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Problem Description
The purpose of this master thesis is to develop a hardware mechanism for execution time control
hereby named a Time Management Unit (TMU). The TMU is to have high resolution execution time
measurement, running at the same frequency as the CPU clock. The TMU shall allow execution
time clocks to be swapped with low overhead. The TMU is to be implemented as a slave module
connected to the APB of the Atmel AVR32 UC3.

A functional specification for the TMU is given in the paper "Functional specification for a Time
Management Unit" by Gregertsen and Skavhaug. Proposing improvements to this specification and
implementing a subset of these, is also a part of this thesis. A software framework consisting of
device drivers will be provided. Finally, various functional and performance tests will be created
and performed. The resulting product of the master thesis is intended to be used for further
research within dependable real-time systems at NTNU.

To achieve these goals, the student is to:
  Familiarize himself with earlier work and relevant theory
  Implement a TMU as specified
  Suggest and preferably implement improvements to the original specification
  Evaluate the final product with regards to correct functional operation and performance
  Develop necessary drivers and example software
  Create documentation for the final product
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Summary 
This thesis describes the implementation of a Time Management Unit (TMU) in hardware as 
specified by Gregertsen and Skavhaug (1), the specification and implementation of several 
improvements to the proposed specification, and the creation of a software framework to enable 
use of the module in a convenient way. A set of thorough automatic functional tests are also 
described and provided. The performance of the module is assessed and discussed. A user 
description similar to the AVR32 UC3 datasheets is also created. 

The TMU has been implemented as a hardware module on the peripheral bus (APB) on the 
AVR32 UC3 microcontroller, which makes it easy to develop and test stand-alone, and simple to 
integrate into future UC3 microcontrollers. Also, as the APB interface of the AMBA standard is an 
open standard used by several System-on-a-chip (SoC) designs (2), the module can be 
implemented on other microcontrollers with very low effort. 

The final product makes it possible to measure and control the execution time of tasks with high 
precision and low overhead. It supports atomic swapping of registers in a manner closely related 
to a context switch. 

Gregertsen and Skavhaugs’s research in implementing support for the Ada language and run-
time environment on the UC3 microcontroller will benefit directly from this project, as the 
system relies on the hardware support provided by the TMU. Also, as the project can be used in 
proving that hardware support of execution time monitoring may allow for new ways of 
ensuring schedulability in real-time systems, it can possibly be a part of a new direction in real-
time research. 
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Formatting 
Code examples are either given inline, such as “result = doComputation();”, or in 
separate blocks, as shown below. Comments to the reader that are not a part of the original code 
are written in italics, and where implementation details have been removed, a short description 
of what is done is given in parenthesis where relevant. 

for (i = 0; i < ITERATIONS; i++) 
 (Compute new result) 

Signal, register or variable names are written in bold, such as “COUNT”. Uppercase variable 
names used in underlying articles or reports have been retained, although the same case is not 
necessarily used in the code implementing this project. When a register or variable is referenced 
to by its general usage, no special formatting is applied, such as “the counter”. 

Larger quotes are indented and italicized. 

Chapters without a separate introduction section give a shorter introduction to the reader which 
describes the intention of the chapter, or other notes to make the text easier to read and 
understand. These notes are italicized.  

Empty pages are inserted so that each chapter starts on a left page, to make it easier to keep 
illustrations and their references visible at the same time when reading the printed booklet. 

Code Shortening 
Most code example blocks have been shortened in several ways. Many identifiers require several 
prefixes due to code standards, such as apb_tmu_pwrite, but in the code examples only 
pwrite is displayed. Some comments from the original code are removed, and explained in the 
text instead. Also, the implementation uses wires called apb_write and apb_read, which 
hides the implementation of APB control signal logic. This makes the code simpler to read. 

All blocks writing to registers are synchronous with the clock, which is not necessarily displayed 
in the code. Other context of many statements is also removed where it is not directly relevant to 
the example. For instance, if an action happens when a register is written using a bus, only the 
action itself might be displayed, and the control flow constructs checking that the correct 
address and control signals are set might be omitted. In these cases, the conditions for the 
statement to be executed are implied from the text. 

Language 
Chapter 5 gives a description of the final module in a format that is intended to be similar to a 
chapter describing a module in the AVR32 UC3 datasheets, that is, it follows the Atmel Document 
Standards (3). This implies that the text is written in a more standardized and repetitive manner 
than what would otherwise be expected in a report.  

The rest of the report only follows these standards where it is beneficial for consistence without 
decreasing readability. When there is a conflict between these goals, readability is intended to be 
given most weight. 

In cases where threads, processes, tasks, or other entities that can be executed are referred to 
without the need of being more specific, “tasks” have been used. 
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1 Introduction  

1.1 Problem Description and Motivation 

The correctness of a real-time system depends not only on the logical result of the computation, 
but also on the time at which the results are produced. 

Quote 1 – Definition of a real-time system (4) 

Tasks running on hard real-time systems are regarded as incorrect if they do not complete 
before their deadline, and on hard real-time systems, failure can have catastrophic results (4). 
Tasks need to be scheduled to ensure that they will be able to complete in correct time, hence 
the timing capabilities of a real-time system is essential.  

In real-time systems, the worst-case execution time (WCET) of a process is a widely used 
measure in the process of ensuring that a system will be schedulable. However, due to modern 
processors’ performance enhancing techniques such as pipelining, caching and branch 
prediction, finding WCET may be very hard (4; 5), and it will often be much greater than the 
average execution time (6). This leads to the dilemma between choosing to have poor CPU 
utilization to decrease probability of deadline misses, or use optimistic budgets and risk 
deadlines being missed. (1) 

An alternative approach is to base the scheduling on giving each task a budget of at least its 
average or excepted execution time. Overruns of these budgets can be handled dynamically with 
an alternative task with a constant or limited short execution time. The alternative task can for 
instance return a result based on a simpler algorithm, or perform necessary handling of the 
error to prevent the system from failing. Because of the alternative task’s simplicity, its WCET 
can be computed. 

This will let the programmer allow higher utilization of the processor and still ensure 
schedulability (1; 6). On the other hand, this approach depends on the availability of a precise 
mechanism for execution time monitoring. To handle overruns, a mechanism for interrupting 
the processor when the execution time budget is depleted is necessary. 

1.2 Previous Work 
Bjørn Forsman has previously implemented a Time Management Unit (7) based on a 
specification given by Håvard Skinnemoen and Amund Skavhaug (8) to improve predictability of 
real-time systems. It will limit the execution times of tasks as well as the occurrences of 
interrupts as perceived by the CPU. The module is implemented as a peripheral device on the 
APB bus (9) of the LEON3 processor. It requires modifying the CPU’s internal workings, that is, it 
interferes with the interrupt lines to stop the signals from propagating when the interrupt line in 
question has reached its limit of interrupts per time. It contains a dedicated timer for each 
interrupt line. 

A simpler approach is to use a hardware unit with only the capabilities of counting CPU cycles 
and generating an interrupt when this count reaches a given number. This allows for more 
flexible scheduling policies as they are implemented in software, as well as improved portability 
because of the unit’s simplicity. Gregertsen and Skavhaug took this approach when implementing 
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the new Ada 2005 timing event and execution time control features on the AVR32 architecture 
(10). Here, the built-in COUNT and COMPARE registers of the AVR32 UC3 processor were used 
(11). A real-time framework for Ada 2005 and the Ravenscar profile has also been created (12), 
which is based on the work in (10). 

The hardware implementation used in their works has some drawbacks, that is, relative time 
has to be used as the counter is only 32-bit which results in computational overhead, and special 
care is needed to prevent the counter from overflowing. Also, atomic swapping of the COUNT 
and COMPARE registers was desired. Hence, there is a need for a dedicated timer unit to 
support this work (1). 

The TMU implemented in this project will be compared to these implementations in section 8.3. 

1.3 Main Contributions from This Project 
This master’s thesis supports the work of Gregertsen and Skavhaug by implementing the 
proposed Time Management Unit (TMU) in hardware as specified in (1). This work also 
contributes to the research by making improvements to the specification of the TMU and 
implementing a subset of these in the hardware unit. 

Successful completion of this project has led to a module that extends the AVR32 UC3 
microcontroller. Also, a testbench and tests both for the TMU as a stand-alone module, written in 
Verilog; and for the TMU integrated with UC3, written in C; were developed as a part of this 
project. In addition to proving the correctness of the implemented module, the tests can 
facilitate further work with the project. Furthermore, an introduction to Verilog for 
programmers familiar with C was created, which will benefit students extending the 
implementation. 

To make the module as ready as possible for integrating into a commercial UC3 model, the 
relevant parts of a datasheet were also created. A software framework consisting of drivers and 
example code is also provided. 

1.4 Scope of This Project 
Exploring or choosing target processor is not relevant to this thesis, as the AVR32 UC3 is already 
chosen in the work this project is based on (1; 10; 12). Several soft-core processors are explored 
in (7); hereby LEON, OpenRISC and AEMB. Also, as Atmel Corporation requires Verilog to be the 
hardware description language used for their modules, no research and choice of language is 
performed. 

To implement a digital unit in hardware as is required in this project, knowledge of digital 
hardware design is mandatory. This includes learning the discipline of designing hardware, as 
well as learning a hardware description language. Furthermore, one needs to be familiar with 
real-time related principles such as scheduling theory, timing concepts and real-time 
requirements. Good knowledge to microcontrollers in general, the microcontroller to host the 
module in particular, and the buses needed to interface the module, is also important. 

The use of various tools such as hardware simulators, waveform viewers, compilers, verification 
frameworks and proprietary scripts is also a part of the required work, although this will not be 
a main focus in this report. 
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To gain the necessary understanding of the application for the module, literature about real-time 
systems and related concepts, as well as the articles relevant to Gregertsen and Skavhaug’s 
research and earlier related work, need to be read and understood. 

The proposed specification is very simple, and suggesting additional improvements, making 
choices where details are missing, correcting any errors detected, and implementing some of the 
improvements, are natural parts of this project as well. 

To ensure the correct function of the module, tests need to be created and executed, and possible 
errors must be corrected. Furthermore, tests for assessing performance are desired. Creating 
software drivers that make the module easy to use is also a part of the project.  

1.5 Outline 
After this first introductory chapter, the second chapter presents background theory necessary 
to understand the rest of the report. Both real-time concepts, the AVR32 architecture and digital 
hardware design will be touched. The third chapter describes the TMU as it was originally 
proposed, and how this version was implemented. Then, the fourth chapter proposes and 
discusses several improvements, and gives details about implementation where it is relevant. 

Chapter five is a description of the final product, and can also be used as a user guide which 
resembles the description of a module in an AVR32 UC3 datasheet. Chapter six presents the 
software framework developed for the hardware module. The seventh chapter treats functional 
and performance tests of the final product, and the eighth chapter discusses the module as a 
whole. Finally, the ninth chapter concludes the report and project. 

Each chapter contains either an introductory section, or a shorter explanation of the chapter’s 
purpose and other useful information to the reader. 

Because this report covers several details that need to be discussed, the discussions are often 
written at the same place as the detail is presented. The final discussion chapter covers the TMU 
at a higher level.  
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2 Theory and Background 
As the reader is expected to be familiar with common real-time concepts, this chapter presents a 
brief introduction of the subject with references to relevant literature. Then, the AVR32 
architecture with a main focus on the UC3 family is introduced. Some concepts of special interest to 
this thesis are emphasized. Then, some background information of digital hardware design is given. 
The chapter is concluded with an introduction of Verilog to C programmers. 

2.1 Real-Time Systems 
As mentioned in the introduction, the correctness of real-time systems is determined both by 
their functional correctness, as well as the time the results are delivered. For instance, the result 
of a computation must be available early enough to output a new set point in a control system. 
Real-time computing does not necessarily imply high performance; qualities such as 
predictability and safety better describe its most important properties. 

Real-time systems are divided into three categories; soft, firm and hard, which are defined in (4). 
Soft real-time systems have deadlines but can tolerate some being missed, possibly leading to 
degraded quality. For instance, a video communication system relies on data being delivered 
with low latency for the video to appear without any significant delay, but can allow some 
frames to be received late or not at all and still perform satisfactory. Firm real-time systems are 
similar, but have no use of the data being delivered too late. 

In hard real-time systems, it is absolutely crucial that the system responds within the deadline. 
For instance, the airbags in a car need to be released within milliseconds. Missing deadlines in 
hard real-time systems might cause large negative consequences; for instance financial loss or 
even risk human lives. 

2.1.1 Scheduling 

Scheduling for multitasking in general purpose operating systems 
In regular computers, such as PCs or servers, fast response time as perceived by the user and fair 
allocation of system resources are common objectives for the scheduler. By rapidly switching 
between tasks, they seem to run concurrently, thus enabling multi-tasking.  

Linux achieves this by dynamically allocating priorities to tasks according to how much they 
have been using the CPU earlier. If a task with a higher priority than the currently running task 
becomes ready to run, the current task is interrupted and the high priority task might be allowed 
to execute (13). In this way, historical data is used to schedule tasks. 

This approach is not satisfactory for real-time systems, however. Because the Linux kernel as 
described in (13) is non-preemptive, real-time processes might be blocked for several 
milliseconds while the system is in Kernel Mode. 

Real-time scheduling 
Scheduling schemes for real-time systems can be divided in two categories; static and dynamic. 
Both might use priorities to determine which task is allowed to run next, and the main goal is to 
ensure that all tasks will complete within their deadlines if possible. Static scheduling algorithms 
do calculations before execution, while dynamic algorithms do the computations at run-time. 
Several scheduling algorithms are described in (4), including the dynamic earliest deadline first 
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(EDF) algorithm, and the static fixed-priority scheduling (FPS) with rate monotonic (RM) 
priority assignment. 

A disadvantage of EDF is that if the system gets overloaded, the set of tasks that are allowed to 
run is unpredictable, and not necessarily the most important tasks. As explained in (14), this is a 
considerable disadvantage to real-time systems. Also, the algorithm is difficult to implement in 
hardware, and have issues about representing deadlines in different ranges. Because of these 
disadvantages, this algorithm is not commonly found in industrial real-time systems. 

FPS with RM is more common in real-time systems. As the priorities are fixed, one can guarantee 
which tasks will miss their deadlines if the system is overloaded. A disadvantage with both this 
approach and EDF is that the worst case execution time (WCET) is expected to be known (4). 
This can be hard or intractable to compute; and even if the execution time is measured, it is 
difficult to know when the worst case has been observed. Also, although the real issue is to 
ensure that tasks complete within their deadlines, FPS’ mapping of deadlines to priorities can be 
regarded as an indirect means to solve the problem. 

Primary and alternative tasks 
An interesting alternative to the scheduling schemes mentioned above is presented in (6). Here, 
instead of having to prepare for the worst case by allocating enough time for all processes to run 
even if they reach their WCETs, two versions of each task is used, called primary and alternative. 
These must be specified so that completing either the primary or alternative can be regarded as 
successful completion of the task. 

The primary task will provide the best service, for instance by returning a set point value 
calculated with high accuracy and precision in control systems, or simply by completing the job 
the task was intended to do. The alternative task will, however, merely offer a service that is just 
acceptable. Examples include returning the previous value of the calculated set point, or perform 
cleanup of the primary task that did not finish. 

The primary task is allowed to run for a pre-determined time, for instance close above its 
average or expected execution time. The alternative task should have a low WCET, which is 
easier to achieve because of its simplicity. For all tasks in a system to be schedulable, it suffices 
to guarantee that the sum of all primary tasks’ allowed execution time plus the WCETs of all 
alternative task do not result in the system exceeding a utilization of 100%. 

However, this approach depends on support for measuring execution time with high precision, 
and the ability to interrupt a task as soon as it has reached its execution time limit. 
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2.2 AVR32 Architecture 

AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive 
embedded applications, with particular emphasis on low power consumption and high code 
density. In addition, the instruction set architecture has been tuned to allow for a variety of 
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance 
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications. 

Quote 2 – AVR32UC Introduction (15) 

The AVR32 series consists of several processors, which are divided in two product families 
according to CPU core: AP7 and UC3. The AVR32 AP7 family is optimized for embedded Linux 
applications, and is not relevant to this project. 

AVR32 is a microprocessor architecture with focus on achieving high code density, which lowers 
memory requirements and contributes to the core’s low power characteristics (11). Load and 
store operations for up to double words (64 bits) are provided. To accommodate for several 
applications, different micro architectures are defined. AVR32B is implemented in the AP7 
family, while UC3 implements AVR32A.  

AVR32B is suited for applications where interrupt latency is important, by for instance 
providing registers to hold the status register and return address for interrupts, exceptions and 
supervisor calls, and allowing hardware shadowing of registers. AVR32A is targeted at cost-
sensitive lower-end applications like smaller microcontrollers, and does not provide these 
features. 

2.2.1 UC3 Core 
AVR32UC is the first implementation of the AVR32A architecture. There exist three revisions of 
this implementation, where UC3 is the most current one. All revisions are backward compatible. 

AVR32 UC3 (may be referenced to as “UC3” from now on) is the microcontroller family of 
interest to this thesis, as previous related work is based on it. UC3 microcontrollers are 
optimized for highly integrated embedded applications requiring integrated flash memory (16).  
The UC3 family is focused on high CPU performance relative to power consumption. The UC3 
core and the AMBA buses used for internal communication are of special interest for this project, 
and will be detailed in the following sections. 

The UC3 microcontrollers use AMBA buses for internal communication between many of its 
modules. The devices on the buses are memory mapped, easily accessible for a user. The AVR32 
framework includes C header files that provide structs the user can utilize to communicate with 
the different modules in a convenient manner that enables writing maintainable and portable 
code. 

Models such as the most recent AT32UC3L run at clock frequencies up to 50 MHz (17). The 
Power Manager (PM) is responsible for generating clock and reset signals for digital logic, and 
distributes a possibly scaled down signal from a main clock source to the CPU, High Speed Bus, 
and Peripheral Buses (referenced to as APB in this report). This is illustrated in Figure 1. Clocks 
may be disabled individually. 
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Figure 1 – UC3 clock distribution (17) 

Instruction set and issue latency 
AVR32 is a RISC architecture, and (11) contains a description of all instructions. Note that 
Atmel’s definition of RISC is “Reduced Complexity Instruction Set Computer” (18), in contrast to 
the more popular “Reduced Instruction Set Computer”. Atmel’s view is that it is not the number 
of instructions that is reduced, but the complexity of the digital circuitry required to decode the 
instructions.  The AVR32 instruction set is fully orthogonal, which means that any instruction 
can use data of any type via any addressing mode (19). There are a rich number of instructions 
available, and many allow formats of operands such as post-increment or pre-decrement of 
pointer registers which reduces code size and speeds up execution. 

The pipelined architecture allows one instruction per clock cycle (11), but some instructions, 
like those that change the program counter, will cause a pipeline flush and hereby require more 
clock cycles. Also, performance of memory accesses and instruction fetching are affected by the 
performance of system memories and system bus (20). That is, accesses to external modules 
might be delayed because of wait states, slow responding modules, restrictions given by the bus 
protocol, and occupied buses. 

An instruction is issued when it leaves the instruction decode stage and enters the execute stage. 
The issue latency represents the number of clock cycles required between the issue of the 
instruction and the issue of the following instruction, that is, how many cycles the instruction 
“delays” the total system. These definitions and the issue latency of each instruction are given in 
the AVR32UC3 Technical Reference Manual (20). Factors that can be taken into consideration 
when computing number of clock cycles include issue latency, memory delay and occupied 
buses.  

  



Theory and Background 

9 
 

2.2.2 AMBA Buses 
For internal communication between modules, UC3 uses an ARM Advanced Microcontroller Bus 
Architecture (AMBA) compatible bus. This is not specified in public available manuals or 
datasheets as it is first and foremost of interest to those who develop the microcontrollers. The 
knowledge of the use of AMBA is given from Atmel internally, while the technical specification of 
the bus (9) is publicly available. AMBA was introduced by ARM Ltd in 1996, and three versions 
have been created since then (2). UC3 uses the second version. 

 

Figure 2 – AT32UC3A block diagram (15) 
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The AMBA specification (9) describes three buses, namely Advanced High-performance Bus 
(AHB), Advanced System Bus (ASB) and Advanced Peripheral Bus (APB). This thesis will use the 
ABP to connect the TMU, and that particular bus will be given the most detailed explanation 
here. 

Figure 2 illustrates the AVR32UC3A microcontroller including its CPU core, peripheral devices 
and their interconnections. Note that Atmel references to the AHB and APB as HSB and PB, 
respectively. Figure 3 illustrates how ARM perceives a typical system using the AMBA buses. 

The AHB is intended for high-performance, high clock frequency system modules, and is used as 
the system backbone bus in UC3. The ASB is an alternative system bus, suitable for applications 
which do not require the high-performance features of the AHB. UC3 uses the APB for its 
peripherals. 

 

Figure 3 – AMBA buses (9) 

AHB implements features such as burst transfers, split transactions and wide bus configurations 
(64/128 bit), and is thus suited for high-performance, high clock frequency systems.  The bus 
can be bridged together with the APB to allow connection of low-bandwidth peripherals. The 
APB bridge appears as an AHB slave module, and is responsible for handling the bus handshake 
and control signal retiming on behalf of the local peripheral bus. It provides latching of all 
address, data and control signals, and generates slave select signals for the APB peripherals by 
providing a second level of decoding. 

The APB appears as a local secondary bus, and is intended to interface any low bandwidth 
peripherals that do not require a pipelined bus interface. The bus is optimized for minimal 
power consumption and reduced interface complexity. 

In the following, PSEL will refer to the select signal of the APB slave in question, or a general 
slave where it is relevant. In reality, the APB bridge will assert at most one of several select 
signals based on the current value on the address bus.  

The APB can be in one of three states; IDLE, SETUP or ENABLE. IDLE is the default state, and 
indicates that no transfer is ongoing. When a read or write transfer is initiated, the bus enters 
the SETUP state where a device connected to the APB is selected using the PSEL signal, and the 
ENABLE state is then entered in the beginning of the next clock cycle. During this last transition, 
the address, write, and select signals all remain valid and stable, and the PENABLE signal is 
asserted. The ENABLE state also lasts for only one clock cycle. If another transfer is pending, the 
bus will return to the SETUP state; otherwise, it will move to IDLE again. 
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In a write transfer, the address, data, and control signals change after a positive clock edge. This 
occurs in the SETUP state, and is illustrated in the period starting with T2 in Figure 4. The next 
clock period starting with T3 corresponds with the ENABLE state, where the PENABLE signal is 
asserted, and the other signals remain valid. In the end of this period, the transfer completes. 
PENABLE will become low after this period, and if there is no transfer immediately after the 
current one, the PSEL signal will also go low. The address and write signal will remain the same 
to reduce power consumption. 

 

Figure 4 – APB write transfer (9) 

A read transfer is specified to have the same timing of the address, write, select and strobe 
signals as for the write transfer. However, during the ENABLE state, the slave will provide the 
data which is sampled on the rising clock edge at the end of that cycle. An illustration of the read 
transfer is given in Figure 5. 

 

Figure 5 – APB read transfer (9) 

An APB slave module, as illustrated in Figure 6, must adhere to the interface given in (9). For a 
write transfer, data can either be latched on the rising edge of PCLK or PENABLE, when PSEL is 
high. For a read transfer, data should be driven when PWRITE is low and both PSEL and 
PENABLE are high. In both cases, the PADDR determines which slave device to be activated by 
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the APB bridge, and it can also decide which internal register or function to be activated in the 
slave. 

 

Figure 6 – APB slave module (9) 
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2.3 Digital Hardware Design 
This section first presents an overall workflow, which can apply to a general project. Then, a brief 
overview of the steps taken to create, simulate, and finally integrate the TMU on the UC3 with 
Atmel’s tools is provided. Also, some of the most important tools used in this project are mentioned. 

2.3.1 Workflow for Designing Digital Hardware 
When designing digital electronics, following a well-planned workflow will help the designer in 
having an effective process, and ensure that documentation is created and testing/verification is 
performed properly. 

An example of a workflow with examples of tools is given in the following quote: 

1. Specification: Word processor like Word, Kwriter, AbiWord, Open Office. 

2. High Level Design: Word processor like Word, Kwriter, AbiWord, for drawing waveform 
use tools like waveformer or testbencher or Word, Open Office. 

3. Micro Design/Low level design: Word processor like Word, Kwriter, AbiWord, for 
drawing waveform use tools like waveformer or testbencher or Word. 

4. RTL Coding: Vim, Emacs, conTEXT, HDL TurboWriter 

5. Simulation: Modelsim, VCS, Verilog-XL, Veriwell, Finsim, Icarus. 

6. Synthesis: Design Compiler, FPGA Compiler, Synplify, Leonardo Spectrum. You can 
download this from FPGA vendors like Altera and Xilinx for free. 

7. Place & Route: For FPGA use FPGA' vendors P&R tool. ASIC tools require expensive P&R 
tools like Apollo. Students can use LASI, Magic. 

8. Post Si Validation: For ASIC and FPGA, the chip needs to be tested in real environment. 
Board design, device drivers needs to be in place. 

Quote 3 – design and tool flow (21) 
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As the specification and high-level design was already given in (1), this project concentrated on 
low-level design, RTL coding and testing.  The author of this thesis was unfamiliar with 
hardware development, hence it was not easy to estimate how much time was needed to set up a 
development environment, learn Verilog and implement features. Thus, it was decided that the 
module should be implemented according to the original specification at first, and then 
improvements and new features should preferably be introduced at a later stage according to 
available time. 

Sample code for a tutorial module was used as a framework for syntax, tab spacing etc, and it 
also demonstrated communications with the APB and a testbench. Although this code was not 
directly usable for the TMU, it was utilized as a starting point when a new language had to be 
learned in short time.  

Automatic tests have been used extensively in this project. There are several benefits of 
developing thorough test programs, as described in 7.1. Figure 7 illustrates the workflow used in 
this project. 

 

Figure 7 – development process used in this project 
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2.3.2 Workflow with Atmel’s Tools 
Substantial configuration and setup is needed to create a hardware module and integrate it with 
an existing microcontroller, and possibly synthesize it to run on an FPGA. Unfortunately, most of 
the procedures and tools will differ between projects and hardware configurations. The tools 
and procedures used in this project are provided by Atmel Corporation, and the information 
about the procedures, scripts, tutorials and some tools is confidential and cannot be published in 
this report. Also, one would need assistance from several people to be given necessary access, so 
cooperation with Atmel is needed in order to continue the work of this project in any case. 

However, a brief overview of the tools and procedures used in this project is provided here. 
Hopefully, this can be used as a starting point for students continuing to work on this project. 

Atmel has an internal tutorial for creating a module connected to the APB on UC3. Although the 
guide does not go into any details, it provides some key information about where some of the 
necessary tools are located, and hints about where to look for more information. As the tutorial 
is far from complete, assistance from the experts at Atmel is needed to complete implementation 
of the module. Also, the tutorial does not provide anything related to describing the hardware 
using Verilog – only an overview of steps related to workflow. 

Setup of tools and environment 
The following presents a more concrete list of required actions to perform the steps of the 
workflow given in 2.3.1 when using Atmel’s tools and equipment. 

1. User account needs to be set up with correct permissions, SVN access, and internal Atmel 
modules need to be activated. 

2. Check out stand-alone tree 
3. Write code for module 
4. Compile the module 
5. Create testbench and tests in Verilog 
6. Run tests and verify that module works properly stand-alone 
7. Check out a project containing complete module 
8. Extend “modules file” to include your own module 
9. Run avr32-checkout to get necessary files 
10. Use PartTool to create XML file for module 
11. Run PartTool for complete microcontroller to configure it and include XML file for 

module 
12. Run generate scripts to generate various header files, Verilog files and so on 
13. Modify necessary files describing interconnections in device, instantiation of modules, 

clock signal distribution etc. 
14. Simulate the complete microcontroller with integrated module 
15. Create tests in C for testing module integrated with UC3 
16. Run tests and verify that the module works properly as an integrated UC3 module 
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Some of the most used tools are described in the following. This is provided as a starting point 
for exploring the tools involved in the workflow. For a full description, consult the respective 
user manuals. 

Synopsys Verilog Compiler (VCS) 
When the module itself has been implemented using Verilog, it is possible to compile it to an 
executable that will simulate the hardware by using VCS. In order to get output from the module, 
input data needs to be provided. A testbench is normally used to generate input data and verify 
output data. The output data can be displayed on the terminal, and all signals are stored in a 
database so that they can be displayed in a waveform displayer (described next). The same 
program can be used to simulate a complete microcontroller with the module integrated. 

Discovery Visualization Environment (DVE) 
To study all internal signals and values, DVE provides a graphical user interface that can read the 
database output of the VCS compiler and display waveforms of signals of the user’s choice. 
Various forms of debugging are available, such as tracing of signal drivers and loads. 

Spyglass 
Spyglass can generate a graphical view of the physical units and interconnections that would be 
generated from the Verilog files, and also give useful warnings and hints of possible problems in 
the code. This tool is useful to inspect the result of the code, and for instance discover 
unnecessary latches resulting from mistakes. 

PartTool 
PartTool is an internal Atmel tool which can generate and modify XML files containing metadata 
about modules and complete microcontrollers. For instance, all registers and bit fields of a 
module can be described using this tool, and various parameters can be set. The XML files output 
from this tool are then used to generate several support files for the complete microcontroller, 
see the next section for a more detailed description. 

“Generate” scripts 
A microcontroller contains a vast amount of registers belonging to various modules and a lot of 
interconnections between them. To make the process maintainable, much of the Verilog code 
describing interrupt lines and memory maps are automatically generated from the XML files 
describing the module. Also, C header files including register definitions are automatically 
generated. These support tools reduces both development time and the occurrence of errors 
from manually maintaining such files. 
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2.4 Verilog for C Programmers 
This section is not intended to be a full guide for learning Verilog, but rather an introduction for 
programmers familiar with C or similar languages, which will likely be the case for students 
continuing the work of this project. Some barriers and new concepts a C programmer is likely to 
meet are described here, as the main focus is on what the author of this thesis found challenging 
when learning to develop digital hardware. (21) provides a tutorial, and for a reference manual 
which describes the exact syntax and semantics of the language see (22). 

Verilog is a hardware description language (HDL) used to model electronic circuits by describing 
their behavior. The language can be used in many of the development stages of an electronic 
system. An important part of the design process is implementing the system in Verilog code, 
which can later be simulated and tested in the verification stage. Test programs and a testbench 
can also be written in Verilog. By synthesizing the code, the system can eventually be 
implemented in e.g. an FPGA or ASIC. 

A C programmer will find some of Verilog’s syntax familiar. The language is case-sensitive, 
includes a basic preprocessor with e.g. `include and `define statements, equivalent control 
flow keywords (if/else, for, while, case etc.) and compatible operator precedence (23). As 
an example of the differences between the languages, blocks of code are demarked with 
begin … end in Verilog instead of { … } as in C. 

To support encapsulation and modularization of a system, Verilog provides the possibility to 
organize the code into a hierarchy of modules. Modules communicate with other modules 
through ports, which can be declared as inputs, outputs or both, and constitute the module’s 
interface. The internal behavior of a module is defined using internal net or register definitions 
and concurrent or sequential statements. A module can also instantiate other modules. Verilog 
supports tasks and functions which are analog to procedures and functions, respectively, in 
programming languages. 

What is written in Verilog is often intended to eventually translate to a set of basic electronic 
circuits (flip-flops, latches, registers, gates etc) and their interconnections. Thus, one should 
keep in mind that the synthesizer will try to recognize patterns in the code that corresponds to 
the various components, and follow conventions and best practices when writing code.  

As for the semantics, or the meaning of statements in the code, there are some important cases 
where HDLs differ from programming languages, which are described in the following sections. 

2.4.1 Data Types and Storage Elements 
Most data types in Verilog can store four different basic values (22): 

• 0: logic zero, or a false condition 
• 1: logic one, or a true condition 
• x: unknown logic value 
• z: high-impedance state 

To store useful information or sets of logical values, it is possible to declare registers which store 
a given number of such values, or arrays of the different data types. A net or variable declaration 
(see next paragraph) is 1 bit wide per default, but can be extended by specifying a range, which 
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makes a vector. The vector definition consists of two constant expressions, representing the 
most and least significant bits. 

Two main groups of data types exist: nets and variables. Nets represent physical connections 
between structural entities, and shall (in most cases) not store a value. The value of a net will be 
determined by its drivers, which could for instance be continuous assignments. The basic net 
type is called wire. Various other nets exist, providing the possibility of modeling wired logic. 

Variables represent data storage elements, which will store their values between assignments. 
Variable types include reg (registers) and integer. As the name indicates, a reg can be used 
to model a hardware register, but can also represent combinational logic. An integer is a 
general-purpose variable used for manipulating quantities that are not regarded as hardware 
registers, but shall be assigned values in the same manner as reg (22). 

2.4.2 Assignments 
There are two basic kinds of assignments in Verilog; continuous and procedural. Both have 
conceptual differences to assignments in programming languages that one should be aware of. 
In brief, continuous assignments drive nets and are evaluated and updated whenever an input 
operand changes value, while procedural assignments update the value of variables according to 
the control flow elements that surround them (22). Continuous assignments are used to model 
combinational logic, while procedural assignments also can model sequential logic. 

Continuous assignments connect a net data type to an expression, in practice, an output of a 
combinational circuit. In C, an expression like x = 3 + y; would store the value of y at the 
time of evaluation increased by 3 into x, but the similar Verilog continuous assignment 
assign x = 3 + y, makes x always equal 3 + y, that is, x gets updated whenever y 
changes.  

In contrast, a procedural assignment puts a value into a variable, which will store the value until 
a subsequent assignment to that variable occurs. This behavior is similar to what a C 
programmer would expect, with non-blocking assignments as an important exception, explained 
below. Procedural assignments occur within procedures such as always, initial, task or 
function, and will be evaluated or “triggered” when control flow reaches that statement (22). 

A procedural assignment can either be blocking (=) or non-blocking (<=). In sequential code 
blocks, a blocking assignment will be executed before the following statement is executed, just as 
in C. In the following example, assume that a initially contains the value 2. 

a = a + 1; 
b = a; 
a = a – 2; 

Code 1 – blocking assignment example 

When the code is executed, a will first increase to 3 and b will then copy the same value. Finally, 
a will decrease to 1. In the end, a contains 1 and b contains 3. 

In contrast, a code block of non-blocking assignments are evaluated in two steps when 
simulating. The first step evaluates all the right-hand-sides and the last step stores the results to 
the left-hand-sides. This means that they can be considered as executed in parallel, and that the 
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right-hand-sides always use the “previous” value of the variables. This manner of operation 
resembles the operation of for instance actual flip-flops. The following example demonstrates 
how two values can swap without using a temporary variable, as one would have needed to 
accomplish the same in C. 

a <= b; 
b <= a; 

Code 2 – non-blocking assignment example 

After this, a and b would have swapped values. 

2.4.3 Creating Clocked Logic with the Always Construct 
One important control construct is the always construct.  It executes a statement repeatedly, 
with a possible event that needs to occur before each execution. This construct is often used to 
create clocked, or synchronous, sequential logic. Assuming the existence of a clock signal, the 
event used to let the statement execute is the clock signal changing value. One can specify 
whether the transition is high to low (negedge) or low to high (posedge). It is also common to 
include reset logic, as illustrated in the example below. 

always @(posedge clk or posedge reset) begin 
 
 if (reset) 
  count <= 0; 
 
 else begin 
 
  if (psel && penable && pwrite && (paddr[5:0] == COUNT)) 
   count <= {buffer, wdata} + 1; 
 
  else 
   count <= count + 1; 
 
 end 
 
end 

Code 3 – clocked logic example 

This example sets count to 0 if the reset signal is active (high). Otherwise, it checks various 
control signals and a part of an address bus to determine whether count is to be set from the 
concatenation of buffer and wdata plus 1, or simply increased by 1. This could correspond to 
a series of clocked flip-flops (register) with asynchronous reset and an input multiplexed 
between the output of an adder connected to the register output, and an adder connected to a 
data bus and a buffer. 

2.4.4 Timing 
There are several ways to specify timing requirements in Verilog, although not all are 
synthesizable. When describing synchronous logic, a clock signal is often used to ensure that 
operations happen simultaneously, and to represent time. The simple statement  
always @(posedge clk) if (e) q <= d; models a flip-flop with enable signal, which is 
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enabled with the e signal and lets q store the value d had in the previous clock cycle. Note that in 
clocked statements, the right hand side represents the state of the system just before the clock 
edge, while the left hand side determines where the result is to be stored right after the clock 
edge. 

One can also wait for an event to happen just once, by using the @ operator. @(negedge 
clock) halts execution until the next negative clock edge, which can be useful when needing to 
introduce delays. It is also possible to wait for a statement to be true, using wait. wait(x == 
2) halts execution until x equals 2. 

Finally, it is possible to delay execution by a number of simulation time units by using # and the 
number of units, for instance #1 x = y; will delay one time unit before the statement is 
executed. This can for instance be useful when having to ensure that a statement is not executed 
at the instant the clock signal changes state in a testbench. 

2.4.5 Parallel Execution 
It is important to remember that many of Verilog’s statements execute in parallel, and to avoid 
race conditions. For instance, specifying several clocked blocks implies that they are all executed 
every clock cycle, and by using the non-blocking assignment operator, many assignments 
happen at the same instant. 

Race conditions occur if several assignments to the same variable happen at the same moment. 
By only manipulating a register in one always-block, as suggested in 2.4.8, it is easier to verify 
that only one of the assignments can happen at once. 

2.4.6 Synthesizable and Non-Synthesizable Constructs 
Not all constructs are possible to synthesize, that is, to be used to generate hardware. For 
instance, the initial construct runs only at the beginning of a simulation, and can be used to 
initialize values in a test bench, but cannot be used to define initial values in a real hardware 
product. To accomplish this, reset signals must be used. 

Synthesis tools may ignore non-synthesizable constructs or return an error. Which constructs 
are synthesizable or not depends on the tool in use. 
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2.4.7 Modules and Encapsulation 
Modules provide encapsulation of entities in the system, and can for instance be used for 
partitioning a unit containing a vast amount of logic into several smaller, manageable modules. 
The interface of a module is defined by its ports, which can be of type input, output or both. A 
module is defined by the module keyword and its name, and its ports are listed in a way that 
resembles parameters in C functions. A module can contain tasks and functions in addition to its 
logic statements, and can be regarded as a construct similar to object-oriented programming 
languages’ classes. 

The following example defines a simple module with one input and one output, and all it does is 
to invert the input signal. After reset, the output of the module is 0. This module could further be 
instantiated in another module. 

module invert (clock, reset, i, o); 
 input clock; 
 input reset; 
 input i; 
 output o; 
 
 reg o; 
 
 always @(posedge clock or posedge reset) begin 
  if (reset) o <= 0; 
  else o <= ~i; 
 end 
 
endmodule 

Code 4 – module example 

2.4.8 Best-practices and Guidelines 
The following list consists of best-practices that were given in tutorials or by Atmel’s personnel 
while the author was learning Verilog. 

• Only manipulate a register in one always-block 
• Use non-blocking assignments in clocked logic 
• Use blocking assignments in combinational logic 
• Do not mix synthesizable code with test-code for simulation 
• Follow internal  code guidelines, if such exist 
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3 Originally Proposed Specification of the TMU 

3.1 Introduction 
The Time Management Unit (TMU) is a hardware unit intended to keep record of a task’s total 
execution time. It can also interrupt a running task when its execution time budget is depleted. It 
offers the possibility of low overhead execution time monitoring, as it has built-in 64-bit 
registers and can store a task’s total execution time without the need for extra computations in 
the CPU. It also supports atomic swapping of values between the currently running task and the 
next task. 

3.2 Specification and High-level Design 
The paper “Functional specification for a Time Management Unit” (1) has been used as a 
foundation for the intended behavior of the TMU. In addition, a specification written by the same 
author in SystemC was used to elaborate the desired manner of operation. The author of this thesis’ 
interpretation of these documents is given in this section. Figure 8 illustrates the intended 
connection between the CPU core and the TMU. 

 

Figure 8 – connection between UC3 core and TMU (1) 

Two registers, COUNT and COMPARE, are essential for the TMU. The COUNT register is initially 
0, and increases by 1 every clock cycle. It is intended to keep track of the number of clock cycles 
used by the active task. COMPARE contains a user-defined value, and when COUNT reaches this 
level, an interrupt signal is asserted. COMPARE is used to represent a budget of clock cycles for 
the active task, and the TMU will interrupt the processor when a task’s budget is depleted to let 
the run-time system take appropriate action. When a task is interrupted or blocked and another 
task is resumed, COUNT and COMPARE are intended to be loaded with the new task’s values as 
a part of the context switch, and the previous values are stored together with the previous task’s 
context. 

The registers are 64 bits wide to be able to contain the total running time of a task. The 
maximum value COUNT can take is 264 > 1,8 ∗ 1019, hence a task will be able to run thousands 
of years at reasonable clock frequencies before the registers overrun. Because of the APB data 
bus is 32 bits wide in UC3, the values have to be transferred in two parts. Each 64-bit register is 
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therefore divided into a high and low part, which appears as two 32-bit registers to the CPU 
core. 

Both registers have their corresponding swap registers which are intended to offer atomic 
operations for exchanging new COUNT and COMPARE values with previous ones when 
switching tasks. First, the SWAP_COMPARE value is written. After the SWAP_COUNT value 
subsequently has been written, the values in the COUNT and COMPARE registers are swapped 
with their respective swap registers. Thus, the previous value of the primary registers are stored 
in the swap registers in the same clock cycle as they get updated by new values, and are ready to 
be read back to be stored into the previous task’s context. The primary COUNT and COMPARE 
values can also be accessed directly if desired, as these registers are available on the TMU’s 
external interface. 

Because of the rapid changes to COUNT, the lower part is stored in a buffer when the high part is 
read. This ensures that the value returned is as close as possible to COUNT’s value when the 
read instruction was issued. It also avoids that an invalid value is returned in the case of an 
overflow of the low part happening between reading the high and low part. COMPARE is 
specified to use the same buffer, although this register can only be modified by the user and thus 
will not change between reads. 

When writing to the high part of COUNT or COMPARE, the value is stored in the same buffer. 
Then, when writing to the low part, the written value is stored together with the buffered value 
into the destination register. This ensures that the entire registers are updated at the same 
instant, which could otherwise lead to unintended interrupt signals being generated or 
corruption of the counter value. 

As the buffer is shared between COUNT and COMPARE, and is used for both reading and 
writing, it is important to complete an operation with one register before accessing other 
registers in the module. 
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3.2.1 Context Switch Code Example Explained 
An example of how a context switch including the swap operation could be performed was given 
in (1), however few comments were given. Also, the author of this thesis discovered some bugs 
in the example, and suggested an optimization as well. The updated code was developed by 
Gregertsen in cooperation with the author of this thesis, and is explained in this section. 

Table 1 – explanation of context switch 

Store address of running thread in R9 
lda.w r8, running_thread Load address of running thread’s context 
ld.w r9, r8[0] Dereference pointer 

 
Save CPU context of running thread 

sub r9, -(CONTEXT_SIZE + 4) Makes space for context  
stm --r9, r0, r1…r7, sp, lr Store CPU context 
mfsr r0, SYSREG_SR Copy system register 
st.w --r9, r0 Store system register to context 

 
Store address of first thread in R1 

lda.w r1, first_thread Load address of first thread’s context 
ld.w r2, r1[0] Dereference pointer 
st.w r8[0], r2 Set running_thread to first thread 

 
Do TMU context switch 

mov r8, TMU_SWAP_COUNT_HI Load address of first swap register 
ld.d r4, r2++ Load TMU context of first thread 
ld.d r6, r2++  
st.d  r8++, r4 Store TMU context to TMU 
st.d  r8++, r6  
ld.d  r6, --r8 Load TMU context of previous thread 
ld.d  r4, --r8  
st.d  --r9, r6 Store TMU context to previous thread’s context 
st.d  --r9, r4  

 
Load CPU context of first thread 

mov r9, r2 Copy pointer to first thread to R9 
ld.w r0, r9++ Load system register from context 
mtsr SYSREG_SR, r0 Restore system register 
sub pc, -2 Increment program counter 
ldm r9++, r0, r1…r7, sp, pc Restore CPU context 

 

 

Note that the next thread that is scheduled to run is called first_thread, because it is first in 
the ready queue. Also, note the distinction between “context”, “CPU context” and “TMU context”. 
The first refers to CPU and TMU context together, which is stored in memory. “CPU context” 
refers to the normal context of a task, while “TMU context” means the COUNT and COMPARE 
registers of the TMU.  
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3.3 Implementation of the TMU 
The TMU is an independent module connected to the microcontroller’s bus. Originally, the High 
Speed Bus (HSB, or AHB) was proposed. As discussed in 8.2.1, the slower Peripheral Bus (PB, or 
APB) was chosen partly because of its simplicity. By implementing the TMU as an independent 
module connected to this bus, it is simple to integrate on any processor using the AMBA APB 
interface. 

3.3.1 Interface Registers 
4 registers of 64 bits width should be user accessible; COUNT, COMPARE, SWAP_COUNT and 
SWAP_COMPARE. These were implemented as the reg type, that is, their values should be 
retained between assignments in Verilog. Each register has a width of 64 bits, with the MSB and 
LSB given as named constants. 

reg [HI_MSB:LO_LSB] count, compare, swap_count, swap_compare; 

Code 5 – register definitions 

These registers are memory mapped and accessed through the APB interface, described in 3.3.6. 
As the APB data bus is 32 bits wide, two accesses are needed to read or write the 64-bit 
registers.  This has to be done in the correct order, because of the buffer described in 3.3.2 and 
swap functionality as described in 3.3.4. 

3.3.2 Internal Buffer 
As described in section 3.2, some of the 64-bit registers need a buffer to store a value between 
their two 32-bit accesses. This was implemented by using a shared buffer for all registers, and 
thus it restricts the user from accessing the high part of a register and then accessing another 
register before completing the first access by reading from or writing to the low part of that 
register. 

When writing to the high part of one of the registers that needs buffering, the value is actually 
written to the internal buffer. On a subsequent write to the low part of the register, the 
concatenation of the buffer and what was written to the low part is stored in the target register.  

Writing of the COMPARE register is used as an example below, as the COUNT register has 
additional side-effects (described in following sections). The offsets are parts of a case statement 
in a clocked code block, with a part of the APB address bus as input. In the code below, data is 
buffered when writing the high part, then both the buffer and the written value is stored when 
writing the low part. 

COMPARE_HI: 
 buffer <= wdata;  
 
COMPARE_LO: 
 compare <= {buffer, wdata}; 

Code 6 – buffering registers on writes 
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Reads are carried out in a slightly different manner. When the high part of a buffered register is 
accessed, its value is immediately put on the bus, and the low part is stored into the buffer 
simultaneously. This ensures that both the high and low part of the read value are from the same 
instant.  The first example below displays the clocked write to the buffer that occurs when the 
high part is read: 

COMPARE_HI: 
 buffer <= compare[LO_MSB:LO_LSB]; 

Code 7 – buffering registers on reads 

The next example indicates how the high part is put on the bus when reading. Note that this is a 
combinational statement (this is not obvious as the context of the statement is not shown here). 
The buffering in Code 7 and the output of data to the bus in Code 8 are performed at the same 
time. 

COMPARE_HI: 
 prdata = compare[HI_MSB:HI_LSB]; 

Code 8 – putting data on bus 

When the low part then is accessed, it is actually the contents of the buffer that is put on the bus: 

COMPARE_LO: 
 prdata = buffer; 

Code 9 – putting buffered data on the bus 

3.3.3 Increasing COUNT Value 
In most clock cycles, the COUNT register is simply increased by one by using the clocked 
statement count <= count + 1;. However, if the user is writing to the low part of the 
counter at that instant (that is, the APB is in its ENABLE state and the low part of the COUNT 
register is addressed), COUNT is instead loaded with a concatenation of the buffer and data on 
the data bus. The same block of code handles both normal increasing of the counter and writing 
to it from the APB. The reason of handling these different actions in the same block is to make it 
easy to verify that race conditions cannot occur, as detailed in section 2.4.5 and 2.4.8. Readability 
can suffer when scattering code related to the same feature, in this case, the APB. However, in 
these cases a comment is written explaining that the read or write is handled in a separate block. 

The counter block is implemented as follows (the reset logic is removed and signal names are 
abbreviated for brevity and readability): 

always @(posedge clk or negedge rst) begin  
 (Reset logic) 
 
 if (psel && penable && pwrite && (paddr[5:0] == COUNT_LO)) 
  count <= {buffer, pwdata};  
 else 
   count <= count + 1; 
end 

Code 10 – incrementing counter 
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Note that in order to avoid the counter from having the same value for a task in two clock cycles, 
which would effectively be equivalent to “losing” one cycle for a task, the value written back to 
the counter must be increased in software. 

3.3.4 Swapping Values Atomically 
The atomic swapping of the registers COUNT and COMPARE with SWAP_COUNT and 
SWAP_COMPARE, respectively, is to be triggered when writing to the low part of 
SWAP_COUNT. The code for implementing the swapping operation is simply as follows: 

SWAP_COUNT_LO: begin 
 compare <= swap_compare; 
  swap_compare <= compare; 
 
 count <= {swap_count[HI_MSB:HI_LSB], pwdata}; 
  swap_count <= count; 
end 

Code 11 – atomic swapping of registers and increasing of count value 

As this is a sequential block where statements are executed in parallel, values can easily be 
swapped simultaneously without using temporary registers. This makes good use of the parallel 
properties of digital hardware. The COUNT register is loaded with the concatenation of the high 
part of the SWAP_COUNT register, and the value currently on the data bus. 

3.3.5 Interrupt Signal 
In each clock tick in the SystemC specification, COUNT is compared to COMPARE, and the 
interrupt signal is set if COUNT is equal to or greater than COMPARE. The interrupt signal goes 
low as soon as the condition no longer is true. 

The interrupt signal was implemented as a simple combinational statement: 

assign irq = count >= compare; 

Code 12 – interrupt signal generation 

This way, the interrupt signal will always reflect the relation between the two values, and be 
reset as soon as COUNT becomes less than COMPARE. This is not necessarily ideal, as the user 
has no control over how long the interrupt signal stays active. If the condition would become 
true during a context switch which blocks interrupts, the condition could become false after the 
values were updated, and thus not be handled. A task could then overrun its budget without the 
necessary damage control being performed before the next time the task was scheduled to 
execute. 

The statement could have been made combinational, by letting a register drive the interrupt 
signal, but this would delay the interrupt triggering by one clock cycle. By using a continuous 
assignment, the signal would be set at the same clock cycle as when the condition became true. 
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3.3.6 APB Interface 
Because of the 32-bit data buses of the APB interface, each 64-bit register needs to be split in 
two parts; high (HI postfix) and low (LO postfix); when being accessed externally. 

To follow the APB protocol (9) for read transfers, data from the registers had to be available in 
the same clock cycle as the PENABLE signal went high. As the signal is not specified to be 
available at the beginning of that clock cycle, combinational logic (without using the clock signal) 
had to be used for implementing APB read transfers. At the same time, reading from some of the 
registers should have the side-effect of storing the low part in a buffer, and as a consequence, 
these parts needed to be implemented using clocked logic. Hence, the implementation of APB 
reading was split in two parts. 

The following code block displays the clocked storing into the buffer, and the next block 
illustrates the more conventional reading of each register using combinational logic.  

always @(posedge clk or negedge rst) begin  
 
 (Reset logic) 
 
 if (psel && penable) begin 
 
  (Code for APB write - Code 15) 
 
  if (~pwrite) begin // APB Read 
 
   case (paddr[5:0])  
 
    COMPARE_HI: 
     buffer <= compare[LO_MSB:LO_LSB]; 
 
    COUNT_HI: 
     buffer <= count[LO_MSB:LO_LSB]; 
 
   endcase 
 
  end 
 
 end 
 
end 

Code 13 – clocked storing to buffer 
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always @(*) begin 
 
 prdata = 32'b0; 
  
 if (psel && penable && ~pwrite) begin // APB Read 
 
  case (paddr[5:0])  
 
   COMPARE_HI: 
    prdata = compare[HI_MSB:HI_LSB]; 
 
   COMPARE_LO: 
    prdata = buffer; 
 
   COUNT_HI: 
    prdata = count[HI_MSB:HI_LSB]; 
 
   COUNT_LO: 
    prdata = buffer; 
 
   (Similar code for swap registers, without using the buffer) 
 
  endcase 
 
 end 
 
end 

Code 14 – combinational reading of registers 

Note that the default value of the read data bus is set to be 0 for all bits. As the bus is 
implemented as a wired-OR, setting the data output bus to 0 in effect releases the bus so other 
modules can use it. 

Another interesting aspect is that even though the APB bus goes through several states before 
the transfer is started, the TMU does not need to use state machines to conform to the 
specification – it merely reacts when the necessary signals have their correct states. If all other 
control signals are as required, the address bus is used to choose which action to take upon in 
the case statement. 
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Write transfers were implemented purely as clocked logic, as all resulted in one or more values 
being stored. 

always @(posedge clk or negedge rst) begin  
 
 (Reset logic) 
 
 if (psel && penable) begin 
 
  if (pwrite) begin // ABP Write 
 
   case (paddr[5:0])  
 
    COMPARE_HI: 
     buffer <= pwdata; 
 
    COMPARE_LO: 
     compare <= {buffer, pwdata}; 
 
    COUNT_HI: 
     buffer <= pwdata; 
 
    COUNT_LO: 
     ; // Handled in separate block 
 
    SWAP_COMPARE_HI: 
     swap_compare[HI_MSB:HI_LSB] <= pwdata; 
 
    SWAP_COMPARE_LO: 
     swap_compare[LO_MSB:LO_LSB] <= pwdata; 
 
    SWAP_COUNT_HI: 
     swap_count[HI_MSB:HI_LSB] <= pwdata; 
 
    SWAP_COUNT_LO: 
     (As shown in section 3.3.4) 
 
   endcase 
 
  end 
 
  (Code for APB read - Code 13)  
 
 end 
 
end 

Code 15 – APB write transfers 

Note that the code for writing the COUNT register is not implemented here, but handled in its 
own block. The reason is to avoid race conditions, where the APB write code would try to set the 
counter to the new value written, and the counter increase code would try to increase the 
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counter. By keeping all code for writing to the counter register in one place, it is easy to use 
control flow constructs to ensure that only one write takes place every cycle. 

Of course, logic for ensuring that only one of the statements would be active at one time is 
required in any case, but the way it is implemented here makes it simpler to verify that only one 
of the assignments would be active at any instant. 
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4 Improvements to the Original Specification 
During the project, new ideas and opinions about potential for improvement appeared, and the 
specification was improved and extended with new features. Also, where the level of detail of the 
specification was insufficient, appropriate choices were taken and the specification updated. After 
the introduction, each proposed improvement is described in its own section. For the improvements 
that were implemented in this project, details and discussion about the implementation is then 
given. An explanation of why the improvement was not implemented is given for the others. But 
first, some arguments and background information is given to explain the choices taken. 

4.1 Introduction 
The original specification (1) of the hardware TMU was written by the author who is working on 
implementing timing event and execution time control features for Ada 2005 on the UC3 
architecture (10), thus the original TMU specification is tailored for these needs. However, the 
author of this thesis is of the opinion that the TMU should be created for a more general usage, 
as the module is intended to become a part of the commercially available UC3 series. To increase 
the probability for this to happen, changes to the original specification were made so that the 
TMU could be used in a more versatile way. Another important aspect is that if the TMU is to be 
a part of UC3, its user interface should be in accordance with other existing modules. A user 
accustomed to other modules of the UC3 should not have to meet any big surprises while using 
the TMU. Finally, the module should appear transparent to a user who is not using it or even 
knowing about its existence. That means it should not start counting (which would consume 
unnecessary power) or generate interrupts (which would disrupt system behavior) if the user 
has not explicitly activated the module. 

Hence, status and interrupt control registers were introduced, and counting and interrupts were 
disabled as default. These changes make the TMU non-intrusive and unnoticeable to any user 
not intending to use the module, and can reduce power consumption.  

Also, some improvements were introduced to make the module more efficient in several ways. 
To reduce die area, an unnecessary buffer was proposed to be removed for reading of the 
COMPARE register. Overhead of context switching can be reduced by not reading the COMPARE 
value back. Also, a quick mode was proposed for applications only needing 32-bit registers. A 
counter overflow interrupt was introduced. Writes to the counter were automatically increased 
by one, which would save one operation in software for every context switch. 

Finally, some new features and additional details to the specification were suggested. The clock 
source was tied to the APB clock, which can run at the same frequency as the CPU. The ordering 
of registers was given special attention due to 64-bit operations of the UC3 core. An option for 
giving a relative compare value was suggested. Interrupt flags that were valid before a swap 
would be copied and cleared, to make the state of the TMU fully consistent with the active task 
while still giving the user the ability to inspect the previous task’s state. 

The module still needs to support the work of implementing the intended features for 
Gregertsen and Skavhaug’s research in the best way possible. Fortunately, by keeping a frequent 
discussion with the author of the original specification during the work of implementing the 
module, improvements and extensions to the specification were made possible while ensuring 
that the module would still support the ongoing research as planned. 
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4.1.1 UC3-flavor Registers and Default Behavior 
The TMU, as originally specified, would start running as soon as it received a clock signal, and 
generate an interrupt when the counter reached the maximum value of a 64-bit integer because 
of COMPARE’s default value. Although the interrupt in practice only would occur after 
thousands of years at a few hundred MHz, it is not desirable that a part of the system generates 
interrupts uncontrolled. Furthermore, there could be situations where the TMU would be used 
without any interrupts being desired. Also, running the counter as the default action before any 
user interaction would cause unnecessary power consumption. 

Other modules of the UC3 series feature a set of configuration and control registers, which 
constitutes the user interface. There is no strict system or guidelines for which registers should 
exist or even how they should operate, due to the variety of functionality and origin of the 
various modules. For instance, the status register of some modules are automatically cleared 
when read, while other modules need a status clear register to be written for the same action to 
be performed. In any case, having a set of configuration registers similar to other comparable 
modules is an advantage, both because of the need to enable or disable the module and perform 
various configuration and control, and to make the TMU easy to use for users confident with 
other UC3 modules. 

Having no strict requirements for the configuration and control registers is an advantage in the 
sense that one can choose the manner of operation as it best fits the purpose. In some 
circumstances, the choice might seem arbitrary, if there are no obviously best ways of 
implementing these registers. In these cases, the Timer/Counter module of the UC3L (17) has 
been employed as a basis. For instance, the TMU will be enabled and disabled using a special 
control register, similar to the Timer/Counter. 

4.1.2 Atomic Operations 
As described in the next sections, only a status register and an interrupt mask register will 
physically be present in addition to the existing registers of the TMU. However, by implementing 
these registers with read/write access, the module can suffer from problems due to more than 
one thing happening at the same time. 

For example, assume that the software interrupt handler is active because an interrupt condition 
occurred. The software would read the status register to determine which interrupt condition 
was satisfied and then want to clear the interrupt flag. Now, if another interrupt happens, the 
software would still only know about the first interrupt that should be cleared, and assume that 
the other flags still were inactive. Thus, when writing back the value of the status register, both 
interrupts would be cleared instead of the intended one, and the latest interrupt could 
inadvertently go unnoticed. 

Creating “registers” with special behavior can omit this problem. By using a read-only status 
register and a corresponding write-only status clear register, the software can clear the wanted 
bits by writing a ‘1’ to the corresponding bits in the latter, and leave the other bits unchanged by 
writing a ‘0’ to them. Similarly, special registers for enabling and disabling interrupts can be 
created. 

Of course, these extra registers will not be implemented as physical registers requiring extra 
area in the module, but merely exist as logic manipulating the existing registers as a reaction to 
special addresses  being accessed as a part of the user interface. 
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4.2 Overflow Interrupt 
As originally specified, the TMU would generate an interrupt as long as the counter value was 
equal or greater than the compare value. Overflows were not accounted for, so the user would 
have to take care of this in software if necessary.  

An overflow interrupt source was added, which is activated once the counter reaches its 
maximum value. As the module now got two sources of interrupts, a status register was created 
to indicate which interrupt was triggered. This is detailed in 4.5. Also, the interrupts can be 
separately enabled or disabled using configuration registers, as described in 4.6. 

The following code is an extract of the clocked code block of the status register. It simply checks 
if the counter equals -1, which is the same binary value as the maximum integer value given 2’s 
complement arithmetic and that COUNT is treated as an unsigned integer. If this condition is 
met, the corresponding flag in the status register is set to one, which will activate an interrupt in 
the next clock cycle if the interrupt and TMU are enabled (as explained in 4.4 and 4.6). There is 
no else construct, which implies that the flag keeps it value if the condition is not met. 

if (count == -1) sr[INT_OVF] <= 1; 

Code 16 – setting overflow flag 

The choice of keeping the value instead of resetting the flag as soon as the condition is not valid 
anymore was obvious, as the flag would be reset in the next clock cycle when the counter 
changed value. That would make it impossible for the software to understand why an interrupt 
was triggered, thus rendering the overflow flag useless. 

As the low-overhead operation and internal storage of 64-bit registers were main features of the 
TMU, taking care of overflows in software would in effect counteract the advantages of the 
module. For applications requiring overflow handling, hardware support of this feature is 
important. Also, the discussion of versatility is valid in this situation – it is wise to expect some 
users to require a common feature like this. This feature is also optional, as described in 4.6, so it 
should not impose any restrictions to the user if it is not desired. 

Since the proposed counter registers are 64 bits wide, one could argue that an overflow never 
occurs in practice, as the counter would run for thousands of years at clock speeds of a few 
hundred MHz before wrapping around. However, as the user is able to specify the counter value 
by writing to its register, an overflow could easily occur if the counter value is set sufficiently 
high, hence a hardware mechanism to handle overflows is still desirable. 
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4.3 Changes to Compare Match Interrupt 
As a new source of interrupts (overflow) was introduced, a mechanism for determining the 
source was needed. Hence, a status flag for compare match was added, as described in 4.5. Also, 
support for enabling or disabling this interrupt source was added, detailed in 4.6. 

The main code for controlling this interrupt flag is shown below: 

if (count >= compare) sr[INT_CMP] <= 1; 

Code 17 – setting compare match flag 

There are some obvious similarities to the code for the overflow flag (Code 16). However, note 
that while the condition for the overflow flag occurs very seldom, and disappears in the next 
clock cycle, the condition for the compare match will be valid until the counter or compare value 
is changed. This will have impact on clearing the interrupt flag, as it might be set again in the 
next clock cycle if the mentioned values are not changed first. 

Also, another change to the original specification is that the interrupt flag remains set until it is 
manually cleared by the user. This makes sense because of the consistency with the control of 
the overflow flag, and the other reasons mentioned in 4.1.1. 

4.4 Enable Flag and Halting of the TMU 
The original TMU was specified to start counting as soon as it received a clock signal. Increasing 
the counter’s value, doing comparisons to the compare register and performing other logic each 
clock period means several transistors switching state, which consumes power. The transistors’ 
switching of state is often the most dominant term of power dissipation in for example CMOS 
circuits (24). 

The enable flag was introduced to cope with this challenge. The flag is required to be set for the 
following actions to happen: 

• Counter increase on every clock edge 
• Compare match (CMP) flag to be set  
• Counter overflow (OVF) flag to be set 
• Interrupt signal to be asserted 

All the mentioned features can be disabled simply by disabling the module, which is done by 
clearing the enable flag. Also, as the enable flag is zero on reset, the TMU is guaranteed not to 
start counting or generate any interrupts before the user explicitly enables the module. 

Some features are still available when the TMU is disabled: 

• Reset 
• Reading from and writing to all registers in the user interface 
• Performing swap operation 

That is, functionality that needs to be specifically initiated by the user is always available, but the 
TMU will not perform any independent actions or change internal state while it is disabled.  
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The various features that are to be disabled when the enable flag is not set simply check the 
value of the flag in the status register (SR): if (sr[SR_EN]), before performing their 
function. The enabling or disabling of the module is done by writing to the write-only control 
register, which contains one bit for disabling (DIS) and one bit for enabling (EN). The code for 
manipulating the enable flag by writing to the control register is as follows: 

CTRL: begin           
 if (pwdata[CTRL_DIS] == 1) 
   sr[SR_EN] <= 0; 
  else if (pwdata[CTRL_EN] == 1) 
   sr[SR_EN] <= 1; 
end 

Code 18 – manipulating the enable flag by writing to the control register 

Note that this code is contained within a case that switches on the APB’s address, and is only 
activated when the control signals for APB write are set. Also, the disable flag overrides the 
enable flag, so if both are written at the same time, the module will be disabled. 

This implementation is chosen mostly because of the desired similarity to other modules in the 
UC3, that is; a read-only status register that contains status bits and interrupt flags, a status clear 
register for the interrupt flags and a control register for performing actions to the module. 

When the module is disabled, all registers are available, and their contents are stored. Hence, it 
is safe to disable the module and re-enable it subsequently. This introduces the feature of halting 
the module. Situations where halting the counter would be desirable might arise. For instance, 
when handling interrupts, the software could simply halt the TMU if the execution time of 
interrupt service routines (ISRs) should not be taken into account. Of course, the TMU’s state can 
be stored before and restored after the ISR, but this would require several transfers over the 
bus. 

Having the possibility to enable and disable the module is also an advantage in the sense that 
this is a common feature of similar modules of the UC3 (17). 

4.5 Status Register and Status Clear Register 
The status register both reflects the state of several features (two interrupt flags and the enable 
flag), and is manipulated by a variety of sources (reset, write to control register, write to status 
clear register, write to swap register, and interrupt conditions). Instead of describing the 
manner of operation of all these elements in this section, some are described in their own 
sections. This section will only give a summary of the status register, and a description of the 
status clear register. 

As the TMU would be able to generate more than one interrupt as described in 4.2 and 4.3, a 
read-only status register containing a flag for each interrupt source was implemented. In 
addition, an enable flag was added as described in 4.4. A separate status clear register was also 
created, because of the reasons given in 4.1.2. Only the interrupt flags can be cleared by this 
register. The enable flag can be manipulated by using the control register described in 4.4. 

The status clear register is implemented as shown in Code 19. This code simply checks for bits 
set to 1 in the positions corresponding to each interrupt in the data that was written, and sets 
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the flags in the status register to 0 accordingly. Because an interrupt condition could occur the 
same clock cycle, and then should have priority, this is checked first. This avoids a possible race 
condition. Note that the bits written to 0 imply no change. 

SCR: begin 
 if (!(count >= compare) && pwdata[INT_CMP]) 
  sr[INT_CMP] <= 0; 
 if (!(count == -1) && pwdata[INT_OVF]) 
  sr[INT_OVF] <= 0; 
end 

Code 19 – clearing status register 

Other ways of clearing the interrupt status flags could have been chosen. First, the interrupt 
flags could automatically be cleared when the status register was read. That would save the user 
from having to write to the status clear register, and thus be a little more effective. An argument 
for not doing any changes to the register when it is read is that this would effectively imply a 
side-effect of a read. Reading registers is usually expected to not have any side-effects, and this 
could cause problems when for instance using a debugger that automatically reads registers in a 
module.  

Second, the status flags could also have been cleared automatically when the condition was no 
longer satisfied. However, that would be inconvenient for the overflow flag, as it would be 
cleared right after it was set, as mentioned in 4.2.  

Finally, writing to the status register could be allowed, but this solution has the inherent 
problem with the possibility of race conditions, as described in 4.1.2. Therefore, having a 
separate status clear register turns out to be the best solution for clearing interrupt flags in the 
TMU. 

4.6 Interrupts and Configuration Registers 
The specified initial value for the compare register was -1, which translates to a string of binary 
1’s (assuming 2’s complement arithmetic) and thus is the highest number possible for an 
unsigned integer. In effect, this would under normal circumstances disable interrupts from the 
module because of the extremely high value a 64-bit integer can take upon. 

However, as this module should be implemented without affecting the microprocessors 
functionality for normal users; that is, the UC3 should behave equivalently as without a TMU as 
long as it is not activated by the user’s intention; the opinion of this thesis’ author is that 
interrupts generated by the TMU should be completely disabled as default. The user should be in 
charge of whether interrupts are generated when the counter becomes equal or greater than the 
compare value. 

Also, as the overflow interrupt was not a part of the original specification, the user should have 
the opportunity to choose if this event would generate an interrupt. Hence, an interrupt mask 
register (IMR) was created, together with an interrupt enable (IER) and disable (IDR) register. 
For an interrupt to be generated when one of the bits in the status registers is set, the 
corresponding bit in IMR needs to be set. Also, the TMU must be enabled. Writing a 1 to a 
position in IER enables the corresponding bit in the interrupt mask, and writing a 0 has no 
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effect. Likewise, writing a 1 to a bit position in IDR disables that interrupt, and a 0 results in no 
change. 

IMR is read-only, and is manipulated only through the use of the IER and IDR registers. This 
allows enabling and disabling of one interrupt without taking the other interrupts into 
consideration. Of course, in some situations it would be more desirable to be able to write the 
entire IMR register directly, so this is a trade-off. The solution was chosen because of its 
similarity to the interrupt configuration registers of the Timer/Counter unit in UC3L (17). 

The interrupt signal is merely the output of combinational logic connected to the various 
registers: 

assign irq = sr[SR_EN] && (sr & imr & (1 << INT_CMP | 1 << INT_OVF)); 

Code 20 – combinational logic related to interrupt signal 

To break it down; sr[SR_EN] demands that the TMU is enabled, by checking the enable flag in 
the status register. sr & imr evaluates to the bits that are set in both the status and interrupt 
mask register, and the binary AND-ing with (1 << INT_CMP | 1 << INT_OVF) makes the 
condition only care about the two interrupt bits (that is, the enable bit or other bits in the status 
register won’t generate interrupts). 

In summary, three conditions are required to be fulfilled for an interrupt to be triggered: 

1. At least one interrupt flag in the status register must be set (counter overflow or 
compare match) 

2. The corresponding interrupt must be enabled in the interrupt mask register 
3. The TMU needs to be enabled 

Compared to the original specification, the overhead by requiring users to set up their interrupts 
is insignificant, as this would only have to be performed during initialization to get the same 
result as in the original version. The possibility of configuring interrupts gives the user more 
control over the unit, and is also an important feature if more interrupt sources are to be added 
later. 

Also, note that when the interrupt signal now depends on the output of a register, the interrupt 
will be triggered in the clock cycle after the condition occurred.  



Improvements to the Original Specification 

40 
 

4.7 Clearing and Moving of Previous Interrupt Flags 
Performing a context switch which involves swapping of the compare and counter value 
requires a non-zero amount of clock cycles, which means that the TMU could generate an 
interrupt sometime during the switch. Independent on whether interrupts are disabled or 
enabled while the context switch takes place; it would be difficult to determine if the source of 
interrupt “belonged” to the previous task, or the task being switched in. Also, interrupts 
belonging to the previous task will in some cases not be relevant after the context switch. 

Hence, it was decided to clear the interrupt flags when performing a context switch. This means 
that it is guaranteed that the current contents of the status register, and thus the state of the 
interrupt signal, is consistent with the current active task (which in the TMU, is reflected by the 
COUNT and COMPARE registers). If the new set of COUNT and COMPARE values meet the 
conditions for triggering one of the interrupts, the flags will be set again in the next clock cycle. 

Also, there might be situations where knowing the previous state of the interrupt flags is 
necessary. To accommodate for this need, the status register is extended with two bits: previous 
compare match interrupt flag (PREV_CMP) and previous overflow interrupt flag (PREV_OVF). 
When a swap is issued by writing to the low part of COUNT, the two status bits are cleared 
simultaneously with their previous value being copied to the mentioned positions, as shown 
below: 

if (apb_write && paddr[5:0] == SWAP_COUNT_LO) begin 
 
 sr[INT_CMP] <= 0; 
 sr[INT_OVF] <= 0; 
 
 if (count >= compare && sr[SR_EN]) 
  sr[PREV_CMP] <= 1; 
 else 
  sr[PREV_CMP] <= sr[INT_CMP]; 
 
 if (count == -1 && sr[SR_EN]) 
  sr[PREV_OVF] <= 1; 
 else 
  sr[PREV_OVF] <= sr[INT_OVF]; 
 
end 

Code 21 – clearing and moving interrupt flags 

Note that the interrupt conditions are also checked here, to ensure they will be detected if it 
happens the same clock cycle as the register is written. In these cases, instead of moving the 
previous flag, the flag is set directly. 

This moving of previous interrupt flags is a natural extension of the swapping mechanism 
proposed in the original specification, which ensures that the total state of the TMU reflects the 
current active task. 
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4.8 Automatic Increase of Value Written to COUNT 
As mentioned in 3.3.3, the counter value needs to be increased when it is written back from a 
stored TMU context in order to not lose track of any cycles. This was suggested to be performed 
in software. However, as this is an operation that would have to be executed every context 
switch, a feature of automatically increasing the value of COUNT when it is written is 
introduced. 

The code for writing to the register was modified such that the value written would be increased 
immediately. This was performed both when writing to COUNT directly, and when setting the 
register by using SWAP_COUNT. 

if (apb_write && (paddr[5:0] == COUNT_LO)) 
 count <= {buffer, pwdata} + 1;     
else if (apb_write && (paddr[5:0] == SWAP_COUNT_LO)) 
 count <= {swap_count[HI_MSB:HI_LSB], pwdata} + 1; 

Code 22 – automatic increase of COUNT 

In most context switches as intended in (1), the counter value written equals the value 
previously read for the same task. If the counter were to have the same value in the cycle when it 
was written back, that procedure would cause one cycle to be “lost”, and the total number of 
clock cycles accounted for would drift. The value could also be increased in software, but that 
would cause unnecessary overhead. This is discussed in 3.3.3 and further illustrated in 5.6. 
Hence, automatically incrementing the counter can give a slightly reduced overhead in context 
switches, and also accommodate for simpler software.  

For users utilizing the TMU in other ways than what is expected here, this should be no 
disadvantage. The difference would just be perceived as the write operation took one clock cycle 
less, as the counter would seem to have increased earlier. One should only be aware of that 
setting the COUNT value equal to the overflow value would not generate an overflow interrupt, 
as COUNT would immediately be wrapped around to 0.  
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The following sections describe improvements that were not implemented, but are elaborations to 
the original specification or suggestions to future improvements. 

4.9 Clock Source 
The clock source was not specified initially, although (1) stated that it did not need to be the 
same as used by the core. As the TMU is intended to increase its counter value in coherence with 
the progression of CPU cycles, and the APB clock corresponds with the CPU clock (possibly 
scaled down) (17), the APB clock was chosen as the clock source. 

If the TMU were to be able to be clocked by an arbitrary source, synchronization issues such as 
metastability could arise, thus increasing the complexity of the module (25). Also, as the module 
was able to keep 64-bit values and thus is intended to be able to run for a very long time without 
overflowing, there was no need to let the user connect the module to a low-frequency clock 
source with overflow in mind. 

A possible issue might arise if the user wants to run the peripheral bus on a lower clock 
frequency than the CPU, but still needs to count the number of clock cycles. A workaround is to 
take this into account by using efficient operations such as shifting the values after they are read 
into the memory, or by using correspondingly lower values for the compare register. This will 
not give the original resolution back, but is a simple way of coping with for instance variable 
clock frequencies for the peripheral bus. 

If the counter needs to run at the CPU clock at all times, and the peripheral bus to run at a lower 
clock frequency, a simpler solution might be implemented in hardware because of the two clocks 
being synchronous. For instance, the counter could increase with a number corresponding to the 
ratio between the CPU’s and the TMU’s clock.  

4.10 No Reading Back of COMPARE During Context Switch 
The COMPARE value will not change unless initiated by the user, and should not be necessary to 
read back after a context switch even though this is suggested in the original specification. By 
only reading the counter value, a significant amount of clock cycles will be saved every context 
switch. As explained in 7.4, the read operation takes five clock cycles while a write only needs 
two in the TMU integrated with UC3. Reducing the required amount of reads to half of the 
original can reduce the overhead of the swap operation by 36%. 

This improvement needs no modification to the hardware implementation of the TMU, but it 
should be mentioned as it would affect the implementation of the software framework using the 
module. The optimization is of particular interest if the execution time of interrupt handlers is to 
be monitored, because of the requirement of very low overhead. 

4.11 Memory Ordering 
The original specification contains an example of possible addresses for each register, but does 
not point out the importance of correct ordering. 

The TMU makes assumptions on the order of access between the high and low part of the 64-bit 
registers because of its buffer and swap operation, that is, the high part should be accessed first. 
If the high and low part are accessed in the wrong order, an old buffer value potentially from 
another register will be returned; hence half of the value returned will be invalid. Also, the swap 
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operation is performed when writing to the low part of the swap counter register. Thus, it is 
important to access the TMU’s registers correctly. 

Some instructions access or use doubleword operands. These operands must be placed in two 
consecutive register addresses where the first register must be an even register. The even 
register contains the least significant part and the odd register contains the most significant 
part. This ordering is reversed in comparison with how data is organized in memory (where the 
most significant part would receive the lowest address) and is intentional. The programmer is 
responsible for placing these operands in properly aligned register pairs. This is also specified in 
the "Operands" section in the detailed description of each instruction. Failure to do so will result 
in an undefined behaviour. 

Quote 4 – memory ordering (11) 

The UC3 instruction set specifies instructions for accessing double words (64-bit), including 
st.d and ld.d. The AVR32 Architecture Document (11) explains these instructions this way: 

st.d: 
Syntax: 
I.  st.d Rp++, Rs 
II.  st.d --Rp, Rs 
III. st.d Rp, Rs 
IV.  st.d Rp[disp], Rs 
V.  st.d Rb[Ri << sa], Rs 
Operation: 
I.  *(Rp) ← Rs+1:Rs; 
   Rp ← Rp + 8; 
II.  Rp ← Rp - 8; 
   *(Rp) ← Rs+1:Rs; 
III. *(Rp) ← Rs+1:Rs; 
IV.  *(Rp + SE(disp16)) ← Rs+1:Rs; 
V.  *(Rb + (Ri << sa2)) ← Rs+1:Rs; 
 
ld.d: 
Syntax: 
I.  ld.d Rd, Rp++ 
II.  ld.d Rd, --Rp 
III. ld.d Rd, Rp 
IV.  ld.d Rd, Rp[disp] 
V.  ld.d Rd, Rb[Ri<<sa] 
Operation: 
I.  Rd+1:Rd ← *(Rp); 
   Rp ← Rp + 8; 
II.  Rp ← Rp - 8; 
   Rd+1:Rd ← *(Rp); 
III. Rd+1:Rd ← *(Rp); 
IV.  Rd+1:Rd ← *(Rp + (SE(disp16))); 
V.  Rd+1:Rd ← *(Rb + (Ri << sa2)); 

Code 23 – syntax and operation of st.d and ld.d 

Note that it is not specified in which order transfers are performed, such as in the third 
addressing mode for both instructions – taking the load instruction as an example, it is merely 
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stated that the value Rp points to will be transferred to the concatenation of Rd+1 and Rd, not 
which part of the source register will be read first. 

By studying the waveforms of a simulated CPU performing these instructions, it can be 
determined that the accesses go through as follows, where the first instruction listed is 
performed first: 

st.d Rp, Rs: 
*(Rp)  ← Rs+1; 
*(Rp+1) ← Rs; 
 
ld.d Rd, Rp: 
Rd   ← *(Rp+1); 
Rd+1  ← *(Rp); 

Code 24 – order of access when using st.d and ld.d (3rd addressing mode)  

This imposes the following restriction on the module’s memory map: 

The highest (most significant) part of each double word (64-bit) register needs to be put in the 
lowest address to be accessed first. 

To make the module’s interface intuitive, and support usage of the double word instructions, the 
memory layout was accommodated to this restriction. Hence, the high part of each 64-bit 
register was placed in a lower address than the low part. This is also important to consider when 
designing software utilizing the TMU.  
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4.12 Remove Buffering for Reading the COMPARE Register 
As specified, the COUNT register has a buffer to “capture” the low part of the counter value when 
the high part is read. This is due to the register’s nature, that is, it changes every clock cycle, and 
a buffer will ensure that the value returned is the value that was current when the read 
instruction was issued. The same buffer is used for writing to COUNT, which is important 
because writing to one half of the register can cause problems when its content is 
simultaneously compared to the COMPARE register, and also if the low part overflows right 
after the high part is written. 

The specification also states that COMPARE will use this buffer. For writing, this is important, 
because otherwise a compare match interrupt could be generated because of the inconsistency 
between the high part and low part before the latter being written. 

For reads of the COMPARE register, the situation is different. As its value only may be changed 
by the user, there is no need to capture the low part of this register when reading the high part. 

The only reason to keep buffering reads of COMPARE is to obtain symmetry of the registers, in 
the sense that COUNT and COMPARE behave similarly, and that COMPARE behaves the same 
way for reads and writes. This might make the TMU easier to document and understand. 

Advantages of not buffering COMPARE when reading includes the possibility of reduced area, 
mostly because of less wires being needed between the physical COMPARE register and the 
buffer, and the opportunity of freeing the buffer for other uses. 

This change to the specification was not implemented in the current version of the TMU, because 
of the focus of first implementing the TMU as originally specified, and then incrementally 
implementing improvements in order of importance. That is, it was not considered as an 
important improvement, but worth mentioning if reducing area becomes important later. On the 
other hand, if this change is wanted, it is as simple as commenting out the line storing the low 
part into the buffer when reading the high part, and exchanging the assignment of the buffer to 
the data bus with an assignment directly from the low part of the register when it is being read. 
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4.13 32-bit Mode 
The module should be able to be used as a 32-bit counter. In the current implementation, there 
are some obstacles related to the 64-bit registers that must be coped with: 

1. By only considering the 32 least significant bits (LSB) of COUNT, overflows would not 
generate any interrupt, but simply be “counted” in the 32 most significant bits (MSB) 

2. Using only the low parts of COUNT and COMPARE will not generate a compare match 
interrupt if the high part of COUNT is less than the high part of COMPARE, and would 
always generate interrupts when the high part of COUNT is highest 

3. Not writing to the high part of a buffered register would cause the register to store the 
written value together with the previous value of the buffer 

4. Only reading the low part of a buffered register would cause the previous value of the 
buffer to be returned instead 

A separate 32-bit mode could be created, with the following simple changes when active: 

• Overflow interrupt when the low part of the buffer reaches its maximum value 
• Enforce all high parts of the registers to equal 0 (will both handle obstacle 2 and 3)  
• Omit buffer when reading from low parts of registers. 

This would allow the registers to be configured using only one instruction each. This 
improvement was not implemented in the current version of the TMU, as the other 
improvements were considered more important. However, a mode configuration register is 
reserved for this or similar purposes.  

4.14 Relative COMPARE Value 
In the original specification, an absolute COMPARE value needs to be computed by the CPU 
before it is written to the TMU’s register in a context switch. Assuming that a task most of the 
times are granted the same number of clock cycles before it is to be interrupted; this 
computation will result in overhead that can be avoided. 

A virtual register SWAP_COMPARE_RELATIVE which will set COMPARE to COUNT + 
SWAP_COMPARE_RELATIVE can be created, thus making this register specify how many 
additional cycles the task is granted instead of the absolute time it is to be interrupted.  

As the focus of the original specification was to create a module using absolute time values, this 
improvement was not important to the research; hence it was not implemented in the current 
version. However, for a more general use, it could be a valuable feature.  
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5 Description and User Guide of the Final TMU 
This chapter gives a description of the TMU in a way that resembles the parts of the UC3 devices’ 
datasheets describing each module. The following sections are based on the sections of the 
Timer/Counter (TC) module of the UC3L datasheet (17) to ensure resemblance with similar 
modules in an actual datasheet. Some layout will be closer related to the rest of this report than the 
datasheets. Atmel’s internal Document Standards (3) which give guidelines for writing datasheets 
are followed as far as possible in this chapter. 

The chapter gives a good overview of the module’s interface, can serve as support for users of the 
module, and can be used as a foundation for a part of a datasheet if the module is to be 
implemented in a real product. 

5.1 Features 
• One 64-bit counter tailored for execution time monitoring with low software overhead 
• Compare register for execution time control 
• Easy setup and configuration, simple interface 
• Atomic swapping of COUNT/COMPARE registers with storing of previous interrupt flags 
• Interrupt generation by configurable sources 

o Compare match interrupt 
o Counter overflow interrupt 

• Timer can be halted or resumed by one memory access 
• Clock frequency determined by Peripheral Bus clock 
• Supports native 64-bit instructions (st.d and ld.d) 
• Possibility to utilize as simple generic timer with compare match interrupt 

5.2 Overview 
The Time Management Unit (TMU) is a CPU cycle counter, intended to keep track of individual 
tasks’ execution time in the COUNT register. It has the possibility of generating an interrupt 
when the COUNT register reaches a predetermined value set in the COMPARE register, and can 
thereby provide hardware support to a run-time system implementing execution time 
monitoring and/or control. 

By storing the cycle counter value in a 64-bit register, it is possible to run each task for virtually 
unlimited time without having to handle overflows in software. If overflow handling is desirable, 
an overflow flag with configurable interrupt exist, so the software does not have to do any 
computations to determine if an overflow has occurred. This allows for implementing execution 
time monitoring and/or control with low overhead. 

The TMU is connected to the Peripheral Bus A (PBA), and is clocked by the bus’s clock source. 
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5.3 Block Diagram 
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Figure 9 – TMU Block Diagram 
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5.4 Product Dependencies 
In order to use this module, other parts of the system must be configured correctly, as described 
below. 

5.4.1 Power Management 
If the CPU enters a sleep mode that disables the Peripheral Bus clock, the TMU will stop counting 
and resume operation after the system wakes up from the sleep mode. 

5.4.2 Clocks 
The clock used by the TMU is the Peripheral Bus clock, which is generated by the Power 
Manager. This clock is enabled at reset, and can be disabled in the Power Manager. 

5.4.3 Interrupts 
The TMU interrupt line is connected to the interrupt controller. Using the TMU interrupt 
requires the interrupt controller to be programmed first. 
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5.5 Functional Description 

5.5.1 Controlling the TMU 
The TMU can be enabled or disabled by using the Control Register (CTRL). Writing a one to the 
Enable Bit (EN) enables the module, and writing a one to the Disable Bit (DIS) disables the 
module. If both are written to one in the same operation, disabling takes priority. The following 
table summarizes the features that are available in the two states of the TMU. 

Table 2 – available features when the TMU is enabled or disabled 

Feature Enabled Disabled 
Counting   
Setting interrupt flags based on conditions   
Generating interrupt signal based on interrupt flags   
Write registers from software   
Read registers from software   
Atomic swapping   
Reset   

5.5.2 64-bit Counter 
The counter increases by 1 every clock cycle, as long as the TMU is enabled. It is possible to set 
its value from software, either by accessing the register directly, or by using the swap registers. 
Either way will increase the value by 1 immediately, that is, the value written on the data bus 
will be increased by 1 when it is stored in the next clock cycle. This is to facilitate for low 
overhead context switching, where the previous value can be written back without being 
increased first. 

The COUNT register will set the overflow flag (OVF) in the Status Register (SR) the cycle after it 
contained the value 0xFFFFFFFFFFFFFFFF if the TMU is enabled. An interrupt can optionally 
be generated. The interrupt will also be asserted in the next clock cycle, that is, when the counter 
value equals 0. 

5.5.3 Compare Register 
The value of the COMPARE register is continuously compared to the current value of the COUNT 
register. The compare match flag (CMP) in the Status Register (SR) will be set the cycle after 
COUNT becomes equal to COMPARE. Also, the flag will always be asserted if COUNT is greater 
than COMPARE, even after the flag is cleared by the user. An interrupt signal can optionally be 
generated when CMP is set. 

Initially, the Compare Register is set to 0xFFFFFFFFFFFFFFFF, that is, the highest value 
possible. This will give the user the enough time to set initial values of COUNT and COMPARE 
after initializing the TMU, without concerning about undesired interrupts being triggered. This 
can allow for making simpler run-time software that does not have to handle the first task as a 
special case. 
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5.5.4 Interrupt Configuration and Behavior 
For an interrupt signal to be asserted, all of the following need to be satisfied: 

1. The TMU needs to be enabled 
2. At least one of the interrupt conditions need to be satisfied, indicated by the 

corresponding bit(s) in the Status Register 
3. The corresponding bit(s) need(s) to be set in the Interrupt Mask Register 

The Interrupt Mask Register (IMR) is a read-only register indicating which conditions will 
trigger an interrupt. These sources can be configured by using the Interrupt Enable Register 
(IER) and Interrupt Disable Register (IDR). When writing to IER, each bit set to 1 will enable the 
corresponding bit in IMR. Bits set to 0 will be ignored. Similarly, each 1 written to IDR will 
disable the corresponding bit in IMR, while the zeros are ignored. 

When an interrupt condition occurs, the corresponding interrupt flag will be set in the Status 
Register (SR) in the beginning of the next clock cycle, independent of the IMR register. The 
interrupt flags will never be cleared automatically, but can be cleared by writing to the Status 
Clear Register (SCR). In the same way as the IDR register, writing a 1 to a position in SCR clears 
the corresponding bit, while bits written to 0 cause no change. 

5.5.5 Atomic Swapping 
The COUNT and COMPARE registers are closely related to the current running task, and should 
be changed simultaneously. To avoid having to disable or halt the module while updating the 
values, which would cause an undetermined number of clock cycles not being accounted for and 
additional overhead, atomic swapping functionality is provided. 

The action is atomic in the sense that all registers are updated at the same instant. Preparation 
by writing several registers is necessary before the swap, and finalization by reading the 
previous values can be performed after the swap. 

The swap action performs the following actions: 

• The counter value of the current running task is swapped with the stored counter value 
of the new task (COUNT and SWAP_COUNT) 

• The compare value of the current running task is swapped with the compare value of the 
new task (COMPARE and SWAP_COMPARE) 

• Any interrupt flags in the status register is cleared and copied to a field storing the 
previous interrupt flags 

Note that the copy of the previous flags cannot be cleared directly, and cannot trigger any 
interrupts. They are provided to make the software able to determine if the interrupt conditions 
were satisfied by the previous task. 

An example of the swap operation, as it is intended to be used, is given in 5.6. 

5.5.6 Accessing 64-bit Registers 
The peripheral data bus of UC3 is 32 bits wide. Hence, an access to a 64-bit register has to be 
performed by using two 32-bit accesses. As described in the user interface description (A–2 and 
5.7), each 64-bit register is accessed by using two addresses pointing to the high and low part of 
the registers, respectively. The address layout of the registers is designated to accommodate for 



Description and User Guide of the Final TMU 

52 
 

native 64-bit instructions such as ld.d and st.d. Also, to access several registers in one 
instruction, ldm and stm can be used. 

The registers can be accessed by performing two 32-bit instructions as well, but the high part of 
the registers needs to be accessed before the low part because of the buffer described below. In 
addition, as the buffer is shared between several registers, accesses to other registers between 
accessing the high and low part of a register is not allowed. Undefined behavior will occur if 
these guidelines are not followed. 

As the counter register’s value changes rapidly as long as the module is enabled, direct writing to 
it could cause unexpected side-effects. For instance, an unwanted compare match or overflow 
interrupt could be triggered or the register’s value could be corrupted given the right 
circumstances. Hence, the value written to the high part of the COUNT register is buffered, and 
not stored into the real COUNT register before the low part is written. 

Furthermore, when a read is initiated by accessing the high part of the register, the low part is 
stored in the same buffer. This is to prevent an invalid value to be returned if the counter 
overflows between accesses to the high and low part of the register. 

The buffer is also used when accessing the COMPARE register to prevent unintended compare 
match interrupts from occurring. 

The following examples demonstrate how single assembly instructions can be used to write all 
swap registers (128 bits total) and read SWAP_COUNT (64 bits), and how to access the registers 
as 64-bit registers in C. The assembly example illustrates the use of the Store Multiple Registers 
(stm) and Load Doubleword (ld.d) instructions. 

mov   r8,  TMU_ADDRESS      // Pointer to TMU  
sub   r8,  -SWAP_COMPARE_HI   // Offset to swap registers 
stm   r8,  r4, r5, r6, r7    // Write values stored in registers R4-R7 
                  // to SWAP_COMPARE and SWAP_COUNT 
ld.d  r4,  r8[8]         // Read SWAP_COUNT back to R4 and R5 

Code 25 – assembly example of performing swap operation 

count = *((volatile uint64_t*) &AVR32_TMU.count_hi); 
*((volatile uint64_t*) &AVR32_TMU.compare_hi) = compare; 

Code 26 – C example of reading count value and writing compare value 
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5.6 Example of Swap Operation 
A swap between two tasks can be performed in the following way. 

1. Write the compare value of the new task to the SWAP_COMPARE register 
2. Write the previously stored counter value of the new task to the SWAP_COUNT register 

The swap operation is automatically performed in the beginning of the cycle right after the 
low part of SWAP_COUNT is written. 

3. Read and store the counter value of the previous task (optional) 
4. Read and store the compare value of the previous task (optional) 

The following is an example of swapping between two tasks. Note that the example is idealized 
in the sense that each 64-bit read or write operation requires only two clock cycles, which is not 
necessarily true when the module is integrated in a microprocessor. Even if any operations need 
more time to complete, no other modifications of the example are needed than extending these 
operations. Furthermore, to make it possible to illustrate the example, the tasks run for an 
unnaturally short time, and some cycles are contracted in Figure 10. 

First, the “pseudo task” 0 is active. This reflects the program running when the TMU is reset, and 
is typically the initialization procedures of the system. At cycle 3, an activation of Task 1 is 
initiated by writing the SWAP_COMPARE register with the desired budget. Then, SWAP_COUNT 
is written with the stored counter value of Task 1, which is 0 because this is the first run of the 
task. Clock cycle 11 is the first cycle after completing writing to SWAP_COUNT, and the counter 
is now valid for Task 1. Note that it begins counting at 1, because 0 was written and 
automatically increased. Then, the SWAP_COUNT register which now contains the previous 
COUNT value belonging to Task 0 is read, and the value 10 is stored into Task 0’s context. Note 
that this was the value of the COUNT register immediately before Task 1 was activated. 

When Task 1 has been running for 7 clock cycles, Task 2 is to be activated. The same procedure 
goes for this switch. As it takes 8 cycles to write the swap registers, a cycle count of 15 is stored 
into Task 1’s context. Task 2 is allowed to run for 45 cycles before the scheduler initiates 
reactivation of Task 1. The cycle count previously stored for Task 1, 15, is written back to the 
SWAP_COUNT register. When Task 1 is activated, the counter’s value is 16 because of the 
automatic increment. This is to ensure that all cycles are accounted for; otherwise, either two 
cycles would be counted as one (in this example, cycle 25 and 70 would both have the value 15), 
or the increment would have to be performed in software causing more overhead. 

Note that this example does not cover the source of task switch initiation. Normally, it could be 
the interrupt handler for the compare match interrupt that switches task when the budget of 
one task is depleted, or the scheduler that switches task of other reasons. 
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5.7 User Interface 
The user interface parts of the datasheets consist of several pages of tables. As this takes much 
space without adding the corresponding value to the report, only the register summary is presented 
here. The register descriptions of the TMU are located in the appendices (A–1). 

Table 3 – TMU Register Memory Map 

Offset Register Register Name Access Reset 
0x00 CTRL Control Register Write-only 0x00000000 
0x04 MODE Mode Register (Reserved) - 0x00000000 
0x08 SR Status Register Read-only 0x00000000 
0x0C SCR Status Clear Register Write-only 0x00000000 
0x10 IER Interrupt Enable Register Write-only 0x00000000 
0x14 IDR Interrupt Disable Register Write-only 0x00000000 
0x18 IMR Interrupt Mask Register Read-only 0x00000000 
0x1C COMPARE_HI Compare Register (High Part) Read/Write 0xFFFFFFFF 
0x20 COMPARE_LO Compare Register (Low Part) Read/Write 0xFFFFFFFF 
0x24 COUNT_HI Count Register(High Part) Read/Write 0x00000000 
0x28 COUNT_LO Count Register (Low Part) Read/Write 0x00000000 

0x2C SWAP_COMPARE_HI Compare Swap Register (High 
Part) Read/Write 0x00000000 

0x30 SWAP_COMPARE_LO Compare Swap Register (Low 
Part) Read/Write 0x00000000 

0x34 SWAP_COUNT_HI Count Swap Register (High Part) Read/Write 0x00000000 
0x38 SWAP_COUNT_LO Count Swap Register (Low Part) Read/Write 0x00000000 
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6 Software Drivers and Framework 

6.1 Introduction 
A software framework is provided for convenient usage of all of the module’s functionality. As 
users might have their own opinion of preferred programming language and level of abstraction, 
several user interface layers are available. Each layer is built using features from the layer below 
exclusively.  The layers are briefly discussed below, and summarized in a table. The C driver will 
be given more attention in later sections of this chapter. The actual files are provided in 
appendix A–2. 

In the first layer, all registers are directly accessible through their offsets in the module’s 
memory area as listed in 5.7. This allows for fine-grained control over the module, and can be 
necessary if the module is to be accessed from a language different from C.  

For the second layer, a header file giving access to all the module’s registers through structs is 
available. This file was generated based on an XML file describing the registers and their bits by 
using proprietary Atmel tools. Each register can be accessed directly by its name, such as 
AVR32_TMU.compare_hi, and individual bits can also be accessed via the register written in 
uppercase, such as AVR32_TMU.SR.ovf. 

The third layer is the low-level C driver which gives access to all registers, and is further 
described below.  Finally, the fourth layer constitutes the high-level C driver and provides 
functions combining several register accesses, such as initialization or swapping. The high and 
low-level parts of the driver are provided in the same file, and the user may use functions from 
both as it best suits the application. 

The drivers are written in a way that can be compiled to only a few instructions. For instance, 
the function TMU_getCount consist of the sole statement                
return *((volatile uint64_t*) &AVR32_TMU.count_hi); that is is translated into 
the two instructions mov r8, -33756 and ld.d r10, r8[0] which creates a pointer to 
the register and reads the value contained. Further compiler optimizations could cause the 
TMU’s address to be stored as a constant in a register, and offsets from this pointer could be 
referenced to directly, which then only requires one assembly instruction to read or write a 
register. 

Table 4 – C user interface layers 

Layer Description Access method 
Registers Registers for configuring and reading 

state of the module as described in 5.7 
and A–1 

Direct pointers to addresses 
in C or assembly 

Header file Structs with pointers to registers and 
constant definitions for  addresses and 
offsets 

References  to the module’s 
registers in statements in C 

Low-level driver C functions providing setters and getters 
for, or control over, all registers 

Function calls can be used 
directly in expressions  

High-level driver C functions for performing configuration 
and useful actions 

Function calls which can be 
used when needing to 
perform common actions 
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6.2 Low-level Part of C Driver 
The low-level driver provides “setter” functions for registers that can be written and “getter” 
functions for registers that can be read. Write-only registers performing actions are named after 
their function, which closely resembles the register name. 

In the following tables, the prefix TMU_ is removed from all function names to save space. Return 
types and parameters are integers if not otherwise is explicitly stated, and their size in bits is 
given in parentheses. 

Table 5 – low-level C driver interface 

Name Return type Parameters Description 
getStatus (32) 

- Returns the contents of the 
status register 

getInterruptMask (32) - Returns the interrupt mask 
getCount (64) - Returns the counter value 
getCompare (64) - Returns the compare value 
getSwapCount (64) 

- Returns the swap counter 
value 

getSwapCompare (64) 
- Returns the swap compare 

value 
setCount 

- 
count (64) Sets the counter value to 

count 
setCompare 

- 
compare (64) Sets the compare value to 

compare 
setSwapCount 

- 
swapCount (64) Sets the counter swap 

value to swapCount 
setSwapCompare 

- 
swapCompare (64) Sets the compare swap 

value to swapCompare 
control 

- 
mask (32) Writes mask to control 

register 
statusClear 

- 
mask (32) Writes mask to status clear 

register 
interruptEnable 

- 
mask (32) Writes mask to the 

interrupt enable register 
interruptDisable 

- 
mask (32) Writes mask to the 

interrupt disable register 
 

Note that no checking of the validity of parameters is performed. This is to reduce overhead. 
However, writing to bits that are not defined in e.g. the status clear register results in no action.  
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6.3 High-level Part of C Driver 
The high-level part of the C driver consist of functions for performing common tasks, and this 
part of the driver should be sufficient to use the TMU as intended. Of special interest is the 
TMU_swap function, which performs the complete swap in one function call. 

Table 6 – high-level C driver interface 

Name Return type Parameters Description 
clearStatus 

- 

bool ovf 
bool cmp 

Clears the interrupt flags in the 
status register corresponding to 
the parameters with true 
Boolean value 

enable - - Enables the module 
disable - - Disables the module 
enableInterrupts 

- 

bool ovf 
bool cmp 

Enables the interrupts 
corresponding to the 
parameters with true Boolean 
value 

disableInterrupts 

- 

bool ovf 
bool cmp 

Disables the interrupts 
corresponding to the 
parameters with true Boolean 
value 

init 

- 

bool ovf 
bool cmp 

Enables the module and enables 
the interrupts corresponding to 
the parameters with true 
Boolean value 

swap (64) count (64) 
compare (64) 

Performs a swap operation with 
count and compare  as new 
values, return previous counter 
value 

checkOverflow bool 

- 

If overflow flag is set in status 
register, flag is cleared and true 
is returned. Otherwise, false is 
returned. 

checkCompareMatch bool 

- 

If compare match flag is set in 
status register, flag is cleared 
and true is returned. Otherwise, 
false is returned. 
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7 Testing and Evaluation 

7.1 Introduction 
Well-planned and thorough functional testing is important and beneficial for several reasons. 
First, the tests give a clear illustration of how the module is intended to operate, and can thus be 
used as a fundament for discussing manner of operation and verifying that the specification is 
interpreted in a satisfactory way. Second, creating tests forces the developer to think through 
how the module is intended to work, and this can lead to discovering new ideas, reveal potential 
flaws or weak points in the specification, and making a more thorough implementation. Third, 
automatic tests provide a very useful way of verifying that the module is still working as 
intended after making changes. This will be very useful if other students are going to further 
develop this module. Finally, the tests and their results prove that the module works the way the 
tests specify. 

The most detailed tests are performed directly on the TMU as a stand-alone module. These tests 
exercise various part of the module by writing its registers directly or through its interface ports, 
and are written in Verilog. These tests will be described in the second section. The third section 
describes tests that run on a simulated UC3 processor with the TMU integrated. These tests are 
also functional, but test the module on a higher level.  

The fourth section presents measurements of the module’s performance and the final section 
briefly assess the size and cost of the module. All tests, example code and the testbench are 
provided in appendix A–2. 

7.2 Functional Testing of Stand-alone Module 
As the tests have been developed in parallel with the TMU itself, they have also been updated 
during the evolvement of the module. The tests as described here and included with the final 
product corresponds to the final version of the TMU. If the module is to be developed further, the 
tests should also be extended or modified to reflect the new changes. 

The tests are not intended to cover all possible combinations of inputs and states, but are 
developed with error situations that are likely to occur and elements that are important to verify 
in mind. 

A testbench with various support functions, common initialization/finalizing of a test run, clock 
generation, instantiation of the TMU and configuration options was created. Then, each test was 
developed by using the testbench’s functions. Some tests required their own support functions, 
which were included in the actual test’s file. This way all tests could be created in a similar 
manner, with a minimum of code. This enhances readability and is important when using the 
tests for discussing desired functionality. 

The following functions were implemented in the testbench: 

reset_dut() 
wait_cycles(num_cycles) 
apb_write(address, data) 
apb_read(address, result) 
expect_equals(description, actual, expected) 

Code 27 – testbench interface 
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reset_dut generates a reset signal to the device under test. wait_cycles waits a specified 
number of cycles before proceeding, synchronized to the clock so that it waits for the given 
number of rising edges. apb_write and apb_read simulates AMBA APB communication in 
compliance with the standard (9), and facilitate reading and writing of data from and to 
addresses specified by the user. They support back-to-back transfers to ensure that the module 
can be tested with the highest speed possible.  

expect_equals compares two values, and displays an error message if they are not equal, or 
an OK message otherwise, both together with the supplied description and values. This function 
is used to compare the current value of a register to an expected value calculated or written as a 
constant in the test program, and is used extensively in the tests. It can be used to verify values 
stored in internal registers of the TMU, thus it is a very powerful tool. One important aspect is 
the use of the !== (case inequality) operator in the implementation of the function, which 
demands that unknown values (x) or high impedance (z) are matched on both sides for the 
operands to be considered equal. This allows for tests that expect an unknown or high 
impedance value, and at the same time, it ensures that an unknown value (x) is not matched 
with any value. 

Tests have access to all of the TMU’s internal registers; hence values can be read or written 
directly. This is of particular use when verifying that timing is correct, and also makes it easier to 
set initial values for registers. In the descriptions of the various tests, this will be referenced to 
as accessing a register “directly”. Note that this method must be used with care when tests 
depend on assignments being synchronized with the clock, so that race conditions do not occur. 
Using the testbench’s APB functions for writing or reading registers ensures interactions 
synchronous with the clock. 

The testbench also includes a separate clock cycle counter called cycles, which will keep track of 
the number of cycles that have passed by since reset, and not be influenced by writes to COUNT. 
This is useful when verifying for instance that no cycles are lost track of due to context 
switching. 

The total number of errors and tests are displayed at the end of the test.  A shell script was also 
created, which would run all tests and only display any errors and a summary of each test. This 
allows for rapid verification after making changes to the module, and will aid detecting errors in 
an early stage. 

All tests are presented and discussed in the following sections. The tests are commented in the 
code to explain their purpose and what they do. When this text states that a register or net is 
expected to contain a value in one of the tests, it is implied that this is verified and required for 
the test to be considered as passed. In the test source code, the function $display is used both to 
print a description to the terminal, and to explain what the following tests do to anyone reading 
the code. Most tests use constant 32-bit hexadecimal values resembling regular words, like 
“BA5EBA11”, or numbers that are easy to recognize, when a unique value is required. This is 
because such values are easy to recognize when inspecting registers or signal values in a 
waveform viewer. 
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A summary of all tests is given in the table below. Some tests require that other parts than what 
is being tested works correctly; these dependencies are stated in the table. The file name of each 
test is test_x_y.v where x is the number of the test and y is the name, both given in the 
table. 

Table 7 – stand-alone test summary 

 Name Verified elements Depends on Pass 
1 amba Correspondence with the AMBA APB 

protocol, particular focus on timing 
COMPARE 
and buffer  

2 after_reset • Initial values of registers 
• Module is inactive in startup 
• Module can be enabled 

-  

3 read_write Read and write of all accessible registers APB interface  
4 swap Swap functionality for COUNT/COMPARE 

and status flags 
APB interface 

 
5 irq Correct interrupt signals and status flags 

being generated when module is 
enabled/disabled and interrupt mask is 
enabled/disabled for each interrupt source 

APB interface 

 

6 irq_count_compare Interrupt signal after all combinations of 
chronological and numerical orders of 
setting COUNT and COMPARE 

APB interface 
 

7 lost_cycles Simulates swapping of tasks, no cycles are 
lost 

APB interface 
 

 

As all tests passed, no further discussion about the tests results is given.  
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7.2.1 Correspondence with the AMBA APB Specification 
The first test was created with the AMBA APB specification (9) as a foundation. Correct behavior 
regarding reading and writing using the APB is an important aspect of the module, as it is to be 
integrated with UC3 and coexist with other modules on the same bus. Compliance with the 
timing requirements is also an important aspect of the test.  

The APB support functions of the testbench were not used in this particular test, because full 
control over the various signals was needed to perform the specific tests. Also, it is the TMU that 
should be tested, not the APB functions of the testbench. 

First, a single write to the APB is issued. The specification states that for a write transfer, data 
can be latched at the following points: 

• on rising edge of PCLK, when PSEL is high 
• on rising edge of PENABLE, when PSEL is high 

The test expects data to be latched into the register at the rising clock edge, and thus reads the 
register directly after a minimal delay after the rising edge of PCLK. 

Second, a burst write consisting of two write cycles with no IDLE state in between is tested. 
After each cycle, the corresponding register is checked to verify that data is latched in at the 
correct time. 

Then, a single read is tested. One of the internal registers is first set directly to a value. After 
asserting the control signals and address bus, the data bus output of the module is read to verify 
that the same value is put on it. Also, as the module is to co-exist with other modules on the bus, 
it is verified that the data bus is released as soon as the IDLE state is entered after the transfer. 

Finally, a burst read is started. Similar to the other tests, data on the data bus output from the 
module is expected to equal a value set directly in one of the internal registers at the correct 
time. Again, it is verified that the data bus is released immediately after entering the IDLE state 
when the transfers have finished. 

7.2.2 Correct State and Behavior after Reset 
After a reset, the TMU is intended to have an initial state where the interrupt signal is disabled, 
and all internal register values equal 0, expect from COMPARE which has the highest possible 
binary value. Without any user interaction, the TMU shall not start counting or perform any 
other actions. 

First, the test resets the module, and verifies all internal registers and the interrupt signal. After 
five clock cycles, the counter is checked to verify that it has not started counting. The module is 
then enabled, and after another five clock cycles all registers are verified again. This time, 
COUNT should have increased, and the status register should have the enable flag set. 
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7.2.3 Reading from and Writing to All Registers Perform as Expected 
This test exercises all registers of the TMU, except SWAP_COUNT. This register has another side-
effect – atomic swapping – and its behavior is verified in a separate test. 

The 64-bit registers are to be read or written in two stages because of the 32-bit data bus, and 
some of them use an internal buffer. Correct operation of each register is tested. Also, 
configuration, status and control registers are exercised. The testbench’s internal APB functions 
are used to read from and write to the registers. 

This test first reads the high and low part of the COUNT register and expects its initial value 0. 
Then, writes to the high and low parts are performed to the COMPARE, COUNT and 
SWAP_COMPARE registers, followed by reads in the same order. Register values are verified 
after each read/write. The COUNT is automatically increased by 1 when it is written, and this 
must be taken into account when computing the expected value of the counter. 

The write-only interrupt configuration registers are expected to return 0 if they are read, which 
is verified next. Then, the read-only status and interrupt mask registers are read. 

The two interrupt conditions of the interrupt mask registers are enabled and disabled in all 
possible combinations using the interrupt enable or disable registers, and the interrupt mask 
register is read and verified after each operation. 

The module is then enabled and disabled using the control register, and the enable flag in the 
status register is verified to correspond with the TMU’s state. Finally, bits of the status register 
are set directly, and the status clear register is then tested. This is performed on each bit 
individually and both bits at once. 

7.2.4 Registers Swap as Expected when Writing to SWAP_COUNT 
This test exercises the special event that happens when writing to the low part of 
SWAP_COUNT, that is, atomic swapping of COMPARE and COUNT with their respective swap 
registers. 

First, both COUNT and COMPARE are directly set to different initial values, and the overflow 
flag in the status register is set. Then, SWAP_COMPARE and SWAP_COUNT are written using 
the APB write functions of the testbench. After writing the low part of SWAP_COUNT; COUNT 
and COMPARE are expected to immediately have taken the values that were written to the swap 
registers. Then, the swap registers are read back using the APB read function, and verified 
against the initial values with the natural increase of COUNT taken into account. Also, the status 
register is read and expected to have only the PREV_OVF flag set, because the overflow flag 
should be moved due to the swap operation. 

Next, the moving of interrupt flags are exercised further, where all combinations of the two 
possible interrupt flags are set, and verified to be moved into their previous copy positions. 

Note that this test is performed while the module is disabled, hence no counting occurs. 
Swapping with the module enabled is thoroughly exercised in the test verifying that no cycles 
are lost track of due to swap, described in 7.2.7.  
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7.2.5 Interrupt Perform as Expected 
This test both creates situations where interrupts are not expected to happen, and vice versa. As 
stated in 5.5.4, the TMU will only generate interrupts when all three following conditions are 
satisfied: the TMU is enabled, at least one of the interrupt conditions is satisfied, and the 
corresponding flags in the interrupt mask are set. Hence, it is important to verify both that 
interrupts happen when they are intended to, and that they are not generated when all 
conditions are not satisfied. 

First, COUNT and COMPARE are set equal, which would normally generate an interrupt. As the 
module has not yet been enabled, it is expected that neither any interrupt flags or the interrupt 
signal are active. The same procedure is then performed for the overflow condition, by setting 
COUNT so that it overflows. 

Then, the module is reset and enabled. The same tests are performed, but the status flags are 
expected to be set this time. Still, the interrupt signal is expected to remain silent, as no 
interrupts are enabled in the mask register. 

Next, COUNT is set to a value higher than COMPARE, and the compare match interrupt is 
enabled. Now, both interrupt flags are expected to be set, and the interrupt signal should be 
generated. The compare match flag is also cleared and expected to re-occur, because COUNT still 
is higher than COMPARE. 

COUNT is then set to 0 and COMPARE increased, and both the interrupt flags and signal are 
expected to still be set because the flags have not been manually cleared yet. The next test 
consists of clearing both interrupt flags, and then verifying that none of the interrupt flags are 
set and the interrupt signal is inactive. The test then waits for COUNT to reach COMPARE, and 
expects an interrupt signal and only the compare match flag to be set. 

Finally, the overflow interrupt is tested by disabling the compare match interrupt, enabling the 
overflow interrupt, setting COUNT to a value that will overflow after a short while, and then 
expecting both interrupt flags and the interrupt signal to be high. 

To make the test more readable and simplify development, the function expect_irq was 
created. It takes the expected compare match flag, overflow flag and interrupt state as 
parameters, and verifies all of them. 
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7.2.6 Interrupt State with Different Combinations of COUNT and COMPARE 
To ensure that the interrupt signal has a correct state at all times, all possible chronological and 
numeric orders of setting COUNT and COMPARE was verified, by request from Gregertsen. 
These combinations are described in Table 8, and the results are computed on the basis that the 
interrupt should be set whenever COUNT is greater than or equal to COMPARE. Registers given 
in the first column are changed, with a value relative to the other register as described in the 
second column. Expected interrupt state is given in the third column. 

Table 8 – test combinations 

Register changed Value Interrupt 
COUNT < COMPARE None 
COUNT > COMPARE Immediately 
COUNT = COMPARE Immediately 
COMPARE < COUNT Immediately 
COMPARE > COUNT None 
COMPARE = COUNT Immediately 
 

For instance, the first row in Table 8 means that COMPARE initially contains a value, and 
COUNT is set to a value lower than this. No interrupt is expected to happen in that situation. 

7.2.7 No Clock Cycles are “Lost” hen Swapping Registers 
When switching tasks, it is important that no cycles are “lost”, for instance if the TMU by error 
stops counting while writing to registers. This test simulates switching of tasks by initiating 
swaps and keeping track of the returned number of clock cycles. It has a task that sums up the 
total number of clock cycles stored in the internal test registers (similar to tasks’ contexts), 
excluding the active task, and then adds the current value of COUNT. This is compared with the 
actual number of clock cycles the module has been active since it was enabled after reset. 

To make simulation easy, a context switch task named activate writes the COUNT value of 
the new task into the swap register, and then reads the COUNT value for the previous task and 
stores it into the internal test registers. 

Another task, run_task, activates a task by using  activate and lets it run a given number of 
clock cycles by waiting before continuing. The actual test is performed by switching tasks 
several times by using run_task. Instead of verifying the expected values of the TMU counter 
and the inactive tasks’ counters only at specified points, this verification is performed 
automatically every clock cycle. This is to ensure that the total count is correct at all instants. 
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7.3 Functional Testing of Module Integrated with UC3 
By using Atmel’s tools for verification in a simulated environment, it is possible to run programs 
written in C on the UC3 microcontroller which includes the TMU module. Tests were developed 
in this environment of several reasons. First, all functions of the driver explained in chapter 6 
were exercised, which is important to verify that the driver works correctly. Second, this allows 
for high-level testing of the complete module, and verifies that it works correctly together with 
the UC3 and other peripherals. Third, the ability to run C programs enables creating 
demonstrations that displays how the module performs in reality, with for instance delays 
caused by buses and other units being detected. This has been used when assessing the 
performance of the module, as described in 7.4. Finally, these tests can very well be used as 
example code demonstrating how the TMU can be used from software. 

Atmel’s tools for verification include simple libraries, where for instance a printk function can 
be found. This resembles printf in some ways, but does not allow printing of 64-bit values, 
and prints a newline after each call. A separate print64 function was created to allow printing 
of 64-bit values. The print function executes on the simulated microcontroller, and thus affects 
the execution time of the code. 

Each test resides in the folder local/module_test in the verification tools folder, where 
module is replaced by the module’s name, and test is replaced by the name of the actual test. 
When a test is to run, the name of the folder is specified, and the tools will run a C or assembly 
file by the same name inside the folder. An options file also exists, which includes the value the 
program is expected to return on successful completion. This enables returning a different value 
if the test does not complete successfully, and can be used to display useful diagnostics by 
returning the value of the erroneous tested variable. 

Table 9 gives a short summary of the various tests. Each test program is further described in the 
following sections. 

Table 9 – integrated UC3 and TMU test summary 

 Name Verified elements Depends on Pass 
1 tmu_lowlevel Low-level C driver functions C driver  
2 tmu_highlevel High-level C driver functions C driver  
3 tmu_tasks Remaining high-level C driver functions C driver  
4 tmu_swap Demonstrates execution time of swap -  
 

  



Testing and Evaluation 

69 
 

7.3.1 Low-level C Driver Functions 
This test exercises all function described in the low-level part of the driver (6.2). First, the status 
register is read by using TMU_getStatus and expected to equal 0. The module is then enabled 
and disabled using TMU_control, and each time the enable flag of the status register is 
verified. 

Then, enabling and disabling of interrupts by TMU_interruptEnable and 
TMU_interruptDisable is performed, and the resulting interrupt mask is verified by using 
TMU_getInterruptMask. 

All read/write registers are tested using their respective setter and getter functions, hereby  

• TMU_setCount 
• TMU_getCount 
•  TMU_setCompare 
• TMU_getCompare 
• TMU_setSwapCompare 
• TMU_getSwapCompare 
• TMU_setSwapCount 
• TMU_getSwapCount 

Last, interrupts are provoked by setting the counter and compare register to corresponding 
values. The status register is read again each time, and TMU_statusClear is executed to verify 
successful clearing of the status flags. 

7.3.2 High-level C driver Functions 
Some of the high-level functions of the C driver are tested by initializing the module using 
TMU_init and enabling both interrupts, setting COMPARE to a value that will eventually 
generate a compare match interrupt, and waiting for that interrupt. When the interrupt occurs, 
the source is found by calling TMU_checkOverflow and TMU_checkCompareMatch. These 
functions also exercise TMU_clearStatus. 

Then, the compare match interrupt is disabled, so only the overflow interrupt remains. The 
counter is set to a very high value, and the program waits again. When the counter overflows, 
the interrupt handler is again called, and the program can finish. 

The remaining high-level functions are used in the test described in the next section. 
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7.3.3 Task Switching Example 
This example simulates cycling through a given number of tasks a specified number of times. 
The tasks’ COUNT values are stored when they are swapped out, and restored when swapped in. 
The tasks have varying budgets. The stored COUNT value, the overhead computed by 
subtracting the budget (increment in COMPARE value) from the increase in COUNT value since 
last run, and the allowed budget, are logged for each task switch. This is printed just before the 
program exits to reduce overhead while tasks execute. 

The interrupt handler keeps track of how many times the program has cycled through all tasks, 
and stops the program when finished. It also checks for overflow and displays a message if this 
occurs. Finally, it checks for a compare match and activates the next task when appropriate. 

This program exercises the remaining high-level functions of the driver from the previous 
program, but more important, it serves as a demonstration for how the TMU is intended to 
operate by swapping in and out tasks’ contexts and storing the inactive tasks’ values in memory. 
However, it does not serve as a good example of the performance in context switching as the 
logging facilities and other code cause large overhead. The final program which is described in 
the next section gives a better indication of swapping performance. 

7.3.4 Assembly Swap Example 
This program consists of a series of assembly instructions, wrapped in a C main function for 
simplicity. The test first writes the address of the TMU to R8, and the value 1 to R7 which is both 
the value needed to be written to the control register to enable the module, and to the interrupt 
enable register to enable compare match interrupts. The module and compare match interrupt is 
then enabled. Next, registers R4-R7 are filled with values intended to be swapped with the 
TMU’s values. The values written to COUNT and COMPARE are 0 and 16, respectively, so that a 
compare match interrupt will be generated shortly. 

Then, the TMU’s swap registers are addressed by adding the corresponding offset from R8, and 
registers R4-R7 are stored to this location. This fills the swap registers and executes the swap 
operation in the TMU. The swap registers are then immediately loaded back to register R4-R7, 
which after this operation contains the TMU’s previous values. 

This program is very simple, but allows for determining how many cycles are required to 
perform a swap. This is further explored in 7.4. 
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7.4 Performance Measurement 
How many clock cycles are required for various operations is an important measure of the 
TMU’s performance. If it is going to be used to monitor the execution time of interrupt handlers, 
where low overhead is very important, the number of clock cycles required to switch context can 
have a significant impact of the performance of the total system. 

As the TMU is implemented, it supports burst reads and writes on the APB bus; hence each 32-
bit operation can take as little as two clock cycles. However, it is not certain that the UC3 will 
provide control signals that rapidly. For instance, as the APB is connected through a bridge 
connected to the AHB, delays and pipeline stalls might occur. 

To measure the performance of read and write operations, the program described in 7.3.4 was 
executed on the simulated UC3 with TMU.  The waveforms of the relevant signals are shown in 
Figure 11, and the required amount of clock cycles for the reading and writing is summarized in 
Table 10. 

 

Figure 11 – simulation of swap operation 

First, the module is enabled, and then the compare match interrupt is enabled. This can be seen 
in the four first clock cycles where apb_tmu_psel is high. 

In the four next cycles, the TMU is not interacted with, as the CPU’s internal registers are filled 
with values to be written to the TMU. 

Then, the swap operation is initiated, by writing to the two 64-bit swap registers. This is 
performed in a total of 8 clock cycles, which is the minimum possible because of the APB’s two-
cycle access to a 32-bit register. This operation can be found in the figure by looking at the next 
(and longest) time apb_tmu_psel is high.  
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Next, the swap registers are read back. Note that this requires considerably more clock cycles, 5 
for each read operation, which gives a total of 20. This is due to that the APB bridge does not 
pipeline read accesses. 

This slow reading emphasizes the importance of the optimization suggested in 4.10, as the swap 
operation could then be reduced from 28 to 18 clock cycles, a decrease of 36%. 

Table 10 – number of cycles for reading and writing registers on the UC3 with TMU 

Operation Number of cycles 
Write register 2 
Read register 5 
 

Also, note that the compare register is set to 16 and the counter is set to 1 in the swap. The 
status register changes state and the interrupt signal goes high the clock cycle after the counter 
reaches 16, in accordance with the explanation in 4.6. 

7.5 Size and Cost 
The TMU was synthesized with the purpose of computing its area. The required amount of gates 
was 4 678, which can be considered as relatively small in a microcointroller according to 
discussions with Chong-Fatt Law. This suggests that the module can be integrated into a real 
microcontroller without having to make too many compromises regarding die area. 
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8 Discussion 
This chapter first presents the approach taken in performing this project, and discusses some of its 
advantages and drawbacks. Then, choices related to the implementation of the TMU are discussed. 
The third section presents and discusses three alternative ways of supporting execution time 
control in hardware, and gives a comparison of the alternatives to the TMU implemented in this 
project. Then, some considerations about the instant of task swapping and the accounting of clock 
cycles are presented. Next, the performance, cost and flexibility of the module is briefly discussed, 
before some considerations about the impact of other research this TMU will have are given. Then, 
limitations of the implementation are mentioned. Finally, the range of application of the TMU is 
discussed. 

8.1 Approach 
As the author of this thesis had no experience with Verilog before this project, and little 
experience with digital hardware design; the first part of the project consisted of gaining 
knowledge about this field and language. At the same time, there were several articles and books 
containing information relevant to this project that needed to be read. 

Because of the lack of former experience, it was difficult to tell when it was possible to begin 
implementing the TMU. Also, at the beginning of the project, it was uncertain whether the 
project would get support from Atmel, which would affect the overhead of the project with 
regards to tools and support significantly. 

Hence, it was decided to first implement the TMU as originally specified, and then suggest 
improvements and implement them as the time allowed. This would significantly increase the 
probability of being able to finish the project with a functional product, which was important 
because of Gregertsen and Skavhaug’s research. 

Even though learning Verilog and principles of digital design required a significant amount of 
time, there was time both to implement the module as originally specified, and to suggest and 
implement improvements. This should presumably be credited to Atmel, as the time needed to 
set up and configure tools and software was reduced in a large amount compared to what would 
be the case if the author of this thesis would have to implement the module without this support. 
Advices about design methodology were given as well, more specifically; that it is not necessary 
or even usual to synthesize the module to run it on an FPGA and that simulation could be 
performed instead. This allowed development time to be further reduced. 

While waiting for a response from Atmel in the beginning of the project, some time was spent 
exploring development environments and tools for prototyping. This research did not contribute 
much to the project, mainly because of operating system incompatibilities and outdated 
software from the vendors. With the benefit of hindsight, this time could be better utilized by 
reading literature or doing other tasks that would have to be performed whether Atmel would 
support the project or not. However, the rest of the planning worked out well, which is also 
proven by the successful results of the project. 
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8.2 Choices Taken 

8.2.1 Interfacing the TMU with the APB 
(1) suggests implementing the TMU by interfacing it to the UC3 using the AHB, which is faster 
but has a more complicated interface than the APB. Because of the limited time allowed for 
implementing the TMU, Atmel’s supervisor Dr. Chong-Fatt Law recommended to interface the 
TMU to the UC3 via the APB instead. This gives a performance penalty compared with a device 
interfaced with the AHB, and using the AHB could be considered if the TMU is required to 
respond and transfer data quicker. 

However, as the UC3 microcontrollers implement the AHB as a matrix with direct connections 
between masters and slaves, this would cause a significant increase of die area. On products like 
the UC3L, only a few units are connected to the AHB (17) (named High Speed Bus Matrix in the 
datasheets). Hence, interfacing the TMU with the AHB instead of APB does not seem like a viable 
option. 

However, the UC3 models do have a CPU local bus, where some of the registers in the GPIO 
module are mapped. The same registers are also mapped on the Peripheral Bus (APB). By 
mapping the registers on the local bus, read and write operations can be performed by a single 
clock cycle. Also, the transfer time becomes deterministic, as the CPU and GPIO are the only 
modules connected to this bus (17). 

If deterministic single-cycle access is desired, it is recommended to explore the option of 
connecting the TMU to the CPU local bus as well as the APB.  

8.2.2 Implemented Improvements 
As explained in chapter 4, several improvements were suggested, and a subset of these was 
implemented. The details of which improvements that were implemented is given in that 
chapter, but the chosen improvements can be summarized as the ones that complete the 
module, in the sense that it can be regarded as a fully functional module in the same way as 
other modules currently on the UC3 models. These features mainly focus on giving the user the 
possibility of controlling the module in various ways, and would be difficult to implement at a 
later stage. By implementing these features, the module contains a basic set of status and 
configuration registers that can easily be extended if new features arise. 

The improvements that were not implemented are mainly optimizations that could easily be 
implemented later if they seem beneficial. Hence, the resulting product is a fully usable module 
that can be utilized both for research and real world applications, and is a good foundation for 
further optimizations and customizations. 
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8.3 Differences to Other Implementations 
Several other implementations that could serve as hardware support for execution time 
monitoring and control exist, and have various advantages and drawbacks with respect to the 
needs of Gregertsen and Skavhaug’s research. Three other implementations are studied in this 
section, and a comparison between these and the TMU implemented in this project is 
summarized in a table in the end. 

8.3.1  Forsman’s Implementation of a TMU  
In 2008, Bjørn Forsman implemented a TMU (7) based on a specification given in (8) as his 
master thesis. The TMU included a task timer similar to the TMU in this project, in addition to a 
timer for each interrupt level. 

Interrupt Blocking 
As opposed to the implementation in this project, Forsman’s unit intervenes in interrupt signals. 
Although (1) states that it is possible to “protect the systems from bursts of interrupts that could 
otherwise result in tasks missing their deadline”, without physically blocking the interrupt 
signal to the processor, the interrupt handler will be called as long as interrupts are enabled for 
that level. This can lead to starvation for other processes. 

Similar advantages of blocking interrupts could be attained by letting software mask out 
interrupts for a given level when they exceed their budgets. This would result in slightly more 
overhead, but allows for a more dynamic and portable approach, and reduces the die area 
required greatly. 

Versatility 
The TMU implemented by Forsman supports the Deferrable Server scheduling algorithm for the 
interrupts. By doing this in hardware, no overhead is imposed on interrupt limiting, though, the 
user is bound to use this algorithm. The implementation in this project requires the scheduling 
policies to be implemented in software, which requires some extra overhead, but gives the user 
full flexibility. 

Size and Cost 
As one timer is required for each interrupt level in Forsman’s implementation, the die area 
grows with the number of interrupt levels that need to be handled. With 16 interrupt levels, 
Forsman’s implementation required 6 348 LUTs (Look-Up Tables). 4 levels required 1 471 LUTs. 
The TMU without IRQ timers used only 262 LUTs. In comparison, the LEON3 core including 8 + 8 
Kbyte cache required approximately 4 300 LUTs.  

Unfortunately, LUTs do not directly translate to a number of gates, and (7) does not specify if 
other logic of the FPGA is employed. Hence, a direct comparison of the TMU implemented in this 
project and the TMU Forsman implemented is impossible. Still, depending on the functions the 
LUTs represent, one can assume that a function implemented in a LUT can be implemented by 
using 4-6 gates. 

By assuming that no additional functions of the FPGA were used, and using the most 
conservative ratio (4) and the same amount of interrupt levels that exist on the UC3L (4), 
Forsman’s TMU would roughly require 5 900 gates. In comparison, the TMU implemented in this 
project was synthesized with an area of 4 678 gates. This suggests that the latter is a relatively 
small unit, especially when its 64-bit registers are taken into account. 



Discussion 

76 
 

It is worth noting that the TMU implemented in this project scales well with an increasing 
number of interrupt levels, as it needs no additional logic as opposed to Forsman’s 
implementation. 

Possibility of Integration in Commercial Products 
As discussed in the previous sections, Forsman’s TMU has some advantages regarding overhead, 
but lacks the versatility and smaller size of the TMU implemented in this project. This suggests 
that the latter is a better candidate for integrating into commercial products.  

8.3.2 Microcontroller Timer 
Many microcontrollers have built-in timers, with the possibility of generating interrupts on 
various conditions. These could have been used for supporting a software implementation of 
execution time control, but lacks some important features: 

• Most have limited resolution, for instance the Timer/Counter of UC3L is only 16-bit (17). 
The hardware support for measuring absolute execution time, as needed for 
implementing execution time monitoring for POSIX (26) and Ada (27), will be limited 
with only 16 bits and require calculating absolute execution time in software, resulting 
in larger overhead. 

• Atomic swapping is not supported, and one would thus have to take extra measures to 
ensure that no cycles can be lost, and no race conditions can occur. 

Hence, the built-in timers will cause significant overhead as the timers will frequently overflow. 
On the other hand, they have a widespread availability as timers are a common feature of 
commercial microcontrollers. 

8.3.3 COUNT and COMPARE of AVR32 
The AVR32 architecture specifies COUNT and COMPARE registers (11) which can be used for 
execution time management. COUNT increases by one every clock cycle, and can both be read 
and written. The value in COUNT is compared against the value in COMPARE, and an interrupt 
is generated and COUNT is reset to zero when they match.  

There are two disadvantages for using these for hardware support of the run-time system 
implemented by Gregertsen and Skavhaug (10). The registers contain only 32 bits, which would 
require overflow handing in software and thus generate extra overhead. 

As COUNT is automatically reset to zero when a compare match occurs, the implementation is 
not useful for measuring absolute execution time. However, the UC3 implementation of the 
AVR32A architecture additionally implements an option to disable automatic clearing (20). 

This implementation also lacks support of atomically swapping COUNT and COMPARE registers. 

An advantage of the UC3 implementation is that the registers are clocked by a dedicated clock 
with the same frequency as the CPU clock, which allows them to operate in some sleep modes 
(20). Also, it has the benefit of already being implemented on all UC3 models. 
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8.3.4 Comparison of the Various Implementations 
 

Table 11 – feature comparison of the various implementations 

Feature Forsman’s 
implementation 

Generic 
microcontroller 

timer 

AVR32 COUNT 
and COMPARE 

This project’s 
implementation 

64-bit 
registers     

Atomic 
swapping     

Overhead 
 

Low for tasks, no 
for interrupts 

 
Overflow 
handling 

 
Overflow 
handling  

 
Low for tasks and 

interrupts 

Hardware 
interrupt 
limiting 

    

Flexibility 
 

Fixed scheduling 
algorithm 

   

Versatility 
 

Predetermined 
usage 

 
 

Can be used as a 
simple timer 

 
Can be used as a 

simple timer 

Availability 
 

Does not exist in 
current products 

  
 

Does not exist in 
current products 

Additional 
size and cost 

 
Larger size 

 
Often built-in 

 
Built-in 

 
Smaller size 

Monitoring 
execution 

time 
    

Budget 
deplete 

interrupt 
    

 feature is available/sufficient 
 sufficiency or availability is limited or unknown 
 feature is not available or sufficient 
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8.4 Instant of Task Swapping 
Preparing for a swap between tasks takes a non-zero amount of clock cycles. At least, a new 
value of the counter will be written, and the previous value then read back, both using the swap 
register. Also, a new compare value will often be written. Reading of the previous compare value 
is expected to be unnecessary, and thus omitted, as proposed in 4.10. 

As each value consists of 64 bits and the AMBA buses are 32 bits wide in UC3, the values need to 
be read or written using two 32-bit transfers. Each transfer takes at least two clock cycles, but 
the core, AHB interface or APB interface might delay transfers, for instance if other bus masters 
are using one of the buses or new transfers are delayed because of the core’s internal manner of 
operation. In the following, it is assumed that no delays are present, so that transfers can be 
performed using two cycles with no delay between transfers. 

A context switch consisting of a write of a new compare and count value (using 
SWAP_COMPARE and SWAP_COUNT registers, respectively) and a subsequent read of the 
previous count value (again, using SWAP_COUNT) would then require a total of 12 clock cycles. 
At one instant, the TMU must stop accounting the previous task of the clock cycles used, and 
start charging the new one, by setting the counter’s value to the previous task’s cycle count. This 
can be considered as the instant the tasks are swapped. The way the TMU is implemented, this 
moment is the beginning of the clock cycle after SWAP_COUNT has been written, that is, in the 
fifth cycle after the TMU received the first 32-bit word of the new compare value. 

Intuitively, the swap process consists of two writes related to the new task (new count and 
compare value), and one read related to the previous task (previous count value). Note that the 
writes of values related to the new task need to be performed while the previous task is still 
active, and the read of the previous task’s values must take place after this. At some point during 
these transfers, the task that is charged for the clock cycles is changed. This leads to the new task 
being charged for the previous task’s bookkeeping (as the previous counter value is read after 
the switch of counter value) and vice versa. The amount of clock cycles belonging to the new and 
previous task is not necessarily the same, because of the imbalance in the number of registers 
required to be written or read in a swap, and also the possible difference between the time 
needed for reading and writing registers. 

When using the TMU to implement execution time monitoring this can be important when 
considering which tasks are to be charged for overhead of context switching. Still, assuming that 
each switch requires the same amount of clock cycles on average, the number of cycles wrongly 
charged to a task when it is activated, will be “given back” when a new task is activated. In that 
sense, the tasks are not accounted with an incorrect number of clock cycles; the charging of 
cycles related to the context switch is merely delayed. 

As shown in the performance measurements (7.4), the UC3 might use extra clock cycles when 
issuing an APB read, although a write has been observed to be performed without delays. 
Various factors such as pipeline stalls, cache misses and occupied buses might lead to further 
delays being introduced. This indicates that the assumption of the swap requiring 12 cycles is 
not reliable, and should not be used when it is important to know the exact number of clock 
cycles required to issue a task swap. However, the discussion above focuses on when a new task 
is charged for clock cycles, and the validity of the assumption is sufficient for illustrating the 
example.  
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8.5 Performance, Cost and Flexibility 
The final product of this project is a TMU with the possibility of monitoring execution time with 
high accuracy and relatively low overhead. The overhead could further be reduced by 
implementing the scheduling algorithm on the module. This will however reduce the flexibility 
of the module, as the algorithm would have to be predetermined. In that sense, the 
implementation is a good compromise between performance and flexibility. 

The performance could also be improved by having a dedicated timer for each interrupt, but this 
would increase its size as explained in 8.3.1. The argument of flexibility is also valid for not 
having dedicated interrupt timers. 

Hence, this TMU gives a good balance of performance, cost and flexibility. 

8.6 Impact of Other Research and Development 
One of the main problems to be addressed in real-time systems is to ensure that the deadlines of 
all tasks are being met (schedulability). In lack of facilities for meeting this demand, research has 
been focusing on how to prove schedulability by using simplified models which do not 
necessarily reflect the real world. Tools for meeting the requirements have mostly been utilizing 
indirect means such as priorities based on deadlines. Relying on scheduling for the worst case 
execution time, which is hard or intractable to compute, can lead to low CPU utilization because 
of conservative execution time budgets. On the other hand, using heuristics for determining 
priorities might imply having to risk missing deadlines because of too optimistic budgets. 

The implementation of this TMU will first and foremost have an impact on Gregertsen and 
Skavhaug’s research, as it was based on their specifications and created because of their needs. 
On the other hand, with the successful implementation of Ada’s timing event and execution time 
control features (10), and furthermore the real-time framework (12), this research will 
demonstrate the possibility of having accurate and precise execution time monitoring without 
having to afford large overhead or complex hardware support. 

With the introduction of dedicated hardware support for execution time management, research 
can hopefully be directed towards addressing the main problem directly, that is, tasks meeting 
their deadlines, and how to handle the situation if tasks fail to complete within their execution 
time budget. Also, the results of this project can be used directly to exploit a CPU’s capacity to a 
larger extent. 

The research and development performed in this project can also serve as a foundation for 
master students extending the project by further developing the module. 

8.7 Limitations 
Even though the final product meets the specification and includes improvements, it is not 
perfect. As interrupt handlers should have as little overhead as possible, it would be desirable to 
reduce the number of cycles required for a swap to the largest possible extent. As the bus it is 
implemented on does not use it to its full potential as explained in 8.2.1, the TMU gives more 
overhead than what could be achieved. Theoretically, it should be possible to transfer a 32-bit 
register in one cycle if the TMU was integrated in the fastest possible way. 

One could also argue against having a 64-bit counter on a 32-bit processor. The counter needs to 
transfer the carry bit between all 64 flip-flops in the register, hence a lot of combinational 
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circuits will be connected in series. This increases the critical combinational path, and can 
possibly introduce a new bottleneck in the system, which further determines the maximum 
clock speed. Alternative solutions, such as splitting the counter in two and perform the 
increment over two clock cycles could resolve this challenge. This would add complexity to the 
module in other ways as well, as some protection against reading the counter when in an 
inconsistent state would have to be implemented. 

The current implementation restricts the TMU to be clocked with the APB clock. If this clock is 
running with the same frequency as the CPU clock, this is satisfactory. However, the APB clock 
can be prescaled by the user for various reasons, which will make the clock run at lower clock 
frequencies (1

2
, 1
4
 and so on). Even though this is easy to handle in software, it might not always 

be ideal to run the TMU at a lower speed than the CPU clock or have to run the APB at its full 
clock speed. 

Finally, the peripheral bus makes the TMU non-deterministic, as the number of clock cycles 
required for each operation is not guaranteed. For instance, if the bus is occupied, the transfer 
would be delayed. This can be a disadvantage for a real-time system, where exact control over 
various operations often is critical. 

8.8 Application Range 
Primarily, this module supports Gregertsen and Skavhaug’s implementation of Ada’s timing 
event and execution time control (10) and the real-time framework (12) based on the former, 
and will be used for execution time monitoring and control in real-time systems. Previously, 
implementations of Ada have been allowed to charge interrupt handlers to an arbitrary task, if 
any, because of the fast response requirements. By having the possibility of measuring execution 
time with very low overhead, the execution time of interrupt handlers can now also be 
measured and accounted correctly. However, the range of use is not limited to this. 

Compared to the existing timers of UC3 models, the TMU has a very simple interface. This can be 
an advantage if the user wants to start a timer with low overhead (to start counting, it is 
sufficient to enable the module), or does not require all features of a conventional counter. 

Also, applications which require measuring absolute time without having to consider overflow 
handling would benefit from having a 64-bit counter available. 

As the module has been implemented with a focus on configuration options for the user and 
versatility, the application range evidently extends beyond the primary intended application.  
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9 Conclusion and Further Work 
This project has lead to a successful implementation of a Time Management Unit as specified by 
Gregertsen and Skavhaug (1). Furthermore, important improvements additional to the 
specification, such as configurable interrupts and the possibility to enable and disable the 
module, have been implemented. A user guide similar to a module’s part of an UC3 datasheet 
and a framework consisting of drivers in several abstraction layers are provided. Finally, 
thorough tests have been created and performed both on the module as a stand-alone unit, and 
on the module integrated with an AVR32 UC3 processor in a simulated environment. 

Together with the software created in (10; 12), the TMU implemented in this project allows for 
precise and accurate execution time monitoring and control with low overhead. As the module 
has been specified and implemented with small footprint as an important aspect, the TMU can 
be integrated into future microcontrollers without having to make too many compromises. This 
can benefit real-time systems by allowing for higher utilization of the CPU core, without having 
to risk timing failures due to tasks exceeding their execution time budget. Also, by exploiting the 
concept of primary and alternative tasks, the TMU makes it practically possible to guarantee that 
either the primary task will be executed to completion within its deadline, or that the alternative 
task will be executed, even for tasks with very short deadlines. 

At the time of project completion, the module is fully usable, and can benefit both research 
activities and be included in new models of processor series currently available on the market. 
However, further potential improvements are identified in the project. For instance if lower 
overhead is demanded, the module could be connected to a higher speed bus, or even be 
integrated with the CPU core itself. More suggestions and advice for further work is given in the 
report.  

The TMU is also prepared for further modifications, by for instance reserving bits in the status 
register and having developed code with focus on maintainability. The thorough set of tests can 
support further development by indicating whether the module is still functional and backwards 
compatible. Finally, an introduction to Verilog for programmers familiar with C has been 
created, in order to give additional support to students continuing the work with this project. 

The author of this thesis, as well as the others that have been involved in this research, hope that 
this module will be included in future commercial microcontrollers. Many of the choices taken in 
this project have been made with this goal in mind. However, a requirement for the TMU to be 
included in a product line is that it must be regarded as a selling point by the manufacturer. This 
implies that the module must offer a desirable feature to the end user, which means that 
software taking advantage of the module also should be available. Hence, the ongoing research 
of Implementing the new Ada 2005 timing event and execution time control features on the AVR32 
architecture (10), and creating A real-time framework for Ada 2005 and the Ravenscar profile 
(12) is paramount for the wish of seeing the module in commercial microcontrollers. 
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Appendices 
A–1 TMU User Interface 

This is the remaining register descriptions of the user interface description in 5.7. 

A–1.1 Control Register 
Name: CTRL 
Access Type: Write-Only 
Offset: 0x00 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - DIS EN 

• DIS: Disable Module 
1: Writing a one to this bit will disable the TMU. Registers are still available. 
0: Writing a zero to this bit has no effect. 

• EN: Enable Module 
1: Writing a one to this bit will enable the TMU to count, generate interrupt flags and 
interrupt signals. 
0: Writing a zero to this bit has no effect. 

A–1.2 Mode Register (Reserved for Future Use) 
Name: MODE 
Access Type: - 
Offset: 0x04 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - - - 
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A–1.3 Status Register 
Name: SR 
Access Type: Read-Only 
Offset: 0x08 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - EN 
        

15 14 13 12 11 10 9 8 
- - - - - - PREVOVF PREVCMP 
        

7 6 5 4 3 2 1 0 
- - - - - - OVF CMP 

• EN: Enable Status 
0: The TMU is disabled. 
1: The TMU is enabled. 
This bit is cleared when CTRL.DIS is written to one. 
This bit is set when CTRL.EN is written to one. 

• PREVOVF: Previous Overflow Flag 
This bit is cleared when a swap operation is issued and the previous value of OVF 
was 0 and no overflow occurred during the swap. 
This bit is set when a swap operation is issued and the previous value of OVF was 1 
or an overflow occurred during the swap. 

• PREVCMP: Previous Compare Match Flag 
This bit is cleared when a swap operation is issued and the previous value of CMP 
was 0 and no compare match occurred during the swap. 
This bit is set when a swap operation is issued and the previous value of CMP was 1 
or a compare match occurred during the swap. 

• OVF: Overflow Flag 
This bit is cleared when a one is written to SCR.OVF or a swap operation is issued. 
This bit is set when an overflow of COUNT occurs. 

• CMP: Compare Match Flag 
This bit is cleared when a one is written to SCR.CMP or a swap operation is issued. 
This bit is set when COUNT is equal to or greater than COMPARE. 
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A–1.4 Status Clear Register 
Name: SCR 
Access Type: Write-Only 
Offset: 0x0C 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - OVF CMP 

Writing a zero to a bit in this register has no effect. 
Writing a one to a bit in this register will clear the corresponding bit in SR and the 
corresponding interrupt request. 
 

A–1.5 Interrupt Enable Register 
Name: IER 
Access Type: Write-Only 
Offset: 0x10 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - OVF CMP 

Writing a zero to a bit in this register has no effect. 
Writing a one to a bit in this register will set the corresponding bit in IMR. 
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A–1.6 Interrupt Disable Register 
Name: IDR 
Access Type: Write-Only 
Offset: 0x14 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - OVF CMP 

Writing a zero to a bit in this register has no effect. 
Writing a one to a bit in this register will clear the corresponding bit in IMR. 

 

A–1.7 Interrupt Mask Register 
Name: IMR 
Access Type: Read-Only 
Offset: 0x18 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
- - - - - - - - 
        

23 22 21 20 19 18 17 16 
- - - - - - - - 
        

15 14 13 12 11 10 9 8 
- - - - - - - - 
        

7 6 5 4 3 2 1 0 
- - - - - - OVF CMP 

0: The corresponding interrupt is disabled. 
1: The corresponding interrupt is enabled. 
A bit in this register is cleared by writing a one to the corresponding bit in IDR. 
A bit in this register is set by writing a one to the corresponding bit in IER.  
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A–1.8 Compare Register (High Part) 
Name: COMPARE_HI 
Access Type: Read/Write 
Offset: 0x1C 
Reset Value: 0xFFFFFFFF 
 

31 30 29 28 27 26 25 24 
COMPARE_HI[31:24] 

        
23 22 21 20 19 18 17 16 

COMPARE_HI[23:16] 
        

15 14 13 12 11 10 9 8 
COMPARE_HI[15:8] 

        
7 6 5 4 3 2 1 0 

COMPARE_HI[7:0] 
• COMPARE_HI: Compare Register (High Part) 

COMPARE_HI contains the high part of the 64-bit COMPARE value. 

 

A–1.9 Compare Register (Low Part) 
Name: COMPARE_LO 
Access Type: Read/Write 
Offset: 0x20 
Reset Value: 0xFFFFFFFF 
 

31 30 29 28 27 26 25 24 
COMPARE_LO[31:24] 

        
23 22 21 20 19 18 17 16 

COMPARE_LO[23:16] 
        

15 14 13 12 11 10 9 8 
COMPARE_LO[15:8] 

        
7 6 5 4 3 2 1 0 

COMPARE_LO[7:0] 
• COMPARE_LO: Compare Register (Low Part) 

COMPARE_LO contains the low part of the 64-bit COMPARE value. 
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A–1.10 Count Register (High Part) 
Name: COUNT_HI 
Access Type: Read/Write 
Offset: 0x24 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
COUNT_HI[31:24] 

        
23 22 21 20 19 18 17 16 

COUNT_HI [23:16] 
        

15 14 13 12 11 10 9 8 
COUNT_HI [15:8] 

        
7 6 5 4 3 2 1 0 

COUNT_HI [7:0] 
• COUNT_HI: Count Register (High Part) 

COUNT_HI contains the high part of the 64-bit COUNT value. 
 

A–1.11 Count Register (Low Part) 
Name: COUNT_LO 
Access Type: Read/Write 
Offset: 0x28 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
COUNT_LO[31:24] 

        
23 22 21 20 19 18 17 16 

COUNT_LO [23:16] 
        

15 14 13 12 11 10 9 8 
COUNT_LO [15:8] 

        
7 6 5 4 3 2 1 0 

COUNT_LO [7:0] 
• COUNT_LO: Count Register (Low Part) 

COUNT_LO contains the low part of the 64-bit COUNT value. 
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A–1.12 Compare Swap Register (High Part) 
Name: SWAP_COMPARE_HI 
Access Type: Read/Write 
Offset: 0x2C 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
SWAP_COMPARE_HI[31:24] 

        
23 22 21 20 19 18 17 16 

SWAP_COMPARE_HI [23:16] 
        

15 14 13 12 11 10 9 8 
SWAP_COMPARE_HI [15:8] 

        
7 6 5 4 3 2 1 0 

SWAP_COMPARE_HI [7:0] 
• SWAP_COMPARE_HI: Compare Swap Register (High Part) 

SWAP_COMPARE_HI contains the high part of the 64-bit SWAP_COMPARE value. 

 

A–1.13 Compare Swap Register (Low Part) 
Name: SWAP_COMPARE_LO 
Access Type: Read/Write 
Offset: 0x30 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
SWAP_COMPARE_LO[31:24] 

        
23 22 21 20 19 18 17 16 

SWAP_COMPARE_LO [23:16] 
        

15 14 13 12 11 10 9 8 
SWAP_COMPARE_LO [15:8] 

        
7 6 5 4 3 2 1 0 

SWAP_COMPARE_LO [7:0] 
• SWAP_COMPARE_LO: Compare Swap Register (Low Part) 

SWAP_COMPARE_LO contains the low part of the 64-bit SWAP_COMPARE value. 
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A–1.14 Count Swap Register (High Part) 
Name: SWAP_COUNT_HI 
Access Type: Read/Write 
Offset: 0x34 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
SWAP_COUNT_HI[31:24] 

        
23 22 21 20 19 18 17 16 

SWAP_COUNT_HI [23:16] 
        

15 14 13 12 11 10 9 8 
SWAP_COUNT_HI [15:8] 

        
7 6 5 4 3 2 1 0 

SWAP_COUNT_HI [7:0] 
• SWAP_COUNT_HI: Count Register (High Part) 

SWAP_COUNT_HI contains the high part of the 64-bit SWAP_COUNT value. 
 

A–1.15 Count Swap Register (Low Part) 
Name: SWAP_COUNT_LO 
Access Type: Read/Write 
Offset: 0x38 
Reset Value: 0x00000000 
 

31 30 29 28 27 26 25 24 
SWAP_COUNT_LO[31:24] 

        
23 22 21 20 19 18 17 16 

SWAP_COUNT_LO [23:16] 
        

15 14 13 12 11 10 9 8 
SWAP_COUNT_LO [15:8] 

        
7 6 5 4 3 2 1 0 

SWAP_COUNT_LO [7:0] 
• SWAP_COUNT_LOW: Count Register (Low Part) 

SWAP_COUNT_LOW contains the low part of the 64-bit SWAP_COUNT value. 
When SWAP_COUNT_LOW is written, the swap operation is issued as described in 
5.5.5. 
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A–2 File archive 

Due to the restrictions put by Atmel Corporation, the file archive will not be published with the 
digital version of this report. The printed booklet delivered to the examiners will have a CD with 
the following contents attached: 

Location Description 
\Integrated tests and examples Tests and example code for TMU integrated with UC3 
\Report Source files for the report 
\Software Support software and drivers 
\Stand-alone tests  Testbench and stand-alone test files 
\TMU The Verilog files of the TMU implementation 
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