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Abstract 

Electricity price distributional forecasts are crucial to energy risk 
management. In this paper we model and forecast Value at Risk (VaR) for the 
German EPEX spot price using variable selection with quantile regression, 
exponential weighted quantile regression, exponential weighted double 
kernel quantile regression, GARCH models with skewed t error distributions, 
and various CAViaR models. Our findings are; (1) exponential weighted 
quantile regression tends to perform best overall quantiles and hours., and (2) 
different variables are selected for different quantiles and different hours. This 
is not surprising since the there is a non-linear relationship between 
fundamentals and the electricity price. This non-linear relationship is different 
between the different hours as the dynamics of the intra-daily prices are 
different. Quantile regression has the feature of capturing these effects. As the 
input mix has changed in Germany over the last years, exponential weighted 
quantile regression allowing for time-varying parameters can also capture the 
effect of changing quantile sensitivities over time. Exponential weighted 
quantile regression is also easy model to implement relative to the other 
models investigated in this study. Thus, we recommend this model together 
with carefully selecting fundamentals for given hours and quantiles when the 
aim is to forcast VaR for German electricity prices.   

 

 

 

  



 

1 Introduction 

Electricity is non-storable by nature, and a stable power system requires a 
constant demand & supply balance. This makes electricity a unique 
commodity with complex price dynamics and relations to fundamentals. 
Prices are characterised by sudden (positive and negative) spikes, high 
volatility and volatility clustering, and seasonality patters over the day, week, 
and year. Thus, forecasting in electricity markets is arguably more 
challenging than in traditional financial markets.  

Electricity price forecasts are important inputs to energy companies decision-
making. For day-to-day market operations, accurate forecasts of short-term 
prices are crucial. Price forecasts serve as aids for producers, retailers, and 
speculators who seek to determine their optimal short-term strategies for 
production, consumption, hedging and trading. Uncontrolled exposure to 
market price risk can have devastating consequences for market participants 
(see Deng and Oren (2006) for a discussion). This has led to an increased 
focus on risk management in power markets the last years.  

The recent introduction of smart grids and renewable integration has created 
more uncertainty in future supply and demand conditions where both very 
low (often negative) and high prices might occur. Over the last 15 years, the 
bulk of research has been concerned with predicting the mean of electricity 
prices. As stakeholders require explicit control of the risk of both high and 
low extreme prices, point forecasts are inadequate in many cases (see 
Nowotarski and Weron (2017) for more details). Academics and practitioners 
have come to understand that probabilistic electricity price forecasting is now 
more important for energy systems planning, risk management and operations 
than ever before.  

Value-at-Risk (VaR) is the market standard for risk measurement and is 
simply a given quantile that will be found directly from a price distribution 
forecast. Despite the importance of measure risk management in power 
markets, Weron (2014) and Nowotarski and Weron (2017) finds that 
distribution forecasting is “barely touched upon” in electricity price 
forecasting literature.  This statement is supported by Bunn et al. (2016),  who 
argue that for electricity markets, VaR forecasting remains a highly “under-
researched” area. Maciejowska et al. (2016) claim that the lack of such 
research is likely due to the embedded complexity of the research problem 
compared to point forecasting. The sparseness in current literature, combined 



 

with the importance of density forecasting, is our motivation for investigating 
how state-of-the-art econometric models can be applied to forecast VaR. We 
have chosen to look at the German market for several reasons; (1) It is 
probably the most important electricity market in Europe, (2) Data quality, 
transparency, and access are excellent, (3) The input mix of production 
towards renewables has changed a lot over the years, challenging us to build 
models that capture this dynamics. We need to capture models that can 
capture the nonlinear sensitivities of electricity prices to fundamentals 
(because if the convex supply curve) as well as time varying sensitivities to 
fundamentals.    

 We argue for using quantile regression (QR) models when forecasting price 
distributions and estimate value at risk (VaR). QR models estimate each 
quantile with a distinct regression. Moreover, they are simple, insensitive to 
outliers, avoid distributional assumptions and helps us to capture non-linear 
sensitivities (e.g. that electricity price sensitivities to gas prices should be 
higher when electricity prices are higher since gas power plants are used in 
such a regime “at the end” of the supply or merit order curve). In addition we 
also apply QR models with time varying parameters taking into account that 
the input mix has changed over time1. These models are exponentially 
weighted QR (EWQR) and exponentially weighted double kernel QR 
(EWDKQR) proposed by Taylor (2008b). We compare these alternatives 
with common benchmarks in the VaR prediction literature using GARCH and  
CAViaR type of models.  

By using knowledge of market conditions, we form a set of fundamental 
factors (supply and demand variables) and perform a variable selection 
procedure for each trading period and quantile with the aim of (1) proper in- 
sample fit, and (2) optimal out-of-sample fit for a given hour and a given 
quantile. Hence, in additional to the dimension of model choice, we stress the 
fact variable selection should be carefully monitored as different 
fundamentals influence hours and quantile differently. 

                                                            
1 For example, the sensitivity of the electricity price to wind production is allowed to vary 
over the quantiles of the electricity prices in a static QR model but not over time. Since the 
share of wind production in Germany has increased a lot over the last years, it is reasonable 
that the sensitivity for a given quantile also will change over time. This feature can be 
captured in a dynamic QR model. 



 

To sum up; the overall goal of our work is threefold. First, we want to identify 
appropriate fundamental variables for selected hours and quantiles of the 
price distribution. Secondly, we assess the gain of using more complex QR 
models compared to traditional QR models and given GARCH and CAViaR 
benchmarks. No such comprehensive Value at Risk prediction study for the 
German electricity market, according to our knowledge, has not yet been 
performed. 

The report is structured as follows: In chapter 2 we review relevant literature 
on fundamental electricity price modelling and VaR forecasting. Next, we 
describe the German power market and price formation process in chapter 3. 
In chapter 4 we present and analyse the data set. In chapter 5, we give a  
explanation of the models and evaluation procedures for distributional 
forecasts. We present and discuss the empirical results in chapter 6, and 
conclude in chapter 7. 

 

2 Literature review  

We position ourselves between the following groups of literature; (1) VaR 
forecasting of asset markets and more specifically energy commodities, and  
(2) Fundamental analysis of electricity price formation.  

VaR forecasting is complicated by the fact that high frequency asset prices 
(including electricity prices), exhibit challenging data features. Time varying 
volatility, skewness and kurtosis induce a lot of complexity to the modelling 
of VaR  (see Hartz et al. (2006) for more discussion). Kuester et al. (2006) 
provide a comprehensive review of VaR prediction strategies that can solve 
some of this issue.  

In our context, models that can be obtained for VaR forecasts are to be 
classified into three main categories: 

• Fully parametric models assuming a given error distribution. 
(e.g. a GARCH-skew-t model, EVT models etc.). 

• Non parametric approaches such as Historical simulation  
where one computes empirical quantiles based on past data. 
Historical simulation can be filtered taking into account time-
varying volatility  



 

• Semi-parametric such as Quantile regression that directly 
models specific quantiles with no assumption regarding the 
error distribution. 

  

Most of the application of these models have been done without usage of 
fundamentals when we look at the energy market literature. Gurrola-Perez 
and Murphy (2015) evaluate historical and filtered historical simulation  
models for energy markets. The latter approach should be used as in improves 
the distributional forecast greatly according to the authors. At present, 
research on EVT for estimating VaR in energy markets is sparse. However, 
examples are found in Bystrom (2005), Chan and Gray (2006) and Paraschiv 
and Hadzi-Mishev (2016), who all report that the results are encouraging. 
Garcia et al. (2005) use two GARCH models to forecast spot prices in the 
Spanish and Californian market; one with price as the only variable, and one 
including demand. They benchmark these against an ARIMA model. They 
find that GARCH with price only out- performs ARIMA as time varying 
volatility and price spikes are present. Moreover, adding demand as 
explanatory variable further improves the forecasting performance. GARCH 
models when assuming t or skewed t distribution shows promising results 
when forecasting VaR for commodies, including energy commodities (See 
Giot and Laurent (2003) and Fuss et.al. (2010)). Conditional Autoregressive 
Value-at-Risk (CAViaR) models by Engle and Manganelli (2004) model 
quantiles directly as an autoregressive process. The estimation is based on a 
quantile regression approach. The performance of CAViaR models are 
promising for electricity markets (see Fuss et al. (2010) and Bunn et al. 
(2016)). Bunn et al. (2016) also finds that classical quantile regression models 
gives excellent VaR forecast for UK electricity prices. Florentina and Hadzi-
Mishev (2016) use a combination of GARCH and EVT to investigate the tails 
of the German electricity price change distribution. They find that the model 
delivers relatively precise quantile estimates, but that the quality of the 
estimates is sensitive to the threshold selected for the tail.  

The other area of research is fundamental models for electricity markets. 
Fundamental models try to capture price dynamics by modelling the impact 
of exogenous (supply & demand) factors on the electricity prices. The main 
motivation for using such models is that characteristic electricity price 
patterns are results of adaption too fundamentals. Prices are also functions of 
different drivers in specific trading period. Prices have also different 
sensitivities to fundamentals depending on the level of electricity prices. In a 
comprehensive review of electricity forecasting literature, Weron (2014) 



 

finds that the majority of models include fundamentals. Fundamental type of 
models have been applied to the Nordic electricity market where the effects 
of water reservoir levels, load, and gas & coal prices among other variables 
have been found important for the price formation. Examples of such studies 
are Lundby and Uppheim (2011), Huisman at al (2015a,b), and Fleten et al 
(2016). All these studies give empirical insights on the nonlinear influence of 
the fundamentals to the electricity prices and well as time varying sensitivity 
to these fundamentals. The methods applied are quantile regression, various 
non-linear models, and state space models. In the German market, there are 
several interesting studies. Paraschiv et al., (2014, 2016) emphasise the 
importance of using fundamentals, and find variables for renewable power 
particularly influential. Her focus is the investigation on how the sensitivities 
to fundamentals changes over time applying a State Space model with 
Kalman filtering. Time varying parameters are motivated because evolving 
factors, like technology, market structure and participant conduct, affect the 
underlying price formation dynamically over time. Follow up studies using 
quantile regression also highlight that sensitivities changes in relation to the 
level of electricity prices (Hagfors et al. (2016a)). Prediction of extreme price 
occurrences in the german day-ahead electricity market by using non-linear 
discrete choice models are found in (Hagfors et al. (2016b)). In the UK market 
there are several papers investigating the price formation with fundamentals 
using state space model (Karakatsani and Bunn (2008)), regime switch 
models with non-linear transition functions of fundamentals (Bunn and Chen 
(2008)), and quantile regression (Bunn et al. (2016), and Hagfors et al. 
(2016)). One of the few papers focusing on predicting prices in the UK el-
market is Gonzales et al. (2012). They find improved accuracy by including 
fundamentals when forecasting UK spot prices. Moreover, they observe that 
the variable coefficients in their models evolve remarkably over time. Thus, 
they argue that dynamic specifications are necessary, and that forecasting 
models should be re-estimated day by day. They suggest constant monitoring 
of market conditions in order to select the appropriate model specification and 
fundamental drivers. The only paper we have found so far on predicting prices 
distributions in the UK el-market is Bunn et. al. (2016). They find improved 
forecasting accuracy by including fundamentals. Bunn et al. (2016) 
investigate the UK market using various forms of quantile regression and 
compare the out-of-sample forecast with various GARCH and CaViaR 
models. The general finding is that quantile regression models including 
fundamentals performs just as well these advanced models at a much lower 



 

cost of implementation. Quantile regression models including fundamentals 
are also much easier to understand and enables the risk management to 
perform scenario analysis and investigate the effect on VaR of changing 
values of risk factors directly. Market participants can use these in risk 
management, by planning for a range of price scenarios given different input 
ranges for the fundamental variables. Maciejowska and Weron (2016) also 
find that inclusion of fundamentals generally improves the forecasting 
performance of UK baseload prices. However, they also emphasise that 
variable selection is crucial. For example, they observe that including gas 
prices increases forecasting performance, whereas variables related to 
system-wide demand and CO2 prices worsen price predictions. The authors 
conclude that there is no general answer as to which fundamentals are the best 
to include, as the optimal selection depends on both forecasting horizon and 
trading period. 

We want to extend the literature and understanding of electricity price 
distributional forecasting using dynamic quantile regression models. This is 
an area that lack investigation. It is particular interest in markets such as the  
German electricity market where the input mix (and hence sensitivities to the 
drivers) clearly has changed over time. Particularly we want to follow the 
models proposed by Taylor (2008a). He introduces exponentially weighted 
quantile regression (EWQR). The extension is motivated by the trade-off 
between including too few observations and getting large sampling errors, and 
including too many and getting a model that reacts slowly to changes in the 
true distribution. EWQR attempts to resolve this by placing exponentially 
decaying weights on the observations, which gives greater emphasis to newer 
observations. To the best of our knowledge, EWQR has received little 
attention in electricity price forecasting literature. It is challenging to estimate 
extreme quantiles due to the sparseness of observations in the tails. This is 
Taylor’s (2008b) motivation for extending the EWQR model further, to 
exponentially weighted double kernel quantile regression (EWDKQR). The 
EWDKQR method is based on the paper by Jones and Yu (1998), who argue 
that double-kernel methods are useful for calculating quantiles. In empirical 
studies, Taylor finds that EWDKQR performs worse than EWQR in terms of 
hit percentage. However, the dynamic properties of the quantiles are better 
explained by the EWDKQR model.  

To sum up; we want to extend the analysis and understanding of electricity 
price formation with fundamentals using dynamic quantile regression models, 



 

and investigate whether these model improve the forecast compare to static 
quantile regression, GARCH, and CaViaR type of models. We also want to 
invest specifically which combinations of drivers / fundamentals that should 
be used in predicting VaR for specific hours and quantiles.  

 

3. The German electricity market  

In this chapter, we describe the German electricity market, the price drivers, 
and the price formation process. This will serve as a guidance and 
motivation for choosing the fundamental variables. 

The European Power Exchange (EPEX) is the main trading platform for 
electricity prices in Europe. It offers trading, clearing and settlement in 
both the day-ahead- and intraday markets. The day-ahead, hourly prices in 
Germany are traded on EPEX and are referred to as ”Phelix”. The day-ahead 
market is the primary market for power trading. Here, buyers and sellers 
make hourly contracts for delivery of power the following day. This 
happens through a daily auction at 12.00pm, where the market clearing 
price is determined by matching demand and supply. The intraday market 
supplements the day-ahead market and helps secure necessary demand-
supply balance. 

Seasonal fluctuations, substantial volatility clustering, large spikes and 
increasing occurrences of negative prices for certain hours characterise 
the German electricity market (see Reisch and Micklitz (2006) ,  Paraschiv 
et al. (2014), and Hagfors et al. (2016b) for more discussions).  

Energy input mix 

Table 3.1 shows the development of the energy mix in Germany from 2010 
to 2016. It illustrates that power production in Germany mainly relies on 
fossil fuel power, particularly coal with 40.3% of the total production in 
2016. Moreover, there is a large share of intermittent renewable energy in 
the form of wind and solar power.  The increase in renewable energies and 
reduction in nuclear power are the most notable developments during the 
period. The latter is due to the German government’s decision to phase out 
nuclear energy within 2022. Regulatory changes are also the key driving 
force for the growth in renewables, as several subsidies and policy 
measures have been introduced during the recent period (see  (Federal 
Minsitry for Economic Affairs and Energy (2017)). 



 

 
 

Source 2010 2011 2012 2013 2014 2015 2016 
Coal 41.6 42.9 44.1 45.2 43.8 42.1 40.3 
Nuclear 22.2 17.6 15.8 15.3 15.5 14.2 13.1 
Natural gas 14.1 14.1 12.2 10.6 9.7 9.6 12.4 
Oil 1.4 1.2 1.2 1.1 0.9 1.0 0.9 
Renewable energies: 16.5 20.1 22.6 23.7 25.8 29.0 29.0 

Wind 6.0 8.0 8.1 8.1 9.1 12.3 11.9 
Solar 1.9 3.2 4.2 4.9 5.7 6.0 5.9 

Biomass 4.6 5.2 6.1 6.3 7.7 6.9 7.0 
Hydro power 3.3 2.9 3.5 3.6 3.1 2.9 3.2 
Waste to energy 0.7 0.8 0.8 0.8 1.0 0.9 0.9 

Other 4.2 4.1 4.1 4.1 4.3 4.1 4.2 
Table 3.1: Electricity production in Germany by source (%). Data from AG Energibalanzen e.V. (2017) and 

Clean Energy Wire (2017). 

 

Demand 

Since electricity is a flow, it is produced and consumed continuously. The 
non-storable nature of electricity entails that a constant balance between 
supply and demand is necessary to ensure power system stability. Hence, 
hourly price variations are largely due to fluctuations in demand. Therefore, 
the dynamics of hourly prices will behave very different. Demand is a 
function of temperature, seasonality and consumer patterns, which give rise 
to the periodic nature of electricity prices. As few options are available to 
consumers in response to price changes, demand is highly price inelastic in 
the short term. Positive price spikes are often caused by high (unexpected) 
demand. Producers with market power may also offer and create market 
prices substantially above marginal costs in times of scarcity and high 
demand. Including lagged price and volatility behaviour might capture 
some of these effects (see Bunn et al. (2016) for more discussions of how 
adaptive behaviour can be specified in the model specifications).  
 

Supply 

The merit order curve plays a vital role in the electricity price formation 
process. This the sorted marginal cost curve of electricity production, 
starting with the least expensive technologies to the left of the curve. 
Generally, the plants with the lowest marginal costs are the first to use to 
meet demand. Thus, we can use the merit order curve to determine the 
price setting technology, i.e. the production technology located at the 
intersection between supply and demand. The German merit order curve 



 

increases areas of flat and convex regions, hence induce non-linearity in the 
elasticity between fundamentals and prices. During periods of low demand, 
base load power plants, such as nuclear and coal, usually serve as price 
setting technologies. These plants are inflexible, due to high ramp-up 
costs. Contrary, in times of high demand, prices are set by expensive peak 
load plants, like gas and oil power plants. These facilities have high 
flexibility, high marginal costs, and give rise to the convex shape of the merit 
order curve. With the lowest marginal cost, renewable energy sources are at 
the bottom of the merit order curve. Increased supply of renewable energy 
shifts the curve to the right, and thus lowers power prices. Coal is the largest 
source of electricity in Germany. Hence, coal is a generating technology in 
the mid-region of the supply function where demand tends to be most of the 
time. CO2-producing companies are obliged to buy emission allowances. 
Since coal-fired power plants and to a lesser degree gas-fired power are 
CO2  intensive, the price of CO2  allowances influence the marginal cost 
of coal and gas power plant in a different way. During periods of high prices 
for emission allowances, a phenomenon called fuel switch may occur. This 
is a change in the merit order curve, where the marginal production costs 
of more efficient gas-fired power plants become less than those of CO2 
intense coal-fired power plants (see Erni (2012) and Paraschiv et al. (2014) 
for more discussion). 

 

Among the renewable energy sources in Table 3.1, wind and solar energy have 
attracted the most attention in Germany over the past years. In 2016, they 
contributed to 18% of the total production in Germany. The supply of wind 
and solar energy is determined by meteorological conditions and features 
seasonal patterns. A notable observation from  Paraschiv et al. (2014) is that 
wind infeed tends to be higher in the early morning and the afternoon hours. 
Due to intermittency, renewable energy sources pose significant challenges 
for modern energy markets (see EPEX Spot (2017)). Hours with increased 
supply of renewable energy cause difficulties for inflexible facilities that 
should run continuously. This is because the inflexible base load facilities 
have shutdown and start-up costs, forcing them to accept negative marginal 
returns in order to generate continuously. This has a lowering effect on 
electricity prices. Hagfors et al. (2016c) find that negative prices largely are 
caused by high wind production at times when demand is low. Thus, 
negative price spikes occur mainly at night. 

 



 

Reserve margin is a commonly considered supply side factor in literature. It 
is defined as available supply minus demand. Bunn et al. (2016) argue that 
spot prices are sensitive to supply shocks such as plant outages, and that 
expectations of spot prices involve consideration of the reserve margin. 

 
4. Data analysis 

Our dependent variables are selected prices from EPEX observed between 
01.01.2010 and 31.08.2016. The main reason for this choice is the 
Equalisation Mechanism Ordinance, which came into force January 1st 
2010. This act induced a significant increase in the use of renewable energy 
and caused large changes in the EPEX input mix. Moreover, some of the 
data, like solar and power plant availability, are incomplete or not 
available for earlier time periods. The spot price data has hourly resolution, 
which means that we have 58 440  price observations. However, since each 
hour is a separate trading period, we treat the price data as 24 independent 
time series with 2435 data points each. We have selected hours 3, 8 and 
19 as the periods we aim to model  as representatives of hours with 
different dynamics. 

Our selection of independent variables are based on our discussion in 
chapter 3. The data set applied in this analysis consists of the variables 
shown in table 4.1 and table 4.2;  

 
 

Variable Daily Hourly
Phelix spot price X
Coal price X  
Gas price X  
Oil price X  
CO2 allowance price
EU Expected wind 

X  
X 

Expected solar (PV) infeed  X
Expected power plant availability (PPA) X  
Expected demand  X

 

Table 4.1: Data granularity for our dependent and independent variables used in 
the analysis. We apply hour 3,8, and 19 with the associated forecasts in our analysis. 
The data period is from 1Jan2010 to 31Aug2016.  

 

 



 

 
Table 4.2: Description of dependent and independent variables used in our analysis.  
We apply hour 3,8, and 19 with the associated forecasts in our analysis.  The data 
period is from 1Jan2010 to 31Aug2016. 

 

 

Figure 4.1 shows the development of spot prices for hours 3,8,19. We see 
occurrences of negative price spikes in hour 3, and positive spikes in hours 
8 and 19. The different hours clearly display different price characteristics 
due to different demand conditions and usage of different technologies for 
electricity production. Table 4.3 gives more details of the properties of the 
various prices. All prices where found stationary using  Dickey Fuller tests 
and we found significant serial correlation for several lags (not shown in 
the table). The mean of the prices shows in general a falling trend. For the 
whole period hour 8 and 19 have a significant higher mean price 
(Euro/MWh) than hour 3. Negative prices are found every year for hour 3 
prices, with the lowest price of -221 Euro/MWh for the year 2012. There is 
a trend downward in the absolute values of negative prices indicating that 
power companies might have improved to manage negative spikes. There 
has also been minor changes in German energy policy over these years that 
might have had an effect. In hour 8 we detect negative prices some years. 
In hour 19 there are (not surprisingly) no negative prices as this represent 
the hour with highest demand. Hour 8 have few positive spikes. Hour 8 and 



 

19 have substantial positive price spikes some years (although the trend is 
falling). There has in general been a falling trend of volatility for all prices. 
Hour 3 has negative skewness each year in prices, hour 8 have some years 
with negative skewed prices and some years with positive. Hour 19 have 
positive skewness in prices all years. The kurtosis is also high for all series. 
Extreme negative spikes some periods makes the kurtosis highest for hour 
3. Figure 4.1 also illustrate this. 

 
  



 

 
 

 
 

 
Figure 4.1: Development in selected hourly EPEX spot prices (hour 3,8,19) from 1Jan2010 to 
31Aug2016 

  



 

 

Hour 3 Median Mean Min Max Std.div. Skewness Kurtosis 

2010 29.83 27.63 -18.10 50.15 10.60 -0.77 3.47 
2011 38.58 34.85 -0.10 51.08 10.71 -1.10 3.47 
2012 30.08 26.21 -221.94 45.20 20.99 -8.11 86.69 
2013 25.90 23.29 -62.03 39.67 10.78 -2.03 13.98 
2014 23.98 21.14 -60.26 34.46 9.00 -3.09 23.16 
2015 24.02 21.29 -31.41 34.92 9.21 -1.82 7.73 
2016 20.10 18.48 -19.30 30.01 6.27 -1.99 8.95 

Total 25.67 25.00 -221.90 51.08 13.10 -5.37 84.24 

Hour 8 Median Mean Min Max Std.div. Skewness Kurtosis 

2010 51.55 50.07 1.06 98.71 14.66 -0.50 3.83 
2011 60.63 57.44 -5.95 88.78 13.83 -1.18 5.10 
2012 53.24 51.38 -0.09 175.55 19.35 1.15 10.20 
2013 46.61 46.71 -0.98 109.36 18.14 -0.10 3.02 
2014 41.03 39.65 0.05 72.94 13.81 -0.35 2.82 
2015 40.46 38.85 -6.86 71.92 13.88 -0.43 3.05 
2016 34.10 31.17 2.59 85.05 10.53 0.03 5.86 

Total 46.37 45.76 -6.86 175.60 17.21 0.19 2.02 

Hour 19 Median Mean Min Max Std.div. Skewness Kurtosis 

2010 50.85 53.52 24.76 95.00 10.78 0.92 4.15 
2011 62.53 62.37 21.49 117.49 9.79 0.20 6.20 
2012 55.00 56.39 13.70 169.90 15.85 1.87 12.79 
2013 49.55 51.29 9.28 120.16 15.67 0.85 4.45 
2014 42.44 44.20 14.34 81.51 11.56 0.67 3.73 
2015 42.11 42.53 10.55 98.05 11.39 0.44 4.40 
2016 33.15 33.04 11.79 70.03 6.99 0.75 6.74 

Total 48.95 49.85 9.28 169.90 14.99 0.74 2.65 

 
Table 4.3: Descriptive statistics of EPEX spot prices hour 3,8, and 19  measured in Euros. The tables show the 
characteristics based on daily data each year from 1Jan2010 to 31Aug2016 (that is summary statistics are 
only given for part of 2016).  

 
 

Table 4.4 displays descriptive statistics of the fundamental variables used in the 
analysis. Wind, Solar, Demand have all hourly resolution, while coal, gas, 
oil, co2 prices and PPA are given on a daily basis in the period 
1Jan2010 to 31Aug2016. Table 4.5 display the correlation between 
the spot price at the specific hour and the fundamentals. Wind and 
Solar have a negative correlation on the electricity price as expected. 
Demand and fuel prices have positive correlation as expected. 
Expected power plant availability have positive (as expected) 
correlation with prices at hour 8 and 19. At hour 3 the effect is neglect 
able. This might be due to that in the night hours, supply capacity is 
usually in surplus.  

  



 

 

  
 
 

Hour 3 Median Mean Min Max Std.div. Skewness Kurtosis 

Wind 4491 6067 286 37322 5265 1.9 7.4 
Solar 0.0 0.1 0.0 255.0 5.2 49.3 2433 
Demand 31078 31219 19127 45071 3821 0.2 3.1 
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2 
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7 
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1 
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3 
PPA 55531 55323 40016 64169 4863 -0.2 2.1 

 

Hour 8 Median Mean Min Max Std.div. Skewness Kurtosis 

Wind 4075 5875 229 35663 5399 1.8 6.9 
Solar 2087 3011 0.0 11665 2849 0.8 2.6 
Demand 48673 45193 22783 62594 7800 -0.8 2.3 
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2 
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7 
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1 
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3 
PPA 55531 55323 40016 64169 4863 -0.2 2.1 

 

Hour 19 Median Mean Min Max Std.div. Skewness Kurtosis 

Wind 4473 6101 270 33522 5225 1.7 6.3 
Solar 74.0 736 0.0 4730 1047 1.3 3.5 
Demand 45947 45496 30768 60966 5840 -0.3 2.4 
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2 
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7 
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1 
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3 
PPA 55531 55323 40016 64169 4863 -0.2 2.1 

Table 4.4: Descriptive statistics of fundamental variables used in the analysis. Note that coal, gas, oil, CO2 and 
PPA has a daily data granularity, and therefore show the same numbers for all hours. The calculations are 
based on daily data from EPEX from 1Jan2010 to 31Aug2016. 

 

 
 

Hour Wind Solar Demand Coal Gas Oil Co2 PPA  

3 -0,571 -0,003 0,264 0,370 0,151 0,222 0,316 -0,074  
8 -0,378 -0,224 0,699 0,441 0,300 0,321 0,308 0,132  
19 -0,394 -0,368 0,538 0,553 0,425 0,427 0,336 0,182  

 
Table 4.5: Correlation between spot prices and fundamental variables. The calculations are based on daily 
data from EPEX from 1Jan2010 to 31Aug2016. 

 
   



 

5. Econometric Methods and Procedures 
 

In this chapter, we describe how we implement and test quantile 
regression models and a set of benchmark models as well evaluation 
procedure for distributional forecasts. Finally, we describe our variable 
selection approach and our rolling window forecast approach.  

We implement three different quantile regression models and three 
benchmark GARCH and CaViaR models: 

 

 Traditional quantile regression (QR) 

 Exponential weighted quantile regression (EWQR) 

 Exponential weighted double kernel quantile regression (EWDKQR) 

 GARCH(1,1) with skewed student-t distribution (GARCH-T) 

 Symmetric absolute value CAViaR  (SAV CAViaR)  

 Asymmetric slope CAViaR. (AS CaViaR) 

 
 
Linear quantile regression 

We start with the original quantile regression model by Koenker and Bassett  
(1978). This is given by; 

, , , , 										 5.1  

 
 
Here, θ ∈	{1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%} denotes the 
quantile, i ∈  [0, 23] is the hour, and n indexes the set of explanatory variables 
x which has N elements. P is the price of electricity. The set of fundaments 
are from the ones described in chapter 4 but will vary as we perform a 
variable selection procedure (this will be described later). The quantile 
coefficients are found by minimizing; 
 
 	

min , , , , 										 5.2  



 

i 

 
Xi,t is a vector of explanatory variables at time t and βi

θ is a vector of 
regression coefficients. I() refers to an indicator function returning the value 
1 or 0. We solve the minimisation problem using the ”quantreg” package in 
R. 

 
 
Exponentially weighted quantile regression 

By adding a weighting parameter λ to equation 5.2, we get the 
exponentially weighted quantile regression by Taylor (2008b). λ 
decays exponentially, amounting to simple exponential smoothing of the 
cumulative distribution function. Thus, the EWQR minimisation has the 
form; 

 

min , , , , 										 5.3  

 

Again, we solve the minimisation using R’s ”quantreg” package. The value 
of λ determines how fast the weights decay. If the distribution changes 
rapidly, a relatively low value is needed to ensure that the model adapts 
swiftly. However, larger values may be necessary in the extreme quantiles 
to give significant weight to a higher number of observations. We follow 
Taylor’s approach to optimise the λ-values.  This is done by using a 
rolling window to produce one step-ahead quantile forecasts for the 
observations in the in-sample set, and selecting the λ that yields the 
minimum QR sum. This is the summation in the standard form of QR in 
Equation 5.2. Since λ depends on all parts of the model specification, we 
perform this optimisation for all combinations of hours, quantiles, 
explanatory variables and window sizes. We test a window of λ-values 
between 0.9 and 1, with a step size of 0.001. 

 
Exponentially weighted double kernel quantile regression 

We expand the exponential weighted quantile regression model further to 
exponentially weighted double kernel quantile regression following the 
approach of Taylor (2008b). In this model, we replace the observations 
lnPi,t from Equation 5.3 with a kernel function Kh2 . Taylor argues that 
introducing kernels may allow faster decay of the exponential weighting 
parameter, and consequently, better adaption to swift distribution changes.. 
To perform the minimisation, we use the ”nlm” nonlinear optimisation 
solver in R . 



 

 
Fully parametric GARCH models 

In several studies investigation GARCH models for commodity VaR 
predictions GARCH with a skewed student-t distribution perform 
significantly better than Gaussian GARCH (see for example Giot and 
Laurent (2003) and Fuss et al. (2010)). This is the reason why we only 
implement skewed student-t GARCH. For details of the the model, see Giot 
and Laurent (2003).  We first run a regression with ln(Pt) as the dependent 
variable against a set of fundamentals. The residuals from this regression is 
then modelled by a skewed student-t GARCH. This model is then used for 
forcasting VaR (see Giot and Laurent (2003) for details). We use here the  
”fGarch” package in R.  

 

Conditional autoregressive Value-at-Risk models 

The CAViaR models by Engle and Manganelli (2004) specify the 
evolution of a quantile over time as an autoregressive process. They derive 
expressions for four different CAViaR processes; symmetric absolute 
value, asymmetric slope, adaptive, and indirect GARCH(1,1). We use the 
first two as benchmarks, as Fuss et al. (2010)) found that these generally  
outperformed the others in predicting VaR. These models are estimated 
using a developed code in R.  

 

Out-of-sample performance analysis 

To test the predictive performance of the models, we use Kupiec’s 
unconditional coverage (UC) test (1995), Christoffersen’s conditional 
coverage (CC) test (1998), and the dynamic conditional quantile (DQ1 and 
DQ2) tests by Engle and Manganelli (2004). Alexander (2008b,d) gives a 
nice description on how these measures are used in risk management and 
backtesting of VaR models in practice. 
 
 
Variable selection and Forecasting Approach 

Variable selection is a crucial step in building a good prediction model 
(e.g. Diebold (2015)). Distributional forecasting this is a complex process, 
and the standard goodness- of-fit tests are not sufficient. In Chapter 2, we 
saw evidence that fundamental variables affect specific hours and quantiles 
differently. As our target is forecasting, it is therefore necessary to perform 
variable selections for all combinations of hours and quantiles, to take full 



 

advantage of modelling each quantile separately.  To achieve high predictive 
power, variable selection should be based on the quality of the association 
between predictors and responses, rather than causal relationships (see 
Shmueli (2010) and Diebold (2015) for more discussion. For each hour 
and quantile, we choose the combination of variables that yields the best 
SIC score2 in sample while also demanding that the model pass the critical 
out-of-sample tests3. 

We apply a rolling window, which works as follows: If the window size is, 
lets say 365, observations [1, 365] are used for forecasting the VaR of 
observation 366. Next, we re-estimate the model with observations [2, 
366] and forecast the VaR of observation 367, and so on. We test window 
sizes of 250, 365, 548, 730 and 913 days. The window that gives the best 
results for a given hour and quantile is chosen in each case.  

 
Results 

 
Table 6.1, 6.2, and 6.3 shows the predictive performance of the models 
presented in chapter 5. As evaluation criteria, we use the UC-,CC- and DQ 
tests and display the detailed results for hours 3, 8, and 19, respectively. 
Here, we only present the optimized model for each quantile and hour. 
That is, models that are optimized with window size and variable 
combinations for each hour and quantile.  
 
It is difficult to draw general conclusions as to which model is performing 
best based on our results. The model with the highest predictive performance 
varies across both the distribution and the trading periods. Moreover, the four 
evaluation criteria favour different models in each case. We calculate the 
total number of rejected tests when we rate one model against another in 
Table 6.1, 6.2, and 6.3 below. 

. 

                                                            
2 SIC measures for quantile regression are described Koenker et al. (1994) and in Vinod (2010) chapter 2. For 
GARCH models, it’s the standard SIC measure based on the likelihood function and number of parameters. 
3 Details on which variables to include for each model, each hour, and each quantile as well as the optimal window 
size can be given by contacting the corresponding author. 
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Table 6.1: Predictive performance in hour 3 

 
Quantile Violations P UC P CC P DQ1 P DQ2   Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.09E-02 8.01E-01 0.00E+00* 1.86E-01 2.61E-02* 0.01 6.84E-03 3.62E-01 0.00E+00* 1.00E+00 1.80E-01
0.05 4.92E-02 9.25E-01 3.07E-01 1.32E-01 1.65E-01 0.05 6.29E-02 1.22E-01 3.03E-01 3.54E-01 5.66E-01
0.10 8.48E-02 1.61E-01 2.73E-01 6.11E-01 6.07E-01 0.10 1.07E-01 5.50E-01 5.09E-01 6.24E-01 9.45E-01
0.25 2.42E-01 6.22E-01 1.08E-01 7.81E-03* 1.21E-01 0.25 2.38E-01 4.52E-01 7.26E-04* 1.49E-05* 4.28E-02*
0.50 5.62E-01 7.51E-04* 0.00E+00* 5.54E-31* 3.38E-02* 0.50 8.81E-01 0.00E+00* 0.00E+00* 7.93E-13* 1.46E-02*
0.75 7.44E-01 7.17E-01 0.00E+00* 2.46E-38* 2.16E-01 0.75 6.13E-01 3.33E-16* 0.00E+00* 3.60E-16* 2.03E-06*
0.90 8.88E-01 2.81E-01 3.61E-02* 5.28E-04* 3.75E-01 0.90 8.84E-01 1.52E-01 1.18E-01 3.11E-01 2.29E-09*
0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04* 9.64E-01 0.95 9.49E-01 9.39E-01 7.62E-01 6.04E-02 1.37E-06*
0.99 9.84E-01 1.11E-01 0.00E+00* 1.90E-04* 2.83E-02* 0.99 9.93E-01 3.62E-01 0.00E+00* 1.00E+00 2.07E-02*

# Rejections   1 5 6 3   # Rejections   2 5 3 6

0.01 1.37E-02 3.44E-01 0.00E+00* 4.95E-01 9.23E-02   0.01 1.37E-02 3.44E-01 1.74E-01 9.98E-01 3.13E-01 
0.05 5.06E-02 9.39E-01 3.52E-01 1.85E-01 2.70E-01 0.05 5.75E-02 3.66E-01 3.86E-01 8.26E-01 2.71E-01
0.10 9.44E-02 6.10E-01 7.24E-01 7.26E-01 7.97E-01 0.10 9.44E-02 6.10E-01 1.32E-02* 1.24E-02* 2.59E-01
0.25 2.46E-01 8.14E-01 8.27E-01 1.41E-02* 1.50E-01 0.25 2.28E-01 1.74E-01 2.20E-04* 7.02E-05* 9.86E-02
0.50 4.77E-01 2.22E-01 0.00E+00* 1.14E-23* 8.24E-03* 0.50 5.27E-01 1.49E-01 7.05E-09* 6.33E-14* 1.72E-07*
0.75 6.87E-01 1.17E-04* 0.00E+00* 5.96E-27* 7.97E-03* 0.75 7.55E-01 7.48E-01 9.26E-04* 2.97E-11* 3.32E-06*
0.90 8.82E-01 1.21E-01 4.32E-02* 2.70E-02* 1.22E-01 0.90 9.21E-01 5.43E-02 5.29E-05* 5.49E-05* 3.99E-09*
0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04* 9.64E-01 0.95 9.67E-01 2.34E-02* 1.79E-03* 1.30E-03* 5.79E-01
0.99 9.82E-01 5.66E-02 7.74E-02 1.60E-01 4.90E-01 0.99 9.86E-01 3.44E-01 0.00E+00* 1.21E-05* 2.64E-01

# Rejections   1 4 5 2   # Rejections   1 7 7 3

0.01 6.84E-03 3.62E-01 0.00E+00* 1.00E+00 7.49E-02   0.01 1.09E-02 8.01E-01 1.89E-01 2.98E-03* 2.26E-01 
0.05 3.97E-02 1.84E-01 3.13E-01 8.41E-01 8.72E-01 0.05 5.61E-02 4.58E-01 1.77E-01 1.26E-01 1.20E-01
0.10 8.62E-02 2.03E-01 4.30E-01 4.58E-01 4.73E-01 0.10 1.11E-01 3.38E-01 4.76E-03* 3.11E-02* 9.41E-01
0.25 2.37E-01 4.02E-01 0.00E+00* 3.98E-43* 2.79E-10* 0.25 1.44E-01 1.82E-12* 0.00E+00* 1.09E-18* 2.30E-02*
0.50 4.90E-01 5.79E-01 4.45E-02* 3.44E-02* 3.83E-08* 0.50 5.40E-01 2.90E-02* 0.00E+00* 2.47E-39* 1.59E-04*
0.75 7.35E-01 3.40E-01 0.00E+00* 6.60E-85* 1.48E-26* 0.75 6.80E-01 2.05E-05* 0.00E+00* 6.18E-43* 4.10E-04*
0.90 9.53E-01 9.73E-08* 1.53E-07* 1.84E-01 4.63E-18* 0.90 8.96E-01 7.22E-01 4.45E-01 5.17E-01 4.05E-09*
0.95 9.53E-01 6.62E-01 4.51E-11* 2.12E-25* 2.17E-12* 0.95 9.52E-01 7.91E-01 8.11E-01 9.57E-01 2.12E-10*
0.99 9.96E-01 6.92E-02 0.00E+00* 1.00E+00 2.29E-07* 0.99 9.88E-01 5.44E-01 0.00E+00* 9.97E-01 3.06E-11*

# Rejections   1 7 4 6 # Rejections   3 5 5 6

The table displays the violation in percent, p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described 
in Section 5. P-values highlighted with *  are significant at the 5% level, which implies poor model calibration (Under H0 we have a correct model). Window sizes and variable selection is optimize for 
each model as described in chapter 5 .
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Table 6.2: Predictive performance in hour 8 

 
Quantile Violations P UC P CC P DQ1 P DQ2   Quantile Violations P UC P CC P DQ1 P DQ2

0.01 9.58E-03 9.08E-01 0.00E+00* 9.99E-01 2.73E-01 0.01 1.37E-02 3.44E-01 0.00E+00* 5.08E-01 1.01E-03
0.05 3.15E-02 1.39E-02* 4.60E-02* 6.06E-01 9.98E-01 0.05 3.15E-02 1.39E-02* 4.60E-02* 2.53E-02* 1.52E-03
0.10 7.52E-02 2.01E-02* 6.10E-02 1.96E-02* 6.43E-01 0.10 7.66E-02 2.85E-02* 8.16E-03* 1.21E-01* 1.25E-01
0.25 2.54E-01 7.82E-01 6.66E-16* 9.75E-20* 2.52E-02* 0.25 1.86E-01 3.72E-05* 4.86E-07* 1.08E-02 8.81E-02
0.50 4.90E-01 5.79E-01 1.37E-14* 6.91E-49* 1.66E-01 0.50 6.05E-01 1.35E-08* 1.66E-11* 2.79E-06 2.22E-08
0.75 7.15E-01 3.35E-02* 3.26E-13* 6.64E-23* 5.32E-02 0.75 7.28E-01 1.69E-01 6.20E-06* 2.20E-06 2.17E-11
0.90 9.18E-01 9.66E-02 6.16E-13* 1.30E-28* 1.41E-04* 0.90 8.77E-01 4.35E-02* 1.10E-02* 1.03E-01 4.04E-12
0.95 9.49E-01 9.39E-01 2.33E-15* 1.11E-42* 1.86E-05* 0.95 9.44E-01 4.58E-01 4.21E-01 1.56E-01 5.50E-10
0.99 9.96E-01 6.92E-02 0.00E+00* 1.00E+00 4.56E-01 0.99 9.89E-01 8.01E-01 0.00E+00* 1.38E-09 4.36E-05

# Rejections   3 8 6 3   # Rejections   5 8 5 7

0.01 1.23E-02 5.44E-01 0.00E+00* 9.97E-01 3.30E-01   0.01 3.83E-02 4.43E-09* 2.36E-08* 4.04E-09* 5.66E-03* 
0.05 4.79E-02 7.91E-01 9.35E-01 6.77E-01 6.50E-01 0.05 8.62E-02 4.33E-05* 1.47E-05* 2.59E-12* 1.39E-01
0.10 9.85E-02 8.92E-01 3.08E-01 9.48E-04* 1.23E-01 0.10 1.38E-01 1.07E-03* 5.48E-04* 5.51E-25* 1.59E-02*
0.25 2.60E-01 5.38E-01 8.48E-10* 4.87E-10* 2.86E-01 0.25 2.75E-01 1.23E-01 4.23E-07* 1.25E-05* 3.79E-02*
0.50 4.66E-01 6.98E-02 5.07E-12* 6.05E-52* 7.33E-03* 0.50 4.47E-01 4.36E-03* 3.50E-06* 2.12E-57* 8.85E-16*
0.75 7.10E-01 1.40E-02* 3.72E-10* 2.90E-15* 1.28E-03* 0.75 6.51E-01 2.72E-09* 1.23E-12* 2.60E-29* 7.47E-08*
0.90 9.12E-01 2.53E-01 2.63E-12* 7.48E-21* 4.84E-01 0.90 8.73E-01 1.80E-02* 1.56E-09* 3.33E-20* 1.67E-03*
0.95 9.44E-01 4.58E-01 7.71E-11* 7.32E-24* 1.44E-01 0.95 9.36E-01 8.88E-02 2.36E-06* 6.59E-12* 7.45E-04*
0.99 9.86E-01 3.44E-01 0.00E+00* 7.70E-02 1.34E-04* 0.99 9.90E-01 9.08E-01 0.00E+00* 6.20E-02 5.99E-01

# Rejections   1 7 6 3   # Rejections   6 9 8 7

0.01 1.50E-02 2.02E-01 1.37E-02* 9.01E-08* 4.42E-01   0.01 1.78E-02 5.66E-02 0.00E+00* 7.79E-01 5.74E-02 
0.05 5.20E-02 8.07E-01 7.50E-01 2.35E-04* 9.10E-01 0.05 6.29E-02 1.22E-01 6.77E-02 3.68E-10* 2.44E-01
0.10 9.99E-02 9.90E-01 1.65E-06* 3.50E-07* 8.85E-01 0.10 9.85E-02 8.92E-01 1.64E-01 4.60E-13* 2.52E-02*
0.25 2.50E-01 9.83E-01 1.40E-02* 1.11E-59* 1.47E-01 0.25 2.60E-01 5.38E-01 2.50E-08* 1.24E-09* 1.74E-01
0.50 5.06E-01 7.39E-01 0.00E+00* 4.43E-29* 4.71E-01 0.50 4.40E-01 1.27E-03* 0.00E+00* 1.33E-65* 6.42E-04*
0.75 7.47E-01 8.48E-01 6.50E-07* 5.43E-08* 5.04E-08* 0.75 6.59E-01 4.56E-08* 0.00E+00* 1.11E-33* 2.50E-04*
0.90 9.06E-01 6.10E-01 2.55E-15* 3.80E-28* 3.67E-01 0.90 9.02E-01 8.92E-01 4.12E-09* 8.98E-21* 5.26E-03*
0.95 9.53E-01 6.62E-01 3.49E-06* 2.82E-17* 4.76E-11* 0.95 9.38E-01 1.66E-01 9.57E-06* 1.52E-12* 5.68E-03*
0.99 9.88E-01 5.44E-01 2.05E-01 7.89E-04* 9.62E-01 0.99 9.90E-01 9.08E-01 0.00E+00* 6.20E-02 7.16E-01

# Rejections   0 7 9 2 # Rejections 2 7 7 5

The table displays the violation in percent, the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as 
described in chapter 5. P-values highlighted with * are significant at the 5% level, which implies poor model calibration (Under H0 we have a correct model). Window sizes and variable selection is 
optimize for each model as described in chapter 5.
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Table 6.3: Predictive performance in hour 19 

 
Quantile Violations P UC P CC P DQ1 P DQ2   Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.23E-02 5.44E-01 0.00E+00* 3.24E-02* 9.21E-03* 0.01 1.09E-02 8.01E-01 0.00E+00* 9.99E-01 2.84E-02*
0.05 5.20E-02 8.07E-01 9.70E-01 2.80E-04* 5.39E-02 0.05 4.51E-02 5.40E-01 7.51E-01 8.82E-02 4.33E-01
0.10 9.58E-02 7.01E-01 9.22E-01 4.30E-04* 2.00E-01 0.10 8.62E-02 2.03E-01 3.46E-01 4.85E-01 3.29E-01
0.25 2.48E-01 8.81E-01 5.95E-01 1.06E-08* 5.55E-01 0.25 2.13E-01 2.01E-02* 8.09E-04* 3.14E-02* 4.67E-04*
0.50 4.99E-01 9.70E-01 4.95E-01 6.61E-01 1.34E-01 0.50 4.87E-01 4.82E-01 5.84E-02 1.10E-02* 7.33E-05*
0.75 7.55E-01 7.48E-01 1.31E-01 5.58E-01 3.70E-04* 0.75 6.83E-01 4.19E-05* 2.65E-09* 9.73E-05* 3.65E-08*
0.90 9.19E-01 7.30E-02 1.50E-03* 1.33E-02* 2.40E-01 0.90 8.80E-01 7.41E-02 6.92E-02 2.52E-01 2.26E-05*
0.95 9.85E-01 4.18E-07* 7.84E-11* 5.81E-26* 8.27E-01 0.95 9.45E-01 5.64E-01 7.28E-01 8.35E-01 2.39E-04*
0.99 9.96E-01 6.92E-02 0.00E+00* 1.00E+00 9.31E-01 0.99 9.95E-01 1.78E-01 0.00E+00* 2.97E-08* 6.07E-01

# Rejections   1 4 6 2   # Rejections   2 4 4 6

0.01 1.64E-02 1.11E-01 0.00E+00* 3.63E-01 2.58E-02*   0.01 2.33E-02 2.12E-03* 0.00E+00* 8.08E-01 2.41E-04* 
0.05 6.57E-02 6.32E-02 5.85E-02 5.40E-04* 5.44E-03* 0.05 5.61E-02 4.58E-01 6.73E-02 1.55E-02* 4.35E-02*
0.10 1.16E-01 1.52E-01 2.80E-01 1.91E-02* 9.33E-03* 0.10 1.01E-01 9.12E-01 2.29E-01 2.75E-02* 6.87E-01
0.25 2.56E-01 7.17E-01 4.70E-01 4.32E-07* 4.05E-01 0.25 2.68E-01 2.61E-01 4.36E-01 6.51E-08* 6.19E-01
0.50 5.03E-01 8.53E-01 7.07E-01 6.33E-01 7.39E-02 0.50 4.92E-01 6.84E-01 8.61E-01 8.03E-01 5.39E-02
0.75 7.36E-01 3.84E-01 1.18E-01 2.19E-01 2.38E-02* 0.75 7.28E-01 1.69E-01 7.67E-02 1.87E-01 6.64E-05*  
0.90 9.02E-01 8.92E-01 7.78E-02 6.55E-02 6.79E-02 0.90 9.15E-01 1.61E-01 9.68E-02 4.24E-01 1.42E-01
0.95 9.59E-01 2.52E-01 2.97E-10* 5.45E-24* 2.77E-01 0.95 9.48E-01 8.07E-01 2.89E-08* 9.87E-15* 6.05E-01
0.99 9.95E-01 1.78E-01 1.81E-02* 2.76E-08* 8.19E-01 0.99 9.85E-01 2.02E-01 5.59E-04* 6.51E-12* 9.58E-01

# Rejections   0 3 5 4   # Rejections   1 3 5 3

0.01 1.09E-02 8.01E-01 1.89E-01 1.70E-01 1.25E-01   0.01 1.37E-02 3.44E-01 0.00E+00* 1.34E-01 6.44E-01 
0.05 4.79E-02 7.91E-01 0.00E+00* 8.60E-02 3.97E-01 0.05 5.06E-02 9.39E-01 7.22E-01 2.96E-01 6.95E-01
0.10 9.71E-02 7.95E-01 9.66E-01 4.56E-03* 7.12E-02 0.10 1.05E-01 6.33E-01 9.03E-02 2.60E-04* 4.84E-01
0.25 2.56E-01 7.17E-01 1.55E-15* 2.13E-18* 5.74E-01 0.25 2.76E-01 1.04E-01 2.00E-01 2.00E-06* 2.06E-01
0.50 5.05E-01 7.96E-01 1.32E-01 2.24E-10* 2.71E-02* 0.50 5.06E-01 7.39E-01 8.29E-01 7.46E-01 2.21E-02*
0.75 7.47E-01 8.48E-01 0.00E+00* 3.66E-41* 5.41E-01 0.75 7.35E-01 3.40E-01 3.04E-01 4.87E-01 3.42E-05*
0.90 9.15E-01 1.61E-01 9.68E-02 5.92E-02 4.90E-02* 0.90 9.21E-01 5.43E-02 1.25E-01 3.55E-01 5.33E-02
0.95 9.70E-01 7.85E-03* 3.54E-04* 1.63E-04* 5.97E-01 0.95 9.59E-01 2.52E-01 2.97E-10* 1.31E-24* 7.20E-01
0.99 9.93E-01 3.62E-01 4.86E-02* 1.25E-04* 7.33E-01 0.99 9.92E-01 6.15E-01 1.82E-03* 8.77E-18* 2.31E-01

# Rejections   1 5 6 2 # Rejections   0 3 4 2

The table displays the violation in percent , the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as 
described in chapter 5.P-values highlighted with * are significant at the 5% level, which implies poor model calibration (Under H0 we have a correct model). Window sizes and variable selection is 
optimize for each model as described in chapter 5.



 

 
 

  UC (27) CC (27) DQ1 (27) DQ2 (27) Total (108) 
EWQR 2 14 16 9 41 
QR 5 17 18 8 48 
SAV CAViaR 5 15 16 13 49 
EWDKQR 2 19 19 10 50 
GARCH-T 9 17 12 19 57 
AS CAViaR 8 21 18 12 59 

Table 6.4: Total number of test rejections per model over all quantiles and periods. The table displays the total 
number of test rejections per model at the 5% significance level. The numbers in parentheses give the maximum 
number of rejections. A high number of rejections indicates poor calibration. UC is the unconditional coverage test, 
CC is the conditional coverage test, and DQ1 and DQ2 are the two dynamic conditional quantile tests, as described 
in Section 5.  The models are also described in section 5. 

 
 

In Table 6.4 above we display the total number of test rejections per model. 
Based on this, we rate the EWQR as the best model overall; it outperforms 
both the other QR type models and the benchmarks in terms of test 
rejections. Another important observation is that clustering of exceedances 
is challenging to capture for all models. Again, EWQR is relatively the 
best model regarding the CC test but not with the more advanced DQ1 and 
DQ2 tests.   
 
Next, we break down the analysis into performance in each hour and parts of 
the distribution. The results for each hour are summarised in Table 6.5. 
EWQR are performing best for hour 3 and 8 and third best for hour 
19. For hour 19 SA CAViaR is performing best. An observation is 
also that hour 8 have a higher level of rejections in general than hour 
3 and hour 19.  
 

 
Rating Model Rejections Rating Model Rejections 

1 EWQR 12 1 EWQR 17 
2 QR 15 2 EWDKQR 18 
3 GARCH-T 16 3 QR 20 
4 EWDKQR 18 4 SA CAViaR 21 
5 AS CAViaR 18 5 GARCH-T 25 
6 SA CAViaR 19 6 AS CAViaR 30 

  Hour 3 (36)       Hour 8 (36)  

Rating Model Rejections  
1 SA CAViaR 9 
2 AS CAViaR 11 
3 EWQR 12 
4 QR 13 
5 EWDKQR 14 
6 GARCH-T 16 

  Hour 19 (36)  

Table 6.5: Total number of test rejections per hour. The table displays the total number of test rejections per 
model at the 5% significance level. The numbers in parentheses give the maximum number of rejections. A high 
number of rejections indicates poor calibration. 



 

 
 

In table 6.6,we assess performance across the distribution. For risk 
management purposes, it is particularly important to consider accuracy in 
the tails. Thus, we divide the distribution into three parts: i) The lower tail 
with quantiles 0.01%, 0.05% and 0.10%, ii) the mid-region with quantiles 
0.25%, 0.50% and 0.75%, and iii) the upper tail with quantiles 0.90%, 
0.95% and 0.99%. 

 
 
 

Rating Model Rejections Rating Model Rejections 
1 EWDKQR 8 1 QR 17 
2 EWQR 9 2 EWQR 19 
3 SA CAViaR 9 3 AS CAViaR 20 
4 GARCH-T 11 4 EWDKQR 22 
5 QR 12 5 SA CAViaR 25 
6 AS CAViaR 17 6 GARCH-T 31 

  Lower tail (36)       Mid-region (36)  

Rating Model Rejections  
1 EWQR 13 
2 GARCH-T 15 
3 SA CAViaR 15 
4 QR 19 
5 EWDKQR 20 
6 AS CAViaR 22 

  Upper tail (36)  
 
Table 6.6: Total number of test rejections in sections of the distribution. The table displays the total number of 
test rejections per model at the 5% significance level. The numbers in parentheses give the maximum number of 
rejections. A high number of rejections indicates poor calibration. 

 
 
 

EWQR perform second in the lower tail and best in the upper tail. In the mid-
region it performs second best (which is of less interest regarding risk 
management). In general, it is harder to predict the lower tail than the upper tail. 
AS CAViaR are performing worst for both tails.  
 

We rate EWQR as the best model overall. This model has the fewest test 
rejections in total, and shows particularly good performance in the tails. 
This indicates that this model (although not perfect) is able to account for the 
changing market dynamics in Germany. The reason that EWQR generally 
outperform EWDKQR might be due to that the latter suffer from 
overfitting (EWDKQR requires estimation of an additional parameter).  

 
 



 

Conclusion 
 

In this paper, our aim have been to forecast VaR for the German EPEX spot 
price using various set of fundamentals and state of the art models. VaR 
model analysis and forecasting for energy commodities remains an under-
research area despite the need for energy risk management among 
producers, consumers, and other participants in this market. We have 
focused on using fundaments to capture the complex and non-linear 
response of supply- and demand variables to electricity price. Not only can 
fundamentals improve forecasting electricity price distributions (which is 
the main aim of this paper), but also help us in understanding which risk 
drivers influence most at certain hours and certain quantiles.  

 

We apply state of the art models found to yield good results in other studies 
of commodity VaR forecasting. These are quantile regression, exponential 
weighted quantile regression, exponential weighted double kernel quantile 
regression, GARCH models with skewed t error distributions, and various 
CAViaR models. We optimize the use of exogenous variables by finding 
the best models in-sample using the SIC criterion as well as checking 
whether these models pass some of the out-of-sample tests for each hour 
and each quantile. This is motivated by evidence in literature that the 
impact of fundamentals differs across the distribution and between trading 
periods. Our findings highlight the importance of variable selection, and 
show that it in many cases is as important as the choice of model. 

We investigate hours 3, 8, and 19 in this study using daily prices and 
fundamental data from the period 01.01.2010 to 31.08.2016. The set of 
fundamentals we use are the coal price, gas price, oil price, CO2 allowance 
price, expected wind infeed, expected solar infeed, expected power plant 
availability, and expected demand. In general we find that exponential 
weighted quantile regression is the best model overall based on the total 
number of test rejections. This model is among the top-performers for all 
trading periods, and performs particularly well in the outer quantiles. This 
is also an easy model to implement relative to the other models investigated 
in this study. Thus we recommend this model together with carefully 
selecting fundamentals for given hours and quantiles when the aim is to 
forcast VaR for German electricity prices.  This insights can be applied by 
market participants who seek to determine optimal biddings strategies, 
trading strategies and risk management in general.  
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