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Summary

This thesis addresses the topic of nonlinear estimation and its applications. Par-
ticular emphasis is given to downhole pressure estimation for Managed Pressure
Drilling (MPD), but due to the mathematical similarities of the two problems, ve-
locity estimation for mechanical systems is also considered. The thesis consists of
the following three parts:

Part I of this thesis addresses the problem of pressure estimation for MPD systems.
Over the last decade MPD has emerged as a tool for drilling offshore wells with
tight pressure margins. Several technologies for MPD have been developed and this
thesis focuses on the so called constant bottomhole pressure variation. This version
of MPD aims at keeping the pressure at one location in the annulus section of a well
constant by applying back-pressure through the use of a choke manifold at the rig.
As the pressure profile in the well is not measured, a key element of any control
system (manual or automatic) is some sort of estimation scheme for the pressure
in the well. To aid in control design for MPD systems, and to solve the pressure
estimation problem, a fit for purpose low order model has been developed. Using
data from offshore wells, and dedicated experiments onshore, it is demonstrated
that the model captures the dominant pressure dynamics. It is also demonstrated
that a newly developed adaptive observer, combined with a recursive least squares
parameter identification scheme, is able to predict the downhole pressure in the
presence of significant parametric uncertainties.

Part II of this thesis addresses the problem of adaptive observer design for a class of
nonlinear systems including the drilling model. To estimate unmeasured states, in
dynamical systems with parametric uncertainties, one can use adaptive observers.
Furthermore, if the system is sufficiently (persistently) excited, adaptive observers
can be used to identify uncertain parameters. The current state of the art in adaptive
observer design does not cover the class of systems to which the drilling model
belongs. Motivated by this, a method for adaptive observer design for this class of
systems is developed. The method guarantees stability and convergence of the state
estimate without requiring persistent excitation. Another weakness with the current
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state of the art is that existing Lyapunov based adaptive laws have poor parameter
identification properties, and can be very hard to tune, when estimating more than
one parameter. This motivated the developement of an adaptive observer design that
uses multiple delayed observers to improve the convergence rate of the estimation
scheme, at the cost of an increased computational burden. In particular, explicit
lower bounds on the convergence rate of the state and parameter estimation error
are given, and, if the original non-adaptive observer has tunable convergence rate,
the redesigned adaptive observer will have tunable convergence rate as well.

Part III of this thesis addresses the topic of observer-based output feedback control
of general Euler-Lagrange systems. The design of a globally stabilizing output (po-
sition) feedback tracking controller for general Euler-Lagrange systems has been an
active field of research for at least two decades. Still, it was not until recently that
a globally convergent velocity observer was developed. In part III of this thesis a
significant obstacle in the development of a constructive observer design is removed
yielding a constructive speed observer design with global performance guarantees.
In addition, a separation principle is proven, guaranteeing global stability and con-
vergence when the observer is used in conjunction with certain types of certainty
equivalence controllers. To the best of the authors knowledge this represents the first
observer-based output feedback tracking control solution that guarantees a global
region of attraction for general Euler-Lagrange systems.
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Chapter 1

Introduction

This thesis is concerned with state and parameter estimation and its applications
with particular emphasis on downhole pressure estimation for drilling operations.
We will mostly work with continuous time systems in the form of ordinary differ-
ential equations of the form

ẏ = f1(t, y, z) (1.1a)
ż = f2(t, y, z) (1.1b)

where t ∈ R+ represents time, y ∈ Rm is measured and z ∈ Rm is unmeasured.
For estimation any control input u(t) is considered a known time-varying signal
that can be included in f1 and f2 through the dependence on time. In the following
sections we will first present an introduction to managed pressure drilling, briefly
motivate the need for automatic control, state and parameter estimation and review
the current state of the art. Then we will give an introduction to state and parameter
estimation and the current state of the art. We will end this chapter by with an
outline of the thesis, where the main contributions are highlighted, and a list of
publications.

1.1 Managed Pressure Drilling

To meet the increasing demand for oil and gas there is a need to find new reserves
and to extract these. Most of the larger fields that are accessible with conventional
drilling technology have been drilled. Consequently the remaining fields typically
contain less oil and gas, and are harder to drill (located in less accessible forma-
tions). It is therefore a strong demand for drilling technologies that can drill where
conventional drilling cannot be used, while still being cost and time efficient.
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Figure 1.1: Offshore drilling from a jacket platform. Drill mud flows from the
main pump through the drill string, drill bit and out through the choke. The mud
transports cuttings out of the wellbore and helps to maintain the desired pressure in
the borehole.
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1.1.1 Introduction to Drilling

As an introduction to drilling consider the drill rig set-up illustrated in Fig. 1.1. The
figure illustrates a jacket platform performing offshore managed pressure drilling.
At the top of the derrick the drill string is attached to the top drive, which is a
motor that turns the drill string. The drill string can move up and down inside the
derrick as the top drive is attached to a hook that can be lowered or raised. As
the drilling progresses the top of the drill string sinks towards the drill floor. After
approximately 27m a new stand of drill pipe is connected to the top and drilling
resumes. This procedure is referred to as a pipe connection. For a typical rate of
penetration of 15m

hr
a pipe connection is performed roughly every two hours.

During drilling, downhole cuttings need to be transported out of the bore hole. This
is done by using a drilling fluid (mud) circulation system. On board the rig, tanks
filled with drilling fluid feed the main mud pump which pumps the drilling fluid
through the top drive and into the drill string. The fluid then flows down through
the bit and up through the annulus carrying the cuttings along before the fluid exits
through a choke. After exiting, the fluid is recycled and returned to the mud tanks.
The example illustrated in Fig. 1.1 has a rotating control device which seals off the
annulus from the outside, a choke that controls the flow rate of drilling fluid out from
the annulus and an additional back pressure pump that ensures a minimum flow rate
through the choke. The rotating control device and the choke thus pressurizes the
annulus so that pressure can be increased or decreased by manipulating the choke.
In conventional drilling there is no rotating control device, choke and back pressure
pump thus reducing the possibilities to influence the pressure in the annulus.

A drilling fluid needs sufficiently high viscosity to carry the cuttings to the surface,
and sufficiently high density to balance the downhole pressure conditions. Drilling
fluids can be water based, oil based or even pneumatic (contain or consist of gas).
The design of drilling fluids is its own technical discipline that we will not describe
futher in this work. For more details see e.g. Jr., Millheim, Chenevert, and Jr.
(1991).

The main reason for pressure control is to maintain the annulus pressure profile
within its margins, i.e. above the pore pressure of the reservoir or the collapse
pressure of the bore hole, and below the fracturing pressure of the bore hole. If
the pressure in the annulus falls below the pore pressure, fluids (e.g. gas) can flow
from the formation into the annulus, which is called a kick. If a kick is not detected
and dealt with properly it can lead to an uncontrolled surface blowout with large
financial losses, environmental damage and possible loss of lives. If the pressure
in the annulus falls below the collapse pressure, the well can collapse onto the drill
string which in turn gets stuck. In the worst case scenario the pipe must be severed
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and parts of the well drilled over again. If the pressure in the annulus exceeds the
fracturing pressure, drilling fluid can be lost to the formation which can damage the
permeability of the reservoir, and if severe losses occur, the annulus pressure might
fall below the pore pressure (due to loss of hydrostatic height) inducing a kick. A
typical pressure versus depth graph for an offshore well is shown in Fig. 1.2. The
figure shows that when the drill bit has reached depth B we cannot drill further,
because the pressure in the well (dashed line) is very close to the pore/collapse
pressure (red line). To solve this issue one would like to increase the density of
the drilling fluid, therby increasing the pressure in the well. However, as the figure
shows, the pressure in the well at depth A is very close to the fracture pressure (blue
line) thus we cannot increase the pressure in the well without fracturing the well at
depth A. The result is that we cannot continue drilling without setting casing (steel
cylinders) into the well. A 9 5/8" casing is set down to depth B, isolating the well
from the formation, enabling us to increase the mud weight without fracturing the
well. The full line shows the pressure in the well when the well has been drilled into
the reservoir, note that it is above pore/collapse pressure in the reservoir and below
the fracturing pressure at depth B.

Reservoir

Pressure

T
ru

e 
V

er
tic

al
 D

ep
th

SeabedCasing Schematic
30''

11 3/4''

13 3/8''

16''
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9 5/8''

A

B

Figure 1.2: A pressure vs. depth graph of a typical offshore well. The red line repre-
sents the maximum of the pore and collapse pressures while the blue line represents
the fracture pressure. A typical casing set-up is shown on the left, starting with a
30" conductor casing and ending with a 7" liner into the reservoir. The dashed line
shows the pressure in the annulus with the mud weight used when drilling from
depth A to depth B and the full line shows the pressure in the annulus when drilling
with a higher density mud from depth B into the reservoir.

The pressure in the annulus is mainly affected by the hydrostatic weight and the
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pressure due to friction losses (Brill and Mukherjee, 1999; Rehm, Schubert, Haghshenas,
Paknejad, and Hughes, 2008). In addition, if the annulus is closed off, the pressure
at the top of the annulus induced by choking will significantly affect the pressure in
the well. There are several operational procedures that affect the pressure in the an-
nulus. Pipe connection affects the pressure as the main pump must be disconnected
to attach a new section of drill pipe, which leads to zero flow and loss of pressure due
to friction. Moving the drill string all the way in/out of the well (tripping) changes
the volume in the annulus and creates a piston effect around the bottom hole assem-
bly (BHA). Tripping out pipe causes reduced pressure in the annulus, and tripping
in pipe creates a surge in the pressure. Similar effects can be experienced due to
wave-induced motion (heave) when drilling from a floating drilling rig. There are
several other operations, such as drill string rotation and rate of penetration (ROP),
that also affect the downhole pressure.

1.1.2 Pressure Control

As described in the previous section there is a demand for accurate control of the
annulus pressure. As a response to these demands a fairly new (for offshore drilling)
technology for pressure control has emerged (Hannegan, 2006). It is named Man-
aged Pressure Drilling (MPD) and is defined by the International Association of
Drilling Contractors (IADC), Underbalanced Operations Committee as (Malloy,
Stone, George H. Medley, Hannegan, Coker, Reitsma, Santos, Kinder, Eck-Olsen,
McCaskill, May, Services, Smith, and Sonneman, 2009):
Definition 1.1. "Managed Pressure Drilling is an adaptive drilling process used to
precisely control the annular pressure profile throughout the wellbore. The objec-
tives are to ascertain the down hole pressure environment limits and to manage the
annular hydraulic pressure profile accordingly. The intention of MPD is to avoid
continuous influx of formation fluids to the surface. Any influx incidental to the
operation will be safely contained using an appropriate process."

Over the last 10 years much research has been devoted to the field offshore man-
aged pressure drilling and there have been several successful applications both on
the Norwegian continental shelf (Eck-Olsen, Pettersen, Ronneberg, Bjørkevoll, and
Rommetveit, 2005; Bjørkevoll, Molde, Rommetveit, and Syltøy, 2008b; Bjørkevoll,
Hovland, Aas, and Vollen, 2010; Godhavn, 2010; Godhavn and Knudsen, 2010) and
in the rest of the world (Chustz, Smith, and Dell, 2008; Fredericks, Reitsma, Rung-
gai, Hudson, Zaeper, Backhaus, and Hernandez, 2008; Calderoni and Girola, 2009).
Hannegan (2006) divides existing MPD technologies into several categories, all of
which have their pros and cons. In this thesis we consider the so called constant
bottomhole pressure variation which uses an additional seal, choke manifold and
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possibly a back pressure pump to pressurize the annulus as shown in Fig. 1.1.
When using the term managed pressure drilling we usually refer to the constant
bottomhole version.

A typical automatic MPD system is illustrated in Fig. 1.3. The control objective is
to keep the pressure pdh at a critical location in the well, typically corresponding to
the bit or the casing shoe, constant. As most of the measurements are taken top side
(at the rig), and only a low bandwidth delayed measurement of the pressure close to
the bit is available, it is common to use a hydraulic model to calculate the reference
trajectory for the pressure controller.

Figure 1.3: Simplified schematic of an automatic MPD system Kaasa et al. (2011a).
The hydraulic model uses available measurements to calculate a reference trajectory
prefc so that the downhole pressure, pdh, is kept close to its desired value prefdh .

Given a desired choke pressure reference one can choose to operate the choke either
manually or automatically. Manual control is easier to implement but the perfor-
mance depends on individual attention, interpretation and skill, and so it typically
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has less accuracy, slower response times and less repeatability. Automatic control
has the potential to improve these performance issues at the cost of higher initial
implementation costs. Automatic control also enables the driller to focus on more
high level tasks, such as drilling the well as fast as possible within safety limita-
tions, instead of low level tasks such as controlling a choke or a pump. Thus, for
high performance MPD, it is necessary to use automatic control (Godhavn, 2010).

1.1.3 Pressure Estimation

As pointed out in the previous section an essential part of an automated MPD control
system is the hydraulic model. As choke pressure control can be made very accurate
by choosing appropriate hardware and designing high performance control loops,
the accuracy of the hydraulic model is in most cases the limiting factor for the
achievable accuracy of the entire control system. This has triggered a lot of research
into developing advanced hydraulic models in order to capture all aspects of the
drilling hydraulics, see e.g. (Lage, 2000; Lage, Fjelde, and Time, 2003; Petersen,
Bjørkevoll, and Rommetveit, 2008a; Petersen, Rommetveit, Bjørkevoll, and Frøyen,
2008b). These models are based on distributed parameter models of multiphase
flow and are able to reproduce a wide range of drilling-specific events such as,
pipe connections, cementing, gelling and multi-fluid scenarios to an impressingly
high degree of detail (Bjørkevoll, Rommetveit, Aas, Gjeraldstveit, and Merlo, 2003;
Bjørkevoll, Molde, and Fjeldberg, 2008a). Real-time versions of the models have
also been developed and used with success (Eck-Olsen et al., 2005; Bjørkevoll et al.,
2008a,b).

There are some issues related to using advanced hydraulic models. Due to the high
level of accuracy they contain both fast (e.g. pressure wave traveling through the
system) and slow dynamics (e.g. temperature effects). This implies that the imple-
mented differential equations are inherently stiff and numerically difficult to sim-
ulate. Advanced models also contain dynamics that are faster than the bandwidth
of the controller. As the model is used to calculate a reference trajectory for the
choke pressure, these fast dynamics are injected into the controller, which is unde-
sireable as the controller cannot compensate for them. Furthermore the amount of
data needed to set up advanced models can be quite large. As this data is typically
entered by a user it increases the chance for errors. And finally, many of the pa-
rameters needed to take full advantage of the achievable accuracy of an advanced
model are hard to specify and will change during operations. It is therefore crucial
that some sort of calibration or parameter adaptation is performed online. In prac-
tice calibration of advanced hydraulic models is performed manually by an expert
(Bjørkevoll et al., 2010) although there has been attempts at applying Unscented
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Kalman Filters (Lohne, Gravdal, Dvergsnes, Nygaard, and Vefring, 2008; Gravdal,
Lorentzen, Fjelde, and Vefring, 2010) to tune the models online. As an automated
MPD system is safety-critical1 robustness under all circumstances of both hardware
and the implemented algorithms is crucial. The above issue illustrates that verify-
ing the robustness of an advanced hydraulic model under all circumstances is a very
difficult task.

Contrary to using an advanced hydraulic model it is possible to derive fit for purpose
low order models that capture the dominant phenomenon relevant for pressure con-
trol and estimation. In the work Nygaard and Nævdal (2006) a low order model for
underbalanced drilling2 is derived. The later work by Nygaard, Imsland, and Johan-
nessen (2007a) and Nygaard, Johannessen, Gravdal, and Iversen (2007b) focuses
on control and estimation based on the low order model. More recently Godhavn
(2010), shows how a simplified model of the choke pressure dynamics can be used
to derive a, possibly nonlinear, proportional-integral (PI) controller.

1.2 State and Parameter Estimation

This section contains an introduction to state and parameter estimation. For in-
creased readability we have chosen to use fairly standard notation from the control
community (see e.g. (Khalil, 2002)), without being very explicit with the mathe-
matical definitions. Typically upper case letters refer to matrices while lower case
letters refer to vectors.

A common problem facing the control engineer is lack of measurements that are
needed for control purposes, or that the signals are measured but the measurement
quality is low due to noise, delays or slow sampling rates. In these cases, signals
needed for control purposes can be estimated by using a dynamical system that is
adjusted based on the available measurements. In the deterministic setting such a
dynamical system is typically called an observer as in the seminal work done by Lu-
enberger (1964), while in the stochastic setting it is called filter or an estimator as in
the seminal work done by Kalman (1960); Kalman and Bucy (1961). This thesis fo-
cuses on the deterministic case so we will not review extensions of Kalmans work to
nonlinear systems such as the popular Extended Kalman Filter (Brown and Hwang,
1997; Reif, Sonnemann, and Unbehauen, 1998; Besançon, 2007), and the more re-
cently developed Unscented Kalman Filter (Julier, Uhlmann, and Durrant-Whyte,

1E.g. a failure can lead to an induced kick, which has the potential of leading to a blowout with
large financial losses, large environmental damages and possible loss of human lives.

2During underbalanced drilling the well pressure is kept below the pore pressure so that the well
is actually producing while drilling.
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2000; Julier and Uhlmann, 1997). There are several definitions of observers in the
literature (Luenberger, 1964; Gauthier, Hammouri, and Othman, 1992; Marino and
Tomei, 1996; Besançon, 2007; Karagiannis, Carnevale, and Astolfi, 2008). Loosely
speaking they all consider an observer to be a dynamical system

ξ̇ = w1(ξ, u, y, t) (1.2)
x̂ = w2(ξ, u, y, t) (1.3)

such that:

• x̂(0) = x(0)⇒ x̂(t) = x(t), ∀t ≥ 0,

• limt→∞ ‖x̂(t)− x(t)‖ = 0,

where x(t) = [y(t), z(t)]T is the solution to (1.1). The functions w1 and w2 rep-
resent the design freedom given to the control engineer. In some cases it might be
desirable to only estimate the unknown elements of the state vector (e.g. z in (1.1)),
thus reducing the computational complexity of the estimation algorithms. Such ob-
servers are called reduced order observers. In the next subsections we will give
an introduction to state and parameter estimation for continuous time systems and
review the existing state of the art.

1.2.1 Linear Systems

Non-Adaptive Observers

Consider linear systems of the form

ẋ = Ax+Bu (1.4)
y = Cx, (1.5)

where x is the state, u is the measured input and y represents the measurements.
A full order observer can be designed by appending an output injection term to the
right hand side of (1.4) giving

ξ̇ = Aξ +Bu+ L(y − Cξ), (1.6)

with x̂ = ξ. Denote the state estimation error as e = x− x̂. Subtracting (1.6) from
(1.4) we get

ė = (A− LC)e. (1.7)
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The linear system (1.7) has an exponentially stable equilibrium at the origin if all
the eigenvalues of the matrixA−LC are in the left half plane (A−LC is then called
Hurwitz). If the pair (A,C) is observable (or at least detectable) then there exists
L so that A− LC is Hurwitz (Luenberger, 1964; Chen, 1999). In the more general
case where the matrices A,B and C are time-varying and the system is uniformly
completely observable, one can use the so called Kalman-Bucy filter (Kalman and
Bucy, 1961; Brown and Hwang, 1997; Besançon, 2007), which is a time-varying
version of (1.6) where the gain L depends on the solution of a Riccati differential
equation.

Adaptive Observers

If there are uncertain parameters in the linear system (1.4), then one can use pa-
rameter adaptation to ensure that the state estimate converges to the true state. The
simplest case of parameter uncertainty is probably when the unknown parameter
vector θ enters the system multiplied by a measured function, that is

ẋ = Ax+Bu+ φ(t)θ (1.8)
y = Cx. (1.9)

In this case we can simply create an extended state vector z = [x, θ] so that we get

ż =

[
A φ(t)
0 0

]
z +Bu (1.10)

for which we can design a Kalman-Bucy filter provided the system is uniformly
completely observable. However, as pointed out in Zhang (2005), it is hard to verify
the uniform complete observability of the extended system, and application of the
Kalman-Bucy filter requires the solution of a Riccati equation of the same order as
the extended system. Zhang (2002) provides an observer with less complexity that
only requires uniform complete observability of the time-varying part of (1.8), and
does not require the solution to a Riccati equation (in the case where A, B and C
are constant matrices). For the case where the unknown parameter vector enters the
system multiplied by the state vector and the input in the form

ẋ = Âx+ θbu (1.11)
y = Cx (1.12)
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with u and y scalar and

A =


1 0 0

θa 0
. . . 0

0 0 1
0 0 0

 C = [1, 0, . . . , 0], (1.13)

one can design so-called adaptive Luenberger observers (Ioannou and Sun, 1996).
These observers build on the earlier results by Luders and Narendra (1973) with
important extensions developed by Kreisselmeier (1977). The adaptive Luenberger
observer consists of a Luenberger type observer combined with different types of
parameter adaptation laws such as SPR3-Lyapunov based, gradient based and least-
squares methods (Ioannou and Sun, 1996). To illustrate these ideas we consider a
linear mass-spring-damper example of the form

ẋ1 = x2 (1.14a)
ẋ2 = −kx1 − bx2 + u (1.14b)

where y = x1 is measured, k > 0 is the unknown spring constant and b > 0 is the
unknown damping coefficient. Due to the bx2 term this system is not in the form
(1.8) nor in the form (1.11)–(1.13). However, as the system is observable it can
be transformed into the observable canonical form (1.11)–(1.13) by defining a new
state vector x̄1 = x1 and x̄2 = bx1 + x2. Straight-forward differentiation leads to

˙̄x =

[
−b 1
−k 0

]
x̄+

[
0
1

]
u (1.15)

which is in the form (1.11)–(1.13) with θa = [−b,−k]T and θb known. Following
the approach in Ioannou and Sun (1996) an adaptive observer for x̄ is

˙̂x =

[
θ̂a1 1

θ̂a2 0

]
x̄+

[
0
1

]
u+K(t)(y − Cx̂) (1.16)

with K(t) = K∗ − θ̂ where K∗ = [k∗1, k
∗
2]T is chosen so that

[
−k∗1 1
−k∗2 0

]
is Hurwitz.

The adaptive law that generates θ̂ is a design choice. We will now illustrate how to
design this adaptive law. Note that (1.14) can be written as

ÿ + θa1ẏ + θa2y = u. (1.17)

3Strictly Positive Real
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Transforming this system into the Laplace domain, letting s denote the complex
variable, and pre-multiplying with a second order low-pass filter gives

s2

(τs+ 1)2
y + θa1

s

(τs+ 1)2
y + θa2

1

(τs+ 1)2
y =

1

(τs+ 1)2
u. (1.18)

Letting z(t) = 1
(τs+1)2

u − s2

(τs+1)2
y and φ(t) =

[
s

(τs+1)2
y

1
(τs+1)2

y

]
it is clear that we can

write (1.18) as

z(t) = θTa φ(t). (1.19)

Eq. (1.19) represents a linear parameterization of the unknown parameter vector
and a vast selection of parameter identification algorithms are available. Before
continuing with the selection of an identification algorithm we will briefly look at
the concept of persistent excitation.

At a given time instant t1 Eq. (1.19) represents one equation with two unknowns. If
we take two time instances t1 and t2 > t1 we get two equations with two unknowns
in the form

z(t1) = φT (t1)θa (1.20)

z(t2) = φT (t2)θa. (1.21)

This set of equations has a unique solution only if the equations are linearly inde-
pendent, i.e. if the matrix

Φ(t1, t2) =

[
φT (t1)
φT (t2)

]
(1.22)

has full rank. The solution can then be found by inverting Φ(t1, t2). On the other
hand, if φ(t1) = φ(t2) then the rows of (1.22) are linearly dependent, consequently
Φ is not invertible and we cannot identify θa. Clearly φ(t) must satisfy some condi-
tion to guarantee invertibility (or observability) with respect to the unknown param-
eter vector. This condition is called persistency of excitation (PE) and is crucial for
parameter identification. For continuous time linear systems the condition is stated
as (see e.g. Ioannou and Sun (1996)):

α1I ≥
1

T0

∫ t+T0

t

φ(τ)φT (τ)dτ ≥ α0I, ∀t ≥ 0. (1.23)

We will not go into a deep discussion around eq. (1.23) but point out that it guaran-
tees that the moving average of φ(t)φT (t) has full rank ∀t ≥ 0. Roughly speaking,
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for linear single input single output systems (1.23) is satisfied if u contains at least
p
2

number of distinct frequencies where p is the number of unknown parameters
(Ioannou and Sun, 1996).

Returning to the example we select the gradient algorithm with normalization from
Ioannou and Sun (1996). The adaptive law minimizes the cost function

J
(
θ̂a

)
=

(
z(t)− θ̂Ta φ(t)

)2

2m2
, (1.24)

where m(t) is a normalization factor (e.g. m(t) = 1 + φT (t)φ(t)). Using a steepest
descent method one can argue that

˙̂
θa = −Γ∇J

(
θ̂
)

(1.25)

= Γ
φ(t)(z(t)− θ̂Tφ(t))

m2(t)
, (1.26)

where ∇J
(
θ̂
)

denotes the gradient of J
(
θ̂
)

, is a good search direction. Ioan-
nou and Sun (1996) proves the stability of (1.26) in conjuction with the adaptive
Luenberger observer (1.16) and guarantees that :

• All signals are uniformly bounded.

• The output observation error y − ŷ converges to zero as t −→∞.

• If the system is sufficiently excited (PE) by an external input u(t) both the
parameter estimation error θ− θ̂ and the state estimation error x̄− x̂ converge
to zero.

Note that to get an estimate of the true state x2 = x̄2 − θa1x1 we must identify θa1.
This can only be guaranteed if the input u is such that the system is sufficiently
excited.

1.2.2 Nonlinear Systems

Non-Adaptive Observers

Observers for nonlinear systems has been an active field of study for several decades.
High-gain observers (Thau, 1973; Tornambe, 1989; Gauthier et al., 1992; Khalil,
1999; Grip, 2010) can be used for uniformly observable systems where the nonlin-
earities satisfy a Lipschitz condition. These observers rely on sufficiently high-gain
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output injection to dominate the nonlinear terms in the observer error dynamics. The
class of systems for which high-gain observers can be designed has shown to con-
tain many practical systems making high-gain observers a popular choice, however,
as one might expect the use of high-gain injection from measurements can make
these observers sensitive to measurement noise (Bullinger and Allgöwer, 1997).

If one looks at smaller classes of systems one can find observers that do not rely
on high-gain injection terms. We will now look at some of these design methods.
For the case when the system consists of linear dynamics combined with measured
nonlinearities e.g.

ẋ = Ax+ φ(y) (1.27a)
y = Cx (1.27b)

one can design an observer of the form

ξ̇ = Aξ + φ(y) + L(y − Cξ). (1.28)

As the nonlinearity is replicated in the observer, the error dynamics become

ė = (A− LC)e (1.29)

which is the same as in the linear case (1.7), making the observer design prob-
lem solvable with linear systems theory. A natural extension of this idea is to
characterize the class of nonlinear systems which are transformable (by a diffeo-
morphism) into the form (1.27). This idea was first pursued by Krener and Isidori
(1983) where the authors give necessary and sufficient conditions for the existence
of such a transformation. It turns out that the conditions derived by Krener and
Isidori (1983) are extremely restrictive, in particular due to the requirement of a
linear output map. This requirement was relaxed by Kazantzis and Kravaris (1998),
where the authors extended Luenbergers original ideas (Luenberger, 1964) to non-
linear systems. Kazantzis and Kravaris (1998) derive conditions for the existence
of a local nonlinear transformation that transforms the original system into a linear
system, driven by a nonlinear measured term, and having a nonlinear output map.
Extensions to this class of systems have been developed in (Krener and Xiao, 2002,
2004; Andrieu and Praly, 2006; Kravaris, Sotiropoulos, Georgiou, Kazantzis, Xiao,
and Krener, 2007).

If the system is of the form

ẋ = Ax+ φ(y) +Gγ(Hx) (1.30)
y = Cx (1.31)
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where γ(Hx) is an r-dimensional vector of monotonic nonlinearities, that is γ sat-
isfies

(a− b)[γi(a)− γi(b)] ≥ 0, (1.32)

where γi is the ith element of γ, one can use the circle criterion to design an observer
(Arcak and Kokotović, 2001). The results by Arcak and Kokotović (2001) require
the solution of a linear matrix inequality (LMI) to find the output injection gains
used in the observer. Fan and Arcak (2003) extend these results to systems perturbed
by multivariable nonlinearities.

Karagiannis et al. (2008) reduce the observer design problem for nonlinear systems
into finding certain mappings so that a chosen manifold, corresponding to the esti-
mation error being equal to zero, is rendered attractive and invariant. The concept is
illustrated in Fig. 1.4. The mapping φy,t(x), parameterized by y and t, and the map-
ping β(y, ξ, t) represent the design freedom for the control engineer. φy,t(x) must
be left-invertible so that a state estimate can be generated as x̂ = φLy,t(β(y, ξ, t)),
where φLy,t denotes the left-inverse. Note that p ≥ n so that the observer can be of
a higher order than the state it estimates. Although the approach in (Karagiannis
et al., 2008) has been successfully applied to several practical examples, finding the
mappings φy,t and β so that the error manifold is rendered attractive and invariant
is in general extremely difficult.

Adaptive Observers

As was pointed out in Section 1.2.1, for linear systems it is possible to separate the
adaptive observer design into two parts, namely the Luenberger observer design and
the parameter estimator design. For nonlinear systems it might not be possible to
parameterize the plant so that one can separate the observer design into these two
subproblems. If this is the case, then one can instead attempt a Lyapunov based
design. This method is best illustrated by an example. Consider the system

ẋ1 = x2 + θTφ(t) (1.33a)
ẋ2 = −b1x2 − b2|x2|x2 + u, (1.33b)

where b1 and b2 are the known, positive coefficients and θ is a vector of unknown
constant parameters. For θ a scalar and φ = 1, (1.33) could be a simplified model
(in the surge direction) of a ship maneuvering on the surface of the ocean, where x2

is the velocity of the ship with respect to the water around the ship, b1 and b2 are
known hydrodynamic damping coefficients, θ is an unknown current (assumed to
be slowly changing) and x1 is the global position of the ship. Of course, for it to be
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ẏ = f1(y, z, t)

ẋ = f2(y, z, t)

x ∈ Rn

y ∈ Rm

ξ̇ = α(y, ξ, t)

ξ ∈ Rp

z = β(y, ξ, t)− φy,t(x)

z ∈ Rp

φy,t(x)

β(y, ξ, t)

System Observer

Error Manifold

Figure 1.4: Illustration of the reduced order observer design in Karagiannis et al.
(2008).

a proper model we would need to add at least two more directions, sway and yaw
(Fossen, 2002), but the model is only intended to be an illustration of a Lyapunov-
based design. Let us assume that we measure the position, x1, and want to estimate
the unmeasured velocity, x2. System (1.33) can be written as

ẋ = Ax+B1(u− b2|x2|x2) +B2θ
Tφ(t) (1.34)

y = x1 (1.35)

where

A =

[
0 1
0 −b1

]
, B1 =

[
0
1

]
, B2 =

[
1
0

]
. (1.36)

For illustration purposes, we propose a very simple observer

ξ̇ = Aξ +B1(u− b2|ξ2|ξ2)) +B2θ
Tφ(t) + L(y − Cξ) (1.37)

with ξ = x̂ and the observer gain L = [l1, l2]T . Denoting the state observation error
as e = x− ξ, and the parameter estimation error θ̃ = θ − θ̂, we find the dynamics

ė = (A− LC)e−B1b2(|x2|x2 − |ξ2|ξ2) +B2θ̃
Tφ(t). (1.38)
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To prove the stability properties of the proposed observer we consider the positive
definite function

V1(e) =
1

2
e2

1 +
1

2
e2

2 (1.39)

(1.40)

with time-derivative

V̇1 ≤ −l1e2
1 + (1− l2)e1e2 − b1e

2
2 + θ̃Tφ(t)e1, (1.41)

where −b2(|x2|x2 − |ξ2|ξ2)e2 ≤ 0 has been used. Selecting l1 = l2 = 1 gives
V̇1 ≤ −e2

1 − b1e
2
2 + θ̃Tφ(t)e1. We see that if θ was known (θ̃ = 0), then we would

have V̇1 ≤ −cV1 for some positive c, and exponential stability of the origin of (1.38)
would follow using standard results found in e.g. Khalil (2002). To deal with the
parameter perturbation term, it is common to add a quadratic parameter error term
to V1 according to

V2 = V1 +
1

2
θ̃TΓ−1θ̃ (1.42)

with Γ = ΓT > 0. Differentiating V2 with respect to time using (1.41) gives

V̇2 ≤ −e2
1 − b1e

2
2 + θ̃Tφ(t)e1 + θ̃TΓ−1 ˙̃θ. (1.43)

Since θ is a constant ˙̃θ = − ˙̂
θ so we choose

˙̂
θ = Γφ(t)e1, (1.44)

which gives

V̇2 ≤ −e2
1 − b1e

2
2. (1.45)

Since V̇2 is only negative semi-definite we can only conclude that the equilibrium
point (e, θ̃) = 0 is stable. Further use of Barbălat’s lemma allows us to conclude that
limt→∞ e(t) = 0 and limt→∞ θ̃

Tφ(t) = 0 (Krstić, Kanellakopoulos, and Kokotović,
1995). As a consequence of the specific choice of a Lyapunov function (1.42), and
the fact that the unknown parameter vector enters only one integration away from
the output, the adaptive law (1.44) is driven by the state estimation error e1, which
just happens to be a known signal. It is not hard to imagine that if θ entered the
system two (or more) integrations away from the output, or we had chosen a more
general Lyapunov function (e.g. containing the term eTPe for some P = P T > 0),
then the adaptive law would have been driven by a combination of e1 and e2. As e2
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is not measured this would be a major obstacle to implementing the adaptive law.
To ensure that the adaptive law is driven by measured state estimation errors it is
common to assume that the system is (or at least can be transformed into one that
is) Strictly-Positive-Real (SPR) with the unknown parameter term as input and the
measurements as output (Bastin and Gevers, 1988; Marino and Tomei, 1996; Cho
and Rajamani, 1997; Besançon, 2000a; Zhang, 2005). In the example above we
were only able to conclude that limt→∞ θ̃

Tφ(t) = 0. Note that this does not imply
that limt→∞ θ̃ = 0! Consider for instance the case where we have two unknown
parameters and φ = [1, 2]T . In the limit as t approaches infinity we have

θ̃Tφ(t) = θ̃1 + 2θ̃2 = 0 (1.46)

which clearly does not imply that limt→∞ θ̃ = 0. On the other hand, consider the
case where φ(t) = [sin(t), cos(t)]. In this case we have (in the limit as t approaches
infinity)

θ̃Tφ(t) = sin(t)θ̃1 + cos(t)θ̃2 = 0 (1.47)

which for each time t does not imply that θ̃ = 0, but since (1.47) holds over time
it implies limt→∞ θ̃ = 0. As in Section 1.2.1 one needs to assume that φ(t) is
persistently exciting (satisfies condition (1.23)) to ensure that limt→∞ θ̃ = 0.

To guarantee that the system satisfies some given performance criterion, one might
be interested in providing lower bounds on the convergence rates of both the state
and parameter estimation error. Many adaptive observers that use Lyapunov based
adaptive laws end up with a common structure to the error system. For instance the
systems considered in (Marino and Tomei, 1992; Cho and Rajamani, 1997; Marino,
Santosuosso, and Tomei, 2001; Zhang, 2002, 2005) can eventually (after proving
boundedness of all the signals) be described by the linear time-varying system[

ė
˙̃θ

]
=

[
A(t) B(t)
−C(t) 0

] [
e

θ̃

]
. (1.48)

This class of systems has been studied in (Fossen, Loría, and Teel, 2001; Loría,
2004). Loría (2004) provides explicit expressions for the convergence rate provided
B(t) satisfies the PE condition (1.23). One might think that these bounds would be
useful for tuning adaptive observers to achieve good performance, but unfortunately
they are not, because the expressions defining the lower bound on the convergence
rate are very complex.
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Robustness of Adaptive Observers

It is well known that adaptive laws may generate unbounded estimates in the pres-
ence of bounded disturbances (Ioannou and Sun, 1996; Marino et al., 2001). In
practice there will always be such disturbances so it is crucial that the adaptive laws
are made robust towards such disturbances. If the system is sufficiently excited so
that PE conditions such as (1.23) are satisfied, it is usually possible to show that
the origin of the error dynamics is Uniformly Exponentially Stable (UES) or Uni-
formly Asymptoticaly Stable (UAS), ensuring robustness towards small bounded
disturbances. For linear systems such proofs can be found in e.g. Narendra and An-
naswamy (1989) or Ioannou and Sun (1996), while for nonlinear systems one typi-
cally uses Matrosov’s theorem (see e.g. (Marino and Tomei, 1996)), or extensions of
it (Panteley, Loría, and Teel, 2001; Loría, Panteley, Popović, and Teel, 2005). In ad-
dition to the robustness guaranteed by PE one can implement additional safe-guards
such as parameter projection, leakage, deadzones and normalization (Ioannou and
Sun, 1996). In this thesis we only consider the robustness inherent with UES or
UAS of the error system, but in a practical application we recommend additional
precautions such as parameter projection.

1.3 Outline and Contribution

This thesis is divided into three main parts each consisting of a separate selection
of papers. The first part is aimed at the drilling community with more emphasis on
applications and less emphasis on matematical technicalities. The second and third
part is aimed at the control community with emphasis on mathematical rigour and
provable performance guarantees.

Part I is motivated by the increased focus on automation in the drilling industry, in
particular when it comes to Managed Pressure Drilling. The main contributions in
Part I are:

1. The development of a novel simplified hydraulic model for drilling that is
well suited for control and observer design compared to existing models.

2. The application of algorithms for calibration of the model using measure-
ments available in real-time. In particular, the novel adaptive observer with
improved parameter identification properties, derived in Chapter 4, is shown
to sucessfully estimate correction factors for friction and annulus density.

3. Verification that the model captures the dominating hydraulics of the well and
so it can be used for control design and downhole pressure estimation.
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The chapter is based on the two articles (Kaasa et al., 2011a) and (Kaasa, Stamnes,
Imsland, and Aamo, 2011b).

Part II is motivated by the lack of adaptive observer design methods for a class
of nonlinear systems including the drilling model presented in Part I, and the weak
parameter identification properties of Lyapunov based adaptive laws such as (1.44).
The main contributions in Part II are:

1. A novel methodology that permits adaptive observers to be designed for a
class of systems including the drilling model. The result extends the existing
class of systems for which adaptive observers with global stability properties
can be designed. In particular, it allows terms containing both uncertainty
and nonlinearity in the unmeasured states to appear in the dynamics of the
unmeasured states, and still achieves convergence of the state estimate with-
out requiring persistent excitation.

2. The development of a novel adaptive observer that uses multiple delayed ob-
servers to improve the convergence rate of the estimation scheme. In par-
ticular an explicit lower bound on the convergence rate is given, and, if the
original non-adaptive observer has tunable convergence rate, the redesigned
adaptive observer will have tunable convergence rate as well.

Part II consists of the two articles (Stamnes, Aamo, and Kaasa, 2011a) and (Stamnes,
Aamo, and Kaasa, 2010a) which generalize and build on the results presented in
(Stamnes, Zhou, Kaasa, and Aamo, 2008; Stamnes, Zhou, Aamo, and Kaasa, 2009;
Stamnes, Aamo, and Kaasa, 2010b).

Part III is motivated by the lack of a constructive procedure to design observers and
certainty equivalence controllers with global stability guarantees for general Euler-
Lagrange systems without velocity or acceleration measurements. Another moti-
vating factor is that the observer design problem for Euler-Lagrange systems has
several similarities with the observer design problem based on the drilling model.
The main contributions in Part III are:

1. The developent of two constructive designs of observers for general Euler-
Lagrange systems guaranteeing uniform global asymptotic stability and semi-
global exponential stability. In particular, the designs remove a significant ob-
stacle to a constructive observer design, present in the recent work by Astolfi,
Ortega, and Venkatraman (2010).

2. The derivation of a separation principle that guarantees uniform stability and
convergence when the observer is used in a certainty equivalence output feed-
back control scheme with certain types of tracking controllers. The result in-
cludes popular controllers such as the PD+ controller proposed in Paden and
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Panja (1988) and the controller proposed by Slotine and Li (Slotine and Li,
1987).

Part III consists of the two articles Stamnes, Aamo, and Kaasa (2011c) and Stamnes,
Aamo, and Kaasa (2011b).

1.4 Publications

The following is a list of publications that forms the basis for the rest of this thesis:

• Ø. N. Stamnes, J. Zhou, G.-O. Kaasa and O. M. Aamo, Adaptive Observer
Design for the Bottomhole Pressure of a Managed Pressure Drilling System,
IEEE Conference on Decision and Control, 2008.

• Ø. N. Stamnes, J. Zhou, O. M. Aamo and G.-O. Kaasa, Adaptive Observer
Design for Nonlinear Systems with Parameteric Uncertainties in Unmeasured
State Dynamics, IEEE Conference on Decision and Control, 2009.

• Ø. N. Stamnes, O. M. Aamo and G.-O. Kaasa, Redesigned Adaptive Ob-
servers with Tunable Convergence Rate, IFAC Symposium on Nonlinear Con-
trol Systems, 2010.

• Ø. N. Stamnes, O. M. Aamo and G.-O. Kaasa, Adaptive Redesign of Non-
linear Observers, IEEE Transactions on Automatic Control, 2011, (accepted).

• Ø. N. Stamnes, O. M. Aamo and G.-O. Kaasa, Redesign of Adaptive Ob-
servers for Improved Parameter Identification in Nonlinear Systems, Auto-
matica, 2011.

• Ø. N. Stamnes, O. M. Aamo and G.-O. Kaasa, A Constructive Speed Ob-
server Design for General Euler-Lagrange Systems, Automatica, 2011, (ac-
cepted).

• Ø. N. Stamnes, O. M. Aamo and G.-O. Kaasa, Global Output Feedback
Tracking Control of Euler-Lagrange Systems, IFAC World Congress, 2011
(accepted).

• Ø. N. Stamnes, G.-O. Kaasa and O. M. Aamo, Adaptive Estimation of Down-
hole Pressure for Managed Pressure Drilling Operations, IEEE Multi-Conference
on Systems and Control, 2011, (submitted).
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PART 1: Estimation for Managed
Pressure Drilling
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Chapter 2

Intelligent Estimation of Downhole
Pressure Using a Simple Hydraulic
Model

Abstract: An essential part of an automated MPD control system is the hydraulic
model, which in many cases is the limiting factor for achievable accuracy of the
system. A lot of effort has therefore been put into developing advanced hydraulic
models that capture all aspects of the drilling fluid hydraulics. However, a main
drawback is the resulting complexity of these models, which require expert knowl-
edge to set up and calibrate, making it a high-end solution.

In practice, much of the complexity does not contribute to improve the overall accu-
racy of the pressure estimate, simply because conditions in the well changes during
MPD operations, and there are not enough measurements to keep all of the param-
eters in an advanced model calibrated.

We will demonstrate that a simplified hydraulic model based on basic fluid dynam-
ics is able to capture the dominating hydraulics of an MPD system. Furthermore,
we will demonstrate that by applying algorithms for online parameter estimation,
similar to those used in advanced control systems in the automotive and aerospace
industry, the model can be calibrated automatically using existing measurements to
achieve a level of accuracy comparable to that of an advanced hydraulic model. The
results are demonstrated using field data from MPD operations in the North Sea, as
well as dedicated experiments carried out in a full-scale drilling rig in Stavanger.
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Figure 2.1: Simplified schematic of an automated MPD system.

2.1 Introduction

The main objective of MPD is accurate control of the annular downhole pressure
during drilling operations. The basic principle of MPD is to apply back-pressure to
control the downhole pressure and compensate for annular pressure fluctuations. In
a standard MPD setup, a rotating control device seals the top of the annulus, and
the flow of mud from the well is controlled by a choke manifold to apply a desired
back-pressure. A back-flow pump is usually installed to boost the flow through the
choke, enabling control of the back-pressure also in the case of low flow from the
mud pumps. A description of the standard setup of an automated MPD system can
be found in e.g. (van Riet, Reitsma, and Vandecraen, 2003). In an automated MPD
system, the automation of the choke manifold is performed by a control system usu-
ally consisting of two main parts: A hydraulic model that estimates the downhole
pressure in real-time and outputs a desired choke pressure according to a desired
downhole pressure set-point, and a feedback control algorithm which automates the
choke manifold to maintain the desired choke pressure. A simplified schematic
diagram of this configuration is shown in Fig. 2.1.

In many cases, the hydraulic model is the limiting factor for achievable accuracy of
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the MPD system. A lot of effort has therefore been put into developing advanced hy-
draulic models in order to capture all aspects of the drilling hydraulics (Rommetveit
and Vefring, 1991; Petersen, Rommetveit, and Tarr, 1998; Hansen, Rommetveit,
Sterri, Aas, and Merlo, 1999; Lage, Nakagawa, Time, Vefring, and Rommetveit,
1999; Lage and Time, 2000; Bjørkevoll, Anfinsen, Merlo, Eriksen, and Olsen, 2000;
Petersen, Bjørkevoll, and Lekvam, 2001; Bjørkevoll et al., 2003; Bjørkevoll, Rom-
metveit, Rønneberg, and Larsen, 2006; Petersen et al., 2008b). These models are
able to reproduce a wide range of drilling-specific effects to an impressingly high
degree of detail. Real-time versions of these models have also been used in MPD
operations–both offline and online (Eck-Olsen et al., 2005; Bjørkevoll et al., 2008b,
2010).

For any simulation model, however, the overall accuracy is limited by the least
accurate term. Typically, several parameters are both uncertain and slowly chang-
ing, such as the friction coefficients along the well, the amount of gas dissolved in
the mud, or external boundary conditions like the unmeasured reservoir tempera-
ture, etc. Calibration is thus a vital part of any real-time hydraulic model in order
to predict the downhole pressure with high accuracy. In practice, the calibration
of a hydraulic model must be based on available topside measurements, and mea-
surements at the drill bit, such as pressure while drilling (PWD) data. These data
contain insufficient information to properly calibrate all of the physical parameters
of an advanced hydraulic model. Hence, as the conditions downhole in the well
are typically inhomogeneous and uncertain due to changes during MPD operation,
without additional distributed measurements along the well available for calibra-
tion, many of the sophisticated details of an advanced model do not contribute to
improve the overall accuracy of the downhole pressure.

2.1.1 Motivation

There are several points that motivate the use of simpler hydraulic models in an
MPD control system. The below main points are described in the following para-
graphs:

• Bandwidth of the control systems

• Robustness of the implemented algorithm

• Online calibration of the hydraulic model.

A control system is only able to compensate for changes which are slower than
a particular frequency range, referred to as the bandwidth of the closed-loop con-
trol system. Typically, the achievable bandwidth of an MPD system is determined
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by the dynamic response of the choke actuator, and the sampling frequency of the
control system. The system is inherently incapable of compensating changes with
frequencies higher than this limit. Consequently, a control system behaves like a
low-pass filter in the sense that it is not able to compensate high-frequency dynam-
ics. Furthermore, if the bandwidth of the control system is pushed closer to the
physical limit in an attempt to compensate for high-frequency changes, the stability
margins of the system are reduced, making the system less robust to disturbances.
Therefore, it is undesireable that the output of the hydraulic model contains high-
frequency dynamics, simply because the control system is not able to compensate
fast changes.

A primary concern in a failure-critical1 control system such as MPD is the complex-
ity and robustness of the implemented algorithm. An advanced hydraulic model is
defined in terms of partial differential equations which are inherently stiff, that is,
consisting of both slow and fast dynamics which makes the model computationally
demanding, and challenging to run robustly in real-time.

There are also very few results readily available for online parameter estimation
(calibration) for systems described by partial differential equations that enable au-
tomatic calibration in a robust manner. The combination of high complexity and
a large number of uncertain physical parameters in advanced hydraulic models,
makes it hard to develop an online parameter estimation scheme that can robustly
handle all possible situations. Consequently, calibration of advanced models used
for MPD operations are typically done manually by an expert (Bjørkevoll et al.,
2010). Despite its challenges, there are several examples of online methods for pa-
rameter estimation applied for calibration of advanced hydraulic models. See. e.g.
(Gravdal, Lohne, Nygaard, Vefring, and Time, 2008; Lohne et al., 2008; Gravdal
et al., 2010) for applications of the Unscented Kalman Filter (UKF), and (Nybø,
Bjørkevoll, Rommetveit, Skalle, and Herbert, 2008) for an application of adaptive
neural networks. A common drawback of these methods is that the robustness of
the estimation algorithms are not thoroughly analysed.
Remark 2.1. In the automotive and the aerospace industry, uncertainty with respect
to robustness of software algorithms in failure-critical control systems are strictly
prohibited by safety regulations. See e.g. (ISO 26262; IEC 61508; DO-178B).
These are industries that are at the forefront when it comes to safety of control
systems, and they have learned this lesson the hard way.

1By failure-critical we mean that a failure may have a critical impact on the safety of the operation
and high economical consequences. A typical worst-case scenario would be a wellbore collapse or
fracture, leading to a well control situation and loss of the entire well.
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2.1.2 Contribution

From a control point of view, the objective is to have as simple and transparent hy-
draulic model as possible, that is, to remove unnecessary complexity without sacri-
ficing accuracy in the frequency range of interest. In this paper, we will demonstrate
that a fit-for-purpose model based on basic fluid dynamics combined with an accu-
rate steady-state friction characteristics, is able to capture the dominating dynamics
of the downhole pressure during drilling operations. This work also includes a re-
vised version of the main results from Kaasa (2007), describing the derivation of a
simplified hydraulic model in detail.

Furthermore, we demonstrate how this simplified model enables robust calibration,
based on accessible real-time measurements, using advanced algorithms for online
parameter estimation. The results are demonstrated using field data, and dedicated
experiments obtained at a full-scale drilling rig in Stavanger.

The remainder of the paper is organized into two main parts: First, we describe the
derivation of a simplified fit-for-purpose hydraulic model, discussing the dominat-
ing dynamics of the MPD hydraulics, and show why certain sophisticated dynamics
are not important with respect to an accurate downhole pressure estimate. Second,
we illustrate how online algorithms can be used to calibrate the model using both
topside and pressure while drilling (PWD) measurements, and discuss the impor-
tance of robustness and stability of these algorithms.

2.2 Fit-for-purpose modeling

The objective of the hydraulic model is to estimate the downhole pressure and pro-
vide a choke pressure set-point to the MPD control system in real-time. As dis-
cussed above, to ensure robustness of the resulting control system, the model should
not be more complex than required by the control system. Since dynamics are in
essence what complicates a model, the main challenge is to remove unnecessary dy-
namics such that the model includes only the dominating dynamics of the system.
For maximum accuracy, the model should in addition be optimized for utilizing
existing measurements for online calibration. Typically, the main simplifications
applied to obtain a fit-for-purpose model are to:

• Neglect dynamics which is much faster than the bandwidth of the control
system. The hydraulic model should not contain high-frequency dynamics
which the control system is not able to compensate.
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• Neglect slow dynamics. Slowly changing properties of a model can usually
be handled much more efficiently by feedback from measurements, than to
include these effects in the model as dynamics.

• Lump together parameters which are not possible to distinguish or calibrate
independently from existing measurements.

In the following, we will first outline the derivation of the simplified hydraulic
model and describe the main simplifications and differences compared to an ad-
vanced model, then we go into details on some of the important aspects of the
modeling with respect to accuracy of the downhole pressure.
Remark 2.2. Note that we do not consider multi-fluid operations, gelling and tem-
perature dynamics in this work. These are topics that can be pursued with a similar
apporach of simplified modelling, and which are the object of current research.

2.2.1 Outline of model derivation

The starting point for the derivation of an hydraulic model is the assumption that
the drilling fluid (mud) can be treated as a viscous fluid, which means that the flow
is completely described by the following fundamental equations (Merritt, 1967)2:

• Fluid viscosity: The viscosity is a function of pressure and temperature.

• Equation of state: The density is a function of pressure and temperature.

• Conservation of mass: The mass balance.

• Conservation of momentum: The force balance, or Newton’s second law of
motion.

• Conservation of energy: The energy balance, or the first law of thermody-
namics.

First of all, the following basic assumptions are applied:

A1 We assume that the flow can be treated as one-dimensional along the main
flow path (through the drillstring and annulus), i.e. time-averaging the fluctu-
ations due to turbulence. For reference, see e.g. White (1994), p. 304.

A2 We assume the flow is radially homogeneous, i.e. averaging properties over
the cross section of the flow.

2The derivation presented here is mainly based on Merritt (1967), supplemented by details from
White (1994).
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A3 We assume incompressible flow, that is, we neglect the time-variance of the
density in the momentum equation3.

A4 We assume the time-variance of the viscosity is negligible in the momentum
equation.

Applying these simplifying assumptions, we end up with formulations for the mo-
mentum, continuity and energy equation which are the basis for most models. We
will further clarify the implications of the above simplifications, and additional sim-
plifications in detail in the following paragraphs.

2.2.2 Fluid viscosity

The main effect of the viscosity is related to frictional losses in the flow, and will be
discussed in relation to the momentum equation in subsequent sections. The viscos-
ity of a liquid decreases markedly as temperature increases and increases somewhat
with pressure. It may in general be written as

µ = µ (p, T ) . (2.1)

Maglione, Gallino, Robotti, Romagnoli, and Rommetveit (1996) provide a compre-
hensive overview of existing literature on viscosity of drilling fluids.

Typically, the dependence on pressure is negligible, and the dependence on temper-
ature can be described by an equation of the form

µ = µ0e
−λ(T−T0) (2.2)

where µ is absolute viscosity at temperature T, µ0 is viscosity at reference temper-
ature T0, and λ is a constant which depends on the fluid.

2.2.3 Equation of state

The equation of state may in general be written as

ρ = ρ (p, T ) . (2.3)

In contrast to the ideal gas law which is derived from the kinetic theory of gases,
the equation of state cannot be mathematically derived from physical principles. In

3Density effects in the flow do not become significant before the flow velocity approaches the
speed of sound. In particular, the flow is generally termed incompressible for Mach number less
than 0.3 (White, 1994).
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general, measured PVT data may be used to obtain an empirical map of pressure and
temperature dependencies which can be interpolated, see e.g. Isambourg, Anfinsen,
and Marken (1996).

Since the changes in density as a function of pressure and temperature are small for
a liquid, it is common to use the linearized equation of state

ρ = ρ0 +
ρ0

β
(p− p0)− ρ0α (T − T0) (2.4)

where

β = ρ0

(
∂p

∂ρ

)
(p0,T0)

(2.5)

α = − 1

ρ0

(
∂p

∂T

)
(p0,T0)

. (2.6)

Here ρ0, p0 and T0 define the reference point for the linearization, while β is called
the isothermal bulk modulus of the liquid, and α is the cubical expansion coefficient
of the liquid. In general, the accuracy of the linearized equation of state reduces
with increasing pressure and temperature ranges, but can be said to be accurate
for most drilling fluids for pressure ranges 0 − 500 bar, and temperature ranges
0− 200 ◦C. This can be verified by experimental PVT data e.g. in Isambourg et al.
(1996). The resulting error by assuming constant density may be considerable.
This is illustrated in Fig. 2.2 for the case of a liquid with bulk modulus β0 = 10000
bar and atmospheric density ρ0 = 1500 kg

m3 . In this case, the resulting difference in
pressure at a depth of 3000 m amounts to 10 bar. The figure also includes plots of
an exponential equation of state for highly compressible fluids (which is not shown
here).

The bulk modulus β relates to the stiffness of the fluid, and is the reciprocal of
the compressibility of the liquid, c = 1

β
. The bulk modulus is the most important

property in determining the dynamics of the hydraulic system as it characterizes the
dominating pressure transients in the system. The pressure transients of a well are in
the range of seconds to minutes, which is in the range of a typical MPD controllers
bandwidth. The temperature dynamics on the other hand, are much slower, and
have transients in the range of minutes to hours.

In the following, we derive a simplified dynamic model for the pressure transients
in the system based on the following differential form of (2.4)

dρ =
ρ0

β
dp (2.7)
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where we neglect dependence on the temperature. Even though significant temper-
ature gradients may exist, the thermal expansion coefficient α for liquids is usually
small, thus density changes due to temperature changes are in many cases negligi-
ble with respect to transient effects. Furthermore, since transient temperature effects
are relatively slow compared to the pressure transients of the system, such effects
are usually more effectively handled by online calibration based on feedback from
measurements.
Remark 2.3. As demonstrated by Isambourg et al. (1996) in laboratory tests with
a number of drilling fluids, density changes can be significant when temperature
ranges are high. In particular for High-Pressure High-Temperature wells, relatively
large transient temperature gradients can occur e.g. during start-up of circulation,
as discussed in Bjørkevoll et al. (2000). To capture these transient effects, the sim-
plified model must be developed based on the full linearized equation of state, that
is, using the following differential form of eq. (2.4)

dρ =
ρ0

β
dρ− ρ0αdT. (2.8)

2.2.4 Conservation of mass

For a control volume V with average density ρ, conservation of mass gives

d

dt
(ρV ) = ρinqin − ρoutqout (2.9)

where win = ρinqin and wout = ρoutqout are the mass flow rates in and out of the
control volume, respectively. To obtain a more convenient form, we can rewrite
(2.9) using (2.7) to get pressure as the main variable according to

ρ0
V

β

dp

dt
= −ρdV

dt
+ ρinqin − ρoutqout (2.10)

where ρ0 is the linearization point for the equation of state (2.4), p is the average
pressure in the control volume, and qin and qout are the volumetric flow rates, with
inlet density ρin and outlet density ρout. Equation (2.10) can be used to approximate
the dominating dynamics of the hydraulic system.

2.2.5 Conservation of momentum

The main effect of assumption A1 is that the differential equation of momentum for
incompressible flow reduces from three to one dimensions, which is much simpler,
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but still relatively accurate with respect to averaged flow variables (White, 1994).
The resulting partial differential equation can be written as

ρ
∂v

∂t
= −∂p

∂x
− ∂τ

∂x
+ ρg cosφ (2.11)

where x is the spatial coordinate along the flow path, v the velocity of the flow, τ
is the viscous friction pressure, and φ is the angle of the flow path. Equation (2.11)
is similar to the one used in advanced hydraulic models. See e.g. Petersen et al.
(2008b). Denoting A as the cross sectional area we can rewrite (2.11) with flow rate
q = vA as the main variable according to

ρ

A

∂q

∂t
= −∂p

∂x
− ∂τ

∂x
+ ρg cosφ. (2.12)

The friction τ is typically a lumped friction term depending on the velocity of the
flow, that accounts for all frictional losses due to viscous dissipation, turbulence,
swirl flow, and non-ideal flow conditions caused by restrictions, section changes,
bends, etc. often referred to as minor losses (Merritt, 1967). This means that the loss
of accuracy due to the assumption of one dimensional flow (A1) can be recovered
to a large extent. In general, the friction term τ can be modelled as a function

τ = τ (v, µ, t) (2.13)

based on any realistic viscosity model in the form (2.1), and in addition, any time-
varying variables such as frictional dynamics or external inputs. Examples of fric-
tional dynamics can be a dynamic gelling model, and an example of external input
can be dependence on the drillpipe rotational velocity (RPM) to account for the ef-
fect of swirl flow. In this way, the steady-state accuracy of the model, and possibly
the accuracy during transients, can be significantly improved.

In the same manner, the steady-state accuracy of the model can be further improved
by a more realistic model of the density

ρ = ρ (p, T, t) . (2.14)

Remark 2.4. Note that (2.13) and (2.14) violate the basic assumptions of constant
viscosity (A4) and constant density (A3) applied in the derivation of the momentum
equation (2.11). However, the resulting errors in dynamic behavior of the model is
usually more than justified by the improved steady-state accuracy obtained.

Pressure transients propagate as pressure waves in the fluid, which travel with the
speed of sound, a. The speed of sound is a characteristic determined by the density
and compressibility of the fluid according to

a =

√
βe
ρ

(2.15)
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where βe is the effective bulk modulus, including fluid and mechanical compliance.
Typically, for hydraulic fluids the speed of sound is about 1000 m/s. This means
that the propagation time for a 1000 meter long pipe is about 1 second. For a
distributed parameter model this results in very fast dynamics for the propagation
of pressure transients. These high-frequency dynamics are typically much faster
than the bandwidth of the MPD control system, and can thus be neglected in the
hydraulic model4. Like for the pressure dynamics, we derive a simple model for the
average flow dynamics in the following paragraph.

Assuming the fluid accelerates homogeneously as a stiff mass, eq. (2.12) can be
integrated along the flow path to obtain a simple equation for the average flow rate
dynamics according to

M (l1, l2)
dq

dt
= p1 − p2 − F (l1, l2, q, µ) +G (l1, l2, ρ) (2.16)

M (l1, l2) =

∫ l2

l1

ρ (x)

A (x)
dx (2.17)

F (l1, l2, q, µ) =

∫ l2

l1

∂τ
(

q
A(x)

, µ
)

∂x
dx (2.18)

G (l1, l2, ρ) =

∫ l2

l1

ρ (x) g cosφ (x) dx. (2.19)

Here, q is the average flow rate of the fluid in the control volume between the spatial
coordinate x = l1 and x = l2 of the flow path, p1 is the pressure at x = l1, and p2

is the pressure at x = l2. Furthermore, the parameter M (l1, l2) is the integrated
density per cross-section over the flow path, F (l1, l2, q, µ) is the integrated friction
along the flow path, and G (l1, l2, ρ) is the total gravity affecting the fluid. Equa-
tions (2.16)–(2.19) can be used to approximate the flow dynamics of the hydraulic
system.

2.2.6 Conservation of energy

The developement of a simplifed model for the transient temperature effects is out-
side the scope of this paper, hence, the energy equation will not be discussed here.

4Note that the pressure propagation in the flow results in a characteristic inverse transient re-
sponse in the pressure that should be taken into account when tuning the feedback gain of the
closed-loop control system. In control terminology, this characteristic is termed non-minimum phase
dynamics, or unstable zero dynamics.
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2.2.7 Simplified hydraulic model

As simple hydraulic model of a well can be obtained using (2.10) and (2.16)–(2.19),
derived in the previous section, combined with an accurate steady-state character-
istic of the downhole pressure, pdh. To further simplify the presentation here, we
assume

ρ = ρ0 = ρin = ρout. (2.20)

First, consider the flow in the drillstring from mud pump to the bit as our first control
volume, and let the mud pump pressure pp be described by (2.10) according to

Vd
βd
ṗp = qp − q (2.21)

where Vd is the volume of the drillstring, βd is the effective bulk modulus, qp is the
pump flow rate and q is the flow rate through the bit, respectively. Notice that the
densities have cancelled out due to (2.20), and that the volume of the drillstring is
constant for each stand drilled, such that the time derivative V̇d is zero.

Similarly, we consider the flow in the annulus from the bit, and up the well through
the choke. Let the upstream choke pressure be described by (2.10) according to

Va
βa
ṗc = −V̇a + q + qbpp − qc (2.22)

where Va is the volume of the annulus, βa is the effective bulk modulus, qbpp is the
flow rate through the back pressure pump, and qc is the flow rate through the choke.
Note also that this model accounts for changes in the annulus volume through the
time derivative of Va. Consequently, the model can describe the averaged surge
and swab effects caused by a moving drillstring. Finally, we assume that the flow
through the bit is approximately equal to the average flow from the mud pump
(x = 0) to the choke (x = L), and let it be described by (2.16)–(2.19) according to

Mq̇ = pp − pc − F (q) +G (ρ) (2.23)

where the spatial coordinate is defined as x = 0 at the pump pressure pp and L
is the total length of the well from mud pump to choke such that x = L becomes
the spatial coordinate for the choke pressure, pc. Furthermore, the parameter M =
M (0, L) is a constant obtained from (2.17), F (q) = F (0, L, q, µ) is the steady-
state frictional pressure drop along the entire flow path according to (2.18), and
G (ρ) = G (0, L, ρ) is the steady-state hydrostatic term affecting the flow, given by
(2.19).
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The accuracy of the parameter M is not crucial since it relates to the fast dynamics
of the flow rate q, which in most cases can be neglected, hence, it can be taken as an
approximate value. In the simplified flow rate dynamics (2.23) it may be reasonable
to approximate the total hydrostatic term by

G (ρ) = −∆ρghTV D (2.24)

where hTV D is the true vertical depth of the well, and ∆ρ is a constant represent-
ing the integrated density difference between the drillstring and the annulus. This
density difference ∆ρ = ρa − ρd, is typically a small, uncertain parameter related
to the amount of cuttings in the annulus, which is particularly well suited for online
calibration based on topside pump and choke pressures, pp and pc, respectively.

In the simplified model, we assume that the pressure along the entire flow path is
given by the steady-state pressure characteristics of the flow. Thus, the downhole
pressure pdh at any location l in the well is given by the steady-state solution of
(2.16)–(2.19), referenced either to the pump pressure pp, or to the choke pressure
pc.

The downhole pressure profile is described by the choke pressure pc, via the annulus
according to

pdh (l) = pc + Fa (l, q)−Ga (l, ρ) (2.25)

where Fa (l, q) = F (l, L, q, µ) is the frictional pressure drop, and Ga (l, ρ) =
G (l, L, ρ) is the hydrostatic pressure term for the flow from the downhole loca-
tion l to the choke obtained from (2.18) and (2.19), respectively. The hydrostatic
pressure term Ga is here negative relative to the direction of the flow up the annulus
as defined in (2.19).

Alternatively, the downhole pressure is described by the standpipe pressure pp, via
the drillstring according to

pdh (l) = pp − Fd (l, q)−Gd (l, ρ) (2.26)

with the frictional presssure drop Fd (l, q) = F (0, l, q, µ) , and hydrostatic pressure
term Gd (l, ρ) = G (0, l, ρ) . Note that in (2.25), the frictional pressure drop Fa
and hydrostatic pressure Ga are obtained by integrating along the flow path from
the downhole pressure pdh at x = l, up the annulus to the choke pressure pc at
x = L. Equation (2.26) on the other hand, is obtained by integrating from the pump
pressure pp at x = 0, and down the drillstring to the downhole pressure pdh (at
x = l). Consequently, the downhole pressure can be given either by the flow in the
annulus of the well by using (2.25), or alternatively by the flow in the drillstring by
using (2.26).
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To summarize, the complete simple hydraulic model consists of the dynamics (2.21)–
(2.23), augmented by a relation for the steady-state downhole pressure, given either
via the annulus flow (2.25), or via the drillstring flow (2.26). It is worth noting that
(2.25) and (2.26) are generic mathematical descriptions of the fundamental relation
between pressure, frictional pressure drop, and hydrostatic pressure, which should
be well known to any drilling engineer. To make this clear, consider the downhole
pressure given by (2.25) written more compactly as

pdh = pc + Fa (q) + ρaghTV D (2.27)

where Fa (q) is the frictional pressure drop as a function of flow rate q, and the last
term is the hydrostatic pressure.
Remark 2.5. Notice that the right-hand side of (2.16) which defines the friction
term F (l1, l2, q, µ), and the hydrostatic term G (l1, l2, ρ) of the simplified model is
identical to the steady-state solution of the full differential equation of momentum
given by (2.12) which is the basis for advanced hydraulic models. Consequently,
the simplified model can incorporate any advanced steady-state relations for the
downhole pressure into (2.25) or (2.26), thus achieving the same level of accuracy
in steady-state as an advanced hydraulic model.
Remark 2.6. In many drilling operations there is a float (check) valve close to the
bit. The valve prevents flow from the annulus and up the drillstring. This valve can
easily be incorporated in the model by replacing (2.23) with

Mq̇ =

{
pp − pc − F (q) +G (ρ) q > 0

max (0, pp − pc − F (q) +G (ρ)) q = 0
. (2.28)

When the float valve is closed (2.26) is no longer valid so (2.25) must be used to
model the downhole pressure.

2.2.8 Effective bulk modulus

As pointed out in the derivation of the simple hydraulic model above, the bulk
modulus β is the most imporant property in determining the transient response of
the hydraulic system, as it is a measure of the stiffness of the fluid. An important
aspect of a hydraulic system is that the bulk modulus decreases sharply with small
amounts of entrained gas, and/or mechanical compliance. Hence, in all wells the
effective bulk modulus is significantly lower than the bulk modulus that is measured
in the laboratory. An example is from the Kvitebjørn field in the North Sea, where
the bulk modulus of a particularly stiff Cesium formate drilling fluid was measured
in the laboratory to βCs ≈ 50000 bar, while the resulting effective bulk modulus
measured in the well was βe ≈ 15000 bar.

39



13 14 15 16 17 18 19
5

10

15

20

25
Stepping of choke pressure

Time  t [min]

P
re

s
s
u

re
  
p
 [

b
a

r]

Figure 2.3: Measured (black) and simulated choke pressure based on estimated
(blue) and fixed (green) bulk modulus.
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Figure 2.4: Online estimation of the bulk modulus in annulus and drillstring based
on topside pressure measurements.

Fig. 2.3 illustrates how the transient response of the simulated choke pressure of the
simple hydraulic model compares to experiments performed on a well in the North
Sea. The experiment illustrates the typical response to steps in the choke opening
while circulating at 2000 l/min. The figure shows both an open-loop simulation with
a fixed βa, and the case when βa is continuously estimated online using a recursive
least squares algorithm. The corresponding parameter convergence is plotted in Fig.
2.4.

2.3 Online Model Calibration

In this section we illustrate how both topside and downhole pressure-while-drilling
(PWD) measurements can be used to calibrate parameters of the simple hydraulic

40



model online. We also make some remarks regarding the severity of non-robust
algorithms in failure-critical systems.

The algorithms used for online model calibration in this section, are primarily based
on the results found in (Stamnes et al., 2008, 2010a; Ioannou and Sun, 1996; Ljung,
1999). For references on similar research, see e.g. (Grip, Johansen, Imsland, and
Kaasa, 2010).

2.3.1 Estimating the effective bulk modulus from topside pres-
sure measurements

A good model of the pressure transients of the hydraulics requires a good estimate
of the effective bulk modulus. Since the degree of mechanical compliance of cas-
ing/pipe/hoses etc. is uncertain, and it is impossible to accurately predict the amount
of gas pockets, bubbles, or "breathing" of the well, any estimate of the effective bulk
modulus must be based on measurements from the actual well to have any chance
of being accurate.

Using the simplified hydraulic model it is possible to estimate the effective bulk
modulus effectively from the measured standpipe and choke pressures online, pro-
vided there is enough excitation in the pressures. Based on the field data plotted
in Fig. 2.3 and 2.4, we demonstrate that a recursive least-squares method can be
applied to obtain an accurate estimate of both the bulk modulus for the drillstring
and the annulus, with a single step in the choke pressure.

2.3.2 Estimating friction characteristics and density difference

As both the friction characteristics F and the density in the annulus ρa are uncer-
tain there is a need to tune these parameters online. During drilling the sensors
located at the rig (top side) usually provide good accuracy at high sampling rates
(1 Hz or faster), while the available measurements from the downhole sensors have
much lower sampling rate ( 1

20
Hz or slower) and suffer from uncertain delays (sev-

eral seconds or more). Furthermore, the downhole measurements are transmitted
by creating pressure pulses in the mud and consequently only available at high flow
rates5. We will first illustrate how we can tune these parameters online using only
topside measurements, and afterwards illustrate how additional parameters can be

5Note that measurements of the average, maximum and minimum downhole pressure during zero
flow can be transmitted as the first data points after full flow is resumed. These data can be used to
further calibrate the model.
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Figure 2.5: Overview of estimation algorithm.
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estimated when using both topside and downhole measurements. For simplicity we
only consider the pressure at the bit pbit = pdh (lbit) and not the entire pressure pro-
file pdh (l) . An overview of the complete algorithm is shown in Fig. 2.5. In the
case where only topside measurements are available an adaptive observer is used to
estimate the unmeasured flow rate and two parameters. If downhole measurements
are available a recursive least squares algorithm is used to identifiy additional pa-
rameters.

Estimation using topside measurements

To allow for uncertainties in the friction characteristics and the density in the annu-
lus we parameterize (2.23) and (2.24) according to

Mq̇ = pp − pc − θFF (q)− (θρ − 1) ρghTV D, (2.29)

where θF is a tuning parameter for the total friction loss, ρ is the density of the
drilling mud and θρ is a tuning parameter for the uncertain density in the annulus
(i.e. ρa = θρρ). Note that in steady-state (q̇ = 0) we have one equation with two
unknowns so that any estimation scheme will require variation in the flow rate q to
determine the two uncertain parameters. Using data gathered from pre-drilling tests
from an offshore well in the Norwegian North Sea we test the algorithm. The data
from the well consists of a pipe connection scenario which has been duplicated to
generate enough data to test the algorithm. A second order polynomial was fitted to
a different data set to find the steady state friction characteristic F (q) = Fa (q) +
Fd (q) which is given in (2.32). For this friction characteristic the "true" values
for θF and θρ are both equal to one. For robustness and fast tunable parameter
identification we apply the algorithm developed in Stamnes et al. (2010a). Details
on the algorithm can be found in Appendix 2.5.1 while key parameters for the well
are summarized in Table 2.1. We ran the algorithm with three sets of gains namely
low, medium and high adaptation gains. The estimation algorithm was started at
t ≈ 7.5min, with initial conditions θ̂F = 1.5 and θ̂ρ = 1.1 corresponding to a 50%
error in the total friction loss and a 10% error in the density in the annulus. Fig.
2.6 shows the downhole pressure, its estimates, the topside pressures, the pump
flow rate and the estimated bit flow rate. From Fig. 2.6a we see that the downhole
pressure is accurately estimated after initial transients. We can also see that the red
line, corresponding to the low adaptive gain, converges slower than the black dash-
dotted line which corresponds to a high adaptive gain. The parameter estimates are
shown in Fig. 2.7 where we can see that they all converge to the "true" value with
faster convergence rates for higher adaptation gain.
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(a) Downhole pressures. Blue crosses corresponds to the logged downhole pressure, red, green
and black lines corresponds to low, medium and high adaptation gain respectively.
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(c) Pump flow rate and estimate of unmeasured flow rate.

Figure 2.6: Estimation based on top-side measurements.

Parameter Value Description
hdh 1632m True vertical depth of bit
ρ 1580 kg

m3 Density of mud
βd = βa 20000bar Effective bulk modulus
Vd 15.5m3 Volume of mud in drill string
Va 75.4m3 Volume of mud in annulus
M 4100105kg

m4 Integrated density per cross section

Table 2.1: Well parameters used to estimate parameters using top-side measure-
ments only.
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Figure 2.7: Parameter estimates based on top-side measurements. Blue, red and
green lines corresponds to low, medium and high adaptive gains respectively.

Estimation using downhole measurements

When downhole measurements are available they can be used to tune additional
parameters in the model. As pointed out in Section 2.3.2 the downhole pressure
measurement is only available at high flow rates, with low sampling rate and uncer-
tain delays. This limits the number of additional parameters that can be estimated
using the measurement to one. The low frequency measurement of the downhole
pressure is used to tune the friction in the drillstring based on the relationship (2.26)
according to

pdh (l) = pp − θFdFd (q) + ρdghTV D, (2.30)

where θFd is estimated using a recursive least squares scheme included in Appendix
2.5.2. We also change the parametrization in (2.29) to

Mq̇ = pp − pc − θFaFa (q)− θFdFd (q)− (θρ − 1) ρghTV D (2.31)

so that the RLS scheme is responsible for updating the friction loss in the drillstring,
while the adaptive observer updates the friction loss and density in the annulus.
This parameterization allows for separate uncertainties in both the drillstring and
the annulus friction in contrast to the scheme without downhole measurements for
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which θFa = θFd = θF . As the parameterization was changed from the previous
section we retuned the observer and the gains for both the observer and the RLS
algorithm are given Appendix 2.5.1. Since the downhole pressure measurement is
only available at full flow rates the convergence rate of this scheme is slower than
the previous scheme and so it was neccessary to replicate the pipe connection data
three times to achieve convergence. The algorithm was started at t ≈ 7.5min with
initial conditions θ̂Fa = θ̂Fd = 1.5 and θ̂ρ = 1.1 corresponding to a 50% error in
both drillstring and annulus friction and a 10% error in annulus density. Fig. 2.8
compares the results for two different forgetting factors in the RLS scheme. From
Fig. 2.8a we see that the estimates converge to the true downhole pressure in both
cases. Fig. 2.8b–2.8d shows that the estimated friction factor in the drillstring and
the estimated density factor in the annulus both converge quickly to the "true" value
one, while the estimate of the friction factor in the annulus converges slower to a
value slightly less than one. One possible explanation for this behaviour is that θ̂Fa
is sensitive to errors in θ̂Fd as the total friction pressure in the drillstring is much
higher than in the annulus. A small error in θ̂Fd will therefore give a large error in
θ̂Fa.

2.3.3 Robustness of adaptive algorithms

When calibrating a model online, transparency with respect to the relation between
measurements, the model, and its parameters are crucial in order to ensure that the
resulting adaptive solution is robust. It is essential that the parameter estimation
problem has a unique solution, that is, it must be possible to uniquely identify the
selected parameters from the given model and measurements. The problem is ana-
log to the problem of solving for unkowns from a set of algebraic equations. The
number of independent equations must be the same as the number of unknowns in
order to have a unique solution. If the number of equations are less, there is no
longer only one solution, but a set of solutions satisfying the equations. The same
principle applies to calibration of model parameters from measurements. The num-
ber of independent measurements and known relations are analogous to the number
of equations in the above example, hence, basically only one parameter can be cal-
ibrated from one measurement. However, by adding additional known relations
between parameters, it is possible to extend the number of parameters that can be
calibrated based on a given set of measurements.

Note that this is in essence what the human mind does when tuning parameters of
an advanced model manually; based on complex knowledge and experience of the
system, constraints and relations are added sub-consciously, making it possible to
pick a unique solution from a set of several possibilities. The challenge is to for-
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(a) Downhole pressure. Blue crosses corresponds to the logged downhole pressure, red and
green lines corresponds to slow and fast adaptation respectively.
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(b) Estimated annulus friction coefficient. The blue and red lines correspond to slow and
fast adaptation respectively.
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(c) Estimated drill string friction coefficient. The blue and red lines correspond to slow and
fast adaptation respectively.
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Figure 2.8: Estimation of downhole pressure and three parameters using both top-
side and downhole measurements
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mulate these relations in a mathematical language so that they can be implemented
in an automatic procedure. When the model becomes complex, it usually becomes
impossible to rigorously assess the identifiability of different parameters under all
conditions. To make this possible, the model needs to be simple and transparent,
and fit the mathematical framework available.

2.4 Conclusions

In this work, we have outlined the basic assumptions behind the derivation of ad-
vanced and simplified hydraulic models, and derived in detail a simple fit-for-
purpose hydraulic model for managed pressure drilling. We have briefly demon-
strated that the simplified hydraulic model is able to capture the dominating hy-
draulics of the well, and illustrated by some examples how the model can be cali-
brated automatically using available measurements.

Nomenclature

HPHT High Pressure, High Temperature
MPD Managed Pressure Drilling
PVT Pressure-Volume-Temperature
PWD Pressure While Drilling
RLS Recursive Least Squares
RPM Revolutions Per Minute
UKF Unsceted Kalman Filter

2.5 Appendix

2.5.1 GFC data

Data from drilling operations at Gullfaks C has been gathered. Both data avail-
able during drilling (top-side and low frequency downhole measurements) and data
available after drilling (logged downhole measurements) have been collected. Based
on these data we test an estimation scheme for estimation of the bottomhole pres-
sure. A simple polynominal friction model for the drill string and the annulus was
fitted to steady-state data giving
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Parameter Value Description
N 20 Number of observers
T 45 Delay between observers
G diag([2.5, 3]) Medium adaptation gain
l1 2× 10−4 Feedback gain (pump)
l2 10−4 Feedback gain (choke)
α 1 Adaptation weighting gain

Table 2.2: Tuning parameters for estimation scheme from Stamnes et al. (2010a).

Fa (q) = 304.9q + 5188q2 (2.32a)
Fd (q) = 366.6q + 146570q2 (2.32b)

where Fa (q) = F (lbit, L, q, µ) corresponds to the frictional pressure loss from the
bit to the choke and Fd (q) = F (0, lbit, q, µ) corresponds to the frictional pressure
loss from the main pump to the bit. The fit is shown in Fig. 2.9 and 2.10. We see that
the fit for the annulus frictional pressure is quite good for high flow rates but deviates
with around 2 bars at lower flow rates. The fit for the drillstring frictional pressure
is better when considering relative error but worse when considering absolute error,
with maximum errors around 5 bar.

Based on the model (2.21)–(2.22) and (2.29) an adaptive observer has been derived
in Stamnes et al. (2010a). The gains and tuning parameters for the observer used
when only topside measurements are available are summarized in Table 2.2. The
low adaption gain corresponds to 0.5G while the high adaptive gain corresponds
to 1.5G. When both topside and downhole measurements are available we use
the same parameter values except for the adaptation gain G which is chosen to be
diag([40, 0.5]). When downhole pressure measurements are available we use an
additional RLS algorithm to estimate an aditional parameter, the RLS algorithm is
included in Appendix 2.5.2 and the gains for the RLS algorithm are P (0) = 0.1ˆ2
and λ = {0.90, 0.99}with λ = 0.99 corresponding to slow adaptation and λ = 0.90
corresponding to fast adaptation.

2.5.2 RLS algorithm

The recursive least squares algorithm used in the estimation scheme in Section 2.3.2
is taken from Ljung (1999) and summarized in Table 2.3. The RLS algorithm has a
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Figure 2.9: Polynominal fit of the friction in the annulus.
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Figure 2.10: Polynominal fit of the friction in the drillstring.
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Parametric Model θTφ (q) = z (t)

θ̂ (t) = arg minθ
∑t

k=1 β (t, k)
[
z (k)− φT (q (k)) θ

]2
Criterion β (t, k) = λ (t) β (t− T, k) , 0 ≤ k ≤ t− T

β (t, t) = 1

θ̂ (t) = θ̂ (t− T ) + L (t)
[
z (t)− φT (q (t)) θ̂ (t− T )

]
Algorithm L (t) = P (t−T )φ(q(t))

λ(t)+φT (t)P (t−T )φ(q(t))

P (t) = 1
λ(t)

[
P (t− 1)− P (t−1)φ(q(t))φT (q(t))P (t−T )

λ(t)+φT (q(t))P (t−T )φ(q(t))

]
Initial Conditions θ̂ (0) , P (0) = P T (0) > 0
Design Variables 0 < λ (t) ≤ 1

Table 2.3: RLS with forgetting factor

forgetting factor λ which discounts the data according to

β (t, k) = λt−k, (2.33)

which implies that λ = 1 weights all the data equally while 0 < λ < 1 discounts
the data. For example λ = 0.95 discounts the tenth data point according to β =
0.9510 ≈ 0.60.
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Part II

Adaptive Observer Design
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Chapter 3

Adaptive Redesign of Nonlinear
Observers

Abstract: To estimate unmeasured states in dynamical systems with parametric
uncertainties one can use adaptive observers. In this paper a new method for adap-
tive redesign of reduced order observers for nonlinear systems is presented. The
redesign makes the observer robust as it guarantees that the state estimation error
converges to zero in the presence of parametric uncertainties. To enable parameter
adaption, a new type of update law is derived using Lyapunov analysis and a non-
linear coordinate transformation. The uniqueness of the approach is that it allows
terms containing both uncertainty and nonlinearity in the unmeasured states to ap-
pear in the dynamics of the unmeasured states, and still achieves convergence of the
state estimate without requiring persistent excitation. Two examples are presented
that demonstrate these properties.

3.1 Introduction

It is often the case that signals needed for feedback control are not measured or the
measurement quality is low due to noise or slow sampling rates. In these cases sig-
nals needed for control purposes can be estimated or filtered using state observers.
Much research has been devoted to this field of study starting with observer design
for linear systems (Kalman, 1960; Luenberger, 1964). For nonlinear systems satis-
fying a Lipschitz type condition, high-gain observers can be designed (Thau, 1973;
Tornambe, 1989; Gauthier et al., 1992; Khalil, 1999). In the work by Krener and
Isidori (1983), conditions are derived for when a nonlinear system can be trans-
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formed into a linear system, plus a nonlinear term which only depends on measured
signals, enabling linear systems theory to be used to derive an observer. More re-
cently, Kazantzis and Kravaris (1998) extended Luenbergers original ideas (Luen-
berger, 1964) to the nonlinear case. In the work by Kazantzis and Kravaris (1998),
conditions are derived for the existence of a local nonlinear transformation that
transforms the original nonlinear system into a linear system, driven by a nonlin-
ear measured term. Since the output map can be nonlinear in the new coordinates
the method is more general than the result by Krener and Isidori (1983), where the
output map is constrained to be linear. Extensions to this work has been developed
in (Krener and Xiao, 2002, 2004; Andrieu and Praly, 2006; Kravaris et al., 2007).
For systems satisfying a sector condition, the circle criterion can be used to derive
observers (Arcak and Kokotović, 2001; Fan and Arcak, 2003). Moreno (2005) uses
a diffeomorphism to turn the nonlinear system into a linear system, plus a nonlinear
term depending on measured signals only, and a perturbation term. The perturba-
tion term is dealt with by either using high-gain or sector conditions, the approach
thus unifies several of the above design methods. In the work (Karagiannis et al.,
2008), the observer design is reduced to finding certain mappings so that a chosen
manifold, corresponding to the estimation error being equal to zero, is rendered at-
tractive and invariant. The order of the observer can be higher than the order of the
state to be estimated, so the method thus represents an immersion based design.

If, in addition to unmeasured states, there are parametric uncertainties, an observer
can be made robust by adapting to these uncertainties. These observers are often
called adaptive observers. For linear time invariant systems early results on adaptive
observer design can be found in (Luders and Narendra, 1973; Kreisselmeier, 1977),
and a complete theory on adaptive observers for linear systems can be found in e.g.
Ioannou and Sun (1996) or Narendra and Annaswamy (1989).

For nonlinear systems, paralleling the work done in the nonadaptive case, adap-
tive observers have been developed using transformation techniques and exploiting
certain structures/canonical forms. The design methods are often based on Lya-
punov like functions containing a parameter error term. Under a strictly positive
real (SPR) condition (Ioannou and Sun, 1996), the derivative of such functions can
be found to be negative semidefinite, providing conditions for applying Barbălat’s
lemma to guarantee that the state estimation error converges to zero. An early result
can be found in (Bastin and Gevers, 1988), where adaptive observers were devel-
oped for systems in the so called adaptive observer canonical form. It was also
shown that several useful systems can be transformed into this form. Building on
these results, all systems that are transformable into the adaptive observer canonical
form through the use of filtered transformations (possibly dependent on unknown
parameters) were characterized in Marino and Tomei (1992). If the filtered trans-
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formations depend on unknown parameters, persistency of excitation is needed to
reconstruct the actual state estimate. These approaches are thoroughly presented in
Marino and Tomei (1996). An interesting comparison of different transformation
based adaptive observers can be found in Zhang (2005), where the author collects
several of the adaptive observers into one canonical form. Without relying on trans-
formation techniques, the results in Cho and Rajamani (1997) apply to a class of
multiple-input multiple-output nonlinear system satisfying an SPR like condition
and a Lipschitz condition on the nonlinearities. In the spirit of Bastin and Gev-
ers (1988) and Marino and Tomei (1996), Besançon (2000a) collects most of the
existing results into one adaptive observer form for which design procedures are
available.

In this paper we consider adaptive redesign of reduced order nonlinear observers.
That is, we assume that a (nonadaptive) reduced order observer and a correspond-
ing Lyapunov function is given, and based on this, perform an adaptive redesign to
make the observer adaptive. Through Lyapunov analysis we find an update law that
is driven by the unmeasured state estimation error, and thus cannot be implemented
as is. However, if a solution to a certain partial differential equation (PDE) can be
found, we are able to show that a new, implementable update law, is equivalent to
the one found through Lyapunov analysis. We apply the method to design adaptive
observers for two example systems. In the first example, we design an adaptive
observer to estimate the unmeasured flow rate in a hydraulic system, while in the
second example we apply the method to a system where the regressor depends non-
linearly on both the measured output and the unmeasured state. In both examples,
the unmeasured state dynamics contains terms that combine parametric uncertainty
and nonlinearity in the unmeasured states. Still, the proposed redesign achieves
convergence of the state estimate without requiring persistent excitation. To the
best of the authors knowledge, this is not achieved by any other method.

3.2 Adaptive Redesign

Given the system

ẏ = f1 (t, y, z) (3.1a)
ż = f2 (t, y, z) + φ (t, y, z) θ, (3.1b)

where f1, f2 and φ are locally Lipschitz in y ∈ Ky, z ∈ Kz uniformly in t ∈ R,
θ ∈ Kθ is a vector of constant, uncertain parameters, and Ky ⊂ Rm, Kz ⊂ Rn and
Kθ ⊂ Rp are compact sets. We do not require knowledge of the sets Ky, Kz and
Kθ for the redesign (although knowledge of some or all might be needed for the
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nominal design in (3.2)–(3.4)). Suppose a reduced order observer is available for
the case where θ is known in the form

ẑ = β (t, y, ξ) , (3.2a)

ξ̇ = ψ (t, y, ξ) +

(
∂β

∂ξ

)−1

φ (t, y, ẑ) θ, (3.2b)

where det(∂β
∂ξ

) 6= 0 for any (t, y, ξ). As an example, the observer (3.2) could be
found using the methodology proposed in (Arcak and Kokotović, 2001; Karagiannis
et al., 2008). Defining the error z̃ = z − ẑ, suppose that the error dynamics can be
written as

˙̃z = ε (θ, t, y, z, z̃) , (3.3)

with ε locally Lipschitz uniformly in t, for all (θ, y, z) ∈ Kθ ×Ky ×Kz. Further-
more, we assume that we are given a differentiable Lyapunov function Vz (t, z̃) :
[0,∞)×Dz −→ R, with Dz ⊂ Rn, satisfying

α1 (z̃) ≤ Vz (t, z̃) ≤ α2 (z̃) (3.4a)
∂Vz
∂t

+
∂Vz
∂z̃

ε (θ, t, y, z, z̃) ≤ −cα3 (z̃) , (3.4b)

for all t ≥ 0 and all (θ, y, z) ∈ Kθ×Ky×Kz, where αi, i ∈ {1, ...3} are continuous
positive definite functions on Dz, and c > 0 is a design constant (observer gain).
Let Bz = {z̃ ∈ Rn | Vz (t, z̃) ≤ cz } ⊂ Dz for some cz > 0 be an estimate of the
region of attraction. If (3.4) holds with Dz = Rn and α1 radially unbounded, then
Bz = Rn (cz =∞), Khalil (2002).

The main result in this paper relies on the following assumption.
Assumption 3.1. There exists fv (t, y, ẑ) such that

f1 (t, y, z)− f1 (t, y, ẑ) = fv (t, y, ẑ)

(
∂Vz
∂z̃

)T
. (3.5)

For systems with f1 nonlinear in z, Assumption 3.1 imposes a specific property
on the Lyapunov function which in general will be hard to obtain. If (3.1a) has
the form ẏ = A (t, y) z + f̄1 (t, y) , then Assumption 3.1 can be satisfied with a
Lyapunov function that is quadratic in z̃.
Theorem 3.2. (Main result) Suppose η (t, y, ẑ) is a solution to the partial differen-
tial equation

−φT (t, y, ẑ) =

(
∂η

∂y
(t, y, ẑ)

+
∂η

∂ẑ
(t, y, ẑ)

∂β

∂y
(t, y, ξ)

)
fv (t, y, ẑ) . (3.6)
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Then, the adaptive observer

ξ̇ =ψ (t, y, ξ) +

(
∂β

∂ξ

)−1

φ (t, y, ẑ) θ̂, (3.7)

ẑ =β (t, y, ξ) , (3.8)

˙̂σ =Γ
∂η

∂t
(t, y, ẑ) + Γ

∂η

∂y
(t, y, ẑ) f1 (t, y, ẑ)

+ Γ
∂η

∂ẑ
(t, y, ẑ)

(
∂β

∂t
(t, y, ξ) +

∂β

∂y
(t, y, ξ) f1 (t, y, ẑ)

+
∂β

∂ξ
(t, y, ξ)ψ (t, y, ξ) + φ (t, y, ẑ) θ̂

)
, (3.9)

θ̂ =σ̂ − Γη (t, y, ẑ) , (3.10)

where Γ = ΓT > 0, provides the following properties for the error dynamics: All
solutions starting in

B =

{(
z̃, θ̃
)
∈ Rn × Rp

∣∣∣∣ Vz (t, z̃) +
1

2
θ̃TΓ−1θ̃ ≤ cz

}
are uniformly bounded and limt→∞ z̃ = 0.
Remark 3.3. Equation (3.6) is a partial differential equation that cannot be solved
in general. However, as we will show in Section 3.3 it has a solution for several
practical examples.

The proof of Theorem 3.2 consists of the following two intermediate steps.
Proposition 3.4. The properties of the adaptive observer in Theorem 3.2 are achieved
for (3.7)–(3.8) and the update law

˙̂
θ = ΓφT (t, y, ẑ)

(
∂Vz
∂z̃

)T
. (3.11)

Proposition 3.5. The dynamics of (3.11) and the dynamics of (3.9)–(3.10) are iden-
tical (in terms of trajectories of θ̂ (t)). That is, (3.9)–(3.10) represents an imple-
mentable version of (3.11).

Proof of Proposition 3.4. By differentiating (3.8) with respect to time, inserting
(3.1a) and (3.7), and subtracting the result from (3.1b), we find the state estima-
tion error dynamics to be

˙̃z = ε (θ, t, y, z, z̃) + φ (t, y, ẑ) θ̃, (3.12)
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where ε (θ, t, y, z, z̃) is the unperturbed error dynamics (see (3.3)). Using the prop-
erties (3.4a)–(3.4b), we have, for z̃ ∈ Dz, that

∂Vz
∂t

+
∂Vz
∂z̃

ε (θ, t, y, z, z̃) ≤− cα3 (z̃) +
∂Vz
∂z̃

φ (t, y, ẑ) θ̃. (3.13)

Taking

V = Vz +
1

2
θ̃TΓ−1θ̃, (3.14)

we obtain from (3.13) and θ̇ = 0 that

V̇ ≤− cα3 (z̃) + θ̃TΓ−1

(
− ˙̂
θ + ΓφT (t, y, ẑ)

(
∂Vz
∂z̃

)T)
. (3.15)

Substituting the update law (3.11) into (3.15), we get

V̇ ≤ −cα3 (z̃) , (3.16)

which holds for (z̃, θ̃) ∈ Dz × Rp. Since (3.16) holds for all (z̃, θ̃) ∈ B, we have

that all solutions of (3.12) and (3.11) ( ˙̃θ = − ˙̂
θ) starting inB are uniformly bounded.

That is, ∃ c̄ < ∞, such that ‖(z̃(t), θ̃(t))‖ ≤ c̄, ∀t. Note that since y ∈ Ky and
z ∈ Kz this also implies that ẑ and ξ are bounded. To prove limt→∞ z̃ = 0, we
use a local version of the proof for the LaSalle–Yoshizawa theorem (Krstić et al.,
1995, Th. A.8), mainly based on Barbălat’s lemma. Since V is non-increasing and
bounded from below it has a limit V∞ = limt→∞ V (t, z̃(t), θ̃(t)). Integrating (3.16)
with respect to time gives[

V
(
t0, z̃0, θ̃0

)
− V∞

]
≥ c

∫ ∞
t0

α3 (z̃ (τ)) dτ, (3.17)

hence
∫∞
t0
α3 (z̃ (τ)) dτ exists and is finite. Since y, z and z̃ are bounded the right-

hand side of (3.12) is bounded so z̃(t) is uniformly continuous. Since α3(z̃) is
continuous, it is uniformly continuous on the compact set D = {‖z̃‖ ≤ c̄}. From
the uniform continuity of α3(z̃) and z̃ (t) , we conclude that α3 (z̃ (t)) is uniformly
continuous. By Barbălat’s lemma we then have limt→∞ α3 (z̃) = 0, which implies
limt→∞ z̃ = 0.

Proof of Proposition 3.5. Differentiating (3.10) with respect to time and inserting
(3.1a) and (3.9) we have

˙̂
θ = Γ

∂η

∂y
(t, y, ẑ) (f1 (t, y, ẑ)− f1 (t, y, z))

+ Γ
∂η

∂ẑ
(t, y, ẑ)

(
∂β

∂t
(t, y, ξ) +

∂β

∂y
(t, y, ξ) f1 (t, y, ẑ)

+
∂β

∂ξ
(t, y, ξ)ψ (t, y, ξ) + φ (t, y, ẑ) θ̂ − ˙̂z

)
. (3.18)
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Differentiating (3.8) with respect to time and substituting into (3.18) we get

˙̂
θ = Γ

∂η

∂y
(t, y, ẑ) (f1 (t, y, ẑ)− f1 (t, y, z))

+ Γ
∂η

∂ẑ
(t, y, ẑ)

∂β

∂y
(t, y, ξ) (f1 (t, y, ẑ)− f1 (t, y, z)) .

Now, from Assumption 3.1 we have

˙̂
θ =− Γ

(
∂η

∂y
(t, y, ẑ) +

∂η

∂ẑ
(t, y, ẑ)

∂β

∂y
(t, y, ξ)

)
fv (t, y, ẑ)

(
∂Vz
∂z̃

)T
. (3.19)

Comparing (3.19) to (3.11) we see that the expressions are identical in view of
(3.6).

Proof of Theorem 3.2. Since the dynamics of (3.11) and the dynamics of (3.9)–
(3.10) are identical (in terms of trajectories of θ̂ (t)) by Proposition 3.5, and the
properties of the adaptive observer in Theorem 3.2 are achieved for (3.7)–(3.8) and
the update law (3.11) by Lemma 3.4, we conclude that the properties in Theorem
3.2 hold for the adaptive observer (3.7)–(3.10).

3.3 Applications

We illustrate the use of the proposed method by designing an adaptive observer for
a drilling system from Stamnes et al. (2008), as well as for an instructive example
from Besançon, Zhang, and Hammouri (2004).

3.3.1 Drilling System Example

Consider the simplified model of a managed pressure drilling system taken from
Stamnes et al. (2008)

Vd
βd
ṗp = qp − qbit, (3.20a)

Mq̇bit = pp − pc − φ̄ (qbit) θ, (3.20b)
Va
βa
ṗc = qbit − qchoke + qbpp, (3.20c)

where pp is the main pump pressure, qbit is the flow rate through the bit and pc is
the pressure upstream the choke. Vd and Va are the volumes in the drill string and
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Figure 3.1: Schematic of a managed pressure drilling system. The model consists
of two control volumes, one for the drill string and one for the annulus.
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annulus, βd and βa the bulk moduli of the fluid in the drill string and the annulus and
M a lumped density per length parameter. qp, qchoke and qbpp are the main pump,
choke and back pressure pump flow rates, which are all positive measured signals.
The pressures pp and pc are measured while the bit flow rate is not. A schematic of
the system is shown in Fig. 3.1. The flow rate through the choke is modeled by a
standard orifice equation (Manring, 2005)

qchoke = ucKcsign(pc − p0)
√
|pc − p0| (3.21)

where uc ∈ [0, 1] is the normalized valve opening, p0 is the pressure at vena con-
tracta (which can be approximated by the pressure further downstream the choke)
and Kc > 0 is a lumped parameter depending on the density, the discharge coef-
ficient and the cross-sectional area of the fully open valve opening. Note that for
uc ≥ δ > 0 the trajectories pp, qbit and pc remain bounded if the inputs qp and qbpp
and their derivatives are bounded1. The objective is to estimate the bit flow rate and
the uncertain parameter vector θ. In Stamnes et al. (2008), only turbulent flow was
considered so the friction pressure was modeled as φ̄ (qbit) θ = θ |qbit| qbit. Here we
consider the more general case where θ ∈ R3 is a vector of uncertain parameters
and φ̄ (qbit) =

[
qbit |qbit| qbit q3

bit

]
. We require φ̄ (qbit) θ to be monotonically in-

creasing in qbit which is the case in practice. To be consistent with the notation we
rewrite (3.20) into the form (3.1) by defining

y =

[
pp
pc

]
, f1 (t, z) =

[
βd
Vd

(qp (t)− z)
βa
Va

(z − qchoke (t) + qbpp (t))

]
,

z = qbit, f2 (y) =
1

M
(pp − pc) ,

φ (z) = − 1

M

[
z |z| z z3

]
.

1The boundedness of pc and qbit can be proved by differentiating V = Vd

2βd
(pp−p0)2 + Va

2βa
(pc−

p0)2 + M
2 (qbit − qp)2 with respect to time using (3.20), the monotonicity of φ̄ (qbit) θ and (3.21).

Boundedness of pp follows from the boundedness of qbit and pc.
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Observer Design for the Nominal Case

In the known parameter case a reduced order observer of the form (3.2) is given by

ẑ =β (y, ξ) = ξ − l1pp − l2pc (3.22)

ξ̇ =ψ (t, y, ξ) + φ (ẑ) θ

=f2 (y) + l1
βd
Vd

(qp (t)− β (y, ξ))

+ l2
βa
Va

(β (y, ξ)− qchoke (t) + qbpp (t)) + φ (ẑ) θ, (3.23)

and ∂β
∂ξ

= 1. To verify that the observer (3.22)–(3.23) satisfies the necessary proper-
ties stated in Section 3.2, we take the derivative of (3.22) with respect to time, use
(3.20a) and (3.20c), and subtract the result from from (3.20b), giving

˙̃z = [φ (z)− φ (ẑ)] θ − l1
βd
Vd
z̃ + l2

βa
Va
z̃.

Taking Vz = 1
2
z̃2 and using the fact that [φ (z)− φ (ẑ)] θz̃ ≤ 0 by the monotonicity

of φ̄ (qbit) θ, we get

V̇z ≤ −
(
l1
βd
Vd
− l2

βa
Va

)
z̃2 (3.24)

and so (3.4) is satisfied with c =
(
l1
βd
Vd
− l2 βaVa

)
and l1 and l2 chosen so that c > 0.

Adaptive Redesign

To apply Theorem 3.2, we select fv =
[
−βd
Vd

βa
Va

]T
which satisfies Assumption 3.1,

and so the partial differential equation (3.6) is given as

1

M

 ẑ
|ẑ| ẑ
ẑ3

 =

(
∂η

∂y
+
∂η

∂ẑ

[
−l1 −l2

])[−βd
Vd
βa
Va

]
. (3.25)

Choosing ∂η
∂y
≡ 0, (3.25) reduces to

∂η

∂ẑ
(ẑ) =

1

cM

 ẑ
|ẑ| ẑ
ẑ3

 (3.26)
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for which a solution η (ẑ) is

η (ẑ) =
1

cM

 1
2
ẑ2

1
3
|ẑ| ẑ2

1
4
ẑ4

 . (3.27)

By Theorem 3.2 an adaptive observer is

ẑ = β (y, ξ) (3.28a)

ξ̇ = ψ (t, y, ξ) + φ (ẑ) θ̂ (3.28b)

˙̂σ = Γ
∂η

∂ẑ

(
∂β

∂y
f1 (t, ẑ) + ψ (t, y, ξ) + φ (ẑ) θ̂

)
(3.28c)

θ̂ = σ̂ − Γη (ẑ) , (3.28d)

where ∂β
∂y

= −
[
l1 l2

]
and ∂η

∂ẑ
and η (ẑ) are specified in (3.26) and (3.27).

Simulation Results

To illustrate the use of the adaptive observer we simulate a common drilling scenario
known as a pipe connection. During a pipe connection the back pressure pump flow
rate, qbpp, is ramped up while the main pump flow rate, qp, is ramped down to
zero so that a new stand of drill pipe can be connected to the drill string. After
the connection, qbpp is ramped down while qp is ramped up again. The parameters
used in the simulation are Va = 100m3, Vd = 28m3, βa = βd = 14000bar, M =
8.3 × 103 kg

m4 , Kc = 1
180

, θ1 = 3 × 103, θ2 = −1.4 × 105 and θ3 = 5.1 × 106

while the valve is left fully open uc ≡ 1. We choose l1 = 0.5Vd
βd

and l2 = −0.5Va
βa

so that c = 1 and Γ = 106Mdiag([1, 104, 107]) . The initial conditions for the
model are pp (0) = 50bar, pc (0) = 10bar, z (0) = 1

60
m3

s
, and for the observer

ξ (0) = 2z (0) + l1pp (0) + l2pc (0) and σ̂ (0) = 1.5θ + Γη (2z (0)) . Fig. 3.2a and
3.2b show the measured pressures and flow rates. Fig. 3.2c shows that in the non-
adaptive case (Γ ≡ 0), the flow rate estimate ẑ deviates from the true flow rate z,
while Fig. 3.2d shows that the adaptive observer estimate quickly converges to the
true state. Fig. 3.3 shows that the parameter estimation errors remain bounded.

3.3.2 Example with Uncertainties Depending on y and z

The regressor φ in the previous example did not depend on y. To illustrate that the
method can be applied to such cases, we apply it to an instructive example from
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ẑ

(c) Unmeasured flow rate z and its estimate ẑ in liters per minute, no adaption.
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(d) Unmeasured flow rate z and its estimate ẑ in liters per minute, with adaptation

Figure 3.2: Simulation of pipe connection
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Figure 3.3: Normalized parameter estimation errors

Besançon et al. (2004). The system considered is of the form (3.1) with f1 (t, z) =

z + u (t), f2 (y, z) = −y − 2 sin (z) and φ (y, z) =
[
arctan (z) cos (yz)

]T . As
in Besançon et al. (2004) we assume that the input u(t) ensures that the states are
bounded.

Observer Design for the Nominal Case

For the case where θ is known, an observer is given as

ẑ = β (y, ξ) = ξ + ly, (3.29)

ξ̇ = ψ (y, ξ − ly) + φ (y, ẑ) θ, (3.30)

where ψ (y, ẑ − ly) = −l (ẑ + u (t))− y − 2 sin (ẑ) and the gain l is appropriately
chosen. As sin (z) , cos (yz) and arctan (z) are all globally Lipschitz in z (recall
that y is bounded) it is straightforward to use the Lyapunov function Vz = 1

2
z̃2, to

prove that, for sufficiently large l, we get V̇z ≤ cz̃2, for some c < 0. Note that to
find such an l, knowledge of ‖y‖∞ is needed.

Adaptive Redesign

Since we have ∂Vz
∂z̃

= z̃ we see that Assumption 3.1 is satisfied with fv (t, y, ẑ) = 1.
To apply Theorem 3.2, we need to find η (y, ẑ) that satisfies (3.6). Since ∂β

∂y
= l, we

need to solve

∂η1

∂y
+ l

∂η1

∂ẑ
= − arctan (z) , (3.31a)

∂η2

∂y
+ l

∂η2

∂ẑ
= − cos (yz) , (3.31b)
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Figure 3.4: η1(ẑ) and η2(y, ẑ)

for η1 (y, ẑ) and η2 (y, ẑ) . Both of these equations can be transformed into solvable
ODEs. The solution to the first one is

η1 (ẑ) =
1

2l

(
log
(
ẑ2 + 1

)
− 2ẑ arctan (ẑ)

)
, (3.32)

and according to (3.9)–(3.10) the update law is

˙̂σ1 =− γ1 arctan (z)
[
ẑ + u(t) + l−1(ψ (t, y, ẑ − ly) + φ (y, ẑ) θ̂)

]
, (3.33)

θ̂ = σ̂1 − γ1η1 (ẑ) . (3.34)

Solving (3.31b) is a bit more involved. Let ẑ = ly + b, for some b, and define
λb (y) = η2 (y, ly + b). Then, we have λ′b (y) = − cos (y (ly + b)) which we
can integrate to obtain λb (y) = λb (0) + F (y, b) − F (0, b), where F (y, b) =
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∫
− cos (y (ly + b)) dy. We then have that

η2 (y, ẑ) =λẑ−ly (y) = η2 (0, ẑ) + F (y, ẑ − ly)− F (0, ẑ − ly) , (3.35)

where we are free to select η2 (0, ẑ) = 0. In this particular case, we have

F (y, b) = −
√
π

2l

[
cos

(
b2

4l

)
C
(
b+ 2ly√

2πl

)
+ sin

(
b2

4l

)
S
(
b+ 2ly√

2πl

)]
, (3.36)

where S and C are the Fresnel sine and cosine, respectively. So we obtain

η2 (y, ẑ) =

√
π

2l
cos

(
(ẑ − ly)2

4l

)
∆C (y, ẑ) (3.37)

+

√
π

2l
sin

(
(ẑ − ly)2

4l

)
∆S (y, ẑ) , (3.38)

where we have defined

∆C (y, ẑ) =C
(
ẑ − ly√

2πl

)
− C

(
ẑ + ly√

2πl

)
(3.39)

∆S (y, ẑ) =S
(
ẑ − ly√

2πl

)
− S

(
ẑ + ly√

2πl

)
. (3.40)

The update law in this case is

˙̂σ2 =− γ2 cos (yz) (ẑ + u (t)) + γ2
∂η2

∂ẑ

(
ψ (t, y, ξ) + φ (y, ẑ) θ̂

)
, (3.41)

θ̂2 =σ̂2 − γ2η2 (y, ẑ) , (3.42)

where

∂η2

∂ẑ
= −

√
π

2l

ẑ − ly
2l

sin

(
(ẑ − ly)2

4l

)
∆C (y, ẑ) (3.43)√

π

2l

ẑ − ly
2l

cos

(
(ẑ − ly)2

4l

)
∆S (y, ẑ) (3.44)

+
1

2l
(1− cos(yẑ)). (3.45)

Fig. 3.4 shows the graphs of η1 (ẑ) and η2 (y, ẑ) .
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Simulation Results

Simulation results with initial conditions y (0) = z (0) = 1, input u (t) = sin (2t)+
1
10

cos (10t) and uncertain parameter θ = [1, 2], as in Besançon et al. (2004), can
be seen in Fig. 3.5a and Fig. 3.5b. The observer gains were chosen as l = 4,
γ1 = 3, γ2 = 1 and the initial conditions as ẑ (0) = −1, θ̂ (0) = [0, 0]. From
Fig. 3.5a and Fig. 3.5b we see that both the state estimation error and parameter
estimation error converges to zero. Parameter convergence is achieved due to the
persistently exciting (of sufficient order) input signal. To illustrate that the observer
can estimate z without parameter identification we ran the same simulation, only
this time we choose u (t) = −ẑ − y. The results can be seen in Fig. 3.5c and
Fig. 3.5d. which shows that the state estimation error converges to zero without
identifying the unknown parameters. This is not guaranteed with the observer found
in Besançon et al. (2004).

3.4 Conclusions

We have presented a new method for adaptive redesign of reduced order nonlinear
observers. Contrary to other adaptive observer design procedures the method does
not require a strictly positive real condition but requires the solution of a partial
differential equation. Two examples show that the method extends existing theory
on adaptive observer design, and is of practical usefulness.
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Figure 3.5: Simulation results for the example with uncertainties depending on y
and z.

71



72



Chapter 4

Redesign of Adaptive Observers for
Improved Parameter Identification in
Nonlinear Systems

Abstract: We propose a method for redesigning adaptive observers for nonlinear
systems. The redesign uses an adaptive law that is based on delayed observers. This
increases the computational burden, but gives significantly better parameter identi-
fication and robustness properties. In particular, given that a special persistency of
excitation condition is satisfied, we prove uniform global asymptotic stability and
semi-global exponential stability of the origin of the state and parameter estima-
tion error, and give explicit lower bounds on the convergence rate of both the state
and parameter estimation error dynamics. For initial conditions with a known up-
per bound, we prove tunable exponential convergence rate. To illustrate the use
of the proposed method, we apply it to estimate the unmeasured flow rate and the
uncertain friction parameters in a model of a managed pressure drilling system.
The simulation results clearly show the improved performance of the redesigned
adaptive observer compared to a traditional design.

4.1 Introduction

In practical applications it is often the case that unmeasured states and uncertain
parameters are needed for control purposes. In these cases it is necessary to generate
real time estimates of these unknown quantities. If the system is persistently excited
(PE), one can estimate both parameters and states simultaneously by using adaptive

73



observers.

For linear systems the parameter and state estimation problem can be separated into
two parts. The first part is to design a Luenberger type observer for the unmeasured
state while the second part consists of selecting an appropriate adaptive law for
the unknown parameters (Kreisselmeier, 1977; Narendra and Annaswamy, 1989;
Ioannou and Sun, 1996). If the regressor is persistently exciting both the state and
the parameter estimation error will converge to zero.

For nonlinear systems it might not be possible to parameterize the plant so that
it is suitable for this modular approach, but one can instead attempt a Lyapunov
based design. Such designs usually require that the unknown parameters enter in
such a way (possibly after a transformation) that the system is strictly positive real
(SPR) from the unknown parameters to the measured output (Marino and Tomei,
1996; Cho and Rajamani, 1997; Besançon, 2000a). Again, as in the linear case,
if the regressor is persistently exciting one can prove that both the state and the
parameter estimation error will converge to zero. In some cases the SPR condition
can be relaxed to systems with higher relative degree from the measured output to
the unknown parameter, as shown in Stamnes et al. (2009). We should also mention
that for the class of systems considered in Marino and Tomei (1996), one can design
adaptive observers with arbitrary rate of convergence (Marino and Tomei, 1995) if
the system is sufficiently excited (PE). The design in Marino and Tomei (1995) is
based on several additional filters and does not guarantee that the state estimation
error goes to zero when the system is not persistently excited.

Experience has shown that the parameter identification properties of Lyapunov based
adaptive laws often are poor, in particular when the number of uncertain parameters
is high compared to the number of measurements (Krstić, 2009). Even if uniform
exponential stability of the state and parameter estimation error is proved, the con-
vergence rate can be small, which severely limits the practical usefulness of such
schemes. Motivated by Xu and Zhang (2004), we introduce delayed observers to
remedy this lack of performance. Using the delayed observers we are able to obtain
easily tunable convergence rates, which is generally not possible in existing adaptive
schemes. The price to pay for the improved performance is increased computational
burden due to several delayed observers.

The rest of the paper is organized as follows. In Sections 4.2.1 and 4.2.2 we specify
the class of systems under consideration and further motivate our work. Section
4.2.3 contains the new design and the stability proofs. In Section 4.3 we apply
the proposed method to estimate the unmeasured flow rate and uncertain friction
parameters in a model of a managed pressure drilling system from Stamnes et al.
(2008). Finally, conclusions are given in Section 3.4.
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4.2 Observer Design

4.2.1 Standard Design and Motivation

Given the system

ẏ = f1 (t, y, z) (4.1a)
ż = f2 (t, y, z) + φ (t, y, z) θ, (4.1b)

where y ∈ Rm is measured, z ∈ Rn is unmeasured, f1 and f2 are locally Lipschitz
in y, z uniformly in t ∈ R, and θ ∈ Rp is a vector of constant, uncertain parameters.
We assume that the states y and z are bounded but do not require knowledge of
the value of the upper bound. We also require φ (t, y, z) to be continuously differ-
entiable in y and z, uniformly in t. Suppose a reduced order adaptive observer is
available in the form

ẑ = β (t, y, ξ) , (4.2a)

ξ̇ = ψ (t, y, ξ) +

(
∂β

∂ξ

)+

φ (t, y, ẑ) θ̂, (4.2b)

with ξ ∈ Rl for l ≥ n, and rank
(
∂β
∂ξ

)
= n so that the right inverse

(
∂β
∂ξ

)+

exists.

The parameter θ̂ is generated from a system that satisfies

˙̂
θ = − ˙̃θ = ΓφT (t, y, ẑ)

(
∂Vz
∂z̃

)T
(4.3)

with θ̃ = θ − θ̂, Γ = ΓT > 0 and Vz a Lyapunov function specified in Assumption
4.1 below. Defining the error z̃ = z − ẑ, suppose that the error dynamics can be
written as

˙̃z = ε (θ, t, y, z, z̃) + φ (t, y, ẑ) θ̃, (4.4)

with ε locally Lipschitz in z̃ uniformly in t for bounded y and z. Furthermore, we
assume that we are given a differentiable Lyapunov function Vz (t, z̃) : [0,∞) ×
Rn −→ R, satisfying
Assumption 4.1.

k1 ‖z̃‖2 ≤ Vz (t, z̃) ≤ k2 ‖z̃‖2 , (4.5a)
∂Vz
∂t

+
∂Vz (t, z̃)

∂z̃
ε (θ, t, y, z, z̃) ≤ −k3 ‖z̃‖2 , (4.5b)∥∥∥∥∂Vz (t, z̃)

∂z̃

∥∥∥∥ ≤ k4 ‖z̃‖ , (4.5c)

where ki > 0 i ∈ {1, ...4}.
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Remark 4.2. Notice that the adaptation law is not implemented in the form (4.3)
since ∂Vz

∂z̃
depends on the unmeasured error z̃, but requires a design based on a

change of coordinate in the parameters. Adaptive laws of this form satisfying As-
sumption 4.1 have been proposed in Stamnes et al. (2009, 2011a). See the example
in Section 4.2.2 for further details on how (4.3) can be implemented.
Remark 4.3. Taking V1 = Vz + 1

2
θ̃TΓ−1θ̃ and differentiating with respect to time

along the trajectories of (4.3)–(4.4) gives

V̇1 ≤ −k3 ‖z̃‖2 , (4.6)

so the origin of (4.3)–(4.4) is uniformly globally stable and limt→∞ z̃ = 0 by the
LaSalle-Yoshizawa Theorem Krstić et al. (1995).
Remark 4.4. If θ is known so that θ̃ ≡ 0, then (4.5) implies that the origin of (4.4) is
uniformly globally exponentially stable. Moreover, if k3 can be increased arbitrarily
without increasing k2 or k4, or decreasing k1, then the convergence rate of the state
estimation error can be tuned arbitrarily large, see Th. 4.10 Khalil (2002).

Systems of the form (4.3)–(4.4) have been studied extensively in the adaptive con-
trol/observer literature. For linear systems where φ only depends on t it is well
known that if, and only if, the regressor is persistently exciting, that is∫ t+T

t

φT (τ)φ (τ) dτ ≥ k1I, (4.7)

then the origin is globally exponentially stable (GES) (Narendra and Annaswamy,
1989; Ioannou and Sun, 1996; Loría, 2004). In the case where φ depends not only
on time, but also on the state of the system, more sophisticated tools, such as Ma-
trosov’s theorem and its generalizations (Loría et al., 2005), can be used to conclude
uniform global asymptotic stability (UGAS).

Even in the linear case, where φ only depends on t, adaptive laws of the form (4.3)
are hard to tune and have poor parameter convergence properties (Krstić, 2009), in
particular if the number of uncertain parameters is high compared to the number
of measurements. One might hope that explicit convergence rates, such as the one
presented in Loría (2004), would help in tuning. Unfortunately, this is not the case
as the expressions in Loría (2004) are complex, and do not show how the gains
affect performance.

Due to the shortcomings of adaptive laws of the form (4.3), algorithms with better
parameter estimation properties, such as least squares type algorithms, are preferred
when parameter estimation is important (Krstić, 2009). However, for nonlinear
systems of the form (4.1) least squares type algorithms are not available. Therefore,
motivated by Xu and Zhang (2004) we try to remedy this lack of performance by
introducing delayed observers.
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4.2.2 Example

To further illustrate the poor parameter identification properties of (4.3), and to
illustrate how an adaptive observer of the form (4.2)–(4.3) can be designed, consider
the nonlinear mass-spring-damper dynamics

ẏ = z, (4.8a)
ż = −y − θ1z − θ2 |z| z + u (t) , (4.8b)

where y is the measured position, z the unmeasured velocity, u is the control input,
θ1 and θ2 are positive but otherwise uncertain damping coefficients. System (4.8) is
in the form (4.1) with f1 (z) = z, f2 (t, y) = −y + u (t) and φ (z) = [−z, − |z| z].
In the known parameter case (θ̂ ≡ θ), a reduced order observer for system (4.8) of
the form (4.2) can be derived using existing results in e.g. (Arcak and Kokotović,
2001; Karagiannis et al., 2008) leading to

ẑ = ξ + k3y, (4.9)

ξ̇ = −y + u (t)− k3ẑ + φ (ẑ) θ̂ (4.10)

with k3 > 0. Taking the derivative of (4.9) with respect to time, using (4.8a), and
subtracting the result from (4.8b), we obtain the error dynamics

˙̃z = −k3z̃ + (φ(z)− φ(ẑ))θ + φ(ẑ)θ̃, (4.11)

and so (4.4) is satisfied with ε(θ, y, z, z̃) = −k3z̃ + (φ(z)− φ(z − z̃))θ. Using the
monotonicity of φ(z)θ it is straight forward to verify that Vz(z̃) = 1

2
z̃2 is a Lyapunov

function that satisfies Assumption 4.1. Augmenting the Lyapunov function with the
term 1

2
θ̃TΓθ̃ gives the adaptive law (4.3), which is not implementable. Following

the procedures in Stamnes et al. (2011a, 2009) we let the implementable adaptive
law be of the form

θ̂ = σ − η (y, ξ) , (4.12a)

σ̇ =
∂η

∂y
ẑ +

∂η

∂ξ
ξ̇ (4.12b)

with η(y, ξ) to be designed so that θ̂ has the desired dynamics (4.3). To that purpose
we take the derivative of (4.12a) with respect to time using (4.8a) and (4.12b) giving

˙̂
θ = −∂η

∂y
z̃. (4.13)

77



Comparing (4.13) to (4.3) we choose η(y, ξ) as the solution to the differential equa-
tion

−∂η(y, ξ)

∂y
= ΓφT (ξ + k3y). (4.14)

Selecting Γ = diag([γ1, γ2]) a solution is

η1 (y, ξ) =
γ1

2k3

(ξ + k3y)2 , (4.15a)

η2 (y, ξ) =
γ2

3k3

|ξ + k3y|3 . (4.15b)

(4.12) and (4.15) now represent an implementable adaptive law that satisfies (4.3).

Following Remark 4.3 it is straight forward to show that the origin,
(
z̃, θ̃
)

= 0,
is uniformly globally stable and that limt→∞ z̃ = 0. If the regressor is persistently
exciting, then the origin is uniformly globally asymptotically stable and uniformly
locally exponentially stable (Loría, Panteley, Popović, and Teel (2002); Stamnes
et al. (2009)). However, as the simulation results below demonstrate, the conver-
gence of the parameter estimation error can be very slow. Using the parameters
θ1 = 0.5, θ2 = 1, k3 = 2, γ1 = γ2 = 10 and initial conditions y (0) = z (0) = 1,
ẑ (0) = 0 and θ̂ (0) = 2θ we simulate system (4.8) with the observer (4.9)–(4.15).
Fig. 4.1a shows the measured position y and the input u. The input u is designed
in such a way that the regressor is PE. Fig. 4.1b shows that the state estimate,
ẑ, converges rapidly to the state, z. Since z reaches steady state twice during the
simulation, we can set ż = 0 in (4.8b) to obtain the two equations

0 = f2 (t1, y (t1)) + φ (ẑ (t1)) θ, (4.16a)
0 = f2 (t2, y (t2)) + φ (ẑ (t2)) θ, (4.16b)

which can be solved for θ provided the matrix

Φ (t1, t2) =

[
φ (ẑ (t1))
φ (ẑ (t2))

]
(4.16c)

is nonsingular. For t1 = 12 and t2 = 20 we have z (t1) ≈ −0.5 and z (t2) ≈ 1 so

Φ (12, 20) ≈
[
0.5 0.52

−1 −1

]
, (4.16d)

which has full rank and so it is easy to calculate θ. Despite this fact, as Fig. 4.1c
shows, the adaptive law is not able to identify the two parameters within the simu-
lation time. The corresponding result for the new method proposed in this paper is
shown in Fig. 4.1d. It is clear that the new method is able to quickly identify the
uncertain parameters.
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(d) Normalized parameter estimation error, method based on delayed observers.

Figure 4.1: Simulation results for the nonlinear mass-spring-damper.
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4.2.3 New Design

To improve the parameter estimation properties of the observer (4.2)–(4.3) we pro-
pose using multiple delayed observers. That is, we propose to estimate the unmea-
sured state not only at the current time t, but also at t− τ 1, t− τ 2, ..., t− τN , with
τ 0 = 0 and τ 0 < τ 1 < τ 2 . . . τN−1 < τN . The motivation behind this scheme is
to bring more "memory" into the parameter estimation algorithm. To make the idea
rigid we introduce some notation. Define KN = {0, 1, ..., N}, and let k ∈ KN

yk = yk (t) = y
(
t− τ k

)
, (4.17)

zk = zk (t) = z
(
t− τ k

)
, (4.18)

ẑk = ẑk (t) = β
(
t− τ k, yk, ξk

)
, (4.19)

z̃k = zk (t)− ẑk (t) , (4.20)

εk(t) = ε
(
θ, t− τ k, yk, zk, z̃k

)
, (4.21)

φk (t) = φ
(
t− τ k, yk (t) , zk (t)

)
, (4.22)

φ̂k (t) = φ
(
t− τ k, yk (t) , ẑk (t)

)
, (4.23)

z̃T =
[(
z̃0
)T
, ..,
(
z̃N
)T]T

(4.24)

with ξk = ξk (t) the solution to

ξ̇k = ψ
(
t− τ k, yk, ξk

)
+

(
∂β

∂ξk

)+

φ̂k (t) θ̂ (t) . (4.25)

Although (4.25) looks like a shifted (in time) version (4.2b) it is not due to the fact
that we use the same parameter estimate θ̂ (t) for all k. The proposed parameter
update law is

˙̂
θ = − ˙̃θ = Γ

N∑
k=0

(
φ̂k (t)

)T (∂Vz (t− τ k, z̃k)
∂z̃k

)T

. (4.26)

Indeed we see that (4.26) reduces to (4.3) for N = 0, however forN > 0 it contains
more "memory" than (4.3). Later, we will prove that this gives us better convergence
rates for the parameter estimation error, given that a PE condition is satisfied. Before
we state our main result we derive the appropriate error system. Consider the change
of coordinates

x = L−1θ̃, (4.27)

80



where Γ = 1
2k2
LLT and L = LT > 0. In the new coordinate system we have from

(4.4) and (4.26) that

˙̃zk = εk(t) + φ̂k (t)Lx, ∀k ∈ KN , (4.28a)

ẋ = − 1

2k2

LT
N∑
k=0

(φ̂k (t)
)T (∂Vz (t− τ k, z̃k)

∂z̃k

)T
 ,

and we define for future reference the state vector

w =
[
(z̃0)

T
(z̃1)

T
. . .

(
z̃N
)T

xT
]T

=
[
z̃T xT

]T
. (4.29)

Note also that from (4.5) we have a differentiable Lyapunov function Vz
(
t− τ k, z̃k

)
:

[0,∞)× Rn → R that satisfies

k1

∥∥z̃k∥∥2 ≤ Vz
(
t− τ k, z̃k

)
≤k2

∥∥z̃k∥∥2
(4.30a)

∂Vz
(
t− τ k, z̃k

)
∂t

+
∂Vz

(
t− τ k, z̃k

)
∂z̃

εk(t) ≤ −k3

∥∥z̃k∥∥2
, (4.30b)∥∥∥∥∥∂Vz

(
t− τ k, z̃k

)
∂z̃k

∥∥∥∥∥ ≤k4

∥∥z̃k∥∥ , (4.30c)

for all k ∈ KN . Our main result relies on the following assumptions.
Assumption 4.5. There exists cG > 0 such that

max
(∥∥∥φ̇k (t)

∥∥∥) ≤ cG. (4.31)

Assumption 4.6 (PE). Furthermore, there exists bM ≥ bm > 0 such that

bmI ≤
N∑
k=0

(
φk (t)

)T
φk (t) ≤ bMI (4.32)

for all t ∈ R+.
Assumption 4.7. k3 can be chosen arbitrarily large in the way indicated in Remark
4.4.

Assumption 4.6 is a discretized version of the persistency of excitation condition
(4.7) and depends on the input applied to the system. To the authors best knowledge
a systematic method for guaranteeing that the regressor is persistently excited in
general nonlinear systems remains an open problem.
Theorem 4.8 (Main Result). The origin of (4.28) is uniformly globally stable and
limt→∞ z̃ = 0. Moreover,
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• if Assumptions 4.1, 4.5–4.6 hold, then the origin is uniformly globally asymp-
totically stable, semi-globally exponentially stable and solutions satisfy

‖w(t)‖ ≤ κ ‖w(t0)‖ e−α(‖w(t0)‖)(t−t0), (4.33)

with κ =
√

3k2
k1

and α (‖w (t0)‖) > 0.

• if, in addition, Assumption 4.7 holds, then for any positive constant w̄, and
all initial conditions ‖w(t0)‖ ≤ w̄, the bound (4.33) holds for any desirable
value of α by appropriate choice of k3 and L (that depend on w̄).

Remark 4.9. From (4.27) we see that∥∥∥∥[ z̃ (t)

λ−1
M θ̃ (t)

]∥∥∥∥ ≤ ∥∥∥∥[z̃ (t)
x (t)

]∥∥∥∥ ≤ ∥∥∥∥[ z̃ (t)

λ−1
m θ̃ (t)

]∥∥∥∥ , (4.34)

where λmI ≤ L ≤ λMI, which implies that∥∥∥∥[z̃ (t)

θ̃ (t)

]∥∥∥∥ ≤ κ̄

∥∥∥∥[z̃ (t0)

θ̃ (t0)

]∥∥∥∥ exp (−α (t− t0)) , (4.35)

with κ̄ = κmax(1,λM )
min(1,λm)

. From (4.35) we see that the convergence rate in terms of the

original coordinates, z̃ and θ̃, is the same as in (4.33) while the overshoot is affected
by the spread in the eigenvalues of L.
Remark 4.10. Assumption 4.6 can only be satisfied if the system is persistently
excited, and a systematic choice of N and τ k can only be performed if prior knowl-
edge of φ(t) is available. For instance, in the example in Section 4.2.2, we see that
the velocity z is approximately constant over periods of 5− 10 seconds. Choosing
N = 2 and τ k = 5k for k = 0, 1, 2 we ensure that the observers cover a window
of 15s so that at least one zk differs from the other two and so Assumption 4.6 is
satisfied. As the proof of Theorem 4.8 shows, N and τ k affect the convergence rate
in a complicated way. Thus, if one can satisfy Assumption 4.6 for some bm, the
convergence rate should be controlled using k3 and L.

Proof. The proof of Theorem 4.8 follows a similar approach as in the proof of The-
orem 1 in Fossen et al. (2001) and consists of three steps. First we prove overall
stability and convergence of the state estimation error, then we introduce a cross
term in the Lyapuov function which enables us to prove convergence of the param-
eter estimation error. The last part of the proof deals with the ability to tune the
convergence rate. Consider the Lyapunov-like function

V2 (t, w) =
N∑
k=0

Vz
(
t− τ k, z̃k

)
+ k2 ‖x‖2 . (4.36)
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From (4.30a) it is clear that

k1 ‖w‖2 ≤ V2 (t, w) ≤ k2 ‖w‖2 . (4.37)

Differentiating (4.36) with respect to time and using (4.28) we get

V̇2 =
N∑
k=0

[
∂Vz

(
t− τ k, z̃k

)
∂t

+
∂Vz

(
t− τ k, z̃k

)
∂z̃k

εk(t)

+
∂Vz

(
t− τ k, z̃k

)
∂z̃k

φ̂k (t)Lx

]

− xT
N∑
k=0

LT
(
φ̂k (t)

)T (∂Vz (t− τ k, z̃k)
∂z̃k

)T

=
N∑
k=0

[
∂Vz

(
t− τ k, z̃k

)
∂t

+
∂Vz

(
t− τ k, z̃k

)
∂z̃k

εk(t)

]
. (4.38)

Substituting (4.30b) into (4.38), we obtain

V̇2 ≤ −k3

N∑
k=0

∥∥z̃k∥∥2
= −k3 ‖z̃‖2 , (4.39)

which implies that the origin of (4.28) is uniformly globally stable, that is

‖w (t)‖ ≤
√
k2

k1

‖w (t0)‖ . (4.40)

Inequalities (4.37) and (4.39) imply that limt→∞ z̃ = 0 by the LaSalle-Yoshizawa
Theorem Krstić et al. (1995). This completes the first part of the proof.

Let λM and λm be the largest and smallest eigenvalues of L and µ ≥ 2(N+1)λM
√
bM

k1
,

a Lyapunov function is

V3 (t, w) = µV2 (t, w)−
N∑
k=0

(
z̃k
)T
φk (t)Lx. (4.41)

From the choice of µ, V3 (t, w) satisfies

c1 ‖w‖2 ≤ V3 (t, w) ≤ c2 ‖w‖2 , (4.42)

with
c1 =

µ

2
k1, c2 =

3

2
µk2. (4.43)
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We differentiate (4.41) along the trajectories of (4.28) to get

V̇3 ≤− µk3 ‖z̃‖2 −
N∑
k=0

(
εk(t)

)T
φk (t)Lx

−
N∑
k=0

xTLT
(
φk (t)

)T
φk (t)Lx

+
N∑
k=0

xTLT
(
φk (t)− φ̂k (t)

)T
φk (t)Lx

−
N∑
k=0

(
z̃k
)T
φ̇k (t)Lx+

1

2k2

N∑
k=0

(
z̃k
)T
φk (t)LLT

×
N∑
k=0

(
φ̂k(t)

)T (∂Vz (t− τ k, z̃k)
∂z̃k

)T

. (4.44)

Since y and z are bounded ε(θ, t, y, z, z̃) is locally Lipschitz in z̃ uniformly in t,
and similarly φ(t, y, z) is locally Lipschitz in z uniformly in t, so there exists a
continuous nondecreasing function ρ1 : R+ → R+, such that

max
{∥∥∥(εk(t))T∥∥∥ ,∥∥∥φk (t)− φ̂k (t)

∥∥∥} ≤ ρ1

(∥∥z̃k∥∥) ∥∥z̃k∥∥ . (4.45)

Letting γ̄ =
√

k2
k1
‖w (t0)‖ and ρ̄1 = ρ1 (γ̄), we bound the time-varying terms based

on Assumptions 4.5–4.6, (4.30c) and (4.45) giving

λ2
mbm ‖x‖2 ≤

N∑
k=0

xTLT
(
φk (t)

)T
φk (t)Lx, (4.46)∥∥∥φ̇k (t)

∥∥∥ ≤cG, (4.47)∥∥∥∥∥
N∑
k=0

(
εk(t)

)T
φk (t)L

∥∥∥∥∥ ≤λM ρ̄1 (N + 1)
√
bM ‖z̃‖ , (4.48)∥∥∥∥∥

N∑
k=0

LT
(
φk (t)− φ̂k (t)

)T
φk (t)L

∥∥∥∥∥ ≤λ2
M ρ̄1(N + 1)

√
bM ‖z̃‖ , (4.49)∥∥∥∥∥

N∑
k=0

(
z̃k
)T
φk (t)LLT

∥∥∥∥∥ ≤λ2
M (N + 1)

√
bM ‖z̃‖ , (4.50)∥∥∥∥∥∥

N∑
k=0

φ̂T (t)

(
∂Vz

(
t− τ k, z̃k

)
∂z̃k

)T
∥∥∥∥∥∥ ≤k4 (N + 1)

(√
bM + ρ̄1γ̄

)
‖z̃‖ . (4.51)
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The bounds imply

V̇3 ≤ −µk3 ‖z̃‖2 + λM ρ̄1 (N + 1)
√
bM ‖z̃‖ ‖x‖

− λ2
mbm ‖x‖2 + λ2

M ρ̄1 (N + 1)
√
bM γ̄ ‖z̃‖ ‖x‖

+ λM (N + 1) cg ‖z̃‖ ‖x‖+
1

2k2

λ2
Mk4 (N + 1)2

×
√
bM

(√
bM + ρ̄1γ̄

)
‖z̃‖2 . (4.52)

Defining

M1 =
1

2k2

λ2
Mk4 (N + 1)2

√
bM

(√
bM + ρ̄1γ̄

)
, (4.53a)

M2 = λM (N + 1)
(
ρ̄1

√
bM + λM ρ̄1

√
bM γ̄ + cg

)
, (4.53b)

gives
V̇3 ≤ − (µk3 −M1) ‖z̃‖2 +M2 ‖z̃‖ ‖x‖ − λ2

mbm ‖x‖2 . (4.54)

By Young’s inequality we have

µk3

4
‖z̃‖2 +

λ2
mbm
2
‖x‖2 ≥

√
µk3

2
λm
√
bm ‖z̃‖ ‖x‖ , (4.55)

so we choose µ > max
(

2M2
2

k3λ2mbm
, 4M1

k3
, 2(N+1)λM

√
bM

k1

)
so that

V̇3 ≤ −
µk3

2
‖z̃‖2 − λ2

mbm
2
‖x‖2 (4.56)

≤ −c3 ‖w‖2 , (4.57)

with c3 = 1
2

min (µk3, λ
2
mbm) . Finally, (4.42) and (4.57) imply that

‖w (t)‖ ≤ κ ‖w (t0)‖ exp (−α (t− t0)) , (4.58)

with

κ =

√
c2

c1

=

√
3k2

k1

, (4.59)

α (‖w (t0)‖) =
c3 (‖w (t0)‖)

2c2

=
min (µ (‖w (t0)‖) k3, λ

2
mbm)

6µ (‖w (t0)‖) k2

. (4.60)
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In (4.60) we have made the dependence of the convergence rate α on the initial
condition w (t0) explicit. The reason for this dependence can be traced from (4.53)
where we see that M1 and M2 depends on ρ̄1 and γ̄, and since µ must be chosen to
satisfy

µ > max

(
2M2

2

k3λ2
mbm

,
4M1

k3

,
2 (N + 1)λM

√
bM

k1

)
, (4.61)

it will also depend on w (t0) . Since we obtain a lower bound for α only when
‖w (t0)‖ is bounded, we conclude that the origin of (4.28) is uniformly globally
asymptotically stable and semi-globally exponentially stable (since α→ 0 as ‖w (t0)‖ →
∞ we cannot conclude that the origin is uniformly globally exponentially stable).
This proves the second part of Theorem 4.8.

Now, to prove the last part of the theorem we consider two cases. The first is the
case where µk3 < λ2

mbm and in the second case µk3 ≥ λ2
mbm. In the first case

α = k3
6k2

and we see that, since Assumption 4.7 is satisfied, α can be increased ar-
bitrarily by increasing k3 without increasing κ. In the second case we first consider
the case where M1 and M2 are small, so that max

(
2M2

2

k3λ2mbm
, 4M1

k3
, 2(N+1)λM

√
bM

k1

)
=

2(N+1)λM
√
bM

k1
. In this case α = λ2mbmk1

2(N+1)λM
√
bM

and so α can be increased arbitrarily,

without affecting κ, by increasing λ2m
λM

. Next we consider the case where M1 or M2

are large so that

µ > max

(
2M2

2

k3λ2
mbm

,
4M1

k3

,
2 (N + 1)λM

√
bM

k1

)
= max

(
2M2

2

k3λ2
mbm

,
4M1

k3

)
. (4.62)

Observing that M1 and M2 are independent of k3 we choose k3 so that µ is kept
constant so we have α = λ2mbm

6µk2
, and we see that increasing λm gives arbitrarily

large convergence rate α while κ is kept constant. This completes the proof of
Theorem 4.8.
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Figure 4.2: Schematic of a managed pressure drilling system. The model consists
of two control volumes, one for the drill string and one for the annulus.
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4.3 Drilling System Example

4.3.1 Adaptive Observer Design

Consider the simplified model of a managed pressure drilling system from Stamnes
et al. (2008)

Vd
βd
ṗp = qp − qbit, (4.63a)

Mq̇bit = pp − pc − φ (qbit) θ, (4.63b)
Va
βa
ṗc = qbit − qchoke + qbpp, (4.63c)

where pp is the main pump pressure, qbit is the flow rate through the bit and pc is
the pressure upstream the choke. Vd and Va are the volumes in the drill string and
annulus, βd and βa the bulk moduli of the fluid in the drill string and the annulus
and M a lumped density per length parameter. qp, qchoke and qbpp are the main
pump, choke and back pressure pump flow rates, which are all measured signals.
The pressures pp and pc are measured while the bit flow rate is not. A schematic of
the system is shown in Fig. 4.2. The flow rate through the choke is modeled by a
standard orifice equation (Manring, 2005)

qchoke = ucKc

√
max(pc − p0, 0) (4.64)

where uc ∈ [0, 1] is the normalized valve opening andKc > 0 is a lumped parameter
depending on the density, the discharge coefficient and the cross-sectional area of
the fully open valve opening. Note that for uc positive and bounded away from
zero, the states pp, qbit and pc remain bounded if the inputs qp and qbpp are bounded.
The objective is to estimate the bit flow rate and the uncertain parameter vector θ. In
Stamnes et al. (2008) only turbulent flow was considered so the friction pressure was
modeled as φ (qbit) θ = θ |qbit| qbit. Here we consider the more general case where
θ ∈ R3 is a vector of uncertain parameters and φ (qbit) = [qbit, |qbit| qbit, q3

bit]. We
require φ (qbit) θ to be monotonically increasing in qbit which is the case in practice.
To be consistent with the notation we rewrite (4.63) into the form (4.1) by defining

y =

[
pp
pc

]
, f1 (t, z) =

[
βd
Vd

(qp (t)− z)
βa
Va

(z − qchoke (t) + qbpp (t))

]
, (4.65)

z = qbit, f2 (y) =
1

M
(pp − pc) , (4.66)

φ (z) = − 1

M

[
z |z| z z3

]
. (4.67)
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Similar to Stamnes et al. (2008) an adaptive observer for (4.63) of the form (4.2) is
given by

ẑ = β (y, ξ) , (4.68a)

ξ̇ = ψ (t, y, ξ) + φ (ẑ) θ̂, (4.68b)

with
β (y, ξ) = ξ − l1pp − l2pc (4.69)

and

ψ (t, y, ξ) =f2 (y) + l1
βd
Vd

(qp (t)− ẑ)

+ l2
βa
Va

(ẑ − qchoke (t) + qbpp (t)) . (4.70)

The adaptive law is given as

θ̂ =σ − η (ξ, y) , (4.71a)

σ̇ =
∂η

∂ξ
ξ̇ +

∂η

∂y1

βd
Vd

(qp (t)− ẑ)

+
∂η

∂y2

βa
Va

(ẑ − qchoke (t) + qbpp (t)) , (4.71b)

where

η1 =− γ1ξ

(
α
Vd
βd
y1 − (1− α)

Va
βa
y2

)
+
γ1

2

(
l1Vd
βd

y2
1 −

l2Va
βa

y2
2

)
(4.72a)

η2 =γ2

 ξ |ξ|
(
−αVd

βd
y1 + (1− α) Va

βa
y2

)
l1 = l2 = 0

1

3
(
l1
βd
Vd
−l2 βaVa

) |ξ − l1y1 − l2y2|3 |l1|+ |l2| 6= 0
(4.72b)

η3 =γ3

 ξ3
(
−αVd

βd
y1 + (1− α) Va

βa
y2

)
l1 = l2 = 0

1

4
(
l1
βd
Vd
−l2 βaVa

) (ξ − l1y1 − l2y2)4 |l1|+ |l2| 6= 0
. (4.72c)

To apply Theorem 4.8 we need to verify that the adaptive observer (4.68)– (4.72)
satisfies the assumptions in Sections 4.2.1 and 4.2.3. Towards that end, we differ-
entiate (4.71a) with respect to time giving

˙̂
θ =

∂η

∂ξ
ξ̇ +

∂η

∂y1

βd
Vd

(qp (t)− ẑ) +
∂η

∂y2

βa
Va

(ẑ − qchoke (t) + qbpp (t))

− ∂η

∂ξ
ξ̇ − ∂η

∂y1

βd
Vd

(qp (t)− z)− ∂η

∂y2

βa
Va

(z − qchoke(t) + qbpp(t)) (4.73)

=
∂η

∂y1

βd
Vd
z̃ − ∂η

∂y2

βa
Va
z̃ (4.74)

=Γφ (ẑ) z̃, (4.75)
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where the last step was taken by differentiating (4.72), using the relationships (4.68a)
and (4.69), and defining Γ = diag([γ1, γ2, γ3]). Selecting Vz = 1

2
z̃2, it is clear that

(4.75) satisfies (4.3). From (4.63b) and (4.68) we have

˙̃z =f2 (y) + φ (z) θ −
(
f2 (y) + l1

βd
Vd
z̃ − l2

βa
Va
z̃ + φ (ẑ) θ̂

)
, (4.76)

=ε (θ, y, z, z̃) + φ (ẑ) θ̃, (4.77)

with ε (θ, y, z, z̃) = (φ (z))− φ (z − z̃)) θ − l1
βd
Vd
z̃ + l2

βa
Va
z̃. Note that due to the

monotonicity of φ (z) θ, (φ (z)− φ (z − z̃)) θz̃ ≤ 0.Using this property, it is straight-
forward to show that V̇z ≤ −l1 βdVd z̃ + l2

βa
Va
z̃, and so Assumption 4.1 is satisfied with

arbitrary k3. Assumption 4.5 is satisfied since z and y (and so ż) are bounded.

4.3.2 Simulation Results

Using the parameters Kc = 0.0056 m3

s
√
bar

, Va = 100m3, Vd = 28m3, βa = βd =

14000bar, M = 8.3 × 103 s2bar
m3 , θ1 = 0.3 sbar

m3 , θ2 = −17 s
2bar
m6 and θ3 = 512 s

3bar
m9 ,

a typical operational procedure was simulated in which the driller ramps down the
main pump flow rate, qp. The variation in flow rate during such a procedure intro-
duces PE. We know that it takes about 1-3 minutes to ramp the pump down or up.
Based on this knowledge we choose τ k = kT for k ∈ {0, ..., N} with T = 30s
and N = 19, so that the delayed observers "cover" the entire procedure. For the
algorithm based on delayed observers, we use only one state observer for t < τ 1,
two for τ 1 ≤ t < τ 2, three for τ 2 ≤ t < τ 3, and so forth until t ≥ τN at which time
all the observers are operational. The adaptive law (4.26) is implemented as

θ̂ =σ −
N∑
k=0

η
(
ξk, yk

)
, (4.78)

σ̇ =
N∑
k=0

[
∂η(ξk, yk)

∂ξk
ξ̇k +

∂η(ξk, yk)

∂yk1

βd
Vd

(
qkp − ẑk

)
+
∂η(ξk, yk)

∂yk2

βa
Va

(
ẑk − qkchoke + qkbpp

)]
, (4.79)

where qkp = qp(t − τ k), qkchoke = qchoke(t − τ k) and qkbpp = qbpp(t − τ k). The gains
used were l1 = 1

2500
, l2 = − 4

2500
and Γ = diag(10, 105, 108) for t < τN and Γ =

20diag(10, 105, 108) for t ≥ τN . For comparison purposes we include simulation
results using a standard approach, which corresponds to selecting N = 0. Fig. 4.3a
shows the pressure measurements, while Fig. 4.3b compares the bit flow with its
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estimate q̂0
bit, and the most delayed estimate q̂Nbit. It can be seen that q̂0

bit quickly
converges to qbit, as proved in Section 4.2.3. Fig. 4.3c and Fig. 4.3d clearly show
the improved parameter identification properties of the algorithm based on multiple
observers. Fig. 4.4 plots the time evolution of the sum from the PE condition
(4.32). We can see that the PE condition is satisfied and so Theorem 4.8 implies
convergence of both states and parameters.

4.4 Conclusions

We have presented a method to redesign adaptive observers for systems of the form
(4.1). The redesign uses an adaptive law based on delayed observers. This increases
the computational burden, but gives significantly better parameter identification and
robustness properties. Explicit performance guarantees are given for both the state
and parameter estimation error. The results include simple tuning rules that allow
arbitrarily fast convergence rates for the errors, which is uncommon for nonlinear
adaptive observers. Simulation results verify the significantly improved parameter
identification properties of the redesigned observer compared to the original design.
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Chapter 5

A Constructive Speed Observer
Design for General Euler-Lagrange
Systems

Abstract: Astolfi et al. recently proved the existence of a globally exponentially
convergent speed observer for general Euler-Lagrange systems Astolfi et al. (2010).
Key to their result, is a function defined by certain integrals which cannot be solved
a priori, and may not have explicit analytic solutions. In this paper, this obstacle
to a constructive design is removed and equations that solve the speed observer
problem are given in closed form. The design is further simplified by removing up
to one third of the observer states used in Astolfi et al. (2010). With the significant
reduction in complexity, the new observer is easily applied to a robot example.

5.1 Introduction

The speed observation problem for mechanical systems with only position measure-
ments has been addressed in numerous papers, see Astolfi et al. (2010) and refer-
ences therein. Recently, the first globally exponentially convergent observer for a
general Euler-Lagrange system was presented in Astolfi, Ortega, and Venkatraman
(2009). In Astolfi et al. (2010), it was further generalized to mechanical systems
with non-holonomic constraints. The main tools that enabled Astolfi et al. to solve
the problem was the Immersion and Invariance (I&I) design philosophy from As-
tolfi, Karagiannis, and Ortega (2008) and Karagiannis et al. (2008) combined with
dynamic scaling, (Praly, 2003; Krishnamurthy and Khorrami, 2004; Lei, Wei, and
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Lin, 2007; Andrieu, Praly, and Astolfi, 2009; Karagiannis, Sassano, and Astolfi,
2009). There are three major drawbacks to the design by Astolfi et. al. First, the
resulting observer has fairly high dimension, namely 3n − 2k + 1, where n is the
dimension of the unmeasured velocity, and k is the number of constraints. Sec-
ondly, it requires the solution to certain integrals which cannot be derived explicitly
a priori, and may even have to be computed numerically. Thirdly all the partial
derivatives of these integrals are required in the implementation, which add to the
already high complexity of the observer. While the solutions to these integrals and
the partial derivatives may be computed numerically in real-time, this increases the
computational burden of the observer significantly. In this note, using ideas from
Astolfi et al. (2010), we derive a uniformly globally asymptotically stable and semi-
globally exponentially stable observer of dimension 2n− k + 2, only two states in
excess of full order. The two extra states are needed to dominate the Coriolis and
centrifugal forces. Furthermore, and more importantly, our observer is given by ex-
plicit expressions and does not require solutions to integrals of the kind needed in
Astolfi et al. (2010).

The paper is organized as follows. The class of systems considered is defined in Sec-
tion 5.2, and Section 5.3 states the main result. Section 5.4 demonstrates the perfor-
mance of the observer by applying it to estimate the unmeasured angular velocities
in a Furuta pendulum example taken from (Furuta, Yamakita, and Kobayashi, 1992;
Xu, Iwase, and Furuta, 2001).

5.2 Class of Systems

We consider systems that can be transformed into the form

ẏ = L (y)x (5.1a)
ẋ = S (y, x)x+ F (y, x, u) (5.1b)

where y ∈ Rn is measured, x ∈ Rn−k is unmeasured, n > k ≥ 0, and u ∈ Rm

is such that y, x exist for all time(the system is forward complete). We require
the elements of S (y, x) ∈ R(n−k)×(n−k) and L (y) ∈ Rn×(n−k) to be continuously
differentiable and L to be left-invertible. Furthermore, we require S and F to satisfy
the following properties:

P1 Skew-symmetry: S (y, x) + ST (y, x) = 0 for all y ∈ Rn, x ∈ Rn−k,

P2 Linearity: S (y, a1x+ a2x̄) = a1S (y, x) + a2S (y, x̄) for all y ∈ Rn, x, x̄ ∈
Rn−k and scalar a1, a2,

98



P3 Sector Condition: There exists cF <∞ so that [F (y, x, u)− F (y, x̄, u)]T (x− x̄) ≤
cF ‖(x− x̄)‖2 for all x, x̄ ∈ Rn−k, y ∈ Rn and u ∈ Rm.

The main motivation for studying the class of systems (1) is that the class contains
general Euler-Lagrange systems with k non-holonomic constraints, without velocity
measurements. For details on how to transform general Euler-Lagrange systems
into the form (1) see Astolfi et al. (2010).

5.3 Main Result

We denote the estimates of y and x as ŷ ∈ Rn and x̂ ∈ Rn−k, respectively, and the
corresponding estimation errors as ỹ = y − ŷ and x̃ = x− x̂. Define σ = ‖x̂‖2, let
σ̂ be its estimate and σ̃ = σ− σ̂. Let cS : Rn → R+ be a continuously differentiable
function satisfying

cS (y) ≥ sup
‖x‖=1

‖S (y, x)‖ (5.2)

The supremum in (5.2) is taken over all ‖x‖ = 1 for fixed y. cS is easily constructed
using S. Our observer is given by

x̂ = ξ +Kx (σ̂, ŷ) y (5.3)
˙̂y = L (y) x̂+Ky (y, ŷ, r, σ̂) ỹ (5.4)

ξ̇ = S (y, x̂) x̂+ F (y, x̂, u)−KxL (y) x̂− ∂Kx

∂ŷ
˙̂yy − ∂Kx

∂σ̂
˙̂σy (5.5)

ṙ = − k̄x
2

(r − cr) + r
(
∆̄y (y, ŷ, σ̂) ‖ỹ‖+ ∆̄σ (y, x̂, σ̂) ‖σ̃‖

)
, r (t0) ≥ cr (5.6)

˙̂σ = Projσ̂
(
2
[
x̂TF (y, x̂, u) + kσ (y, ŷ, x̂, r, σ̂, σ) σ̃

])
, σ̂ (t0) ≥ 0 (5.7)

where cr > 0 is a design constant, and

∆̄y (y, ŷ, σ̂) =

{
∆y(y,ŷ,σ̂)

‖ỹ‖ ∆y (y, ŷ, σ̂) > εy
∆y(y,ŷ,σ̂)

‖∆y−εy‖+‖ỹ‖ else
(5.8)

∆̄σ (y, σ, σ̂) =

{
∆σ(y,σ,σ̂)
‖σ̃‖ ∆σ (y, σ, σ̂) > εσ

∆σ(y,σ,σ̂)
‖∆σ−εσ‖+‖σ̃‖ else

(5.9)

∆y (y, ŷ, σ̂) = ‖cS (y)− cS (ŷ)‖
√

1 + σ̂ + ‖Kx (σ̂, ŷ) (L (y)− L (ŷ))‖ (5.10)

∆σ (y, σ, σ̂) = cS (y)
∥∥∥√1 + σ −

√
1 + σ̂

∥∥∥ , (5.11)
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for some chosen εy > 0 and εσ > 0. The gains Kx, Ky, and kσ are

Kx (σ̂, ŷ) =
[
k̄x + cF + εy + εσ + cS (ŷ)

√
1 + σ̂

]
L+ (ŷ) (5.12)

Ky (y, ŷ, r, σ̂) =

[
k̄y +

2

k̄x
r2
(
‖L (y)‖2 + ∆̄2

y (y, ŷ, σ̂)
)]
In×n (5.13)

kσ (y, ŷ, x̂, r, σ̂, σ) = k̄σ +
2

k̄x
r2
(∥∥x̂TKx (σ̂, ŷ)L (y)

∥∥2
+ ∆̄2

σ (y, σ, σ̂)
)

(5.14)

with k̄x > 0, k̄y > 0 and k̄σ > 0. L+ denotes the left inverse of L, defined as
L+ =

(
LTL

)−1
LT , and Projσ̂ (τ) denotes the standard smooth projection operator

known from adaptive control (Krstić et al., 1995, Appendix E), defined as

Projσ̂ (τ) =

{
τ σ̂ > 0 or τ ≥ 0(

1−min
{

1, −σ̂
ε

})
τ −ε ≤ σ̂ ≤ 0 and τ < 0

(5.15)

for a chosen 0 < ε < 1.

The main result in this paper is summarized in the following Theorem.
Theorem 5.1. Suppose u is such that system (5.1) is forward complete, and consider
the observer (5.3)–(5.14). There exist a strictly positive constant k (given in (5.67))
and a continuous function α(s) : R+ → R+ (given in (5.68)) such that for any
initial condition y (t0) , ŷ (t0) ∈ Rn, x (t0) , ξ (t0) ∈ Rn−k, r (t0) ≥ cr and σ̂ (t0) ≥
0,

‖w(t)‖ ≤ α (‖w(t0)‖) e−k(t−t0), (5.16)

where w =
[
x̃T , ỹT , σ̃, r − cr

]T .

The proof of Theorem 5.1 is included in the Appendix.
Remark 5.2. The construction (5.8)–(5.9) is based on the numerical consideration of
avoiding division by small numbers. Theoretically, one could let εy = εσ = 0 and
replace the second lines of (5.8)–(5.9) with the appropriate limits (which exist by
smoothness assumptions). By the smoothness of L and cS there exists ε̄y (y, ŷ, σ̂)
so that ‖∆y‖ ≥ εy implies ‖ỹ‖ ≥ ε̄y (y, ŷ, σ̂) > 0, and so we avoid division by
numbers smaller than ε̄y (y, ŷ, σ̂) in (5.8). The same argument holds for (5.9).
Remark 5.3. The main challenge in the design is related to dominating the Coriolis
and centrifugal forces, which appear as cubic nonlinearities in the time derivative of
the Lyapunov function. Domination is achieved by using dynamic scaling (Praly,
2003; Krishnamurthy and Khorrami, 2004; Lei et al., 2007; Andrieu et al., 2009;
Karagiannis et al., 2009), implemented through the two extra observer states r and
σ̂ whose dynamics is given in (5.6)–(5.7). σ̂ is an estimate of σ = ‖x̂‖ with a
known time-derivative. In particular this estimate is used in the gain Kx in (5.12)
to dominate the nonlinearities caused by the Coriolis and centrifugal effects while
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its time-derivate is used in the last term of (5.5). The projection operator Projσ̂ (·)
in (5.7) guarantees that σ̂ (t) ≥ −ε for some 0 < ε < 1, so that the square roots
in (5.10)–(5.12) can be computed. Also, note that for r(t0) ≥ cr, (5.6) ensures
r(t) ≥ cr ∀ t ≥ t0.
Remark 5.4. The signal ŷ is a filtered estimate of y, x̂ = ξ + Kx (σ̂, ŷ) y is an esti-
mate of xwhereKx and ξ are designed so that the manifold x̃ = x−(ξ +Kx (σ̂, ŷ) y)
is rendered attractive and invariant.
Remark 5.5. The parameters k̄x, k̄y, k̄σ can be used to increase the convergence rates
of the estimation errors beyond what is provided by the dynamic terms in (5.12)–
(5.14). cr affects the size of r and so implicitly the size of the gains Ky and kσ.
Choosing cr small (e.g. cr < 1) therefore reduces sensitivity to measurement noise.
Remark 5.6. Comparing our observer (5.3)–(5.14) with the observer in (Astolfi
et al., 2010, equations (25), (29) , (37), (40) and (42)) we point out that the main
differences are: a) (Astolfi et al., 2010, equation (42)) is replaced with the scalar
(5.7), reducing the dimension of the observer; b) The need for solving certain inte-
grals (Astolfi et al., 2010, equation (29)) is removed, and; c) Expressions (5.8)–(5.9)
are given explicitly, in contrast to the corresponding expressions in (Astolfi et al.,
2010, equation (47)).

5.4 Simulation Example

We consider the Furuta pendulum (Furuta et al., 1992; Xu et al., 2001). The Furuta
pendulum consists of an arm attached to a motor in one end and a pendulum in the
other. The arm rotates around the vertical axis and the pendulum rotates around
the main axis of the arm. Let q1 be the angle between the arm and a horizontal
axis, and q2 be the angle between the pendulum and the vertical axis with q2 = 0
corresponding to the pendulum being in the upright position. The dynamics for the
Furuta pendulum are governed by (Furuta et al., 1992; Xu et al., 2001)

M (q) q̈ + C (q, q̇) q̇ +G (q) = Bu (5.17)

where q = [q1, q2]T and

M (q) =

[
p1 + p2 sin2 q2 p3 cos q2

p3 cos q2 p4

]
(5.18)

C (q, q̇) =

[
1
2
p2 sin (2q2) q̇2 −p3 sin q2q̇2 + 1

2
p2 sin (2q2) q̇1

−1
2
p2 sin (2q2) q̇1 0

]
(5.19)

G (q) =

[
0

−p5 sin q2

]
, B =

[
1
0

]
(5.20)
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The constants pi for i = 1, 2.., 5 are

p1 = I0 +m1L
2
0, p2 = m1l

2
1 (5.21)

p3 = m1l1L0, p4 = J1 +m1l
2
1 (5.22)

p5 = m1l1g, (5.23)

where I0 is the arm’s inertia, L0 is the arms length, m1 is the mass of the pendulum,
l1 is the length of the pendulum, J1 is the inertia of the pendulum and g is the
gravitational acceleration. To transform system (5.17) into the form (5.1) we follow
Lemma 1 in Astolfi et al. (2009) and define the coordinates y = q and x = T (y)q̇,
with T (y) ∈ R2×2 being the upper triangular Cholesky factorization of M(y), that
is M(y) = T T (y)T (y) with

T (y) =

[
t11(y) p3 cos(y2)

t11(y)

0 t22(y)

]
t11(y) =

√
p1 + p2 sin2(y2)

t22(y) =

√
p4 −

(p3 cos(y2))2

t211(y)
.

It is straight forward to find the matrices L(y), S(y, x) and F (y, u) as

L(y) = T−1(y) =

[
1

t11(y)
− p3 cos(y2)

t211(y)t22(y)

0 1
t22(y)

]
(5.24)

S (y, x) =
(
Ṫ (y)− LT (y)C(y, L(y)x)

)
L(y)

=
p2 cos (y2) sin (y2)x1

t22(y)t211(y)

[
0 −1
1 0

]
(5.25)

F (y, u) = LT (y) (Bu−G(y)) (5.26)

=

[
1

t11(y)
u

− p3 cos(q2)

t211(y)t22(y)
u− p5 sin q2

t22(q)
.

]
(5.27)

The parameters for the Furuta pendulum are the same as in Xu et al. (2001) and
are given in Table 5.1. To find cs(y) that satisfies (5.2) we note that ‖S (y, x)‖ =∣∣∣p2 cos(y2) sin(y2)

t22(y)t211(y)

∣∣∣ |x1| so any

cS(y) ≥
∣∣∣∣p2 cos (y2) sin (y2)

t22(y)t211(y)

∣∣∣∣ (5.28)
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I0 = 0.0256kgm2 L0 = 0.0223m
m1 = 0.0831kg l1 = 0.104m
J1 = 2.77× 10−4kgm2 g = 9.81m

s2

Table 5.1: Parameters for the Furuta pendulum.

satisfies (5.2). For the parameter values chosen, cS = 0.55 satisfies (5.28). In order
to implement (5.5) we need to calculate the partial derivatives ∂Kx

∂ŷ1
, ∂Kx
∂ŷ2

and ∂Kx
∂σ̂
.

For that purpose we note that ∂Kx
∂ŷ1

= 0 and find

∂Kx

∂ŷ2

=
[
k̄x + εy + εσ + cS

√
1 + σ̂

] ∂T
∂ŷ2

(5.29)

∂T

∂ŷ2

=

p2 cos(ŷ2) sin(ŷ2)
t11(ŷ)

−
[
p3 sin(ŷ2)
t11(ŷ)

+ p2p3 cos2(ŷ2) sin(ŷ2)

t311(ŷ)

]
0

2p23 cos(ŷ2) sin(ŷ2)

2t22(ŷ)t211(ŷ)
+

2p2p23 cos3(ŷ2) sin(ŷ2)

2t22(ŷ)t411(ŷ)

 (5.30)

∂Kx

∂σ̂
=

cS

2
√

1 + σ̂
T (ŷ) (5.31)

where we have used L+ (ŷ) = T (ŷ). To illustrate the performance of the observer
in the presence of measurement noise we assume that we measure

qm = q + d (5.32)

where d = [d1, d2] is zero mean normally distributed random noise with standard
deviation π

100
. For comparison purposes we also implement an approximate differ-

entiation scheme as

ˆ̇qnum1 =
s

Td1s+ 1
qm1 (5.33)

ˆ̇qnum2 =
s

Td2s+ 1
qm2 (5.34)

where Td1 and Td2 are chosen based on a trade off between an exact derivative for
Td1 = Td2 = 0 and sensitivity towards measurement noise. The gains and initial
conditions for the simulation are given in Table 5.2. The input torque u is shown in
Fig. 5.3 and corresponds to pushing the arm first in one direction and then in the
other direction. Fig. 5.1 shows the measured position, qm and the observer estimate
q̂. From the bottom figures we see that the observer estimate converges quickly to
a neighborhood around the true value as expected. Fig. 5.2 shows the velocity q̇,
the observer estimate ˆ̇q = L(ŷ)x̂ and the approximate derivative ˆ̇qnum. We see that
the observer estimate converges quickly to a neighborhood around the true velocity
while the approximate derivative has phase lag and is more sensitive to the measure-
ment noise. Finally we would like to point out that to apply the method in Astolfi
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y (0) = 0 ξ (0) = x̂ (0)−Kx (σ̂ (0) , ŷ (0)) ŷ (0)

x (0) = 0 r (0) = 5cr, σ̂ (0) = ‖x̂ (0)‖2

ŷ1 (0) = ŷ2 (0) = 1 k̄x = 2, k̄y = 1, k̄σ = 0.1,
x̂1 (0) = x̂2 (0) = 1 cr = 0.1, εy = εσ = 0.01
Td1 = 0.2 Td2 = 0.1

Table 5.2: Initial conditions, gains and tuning parameters.

et al. (2010, 2009) it is necessary to solve an integral (with respect to y) containing
the product of S(y, x) and T (y), a daunting task for this two degrees-of-freedom
example. For general higher order systems this will be practically impossible.

5.5 Conclusion

We have presented a constructive globally convergent speed observer design for
general Euler-Lagrange systems. The observer is given by explicit expressions and
is easily applied to estimate angular velocities in a Furuta pendulum example with
measurement noise. Future work should focus on the robustness of the observer
towards measurement errors, robustness towards parametric uncertainties and ap-
plication of the observer for output feedback control.
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5.A Appendix

To streamline the presentation of the proof of Theorem 5.1 we first point out some
relevant properties of the projection operator in (5.15) and the Coriolis and cen-
trifugal matrix S in Section 5.A.1. Various error dynamics with partial Lyapunov
functions are derived in Sections 5.A.2-5.A.4, and put together into a complete
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Figure 5.1: Measured joint angles qm and the estimated joint angles q̂ from the
observer (top figures). Close-up of qm and q̂ for the first 0.3s (bottom figures).
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Figure 5.2: Joint angular velocities q̇, estimates ˆ̇q = L(ŷ)x̂ and numerical derivative
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Figure 5.3: Input u, dynamic scaling factor r, σ and its estimate σ̂.
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Lyapunov based proof in Section 5.A.5. To simplify notation, the arguments of the
functions defined in (5.8)–(5.14) are omitted.

5.A.1 Preliminaries

From (Krstić et al., 1995, Appendix E) we know that the projection operator in
(5.15) guarantees that, on its domain of definition, σ̂ (t) , the solution to

˙̂σ = Projσ̂ (τ) , σ̂ (t0) ≥ −ε, (5.35)

satisfies σ̂ (t) ≥ −ε. It also has the following useful property

[τ − Projσ̂ (τ)] σ̃ ≤ 0 ∀ σ ≥ 0, σ̂ ≥ −ε. (5.36)

This follows trivially when σ̂ > 0 or τ ≥ 0 while for σ̂ ≤ 0 and τ < 0, we have
σ̃ ≥ 0 and

τ −
(

1−min

{
1,
−σ̂
ε

})
τ = min

{
1,
−σ̂
ε

}
τ ≤ 0. (5.37)

From P2 we have

S (y, x)x− S (y, x̂) x̂ = S (y, x) x̃+ S (y, x̃) x̂, (5.38)

and from P2 and (5.2) we have

‖S (y, x)‖ ≤ cS (y) ‖x‖ . (5.39)

5.A.2 ỹ dynamics

Subtracting (5.4) from (5.1a) we see that the dynamics for ỹ are governed by

˙̃y = L (y) x̃−Kyỹ. (5.40)

Let Vy (ỹ) = 1
2
‖ỹ‖2, so using (5.40) gives

V̇y = −ỹTKy (y, ŷ, r, σ̂) ỹ + ỹTL (y) x̃. (5.41)
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5.A.3 Norm estimate of ‖x̂‖ and σ̃ dynamics

For later use it is necessary to provide an estimate of the upper bound of ‖x̂‖, with
known time derivative. We will use σ̂, the solution to (5.7) to estimate σ = ‖x̂‖2.
Differentiating (5.3) with respect to time and using (5.1a) and (5.5) gives

˙̂x = S (y, x̂) x̂+ F (y, x̂, u) +KxL (y) x̃ (5.42)

so σ satisfies
σ̇ = 2

[
x̂TF (y, x̂, u) + x̂TKxL (y) x̃

]
(5.43)

where P1 has been used. Subtracting (5.7) from (5.43) the dynamics for σ̃ = σ − σ̂
is

˙̃σ = 2
[
x̂TKxL (y) x̃− kσσ̃

]
+ 2∆1, (5.44)

where

∆1 =
[
x̂TF (y, x̂, u) + kσσ̃

]
− Projσ̂

([
x̂TF (y, x̂, u) + kσσ̃

])
. (5.45)

Defining Vσ (σ̃) = 1
4
‖σ̃‖2, and noticing that ∆1σ̃ ≤ 0 by (5.36), we get

V̇σ ≤ x̂TKxL (y) x̃σ̃ − kσσ̃2. (5.46)

5.A.4 x̃ dynamics and dynamic scaling

Subtracting (5.42) from (5.1b) and using (5.38) gives

˙̃x = S (y, x) x̃+ S (y, x̃) x̂+ F (y, x, u)− F (y, x̂, u)−KxL (y) x̃. (5.47)

Due to the skew-symmetric property of S (P1) the first term in (5.47) will disap-
pear when using ‖x̃‖2 as a Lyapunov function while F (y, x, u) − F (y, x̂, u) can
be bounded using P3. The difficult term1 is S (y, x̃) x̂ which by (5.39) satisfies
‖S (y, x̃) x̂‖ ≤ cS (y) ‖x̃‖ ‖x̂‖ . Since the bound is linear in the unknown x̃ it could
be possible to dominate it using Kx. However, since ẏ and ˙̂x are unknown signals,
Kx cannot depend on y or x̂ (see the last two terms of (5.5)). To deal with this
we will use the estimate σ̂ derived in the previous section. First, note that by the
definition of σ

‖S (y, x̃) x̂‖ ≤ cS (y) ‖x̃‖ ‖x̂‖ ≤ cS (y) ‖x̃‖
√

1 + σ. (5.48)

1In Astolfi et al. (2010) this term is dealt with using an approximated solution to a partial dif-
ferential equation (see (27) and (29) in the cited paper), making the resulting observer significantly
more complex.
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Using the estimates σ̂, ŷ, and ∆σ defined in (5.11) we get

‖S (y, x̃) x̂‖ ≤ cS (ŷ) ‖x̃‖
√

1 + σ̂ + ‖cS (y)− cS (ŷ)‖ ‖x̃‖
√

1 + σ̂ + ∆σ ‖x̃‖ .
(5.49)

Note that σ ≥ 0 by definition and σ̂ > −1 due to the projection operator in (5.7),
so the expressions under the square roots are positive. The first term in (5.49) can
be dominated by the use of Kx while the second and third terms require the use of
dynamic scaling. As in (Karagiannis et al., 2009; Astolfi et al., 2010) consider the
scaled error variable

η =
1

r
x̃, (5.50)

where r (t) ≥ cr is guaranteed by the dynamics (5.6). Taking the time derivative of
(5.50) using (5.47) and P2 gives

η̇ = S (y, x) η+S (y, η) x̂+
1

r
[F (y, x, u)− F (y, x̂, u)]−KxL (y) η− ṙ

r
η. (5.51)

Defining Vη (η) = 1
2
‖η‖2 , and using P1, P3 and (5.51) we obtain

V̇η = ηTS (y, η) x̂+
cF
r2
‖x̃‖2 − ηTKxL (y) η − ṙ

r
‖η‖2 (5.52)

≤ ‖S (y, η) x̂‖ ‖η‖+ cF ‖η‖2 − ηTKxL (ŷ) η

+ ‖Kx (L (y)− L (ŷ))‖ ‖η‖2 − ṙ

r
‖η‖2 . (5.53)

Using the fact ‖S(y, η)x̂‖ = 1
r
‖S(y, x̃)x̂‖ and (5.49) we get

V̇η ≤ cS (ŷ)
√

1 + σ̂ ‖η‖2 + ‖cS (y)− cS (ŷ)‖
√

1 + σ̂ ‖η‖2 + ∆σ ‖η‖2

+ cF ‖η‖2 − ηTKxL (ŷ) η + ‖Kx (L (y)− L (ŷ))‖ ‖η‖2 − ṙ

r
‖η‖2

= cS (ŷ)
√

1 + σ̂ ‖η‖2 + cF ‖η‖2 − ηTKxL (ŷ) η

+

(
∆σ + ∆y −

ṙ

r

)
‖η‖2 , (5.54)
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where ∆y and ∆σ are defined in (5.10) and (5.11). Using the facts ∆σ ≤ εσ +
∆̄σ ‖σ̃‖ and ∆y ≤ εy + ∆̄y ‖ỹ‖ , and (5.6) we get

V̇η ≤
(
cS (ŷ)

√
1 + σ̂ + cF + εy + εσ

)
‖η‖2 − ηTKxL (ŷ) η

+

(
∆̄σ ‖σ̃‖+ ∆̄y ‖ỹ‖ −

ṙ

r

)
‖η‖2

=
(
cS (ŷ)

√
1 + σ̂ + cF + εy + εσ

)
‖η‖2 − ηTKxL (ŷ) η +

k̄x
2

(r − cr)
r

‖η‖2

≤
(
k̄x
2

+ cF + εy + εσ + cS (ŷ)
√

1 + σ̂

)
‖η‖2 − ηTKxL (ŷ) η. (5.55)

We now choose Kx as in (5.12) so

V̇η ≤ −
k̄x
2
‖η‖2 . (5.56)

5.A.5 Lyapunov Function

In this section we present a Lyapunov function for η, ỹ, σ̃ and (r − cr) . The Lya-
punov function is

V2 (η, ỹ, σ̃, r − cr) = V1 (η, ỹ, σ̃) +
1

2
(r − cr)2 . (5.57)

with V1 (η, ỹ, σ̃) = Vη (η)+Vy (ỹ)+Vσ (σ̃). To simplify the derivations we consider
V1 first and then V1 + 1

2
(r − cr)2 . Using (5.41), (5.46), (5.50) and (5.56) we get

V̇1 ≤ −
k̄x
2
‖η‖2 − ỹTKyỹ + rỹTL (y) η (5.58)

+ x̂TKxL (y) ηrσ̃ − kσσ̃
2. (5.59)

From Young’s inequality we have∥∥x̂TKxL (y) ηrσ̃
∥∥ ≤ k̄x

8
‖η‖2 +

2

k̄x
σ̃2r2

∥∥x̂TKxL (y)
∥∥2

(5.60)∥∥rỹTL (y) η
∥∥ ≤ 2

k̄x
r2 ‖L (y)‖2 ‖ỹ‖2 +

k̄x
8
‖η‖2 . (5.61)

Now we choose Ky as in (5.13) and kσ as in (5.14) so that

V̇1 ≤ −
k̄x
4
‖η‖2 − k̄y ‖ỹ‖2 − 2r2

k̄x
∆̄2
y ‖ỹ‖2 − k̄σσ̃2 − 2r2

k̄x
∆̄2
σσ̃

2. (5.62)
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We are now ready to consider V2. Differentiating (5.57) with respect to time using
(5.62) and (5.6) gives

V̇2 ≤ −
k̄x
4
‖η‖2 − k̄y ‖ỹ‖2 − 2r2

k̄x
∆̄2
y ‖ỹ‖2 − k̄σσ̃2 − 2r2

k̄x
∆̄2
σσ̃

2

− k̄x
2

(r − cr)2 + r
(
∆̄y ‖ỹ‖+ ∆̄σ ‖σ̃‖

)
(r − cr) . (5.63)

By Young’s inequality

r∆̄σ ‖σ̃‖ (r − cr) ≤
k̄x
8

(r − cr)2 +
2r2

k̄x
∆̄2
σ ‖σ̃‖2 (5.64)

r∆̄y ‖ỹ‖ (r − cr) ≤
k̄x
8

(r − cr)2 +
2r2

k̄x
∆̄2
y ‖ỹ‖2 , (5.65)

so (5.63) reduces to

V̇2 ≤ −
k̄x
4
‖η‖2 − k̄y ‖ỹ‖2 − k̄σσ̃2 − k̄x

4
(r − cr)2 . (5.66)

By (5.57) and (5.66) we have V̇2 ≤ −λV2 for some positive λwhich implies that the
equilibrium (η, ỹ, σ̃, r) = (0, 0, 0, cr) of (5.40), (5.44) (5.51) and (5.6) is uniformly
globally exponentially stable, and that there exists a finite upper bound for r. Since
r also is bounded below by cr > 0, the norms ‖η‖ and ‖x̃‖ are equivalent, and
(5.16) follows with

k = min

(
k̄x
4
, k̄y, k̄σ

)
(5.67)

α(v) =
(√

2cr + 2v
)(cr + 1

cr

)2

v. (5.68)

Notice that α(s) is not linear due to the fact that the relation between the equivalent
norms ‖η‖ and ‖x̃‖ depend on the upper bound of r, which in turn depends on initial
conditions.
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Chapter 6

Global Output Feedback Tracking
Control of Euler-Lagrange Systems

Abstract: We solve the problem of global output feedback tracking control of gen-
eral Euler-Lagrange systems without velocity measurement. The output feedback
scheme consists of a novel nonlinear observer and any certainty equivalence track-
ing controller satisfying certain assumptions. Using theory for cascaded systems
we guarantee uniform stability and convergence of the certainty equivalence output
feedback scheme. Simulation results are included to illustrate the performance of
the popular Slotine and Li controller together with our proposed observer.

6.1 Introduction

High performance tracking control of Euler-Lagrange (EL) systems requires feed-
back from velocities (derivative action). Velocity "measurements" can be obtained
by tachometers or by numerical differentiation of position measurements. Un-
fortunately this limits performance as the "measurements" are sensitive to high-
frequency noise on the position measurements and introduce phase lag. In addition
there are no theoretical performance guarantees when using these methods. In out-
put feedback tracking control the (dynamic) control law guarantees stability of the
closed loop without the use of velocity measurements thus addressing the above per-
formance limiting issues. Early results on output feedback tracking of EL systems
are reported in Nicosia and Tomei (1990) and Berghuis and Nijmeijer (1993) where
observers with semi-global region of attraction are used to generate estimates of the
unmeasured velocity. The pursuit of results with global performance guarantees first
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yielded partial results for some classes of EL systems, in particular for one degrees-
of-freedom (DOF) systems (Loría, 1996), for EL systems that can be made linear
in the unmeasured velocity (Loria and Panteley, 1999; Besançon, 2000b; Do, Jiang,
and Pan, 2005), and systems satisfying a monotone damping condition (Aamo, Ar-
cak, Fossen, and Kokotović, 2000). The first general global result was reported in
Zhang, Dawson, de Queiroz, and Dixon (2000) where the ideas in Loría (1996) were
extended to the n-DOF case. Due to the presence of hyperbolic functions the con-
trol input in Zhang et al. (2000) increases exponentially in the tracking error making
it very aggressive. More recently, the problem of observer-based output feedback
has been approached in (Børhaug and Pettersen, 2006; Carnevale, Karagiannis, and
Astolfi, 2010). The results in Børhaug and Pettersen (2006) seem promising, but re-
quire the differentiation of an estimated signal in the implementation. In Carnevale
et al. (2010), an immersion and invariance observer was used in collaboration with
a certainty equivalence PD controller to yield a global result for general 2-DOF
EL-systems.

In this paper we derive a novel nonlinear observer for general EL systems with up-
per and lower bounded inertia matrix. The observer is based on ideas in (Astolfi
et al., 2010; Stamnes et al., 2011b), where dynamic scaling (Praly, 2003; Krish-
namurthy and Khorrami, 2004; Lei et al., 2007; Andrieu et al., 2009; Karagiannis
et al., 2009) is used to overcome the difficulties in deriving an observer with global
region of attraction. Using the strong stability properties of the novel observer we
show that a certainty equivalence controller satisfying certain assumptions ensures
global asymptotic stability of the closed loop. Both the commonly used PD+ con-
troller proposed by Paden and Panja (1988), and the "SL controller" proposed by
Slotine and Li (1987), satisfy our assumption. When the SL controller is used, we
also guarantee semi-global exponential stability. To the best of our knowledge the
result presented here is the first observer-based output feedback tracking control
solution that guarantees a global region of attraction for general EL systems. As
the observer has a simple structure, and commonly used tracking controllers can be
used, the resulting complexity is kept low compared to the existing global results in
Zhang et al. (2000).

6.2 System and Control Objective

We consider Euler-Lagrange systems of the form

M (q) q̈ + C (q, q̇) q̇ +G (q) = u (6.1)
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where q ∈ Rn is a vector of generalized coordinates, M (q) ∈ Rn×n is the general-
ized inertia matrix, C (q, q̇) ∈ Rn×n is the Coriolis/centrifugal matrix, G (q) ∈ Rn

is a vector of potential forces and u ∈ Rn is the control input. We assume that q
is measured, q̇ and q̈ are not measured, and that the system satisfies the following
properties

P1 0 < mlIn×n ≤M (q) ≤ muIn×n for all q ∈ Rn.

P2 Ṁ (q)− 2C (q, q̇) is skew-symmetric for all q, q̇ ∈ Rn.

P3 C (q, q̇) q̄ = C (q, q̄) q̇ and ‖C (q, q̇)‖ ≤ c̄ ‖q̇‖ for some c̄ > 0 and all q, q̇, q̄ ∈
Rn.

P1-P3 are quite standard in the literature on EL systems (Ortega, Loría, Nicklasson,
and Sira-Ramirez, 1998; Spong, Hutchinson, and Vidyasagar, 2006), and many dif-
ferent systems satisfy these properties. There are however systems that do not sat-
isfy P1, such as robots with prismatic joints. Although we do not consider such
systems here it is believed that the key ideas presented can be extended to systems
for which M (q) is potentially unbounded.

Defining y = q, x = q̇ system (6.1) can be put into the form

ẏ = x (6.2a)
M (y) ẋ = −C (y, x)x−G (y) + u. (6.2b)

Let a twice continuously differentiable desired trajectory yd (t) with bounded ẏd (t)
be given. We define the controller tracking errors as

ỹc = y − yd (6.3)

x̃c = ˙̃yc = x− ẏd (6.4)

wc =

[
ỹc
x̃c

]
. (6.5)

The objective of this paper is to show that two commonly used full state feedback
tracking controllers together with a novel nonlinear velocity observer can be used
in a certainty equivalence output feedback scheme without loss of stability. More
precisely, we assume that a full state feedback controller τ (t, y, x) satisfying certain
assumptions is given, and show that the output feedback controller u = τ (t, y, x̂) ,
where x̂ is a state estimate generated by our proposed observer, ensures global sta-
bility and tracking (τ is a function of yd, ẏd and ÿd, but we have omitted them as
arguments for notational brevity).

To achieve this objective we start in Section 6.3 by stating an assumption on the
given full state feedback controller (Assumption 6.1 below), and show that both the
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PD+ controller in Paden and Panja (1988) and the SL controller in Slotine and Li
(1987) satisfy this assumption. Then, in Section 6.4, we present our novel observer
and its strong stability properties, before we summarize our findings in Theorem
6.7 in Section 6.5. A simulation study is provided in Section 6.6 to demonstrate
the performance of our output feedback scheme. Conclusions are offered in Section
6.7.

6.3 Controller

The tracking error dynamics can be written as

ẇc = ψc (t, wc, u) (6.6)

with

ψc (t, wc, u) =

[
x̃c

ψc2(t, wc, u)

]
(6.7)

where

ψc2(t, wc, u) =M(yd(t) + ỹc)
−1 [−C(yd(t) + ỹc, ẏd(t) + x̃d)

×(ẏd(t) + x̃d)−G(yd(t) + ỹc) + u]− ẏd(t).
Assumption 6.1.

a) There exists a smooth full-state feedback controller τ (t, y, x) : R × Rn ×
Rn → Rn, that renders the origin of the system

ẇc = ψc (t, wc, τ (t, y, x)) (6.8)

uniformly globally asymptotically stable and satisfies

‖τ (t, y, a)− τ (t, y, b)‖ ≤ L (‖y‖)ατ (‖a− b‖) (6.9)

for all t ∈ R, y ∈ Rn, a, b ∈ Rn, with L (‖y‖) affine in ‖y‖ and ατ (s)
=
∑N

i=1 κis
i for some N ≥ 1 and κi ≥ 0.

b) There exists a Lyapunov function Vu (t, wc) : R× R2n → R, a positive semi-
definite function Wu (wc) : R2n → R and positive constants k1, k2, k3 such
that

k1 ‖wc‖2 ≤ Vu (t, wc) ≤ k2 ‖wc‖2 (6.10)
∂Vu
∂t

+
∂Vu
∂wc

ψc (t, wc.τ (t, y, x)) ≤ −Wu (wc) (6.11)∥∥∥∥∂Vu∂wc

∥∥∥∥ ≤ k3 ‖wc‖ . (6.12)
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Assumption 6.1 part a) states that we know a full state feedback control law, that
can be bounded by an affine function in ‖y‖ times a polynomial in x, that stabilizes
the tracking error. In part b) we only require Wu to be positive semi-definite, which
allows us to include controllers where uniform global asymptotic stability is proved
using invariance theorems such as Matrosov’s theorem. We will now show that both
the PD+ controller, and the SL controller satisfy this requirement.
Proposition 6.2. The PD+ controller proposed in Paden and Panja (1988)

τPD+ (t, y, x) =M (y) ÿd (t) + C (y, x) ẏd (t)

+G (y)−Kpỹc −Kdx̃c (6.13)

whereKp = KT
p > 0 andKd = KT

d > 0, satisfies Assumption 6.1 with Vu (t, wc) =
VPD+ (t, wc) where

VPD+ (t, wc) =
1

2
wTc

[
Kp 0
0 M (ỹc + yd (t))

]
wc (6.14)

Proof. Using P3 and the fact that ẏd is bounded it is straight forward to show that
τPD+ (t, y, x) is globally Lipschitz in x, uniformly in t and y, so (6.9) is satisfied
with L (‖y‖) ≡ L = c̄maxt (ẏd (t)) + kud , where kud is the largest eigenvalue of Kd,
and ατ (s) = s. The rest of part a) and b) is proved in Paden and Panja (1988) with
Wu (wc) only positive-semidefinite, however using Matrosov’s theorem Paden and
Panja (1988) were able to show that the origin of (6.8) is UGAS.

Proposition 6.3. The SL controller proposed in Slotine and Li (1987)

τSL (t, y, x) =M (y) ÿr (t, x) + C (y, x) ẏr (t, y)

+G (y)−Kpỹc −Kdsc (t, y, x) (6.15)

where

sc (t, y, x) = x̃c + Λỹc (6.16)
ẏr (t, y) = ẏd − Λỹc (6.17)
ÿr (t, x) = ÿd − Λx̃c, (6.18)

and Kp = KT
p > 0, Kd = KT

d > 0 and Λ = ΛT > 0, satisfies Assumption 6.1 with
Vu (t, wc) = VSL (t, wc) where

VSL (t, wc) =

1

2
wTc

[
ΛM (ỹc + yd (t)) Λ +Kp ΛM (ỹc + yd (t))

M (ỹc + yd (t)) Λ M (ỹc + yd (t))

]
wc (6.19)
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Proof. Using P1, P3, the boundedness of yd and ẏd, and the affineness of sc, ẏr and
ÿr with respect to y and x it is straight forward to show that τSL (t, y, x) satisfies
(6.9) with ατ (s) = s and

L (‖y‖) = muλu + c̄
(

max
t

(ẏd (t)) + max
t

(yd (t))λu + λu ‖y‖
)

+ kud (6.20)

where λu and kud are the largest eigenvalues of Λ and Kd respectively, the rest of
part a) and b) is shown in Slotine and Li (1987).

Remark 6.4. In the original reference Slotine and Li (1987) the proportional term
Kpỹc in (6.15) was not present. It was added later by Sadegh and Horowitz (1990)
and proved to give better disturbance rejection.
Remark 6.5. For the SL controller (6.15) it is straight forward to show that V̇SL (t, wc)
≤ −γSLVSL (t, wc) so exponential stability follows guaranteeing robustness prop-
erties such as Input to State Stability towards additive disturbances.

6.4 Observer

We denote the estimate of x as x̂ ∈ Rn, σ =
√

1 + x̂T x̂ an upper bound on ‖x̂‖ ,
and σ̂ its estimate with known (measured) time derivative. The estimation errors are
denoted as x̃o = x − x̂ and σ̃ = σ − σ̂ and for notational convenience we define
wo =

[
x̃To , σ̃, r − cr

]T
. The proposed observer is

x̂ =ξ +Kx (σ̂) y (6.21a)

ξ̇ =M−1 (y) (−C (y, x̂) x̂−G (y) + u)−Kx (σ̂) x̂− ∂Kx

∂σ̂
˙̂σy (6.21b)

˙̂σ =
x̂T

σ

[
M−1 (y) (−C (y, x̂) x̂−G (y) + u)

]
+ kσ (x̂, r) σ̃ (6.21c)

ṙ =− k̄x
2mu

(r − cr) + r
2c̄

ml

‖σ̃‖ (6.21d)

where cr > 0 is a design constant and the gains are chosen as

Kx (σ̂) =
1

ml

(
c̄σ̂ + k̄x

)
I, (6.22a)

kσ (x̂, r) = k̄σ +
r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

+
mu

k̄x

(
2c̄

ml

r

)2

(6.22b)

where the constants ml, mu and c̄ are given in P1 and P3, k̄x > 0 is a gain to be
chosen. The signal r ∈ R is a dynamic scaling factor that ensures sufficiently high
convergence rate of σ̂ to σ. Note that (6.21d) ensures that r(t) ≥ cr ∀ t ≥ t0 and
r(t0) ≥ cr.

118



Lemma 6.6. Consider system (6.2) and the observer (6.21). There exist a class K
function αo and a positive constant ko, such that for any initial conditions (y (t0) , x (t0))
∈ R2n, ξ (t0) ∈ Rn, r (t0) ≥ cr and σ̂ (t0) ≥ 1,

‖wo (t)‖ ≤ αo (‖wo (t0)‖) e−ko(t−t0) ∀t ∈ [t0, T ), (6.23)

where [t0, T ) is the maximal interval of existence of solutions (y (t) , x (t)) of (6.2).

Proof. To streamline the presentation of the main result we derive various observa-
tion error dynamics with partial Lyapunov functions which are put together to form
a complete Lyapunov based proof. To simplify notation we omit the arguments of
the gains defined in (6.22). For later use it is necessary to provide an estimate of
the upper bound of ‖x̂‖ with known time derivative. We will use σ̂, the solution
to (6.21c), to estimate σ =

√
1 + x̂T x̂ ≥ 1. Differentiating (6.21a) with respect to

time, and using (6.21b) and (6.2a), give

˙̂x = M−1 (y) (−C (y, x̂) x̂−G (y) + u) +Kxx̃o (6.24)

and so σ satisfies

σ̇ =
x̂T

σ

[
M−1 (y) (−C (y, x̂) x̂−G (y) + u) +Kxx̃o

]
. (6.25)

Subtracting (6.21c) from (6.25) we find that σ̃ = σ − σ̂ satisfies

˙̃σ =
1

σ
x̂TKxx̃o − kσσ̃. (6.26)

Let Vσ (σ̃) = 1
2
σ̃2, then

V̇σ =
σ̃

σ
x̂TKxx̃o − kσσ̃2. (6.27)

Subtracting (6.24) from (6.2b) gives

M (y) ˙̃xo = − (C (y, x)x− C (y, x̂) x̂)−M (y)Kxx̃o. (6.28)

Observing that

C (y, x)x− C (y, x̂) x̂ = C (y, x) x̃o + C (y, x̂) x̃o (6.29)

by P3, we obtain

M (y) ˙̃xo = − (C (y, x) x̃o + C (y, x̂) x̃o)−M (y)Kxx̃o. (6.30)

Consider the function

Vx (y, x̃o, r) =
1

2r
x̃ToM (y) x̃o. (6.31)
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Differentiating (6.31), using (6.30), P2 and P3, gives

V̇x = −1

r
x̃ToC (y, x̂) x̃o −

1

r
x̃ToM (y)Kxx̃o −

ṙ

r
Vx

≤ 1

r
c̄ ‖x̂‖ ‖x̃o‖2 − 1

r
x̃ToM (y)Kxx̃o −

ṙ

r
Vx. (6.32)

By definition, σ ≥ ‖x̂‖ , so

V̇x ≤
1

r
c̄σ ‖x̃o‖2 − 1

r
x̃ToM (y)Kxx̃o −

ṙ

r
Vx

≤ 1

r
c̄ ‖σ̃‖ ‖x̃o‖2 +

1

r
x̃To (c̄σ̂ −M (y)Kx) x̃o −

ṙ

r
Vx. (6.33)

Choosing Kx as in (6.22a) gives

V̇x ≤
1

r
c̄ ‖σ̃‖ ‖x̃o‖2 − k̄x

r
‖x̃o‖2 − ṙ

r
Vx

≤ − k̄x
r
‖x̃o‖2 −

(
ṙ

r
− 2c̄

ml

‖σ̃‖
)
Vx. (6.34)

Consider V1 (y, x̃o, σ̃, r) = Vx (y, x̃o, r) + Vσ (σ̃) . Using (6.34) and (6.27) we have

V̇1 ≤−
k̄x
r
‖x̃o‖2 −

(
ṙ

r
− 2c̄

ml

‖σ̃‖
)
Vx +

σ̃

σ
x̂TKxx̃o − kσσ̃2. (6.35)

By Young’s inequality we have∥∥∥∥ σ̃σ x̂TKxx̃o

∥∥∥∥ ≤ r

2k̄x

∥∥∥∥ σ̃σ x̂TKx

∥∥∥∥2

+
k̄x
2r
‖x̃o‖2 . (6.36)

Inserting (6.36) into (6.35) gives

V̇1 ≤−
k̄x
2r
‖x̃o‖2 −

(
ṙ

r
− 2c̄

ml

‖σ̃‖
)
Vx +

r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

σ̃2 − kσσ̃2. (6.37)

Inserting (6.21d) gives

V̇1 ≤−
k̄x
2r
‖x̃o‖2 +

(
k̄x (r − cr)

2mur

)
Vx +

r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

σ̃2 − kσσ̃2

≤− k̄x
2r
‖x̃o‖2 +

k̄x
2mu

Vx +
r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

σ̃2 − kσσ̃2

≤− k̄x
4r
‖x̃o‖2 +

r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

σ̃2 − kσσ̃2 (6.38)
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since r−cr
r

< 1 and
∥∥∥ k̄x

2mu
Vx

∥∥∥ ≤ k̄x
4r
‖x̃o‖2 . Let

V2 (y, wo) = V1 (y, x̃o, σ̃, r) +
1

2
(r − cr)2 . (6.39)

Using (6.38) and (6.21d) we have

V̇2 ≤−
k̄x
4r
‖x̃o‖2 +

r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

σ̃2 − kσσ̃2

− k̄x
2mu

(r − cr)2 +
2c̄

ml

r (r − cr) ‖σ̃‖ (6.40)

By Young’s inequality

2c̄

ml

r (r − cr) ‖σ̃‖ ≤
k̄x

4mu

(r − cr)2 +
mu

k̄x

(
2c̄

ml

r

)2

‖σ̃‖2 (6.41)

so

V̇2 ≤−
k̄x
4r
‖x̃o‖2 − k̄x

4mu

(r − cr)2

−
(
kσ −

r

2k̄x

∥∥∥∥ x̂TKx

σ

∥∥∥∥2

− mu

k̄x

(
2c̄

ml

r

)2
)
σ̃2 (6.42)

so we choose kσ as in (6.22b) so that

V̇2 ≤ −
k̄x
4r
‖x̃o‖2 − k̄σσ̃2 − k̄x

4mu

(r − cr)2 . (6.43)

Now, (6.39) and (6.43) imply that there exist positive constants k′
o and ko such that

‖w̄o (t)‖2 ≤ k
′2
o ‖w̄o (t0)‖2 e−2ko(t−to) ∀t ∈ [t0, T ), (6.44)

where [t0, T ) is the maximal interval of existence of the solutions (y (t) , x (t)) of
(6.2) and

w̄o (t) =
[
x̃To (t)√
r(t)
, σ̃ (t) , r (t)− cr

]T
.

From (6.44) and (6.21d), r(t) is bounded from above and below so we obtain

cr ≤ r (t) ≤ k
′

o ‖w̄o (t0)‖+ cr ∀t ∈ [t0, T ) (6.45)
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which implies

cr
cr + 1

‖w̄o (t)‖2 ≤‖wo (t)‖2 (6.46a)

‖wo (t)‖2 ≤
(
k

′

o ‖w̄o (t0)‖+ cr + 1
)
‖w̄o (t)‖2 (6.46b)

Finally, (6.44) and (6.46) imply (6.23) with

αo(s) = k
′

o

√(
1 + cr
cr

)√√√√(k′
o

√(
1 + cr
cr

)
s+ cr + 1

)
se−ko(t−t0). (6.47)

6.5 Main Result

The main result is summarized in the following theorem.
Theorem 6.7. Suppose we are given a state feedback controller τ (t, y, x) that sat-
isfies Assumption 6.1. Then, the certainty equivalence controller u = τ (t, y, x̂) ,
with x̂ generated by the observer (6.21), ensures that there exists a class KL func-
tion β such that for any initial conditions wc (t0) ∈ R2n, ξ (t0) ∈ Rn, r (t0) ≥ cr
and σ̂ (t0) ≥ 1,

‖wc (t) , wo (t)‖ ≤ β (‖wc (t0) , wo (t0)‖ , t− t0) (6.48)

for all t ≥ t0.

Proof. We will apply Proposition 3 in Loría (2008) to prove Theorem 6.7. To that
end note that by Assumption 6.1 and the affineness of ψc (t, wc, u) in u we have

α1 (‖wc‖) ≤ Vu (t, wc) ≤ α2 (‖wc‖) (6.49)

where α1 (‖wc‖) = k1 ‖wc‖2 , α2 (‖wc‖) = k2 ‖wc‖2 , and

∂Vu
∂t

+
∂Vu
∂wc

ψc (t, wc, τ (t, y, x̂)) ≤ k3

ml

L (‖y‖) ‖wc‖ατ (‖x̃o‖) (6.50)

Note that, due to the affineness of L and the boundedness of yd, there exists c1 > 0
and α4 (‖wc‖) = c1(1 + ‖wc‖) ‖wc‖ such that α4 (‖wc‖) ≥ k3

ml
L (‖yd + ỹc‖) ‖wc‖ .

Inserting this into (6.50) gives

∂Vu
∂t

+
∂Vu
∂wc

ψc (t, wc, α (t, y, x̂)) ≤ α4 (‖wc‖)ατ (‖x̃o‖) .
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By the definition of α1 and α4 we have∫ ∞
0

dv

α4

(
α−1

1 (v)
) ∝ ∫ ∞

0

dv√
v + v

=∞. (6.51)

This verifies Assumption 4 in Loría (2008), Assumption 6.1 covers Assumption
1 and 5 in Loría (2008), while Lemma 6.6 satisfies Assumption 6 and 7 in Loría
(2008). Since ατ (s) is a polynomial in s and s ≥ 0, we have that

√
ατ (s) ≤∑N

i=1

√
κisi. From Lemma 6.6 we then have the following∫ ∞

t0

√
ατ (‖x̃o (t)‖)dt ≤

∫ ∞
t0

N∑
i=1

√
κi ‖x̃o (t)‖idt (6.52)

≤ −
N∑
i=1

2

iko

√
κi (αo (‖wo (t0)‖))i

[
e−i

ko
2

(t−t0)
]∞
t0

(6.53)

=
N∑
i=1

2

iko

√
κi (αo (‖wo (t0)‖))i (6.54)

and so Theorem 3 in Loría (2008) holds with

φ (‖wo (t0)‖) =
N∑
i=1

2

iko

√
κi (αo (‖wo (t0)‖))i (6.55)

and (6.48) follows by Proposition 3 in Loría (2008).

Proposition 6.8. When the SL controller from Proposition 6.3 is used Theorem 6.7
holds with β strengthened to

β (s, t− t0) = αSL (s) e−kSL(t−t0) (6.56)

for some class K function αSL and positive constant kSL.

Proof. By the affineness of ψc(t, wc, u) in u, Proposition 6.3, Assumption 6.1 and
Remark 6.5 we have

V̇SL ≤ −γSLVSL +
k3

ml

√
VSL
k1

L (‖y‖) ‖x̃o‖ . (6.57)

By Theorem 6.7 we know that all solutions (y (t) , x (t)) of (6.2) exist and are
bounded so that k3

ml
√
k1
L (‖y‖) ≤ lu(wc(t0), wo(t0)) for some positive lu depend-

ing on intial conditions, and Lemma 6.6 is satisfied with T = ∞. We will thus
consider v (t) = x̃o (t) as an exponentially decaying disturbance in (6.57) and ap-
ply the comparison method to draw conclusions. As in Khalil (2002) Chapter 9.3
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we let W (t) =
√
VSL (t, wc (t)), and differentiate W (t) with respect to time, using

(6.57), to obtain

Ẇ ≤ −1

2
γSLW +

1

2
lu (wc, wo) ‖v (t)‖ (6.58)

and so the solution W (t) satisfies

W (t) ≤W (t0) e−
γSL
2

(t−t0) +
1

2
lu (wc (t0) , wo (t0))

∫ t

t0

e−
γSL
2

(t−τ) ‖v (τ)‖ dτ.
(6.59)

Let kSL = min
(
ko,

γSL
4

)
. Since by Lemma 6.6 ‖v (τ)‖ ≤ αo (‖wo (t0)‖) e−ko(t−t0),

the integral in (6.59) can be bounded above as follows

∫ t

t0

e−
γSL
2

(t−τ)e−ko(τ−t0)dτ ≤
∫ t

t0

e−2kSL(t−τ)e−kSL(τ−t0)dτ

≤ 1

kSL
e−kSL(t−t0) (6.60)

obtaining

W (t) ≤
[
W (t0) +

1

2
lu (wc (t0) , wo (t0))

1

kSL
αo (‖wo (t0)‖)

]
e−kSL(t−t0) (6.61)

By Assumption 6.1, W (t) and ‖wc (t)‖ are equivalent so (6.61) and (6.23) imply
(6.56).

6.6 Simulation Example

To illustrate the use of the output feedback scheme we use the SL controller from
Proposition 6.3 and the observer derived in Section 6.4 to make a two-degrees-of-
freedom robot manipulator track a given reference signal

yd (t) =

[
cos (2t)
sin (2t)

]
. (6.62)
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We use the manipulator dynamics from Berghuis and Nijmeijer (1993). M (q),
C (q, q̇) and G (q) in (6.1) are given as

M (q) =

[
9.77 + 2.02 cos (q2) 1.26 + 1.01 cos (q2)
1.26 + 1.01 cos (q2) 1.12

]
(6.63)

C (q, q̇) = 1.01 sin (q2)

[
−q̇2 − (q̇1 + q̇2)
q̇1 0

]
(6.64)

G (q) = g

[
8.1 sin (q1) + 1.13 sin (q1 + q2)

1.13 sin (q1 + q2)

]
. (6.65)

The constants in P1 and P3 are ml = 0.65, mu = 12.5, c̄ = 2.02, and the controller
and observer gains are chosen as Kp = I , Kd = 10I , Λ = 2I , k̄x = 1, k̄σ = 1
and cr = 0.1. The initial conditions were chosen as y(t0) = [0, 0], x(t0) = [10, 10],
ξ(t0) = [0, 0], σ̂(t0) = 2, r(t0) = 1. Fig. 6.1a and 6.1b show the positions y1 and y2,
and the velocities x1 and x2. In addition Fig. 6.1b shows that the velocity estimation
errors converge quickly to zero in accordance with Lemma 6.6. Fig. 6.1c and 6.1d
show that the tracking errors converge to zero in accordance with Theorem 6.7. Fig.
6.2 shows the control input while Fig. 6.3a shows that σ̂ converges quickly to σ and
Fig. 6.3b shows that r remains bounded while converging slowly towards cr (due
to a small gain k̄x

2mu
in (6.21d)).

6.7 Conclusion

We have presented a novel velocity observer that enables output-feedback certainty
equivalence control of general Euler-Lagrange systems without velocity measure-
ments. The observer has a simple structure and global stability is guaranteed for
two commonly used tracking controllers, namely the PD+ scheme proposed in
Paden and Panja (1988) and the SL controller proposed in Slotine and Li (1987).
The authors believe this to be the first result that guarantees global stability and
convergence for certainty equivalence output feedback tracking control of general
Euler-Lagrange systems. Future work includes investigating the performance of the
scheme when measurement noise is present, possibly making a full-order observer,
and deriving an adaptive scheme that allows for parametric uncertainties in model
parameters.
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Figure 6.1: The top figures show position y, velocity x and velocity estimation error
x̃o, while the bottom figures show position and velocity tracking errors, ỹc and x̃c
respectively.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis addresses the topic of nonlinear observer design and its applications with
particular emphasis on estimation for managed pressure drilling.

Part I of this thesis addresses the topic of estimation for managed pressure drilling.
A simplified hydraulic model for a drilling system is presented and shown to cap-
ture the dominating dynamics of the well. Using adaptive observers and parameter
estimation techniques we have illustrated how to calibrate the model using available
real time measurements.

Part II of this thesis is concerned with the design of adaptive observers for a class
of nonlinear systems including the simplified model for a drilling system. The first
paper presents an adaptive observer that extends the class of systems for which
adaptive observers can be designed. In particular, it allows for systems with terms
containing both uncertainty and nonlinearity in the unmeasured states to appear in
the dynamics of the unmeasured states, and still guarantees convergence of the state
estimate without requiring persistent excitation. Instead of a commonly assumed
strictly positive real condition the adaptive observer relies on the solution of a partial
differential equation, to be implemented. The second paper addresses the poor pa-
rameter identification properties of commonly used Lyapunov based adaptive laws
by using multiple delayed observers to improve the convergence rate of the pa-
rameter estimation error. The use of multiple delayed observers gives significantly
better parameter identification and robustness properties at the cost of an increased
computational burden. In particular, given that a special persistency of excitation
condition is satisfied, we provide an explicit lower bound on the convergence rate of
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the estimation error and show that this bound can be made arbitrarily high provided
the original non-adaptive observer can achive arbitrarily high convergence rates.

Part III of this thesis addresses the topic of observer based output feedback control
of Euler-Lagrange systems without velocity or acceleration measurements. In the
first paper a significant obstacle to a constructive observer design for general Euler-
Lagrange systems is removed. This allows for a constructive design that guarantees
uniform global asymptotic stability and semi-global exponential stability. In the
second paper, a similar observer is derived, and it is shown that the observer guar-
antees stability when used in a certainty equivalence output feedback scheme with
certain types of tracking controllers, such as the PD+ controller proposed in (Paden
and Panja, 1988), and the controller proposed by Slotine and Li (Slotine and Li,
1987). To the best of our knowledge this is the first observer-based output feedback
tracking control solution that guarantees a global region of attraction for general
Euler-Lagrange systems.

7.2 Future Work

7.2.1 Managed Pressure Drilling

The hydrostatic pressure has a significant effect on the downhole pressure so even
small inaccuracies in the density estimate of the mud will affect the downhole pres-
sure estimate significantly. Therefore a model of the density of the mud is crucial
and should be added to the existing model. The model should take into account
that the density of the mud is affected by pressure, temperature and the amount of
cuttings and gas in the mud column, it should also handle so called multi fluid sce-
narios. That is, where one type of drilling fluid is displaced with a new one. When
a model has been developed one should investigate how to calibrate it against the
available measurements.

7.2.2 Adaptive Observer Design

One of the main limitations in the adaptive observer design proposed in Chapter
3 is that a solution to a partial differential equation must be found. In (Stamnes,
Kaasa, and Aamo, 2011d) this limitation has been removed for the drilling model
by extending the dimension of the observer. It is believed that the limitation be
can removed for more general systems following a similar method, or by the use of
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dynamic scaling (Karagiannis et al., 2009). For the observer design based on mul-
tiple observers there are several directions which can be explored. One direction is
to try to reduce the computational burden by making the method more recursive.
That is, to investigate for what class of systems (if any) the delayed observers can
be implemented in a clever (recursive) way so that fewer integrations are needed.
Another direction is to make the delays time-varying and adjustable. The objective
could then be to maximize information gathering or maximize the lower bound on
the persistent excitation condition in Assumption 4.6 by adjusting the delays. A
third direction is to investigate the use of delayed observers to increase the robust-
ness and parameter identification for general Lyapunov based (SPR) adaptive laws,
which are ubiquitous in the literature on adaptive control.

7.2.3 Output Feedback Control of Euler-Lagrange Systems

Using the results from Part II and III and dynamic scaling it should be possible to
derive adaptive observers for general Euler-Lagrange systems with uncertainties in
the mass matrix. Furthermore, based on the results in Chapter 4 it should be possible
to guarantee robustness and a tunable minimum convergence rate for both state and
estimation error. For an adaptive observer design to work one probably needs to
ensure positive definiteness of the estimated mass matrix by the use of some sort of
projection operator.
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M. Arcak and P. Kokotović. Nonlinear observers: a circle criterion design and
robustness analysis. Automatica, 37(12):1923–1930, 2001. doi:10.1016/S0005-
1098(01)00160-1.

A. Astolfi, D. Karagiannis, and R. Ortega. Nonlinear and Adaptive Control with
Applications. Communications and Control Engineering. Springer London, 2008.
doi:10.1007/978-1-84800-066-7.

A. Astolfi, R. Ortega, and A. Venkatraman. A globally exponentially convergent
immersion and invariance speed observer for n degrees of freedom mechani-
cal systems. In Conference on Decision and Control, pages 6508–6513, 2009.
doi:10.1109/CDC.2009.5399984.

A. Astolfi, R. Ortega, and A. Venkatraman. A globally exponentially
convergent immersion and invariance speed observer for mechanical sys-
tems with non-holonomic constraints. Automatica, 46(1):182–189, 2010.
doi:10.1016/j.automatica.2009.10.027.

G. Bastin and M. R. Gevers. Stable adaptive observers for nonlinear time-
varying systems. IEEE Transactions on Automatic Control, 33(7):650–658, 1988.
doi:10.1109/9.1273.

H. Berghuis and H. Nijmeijer. A passivity approach to controller-observer design

133

http://dx.doi.org/10.1137/040617066
http://dx.doi.org/10.1016/j.automatica.2008.07.015
http://dx.doi.org/10.1016/S0005-1098(01)00160-1
http://dx.doi.org/10.1016/S0005-1098(01)00160-1
http://dx.doi.org/10.1007/978-1-84800-066-7
http://dx.doi.org/10.1109/CDC.2009.5399984
http://dx.doi.org/10.1016/j.automatica.2009.10.027
http://dx.doi.org/10.1109/9.1273


for robots. IEEE Transactions on Robotics and Automation, 9(6):740–754, 1993.
doi:10.1109/70.265918.

G. Besançon. Remarks on nonlinear adaptive observer design. Systems and Control
Letters, 41(4):271–280, 2000a. doi:10.1016/S0167-6911(00)00065-7.

G. Besançon. Global output feedback tracking control for a class of lagrangian sys-
tems. Automatica, 36:1915–1921, 2000b. doi:10.1016/S0005-1098(00)00111-4.

G. Besançon. Nonlinear Observers and Applications, volume 363/2007 of Lecture
Notes in Control and Information Sciences. Springer Berlin / Heidelberg, 2007.
doi:10.1007/978-3-540-73503-8.

G. Besançon, Q. Zhang, and H. Hammouri. High gain observer based state and
parameter estimation in nonlinear systems. In 6th IFAC symposium Symposium
on Nonlinear Control Systems, volume 2, pages 471–476, 2004.

K. Bjørkevoll, B.-T. Anfinsen, A. Merlo, N.-H. Eriksen, and E. Olsen. Analysis of
extended reach drilling data using an advanced pressure and temperature model.
In IADC/SPE Asia Pacific Drilling Technology, 2000. doi:10.2118/62728-MS.

K. Bjørkevoll, R. Rommetveit, A. Rønneberg, and B. Larsen. Successful field
use of advanced dynamic models. In IADC/SPE Drilling Conference, 2006.
doi:10.2118/99075-MS.

K. S. Bjørkevoll, R. Rommetveit, B. Aas, H. Gjeraldstveit, and A. Merlo. Tran-
sient gel breaking model for critical wells applications with field data veri-
fication. In SPE/IADC Drilling Conference, Amsterdam, Netherlands, 2003.
doi:10.2118/79843-MS.

K. S. Bjørkevoll, D. O. Molde, and H. Fjeldberg. Utilize managed pressure drilling
equipment and techniques to cement a severely depleted hpht reservoir in the norh
sea. In SPE Russian Oil & Gas Technical Conference and Exhibition, 2008a.
doi:10.2118/115118-RU.

K. S. Bjørkevoll, D. O. Molde, R. Rommetveit, and S. Syltøy. Mpd oper-
ation solved drilling challenges in a severely depleted hp/ht reservoir. In
IADC/SPE Drilling Conference, 4-6 March 2008, Orlando, Florida, USA, 2008b.
doi:10.2118/112739-MS.

K. S. Bjørkevoll, S. Hovland, I. B. Aas, and E. Vollen. Successful use of real time
dynamic flow modelling to control a very challenging managed pressure drilling
operation in the north sea. In SPE/IADC Managed Pressure Drilling and Under-
balanced Operations Conference and Exhibition, 2010. doi:10.2118/130311-MS.

E. Børhaug and K. Pettersen. Global output feedback pid control for

134

http://dx.doi.org/10.1109/70.265918
http://dx.doi.org/10.1016/S0167-6911(00)00065-7
http://dx.doi.org/10.1016/S0005-1098(00)00111-4
http://dx.doi.org/10.1007/978-3-540-73503-8
http://dx.doi.org/10.2118/62728-MS
http://dx.doi.org/10.2118/99075-MS
http://dx.doi.org/10.2118/79843-MS
http://dx.doi.org/10.2118/115118-RU
http://dx.doi.org/10.2118/112739-MS
http://dx.doi.org/10.2118/130311-MS


n-dof euler-lagrange systems. In American Control Conference, 2006.
doi:10.1109/ACC.2006.1657512.

J. P. Brill and H. Mukherjee. Multiphase Flow in Wells. Society of Petroleum
Engineers Inc., 1999.

R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley & Sons, 3rd edition, 1997.

E. Bullinger and F. Allgöwer. An adaptive high-gain observer for nonlinear systems.
In Proc. 36th IEEE Conference on Decision and Control, volume 5, pages 4348–
4353 vol.5, 1997. doi:10.1109/CDC.1997.649541.

A. Calderoni and G. Girola. Enbd, the proprietary eni managed pressure drilling
with uninterrupted mud circulation: Technical update after the first year’s activity.
In International Petroleum Technology Conference, 2009. doi:10.2523/13867-
MS.

D. Carnevale, D. Karagiannis, and A. Astolfi. A condition for certainty equiva-
lence output feedback stabilization of nonlinear systems. IEEE Transactions on
Automatic Control, 55(5):1180–1185, 2010. doi:10.1109/TAC.2010.2041980.

C.-T. Chen. Linear System Theory and Design. Oxford University Press, 1999.

Y. M. Cho and R. Rajamani. Systematic approach to adaptive observer synthesis
for nonlinear systems. IEEE Transactions on Automatic Control, 42(4):534–537,
1997. doi:10.1109/9.566664.

M. J. Chustz, L. D. Smith, and D. Dell. Managed pressure drilling success
continues on auger tlp. In IADC/SPE Drilling Conference 4-6 March, 2008.
doi:10.2118/112662-MS.

K. Do, Z. Jiang, and J. Pan. Global partial-state feedback and output-feedback
tracking controllers for underactuated ships. Systems & Control Letters, 54(10):
1015–1036, 2005. doi:10.1016/j.sysconle.2005.02.014.

DO-178B. Software considerations in airborne systems and equipment certification.
RTCA.

J. Eck-Olsen, P.-J. Pettersen, A. Ronneberg, K. S. Bjørkevoll, and R. Rommetveit.
Managing pressures during underbalanced cementing by choking the return flow;
innovative design and operational modeling as well as operational lessons. In
SPE/IADC Drilling Conference, 2005. doi:10.2118/92568-MS.

X. Fan and M. Arcak. Observer design for systems with multivariable

135

http://dx.doi.org/10.1109/ACC.2006.1657512
http://dx.doi.org/10.1109/CDC.1997.649541
http://dx.doi.org/10.2523/13867-MS
http://dx.doi.org/10.2523/13867-MS
http://dx.doi.org/10.1109/TAC.2010.2041980
http://dx.doi.org/10.1109/9.566664
http://dx.doi.org/10.2118/112662-MS
http://dx.doi.org/10.1016/j.sysconle.2005.02.014
http://dx.doi.org/10.2118/92568-MS


monotone nonlinearities. Systems & Control Letters, 50(4):319–330, 2003.
doi:10.1016/S0167-6911(03)00170-1.

T. I. Fossen. Marine Control Systems. Marine Cybernetics, 2002.

T. I. Fossen, A. Loría, and A. Teel. A theorem for ugas and ules of (pas-
sive) nonautonomous systems: robust control of mechanical systems and ships.
International Journal of Robust and Nonlinear Control, 11(2):95–108, 2001.
doi:10.1002/rnc.551.

P. Fredericks, D. Reitsma, T. Runggai, N. Hudson, R. Zaeper, O. Backhaus, and
M. Hernandez. Successful implementation of first closed loop, multiservice con-
trol system for automated pressure management in a shallow gas well offshore
myanmar. In IADC/SPE Drilling Conference, 2008. doi:10.2118/112651-MS.
SPE 112651.

K. Furuta, M. Yamakita, and S. Kobayashi. Swing-up control of inverted pendu-
lum using pseudo-state feedback. Proceedings of the Institution of Mechanical
Engineers, 206:263–269, 1992. doi:10.1243/PIME_PROC_1992_206_341_02.

J. P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlinear
systems applications to bioreactors. IEEE Transactions on Automatic Control,
37(6):875–880, 1992. doi:10.1109/9.256352.

J.-M. Godhavn. Control requirements for automatic managed pressure drilling sys-
tem. SPE Drilling & Completion, 25:336–345, 2010. doi:10.2118/119442-PA.

J.-M. Godhavn and K. A. Knudsen. High performance and reliability for mpd con-
trol system ensured by extensive testing. In IADC/SPE Drilling Conference and
Exhibition, 2010. doi:10.2118/128222-MS.

J. Gravdal, H. Lohne, G. Nygaard, E. Vefring, and R. Time. Automatic evaluation of
near-well formation flow interaction during drilling operations. In International
Petroleum Technology Conference, 2008. doi:10.2523/IPTC-12395-MS.

J. E. Gravdal, R. J. Lorentzen, K. K. Fjelde, and E. H. Vefring. Tuning of computer
model parameters in managed-pressure drilling applications using an unscented-
kalman-filter technique. SPE Journal, 15:856–866, 2010. doi:10.2118/97028-
PA.

H. F. Grip. Topics in State and Parameter Estimation for Nonlinear and Uncertain
Systems. PhD thesis, NTNU, 2010.

H. F. Grip, T. A. Johansen, L. Imsland, and G.-O. Kaasa. Parameter estimation
and compensation in systems with nonlinearly parameterized perturbations. Au-
tomatica, 46(1):19–28, 2010. doi:10.1016/j.automatica.2009.10.013.

136

http://dx.doi.org/10.1016/S0167-6911(03)00170-1
http://dx.doi.org/10.1002/rnc.551
http://dx.doi.org/10.2118/112651-MS
http://dx.doi.org/10.1243/PIME_PROC_1992_206_341_02
http://dx.doi.org/10.1109/9.256352
http://dx.doi.org/10.2118/119442-PA
http://dx.doi.org/10.2118/128222-MS
http://dx.doi.org/10.2523/IPTC-12395-MS
http://dx.doi.org/10.2118/97028-PA
http://dx.doi.org/10.2118/97028-PA
http://dx.doi.org/10.1016/j.automatica.2009.10.013


D. Hannegan. Case studies - offshore managed pressure drilling. In SPE Annual
Technical Conference and Exhibition, 2006. doi:10.2118/101855-MS.

S. A. Hansen, R. Rommetveit, N. Sterri, B. Aas, and A. Merlo. A new hydraulics
model for slim hole drilling applications. In SPE/IADC Middle East Drilling
Technology Conference, 1999. doi:10.2118/57579-MS.

IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems. IEC.

P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, 1996.

P. Isambourg, B. Anfinsen, and C. Marken. Volumetric behavior of drilling muds
at high pressure and high temperature. In SPE European Petroleum Conferece,
1996. doi:10.2118/36830-MS.

ISO 26262. Road vehicles – functional safety. ISO.

A. T. B. Jr., K. K. Millheim, M. E. Chenevert, and F. Y. Jr. Applied Drilling Engi-
neering. Society of Petroleum Engineers, 1991.

S. Julier, J. Uhlmann, and H. F. Durrant-Whyte. A new method for the nonlinear
transformation of means and covariances in filters and estimators. IEEE Trans-
actions on Automatic Control, 45(3):477–482, 2000. doi:10.1109/9.847726.

S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to nonlinear
systems. In The Proceedings of AeroSense: The 11th International Symposium
on Aerospace/Defense Sensing, Simulation and Controls, 1997.

G.-O. Kaasa. A simple dynamic model of drilling for control. Technical report,
Statoil Research Centre Porsgrunn, 2007.

G.-O. Kaasa, Ø. N. Stamnes, L. Imsland, and O. M. Aamo. Intelligent estimation of
downhole pressure using a simple hydraulic model. In IADC/SPE Managed Pres-
sure Drilling and Underbalance Operations Conference and Exhibition, 2011a.

G.-O. Kaasa, Ø. N. Stamnes, L. Imsland, and O. M. Aamo. Simplified hydraulic
model used for intelligent estimation of downhole pressure for an mpd control
system. SPE Drilling & Completion (submitted), 2011b.

R. E. Kalman. A new approach to linear filtering and prediction problems. Trans.
ASME, J. Basic Engineering, pages 35–45, 1960.

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction. Trans.
ASME, J. Basic Engineering, 83:95–108, 1961.

137

http://dx.doi.org/10.2118/101855-MS
http://dx.doi.org/10.2118/57579-MS
http://dx.doi.org/10.2118/36830-MS
http://dx.doi.org/10.1109/9.847726


D. Karagiannis, D. Carnevale, and A. Astolfi. Invariant manifold based reduced-
order observer design for nonlinear systems. IEEE Transactions on Automatic
Control, 53(11):2602–2614, 2008. doi:10.1109/TAC.2008.2007045.

D. Karagiannis, M. Sassano, and A. Astolfi. Dynamic scaling and observer de-
sign with application to adaptive control. Automatica, 45(12):2883–2889, 2009.
doi:10.1016/j.automatica.2009.09.013.

N. Kazantzis and C. Kravaris. Nonlinear observer design using lyapunov’s auxiliary
theorem. Systems & Control Letters, 34(5):241–247, 1998. doi:10.1016/S0167-
6911(98)00017-6.

H. K. Khalil. High-gain observers in nonlinear feedback control. In H. Nijmeijer
and T. Fossen, editors, New Directions in nonlinear observer design, Lecture
Notes in Control and Information Sciences, 1999. doi:10.1007/BFb0109930.

H. K. Khalil. Nonlinear Systems. Prentice-Hall, 2002.

C. Kravaris, V. Sotiropoulos, C. Georgiou, N. Kazantzis, M. Xiao, and A. J. Krener.
Nonlinear observer design for state and disturbance estimation. Systems & Con-
trol Letters, 56(11-12):730–735, 2007. doi:10.1016/j.sysconle.2007.05.001.

G. Kreisselmeier. Adaptive observers with exponential rate of conver-
gence. IEEE Transactions on Automatic Control, 22(1):2–8, 1977.
doi:10.1109/TAC.1977.1101401.

A. Krener and A. Isidori. Linearization by output injection and nonlinear observers.
Systems & Control Letters, 3(1):47–52, 1983. doi:10.1016/0167-6911(83)90037-
3.

A. J. Krener and M. Xiao. Nonlinear observer design in the siegel domain. SIAM J.
Control Optim., 41(3):932–953, 2002. doi:10.1137/S0363012900375330.

A. J. Krener and M. Xiao. Erratum: Nonlinear observer design in
the siegel domain. SIAM J. Control Optim., 43(1):377–378, 2004.
doi:10.1137/S0363012903435114.

P. Krishnamurthy and F. Khorrami. Dynamic high-gain scaling: State and out-
put feedback with application to systems with iss appended dynamics driven by
all states. IEEE Transactions on Automatic Control, 49(12):2219–2239, 2004.
doi:10.1109/TAC.2004.839235.
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A. Loría, E. Panteley, D. Popović, and A. R. Teel. δ-persistency of excitation: A

139

http://dx.doi.org/10.2118/52829-MS
http://dx.doi.org/10.2118/63127-MS
http://dx.doi.org/10.2118/83607-PA
http://dx.doi.org/10.1002/rnc.1161
http://dx.doi.org/10.2523/12707-MS
http://dx.doi.org/10.1016/j.automatica.2004.04.004
http://dx.doi.org/10.1109/CDC.2008.4738647
http://dx.doi.org/10.1007/BFb0109929


necessary and sufficient condition for uniform attractivity. In Proceedings of the
41st IEEE Conference on Decision and Control, volume 3, pages 3506 – 3511,
2002. doi:10.1109/CDC.2002.1184418.
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