to be a gravity measurement (v̇nb/n ≈ 0). The
quaternion representation of the explicit complementary filter by Mahony et al.
(2008) is:

39

40 CHAPTER 6. NONLINEAR OBSERVER DESIGN

ωbmes = −vex
(

n∑
i=1

ki
2

(
vbi (v̂

b
i)T − v̂

b
i (vbi)T

))
(6.1)

˙̂q = 1
2T (q̂)

[
ωbimu − b̂

b

gyro +Kquatω
b
mes

]
(6.2)

˙̂
bbgyro = −Kbgyrω

b
mes (6.3)

where the operator vex is the inverse of the cross-product operator

a× b = S(a)b (6.4)
vex(S(a)) = a (6.5)

The following expression corresponding to (6.1) is derived in Fossen (2011):

vex(abT − baT) =

 a3b2 − a2b3
a1b3 − a3b1
a2b1 − a1b2

 (6.6)

Moreover vbi represent normalized vectorial measurements, v̂bi represent normalized
estimated vectorial measurements

vb1 = mb
imu∥∥mb
imu
∥∥ (6.7)

vb2 = f bimu∥∥∥f bimu

∥∥∥ (6.8)

v̂b1 = Rnb (q̂)T mn

‖mn‖
(6.9)

v̂b2 = −Rnb (q̂)T gn

‖gn‖
(6.10)

and ki = {kmag, kacc} > 0 is the weighting between the sensors. Kquat,Kbgyr > 0
are positive gain matrices.

6.1.1 Discrete-Time Corrector-Predictor Formulation

In order to handle different measurement sampling rates and dead-reckoning it is
advantageous to write the observer on a EKF-like corrector-predictor form. Dis-
cretizing the explicit complementary filter by Mahony et al. (2008) using Euler
integration, gives the following vectorial measurements

6.2. POSITION, VELOCITY AND ATTITUDE OBSERVER 41

vb1 = mb
imu(k)∥∥mb
imu(k)

∥∥ (6.11)

vb2 = f bimu(k)∥∥∥f bimu(k)
∥∥∥ (6.12)

v̄b1 = Rnb (q̄(k))T mn

‖mn‖
(6.13)

v̄b2 = −Rnb (q̄(k))T gn

‖gn‖
(6.14)

and the corrector becomes

ωbmes = −vex
(

n∑
i=1

ki
2
(
vbi (v̄bi)T − v̄bi (vbi)T

))
(6.15)

q̂(k) = q̄(k) + h · 1
2T (q̄(k))Kquatω

b
mes (6.16)

b̂
b

gyro(k) = b̄
b

gyro(k)− h ·Kbgyrω
b
mes (6.17)

and the predictor becomes

q̄(k + 1) = q̂(k) + h · 1
2T (q̂(k))

[
ωbimu(k)− b̂

b

gyro(k)
]

(6.18)

b̄
b

gyro(k + 1) = b̂
b

gyro(k) (6.19)

6.2 Position, Velocity and Attitude Observer

Hua (2010) has recently proposed an advanced observer, that provides estimates
of attitude and velocity. The observer makes use of accelerometer, magnetometer
and linear velocity measurements, which makes it better adapted for vehicles sub-
jected to important linear accelerations. Stability analysis results state semi-global
convergence. The observer proposed by Hua (2010) is

42 CHAPTER 6. NONLINEAR OBSERVER DESIGN

˙̂vnb/n = Qf bimu + gn + kvel(vngps − v̂
n
b/n) (6.20)

Q̇ = QS(ωbimu)− ρQ+ kQ(vngps − v̂
n
b/n)(f bimu)T (6.21)

ρ = knormmax(0, ‖Q‖ −
√

3) (6.22)
˙̂
Rnb = R̂nb S(ωbimu + σ) (6.23)
σ = kmagm

b
imu × (R̂nb)Tmn + kaccf

b
imu × (R̂nb)T (Qf bimu + kvel(vngps − v̂

n
b/n))
(6.24)

where kvel, kmag, kacc, kQ, knorm is some positive constant gains, and Q ∈ R3×3

is a virtual matrix that allows an estimation of the specific acceleration in the
inertial frame {n}. It is not a rotation matrix but still such that Qf bimu −Rnb f

b
imu

tends to zero. ‖Q‖ is the Frobenius norm, i.e. ‖Q‖ =
√

tr(QTQ). One can view
Qf bimu + kvel(vngps − v̂

n
b/n) as an estimate of fn.

The observer of Hua (2010) does not provide estimates of the gyro bias. But as the
observer of Mahony et al. (2008) has gyro bias estimation, the attitude part, (6.23)
and (6.24), can be removed and replaced with the attitude observer of Mahony
et al. (2008). This will be a combination of the advantage of the linear acceleration
estimation from Hua together with gyro bias estimation from Mahony. It is straight
forward to modify the observer to include position as well by adding

˙̂pnb/n = vnb/n + kpos(pngps − p̂
n
b/n) (6.25)

where kpos is a positive gain.

6.2.1 Discrete-Time Corrector-Predictor Formulation

In the following the discrete-time corrector-predictor formulation for the combined
Hua (2010) and Mahony et al. (2008) observer will be derived using Euler inte-
gration. As the specific acceleration is estimated the vectorial measurements will
be

6.2. POSITION, VELOCITY AND ATTITUDE OBSERVER 43

vb1 = mb
imu(k)∥∥mb
imu(k)

∥∥ (6.26)

vb2 = f bimu(k)∥∥∥f bimu(k)
∥∥∥ (6.27)

v̄b1 = Rnb (q̄(k))T mn

‖mn‖
(6.28)

v̄b2 = Rnb (q̄(k))T
Q̄(k)f bimu(k) + kvel(vngps(k)− v̄nb/n(k))∥∥∥Q̄(k)f bimu(k) + kvel(vngps(k)− v̄nb/n(k))

∥∥∥ (6.29)

and the corrector becomes

p̂nb/n(k) = p̄nb/n(k) + h · kpos(pngps(k)− p̄nb/n(k)) (6.30)
v̂nb/n(k) = v̄nb/n(k) + h · kvel(vngps(k)− v̄nb/n(k)) (6.31)

Q̂(k) = Q̄(k) + h · kQ(vngps(k)− v̄nb/n(k))(f bimu(k))T (6.32)

together with (6.15), (6.16) and (6.17). The predictor becomes

p̄nb/n(k + 1) = p̂nb/n(k) + h · v̂nb/n(k) (6.33)

v̄nb/n(k + 1) = v̂nb/n(k) + h · (Q̂(k)f bimu(k) + gn) (6.34)

Q̄(k + 1) = Q̂(k) + h · Q̂(k)S(ωbimu(k)) (6.35)

together with (6.18) and (6.19). The “normalization” term ρQ has been removed.
It should be replaced by the discrete variant

Q(k) = Q(k)
‖Q(k)‖

√
3 (6.36)

and used after any calculations on Q.

44 CHAPTER 6. NONLINEAR OBSERVER DESIGN

Chapter 7

Simulator

It is convenient to have a simulator that can generate IMU and GPS measure-
ments during development, testing and verification of the nonlinear observers. For
instance faults can be simulated to test the observer error handling. This chapter
contains a unmanned aerial vehicle (UAV) model as well as sensor and navigation
system models. The simulator has been implemented in Simulink.

7.1 Simulator Model

This section contains the equations needed to implement the simulator that gener-
ates IMU and GPS measurements. The 6 DOF kinematic equations are given by
Fossen (2011):

ṗnb/n = Rnb (q)vbb/n (7.1)

q̇ = 1
2T (q)ωbb/n + γ

2 (1− qTq)q (7.2)

where a feedback term has been added to (7.2). The feedback term drives the
quaternion to a unit quaternion in order to compensate for numerical round of
errors. The normalization gain can be set to γ = 100. The 6 DOF equations of
motion are given by Fossen (2011):

m[v̇bb/n + S(ωbb/n)vbb/n] +D1v
b
b/n = f b (7.3)

Ibω̇
b
b/n + S(ωbb/n)Ibωbb/n +D2ω

b
b/n = mb (7.4)

45

46 CHAPTER 7. SIMULATOR

where f b and mb is forces and moments respectively, D1, D2 are linear damping
matrices and Ib is the inertia matrix. The center of origin (CO) for the body frame
has been chosen such that it coincides with the center of gravity (CG) . The gyro
measurement is modeled according to (3.3) and (3.4)

ygyro = ωbb/n + bbgyro +wgyro (7.5)

ḃ
b

gyro = wbgyro (7.6)

The accelerometer model is given by (3.7) and (3.9)

yacc = abb/n −R
n
b (q)Tgn + bbacc +wacc, abb/n = v̇bb/n + S(ωbb/n)vbb/n (7.7)

ḃ
b

acc = wbacc (7.8)

The magnetometer model is given by (3.11)

ymag = Rnb (q)T mn

‖mn‖
+ bbmag +wmag (7.9)

The GPS model is given by (3.14) and (3.15)

ypos = pnb/n +Rnb (q)rbant +wpos (7.10)

yvel = vnb/n +Rnb (q)S(ωbb/n)rbant +wvel (7.11)

7.2 Simulator Parameters and Measurement Noise

The simulator parameters can be set in the various parameter dialog boxes. See
Figure 7.2 for an example of the gyro parameters dialog box. For simplicity the
following parameters are used for the vehicle model

m = 1, Ib = I3×3, D1 = I3×3, D2 = I3×3 (7.12)

The simulator has three different options for the measurement noise wgyro, wacc,
wmag, wpos and wvel (see Figure 7.2):

Off The measurement noise is off, i.e. w = 0

7.2. SIMULATOR PARAMETERS AND MEASUREMENT NOISE 47

Moment

Magnetometer

q

m_ref

mag

bmag

Magnetic
field [nT]

-C-

Gyro

w

gyr

bgyr

Gravity

[0 0 9.81]'

GPS

p

v

q

w

llh

vel

age

fix
Force

D2

K*u

D1

K*u
Accelerometer

a

q

g_ref

acc

bacc
6 DOF Eqs. of motion

f [N]

m [Nm]

p^n [m]

v^n [m/s]

q [-]

w^b [rad/s]

a^b [m/s^2]

v^b [m/s]

Figure 7.1: Simulator model implemented in Simulink

Figure 7.2: Gyro parameters dialog box

48 CHAPTER 7. SIMULATOR

From workspace Use time-series with only noise from the workspace. Time-
series have been recorded with the Xsens MTi-G, without motion or rotation,
afterwards the mean value was subtracted.

User defined Use white noise with a user defined variance.

The measurement update rate can also be set in the dialog box. The update rates
are chosen similar to the Xsens MTi-G unit, which is 100 Hz for the IMU and 4
Hz for the GPS. Data is acquired at a rate of 100 Hz, consequently there will be
25 equal GPS samples before new data is received. Values used for the magnetic
field, gravity and lever arm are:

mn = [13 605 439 49 864]T nT
gn = [0 0 9.81]T m/s2

rbant = [−0.65 −0.08 −0.90]T m

Chapter 8

Implementation

The nonlinear observers developed in this thesis have been implemented in Matlab.
The Workspace in Matlab have been used to interface the measurement time-series.
This makes it easy to switch between simulated data and experimental data without
doing any changes. When it comes to implementation, there are some things that
need to be addressed. This chapter highlights some implementation considerations
as well as error handling for the nonlinear observers in this thesis.

8.1 Numerical Properties of Different Attitude Rep-
resentations

The attitude can be represented in several ways, i.e. quaternion or rotation matrix.
They have different numerical properties when dicretized. Discretizing the differ-
ential equation for the quaternion and the rotation matrix using the Euler method
gives

q̂(k + 1) = q̂(k) + h · 1
2T (q̂(k))ωbb/n(k) (8.1)

R̂nb (k + 1) = R̂nb (k) + h · R̂nb (k)S(ωbb/n(k)) (8.2)

Numerical round-off errors will cause a violation of the unit constraint on the
quaternion. To ensure that the constraint is satisfied the following normalization
procedure can be used

q̂(k + 1) = q̂(k + 1)
‖q̂(k + 1)‖ (8.3)

49

50 CHAPTER 8. IMPLEMENTATION

Table 8.1: Attitude errors (RMS) for the quaternion and rotation matrix represen-
tation due to Euler integration. Perfect data was used in the test.

roll (deg) pitch (deg) yaw (deg)
Quaternion propagation 0.5481 0.3001 0.5183
Rotation matrix propagation 2.8368 1.8804 5.2826

Maintaining the constraints for the rotation matrix (orthogonal and det=1) is more
difficult, but the following will help

R̂nb (k + 1) = R̂nb (k + 1)∥∥∥R̂nb (k + 1)
∥∥∥
√

3 (8.4)

where ‖·‖ in (8.4) is the Frobenius norm. The Frobenius norm of a rotation matrix is
always

√
3. Table 8.1 contains the test results from Euler integration of the different

attitude representations. The results show that the rotation matrix is drifting away
from the true attitude quicker than the quaternion. Thus the quaternion is the
preferred choice for implementation.

8.2 Using the q-method

When using the q-method to give a measurement of the attitude, there is an issue
that need special attention. Even though it is only the Kalman filter in this thesis
that use the q-method, this applies to other observers as well.
Recall from Section 2.3 that the unit quaternion have double coverage of SO(3),
hence q and−q represent the same rotation. It is not possible to say which one of
these quaternions the q-method returns, which is a problem. This can be solved by
selecting the quaternion that is closest to the estimate q̂. Consider the following
code snippet

q = qmethod(...)
if norm(q+q_hat) < norm(q-q_hat) then

q = -q;
end

which will return the appropriate unit quaternion.

8.3 Saturation for δε

The multiplicative EKF use the attitude representation in (5.1), and the error
quaternion is constructed by

8.4. DEAD-RECKONING 51

δq(δε) =
[√

1− δεT δε
δε

]
If δεT δε > 1, the error quaternion becomes imaginary. There are two ways that
this can happen:

• The change in attitude from one iteration to the next is greater than 180 deg.

• The correction from measurements are so large that the norm of δε exceeds
1.

Considering a filter sampling rate of 100 Hz, it is very unlikely that any of these
cases occur. But to be on the safe side a saturation for δε is implemented.

8.4 Dead-reckoning

Dead-reckoning refers to the case of an unaided inertial navigation system (INS).
Position, velocity and attitude is calculated based on previously estimated posi-
tion, velocity and attitude. Estimates are advanced using the current acceleration
and angular velocity. The term unaided means without the help of an external
measurement of the position, velocity and attitude.

If the observer is on a corrector-predictor form, dead-reckoning means that the
corrector step i skipped. The principle of dead-reckoning can be utilized when the
measurements are unhealthy. Each measurement is implemented with its own flag,
indicating whether the measurement is valid. If the measurement is invalid it will
be discarded, i.e. dead-reckoning (see Figure 8.1). Methods to determine whether
signals is healthy will be discussed later.

The GPS and IMU have different sampling rates, 4 Hz and 100 Hz respectively.
This means that it only comes new GPS data every 25th sample. Dead-reckoning
have been used to account for the different measurement rates. Every sample there
is not a new measurement, the corrector step can be skipped for that particular
measurement.

8.5 Low-Level Signal Check

Typical sensor faults are signal freeze, drift and wild points. In order to detect
wild points it is useful to calculate a moving average. Whenever the signal is too
far away from the average it is a wild point (see Figure 8.2). Alternatively the
predicted measurements can be used instead of the moving average. The deviation
limit can be set to four times the standard deviation, which means that 99,99%

52 CHAPTER 8. IMPLEMENTATION

<
z−1

vngps

fix

age
new data

valid
valid vel

&

pngps
valid

valid pos

GPS

valid acc

abimu

valid gyr

ωb
imu

valid mag

mb
imu

abimu

ωb
imu

mb
imu

IMU

vngps

pngps

if not valid acc then

Kacc = 0

Observer

...

end

q̂

b̂bgyro

p̂nb/n

v̂nb/n

b̂bacc

&

&

signal
check

signal
check

signal
check

signal
check

signal
check

valid
estimates

Figure 8.1: Block diagram showing the dead-reckoning strategy. Each measurement
has its own low-level signal check and validity flag. Whenever a measurement is
invalid, it will be discarded. Different sampling rates are also accounted for as only
newly arrived GPS measurements is considered valid.

8.6. MAGNETIC DISTORTION COMPENSATION 53

mean

var

-
ȳ

y
abs

>
4σy

=
0

wild point

signal freeze

NOT

NOT

&
valid

Figure 8.2: Block diagram showing the low-level signal check.

of the measurements will be healthy for a normal distributed signal. Only values
outside this limit is abnormal signals.

Signal freeze can be detected by calculating a moving variance. If the variance is
zero a signal freeze has occurred (see Figure 8.2). Number of samples included in
the variance calculation depends on the signal. For IMU signals, which contains
noise, 10 equal samples will most certainly be an abnormal situation.

Slowly time-varying drift of the gyro and accelerometer is accounted for in the
observer. Drift is difficult to detect without a complementary measurement. For
instance drift in the GPS position measurement is difficult to detect.

If too many of the observer input signals are invalid, i.e magnetometer, accelerom-
eter and gyro at the same time, the output flag valid estimates will be reset (see
Figure 8.1). Also if a particular measurement is unavailable for a long time, i.e
GPS measurements, the the observer output flag is reset.

In addition to the low-level signal checks, a gentle low pass filtering of the raw
signals can be applied to reduce the measurement noise. The crossover frequency of
the low pass filter should be a decade higher than the observer crossover frequency,
in order to avoid a phase lag.

8.6 Magnetic Distortion Compensation

The Earth’s magnetic field can be described by three parameters: inclination I,
declination D and total field F . Inclination is the angle (positive down) between
magnetic north and the horizontal plane. Declination is the angle (positive east)
between magnetic north as reported by a compass and true north. Total field is
the magnitude of the field.

Measurements of the Earth’s magnetic field mb
imu can easily be distorted by ferro-

magnetic elements, permanent magnets or very strong currents. Declination errors
in the measurement can not be corrected without an additional reference of head-
ing. But the effects of an erroneous inclination and magnitude in the measurement
mb

imu, can be reduced by the method of Madgwick (2010). The idea is to calculate

54 CHAPTER 8. IMPLEMENTATION

0 5 10 15 20
−10

0

10
Euler Angles

R
ol

l φ
 [d

eg
]

0 5 10 15 20
−10

0

10

P
itc

h
θ

[d
eg

]

True
not compensated
compensated

0 5 10 15 20
−30

−20

−10

0

10

Y
aw

 ψ
 [d

eg
]

Time [sec]

Figure 8.3: The effect of magnetic distortion compensation. The roll and pitch
errors are removed, while the yaw error remains the same.

the Earth’s magnetic field referencemn, using the same inclination and magnitude
as the measurement. The method of Madgwick (2010) has been improved by taking
into account the local magnetic declination in the calculation as follows

[
mN mE mD

]T = Rnb (q̄(k))mb
imu (8.5)

mn =

 cos(D)
√
m2
N +m2

E

sin(D)
√
m2
N +m2

E

mD

 (8.6)

where q̄(k) is the predicted attitude at t = k, for observers on the corrector-
predictor form. If the observer is not on this form q̂(k−1) should be used. Attitude
errors caused by magnetic field disturbances can be restricted to only affect the
yaw estimate, by compensating this way (see Figure 8.3). Another advantage is
that the magnetic field reference does not need to be predefined, only the local
declination.

Chapter 9

Simulation Results

This chapter contains a case study of the nonlinear observers developed in this the-
sis, demonstrating how different disturbances affects the estimates. The simulator
developed in Chapter 7 have been used to generate IMU and GPS measurements.
Test results of the performance are given as Root Mean Square (RMS) errors, which
is calculated by the following formula

RMS =

√√√√ 1
N

N∑
i=1

(x̂(i)− xtrue(i))2

where N is the number of samples in the time-serie, and x represent roll, pitch and
so on. The first 40 seconds have been omitted in the RMS calculation to remove
most of the transient part. Tests have been carried out for the following observers:
MEKF is the multiplicative extended Kalman filter including attitude, position
and velocity estimates. The filter was derived with two different measurement
equations; one using the q-method and the other using vectorial measurements.
The vectorial measurement equation is used. The following Kalman filter tuning
matrices have been used

Qk = diag(5e-71×2 5e-6 5e-81×2 1e-7 1e-41×3 1e-41×3 1e-71×3)
Rk = diag(2e-51×3 2e-31×3 101×3 1e-41×3)
P0 = diag(1e-51×3 1e-91×3 01×3 1e-41×3 1e-81×3)

HuaMahony is the nonlinear observer combination of Hua (2010) and Mahony
et al. (2008) including attitude, position and velocity estimates. The discrete-
time corrector-predictor formulation of HuaMahony has been implemented. The
following observer gains have been used

55

56 CHAPTER 9. SIMULATION RESULTS

Kquat = diag(1, 1, 10) · h, Kbgyr = diag(0.2, 0.2, 0.5) · h, kmag = 1, kacc = 1
kpos = 0.0001 · 25h, kvel = 3 · 25h, kQ = 0.06 · 25h

where h is the sample time. Values used for the magnetic declination, gravity and
lever arm are:

Declination = 0.0323 rad
gn = [0 0 9.81]T m/s2

rbant = [−0.65 −0.08 −0.90]T m

9.1 Description of Case Studies

Six different test cases have been set up, to see how different disturbances affects
the estimates:

• Case 1: Perfect data

• Case 2: Noise only

• Case 3: Gyro bias

• Case 4: Local magnetic disturbance

• Case 5: Accelerometer bias

• Case 6: Variable force

The simulator vehicle parameters are chosen as described in Chapter 7. For all
cases the vehicle moment input is a sequence of various moments creating different
attitudes (see Figure 9.3). The force input is zero for all cases except number 6.
Measurement noise recorded from the Xsens MTi-G unit is added to all measure-
ments from the simulator, except case 1. If nothing else is specified for the specific
case the measurement biases are zero as default. In addition all initial states are
zeros.

In the following each case will be discussed in more detail. The main focus is the
attitude estimates as those are the most challenging and interesting. Simulation
results are given in Table 9.1 as RMS errors. For visualization, a plot of the attitude
errors (x̂− xtrue) are shown in Figure 9.1 and 9.2.

9.1. DESCRIPTION OF CASE STUDIES 57

Ta
bl
e
9.
1:

Si
m
ul
at
io
n
re
su
lts

gi
ve
n
as

R
M
S
er
ro
rs

M
EK

F
A
tt
itu

de
(d
eg

R
M
S)

Po
sit

io
n
(m

R
M
S)

Ve
lo
ci
ty

(m
/s

R
M
S)

R
ol
l

Pi
tc
h

Ya
w

N
or
th

Ea
st

D
ow

n
N
or
th

Ea
st

D
ow

n
1
Pe

rf
ec
t
da

ta
0.
23
16

0.
12
61

0.
23
92

0.
16
69

0.
01
34

0.
24
77

0.
01
10

0.
01
39

0.
00
36

2
N
oi
se

on
ly

0.
24
07

0.
15
47

0.
27
86

0.
22
74

0.
03
77

0.
20
29

0.
02
67

0.
01
65

0.
01
04

3
G
yr
o
bi
as

0.
24
67

0.
17
69

0.
44
99

0.
39
15

0.
04
96

0.
17
69

0.
02
88

0.
02
24

0.
01
30

4
M
ag

bi
as

0.
44
52

0.
45
14

11
.9
43
9

0.
21
51

0.
10
01

0.
35
96

0.
10
22

0.
06
58

0.
01
36

5
A
cc

bi
as

0.
59
22

0.
63
53

1.
36
16

0.
22
98

0.
01
00

0.
30
33

0.
03
88

0.
04
05

0.
14
37

6
Va

ria
bl
e
fo
rc
e

0.
24
93

0.
16
32

0.
36
83

0.
20
79

0.
06
30

0.
18
47

0.
03
46

0.
02
65

0.
01
46

Av
er
ag
e

0.
33
42

0.
28
46

2.
44
02

0.
23
97

0.
04
56

0.
24
58

0.
04
03

0.
03
09

0.
03
31

H
ua

M
ah

on
y

A
tt
itu

de
(d
eg

R
M
S)

Po
sit

io
n
(m

R
M
S)

Ve
lo
ci
ty

(m
/s

R
M
S)

R
ol
l

Pi
tc
h

Ya
w

N
or
th

Ea
st

D
ow

n
N
or
th

Ea
st

D
ow

n
1
Pe

rf
ec
t
da

ta
0.
24
08

0.
13
74

0.
25
94

0.
17
04

0.
01
29

0.
31
11

0.
01
01

0.
00
88

0.
01
05

2
N
oi
se

on
ly

0.
24
85

0.
15
78

0.
29
62

0.
19
86

0.
02
70

0.
24
27

0.
01
23

0.
01
10

0.
01
78

3
G
yr
o
bi
as

0.
24
81

0.
15
00

0.
43
96

0.
13
00

0.
21
12

0.
21
78

0.
01
42

0.
01
11

0.
01
76

4
M
ag

bi
as

0.
88
95

1.
05
32

11
.5
74
3

0.
28
17

0.
19
93

0.
89
93

0.
17
39

0.
11
23

0.
03
14

5
A
cc

bi
as

0.
61
79

0.
69
48

1.
12
78

0.
17
20

0.
01
47

0.
26
09

0.
02
58

0.
01
77

0.
02
56

6
Va

ria
bl
e
fo
rc
e

0.
27
78

0.
21
78

0.
42
08

0.
21
25

0.
02
47

0.
19
56

0.
01
55

0.
01
49

0.
02
00

Av
er
ag
e

0.
42
04

0.
40
18

2.
35
30

0.
19
42

0.
08
16

0.
35
45

0.
04
19

0.
02
93

0.
02
04

58 CHAPTER 9. SIMULATION RESULTS

0 20 40 60 80 100
−2

−1

0

1

2

3

4
MEKF − Euler angle errors

R
ol

l e
rr

or
 [d

eg
]

0 20 40 60 80 100

−2

0

2

4

6

P
itc

h
er

ro
r

[d
eg

]

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

Time [sec]

Y
aw

 e
rr

or
 [d

eg
]

1 perfect data
2 noise only
3 gyro bias
4 mag bias
5 acc bias
6 var force

Figure 9.1: Simulation results for MEKF, showing the attitude errors for each case.

9.1. DESCRIPTION OF CASE STUDIES 59

0 20 40 60 80 100
−2

−1

0

1

2

3

4
HuaMahony − Euler angle errors

R
ol

l e
rr

or
 [d

eg
]

0 20 40 60 80 100

−2

0

2

4

6

P
itc

h
er

ro
r

[d
eg

]

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

Time [sec]

Y
aw

 e
rr

or
 [d

eg
]

1 perfect data
2 noise only
3 gyro bias
4 mag bias
5 acc bias
6 var force

Figure 9.2: Simulation results for HuaMahony, showing the attitude errors for each
case.

60 CHAPTER 9. SIMULATION RESULTS

0 20 40 60 80 100
−100

−50

0

50

100
Euler angles

Time [sec]

A
ng

le
 [d

eg
]

Roll φ
Pitch θ
Yaw ψ

Figure 9.3: True Euler angles for all simulation cases

9.2 Case 1: Perfect Data

Perfect data was generated, with no measurement noise nor bias, to have a reference
of the performance without disturbances. One should expect perfect data to give
perfect estimates. But the errors due to discretization gives the deviation from
zero (see Table 9.1).

9.3 Case 2: Noise Only

Measurement noise recorded from the Xsens MTi-G was added to the simulator
output, to see how noise affects the estimates. Results show that zero mean mea-
surement noise has very little impact on the performance.

9.4 Case 3: Gyro Bias

The goal of this case is to study and verify the gyro bias estimation. Simulation is
carried out using a constant gyro measurement bias of

bbgyro = [0.02 0.02 0.02]T rad/s

The bias makes the attitude errors grow rapidly from the start (see Figure 9.1 and
9.2). But after 40-50 seconds the attitude errors have converged to approximately
zero. A look at Figure 9.4 shows that this is the time it takes before the gyro bias
estimates have converged to the right value. It is a matter of tuning whether the
bias estimates overshoot or not. Good performance is achieved after the gyro bias
estimates have converged to the right value (see Table 9.1).

9.5. CASE 4: LOCAL MAGNETIC DISTURBANCE 61

0 20 40 60 80 100

0

0.01

0.02

Gyro bias
bi

as
p [

ra
d/

s]

True
HuaMahony
MEKF

0 20 40 60 80 100

0

0.01

0.02

bi
as

q [
ra

d/
s]

0 20 40 60 80 100

0

0.01

0.02

bi
as

r [
ra

d/
s]

Time [sec]

Figure 9.4: Case 3: Plot showing how the gyro bias converge to the right value.

9.5 Case 4: Local Magnetic Disturbance

The goal of this case is to see how a local magnetic disturbance influence the
estimates. The simulation is carried out using a disturbance of

bbmag = [0.1 0.1 −0.1]T a.u.

From Figure 9.1 and 9.2, it is seen that the magnetic disturbance result in a static
yaw deviation of about 11 deg. Both the MEKF and HuaMahony is implemented
with the magnetic field distortion compensation discussed in Section 8.6. The goal
of this method was to limit the disturbance to only affect the yaw estimates. From
Table 9.1 and Figure 9.1 and 9.2, it is seen that the MEKF have most success in
this task. However there is a big improvement for both observers, which can be
seen in Table 9.2 who contains a comparison of the attitude RMS error with and
without the magnetic distortion compensation.

62 CHAPTER 9. SIMULATION RESULTS

Table 9.2: Case 4: A comparison of the attitude RMS errors with and without the
magnetic distortion compensation.

MEKF HuaMahony
Attitude (deg RMS) Attitude (deg RMS)

Roll Pitch Yaw Roll Pitch Yaw
without compensa-
tion

1.9878 3.3871 12.7851 2.4910 3.8794 11.6743

with compensation 0.4452 0.4514 11.9439 0.8895 1.0532 11.5743
improvement 78 % 87 % 7 % 64 % 73 % 1 %

9.6 Case 5: Accelerometer Bias

The goal of this case is to study the accelerometer bias estimation. The MEKF
provides estimates of the accelerometer bias, while the HuaMahony observer does
not have an explicit accelerometer bias estimate, still it is embedded in the Q-
matrix which maps the specific force to the inertial frame. Simulation is carried
out using a constant accelerometer measurement bias of

bbacc = [0.1 0.1 0.1]T m/s2

Test results show that the bias has a negative impact on the attitude estimates (see
Table 9.1, Figure 9.1 and 9.2). The events that cause the errors can be explained
as follows: First the attitude converges to the wrong value, thinking that the
accelerometer measure the direction of the gravity only. After this happens the
accelerometer reading will be perpendicular to the estimated body xy-plane, with
only a z-component. Then any difference in the measured magnitude compared to
the gravity will be interpreted as an accelerometer bias in the z-direction.

Note that this simulation case does not have any translational motion, only ro-
tations. According to Hong et al. (2005) the accelerometer bias is not observable
under these conditions, acceleration changes is required.

9.7 Case 6: Variable Force

The goal of this case is to verify that linear accelerations are successfully suppressed
from propagating to the attitude estimates. The vehicles motion is generated by
the force input

f b = [5sin(0.2πt) 4sin(0.3πt) 3sin(0.4πt)]T N

For this input the vehicle is subject to the linear accelerations shown in Figure
9.5. The plot only shows the linear accelerations, without the gravity component,

9.7. CASE 6: VARIABLE FORCE 63

0 20 40 60 80 100

−4

−2

0

2

4

Linear accelerations

Time [sec]

A
cc

 [m
/s

2]

a

x

a
y

a
z

Figure 9.5: Case 6: Plot showing the linear accelerations that the vehicle is subject
to.

to give an idea of the magnitude. The results in Table 9.1 shows that the linear
accelerations have very little impact on the attitude estimates compared to the case
with only noise. When comparing the two observers, the MEKF provides slightly
better attitude estimates.

64 CHAPTER 9. SIMULATION RESULTS

Chapter 10

Experimental Results

This chapter contains real life tests based on experimental data. Several time-
series have been recorded with the Xsens MTi-G unit. The Xsens MTi-G unit
was mounted in the car as shown in Figure 10.1, and taken for a ride. The map1

in Figure 10.2 shows the route where the experimental data were recorded. The
experimental data contains the following time-series:

Standing still: The car was parked.

City tour 1,2,3,4: Low speed driving in the city with various road conditions
including speed dumps

Highway 1,2: A relatively fast and smooth ride along the highway.

Roundabout: Four turns in a roundabout.

Each time-serie contains the IMU measurements, GPS measurements and the built-
in EKF attitude, position and velocity estimates (see section 3.3). The built-in
estimates are considered to be the true values. The nonlinear observers developed
in this thesis have been tested with the experimental data, and the estimates are
compared to the estimates provided by the built-in EKF. Test results of the perfor-
mance are given as Root Mean Square (RMS) errors, calculated from the difference
between the estimates and the built-in EKF estimates. That is, the values in Table
10.1 are calculated with the following formula

RMS =

√√√√ 1
N

N∑
i=1

(x̂(i)− xxsens(i))2

1http://maps.google.no/maps/ms?ie=UTF8&hl=no&oe=UTF8&msa=0&msid=
206709540317555168643.00049c56274f1dc13c01d

65

http://maps.google.no/maps/ms?ie=UTF8&hl=no&oe=UTF8&msa=0&msid=206709540317555168643.00049c56274f1dc13c01d
http://maps.google.no/maps/ms?ie=UTF8&hl=no&oe=UTF8&msa=0&msid=206709540317555168643.00049c56274f1dc13c01d

66 CHAPTER 10. EXPERIMENTAL RESULTS

Figure 10.1: The mounting of the Xsens MTi-G in the car

Figure 10.2: Map of the route where the experimental time-series where recorded

67

Ta
bl
e
10
.1
:
Ex

pe
rim

en
ta
lr

es
ul
ts

gi
ve
n
as

R
M
S
er
ro
rs
.
C
al
cu
la
te
d
us
in
g
th
e
X
se
ns

bu
ilt
-in

EK
F
as

th
e
tr
ue

va
lu
es
.

M
EK

F
A
tt
itu

de
(d
eg

R
M
S)

Po
sit

io
n
(m

R
M
S)

Ve
lo
ci
ty

(m
/s

R
M
S)

R
ol
l

Pi
tc
h

Ya
w

N
or
th

Ea
st

D
ow

n
N
or
th

Ea
st

D
ow

n
St
an

di
ng

st
ill

0.
02
51

0.
13
95

0.
49
14

0.
10
80

0.
03
52

6.
10
20

0.
01
97

0.
04
11

0.
52
96

C
ity

to
ur

1
0.
18
72

0.
20
90

2.
62
95

0.
15
71

0.
08
97

5.
36
43

0.
07
01

0.
06
50

0.
42
88

C
ity

to
ur

2
0.
60
05

0.
43
05

2.
24
33

0.
20
50

0.
12
36

4.
51
44

0.
12
75

0.
22
06

0.
40
98

C
ity

to
ur

3
0.
24
07

0.
22
34

1.
09
88

0.
20
45

0.
11
93

4.
02
88

0.
08
88

0.
10
45

0.
40
00

C
ity

to
ur

4
0.
30
87

0.
29
22

1.
63
91

0.
08
12

0.
08
16

3.
82
99

0.
08
79

0.
11
11

0.
39
52

H
ig
hw

ay
1

0.
28
48

0.
42
13

1.
81
31

0.
11
91

0.
22
86

6.
38
88

0.
18
11

0.
10
28

0.
50
52

H
ig
hw

ay
2

0.
41
86

0.
41
73

2.
05
21

0.
11
94

0.
24
20

7.
46
00

0.
14
60

0.
16
09

0.
60
70

R
ou

nd
ab

ou
t

0.
58
93

0.
46
55

3.
66
62

0.
12
00

0.
16
95

3.
24
98

0.
16
01

0.
22
03

0.
50
27

Av
er
ag
e

0.
33
18

0.
32
48

1.
95
41

0.
13
92

0.
13
61

5.
11
72

0.
11
01

0.
12
82

0.
47
22

H
ua

M
ah

on
y

A
tt
itu

de
(d
eg

R
M
S)

Po
sit

io
n
(m

R
M
S)

Ve
lo
ci
ty

(m
/s

R
M
S)

R
ol
l

Pi
tc
h

Ya
w

N
or
th

Ea
st

D
ow

n
N
or
th

Ea
st

D
ow

n
St
an

di
ng

st
ill

0.
04
79

0.
12
04

0.
94
23

0.
10
33

0.
03
96

6.
15
90

0.
05
49

0.
09
47

0.
57
92

C
ity

to
ur

1
0.
46
39

0.
38
34

3.
45
66

0.
20
81

0.
20
48

5.
40
41

0.
27
61

0.
33
24

0.
47
35

C
ity

to
ur

2
1.
03
36

1.
58
85

5.
10
96

0.
27
80

0.
35
52

4.
51
94

0.
53
60

0.
66
84

0.
46
16

C
ity

to
ur

3
0.
82
18

0.
61
57

3.
92
86

0.
25
92

0.
22
77

4.
05
96

0.
49
32

0.
53
58

0.
46
76

C
ity

to
ur

4
1.
88
59

0.
91
48

8.
16
13

0.
21
87

0.
28
30

3.
86
32

0.
46
74

0.
53
13

0.
43
64

H
ig
hw

ay
1

1.
16
08

0.
40
67

8.
27
78

0.
17
07

0.
32
86

6.
43
95

0.
21
43

0.
35
12

0.
56
21

H
ig
hw

ay
2

0.
67
50

0.
67
19

2.
91
21

0.
29
32

0.
39
42

7.
49
12

0.
61
43

0.
53
67

0.
67
48

R
ou

nd
ab

ou
t

0.
59
82

0.
88
57

2.
29
16

0.
16
59

0.
12
63

3.
30
77

0.
31
47

0.
32
65

0.
57
35

Av
er
ag
e

0.
83
58

0.
69
83

4.
38
49

0.
21
21

0.
24
49

5.
15
54

0.
37
13

0.
42
21

0.
52
85

68 CHAPTER 10. EXPERIMENTAL RESULTS

where N is the number of samples in the time-serie, and x represent roll, pitch and
so on. The first 10 seconds have been omitted in the RMS calculation to remove
most of the transient part. Tests have been carried out for the following observers:

MEKF is the multiplicative extended Kalman filter including attitude, position
and velocity estimates. The filter was derived with two different measurement
equations; one using the q-method and the other using vectorial measurements. If
nothing else is specified, the vectorial measurement equation is used. The following
Kalman filter tuning matrices have been used

Qk = diag(5e-71×3 1e-91×3 1e-01×3 7e-41×3 1e-71×3)
Rk = diag(1e-41×3 7e-21×3 1e-11×3 5e-41×3)
P0 = diag(1e-51×3 1e-91×3 1e-01×3 1e-31×3 1e-81×3)

HuaMahony is the nonlinear observer combination of Hua (2010) and Mahony
et al. (2008) including attitude, position and velocity estimates. The discrete-
time corrector-predictor formulation of HuaMahony has been implemented. The
following observer gains have been used

Kquat = 0.5 · h, Kbgyr = 0.002 · h, kmag = 0.26, kacc = 1
kpos = 1 · 25h, kvel = 1 · 25h, kQ = 0.12 · 25h

where h is the sample time. Values used for the magnetic declination, gravity and
lever arm are:

Declination = 0.0323 rad
gn = [0 0 9.81]T m/s2

rbant = [−0.65 −0.08 −0.90]T m

10.1 Main Results

The experimental results for each time-serie are given in Table 10.1. Results show
that the MEKF has an average better performance compared to the HuaMahony
observer.

The MEKF has an average error in roll, pitch and yaw of 0.3, 0.3 and 1.9 deg
respectively. Considering the accuracy of the “true” value (see Table 3.2), this is a
very good result. The HuaMahony observer has an average error in roll, pitch and
yaw of 0.8, 0.6 and 4.3 deg respectively. Roll an pitch estimates must be said to have

10.2. LEVER ARM COMPENSATION 69

0 20 40 60 80 100
−5

0

5

10
Position

Time [sec]

D
ow

n
[m

]

Xsens
GPS
HuaMahony
MEKF

Figure 10.3: Standing still: Plot showing how the Xsens height estimate drifts away
from the true value.

good results, while the yaw estimate is a bit weaker. It is worth mentioning that
the magnetometer measurements are generally poor, because the measurements
contains a lot of magnetic interference from the car. This has a negative effect on
the yaw estimates.

Both observers work very well for the position and velocity estimates. Note that
there is a big difference in the Down position. This is because the built-in solution
is very far away from the GPS measurements. For instance, a look at the time-serie
where the car was parked and obviously had the same height all the time, revels
that the built-in solution drifts away in the Down position estimate (see Figure
10.3).

10.2 Lever Arm Compensation

When deriving the linearized measurement matrix Hk for the measurement given
by (5.23), three terms occurred in Hk because of the lever arm compensation

Hk =

· · · · ·
· · · · ·
∂pn

gps(k)
∂δε(k)

∣∣∣
δε(k)=δε̄(k)

· · · ·
∂vn

gps(k)
∂δε(k)

∣∣∣
δε(k)=δε̄(k)

∂vn
gps(k)

∂bb
gyro(k)

∣∣∣
bb

gyro(k)=b̄b
gyro(k)

· · ·

which means that there is a feedback from the position and velocity measurement to
the attitude and gyro bias estimates. Test results indicate worse attitude estimates
with this feedback. Therefore the terms have been omitted. Even though the terms
purely mathematically should be there, it can be argued that

• uncertainties in the lever arm rbant will propagate to the attitude estimates.

• GPS measurement errors will propagate to the attitude estimates.

70 CHAPTER 10. EXPERIMENTAL RESULTS

therefore the results may be better without the feedback. The same measurement
equation is used, it’s only the terms in Hk which is omitted.

10.3 Initial error

The attitude estimates are initialized using the q-method. This cause the initial
attitude error to be reasonably small. However big errors can occur if the vehicle
is under big linear accelerations during initialization. To study the convergence
from initial attitude error, a fixed initial attitude is set. Figure 10.4 shows the
convergence of the attitude with an initial error of 45 deg in roll, pitch and yaw.
Results show that the Kalman filter converge faster than the HuaMahony observer.
Note that the Kalman filter has an advantage her, because the starting gain can
be boosted by setting higher values for the initial covariance matrix P0.

0 5 10 15 20

0
20
40
60

Euler Angles

R
ol

l φ
 [d

eg
]

0 5 10 15 20

0
20
40
60

P
itc

h
θ

[d
eg

]

Xsens
HuaMahony
MEKF

0 5 10 15 20

0
20
40
60

Y
aw

 ψ
 [d

eg
]

Time [sec]

Figure 10.4: City tour 2: Plot showing how the observers converge after an initial
attitude error of 45 deg in roll, pitch and yaw.

10.4. LINEAR ACCELERATIONS 71

0 10 20 30 40 50

0

20

40

Euler Angles
R

ol
l φ

 [d
eg

]

0 10 20 30 40 50

−20

0

20

P
itc

h
θ

[d
eg

]

0 10 20 30 40 50

−100
0

100

Time [sec]

Y
aw

 ψ
 [d

eg
]

 Xsens
qmethod
HuaMahony
MEKF

Figure 10.5: Roundabout: Note how the roll estimates are unaffected by the linear
accelerations caused by driving in a circle. The q-method shows the error caused
by linear accelerations when using the accelerometer and magnetometer directly
for attitude determination.

10.4 Linear Accelerations

The time-serie from the roundabout contains an interesting case. Driving in circles
cause a linear acceleration pointing towards the center, which is measured by the
accelerometer. This gives a corrupted gravity measurement, which cause a roll
error if used directly for attitude determination. For the roundabout time-serie
the magnitude of the linear acceleration is about 4 m/s2, corresponding to a roll
error of about 20 deg (see qmethod in Figure 10.5). The MEKF and HuaMahony
observer does not suffer from this, because the GPS measurements allows the linear
acceleration to be estimated. Figure 10.5 shows how the roll estimates are unaf-
fected by the linear acceleration in the roundabout time-serie. The estimates from
both observers, including the Xsens solution show a small roll angle different from
zero, which is reasonable because the car tilts a bit as the spring dampers gives
after when turning hard.

72 CHAPTER 10. EXPERIMENTAL RESULTS

Table 10.2: Comparison of different measurement equation. Errors are given as
RMS values.

MEKF MEKF
q-method vector measurements

Roll Pitch Yaw Roll Pitch Yaw
Average error (deg) 0.3897 0.3751 4.7041 0.3318 0.3248 1.9541

Table 10.3: Average execution time pr. iteration
MEKF MEKF HuaMahony

q-method vector measurements
Execution time (ms) 0.929 ms 0.884 ms 0.323 ms

10.5 Measurement Equation

The extended Kalman filter was derived with two different measurement equa-
tions, one using the q-method (5.18) and the other using vector measurements
(5.23). Both filters have been tested on the experimental time-series. The average
performance is given as RMS errors in Table 10.2. Results show that the filter
using vector measurements provide twice as good yaw estimates, while the roll and
pitch estimates are approximately the same. Keep in mind that the filter using the
q-method have a different measurement covariance matrix R. The matrix was in
this test tuned to be

Rk = diag(4e-41×3 1e-11×3 5e-41×3)

and the accelerometer and magnetometer were weighted equal in the q-method.

10.6 Execution Time

The execution time is an important factor for nonlinear observers to be imple-
mented on embedded hardware. Table 10.3 contains the average execution time
per iteration for the MEKF with both measurement equations, and the HuaMa-
hony observer. Results show that the Kalman filter using the q-method has a 0.045
ms increase in execution time, which is about 5%. The winner is the nonlinear ob-
server combination of Hua and Mahony, which is about three times faster than the
Kalman filter. Clearly the efficiency depends on the implementation method and
operating system. But the observers in this thesis are implemented very similar,
so the results should provide a good basis for comparison. The tic toc commands
in Matlab have been used to measure the execution time

10.7. GPS OUTAGE 73

−100 0 100 200 300 400 500 600 700
−50

0

50

100

150

200

250

300

350

400
Position

East [m]

N
or

th
 [m

]

¬ t=0s

¬ t=20s

¬ t=70s

¬ t=110s

Xsens
GPS
HuaMahony
MEKF

Figure 10.6: City tour 3: Plot showing the effect of a simulated GPS outage from
t=20s to 70s.

10.7 GPS Outage

The acceleration is integrated twice to get the position. Small errors in the accel-
eration (or attitude) will cause exponential growing errors in the position. GPS
measurements are used to compensate and estimate these errors.

In Figure 10.6 it is shown how the error grows with time when GPS measurements
are unavailable. In just 50 seconds the position error is over 100 meters for both
observers. It looks like the MEKF has a bit faster recovery after the dropout.

74 CHAPTER 10. EXPERIMENTAL RESULTS

Chapter 11

Conclusions

Two different nonlinear observers for integration of GNSS and IMU have been
implemented and tested:

• A quaternion based multiplicative extended Kalman filter, named MEKF

• A nonlinear observer, named HuaMahony.

Simulations have been carried out as a case study to see how different disturbances
affect the estimates of position, velocity and attitude. The most dominating error
comes from the local magnetic disturbance, however it has little effect on the roll
and pitch estimates thanks to the magnetic distortion compensation. Simulations
results reveals that the accelerometer bias is unobservable without acceleration
changes. If case 4 is excluded, the average performance is good, showing a dynamic
accuracy of < 0.5 deg RMS for the attitude estimates. Both observers have a very
similar performance and it is not possible to say anything about which one is better.

Experimental data have been recorded with the Xsens MTi-G unit. Assuming
that the Xsens built-in EKF gives the true values, the average performance for the
experimental test shows an attitude accuracy of (0.3 0.3 2.0) and (0.8 0.7 4.4) deg
RMS for the MEKF and HuaMahony observer respectively. The results indicate
that the MEKF has the best performance, but it is difficult to be very conclusive
as there is several uncertainties: (i) the performance is depending on the tuning,
but an exact equal tuning is difficult to achieve; (ii) there is some uncertainties in
the “true” values provided by the Xsens unit.

However some differences between the MEKF and HuaMahony observer can be
emphasized:

• The MEKF has a quicker convergence from initial errors, because of the initial
covariance matrix which is used in the Riccati equation.

75

76 CHAPTER 11. CONCLUSIONS

• The HuaMahony observer is three times faster when it comes to execution
time. The test was performed in Matlab, which is known to efficiently han-
dle matrix calculations, therefore one may expect an even bigger ratio for
implementation on embedded hardware.

Chapter 12

Further Work

Estimation of the yaw angle is the most challenging part. The accuracy of the yaw
estimate may be improved by making a no-sideslip assumption. This means that an
assumption is made about zero velocity along the body-fixed y-axis. Consequently,
the measured velocity will contain information about the yaw angle. However this
assumption is most suited for vehicles subject to none or short term sidewards
slipping, such as automotive vehicles (Xsens 2009d).

For aerial vehicles there are several actions that might be done to improve re-
dundancy and accuracy. For instance integrating a barometer which measure the
altitude, or a dynamic pressure sensor to measure airspeed. Also an application
specific dynamic model of the vehicle can be integrated, which can limit the dy-
namics of the movement (Koifman and Bar-Itzhack 1999). The drawback is the
loss of generality.

Adaptive tuning of the observer gains may also be considered for increased per-
formance. For the multiplicative extended Kalman filter this may be achieved by
manipulating the measurement covariance matrix R (Cheng et al. 2008).

77

78 CHAPTER 12. FURTHER WORK

Bibliography

Abdel-Hafez, M. F. (2010). The autocovariance least-squares technique for gps
measurement noise estimation, IEEE Transactions on Vehicular Technology
59(2): 574–588.

Babu, R., Wang, J. and Rao, G. (2008). Analysis of ultra-tight gps/ins integrated
system for navigation performance, IEEE-ICSCN pp. 234–237.

Bar-Itzhack, I. Y. (1996). Request: A recursive quest algorithm for sequential atti-
tude determination, Journal of Guidance, Control, and Dynamics 19(5): 1034–
1038.

Cheng, L., Zhaoying, Z. and Xu, F. (2008). Attitude determination for mavs using
a kalman filter, Tsinghua Science and Technology 13(5): 593–597.

Crassidis, J. L., Markley, F. L. and Cheng, Y. (2007). A survey of nonlinear at-
titude estimation methods, AIAA Journal of Guidance, Control, and Dynamics
30(1): 11–28.

Egeland, O. and Gravdahl, J. T. (2003). Modeling and Simulation for Automatic
Control, 2nd edn, Marine Cybernetics AS.

Ellingsen, H. (2008). Development of a low-cost integrated navigation system for
usvs, Master’s thesis, Norwegian University of Science and Technology.

Fiorenzani, T., Manes, C., Oriolo, G. and Peliti, P. (2008). Comparative study of
unscented kalman filter and extended kalman filter for position/attitude estima-
tion in unmanned aerial vehicles.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control,
John Wiley & Sons Ltd.

Gade, K. (2009). Introduction to inertial navigation and kalman filtering, Tutorial
for: IAIN World Congress, Stockholm .

Hong, S., Lee, M. H., Chun, H.-H., Kwon, S.-H. and Speyer, J. L. (2005). Observ-
ability of error states in gps/ins integration, IEEE Transactions on Vehicular
Technology 54(2): 731–743.

79

80 BIBLIOGRAPHY

Hua, M.-D. (2010). Attitude estimation for accelerated vehicles using gps/ins mea-
surements, Control Engineering Practice 18: 723–732.

Jouffroy, J. and Fossen, T. (2010). A tutorial on incremental stability analysis
using contraction theory, Modeling, Identi
cation and Control 31(3): 93–106.

Keat, J. E. (1977). Analysis of least-squares attitude determination routine doaop,
Computer Sciences Corp. Report CSC/TM-77/6034.

Koifman, M. and Bar-Itzhack, I. (1999). Inertial navigation system aided by aircraft
dynamics, IEEE Transactions on Control System Technology 7(4): 487–493.

Lefferts, E. J. and Schuster, M. D. (1982). Kalman filtering for spacecraft attitude
estimation, Journal of Navigation, Control and Dynamics JGCD-5(5): 417–428.

Lerner, G. (1978). Three-axis attitude determination, Spacecraft Attitude Deter-
mination and Control pp. 420–428.

Madgwick, S. O. (2010). An efficient orientation filter for inertial and inertial/-
magnetic sensor arrays.

Mahony, R., Hamel, T. and Pflimlin, J.-M. (2008). Nonlinear complementary filters
on the special orthogonal group ., IEEE Transactions on Automatic Control
53(5): 1203–1218.

Markley, F. L. (2003). Attitude error representations for kalman filtering, Journal
of Guidance, Control, and Dynamics 26(2): 311–317.

Martin, P. and Salaün, E. (2008). An invariant observer for earth-velocity-aided
attitude heading reference systems, In IFAC World Congress 17: 9857–9864.

Maybeck, P. S. (1979). Stochastic Models, Estimation and Control Vol. 1, Academic
Press.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization, 2nd edn, Springer.

Schmidt, G. and Phillips, R. (2010). Ins/gps integration architectures, NATO RTO
Lecture Series RTO-EN-SET-116.

Shuster, M. D. and Oh, S. (1981). Three-axis attitude determination from vector
observations, Journal of Guidance and Control 4(1): 70–77.

Vasconcelos, J. F., Cardeira, B., Silvestre, C., Oliveira, P. and Batista, P. (2011).
Discrete-time complementary filters for attitude and position estimation: De-
sign, analysis and experimental validation, IEEE Transactions on Control Sys-
tem Technology 19(1): 181–198.

Vasconcelos, J., Silvestre, C. and Oliveira, P. (2011). Ins/gps aided by frequency
contents of vector observations with application to autonomous surface crafts,
IEEE Journal of Oceanic Engineering 36(2): 347–363.

BIBLIOGRAPHY 81

Vik, B. (n.d.). Integrated satellite and inertial navigation systems. Lecture notes,
Department of Engineering Cybernetics, Norwegian University of Science and
Technology.

Vik, B. and Fossen, T. I. (2001). A nonlinear observer for gps and ins integra-
tion, Proceedings of the Conference on Decision and Control, Orlando, Florida
pp. 2956–2961.

Wahba, G. (1965). A least squares estimate of satellite attitude, SIAM Review
7(3): 409.

Wendel, J. and Trommer, G. F. (2004). Tightly coupled gps/ins integration for
missile applications, Aerospace Science and Technology 8: 627–634.

Wenstad, P. (2010). Gps guided r/c car, Master’s thesis, Norwegian University of
Science and Technology.

Xsens (2009a). Magnetic Field Mapper Documentation. Revision E.

Xsens (2009b). MT Low-Level Communication Protocol Documentation. Revision
K.

Xsens (2009c). MT Manager User Manual. Revision F.

Xsens (2009d). MTi-G User Manual and Technical Documentation. Revision G.

Yi, Y. and Grejner-Brzezinska, D. (2006). Tightly-coupled gps/ins integration using
unscented kalman filter and particle filter, Proceedings of the 19th International
Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS 2006) pp. 2182–2191.

82 BIBLIOGRAPHY

Appendix A

Matlab Code

This appendix contains Matlab code used in the thesis. Only the main code are
shown here (see the CD for the complete set). An overview of the dependencies
between the different m-files are given in Figure A.1.

AP-MEKF.m

qmethod.m

qbuild.m

qmult.m

Rquat.m

Smtrx.m

Smtrx.m

qinv.m

AP-HuaMahony.m

Rquat.m

Smtrx.m

Smtrx.m

Tquat.m

vex.m

AP-MEKF-qmethod.m

qmethod.m

qbuild.m

qmult.m

Rquat.m

Smtrx.m

Wmtrx.m

Smtrx.m

Smtrx.m

RUN.m

llh2ecef.m

Rll.m

q2euler.m

RMS.m

”ploting files”

AP-MEKF-qmethod.m

AP-MEKF.m

AP-HuaMahony.m

Figure A.1: Call hierarchy showing parent and child functions.

A.1 Multiplicative Extended Kalman Filter

1 function [q deps bgyr pos vel bacc] = AP_MEKF (gyr , mag , acc ,...
2 gps_pos , gps_vel , init , valid_mag , valid_acc , valid_pos , valid_vel)
3 % --
4 % AP_MEKF - Multiplicative Extended Kalman Filter ,
5 % for Position , Velocity and Attitude estimation .
6 %
7 % x = [deps bgyr pos vel bacc]
8 % u = [gyr acc]

83

84 APPENDIX A. MATLAB CODE

9 % y = [mag acc gps_pos gps_vel]
10 %
11 % Input Description Unit Frame
12 % ...
13 % gyr gyro [rad/s] body
14 % mag magnetometer [a.u.] body
15 % acc accelerometer [m/s^2] body
16 % gps_pos gps position [m] ned
17 % gps_vel gps velocity [m/s] ned
18 %
19 % Output Description Unit Frame
20 % ...
21 % q quaternion [] body to ned
22 % deps delta epsilon [] body to body_hat
23 % bgyr bias gyro [rad/s] body
24 % pos position [m] ned
25 % vel velocity [m/s] ned
26 % bacc bias accelerometer [m/s^2] body
27 %
28 % Author : Harald Nøkland
29 % Date: June 2011
30 % --
31 h = 0.01; % Sampling interval
32 n = 15; % Number of states
33 decl = 0.0323; % Magnetic declination [rad]
34 g_ned = [0 0 9.81] ’; % Gravity [m/s^2]
35 gps_arm = [-0.65 -0.08 -0.90] ’; % GPS lever arm [m]
36

37 var_deps = [5e -7 5e -7 5e -6]; % f(Gyro variance)
38 var_bgyr = [5e -8 5e -8 1e -7]; % f(Gyro bias variance)
39 var_pos = [1e -4 1e -4 1e -4];
40 var_vel = [1e -4 1e -4 1e -4]; % f(Accelerometer variance)
41 var_bacc = [1e -7 1e -7 1e -7]; % f(Accelerometer bias variance)
42 process = [var_deps var_bgyr var_pos var_vel var_bacc];
43 Q = diag(process); % Process noise
44

45 var_mag = [2e -5 2e -5 2e -5]; % Magnetometer variance
46 var_acc = [2e -3 2e -3 2e -3]; % Accelerometer variance
47 var_pos = [10 10 10]; % GPS position variance
48 var_vel = [1e -4 1e -4 1e -4]; % GPS velocity variance
49 meas = [var_mag var_acc var_pos var_vel];
50 R = diag(meas); % Measurement noise
51 % --
52 persistent q_hat deps_bar bgyr_bar pos_bar vel_bar bacc_bar vel_dot P_bar ;
53 if init
54 deps_bar = [0 0 0] ’; % Initial delta epsilon
55 bgyr_bar = [0 0 0] ’; % Initial bias gyro
56 pos_bar = -gps_arm ; % Initial position
57 vel_bar = [0 0 0] ’; % Initial velocity
58 bacc_bar = [0 0 0] ’; % Initial bias accelerometer
59 vel_dot = [0 0 0] ’;
60 q_hat = qmethod (100 ,1 ,[0 0 1]’,[cos(decl) sin(decl) 0] ’ ,...
61 -acc/norm(acc),mag/norm(mag)); % Initial attitude
62 P_bar = diag ([1e -5 1e -5 1e -5 1e -9 1e -9 1e -9 0 0 0 ...
63 1e -4 1e -4 1e -4 1e -8 1e -8 1e -8]); % Initial error covariance
64 end
65

66 % Real measurement :
67 y = [mag; acc; gps_pos ; gps_vel];
68

69 % Predicted rotation matrix :
70 dq_bar = qbuild (deps_bar);
71 R_bar = Rquat (q_hat)* Rquat (dq_bar);
72

73 % Magnetic field reference vector :
74 m_ned = R_bar *mag;
75 m_ned = [norm(m_ned (1:2))*cos(decl) norm(m_ned (1:2))*sin(decl) m_ned (3)]’;
76

A.1. MULTIPLICATIVE EXTENDED KALMAN FILTER 85

77 % Estimated measurement :
78 y_bar = [R_bar ’* m_ned
79 R_bar ’*(vel_dot - g_ned) + bacc_bar
80 pos_bar + R_bar * gps_arm
81 vel_bar + R_bar * Smtrx (gyr - bgyr_bar)* gps_arm];
82

83 % Compute Kalman gain:
84 H1 = [Wmtrx (deps_bar , Rquat (q_hat) ’* m_ned)
85 -Wmtrx (deps_bar , Rquat (q_hat) ’* g_ned)
86 zeros (3 ,3)
87 zeros (3 ,3)];
88 H2 = [zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
89 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) eye (3 ,3)
90 zeros (3 ,3) eye (3 ,3) zeros (3 ,3) zeros (3 ,3)
91 zeros (3 ,3) zeros (3 ,3) eye (3 ,3) zeros (3 ,3)];
92 H = [H1 H2];
93 K = P_bar *H ’/(H* P_bar *H’ + R);
94

95 % Dead - reckoning :
96 if valid_mag ==0 , K(: ,1:3)= zeros (n ,3); end
97 if valid_acc ==0 , K(: ,4:6)= zeros (n ,3); end
98 if valid_pos ==0 , K(: ,7:9)= zeros (n ,3); end
99 if valid_vel ==0 , K(: ,10:12)= zeros (n ,3); end

100

101 % Update estimate with measurement :
102 deps_hat = deps_bar + K(1:3 ,:) *(y - y_bar);
103 bgyr_hat = bgyr_bar + K(4:6 ,:) *(y - y_bar);
104 pos_hat = pos_bar + K(7:9 ,:) *(y - y_bar);
105 vel_hat = vel_bar + K(10:12 ,:) *(y - y_bar);
106 bacc_hat = bacc_bar + K(13:15 ,:) *(y - y_bar);
107 if norm(deps_hat) >1, deps_hat = deps_hat /norm(deps_hat); end % saturation
108

109 % Reset :
110 dq_hat = qbuild (deps_hat);
111 q_hat = qmult (q_hat , dq_hat);
112 q_hat = q_hat /norm(q_hat);
113 deps_hat = [0 0 0] ’;
114

115 % Compute error covariance for updated estimate :
116 IKH = eye(n) - K*H;
117 P = IKH* P_bar *IKH ’ + K*R*K ’;
118

119 % Project ahead :
120 deps_dot = 0.5*(gyr - bgyr_hat);
121 bgyr_dot = [0 0 0] ’;
122 pos_dot = vel_hat ;
123 vel_dot = Rquat (q_hat)*(acc - bacc_hat) + g_ned ;
124 bacc_dot = [0 0 0] ’;
125

126 deps_bar = deps_hat + h* deps_dot ;
127 bgyr_bar = bgyr_hat + h* bgyr_dot ;
128 pos_bar = pos_hat + h* pos_dot ;
129 vel_bar = vel_hat + h* vel_dot ;
130 bacc_bar = bacc_hat + h* bacc_dot ;
131 if norm(deps_bar) >1, deps_bar = deps_bar /norm(deps_bar); end % saturation
132

133 PHI1 = [-0.5* Smtrx (gyr - bgyr_hat)
134 zeros (3 ,3)
135 zeros (3 ,3)
136 -2* Rquat (q_hat)* Smtrx (acc - bacc_hat)
137 zeros (3 ,3)];
138 PHI2 = [-0.5* eye (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
139 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
140 zeros (3 ,3) zeros (3 ,3) eye (3 ,3) zeros (3 ,3)
141 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) -Rquat (q_hat)
142 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)];
143

144 PHI = eye(n,n) + h*[PHI1 PHI2];

86 APPENDIX A. MATLAB CODE

145 GAMMA = h*eye(n,n);
146 P_bar = PHI*P*PHI ’ + GAMMA *Q*GAMMA ’;
147

148 % Output :
149 q = q_hat ;
150 deps = deps_hat ;
151 bgyr = bgyr_hat ;
152 pos = pos_hat ;
153 vel = vel_hat ;
154 bacc = bacc_hat ;

A.2 Multiplicative Extended Kalman Filter (q-method)

1 function [q deps bgyr pos vel bacc] = AP_MEKF_qmethod (gyr , mag , acc ,...
2 gps_pos , gps_vel , init , valid_mag , valid_acc , valid_pos , valid_vel)
3 % --
4 % AP_MEKF - Multiplicative Extended Kalman Filter (q- method),
5 % for Position , Velocity and Attitude estimation .
6 %
7 % x = [deps bgyr pos vel bacc]
8 % u = [gyr acc]
9 % y = [deps gps_pos gps_vel]

10 %
11 % Input Description Unit Frame
12 % ...
13 % gyr gyro [rad/s] body
14 % mag magnetometer [a.u.] body
15 % acc accelerometer [m/s^2] body
16 % gps_pos gps position [m] ned
17 % gps_vel gps velocity [m/s] ned
18 %
19 % Output Description Unit Frame
20 % ...
21 % q quaternion [] body to ned
22 % deps delta epsilon [] body to body_hat
23 % bgyr bias gyro [rad/s] body
24 % pos position [m] ned
25 % vel velocity [m/s] ned
26 % bacc bias accelerometer [m/s^2] body
27 %
28 % Author : Harald Nøkland
29 % Date: June 2011
30 % --
31 h = 0.01; % Sampling interval
32 n = 15; % Number of states
33 decl = 0.0323; % Magnetic declination [rad]
34 g_ned = [0 0 9.81] ’; % Gravity [m/s^2]
35 gps_arm = [-0.65 -0.08 -0.90] ’; % GPS lever arm [m]
36

37 var_deps = [5e -7 5e -7 5e -7]; % f(Gyro variance)
38 var_bgyr = [1e -9 1e -9 1e -9]; % f(Gyro bias variance)
39 var_pos = [1e -0 1e -0 1e -0];
40 var_vel = [7e -4 7e -4 7e -4]; % f(Accelerometer variance)
41 var_bacc = [1e -7 1e -7 1e -7]; % f(Accelerometer bias variance)
42 process = [var_deps var_bgyr var_pos var_vel var_bacc];
43 Q = diag(process); % Process noise
44

45 var_deps = [4e -4 4e -4 4e -4]; % qmethod variance
46 var_pos = [1e -1 1e -1 1e -1]; % GPS position variance
47 var_vel = [5e -4 5e -4 5e -4]; % GPS velocity variance
48 meas = [var_deps var_pos var_vel];
49 R = diag(meas); % Measurement noise
50 % --

A.2. MULTIPLICATIVE EXTENDED KALMAN FILTER (Q-METHOD) 87

51 persistent q_hat deps_bar bgyr_bar pos_bar vel_bar bacc_bar vel_dot P_bar ;
52 if init
53 deps_bar = [0 0 0] ’; % Initial delta epsilon
54 bgyr_bar = [0 0 0] ’; % Initial bias gyro
55 pos_bar = -gps_arm ; % Initial position
56 vel_bar = [0 0 0] ’; % Initial velocity
57 bacc_bar = [0 0 0] ’; % Initial bias accelerometer
58 vel_dot = [0 0 0] ’;
59 q_hat = qmethod (100 ,1 ,[0 0 1]’,[cos(decl) sin(decl) 0] ’ ,...
60 -acc/norm(acc),mag/norm(mag)); % Initial attitude
61 P_bar = diag ([1e -5 1e -5 1e -5 1e -9 1e -9 1e -9 1 1 1 ...
62 1e -3 1e -3 1e -3 1e -8 1e -8 1e -8]); % Initial error covariance
63 end
64

65 % Predicted rotation matrix :
66 dq_bar = qbuild (deps_bar);
67 R_bar = Rquat (q_hat)* Rquat (dq_bar);
68

69 % Magnetic field reference vector :
70 m_ned = R_bar *mag;
71 m_ned = [norm(m_ned (1:2))*cos(decl) norm(m_ned (1:2))*sin(decl) m_ned (3)]’;
72

73 % Acceleration reference vector :
74 a_ned = vel_dot - g_ned ;
75 a = acc - bacc_bar ;
76

77 % q- method :
78 q = qmethod (1,1, a_ned /norm(a_ned),m_ned /norm(m_ned),a/norm(a),mag/norm(mag));
79 if norm(q+ q_hat) < norm(q- q_hat)
80 q = -q;
81 end
82 dq = qmult (qinv(q_hat),q);
83

84 % Real measurement :
85 y = [dq (2:4) ; gps_pos ; gps_vel];
86

87 % Estimated measurement :
88 y_bar = [deps_bar
89 pos_bar + R_bar * gps_arm
90 vel_bar + R_bar * Smtrx (gyr - bgyr_bar)* gps_arm];
91

92 % Compute Kalman gain:
93 H = [eye (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
94 zeros (3 ,3) zeros (3 ,3) eye (3 ,3) zeros (3 ,3) zeros (3 ,3)
95 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) eye (3 ,3) zeros (3 ,3)];
96 K = P_bar *H ’/(H* P_bar *H’ + R);
97

98 % Dead - reckoning :
99 valid_deps = valid_mag & valid_acc ;

100 if valid_deps ==0 , K(: ,1:3)= zeros (n ,3); end
101 if valid_pos ==0 , K(: ,4:6)= zeros (n ,3); end
102 if valid_vel ==0 , K(: ,7:9)= zeros (n ,3); end
103

104 % Update estimate with measurement :
105 deps_hat = deps_bar + K(1:3 ,:) *(y - y_bar);
106 bgyr_hat = bgyr_bar + K(4:6 ,:) *(y - y_bar);
107 pos_hat = pos_bar + K(7:9 ,:) *(y - y_bar);
108 vel_hat = vel_bar + K(10:12 ,:) *(y - y_bar);
109 bacc_hat = bacc_bar + K(13:15 ,:) *(y - y_bar);
110 if norm(deps_hat) >1, deps_hat = deps_hat /norm(deps_hat); end % saturation
111

112 % Reset :
113 dq_hat = qbuild (deps_hat);
114 q_hat = qmult (q_hat , dq_hat);
115 q_hat = q_hat /norm(q_hat);
116 deps_hat = [0 0 0] ’;
117

118 % Compute error covariance for updated estimate :

88 APPENDIX A. MATLAB CODE

119 IKH = eye(n) - K*H;
120 P = IKH* P_bar *IKH ’ + K*R*K ’;
121

122 % Project ahead :
123 deps_dot = 0.5*(gyr - bgyr_hat);
124 bgyr_dot = [0 0 0] ’;
125 pos_dot = vel_hat ;
126 vel_dot = Rquat (q_hat)*(acc - bacc_hat) + g_ned ;
127 bacc_dot = [0 0 0] ’;
128

129 deps_bar = deps_hat + h* deps_dot ;
130 bgyr_bar = bgyr_hat + h* bgyr_dot ;
131 pos_bar = pos_hat + h* pos_dot ;
132 vel_bar = vel_hat + h* vel_dot ;
133 bacc_bar = bacc_hat + h* bacc_dot ;
134 if norm(deps_bar) >1, deps_bar = deps_bar /norm(deps_bar); end % saturation
135

136 PHI1 = [-0.5* Smtrx (gyr - bgyr_hat)
137 zeros (3 ,3)
138 zeros (3 ,3)
139 -2* Rquat (q_hat)* Smtrx (acc - bacc_hat)
140 zeros (3 ,3)];
141 PHI2 = [-0.5* eye (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
142 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)
143 zeros (3 ,3) zeros (3 ,3) eye (3 ,3) zeros (3 ,3)
144 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) -Rquat (q_hat)
145 zeros (3 ,3) zeros (3 ,3) zeros (3 ,3) zeros (3 ,3)];
146

147 PHI = eye(n,n) + h*[PHI1 PHI2];
148 GAMMA = h*eye(n,n);
149 P_bar = PHI*P*PHI ’ + GAMMA *Q*GAMMA ’;
150

151 % Output :
152 q = q_hat ;
153 deps = deps_hat ;
154 bgyr = bgyr_hat ;
155 pos = pos_hat ;
156 vel = vel_hat ;
157 bacc = bacc_hat ;

A.3 Nonlinear Observer HuaMahony

1 function [q bgyr pos vel] = AP_HuaMahony (gyr , mag , acc ,...
2 gps_pos , gps_vel , init , valid_mag , valid_acc , valid_pos , valid_vel)
3 % --
4 % AP_HuaMahony - Nonlinear observer ,
5 % for Position , Velocity and Attitude estimation .
6 %
7 % Input Description Unit Frame
8 % ...
9 % gyr gyro [rad/s] body

10 % mag magnetometer [a.u.] body
11 % acc accelerometer [m/s^2] body
12 % gps_pos gps position [m] ned
13 % gps_vel gps velocity [m/s] ned
14 %
15 % Output Description Unit Frame
16 % ...
17 % q quaternion [] body to ned
18 % bgyr bias gyro [rad/s] body
19 % pos position [m] ned
20 % vel velocity [m/s] ned
21 %

A.3. NONLINEAR OBSERVER HUAMAHONY 89

22 % Author : Harald Nøkland
23 % Date: June 2011
24 % --
25 h = 0.01; % Sampling interval
26 decl = 0.0323; % Magnetic declination [rad]
27 g_ned = [0 0 9.81] ’; % Gravity [m/s^2]
28 gps_arm = [-0.65 -0.08 -0.90] ’; % GPS lever arm [m]
29

30 Kquat = diag ([1 1 10])*h;
31 Kbgyr = diag ([0.2 0.2 0.5]) *h;
32 kmag = 1; kacc = 1;
33

34 kpos = 0.0001* h*25;
35 kvel = 3*h*25;
36 kQ = 0.06* h*25;
37 % --
38 persistent q_bar bgyr_bar pos_bar vel_bar Q_bar ;
39 if init
40 bgyr_bar = [0 0 0] ’; % Initial bias gyro
41 pos_bar = -gps_arm ; % Initial position
42 vel_bar = [0 0 0] ’; % Initial velocity
43 Q_bar = eye (3); % Initial Q
44 q_bar = qmethod (100 ,1 ,[0 0 1]’,[cos(decl) sin(decl) 0] ’ ,...
45 -acc/norm(acc),mag/norm(mag)); % Initial attitude
46 end
47

48 % Dead - reckoning :
49 if valid_mag ==0 , kmag =0; end
50 if valid_acc ==0 , kacc =0; end
51 if valid_pos ==0 , kpos =0; end
52 if valid_vel ==0 , kvel =0; kQ =0; end
53

54 % Real measurement :
55 m = mag/norm(mag);
56 a = acc/norm(acc);
57

58 % Predicted rotation matrix :
59 R_bar = Rquat (q_bar);
60

61 % Lever arm compensation :
62 gps_pos = gps_pos - R_bar * gps_arm ;
63 gps_vel = gps_vel - R_bar * Smtrx (gyr - bgyr_bar)* gps_arm ;
64

65 % Magnetic field reference vector :
66 m_ned = R_bar *mag;
67 m_ned = [norm(m_ned (1:2))*cos(decl) norm(m_ned (1:2))*sin(decl) m_ned (3)]’;
68

69 % Acceleration reference vector :
70 a_ned = Q_bar *acc + kvel *(gps_vel - vel_bar);
71

72 % Estimated measurement :
73 m_bar = R_bar ’* m_ned /norm(m_ned);
74 a_bar = R_bar ’* a_ned /norm(a_ned);
75

76 % Update estimate with measurement :
77 m_err = 0.5*(m*m_bar ’ - m_bar *m ’);
78 a_err = 0.5*(a*a_bar ’ - a_bar *a ’);
79 w_mes = -vex(kmag* m_err + kacc* a_err);
80

81 q_hat = q_bar + 0.5* Tquat (q_bar)* Kquat * w_mes ;
82 bgyr_hat = bgyr_bar - Kbgyr * w_mes ;
83 pos_hat = pos_bar + kpos *(gps_pos - pos_bar);
84 vel_hat = vel_bar + kvel *(gps_vel - vel_bar);
85 Q_hat = Q_bar + kQ *(gps_vel - vel_bar)*acc ’;
86

87 % Normalize :
88 q_hat = q_hat /norm(q_hat);
89 Q_hat = Q_hat /norm(Q_hat ,’fro ’)*sqrt (3);

90 APPENDIX A. MATLAB CODE

90

91 % Project ahead :
92 q_dot = 0.5* Tquat (q_hat)*(gyr - bgyr_hat);
93 bgyr_dot = [0 0 0] ’;
94 pos_dot = vel_hat ;
95 vel_dot = Q_hat *acc + g_ned ;
96 Q_dot = Q_hat * Smtrx (gyr - bgyr_hat);
97

98 q_bar = q_hat + h* q_dot ;
99 bgyr_bar = bgyr_hat + h* bgyr_dot ;

100 pos_bar = pos_hat + h* pos_dot ;
101 vel_bar = vel_hat + h* vel_dot ;
102 Q_bar = Q_hat + h* Q_dot ;
103

104 % Normalize :
105 q_bar = q_bar /norm(q_bar);
106 Q_bar = Q_bar /norm(Q_bar ,’fro ’)*sqrt (3);
107

108 % Output :
109 q = q_hat ;
110 bgyr = bgyr_hat ;
111 pos = pos_hat ;
112 vel = vel_hat ;

A.4 q-method

1 function q = qmethod (a1 , a2 , r1 , r2 , b1 , b2)
2 % --
3 % The q- method computes the unit quaternion q = [eta eps1 eps2 eps3]’
4 % from a set of vector measurements {b1 b2} in the body frame . The
5 % set {r1 r2} is the corresponding reference vectors in the reference
6 % frame , and {a1 a2} are weights . It is the solution to an optimization
7 % problem of minimizing the objective function :
8 %
9 % f(q) = a1*norm(r1 -R(q)*b1) + a2*norm(r2 -R(q)*b2)

10 %
11 % Input :
12 % a - weight
13 % r - reference vector (NED)
14 % b - observation vector (BODY)
15 %
16 % Author : Harald Nøkland
17 % Date: June 2011
18 % --
19 Z = a1* cross (r1 ,b1) + a2* cross (r2 ,b2);
20 B = a1*r1*b1 ’ + a2*r2*b2 ’;
21 S = B + B ’;
22 sigma = trace (B);
23

24 % Compute the K matrix
25 K = [-sigma Z’
26 Z -S+ sigma *eye (3)];
27

28 % Find the eigenvector for the smallest eigenvalue of K
29 [V,E] = eig(K);
30 [m,i] = min ([E(1 ,1) E(2 ,2) E(3 ,3) E(4 ,4)]);
31 q = V(:,i);
32 q = q/norm(q);

Appendix B

Simulink Diagrams

This appendix contains the Simulink diagrams for the simulator. Only the main
diagrams are shown here (see the CD for the complete set).

Moment

Magnetometer

q

m_ref

mag

bmag

Magnetic
field [nT]

-C-

Gyro

w

gyr

bgyr

Gravity

[0 0 9.81]'

GPS

p

v

q

w

llh

vel

age

fix
Force

D2

K*u

D1

K*u
Accelerometer

a

q

g_ref

acc

bacc
6 DOF Eqs. of motion

f [N]

m [Nm]

p^n [m]

v^n [m/s]

q [-]

w^b [rad/s]

a^b [m/s^2]

v^b [m/s]

Figure B.1: Simulator model

91

92 APPENDIX B. SIMULINK DIAGRAMS

v^b [m/s]

6

a^b [m/s^2]

5

w^b [rad/s]

4

q [-]

3

v^n [m/s]

2

p^n [m]

1

w x (I*w)

w

1
s

v

1
s

q

1
s

p

1
s

inv(I)

K*u

Quaternion to
rotation matrix

q

v
R(q)*v

Quaternion to
transformation matrix

q

w
1/2*T(q)*w

Product Normalization
gain

50

I

I* u

Dot Product

Constant

1

1/m

1/m

-(w x v)

m [Nm]

2

f [N]

1

Figure B.2: 6 DOF Equations of motion

fix

4

age

3

vel

2

llh

1

zero1

(0 0 0)

zero

(0 0 0)

w x r

noise1noise

ned2llh

llh0

ned

llh
lon,lat,h

llh0

from workspace1

vel_time_serie

from workspace

pos_time_serie

Selector1Selector

Repeating
Sequence

Quaternion to
rotation matrix1

q

v
R(q)*v

Quaternion to
rotation matrix

q

v
R(q)*v

Lever arm

antenna

Constant

1

w

4

q

3

v

2

p

1

Figure B.3: GPS model

93

bmag

2

mag

1

zero

(0 0 0)

noise

from workspace

time_serie

bias_dot

bias
1
s

Sum of
Elements

Selector

Quaternion to
invers rotation

matrix

q

v
inv(R(q))*v

sqrtu2

Divide
m_ref

2

q

1

Figure B.4: Magnetometer model

bacc

2

acc

1

zero

(0 0 0)

noise

from workspace

time_serie

bias_dot

bias
1
s

Selector

Quaternion to
invers rotation

matrix

q

v
inv(R(q))*v

g_ref

3

q

2

a

1

Figure B.5: Accelerometer model

94 APPENDIX B. SIMULINK DIAGRAMS

bgyr

2

gyr

1

zero

(0 0 0)

noise

from workspace

time_serie

bias_dot

bias
1
s

Selector

w

1

Figure B.6: Gyro model

Appendix C

CD Content

All files needed to run the nonlinear observers developed in this thesis are included
on the CD. Some of the m-files are from the MSS GNC toolbox1, which is marked
in the column named “T” for toolbox.

Table C.1: Matlab files included on CD
File T Description
A_EKF.m Attitude estimation, extended Kalman filter
A_MEKF.m Attitude estimation, multiplicative extended

Kalman filter
AP_HuaMahony.m Attitude, position and velocity estimation, non-

linear observer HuaMahony
AP_MEKF.m Attitude, position and velocity estimation, mul-

tiplicative extended Kalman filter
AP_MEKF_qmethod.m Attitude, position and velocity estimation, mul-

tiplicative extended Kalman filter using q-
method

dllh2dned.m Transformation from longitude, latitude and
height to NED coordinates

ecef2llh.m x Transformation from Cartesian to ellipsoidal
ECEF coordinates

euler2q.m x Transformation for Euler angles to quaternion
llh2ecef.m x Transformation form ellipsoidal to Cartesian

ECEF coordinates
Omega.m Matrix in the quaternion differential equation

1MSS GNC is a Matlab toolbox for guidance, navigation and control. The toolbox is part of
the Marine Systems Simulator (MSS). URL: <http://www.marinecontrol.org>

95

96 APPENDIX C. CD CONTENT

Table C.2: Matlab files included on CD
File T Description
q2euler.m x Transformation from quaternion to Euler angles
qbuild.m Construct the quaternion from the unit constraint
qinv.m Inverse quaternion
qmethod.m q-method, attitude determination
qmult.m quaternion multiplication
R2euler.m x Transformation from rotation matrix to Euler angles
Rll.m x Rotation matrix from NED to ECEF
RMS.m Root mean square calculation
Rquat.m x Rotation matrix from BODY to NED
RUN.m Framework, main file
Rzyx.m x Rotation matrix from BODY to NED
Smtrx.m x The skew-symmetric matrix
Tquat.m Matrix in the quaternion differential equation
vex.m Vex operator
Vmtrx.m Jacobian of rotation matrix
Wmtrx.m Jacobian of Transposed rotation matrix

Table C.3: Data files (.mat) included on CD
File Description
citytour1.mat Experimental data
citytour2.mat Experimental data
citytour3.mat Experimental data
citytour4.mat Experimental data
highway1.mat Experimental data
highway2.mat Experimental data
roundabout.mat Experimental data
withoutmotion.mat Experimental data
xsens_noise.mat Experimental data, for use in the simulator
01_perfect_data.mat Simulation data
02_noise_only.mat Simulation data
03_gyro_bias.mat Simulation data
04_mag_bias.mat Simulation data
05_acc_bias.mat Simulation data
06_const_force.mat Simulation data

97

Table C.4: Other files included on CD
File Description
extractPVT.c Decodes the MTB log files from Xsens

unit
Instrument_Simulation_thesis.mdl Simulink simulator
MSc_Thesis_Nøkland(2011).pdf This Report

	Title Page
	1 Introduction
	1.1 Motivation
	1.2 State-of-the-Art Navigation Systems
	1.2.1 Attitude Aiding
	1.2.2 Position and Velocity Aiding
	1.2.3 Direct and Indirect Integration
	1.2.4 Integration Filter

	1.3 This Thesis
	1.4 Contributions

	2 Background
	2.1 Reference Frames
	2.2 Notation
	2.3 Transformation between BODY and NED
	2.3.1 Quaternion Differential Equation

	2.4 Transformation between NED and ECEF
	2.4.1 Transformation from Cartesian to Ellipsoidal ECEF Coordinates
	2.4.2 Transformation from Ellipsoidal to Cartesian ECEF Coordinates

	2.5 Transformation between ECEF and ECI

	3 Sensor and Navigation Systems
	3.1 Inertial Measurement Unit (IMU)
	3.1.1 Gyro measurement
	3.1.2 Gyro error model
	3.1.3 Accelerometer measurement
	3.1.4 Accelerometer error model
	3.1.5 Magnetometer measurement
	3.1.6 Magnetometer error model

	3.2 Global Positioning System (GPS)
	3.2.1 NED Coordinates from Longitude and Latitude
	3.2.2 GPS error model

	3.3 Xsens MTi-G
	3.3.1 Configuration
	3.3.2 Exporting Data

	4 The q-method
	4.1 Derivation of the q-method algorithm
	4.2 Using the q-method

	5 Extended Kalman Filter Design
	5.1 Discrete Multiplicative Extended Kalman Filter
	5.2 Attitude Estimation
	5.2.1 Assumptions
	5.2.2 Attitude Model
	5.2.3 Measurement Equation
	5.2.4 Discrete-Time Matrices
	5.2.5 Alternative Measurement Equation

	5.3 Position, Velocity and Attitude Estimation
	5.3.1 Assumptions
	5.3.2 Position, Velocity and Attitude Models
	5.3.3 Measurement Equation
	5.3.4 Discrete-Time Matrices
	5.3.5 Alternative Measurement Equation

	6 Nonlinear Observer Design
	6.1 Attitude Observer
	6.1.1 Discrete-Time Corrector-Predictor Formulation

	6.2 Position, Velocity and Attitude Observer
	6.2.1 Discrete-Time Corrector-Predictor Formulation

	7 Simulator
	7.1 Simulator Model
	7.2 Simulator Parameters and Measurement Noise

	8 Implementation
	8.1 Numerical Properties of Different Attitude Representations
	8.2 Using the q-method
	8.3 Saturation for bold0mu mumu
	8.4 Dead-reckoning
	8.5 Low-Level Signal Check
	8.6 Magnetic Distortion Compensation

	9 Simulation Results
	9.1 Description of Case Studies
	9.2 Case 1: Perfect Data
	9.3 Case 2: Noise Only
	9.4 Case 3: Gyro Bias
	9.5 Case 4: Local Magnetic Disturbance
	9.6 Case 5: Accelerometer Bias
	9.7 Case 6: Variable Force

	10 Experimental Results
	10.1 Main Results
	10.2 Lever Arm Compensation
	10.3 Initial error
	10.4 Linear Accelerations
	10.5 Measurement Equation
	10.6 Execution Time
	10.7 GPS Outage

	11 Conclusions
	12 Further Work
	Bibliography
	A Matlab Code
	A.1 Multiplicative Extended Kalman Filter
	A.2 Multiplicative Extended Kalman Filter (q-method)
	A.3 Nonlinear Observer HuaMahony
	A.4 q-method

	B Simulink Diagrams
	C CD Content

