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Summary

This thesis is motivated by the long-term goal of developing snake robots
which can move in unknown and challenging environments in order to sup-
port human intervention tasks. Inspired by biological snakes, snake robots
typically consist of a large number of serially connected joint modules which
provide stable and robust locomotion skills. The aim of this thesis is to in-
crease our basic understanding of snake robot locomotion and to present
new control strategies for these mechanisms. The thesis contains two parts.

Part 1

Part I considers planar snake robot locomotion across horizontal and flat
surfaces. The treatment of this control problem is based on two different
mathematical models of the snake robot. The first model is developed from
first principles, while the second model is developed based on simplifying
assumptions.

The models are analysed using several techniques. A stabilizability and
controllability analysis reveals fundamental properties of snake robot dy-
namics which have been assumed in the snake robot literature, but never
formally proven. Several properties are also derived directly from the equa-
tions of motion of the robot, some of which explain why anisotropic ground
friction properties are important during flat surface locomotion. An aver-
aging analysis reveals important relationships between specific gait pattern
parameters of the robot and the resulting velocity during locomotion.

Two controllers for straight line path following control are proposed.
By analysing a Poincaré map, all state variables of a snake robot, except
for the position along the desired straight path, are shown to trace out an
exponentially stable periodic orbit with the first controller. Using cascaded
systems theory, the second controller is proved to K-exponentially stabilize
a snake robot to any desired straight path under the assumption that the
forward velocity is contained in some nonzero and positive interval. More-
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over, a waypoint guidance strategy is proposed for steering a snake robot
along more general paths defined by waypoints interconnected by straight
lines. The guidance strategy is guaranteed to steer the position of the robot
into the acceptance region of each waypoint. Furthermore, it is outlined
how the controllers can be extended to path following of general curved
paths.

The development of a snake robot for flat surface motion is presented,
and the robot is employed to experimentally validate many of the theoretical
results.

Part 11

Part II considers snake robot locomotion in environments containing ex-
ternal objects (or obstacles), which is in line with practical applications of
these mechanisms. A hybrid model of a planar snake robot interacting with
obstacles is presented, where obstacle interaction is modelled by introduc-
ing a unilateral velocity constraint on each contacted link of the robot. The
existence and uniqueness properties of the hybrid model are investigated
based on the theory of linear complementarity problems.

The control problem in this obstacle environment is attacked based on
the notion of obstacle-aided locomotion, where the snake robot is propelled
by active use of the contact forces from the obstacles. A general con-
trol principle is proposed which suggests that obstacle-aided locomotion
is achieved by producing body shape changes where the links in contact
with obstacles are rotated to increase the propulsive forces on the robot.
This control principle is employed to propose a hybrid controller aimed at
resolving situations where the snake robot is jammed between obstacles.
The control principle is also instrumental in the development of a straight
line path following controller in the obstacle environment, where the mo-
tion of the snake robot is specified in terms of a body wave component, an
environment adaptation component, and a heading control component.

The development of a snake robot for motion in unstructured environ-
ments is presented. The robot, which can sense its environment due to a
novel force sensing system, is employed to experimentally investigate the
proposed control strategies.
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Chapter 1

Introduction

1.1 Background and Motivation

Research on snake robots at NTNU has spawned from a research project at
SINTEF!. The project was initiated in 2003 after several major city fires
in Trondheim, which launched an initiative to bring the fire department
in closer relation with the research community in Trondheim to stimulate
efforts that would improve fire safety. A specific idea which spurred from
this initiative was the vision of a self-propelled fire hose as a robotic tool to

I'SINTEF is a Norwegian research organization which is tightly coupled with NTNU
both geographically and through joint research activities.
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Figure 1.1: The water hydraulic snake robot Anna Konda.

aid human firefighters. This idea is clever in that the high-pressure water
inside the hose can be employed as a hydraulic medium in the propulsion
mechanism, a fire extinguishing medium, and a cooling medium for cool-
ing the robot in environments with extreme temperatures. The resulting
system would be a robotic fire hose that could move in extreme environ-
ments with the agility of a biological snake, or, in other words, a water
hydraulic snake robot. The Applied Cybernetics department at SINTEF
was brought in to investigate this idea further, and so began the research
activity on snake robots at SINTEF and NTNU.

Researchers at SINTEF and NTNU quickly realized that developing
such a mechanism represents a highly interdisciplinary task with challenges
ranging from heat resistant materials and water hydraulic joint actuation
to control design and human-machine interaction. To show the feasibility
of the concept, it was decided to develop a simple technology demonstrator
in the form of a water hydraulic snake robot. The robot, which was named
Anna Konda, is shown in Fig. 1.1 and is described in more detail in Liljebick
et al. (2006). Anna Konda can move over relatively flat surfaces and can
spray water through nozzles in its head. The robot is, however, far from
ready for operating in harsh environments.

The work on the Anna Konda robot helped us identify several major
research challenges. The critical and most significant research challenge was
(and still is) the serpentine propulsion mechanism of this system. After the
development of Anna Konda, the research on snake robots at NTNU and
SINTEF has therefore targeted snake robot locomotion in general without
concern about the specific application of the robot. Although fire fighting
was the initial motivation behind this research, the scope of the current
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research activities extends beyond merely fire intervention tasks since snake
robots can be used in many other applications where robust robotic mobility
is required. Fig. 1.2 illustrates a few potential applications of snake robots.

In a global perspective, research on snake robots has been conducted for
several decades. These mechanisms typically consist of serially connected
joint modules capable of bending in one or more planes. The world’s first
snake robot was developed by the Japanese Professor Shigeo Hirose as early
as 1972 (see Hirose, 1993). Since that time, several agile and impressive
mechanisms have been developed by research communities around the world
in efforts to mimic the motion capabilities of their biological counterpart.
However, the locomotive capabilities of current snake robots are still limited
to controlled lab environments, and the world has not yet seen practical
applications of snake robot locomotion. Nonetheless, researchers working
with snake robots know that harnessing and overcoming the challenges of
snake robot locomotion means developing a robotic propulsion mechanism
which far surpasses the mobility of the more conventional wheeled, tracked
and legged forms of robotic mobility.

Development and control of snake robots is generally quite challenging
for two primary reasons. First of all, a snake robot has many degrees of
freedom, which means that the physical mechanism will contain a com-
plex interconnection of sensors, actuators, and control logic. Moreover, the
many degrees of freedom represent complex nonlinear dynamics which is
challenging to analyse from a control design perspective. Second of all, the
dependence on environment interaction is more complicated for a snake ro-
bot than for more conventional mobile robots. In particular, the propulsion
mechanism of a wheeled, tracked or legged robot is achieved with a sepa-
rate and dedicated part of the robot. A snake robot, on the other hand,
has no separate part which is dedicated to propulsion. Being essentially
a smooth and flexible manipulator arm, the propulsion mechanism of a
snake robot is rather an integrated part of the entire body, which means
that propulsion requires synchronized motion of the entire robot in order to
produce appropriate environment interaction forces. Motion based on such
environment interaction is challenging both with respect to control design
and mechanical design.

This thesis targets some of the challenges discussed above, and is mo-
tivated by the long-term goal of developing snake robots which can move
in unknown and challenging environments in order to support human in-
tervention tasks. The main goal of the thesis is to increase our basic un-
derstanding of snake robot locomotion. To this end, the focus of the thesis
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(e) Subsea operations. (f) Domestic applications.

Figure 1.2: Applications of snake robots.
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is primarily directed towards control design. Efficient control strategies are
vital to future applications of snake robots, and are also instrumental in the
development of these mechanisms. In particular, a control strategy with a
solid mathematical foundation will immediately reveal what sensory capa-
bilities, ground friction properties, actuator forces, etc., that are required
in the physical robot to achieve a specific control objective. It is our hope
that the results presented in this thesis will stimulate and support future
research on these fascinating mechanisms.

1.2 Biological Snakes

This thesis is inspired by the robust motion capabilities of biological snakes.
These amagzing creatures are optimal in the sense that they have emerged
through millions of years of evolution. In the following, we present aspects
of biological snakes that we consider relevant to modelling, development,
and control of snake robots. The material is based on Bauchot (1994);
Hirose (1993); Hu et al. (2009); Mattison (2002).

1.2.1 The Anatomy of Snakes

The typical appearance of the skeletal structure of a snake is shown in
Fig. 1.3 and consists of vertebrae, ribs, and a skull. Snakes can have between
130 and 500 vertebrae, with ribs attached to each one. The vertebrae
constitute a column of movable joints that run through the body of the
snake, and protects the spinal cord, which runs through a channel along
the top of the vertebral column. The ribs attached to each side of a vertebra
protect the internal organs.

The mechanical interconnection of the vertebrae is interesting. As il-
lustrated in Fig. 1.4, two vertebrae are connected in a ball and socket
arrangement. The magnitude of the relative rotational motion between
two vertebrae is quite limited. In particular, the relative rotation between
two vertebrae about the vertical axis ranges between 10° and 20°, while the
relative rotation about the horizontal axis is limited to only a few degrees.
These limitations may appear contradictory to the flexibility that snakes
are known for, but this flexibility is, in fact, produced by the sum of the
small movements of many vertebrae. Moreover, limiting the range of the
relative movements leads to increased strength in the connection between
the vertebrae. To prevent damage to the spinal cord due to twisting of the
vertebrae about the axis tangential to the body, each vertebra has a num-
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Figure 1.3: The skeleton of a snake consisting of vertebrae, ribs, and a skull.
Image source: www.shutterstock.com.

ber of wing-like projections that interlock loosely with their counterparts
on the adjacent vertebrae. This limits the amount of twisting.

The body shape of a snake is changed with the help of muscles that are
arranged diagonally along each side of the snake. The ends of these muscles
are attached to ribs, sometimes joining adjacent ribs, but mostly joining
ribs that are some distance apart. The pattern of contraction and relaxation
of these muscles determines the type of locomotion that is performed. For
instance, if muscles on one side of the snake are contracted at the same
time as the equivalent muscles on the other side are relaxed, then the body
will be bent. If, on the other hand, opposite sets of muscles are contracted
or relaxed simultaneously, then the snake will, to some extent, be able to
shorten or extend its body at this location.

The skin of a snake is completely covered with scales. The scales are
formed from thickened areas of the skin and are therefore integrated with
the skin. The typical appearance of snake scales is shown to the left of
Fig. 1.5, while the right shows the skin when it is stretched, thereby pulling
the scales apart. The areas of skin between the scales allow the snake to flex
its body while maintaining a smooth coverage of the scales. An important
purpose of the scales is to form a physical protection from general wear and
tear when the snake moves across rough surfaces. At the same time, the
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Figure 1.4: Two loosely interlocked vertebrae of a snake. Image source:
Mattison (2002). By permission of Chris Mattison.

use of small units of armour allows greater flexibility than would large bony
plates. Another feature of the scales is that they give the snake anisotropic
ground friction properties, i.e. the scales give the snake a larger friction
coefficient in the transversal direction of the snake body compared to in
the tangential direction. Studies of biological snakes and simulation studies
have indicated that this difference in the friction coefficients is important
during forward gliding motion. The assumption on the importance of this
friction property is proved in this thesis (Section 4.3).

1.2.2 The Locomotion of Snakes

Snakes are almost unique among the terrestrial vertebrates in their lack of
legs. However, the lack of legs do not appear to have placed restrictions on
the ability of snakes to move around. On the contrary, snake locomotion
is stable, robust, and versatile. The speed of snake locomotion is, however,
relatively slow, although certain species can move at speeds up to 11 km/h.
Snakes display four basic types of locomotion, which are described below.
More specialized forms of motion also exist. For instance, certain snakes
can jump to heights of up to 1 m by curving their body into a vertical S-
shape to serve as a spring, and then jump by stretching their body. Other
snakes are able to fly through the air by throwing themselves from trees
and forming their body in an aerodynamically favourable manner. The four
most common types of snake locomotion are now presented.
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Figure 1.5: The skin of a snake is completely covered with scales, which are
formed from thickened areas of the skin. In the picture on the right, the
skin is stretched, pulling the scales apart. Image source: Mattison (2002).
By permission of Chris Mattison.

Lateral Undulation

Lateral undulation, also called serpentine crawling, is the fastest and most
common form of snake locomotion, and is illustrated in Fig. 1.6(a). During
lateral undulation, continuous waves are propagated backwards along the
snake body from head to tail. During this wave motion, the sides of the
snake body push against irregularities in the surface, thereby pushing the
snake forward. This form of locomotion is therefore not suitable on slippery
surfaces. As the snake progresses, every point along the body passes the
same point on the ground, and there is never any static contact between
the ground and any point along the body. During swimming, the same
wave motion is produced, but the body then pushes against the resistance
of the water. The weight distribution of a snake during lateral undulation
is not uniform, but rather distributed so that the peaks of the body wave
curve are slightly lifted from the ground.

Concertina Locomotion

Concertina locomotion, which is illustrated in Fig. 1.6(b), is often employed
in narrow spaces where the available range of motion is limited. The motion
is carried out by first extending the front part of the body forward while the
back part is curved several times to provide an anchor against the narrow
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environment. Once the head and front part of the body are fully extended,
they are subsequently used to provide an anchor in the same way so that
the back part of the body can be drawn up. The sequence is then repeated.

The principle behind concertina locomotion relies on the difference be-
tween the large static friction forces at the anchor points and the low kinetic
friction forces in the part of the body which is extended. The motion pat-
tern is not very efficient in terms of energy consumption, but is often needed
in order to traverse tight spaces.

Rectilinear Crawling

Rectilinear crawling is a slow form of locomotion often employed by heavy-
bodied snakes. Also snakes in the final stages of stalking their pray use
rectilinear crawling to avoid alerting their intended victim. During recti-
linear crawling, the snake uses the edges of the scales on its underside as
anchor points to pull itself forward in a more or less straight line. The
operation consists of stretching forward and hooking the edges of the scales
over small irregularities, then pulling the body up to this point. Alternate
parts of the body will be stretching and pulling at the same time. The
motion pattern is illustrated in Fig. 1.6(c).

Sidewinding

Sidewinding is a form of locomotion which is usually employed by snakes
that live in areas of loose sand, e.g. desert snakes. The motion resembles
concertina motion in that one part of the body acts as an anchor while
another part is moved forward. Starting from a resting position, the head
and neck are raised off the ground and thrown sideways while the rest of
the body provides an anchor against the ground. Once the head and fore
part of the body are again on the ground, they in turn act as an anchor
while rest of the body repeats the same motion. The snake moves at about
45° with respect to its heading and leaves a trail of characteristic markings
in the sand, as illustrated in Fig. 1.6(d).

The Control System of Snakes

The employed locomotion method of snakes sometimes depends on the size
of the snake and sometimes on the substrate over (or through) which it is
moving. In fact, an interesting difference between snake locomotion and
legged forms of locomotion is that the basic repeating motion that leads to
propulsion of legged animals to a large extent depends on the progression
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(d) Sidewinding.

Figure 1.6: Different forms of biological snake locomotion. Image source:
Mattison (2002). By permission of Chris Mattison.
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speed of the animal. On the other hand, the basic repeating motion that
leads to propulsion of snakes largely depends on the environment, and not
the speed.

Considering the large number of muscles involved in the motion of a
snake, and also the large number of contact points that are sensed by its
nervous system, it is fair to say that the coordination of snake movements is
both impressive and complex. Investigations of the electrical activity that
accompanies the muscular contraction during movement show that the mo-
tor response is segmentary. Nerve impulses are propagated backwards along
the snake body through the bone marrow. These impulses successively ac-
tivate local muscle groups, which bend the snake body. Musculature is, in
other words, successively, and not simultaneously, active, and only for a few
elements at a time. The bending motion at a point along the snake body is
also influenced by the sensory information transmitted by the skin. Simply
speaking, the snake produces a relatively simple motor command which is
modulated by local reflexes. This explains how every point in the body is
able to follow the same trajectory.

1.3 Previous Work on Modelling, Development
and Control of Snake Robots

This section provides an overview of previous literature on snake robot lo-
comotion based on the review presented in Liljebéck et al. (20107). The
review is structured according to the title of this thesis by first considering
research efforts related to modelling and analysis of snake robots, followed
by research on physical development of these mechanisms, and finally con-
sidering previous control design efforts for snake locomotion. The scope of
this thesis, which we present in Section 1.4, is motivated and justified based
on this literature review.

1.3.1 Modelling and Analysis of Snake Robots

Previous literature on modelling and analysis of snake robot locomotion is
summarized in Table 1.1. The table separates between works that consider
snake locomotion from a planar (2D) perspective and works that also in-
clude three-dimensional aspects of the motion. A more detailed description
of this literature is presented in the following.
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Table 1.1: Pre

vious work on modelling and analysis of snake robots.

Biomechanical studies of biological snakes

2D perspective

Gray (1946), Moon and Gans (1998),
Ma (1999).

3D perspective

Hirose (1993), Hu et al. (2009).

Flat surface locomotion with sideslip constraints

2D perspective

Hirose (1993), Krishnaprasad and Tsakiris (1994),
Kelly and Murray (1995), Ostrowski (1996),
Ostrowski and Burdick (1998), Ishikawa (2009),
Hatton and Choset (2009b), Prautsch and Mita (1999),
Ute and Ono (2002), Matsuno and Mogi (2000),
Matsuno and Sato (2005).

3D perspective

Ma et al. (2003), Tanaka and Matsuno (2008b),
Date and Takita (2005).

Flat surface locomotion without sideslip constraints

2D perspective

Ma (2001), Ma and Tadokoro (2006),
Saito et al. (2002), Li and Shan (2008),
Kane and Lecison (2000),
Grabec (2002), Hicks (2003),
Mehta et al. (2008), Chernousko (2005),
Nilsson (2004), Hu et al. (2009).

3D perspective

Shapiro et al. (2007), Ma et al. (2004),
Transeth et al. (2008b).

Robotic fish a

nd eel-like mechanisms

2D perspective

Mclsaac and Ostrowski (2003a), Kanso et al. (2005).

3D perspective

Boyer et al. (2006), Zuo et al. (2008),
Morgansen et al. (2001), Morgansen et al. (2002),
Vela et al. (2002), Morgansen et al. (2007).

Locomotion in environments with obstacles

2D perspective

Shan and Koren (1993), Bayraktaroglu and Blazevic (2005),
Date and Takita (2007).

3D perspective

Chirikjian (1992), Chirikjian and Burdick (1995),
Yamada and Hirose (2006a), Shan and Koren (1995),
Tanev et al. (2005), Transeth et al. (2008a).




1.3 Previous Work 13

Biomechanical Studies of Biological Snakes

A complete treatment of previous studies of biological snakes is beyond the
scope of this thesis. The biomechanical studies that we consider to be most
relevant to this thesis are summarized in the following.

One of the earliest analytical studies of snake locomotion was given in
Gray (1946), where mathematical descriptions of the forces acting on a
snake are proposed and used to derive properties of snake locomotion. One
of Gray’s conclusions was that forward motion of a planar snake requires
the existence of external forces acting in the normal direction of the snake
body.

Hirose (1993) studied biological snakes and modelled the snake body as
a continuous curve that could not move sideways (sideslip constraints). A
well-known result by Hirose is the formulation of the serpenoid curve, which
is a mathematical description of lateral undulation (the most common form
of snake locomotion). Hirose also investigated adaptive functions of biolog-
ical snakes (i.e. sinus-lifting, the a-adaptive principle, and the l-adaptive
principle) and proposed mathematical descriptions of how external factors,
such as ground friction and temperature, affect the shape of a snake during
locomotion. Furthermore, Hirose investigated locomotion efficiency inside
a magze, i.e. when the snake touches a wall on each side.

An alternative description of lateral undulation, named the serpentine
curve, was proposed in Ma (1999), where a mathematical model of the mus-
cle characteristics of snakes is employed to derive the resulting form of the
body shape during lateral undulation. Ma showed that snake locomotion
according to the serpentine curve has a higher locomotive efficiency than
locomotion according to the serpenoid curve. The locomotive efficiency
during slip-free motion was defined as the ratio between the tangential and
normal directon friction forces on the snake body.

Other interesting studies of snake locomotion include the work in Moon
and Gans (1998), which considers the mechanism by which muscular ac-
tivity of a snake produces curvature and propulsion. In particular, the
muscular activity is studied as a snake interacts with pegs in order to push
itself forward. A more recent study given in Hu et al. (2009) experimentally
investigates the frictional properties of snake skin. In particular, the study
shows that the friction coefficient of a snake in the transversal direction
of the body is larger than the friction coefficient in the tangential direc-
tion. This property is important during forward gliding motion. The study
also shows that the weight distribution of a snake during lateral undula-
tion is not uniform, but rather distributed so that the peaks of the body
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wave curve are slightly lifted from the ground. This is often referred to as
sinus-lifting.

Modelling of Flat Surface Locomotion with Sideslip Constraints

As noted in e.g. Gray (1946), each part of a biological snake conducting
lateral undulation follows the path traced out by the head. This phe-
nomenon is partially explained by the frictional anisotropy of snake skin
studied in e.g. Hu et al. (2009), but is also caused by irregularities on the
surface that provide grip and enable the snake to glide forward without slip-
ping sideways. To mimic this motion, many models of snake robots have
been developed under the explicit assumption that the body cannot move
sideways (sideslip constraints). This assumption introduces nonholonomic
constraints (Bloch et al., 2003) in the equations of motion of the robot. In
practice, such conditions are usually achieved by installing passive wheels
along the body of the snake robot.

Several works attack the motion control problem of wheeled snake ro-
bots with tools from differential geometry. Early approaches of such form
are presented in Kelly and Murray (1995); Krishnaprasad and Tsakiris
(1994), which model the kinematics of wheeled snake robots and analyse the
relationship between body shape changes and the resulting displacement of
the robot. These works also assess the controllability of such mechanisms.
Similar approaches are considered in Ostrowski and Burdick (1998); Os-
trowski (1996), where also the dynamics of wheeled snake robots is consid-
ered, and where system symmetries are utilized to arrive at reduced forms
of the model. Modelling and controllability analysis of the kinematics of
a three-linked wheeled snake robot is also considered in Ishikawa (2009).
Furthermore, Hatton and Choset (2009b) introduce the concept of a body
velocity integral in order to easily approximate the net displacement of a
snake robot during a gait. The method requires that the system coordinates
are properly chosen.

A model of the 2D dynamics of a wheeled snake robot is developed
in Prautsch and Mita (1999) from Lagrange’s equations of motion, and in
Ute and Ono (2002) from first principles. The works in Matsuno and Sato
(2005); Matsuno and Mogi (2000) present models of the 2D kinematics and
dynamics of snake robots, respectively, where some, but not all of the links
are wheeled. The wheel-less links correspond to links that are lifted from
the ground. Lifting some of the wheeled links is sometimes desirable from
a control perspective to make the motion of the robot less constrained. A
model of the 3D kinematics of a snake robot that describe the lifting of
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the links more accurately is presented in Ma et al. (2003). Furthermore,
Tanaka and Matsuno (2008b) present a model of the 3D dynamics of a
snake robot consisting of a grounded base part and a lifted head part (for
manipulation purposes), where some, but not all, of the links in the base
part are wheeled.

Continuum models of snake robot dynamics, where the snake is treated
as a continuous curve that cannot move sideways, are presented in Date
and Takita (2005); Hirose (1993). The model in Hirose (1993) is planar,
while the model in Date and Takita (2005) considers the 3D dynamics of
the continuous snake robot.

Modelling of Flat Surface Locomotion without Sideslip Constraints

In addition to the many models of snake robots with sideslip constraints,
there are also many models that do not enforce such constraints, but instead
only assume that the links exhibit anisotropic ground friction properties
similar to biological snakes. With anisotropic ground friction properties, the
friction coefficients describing the friction force in the tangential and normal
direction of a link, respectively, are different. Models based on such ground
friction properties are generally more complex to analyse than models based
on sideslip constraints since there is no longer a direct connection between
the body shape changes and the resulting displacement of the robot.

Ma (2001) employs the Newton-Euler formulation to develop a 2D
model of the dynamics of a snake robot with anisotropic ground friction
properties. The ground friction model include both static and dynamic
Coulomb ground friction forces. The model of the robot is formulated in
two ways, where the first form gives the propulsion of the robot and the
joint torques based on knowledge of the body shape changes, whereas the
second form gives the propulsion and body shape changes of the robot
based on knowledge of the joint torques. The model is extended in Ma and
Tadokoro (2006) to also describe snake locomotion on a slope.

Another model of planar wheel-less snake robot dynamics is developed
in Saito et al. (2002) from first principles. The model considers both viscous
and Coulomb ground friction forces. Simulations with the model are carried
out to derive properties of snake robot dynamics. The model from Saito et
al. (2002) is employed in Li and Shan (2008) to study the controllability of
the joints of a snake robot under the assumption that one joint is passive.
However, the analysis does not consider the position of the robot.

Models of planar snake robot dynamics with anisotropic viscous ground
friction are presented in Grabec (2002); Hicks (2003); Kane and Lecison
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(2000). The work in Hicks (2003) exploits symmetries in the system (cyclic
coordinates) to transform the model to a reduced form where the shape
dynamics is decoupled from the displacement dynamics of the snake robot,
and investigates general requirements for the propulsion of a three-linked
snake robot. A friction model that includes both viscous and Coulomb
friction forces is proposed and analysed in Mehta et al. (2008).

A model that considers isotropic Coulomb ground friction forces (both
static and dynamic friction) is presented in Chernousko (2005). Isotropic
ground friction is also assumed in Nilsson (2004), where a continuum ap-
proach along with energy arguments are employed to analyse planar snake
locomotion under isotropic friction conditions. Shapiro et al. (2007) model
the frictional contact forces between a snake robot and a compliant surface.
The dynamics of planar snake locomotion is described in terms of a contin-
uum model in Hu et al. (2009), where the snake is treated as a continuous
curve influenced by Coulomb friction forces from the ground. The model
is employed to study the effect of anisotropic ground friction properties on
the propulsion of snakes.

The 3D dynamics of a snake robot during locomotion across flat surfaces
is considered in Ma et al. (2004); Transeth et al. (2008b). The model in Ma
et al. (2004) is developed from the Newton-Euler formulation and includes
both static and dynamic Coulomb ground friction forces. The model is
employed to study sinus-lifting during lateral undulation. Transeth et al.
(2008b) model snake robot dynamics by use of the framework of nonsmooth
dynamics. The model, which represents a hybrid system, describes the
normal direction contact forces from the ground and the Coulomb ground
friction forces by use of set-valued force laws.

Modelling of Robotic Fish and Eel-like Mechanisms

Research on robotic fish and eel-like mechanisms is relevant to research on
snake robots since these mechanisms are very similar. A complete treat-
ment of robotic underwater locomotion is beyond the scope of this review.
However, a representative part of previous research related to modelling of
such mechanisms is presented in the following.

A model of eel-like motion is developed in Mclsaac and Ostrowski
(2003a) based on tools from differential geometry that were also considered
in some of the works concerning wheeled snake robots described above.
However, the model does not place sideslip constraints on the robot. In-
stead, the eel-like mechanism is propelled by hydrodynamic forces modelled
by a viscous friction model. The dynamics of eel-like motion is also con-
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sidered in Kanso et al. (2005), where model reductions are proposed to
allow the net motion of the robot to be described as a sum of geometric
and dynamic phases over closed curves in the shape space, and in Boyer
et al. (2006), where a continuum model is formulated based on beam the-
ory, and in Zuo et al. (2008), where first principles are employed to model
the dynamics of a swimming snake robot. The works in Morgansen et al.
(2007, 2002, 2001); Vela et al. (2002) model the dynamics of a robotic fish
influenced by lift and drag forces in an inviscous fluid. The controllability
of the fish-like mechanism is also assessed in these works.

Modelling of Locomotion in Environments with Obstacles

In Chirikjian (1992); Chirikjian and Burdick (1995), the kinematics of snake
robots is modelled in terms of a continuous backbone curve that captures
the macroscopic geometry of the robot. Gaits for the backbone curve, which
determine the shape of the snake robot, are specified with respect to en-
vironment constraints and the desired locomotion trajectory of the robot.
The approach is original in that the problem of locomotion in cluttered en-
vironments is attacked at a purely kinematic level. The work by Chirikjian
and Burdick is extended in Yamada and Hirose (2006a), where a continuum
kinematics model is presented that explicitly handles the case of backbone
curves that can be bent, but not twisted. This condition is in line with
most physical snake robots, which are generally able to bend, but not twist
their body. The kinematic constraints imposed on a snake robot due to
external obstacles are modelled in Shan and Koren (1993, 1995). These
works also analyse how obstacles around a snake robot affect its degrees of
freedom.

The only known works that consider the dynamics of snake robots in
environments with obstacles (i.e. where obstacle contact forces are consid-
ered) are presented in Bayraktaroglu and Blazevic (2005); Date and Takita
(2007); Tanev et al. (2005); Transeth et al. (2008a). In Bayraktaroglu
and Blazevic (2005), a dynamic simulation software called WorkingModel
is used to simulate a planar snake robot interacting with circular obsta-
cles. Contact forces are calculated from a spring-damper approximation.
A similar approach is employed in Tanev et al. (2005), where the simulation
software Open Dynamics Engine (ODE) is used to model a snake robot in-
teracting with various forms of obstacles. Date and Takita (2007) use the
multi-body dynamics simulation software Autolev to study the motion of a
snake robot during contact with a single peg, where the contact with the
peg is modelled as a spring-damper system. The works in Bayraktaroglu
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and Blazevic (2005); Date and Takita (2007); Tanev et al. (2005) do not
provide the equations underlying the dynamics of the snake robot due to
the use of general-purpose simulation software. On the other hand, the
model proposed in Transeth et al. (2008a) is, to our best knowledge, the
only work which explicitly presents the equations of motion underlying the
obstacle interaction dynamics of a snake robot. The model, which repre-
sents a hybrid system, is formulated within the framework of nonsmooth
dynamics. A timestepping method is used to simulate the dynamics of the
robot, which means that the system equations are discretized with a time
step determined by a fixed error criterion, and trajectories of the system
are approximated without tracking events (i.e. obstacle impacts). Transeth
et al. (2008a) also introduce the term obstacle-aided locomotion, which in-
volves using external obstacles as push points to aid the propulsion instead
of avoiding them.

1.3.2 Development of Physical Snake Robots

Previous literature that considers development of physical snake robots is
summarized in the following. The review is structured according to the fo-
cus of this thesis on snake robot locomotion based on measurements of envi-
ronment contact forces, which we consider important for body shape adap-
tation in cluttered environments. In particular, to illustrate that previous
research on environment sensing for snake robots is limited, we have chosen
to separate the works that consider snake robtos with contact force sensors
from the works that do not include such sensor capabilities in the robot
design. The referred works are summarized in Table 1.2, which separates
between snake robots with passive wheels, which are advantageous during
motion across flat surfaces, snake robots without such passive wheels, and
snake robots equipped with active propulsion.

Snake Robots without Contact Force Sensors

Hirose developed the world’s first snake robot as early as 1972 (Hirose,
1993). This robot was equipped with passive wheels to realize the anisotropic
ground friction property that enables forward locomotion on flat surfaces.
Several other snake robots with passive wheels have been proposed over
the years, such as the robots presented in Endo et al. (1999), Togawa et al.
(2000), Ma et al. (2001), Wiriyacharoensunthorn and Laowattana (2002),
Mori and Hirose (2002), Miller (2002), Ye et al. (2004a), Yamada et al.
(2005), Ye et al. (2007), Crespi and Ijspeert (2008), Yu et al. (2008), Yu et
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Table 1.2: Previous work on implementation of physical snake robots.

Snake Robots without Contact Force Sensors

Endo et al. (1999), Togawa et al. (2000), Ma et al. (2001),

Wiriyacharoensunthorn and Laowattana (2002),

With Mori and Hirose (2002), Miller (2002),
passive Ye et al. (2004a), Yamada et al. (2005),
wheels Ye et al. (2007), Crespi and Ijspeert (2008),
Yu et al. (2008), Yu et al. (2009),
Kamegawa et al. (2009).
Yim (1994), Yim et al. (2002),
Worst and Linnemann (1996), Dowling (1997),
Dowling (1999), Nilsson (1998),
Without .
) Ohno and Hirose (2001), Saito et al. (2002),
passive
Brunete et al. (2006), Chen et al. (2007),
wheels
Wright et al. (2007), Kuwada et al. (2008),
Yamada and Hirose (2009), Ohashi and Hirose (2010),
Yamada and Hirose (2008).
Kimura and Hirose (2002), Yamada and Hirose (2006b),
With Taal et al. (2009), Kamegawa et al. (2004),
active Masayuki et al. (2004), Granosik et al. (2006),
propulsion Gao et al. (2008), McKenna et al. (2008),

Hara et al. (2007).

Snake Robots with Contact Force Sensors

propulsion

With

passive Hirose (1993), Chen et al. (2008).

wheels
Without

) Bayraktaroglu (2008), Gonzalez-Gomez et al. (2010),

passive Liljebéck et al. (2006), Fjerdingen et al. (2008).
wheels

With

active Taal et al. (2009)
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al. (2009), and Kamegawa et al. (2009). Some of the robots can only display
planar motion, while other robots can move their links both horizontally
and vertically. Some robots have shielded joint modules that enable mo-
tion in environments with e.g. mud and dust, and even motion under water,
while other robots have modules with exposed electronic components which
only allow them to move in clean lab environments. A common feature of
these mechanisms, however, is that they are generally only able to move
across relatively flat surfaces since passive wheels do not move very well in
a cluttered environment. Such mechanisms are therefore suitable for mo-
tion control experiments on relatively flat surfaces, but not for practical
applications of snake robots in more challenging environments.

Snake robots without passive wheels, i.e. robots that basically consist
of straight links interconnected by motorized joints, are presented in Yim
(1994), Yim et al. (2002), Worst and Linnemann (1996), Dowling (1997),
Dowling (1999), Nilsson (1998), Ohno and Hirose (2001), Saito et al. (2002),
Brunete et al. (2006), Chen et al. (2007), Wright et al. (2007), Kuwada et
al. (2008), Yamada and Hirose (2009), and Ohashi and Hirose (2010). De-
spite its lack of wheels, the snake robot in Saito et al. (2002) maintains an
anisotropic ground friction property since the underside of each link has
edges, or grooves, that run parallel to the link. This robot can therefore
move forward by lateral undulation through purely planar motion. Ro-
bots whose ground friction properties are isotropic, on the other hand, can
move forward during lateral undulation by resorting to sinus-lifting, i.e. by
slightly lifting the peaks of the body wave curve from the ground (see e.g.
Ohno and Hirose, 2001; Yamada and Hirose, 2008). However, robots with
isotropic friction are mostly used for studying gaits other than lateral un-
dulation, such as gaits based on sidewinding, inchworm motion, or lateral
rolling.

There are also works that consider active propulsion along the body of
a snake robot, for example by equipping each link with motorized wheels
(Kimura and Hirose, 2002; Taal et al., 2009; Yamada and Hirose, 2006b), or
by installing tracks along the body of the snake robot (Gao et al., 2008; Gra-
nosik et al., 2006; Kamegawa et al., 2004; Masayuki et al., 2004; McKenna
et al., 2008), or by employing a screw drive mechanism (Hara et al., 2007).

Snake Robots with Contact Force Sensors

Previous research on environment sensing for snake robots is limited. The
wheeled snake robot developed by Hirose already in 1972 (Hirose, 1993)
was equipped with contact switches, which enabled the robot to demon-
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strate lateral inhibition with respect to external obstacles. Snake robots
with cylindrical modules covered by force sensors are proposed by our re-
search group in Fjerdingen et al. (2008); Liljebéick et al. (2006). The force
sensor systems are able to detect and, to some extent, assess the magnitude
of external forces applied at certain areas of the joint modules. A snake
robot with active wheels, where each wheel axis is equipped with a 3-axial
force sensor, is presented in Taal et al. (2009). The force sensor measures
the translational forces on the wheel axis based on optical range measure-
ments. Bayraktaroglu (2008) presents a wheel-less snake robot with contact
switches and presents experimental results where the robot is propelled for-
ward by pushing against pegs that are detected by the contact switches.
A snake robot with passive wheels and strain gauge sensors is proposed in
Chen et al. (2008), where the strain gauge sensors are shown to successfully
measure the constraint forces on the wheels. Ideas relating to environment
sensing for snake robots are considered in Gonzalez-Gomez et al. (2010),
where the preliminary design of a capacitive contact sensor is proposed that
can be wrapped around each module of a snake robot.

1.3.3 Control of Snake Robots

In the following, we provide an overview of previous control design efforts
for snake robots. The review is structured according to Tables 1.3 and 1.4,
which summarize all papers referred to in this section. The two tables sepa-
rate between works that present gait patterns without explicitly controlling
the position or heading of the snake robot and works that present gait pat-
terns along with position and/or heading controllers. The review focuses
on controllers based on lateral undulation, which is the most common form
of snake robot locomotion and which is also most relevant to the results
presented in this thesis.

Remark 1.1 Stability analysis of control laws for snake robots is challeng-
ing due to the complexity of existing models of these mechanisms. For this
reason, applications of formal stability analysis tools in previous snake ro-
bot literature are very limited. Simulations and experimental investigations
are instead the common approach in the literature for providing support of
proposed control strategies.

Control of Flat Surface Locomotion with Sideslip Constraints

A majority of previous control design efforts for snake robots has focused
on locomotion where the links are subjected to nonholonomic constraints,
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Table 1.3: Previous work on control of snake robot locomotion (1 of 2).

Flat surface loco

motion with sideslip constraints

Without
position or
heading control

Shan and Koren (1993), Kelly and Murray (1995),
Ostrowski and Burdick (1998), Date and Takita (2005),
Tanaka and Matsuno (2009), Ute and Ono (2002),
Sato et al. (2010), Wang et al. (2010).

With
position and/or
heading control

Prautsch et al. (2000), Date et al. (2000),
Date et al. (2001b), Date et al. (2001a),
Yamakita et al. (2003), Matsuno and Mogi (2000),
Ma et al. (2003), Matsuno and Suenaga (2003),
Ye et al. (2004b), Matsuno and Sato (2005),
Tanaka and Matsuno (2008a),

Tanaka and Matsuno (2008b),
Wiriyacharoensunthorn and Laowattana (2002),
Watanabe et al. (2008), Ishikawa (2009),
Ishikaway et al. (2010), Paap et al. (1999),
Linnemann et al. (1999), Murugendran et al. (2009).

Flat surface loco

motion without sideslip constraints

Without
position or
heading control

Dowling (1997), Dowling (1999), Ma (2001),
Ma et al. (2004), Saito et al. (2002),
Chernousko (2003), Chernousko (2005),
Transeth et al. (2007), Burdick et al. (1995),
Gonzalez-Gomez et al. (2007), Yu et al. (2008),
Chirikjian and Burdick (1995), Poi et al. (1998),
Yim (1994), Yim et al. (2002),

Ohno and Hirose (2001), Rincon and Sotelo (2003),
Hatton and Choset (2010), Yamada and Hirose (2010),
Mori and Hirose (2002), Chen et al. (2004),
Ohashi and Hirose (2010).

With
position and/or
heading control

Hicks (2003), Hicks and Ito (2005).
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Table 1.4: Previous work on control of snake robot locomotion (2 of 2).

Robotic fish and eel-like mechanisms

Without
position or
heading control

Morgansen et al. (2001),
Melli et al. (2006),
Crespi and Ijspeert (2008).

With
position and/or
heading control

Mclsaac and Ostrowski (2003b),
MclIsaac and Ostrowski (2003a),
Morgansen et al. (2002), Vela et al. (2002),
Morgansen et al. (2007).

Locomotion in environments with obstacles

Without
position or
heading control

Hirose (1993), Andruska and Peterson (2008),
Kuwada et al. (2008), Kulali et al. (2002),
Greenfield et al. (2005), Kamegawa et al. (2009),
Zarrouk et al. (2010), Nilsson (1997),
Chen et al. (2007), Lipkin et al. (2007),
Hatton and Choset (2009a).

With
position and/or
heading control

Bayraktaroglu and Blazevic (2005),
Bayraktaroglu (2008),
Date and Takita (2007),
Sfakiotakis and Tsakiris (2007).
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i.e. where each link is constrained from moving sideways. Shan and Ko-
ren (1993) consider a snake robot that uses solenoids for attachment to
the environment and proposes gaits for forward and turning motion of this
mechanism. Tools from differential geometry are employed in Kelly and
Murray (1995); Ostrowski and Burdick (1998) to demonstrate that sinu-
soidal shape inputs to wheeled snake robots lead to propulsion.

A position and path following controller for a wheeled snake robot is
proposed in Prautsch et al. (2000), where also Lyapunov analysis is em-
ployed to analyse the controller. The work also considers approaches for
preventing the snake robot from attaining a straight shape, which is sin-
gular with respect to propulsion. The works in Date et al. (2001a, 2000,
2001b) propose path following controllers for wheeled snake robots aimed at
minimizing the lateral constraint forces on the wheels during lateral undu-
lation. The controllers are based on a measure of dynamic manipulability,
which describes the ability of the robot to generate propulsive force. A
similar approach is employed in Yamakita et al. (2003), which proposes a
gait pattern aimed at minimizing the lateral constraint forces on the wheels,
and in Date and Takita (2005), which formulates and solves an optimization
problem in order to minimize the torque input. The optimization problem
is solved using a 3D continuum model of the snake robot.

In Ma et al. (2003); Matsuno and Sato (2005); Matsuno and Mogi
(2000); Matsuno and Suenaga (2003), position and path following con-
trollers are proposed for the case where some, but not all, of the snake
robot links are wheeled. The wheel-less links correspond to links that are
lifted from the ground, which give the system more degrees of freedom
that can be utilized to follow a trajectory while simultaneously maintain-
ing a high manipulability. Similar approaches are considered in Tanaka and
Matsuno (2008a, 2009, 2008b), where also strategies for sinus-lifting during
lateral undulation are proposed.

Ute and Ono (2002) propose a gait based on a self-excitation principle
where joint angle information determines the winding motion of a snake
robot. Directional control during lateral undulation is considered in Wiriy-
acharoensunthorn and Laowattana (2002); Ye et al. (2004b). Watanabe
et al. (2008) propose a position controller for a wheeled snake robot that
takes ground friction forces into account. A similar approach is employed
in Sato et al. (2010), where deviations of the joint angles from their set-
points are used to modify the oscillatory joint motion, thereby enabling the
snake robot to automatically adapt its motion to variations in the ground
friction conditions. The works in Ishikawa (2009); Ishikaway et al. (2010)
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propose position and path following controllers for three-linked and four-
linked wheeled snake robots based on Lie bracket calculations and control-
lability analysis results. Furthermore, a Poincaré map is employed to study
the motion of the robot. The concept of passive creeping is considered in
Wang et al. (2010), which involves adjusting the motion of a snake robot
based on a measure of the dissipated energy, thereby achieving adaptation
of the motion to different surface conditions. Local orbital stability of state
trajectories during the motion is concluded based on recurrence plots.

A snake robot with active wheels is considered in Linnemann et al.
(1999); Paap et al. (1999), where an optimization scheme is employed to
make the robot follow the path that minimizes energy dissipation due to
friction forces. Active wheels are also assumed in Murugendran et al.
(2009), where a path following controller for such snake robots is proposed
on a kinematic level.

Remark 1.2 The works in e.g. Date et al. (2001a, 2000); Ma et al. (2003);
Matsuno and Sato (2005); Matsuno and Mogi (2000); Prautsch et al. (2000),
which were described above, all employ a common approach for motion con-
trol in that the nonholonomic constraints on the links are used to establish
an explicit connection between body shape changes and propulsion, which al-
lows the control input to be specified directly in terms of the desired propul-
sion of the robot. These approaches are, to our best knowledge, the only
known approaches for motion control of wheeled snake robots which infer
some formal and model-based conclusions on the propulsion of the robot.

Control of Flat Surface Locomotion without Sideslip Constraints

Gait patterns of a wheel-less snake robot are specified in Dowling (1999,
1997) in terms of Fourier series coefficients, and certain learning techniques
are employed for determining these parameters. In Ma (2001), computer
simulations are employed to study properties of lateral undulation related
to the optimality of the motion. Ma et al. (2004) propose a control strat-
egy for sinus-lifting during lateral undulation by solving a quadratic op-
timization problem. Saito et al. (2002) consider snake robots influenced
by anisotropic ground friction, and optimizes the gait parameters of lat-
eral undulation based on simulations. The work also proposes a forward
velocity controller for wheel-less snake robots. The works in Chernousko
(2003, 2005) consider several elementary motions for planar snake robots
and derive conditions for the feasibility of these motions, such as required
actuator strength. In Hicks and Ito (2005); Hicks (2003), methods based
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on numerical optimal control are considered for determining optimal gaits
during positional control of snake robots influenced by anisotropic viscous
ground friction. Gonzalez-Gomez et al. (2007) use Open Dynamics En-
gine (ODE) to propose and simulate various 3D gaits for translational and
turning motion of snake robots, including a gait for rotation with very little
displacement. Transeth et al. (2007) propose a controller for the joints of a
planar snake robot influenced by anisotropic Coulomb ground friction, and
prove that the resulting translational and rotational velocity of the robot
is bounded.

The following works consider other gait patterns than lateral undula-
tion, and the gaits are carried out in open-loop without explicitly controlling
the position and orientation of the snake robot. Gaits for sidewinding mo-
tion, which is a sideways rolling type of motion, are proposed in Burdick
et al. (1995); Gonzalez-Gomez et al. (2007); Hatton and Choset (2010); Yu
et al. (2008). Inchworm locomotion gaits are proposed in Chirikjian and
Burdick (1995); Gonzalez-Gomez et al. (2007); Ohno and Hirose (2001); Poi
et al. (1998); Rincon and Sotelo (2003); Yamada and Hirose (2010); Yim
(1994); Yim et al. (2002). Lateral rolling, which is achieved by continuously
forming the snake body into a vertical U-shape that tips over, is considered
in Chen et al. (2004); Dowling (1997); Gonzalez-Gomez et al. (2007); Mori
and Hirose (2002); Ohno and Hirose (2001). Furthermore, gaits for loop
forming motion are proposed in Ohashi and Hirose (2010); Yim (1994); Yim
et al. (2002), where the head and tail of the snake robot are connected to
turn the robot into a rolling wheel.

Remark 1.3 To our best knowledge, previous literature has not presented
any formal mathematical proofs regarding the propulsion of wheel-less snake
robots.

Control of Robotic Fish and Eel-like Mechanisms

A complete treatment of robotic underwater locomotion is beyond the scope
of this review. However, we consider the above works to be representative
of previous research related to control of such mechanisms.

Eel-like motion is considered in Mclsaac and Ostrowski (2003a,b), where
controllers for tracking straight and curved trajectories are proposed. The
works in Morgansen et al. (2007, 2002, 2001); Vela et al. (2002) consider
motion control of robotic fish. Lie bracket calculations based on the dy-
namics of the robotic fish are used to derive gaits for forward motion and
various forms of turning motion. Algorithms for closed-loop heading and
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depth control are also considered. Melli et al. (2006) propose open-loop
gaits for a robotic fish based on curvature plots of the mechanical connec-
tion between the shape space motion and the overall displacement of the
robot. A swimming snake robot is considered in Crespi and Ijspeert (2008),
where a gradient-free optimization method is employed to adjust the gait
parameters online, i.e. while the robot is moving, in order to maximize the
forward veloctiy.

Control of Locomotion in Environments with Obstacles

Only a few works in previous literature consider control strategies for snake
robots where the surface is no longer assumed to be flat (i.e. in environ-
ments with obstacles). To our best knowledge, the works in Bayraktaroglu
(2008); Bayraktaroglu and Blazevic (2005); Hirose (1993) are the only works
in previous literature which present control strategies for snake robots that
employ explicit contact sensing in the feedback loop. Hirose (1993) pro-
poses a strategy for lateral inhibition that modifies the shape of a snake
robot based on contact force sensing along the snake body in order to avoid
obstacles. Bayraktaroglu and Blazevic (2005) propose an inverse dynamics
approach by formulating and numerically solving an optimization problem
in order to, for a given set of obstacle contacts, calculate the contact forces
required to propel the robot in a desired direction. A strategy for calcu-
lating the actual torque inputs to the joints from the desired contacts was,
however, not presented. A kinematic approach is proposed in Bayraktaroglu
(2008), where a curve fitting procedure is used to determine the shape of
the robot with respect to the detected obstacles. Subsequently, this shape
is propagated backwards along the snake body under the assumption that
this will push the robot forward.

Sensing the environment of a snake robot must not necessarily involve
contact force sensing since the environment can be indirectly sensed through
the joint angle measurements and/or the actuator torques. This approach
is considered in Date and Takita (2007), where the joint torques of a snake
robot are specified solely in terms of the measured joint angles to achieve
motion through a winding corridor, and in Andruska and Peterson (2008),
which presents a control strategy that uses motor current measurements to
adjust the shape of a snake robot moving through an elastically deformable
channel, and in Kuwada et al. (2008), where the deviations of the joint
angles from their setpoints are used to adapt the body shape of a snake
robot moving inside pipe structures.

The remaining works presented in the following consider controllers
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aimed at locomotion in environments that are not flat, but do not ap-
pear to involve sensing of the interaction between the snake robot and its
environment. Kulali et al. (2002) employ a fuzzy logic controller to switch
between various predefined gaits during motion in an obstacle environment.
The goal of the motion controller is to avoid the obstacles. In Greenfield
et al. (2005), an algorithm is presented that takes contact constraints on a
snake robot into account in order to compute the joint torques that pro-
duce the desired motion. The algorithm is applied to achieve climbing
motion with a snake robot. A gait for climbing motion is also proposed
in Kamegawa et al. (2009). Sfakiotakis and Tsakiris (2007) use range sen-
sor measurements to centre a crawling snake robot between the walls of a
corridor. Zarrouk et al. (2010) analyse the efficiency of earthworm-like mo-
tion on compliant surfaces motivated by biomedical applications of worm
robots. Moreover, various gaits aimed at motion in unstructured environ-
ments, including climbing gaits, are proposed in Chen et al. (2007); Hatton
and Choset (2009a); Lipkin et al. (2007); Nilsson (1997).

1.4 Scope of the Thesis

The work underlying this thesis has been carried out with the following
scope.

1.4.1 An Analytical Approach

The motivation behind this thesis is highly practical and applied. However,
this thesis is primarily a theoretical study, although experimental investiga-
tions are also considered. In our opinion, there are many aspects related to
control of snake robots that have not yet been addressed. Moreover, even
though research on snake robots has been conducted for several decades,
our understanding of snake locomotion so far is largely based on empirical
studies of biological snakes and simulation-based synthesis of properties of
snake robots. In this thesis, we therefore take an analytical approach in
an attempt to increase our basic understanding of snake robot locomotion.
We hope this approach will contribute to the mathematical foundation of
the control theory of snake robots.

1.4.2 A Planar Perspective

This thesis considers planar snake robot locomotion in the horizontal plane.
Of course, snake locomotion is inherently a three-dimensional phenomenon,
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and a snake robot capable of strict planar motion will generally not be able
to operate in unstructured and challenging environments. However, we be-
lieve the essential control principles of snake robot locomotion are contained
in a planar perspective. In particular, since the fully three-dimensional
motion of a snake robot consists of motion components in a horizontal and
vertical plane, respectively, we conjecture that control laws that fulfil some
control objective in a planar perspective can be extended to fulfil a similar
control objective in a fully three-dimensional perspective. Moreover, we
believe the simpler case of planar locomotion should be fully understood
before the more challenging problem of three-dimensional locomotion is
attacked.

1.4.3 Locomotion Without Sideslip Constraints

As indicated by the literature review in Section 1.3, a majority of previ-
ous research has focused on snake robots where the links are subjected to
nonholonomic constraints, i.e. where each link is constrained from moving
sideways. Such conditions are usually obtained by installing passive wheels
in the tangential direction of the snake robot links. However, it seems unre-
alistic to enforce a nonholonomic constraint on each link during motion in
unknown and cluttered environments, which represents the long-term goal
of our research. In this thesis, we therefore consider snake robots where
the links are allowed to slip sideways, often referred to as wheel-less snake
locomotion.

1.4.4 Motion based on Lateral Undulation

This thesis focuses on motion analysis and control strategies where the
snake robot moves according to various forms of the gait pattern lateral
undulation (see Section 1.2.2). We have chosen this scope since lateral un-
dulation is the fastest and most common form of snake locomotion. More-
over, we believe that this is the gait pattern which is most relevant and
most efficient in a planar perspective.

1.5 Contributions of the Thesis

The title of this thesis, Modelling, Development, and Control of Snake Ro-
bots, is reflected in its structure and organization, as illustrated in Table 1.5.
The thesis has two parts, where the first part targets snake robot locomo-
tion on flat surfaces, while the second part targets snake robot locomotion
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Table 1.5: The problem areas treated in each chapter.

Modelling Development Control
Chapter 2 X
Chapter 3 X
== | Chapter 4 X
d
E Chapter 5 X
Q. | Chapter 6 X
Chapter 7 X
Chapter 8 X
= | Chapter 10 X
d
E Chapter 11 X
Q. | Chapter 12 X
Chapter 13 X

in unstructured environments, i.e. environments containing external obsta-
cles. In the following, we present the topic and corresponding contributions
of each individual chapter of the thesis.

1.5.1 Contributions of Part I - Snake Robot Locomotion on
Planar Surfaces

Chapter 2

Topic: We present a mathematical model of the kinematics and dynamics
of a snake robot moving on a horizontal and flat surface. The links of
the robot are influenced by ground friction forces, which propel the
robot.

Contributions: The initial form of the model is not novel to this work
since similar models of snake robot locomotion based on first princi-
ples are presented in Ma (2001); Saito et al. (2002). The two main
contributions of this chapter are a change of coordinates, which en-
ables us to partition the model of the snake robot into an actuated
and an unactuated part, and a subsequent partial feedback lineariza-
tion of the model. Due to the complexity of the initial form of the
model, much of the model analysis presented in this thesis would not
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have been feasible without the model transformation.

Chapter 3

Topic: We present the design of the snake robot Wheeko, which was de-
veloped for motion control experiments on flat surfaces.

Contributions: The internal structure of Wheeko is identical to the inter-
nal structure of the snake robot Kulko, which is described in Chap-
ter 11. The contributions of this chapter are therefore included in the
contributions of Chapter 11.

Chapter 4

Topic: We employ nonlinear system analysis tools for investigating funda-
mental properties of snake robot dynamics.

Contributions: The first contribution is a stabilizability analysis that
proves that any asymptotically stabilizing control law for a planar
snake robot to an equilibrium point must be time-varying, i.e. not of
pure-state feedback type.

The second contribution is a controllability analysis of planar snake
robots influenced by viscous ground friction forces that shows that a
snake robot is not controllable when the ground friction is isotropic,
but that a snake robot becomes strongly accessible when the ground
friction is anisotropic. The analysis also shows that the snake robot
does not satisfy sufficient conditions for small-time local controlla-
bility. To our best knowledge, no formal controllability analysis has
previously been reported for the position and link angles of a wheel-
less snake robot influenced by ground friction. The results from the
controllability analysis are not sufficient to conclude that a snake ro-
bot with anisotropic ground friction is controllable. However, the
analysis proves that propulsion of a snake robot under viscous fric-
tion conditions requires the friction to be anisotropic, and also that
the joint angles of a snake robot should be out of phase during snake
locomotion. These claims have been assumed in the snake robot lit-
erature, but have never before been formally proven.

The third contribution is the development of a simple relationship
between link velocities normal to the direction of motion and propul-
sive forces in the direction of motion that explains how snake robots
influenced by anisotropic ground friction are able to locomote forward
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on a planar surface. In our opinion, previously published research on
snake robots has not presented an explicit mathematical description
that easily explains how a snake robot achieves forward propulsion.
As a fourth and final contribution, we present mathematical argu-
ments that support the empirically derived mathematical description
of lateral undulation proposed in Hirose (1993). Moreover, we iden-
tify an important property concerning the turning motion of a snake
robot, and a property related to the relative displacements of the links
during lateral undulation.

Chapter 5

Topic: We consider straight line path following control of snake robots.

Contributions: The contribution of this chapter is a control law that en-

ables snake robots to track a straight path. We also employ a Poincaré
map to show that all state variables of the snake robot, except for the
position along the path, trace out an exponentially stable periodic or-
bit during path following with the proposed controller. To our best
knowledge, this is the first time a Poincaré map is used to study the
stability properties of snake robot locomotion.

Chapter 6

Topic: We consider an approach for simplifying the mathematical model

of the snake robot.

Contributions: The main contribution of this chapter is a simplified model

of planar snake robot locomotion, which is intended for control design
and stability analysis purposes. Moreover, we provide support of
the claim that the simplified model captures the essential part of
the dynamics of planar snake robot locomotion by showing that the
stabilizability and controllability properties of the simplified model
are similar to the corresponding properties of the more complex model
of the snake robot.

Chapter 7

Topic: We employ averaging theory to study the average effect of the joint

motion that propels the snake robot during lateral undulation.
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Contributions: The first contribution of this chapter is an averaged model
of the velocity dynamics of a snake robot during lateral undulation.
As a second contribution, we show that the average velocity of a
snake robot during lateral undulation converges exponentially fast to
a steady state velocity, and an analytical expression for calculating
the steady state velocity is presented as a function of the gait pattern
parameters. To our best knowledge, this is the first formal proof that
a wheel-less snake robot with anisotropic ground friction properties
achieves forward propulsion when it moves by lateral undulation.
The third contribution is a set of fundamental relationships between
the gait pattern parameters of lateral undulation and the resulting
forward velocity of a planar snake robot. In particular, the derived
properties state that the average forward velocity of a snake robot
1) is proportional to the squared amplitude of the sinusoidal motion
of each joint, 2) is proportional to the angular frequency of the sinu-
soidal motion of each joint, 3) is proportional to a particular function
of the constant phase shift between the joints, and 4) is maximized
by the phase shift between the joints that also maximizes the partic-
ular phase shift function. To our best knowledge, these fundamental
properties of snake locomotion have never before been derived analyt-
ically. We also present experimental results based on the snake robot
Wheeko that support the derived properties.

Chapter 8

Topic: We return to the problem of straight line path following control of
snake robots, but this time based on the simplified model.

Contributions: The first and main contribution of this chapter is a straight
line path following controller, which, using cascaded systems theory,
is proved to K-exponentially stabilize a snake robot to any desired
straight path. The proof relies on the assumption that the forward
velocity of the robot is contained in some nonzero and positive in-
terval. To our best knowledge, this is the first time the stability
properties of a path following controller for a snake robot without
nonholonomic constraints are formally proved. We also present ex-
perimental results where the proposed controller successfully steers
the snake robot Wheeko towards and along the desired straight path.
The second contribution is a description of how the straight line
path following controller can be extended to path following of general



34 Introduction

curved paths by employing an approach previously proposed in the
marine control literature for path following control of marine vessels.
The third contribution is a waypoint guidance strategy for steering
a snake robot along a path defined by waypoints interconnected by
straight lines, and a proof that the guidance strategy is guaranteed to
steer the position of the robot into the acceptance region of each way-
point. Waypoint guidance has, to our best knowledge, not previously
been considered for motion control of snake robots.

1.5.2 Contributions of Part II - Snake Robot Locomotion in
Unstructured Environments

Chapter 9

Topic: This chapter gives an introduction to the second part of the thesis.

Contributions: We regard the thoughts and ideas presented in this chap-
ter as a contribution.

Chapter 10

Topic: We extend the mathematical model of the snake robot to include
contact forces from external obstacles in the environment around the
robot.

Contributions: The contribution of this chapter is a hybrid model of a
planar snake robot interacting with obstacles in its environment. The
obstacle interaction is modelled by introducing a unilateral velocity
constraint on each contacted link of the snake robot, which is a novel
approach. In particular, the conventional approach for modelling the
obstacle interaction would be to assume that the obstacle constraint
force points in the normal direction of the obstacle (see Brogliato,
1999). With the approach described in this chapter, the shape of
the obstacles does not have to be considered explicitly as we instead
calculate constraint forces with respect to the normal direction of
the contacted links, which simplifies the equations of motion. The
investigations of the existence and uniqueness properties of the hybrid
model based on the theory of linear complementarity problems is also
considered to be a contribution of this chapter.
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Chapter 11

Topic: We present the design of the snake robot Kulko, which was devel-
oped for the purpose of experiments related to obstacle-aided loco-
motion in unstructured environments.

Contributions: Previous snake robot design efforts have given very lim-
ited attention to the exterior gliding surface of such robots, and to
methods for enabling snake robots to sense their environment. The
contribution of this chapter is therefore the design of a ball-shaped
joint mechanism for a snake robot that 1) allows the joint modules
to be covered by shells, thereby giving the robot a smooth outer sur-
face independently of how the joints are flexed, and that 2) allows
contact force sensors to be installed underneath the shells, thereby
enabling the robot to sense its environment. Experimental results are
presented that validate the function of the contact force measurement
system. To our best knowledge, this is the first reported snake robot
that can measure the magnitude of external forces applied along its
body. This chapter also proposes an alternative approach for sensing
environment contact forces, which has the advantage that force mea-
surements are only required at the locations of the joints, and that
the sensor system can be well protected inside the snake robot.

Chapter 12

Topic: We consider motion control of snake robots on surfaces with irreg-
ularities in the form of external obstacles.

Contributions: The first contribution of this chapter is a general control
principle for snake robots which suggests that obstacle-aided locomo-
tion is achieved by producing body shape changes where the links in
contact with obstacles are rotated to increase the propulsive forces on
the robot.

As a second contribution, we use the control principle to propose
a hybrid controller for obstacle-aided locomotion aimed at resolving
situations where the snake robot is jammed between obstacles. The
concept of detecting and resolving snake robot jams has, to our best
knowledge, not been treated in previous literature, but is a genuine
challenge during snake robot locomotion in cluttered environments.
Moreover, this is the first control strategy for a snake robot involv-
ing feedback and explicit use of measured contact forces to achieve
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propulsion. The work in Hirose (1993) also considers snake locomo-
tion based on measured contact forces. However, the contact forces
in Hirose (1993) are employed to avoid obstacles, whereas the contact
forces in this chapter are employed to push the snake robot forward.
We present experimental results based on the snake robot Kulko,
where the hybrid controller is shown to maintain the propulsion of
the snake robot in different obstacle environments. Also to our best
knowledge, this is the first reported experiment where a snake robot
is propelled forward based on measurements of the contact force am-
plitudes along the robot body. The works in Bayraktaroglu (2008);
Hirose (1993) also report experiments where a snake robot is propelled
by obstacle contact forces. However, the control strategies in these
experiments do not consider the amplitude of the contact forces.

Chapter 13

Topic: We consider straight line path following control of snake robots in

environments containing obstacles.

Contributions: The first contribution of this chapter is a general frame-

work for motion control of snake robots, where the motion is specified
in terms of a body wave component, an environment adaptation com-
ponent, and a heading control component.

The second contribution is a control law (based on the controller
framework) for straight line path following control of snake robots
in environments with obstacles. A significant contribution of this
controller is the idea of a continuous jam resolution action that is
performed in parallel with the cyclic wave motion of the robot to
continuously adapt the body shape to the environment and prevent
the motion from being jammed. A formal analysis of the performance
of the path following controller remains a topic of future work.

As a third contribution of this chapter, we present experimental re-
sults where the snake robot Kulko is successfully propelled through
three different obstacle environments with the proposed controller.



Part 1

Snake Robot Locomotion on
Planar Surfaces






Chapter 2

A Complex Model of Snake
Robot Locomotion on
Planar Surfaces

The underlying theme of this thesis is analytical approaches aimed at in-
creasing our understanding of snake robot locomotion. The mathematical
model of the snake robot is the basis for these analytical studies, which
means that the analysis relies heavily on the form and complexity of the
model. In this chapter, we employ first principles to develop a mathematical
model of the kinematics and dynamics of a snake robot with IV links moving
on a horizontal and flat surface. The links of the robot are influenced by
ground friction forces, which propel the motion. Due to the many degrees
of freedom of the robot and the dynamical couplings between the links,
the resulting model will turn out to be quite complex. We will eliminate
some of this complexity by partially linearizing the model. This is achieved
by introducing a change of coordinates which enables us to partition the
model into an actuated part (the joint angles of the snake robot) and an
unactuated part (the position and orientation of the snake robot). Through
an input transformation, we are then able to linearize the actuated part of
the model. However, even the partially linearized model contains complex
terms which make model-based controller design and analysis challenging.
Throughout this thesis, we will therefore refer to the model developed in
this chapter as the complex model of the snake robot.

In Chapter 4, the complex model will be analysed in order to deduce
several fundamental properties of snake robot dynamics. Some of these
properties will be instrumental in the development of a simplified model
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of the snake robot in Chapter 6, where we propose a model that captures
only the ‘essential’ part of the dynamics of the complex model. In Part
II of this thesis, which considers snake robot locomotion in unstructured
environments, the complex model will be extended to include contact forces
from external obstacles in the environment around the snake robot.

Contributions of this Chapter: The non-linearized model of the snake
robot is not novel to this work since similar models of snake robot
locomotion based on first principles are presented in Ma (2001); Saito
et al. (2002). The notation and the ground friction models considered
in this chapter are, however, different from the works in Ma (2001);
Saito et al. (2002). Moreover, the expression for the linear velocity
of individual links given in (2.13) is novel to this work. The two
main contributions of this chapter are the change of coordinates which
enables us to partition the model into an actuated and an unactuated
part, and the subsequent partial feedback linearization of the model.
Due to the complexity of the non-linearized model of the snake robot,
much of the model analysis presented in Chapter 4 would not have
been feasible without the model transformation.

Organization of this Chapter: Section 2.1 introduces some basic nota-
tion that will be used throughout the thesis. The parameters that
characterize the snake robot are presented in Section 2.2. The kine-
matics of the snake robot is described in Section 2.3, while two differ-
ent ground friction models are presented in Section 2.4. The model
of the snake robot dynamics is presented in Section 2.5, and is parti-
tioned into an actuated and an unactuated part in Section 2.6, and is
transformed to a simpler form through partial feedback linearization
in Section 2.7. Finally, the chapter is summarized in Section 2.8.

Publications: The material in this chapter is based on the journal pa-
pers Liljebick et al. (2011b) and Liljebiick et al. (2010A), and on the
conference papers Liljebiick et al. (2009a) and Liljebéck et al. (2009b).

2.1 Basic Notation

The following notation is used throughout this thesis:

e The operator sgn () produces a vector containing the sign of the in-
dividual elements of its argument.
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e The operator diag (-) produces a diagonal matrix with the elements
of its argument along its diagonal.

e The sinus and cosine operators, sin (-) and cos (-), are vector opera-
tors when their argument is a vector and scalar operators when their
argument is a scalar value.

e We will use subscript 7 to denote element i of a vector (see Table 2.1
below). When parameters of the links (joints) of the snake robot are
assembled into a vector, we associate element ¢ of this vector with
link ¢ (joint 7).

e Symbols representing a vector or a matrix are indicated with a bold
font.

e The matrix Iy, represents the kxk identity matrix and 0,y ; represents
the 7 x j matrix of zeros.

e A vector related to link i of the snake robot is either expressed in
the global coordinate system or in the local coordinate system of the
link (see Fig. 2.1). This is indicated by superscript global or link,1,
respectively. If not otherwise specified, a vector with no superscript
is expressed in the global coordinate system.

2.2 The Parameters of the Snake Robot

The snake robot consists of N rigid links of length 2[ interconnected by
N — 1 motorized joints. The width of each link is not considered in the
model. All N links have the same mass m and moment of inertia J = %mlz.
The total mass of the snake robot is therefore Nm. The mass of each link
is uniformly distributed so that the link CM (centre of mass) is located
at its centre point (at length [ from the joint at each side). In the fol-
lowing subsections, the kinematics and dynamics of the snake robot will
be modelled in terms of the mathematical symbols described in Table 2.1
and illustrated in Fig. 2.1 and Fig. 2.2. We will make use of the following

vectors and matrices:
11 1 -1

A= o ER(N_DXN,D: : : ER(N_I)XN,
11 1 -1
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Figure 2.2: Forces and torques acting on each link of the snake robot.

e=[1,....,1]7 e RV, E:[ € ON“}eR?M,

Onx1 €
sin = [sinfy,...,sinfy]" € RN, S, = diag(sin@) € RVN*N,
cos@ = [cosby, ... ,cosOy]" € RN, Cy = diag(cos@) € RNV,

. . 01T
sgn@ = [sgnby,...,sgnby]’ € RY, 02:[03,...,0?\,] € RV,

2.3 The Kinematics of the Snake Robot

The snake robot moves on a horizontal and flat surface, and has N + 2
degrees of freedom (N link angles and the planar position of the robot).
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Table 2.1: Parameters that characterize the snake robot.
Symbol Description Associated
vector
N The number of links.
l Half the length of a link.

m Mass of each link.

J Moment of inertia of each link.

0; Angle between link ¢ and the global z axis. 0 c RN

o, Angle of joint 1. ¢ c RV-1

(zi,9:i) | Global coordinates of the CM of link 3. X,YeRY
(P, py) | Global coordinates of the CM of the robot. p € R?
Us; Actuator torque exerted on link 4 from link i+1. | w € RV-1
Ui—1 Actuator torque exerted on link 4 from link i —1. | w € RVN71
Rz Friction force on link 7 in the x direction. frs € RN
Ry, Friction force on link ¢ in the y direction. Fry€ RN
he.i Joint constraint force in x direction on link ¢ | h, € RN-1
from link ¢ + 1.

Py Joint constraint force in y direction on link i | h, € RVN-1
from link ¢ + 1.

hzi-1 Joint constraint force in z direction on link i | h, € RV-1
from link ¢ — 1.

hyi-1 Joint constraint force in y direction on link 7 | h, € RN-1

from link 7 — 1.
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The following definitions are illustrated in Fig. 2.1.

Definition 2.1 Link angle.

The link angle of linki € {1,..., N} of the snake robot is denoted by 0; €R
and is defined as the angle that the link forms with the global x axis with
counterclockwise positive direction.

Definition 2.2 Joint angle.
The joint angle of joint i € {1,...,N — 1} of the snake robot is denoted
¢; €R and is defined as

¢y =0; — Oit1. (2.1)

Note the distinction between link angles and joint angles. A link angle
is the orientation of a link with respect to the global x axis, while a joint
angle is the difference between the link angles of two neighbouring links.
We will quite frequently assemble the link angles and the joint angles in
the vectors @ = [01,...,0n]" € RY and ¢ = [¢1,...,¢N_1]T € RV-1,
respectively.

The snake robot has no explicitly defined orientation since there is an
independent link angle associated with each link. We can still obtain a mea-
sure of the heading of the robot as follows (this approach is also considered
in e.g. Hatton and Choset (20090); Hu et al. (2009)):

Definition 2.3 Heading. B
The heading (or orientation) of the snake robot is denoted by 0 €R and is
defined as the average of the link angles, i.e. as

1 N
0=—> 0,. 2.2
N Z; (2.2)

The local coordinate system of each link is fixed in the CM of the link
with x (tangential) and y (normal) axes oriented such that they are aligned
with the global x and y axis, respectively, when the link angle is zero. The
rotation matrix from the global frame to the frame of link 7 is given by

Rﬁfﬁ? _ {cos 0; —sin 91} . 2.3)

sinf; cos6;
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The global frame position p € R? of the CM (centre of mass) of the
robot is given by

]\%%mmi T
B e

Dy 1 ¥
Nm Zlmyz
1=

where e was defined in Section 2.2, (z;,y;) are the global frame coordinates
of the CM of link i, X = [z1,...,2n]" €RN, and Y = [y1,...,yn]" €RV.
We define the velocity of the snake robot along its forward direction as
follows:

Definition 2.4 Forward velocity.
The forward velocity of the snake robot is denoted by vy €ER and is defined
as the component of the CM velocity p along the current heading 0, i.e. as

Uy = Py cos 0 + Py sin 6. (2.5)

Remark 2.1 Subscript t in the forward velocity vy denotes tangential. The
simplified model of the snake robot presented in Chapter 6 makes a clear
distinction between the forward velocity v, and the sideways velocity v, of
the robot. We have chosen to denote the forward wvelocity in the complex
model by T; to maintain a similar notation as in the simplified model.

The connection between link ¢ and link ¢4 1 at joint ¢ € {1,..., N — 1}
must comply with the two holonomic constraints

Tit1 —x; = lcosB; +1cosbiiq, (2.6a)

Yirl —Yi = Isinf; +1sinf;1q. (26b)

Using the notation from Section 2.2, the joint constraints for all the links
of the robot can be written in matrix form as

DX +1Acos® = 0, (2.7a)
DY +[Asinf = 0. (2.7b)

We can now express the position of the individual links as a function of the
CM position and the link angles of the robot by combining (2.4) and (2.7)
into

(2.8)

TX — |:—ZACOSG:| Ty = [—lAsmO} ’

Dy

Pz
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where
T = {PT} e RV, (2.9)
Ne
It can be shown that
T ! = [ DT (DDT)™" e } , (2.10)

which enables us to solve (2.8) for X and Y according to

X = T! [_Z‘L;‘OCOSB] = —IK" cos 0 + ep,, (2.11a)
Yy = T [—lism@} = —IKTsin6 + ep,, (2.11b)
Y

where K = AT (DDT)_1 D € RV*N and where DD? is nonsingular and
thereby invertible. The linear velocities of the links are found by differen-
tiating (2.11) with respect to time, which gives

X = IK"Sy0+ ep,, (2.12a)
Y = —IKTCyb + ep,. (2.12D)
By manually investigating the structure of each row in (2.12), it can be

verified that the linear velocity of the CM of link ¢ in the global x and y
directions is given by

i = pg—0;840, (2.13a)
g = py+0iCeh, (2.13h)
where
'y
o; = (1/1,(1/2,...,aifl,aﬂ‘T—i_Z,bi+1,bi+2,...,bN ERN, (2.14&)
(21 —1 [(20 —1—-2N
a; = ( N ),bi: ( N ) (2.14b)

2.4 Ground Friction Models

2.4.1 The Friction Models and their Role in this Thesis

As will become apparent in Chapter 4, a planar snake robot achieves for-
ward propulsion on a flat surface by continuously changing its body shape
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to induce ground friction forces that propel the robot forward. The ground
friction model is therefore an important part of the dynamics of the snake
robot.

During planar locomotion, it is of great advantage to the propulsion of
the snake robot that the ground friction forces on the links are anisotropic,
which means that the friction coefficients describing the friction force in
the tangential (along link z axis) and normal (along link y axis) direction
of a link, respectively, are different. As described in the literature review
of Section 1.3, anisotropic ground friction is assumed in the majority of
published research on snake robots. This friction property is also exhibited
by biological snakes, as was explained in the description of biological snakes
in Section 1.2. We therefore include anisotropic friction conditions in the
friction model of the snake robot. The importance of this friction property
will be investigated in more detail in Chapter 4.

We consider two different ground friction models in this thesis, i.e. a
Coulomb friction model and a wviscous friction model. The Coulomb fric-
tion model, which assumes the ground friction on a link to be proportional
to the weight of the link, is more accurate (from a physical point of view)
than the viscous friction model, which assumes the ground friction on a link
to be proportional to the velocity of the link. However, during planar lo-
comotion, we conjecture that the anisotropic friction property of the links,
which is independent of the choice of Coulomb or viscous friction, is the
decisive factor of the motion. In other words, we conjecture that the mo-
tion of the snake robot is qualitatively (although not quantitatively) similar
with anisotropic viscous friction as with anisotropic Coulomb friction. The
viscous friction model is, however, less complex than the Coulomb friction
model, which makes the viscous model more suitable for control design and
analysis purposes. In this thesis, we will therefore mostly assume that the
ground friction is viscous.

In the following, we first present the Coulomb friction model, and sub-
sequently the viscous friction model. In both models, the ground friction
force on link ¢ is assumed to act on the CM of the link only, and is denoted
by

fRi _ f%l(;bal _ |:fR,:c,i:| e ]R2. (215)
’ ' fRy.i

The friction forces on all links are written in matrix form as

fr= [fm} e R?Y, (2.16)
fR,y
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T T
where .fR,z = [fR7x71, Ceey fR;c,N] S RN and fR,y = [fR,y,l; ey fR,y,N] c
RY contain the friction forces on the links in the global  and y direction,
respectively.

2.4.2 Coulomb Friction Model

The coefficients describing the Coulomb friction force in the tangential
(along link z axis) and normal (along link y axis) direction of a link, re-
spectively, are denoted by pu, and p,,, respectively. We define the Coulomb

friction force on link ¢ in the local link frame, f%nll-{ ot €R?, as

fl};nl.(’i = —mg pe 0 sgn ('vhnk’i) , (2.17)
52 O ,u’n 7
where v?nk’i €R? is the link velocity expressed in the local link frame, and
g is the gravitational acceleration constant. Using (2.3), we can express the
global frame Coulomb friction force on link ¢ in the form of (2.15) as

_ pglobal _ pglobal plink,:
Fri=Fr; =Rin,fr,

)

_ global | ¢ 0 < link,i>
= —mgRp, {0 1 ]sgn Yy (2.18)

n
0 lobal\ T [ &;

_ Rgflobgl Mt (Rgo a) i .
mg link,¢ 0 . sgn link,¢ Ui

By performing the matrix multiplication in (2.18) and assembling the forces
on all links in matrix form, the global frame Coulomb friction forces on the
links can be written in the form of (2.16) as

fr a::| |:,U'tCG _:un89:| ([ Cy Sa] [X]> 2N
_ - . e R™Y.
T I:fR,y ma wSe 1, Co B |=sy ©yl |V

(2.19)

2.4.3 Viscous Friction Model

Similar to the Coulomb friction model, we assume that the viscous ground
friction forces act on the CM of the links only. We present the viscous
friction model for the different cases of isotropic versus anisotropic viscous
friction since these two cases are analysed separately in Chapter 4.
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Isotropic Viscous Friction

The isotropic viscous friction force on link ¢ in the global x and y direction
is proportional to the global frame velocity of the link given by (2.13), and
is written in the form of (2.15) as

global T; Dz — UiSGé
_pgobal __ [E] | 2.20
.fR,z fR,'L c |:y1:| c 'y + UiC90:| ( )

where ¢ is the viscous friction coefficient. The friction forces on all links
are easily expressed in the form of (2.16) as

fr ] [X] { IK"TS40 + ep, ]
—[JRa| — _ || = _ , , 2.21
Ix [fR,y ‘¥ ‘KT Cob + ep, 221

where we have used the expression for the link velocities given by (2.12).

Anisotropic Viscous Friction

Under anisotropic friction conditions, a link has two viscous friction coeffi-
cients, ¢; and ¢, describing the friction force in the tangential (along link x
axis) and normal (along link y axis) direction of the link, respectively. We
define the viscous friction force on link 7 in the local link frame, f 1}1%12” cR?,
as

link,i ¢t 0] ik
flinked — [0 CJ plinkd, (2.22)
where 'v?nk’i € R? is the link velocity expressed in the local link frame.
Using (2.3), we can express the global frame viscous friction force on link 4
in the form of (2.15) as

__ pglobal _ pglobal elink,i _ pyglobal Ct 0 link,?
Fri=1Fr, _Rlink,if Ri = Rk 0 ¢, v;

_ global | Ct 0 global Tl
- _Rlink,i |:0 Cn:| (Rlink,i > y: )
By performing the matrix multiplication in (2.23) and assembling the forces

on all links in matrix form, the global frame viscous friction forces on the
links can be written in the form of (2.16) as

gz R R

(2.23)

(2.24)
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Note that (2.24) reduces to (2.21) in the case of isotropic friction, i.e. when
¢t = Cy = C.

2.5 The Dynamics of the Snake Robot

The N + 2 degrees of freedom of the snake robot are defined by the link
angles @ € RY and the CM position p € R2. We now present the equatlons
of motion of the robot in terms of the acceleration of the link angles, 0
and the acceleration of the CM position, p.

As illustrated in Fig. 2.2, link i € {1,..., N} is influenced by the ground
friction force f p; €R?, which acts on the CM of the link, and also the joint
constraint forces hy;—1, hyi—1, ha i, and hy;, which keep the link connected
to link ¢ — 1 and link ¢ + 1. The joint constraint forces are described in
Table 2.1. Using first principles, the force balance for link 7 in global frame
coordinates is given by

mi; = fRai+ hai— hei-1, (2.25a)
miji = fRryi+ hyi = hyi (2.25b)

The force balance equations for all links may be expressed in matrix form
as

mX = fp,+DTh,, (2.26a)
mY = fr,+D"h, (2.26b)
where by = [ho1,..., hen]” € RY and hy = [hy1,...,hyn]" € RY. The

link accelerations may also be expressed by differentiating (2.7) twice with
respect to time, which gives

DX

IA (C@éQ + Seé) , (2.27a)

DY = 1A (59{92 - cgé) , (2.27h)

where the square operator of 92 means that each element of  is squared
(92 — diag(8)#). We obtain the CM acceleration by differentiating (2.4)
twice with respect to time, inserting (2.26), and noting that the joint con-
straint forces, h, and h,, are eliminated when the link accelerations are
summed (i.e. e/ DT = 0). This gives

Pl 1 [eTX 1 [elfr.] 1 7
[ﬁy]_N[eTY] N [ fRJ_NmE Froo (229
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This equation simply states, as would be expected, that the acceleration of
the CM of the snake robot equals the sum of the external forces acting on
the robot divided by its mass.

The torque balance for link 7 is given by

J@Z = u; — Uj—1 — lsin ei(hxﬂ’ + hz,i—l) + [ cos Qi(hyyi + hy7i_1), (2.29)

where u; and u;_1 are the actuator torques exerted on link 7 from link 7+ 1
and link ¢ — 1, respectively. Hence, the torque balance equations for all
links may be expressed in matrix form as

JO = DTu —1SyATh, +1CyATh,. (2.30)

What now remains is to remove the joint constraint forces from (2.30).
Premultiplying (2.26) by D, solving for h, and h,, and also inserting (2.27),
give

h, = (DDT)" (mlA (0992 v sgé) - DfR@) . (231a)

.

hy = (DD")" (mlA (Sob" ~ Cob) — Dfp,). (231b)

By inserting (2.31) into (2.30) and solving for @, the model of the snake
robot can finally be written as

M6 + W92 —ISoKfRr, +ICoKfr, = D'u, (2.:32a)
Dy e fry

where f p is either the Coulomb friction force given by (2.19) or the viscous
friction force given by (2.24), and where

My = JIy +mil?SyVSy+ml2CyVCy, (2.33a)
W = mi%2SyVCy — mI>CyVS,, (2.33b)
v=AT (DDT) ' 4, (2.33c)
K = A" (DD") "' D. (2.33d)

By introducing the state variable = [QT pl o Pl ! € R?"+4 the
model of the snake robot can be written compactly in state space form as
6

?0? —F(z,u), (2.34)
P
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where the elements of F (z,u) are easily found by solving (2.32a) and
(2.32b) for 8 and P, respectively.

2.6 Separating Actuated and Unactuated Dynam-
ics

The model of the snake robot in (2.32) is rather complex for analysis and
control design purposes. We therefore seek a transformation which allows
us to write the model in a simpler form. Partial feedback linearization of
underactuated systems (see e.g. Gu and Xu, 1993; Spong, 1994) consists of
linearizing the dynamics corresponding to the actuated degrees of freedom
of the system. We will employ this methodology in the next section. How-
ever, before partial feedback linearization can be carried out, the model
of the snake robot in (2.32) must be partitioned into two parts represent-
ing the actuated and unactuated degrees of freedom, respectively. This
partitioning is now carried out.

The acceleration of the CM of the snake robot, p, belongs to the unactu-
ated part since it is not directly influenced by the input, . The acceleration
of the link angles, é, represents one unactuated degree of freedom and N —1
actuated degrees of freedom since there are N link accelerations (6 € RV)
and only N — 1 control inputs (u € RV~1). However, it is not possible to
partition the equation for € in (2.32a) into an actuated and an unactuated
part since the matrix D7 in front of the control input gives a direct influ-
ence between u and all the link accelerations. We therefore seek a form of
the model where there is a direct influence between w and only N — 1 link
accelerations. This is achieved by modifying the choice of generalized coor-
dinates from absolute link angles to relative joint angles. The generalized
coordinates of the model in (2.32) are given by the link angles, 8, and the
CM position of the snake robot, p. We now replace these coordinates with

qy = [ﬂ e RV¥2, (2.35)

where ¢ = [¢1> .. .,d)N,l,GN]T € RV contains the N — 1 joint angles of
the snake robot and the absolute link angle, 0y € R, of the head link. The
joint angles were defined in Definition 2.2. The coordinate transformation
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between link angles and joint angles is easily shown to be given by

111 11

0-Hp, H-— 0 Lot 1 e RVXN, (2.36)
6 o0 --- 0 1

The model of the snake robot in the new coordinates is found by inserting
(2.36) into (2.32a). This gives

M,Hé + W diag <H¢> He —I1SoKfp, +1CKfp, = D u, (2.37a)

Nmp=ETf 5, (2.37b)

where we have used that § = diag(0)0 = diag(Hp)H . Finally, we
premultiply (2.37a) with H” in order to achieve the desired form of the
input mapping matrix on the right-hand side by making the last of the N
equations independent of the control input. This enables us to write the
complete model of the snake robot as

M (@), + W (6.0) + @)1 n(6.00) =Bu. @3

where
ay = ﬂ, (2.39a)
F (F HTM, (¢) H Onxo
- [ T b 1 = =
W(rb,qﬁ) _ |H W(@)diag <H¢> Ho\ (2.39¢)
I 02x1
B [—IH"S ;K IH"C 3K
G(p) = —el 01xn ; (2.39d)
O1xn —el
= [ Ina
B = : (2.39¢)
1035 (nv—1)

and where SHE = Sy and CH$ = Cy.
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Remark 2.2 [t is interesting to note that premultiplying (2.37a) with H T
both causes the input mapping matriz B to attain a desirable form and
produces a symmetrical inertia matriz M. Had we left the model in the
form of (2.87), the inertia matriz would not have been symmetrical.

The first N —1 equations of (2.38) represent the dynamics of the relative
joint angles of the snake robot, i.e. the actuated degrees of freedom of
the snake robot. The last three equations represent the dynamics of the
absolute orientation and position of the snake robot, i.e. the unactuated
degrees of freedom. The model may therefore be partitioned as

MG, + Mg, + Wi+ Gif p = u, (2.40a)
Moy, + Mazij, + Wa+ Gof g = 03x1, (2.40D)
where q, = [(;51, . ,ng,l]T € RY~! represents the actuated degrees of

freedom, q, = [0, P, py]T € R3 represents the unactuated degrees of free-
dOHl, %11 c R(N_l)iX(N_l), @2 c R(N—l)x3’ M21£ R?)X(N—l)’ M22 c
R3*3, W, e RN-1, W, e R3, Gy € RW-DX2N and Gy € R3%2N

Remark 2.3 M (a) only depends on the relative joint angles of the snake
robot and not on the absolute orientation of the head link, On. Formally,
this is a result of the fact that Oy is a cyclic coordinate (Goldstein et al.,
2002). Less formally, this is quite obvious since it would not be reasonable
that the inertial properties of a planar snake robot be dependent on how the
snake robot is oriented in the plane. We therefore have that M = M (q,).

2.7 Partial Feedback Linearization of the Model

Based on the partitioned model in (2.40), we are now ready to transform
the model of the snake robot to a simpler form through partial feedback
linearization (see Gu and Xu, 1993; Spong, 1994) by introducing an input
transformation which linearizes the dynamics of the actuated degrees of
freedom in (2.40a). This conversion greatly simplifies the controllability
and stabilizability analysis of the snake robot presented in Chapter 4. We
will follow the approach presented in Reyhanoglu et al. (1999).
We begin by solving (2.40b) for G, as

. S R
G, =—Myy (Ma1§, + Wa+ Gaof ), (2.41)
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where Mo, is an invertible 3 x 3 matrix as a consequence of the uniform
positive definiteness of the system inertia matrix M (q,). Inserting (2.41)
into (2.40a) gives

— e v & o WU —_— el e =
<M11 — M12M 5, M21) Go+ Wi+ Gif p—M12My; (Wa+ Gof ) = u.
(2.42)
Consequently, the following linearizing controller

u = (Mll —Mi2M,, M21> U+ Wi+ Gif g—Mi12My, (Wa+ Gof ),

(2.43)
where w = [uy, ... ,ﬂN_l]T € RV¥~! is a new set of control inputs, enables
us to rewrite (2.40a) and (2.40b) as

i, = u, (2.44a)
G, = Al(gy ds) +B(q,) 7, (2.44b)
where
. S
A(gs85) = —My (Wa+ Gaf ) € R®, (2.454)
B(q,) = —My My eR>VD, (2.45D)

This model may be written in the standard form of a control-affine system

. . . T 1T T 17T
by defining ¢, = q,, 2 = q,,, 3 = §,, €4 = §,,, and ¢ = [:l:l , Ty, T3, 1134]

R2N+4 This gives

1 T3

) N—1
&= zz = :%L =f(x)+ ) (g;(=z)w), (246)
i |A@) +B(z)u 7=
where
T3 On-1)x1
T4 03x1
_ (@) = : 2.47
f (@) On_1yxa| ¥ (@1) €j (2.47)
A(z) Bj (z1)

and where j € {1,..., N — 1}, e; denotes the jth standard basis vector in
RN~ (the jth column of Iy_;), and B; (z1) denotes the jth column of
B (x1). In literature that considers control-affine systems, the vector f (x)
is often called the drift vector field, while the vectors g; (x1) are called the
control vector fields.
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Remark 2.4 We have used x to denote the state vector of the model (2.46)
and also the state vector of the model (2.84) even though these two state
vectors are not identical (the difference being the use of joint angles in
(2.46) and link angles in (2.34)). Several models of snake robot locomotion
are presented in this thesis, the presentation of which would be obscured
by the introduction of a new symbol to represent the state vector of each
model. Since the various models are treated separately, which means that it
will always be clear from the context which elements that are contained in
the state x, we choose to denote the state vector in all models by x.

Remark 2.5 The input transformation in (2.43) is nonsingular, which
means that results from analysis and control design based on the partially
linearized model in (2.46) are also applicable to the non-linearized model in
(2.34). This is obvious since the behaviour of the model in (2.46) with a
control law for w is identical to the behaviour of the model in (2.34) with
the control law for w transformed to w according to (2.43).

2.8 Chapter Summary

This chapter is summarized as follows:

e We have presented a mathematical model of a planar snake robot
with NV rigid links interconnected by N — 1 motorized joints. The
surface underneath the robot was assumed to be flat and horizontal.

e We have developed two different ground friction models, i.e. a Coulomb
friction model given by (2.19) and a viscous friction model given by
(2.24).

e The equations of motion of the snake robot in terms of the acceleration
of the link angles, 6, and the acceleration of the CM position, P, are
given by (2.32).

e The equations of motion of the snake robot in terms of the acceleration
of the joint angles, ¢, the acceleration of the head link angle, O,
and the acceleration of the CM position, P, are given by (2.40). In
this model, the actuated degrees of freedom of the snake robot are
separated from the unactuated degrees of freedom.

e With the input transformation in (2.43), the model of the snake robot
is partially feedback linearized to the simpler form given by (2.46).
This form is more suitable for control design and analysis purposes.



Chapter 3

Development of a
Mechanical Snake Robot for
Motion across Planar
Surfaces

The work underlying this thesis includes the development of two mechanical
snake robots. The first snake robot, named Wheeko, was developed to
enable experiments related to snake robot locomotion across flat surfaces.
The robot is shown in Fig. 3.1 and is described in more detail in this chapter.
The second snake robot, which is called Kulko, is described in Chapter 11
and was developed for the purpose of experiments related to snake robot
locomotion in environments containing obstacles. The robots Wheeko and
Kulko are, in other words, the experimental platforms used in Part I and
Part II of this thesis, respectively.

The internal structure of Wheeko and Kulko are identical. The dif-
ference between the two robots concern their outer structure. The joint
modules of Wheeko are equipped with passive wheels to give the robot
anisotropic friction properties during motion across flat surfaces. The joint
modules of Kulko, on the other hand, are covered by contact force sensors
and spherical shells that give the robot a smooth outer surface, thereby
allowing gliding motion in unstructured environments.

Contributions of this Chapter: Since the internal structure of Wheeko
and Kulko are identical, the contributions of this chapter are included
in the contributions of Chapter 11, where Kulko is described.
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Figure 3.1: The snake robot Wheeko developed for locomotion across flat
surfaces.

Organization of this Chapter: The joint actuation mechanism, the pas-
sive wheels, and the power and control system of Wheeko are pre-
sented in Sections 3.1, 3.2, and 3.3, respectively. The setup of the
experiments carried out with the robot is presented in Section 3.4.
Finally, the chapter is summarized in Section 3.5.

Publications: The material in this chapter is based on the journal pa-
pers Liljebéick et al. (2011d) and Liljebéick et al. (2010k), and on the
conference papers Liljebéick et al. (2009d) and Liljebéick et al. (2010¢).

3.1 The Joint Actuation Mechanism

Wheeko consists of 10 identical joint modules. The robot was developed
with the same joint actuation mechanism as in Kulko to allow the same
joint design to be used for both robots. As described in Chapter 11, the
joint modules were designed to allow them to be covered by contact force
sensors and spherical shells for the purpose of adaptive gliding motion in
environments with obstacles.

As illustrated in Fig. 3.2, the articulation mechanism of each joint mod-
ule has two degrees of freedom (pitch and yaw) and consists of two links
supported by bearings in a steel ring. The outer diameter of the steel ring
is 130 mm. Each link has a connection point at its centre that allows it to
be connected to the next joint module by two screws. The axes of rotation
of the two links are orthogonal and intersecting.
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Figure 3.2: Hlustration of the articulation mechanism of the joint modules.

The angle of the two moving links in the joint are measured with mag-
netic rotary encoders (AS5043 from austriamicrosystems). A magnet mea-
suring 6 mm in diameter is attached to each link so that it rotates above
the rotary encoder as shown in Fig. 3.3. Each encoder is attached to a
custom-designed circuit board shown to the right in Fig. 3.3.

Each link is driven by a Hitec servo motor (HS-5955TG) by connecting
the output shaft of each motor to a worm gear (gear ratio of 1:5.71) through
a steel roller chain. The worm gear and the chain drive are shown in
Fig. 3.4 and Fig. 3.5. The servo motors are manufactured to have a limited
range of rotation (about +90°). However, the gearing between the motors
and the links requires the motors to rotate more than this limited range.
The motors were therefore manually modified in order to enable them to
rotate continuously. The process of modifying the servos is very simple
and consists of disconnecting the output shaft of the servo from its internal
potmeter and also removing a mechanical pin inside the servo that otherwise
would prevent the servo from rotating continuously.

Worm gears have a disadvantage due to a high friction component in
the gear system. However, worm gears are advantageous in that they may
essentially produce any desired gear ratio in a single gear stage. This fa-
cilitates a compact design. In addition, a worm gear is not likely to break
in contrast to e.g. spur gears. This makes the joint mechanically robust.
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Magnetic rotary
encoder

Magnet attached
. to rotating link

Figure 3.3: Magnetic rotary encoder used for measuring the joint angle.

Figure 3.4: The implemented articulation mechanism of the joint modules.
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Figure 3.5: Roller chain connecting the servo motor to the worm gear.

Table 3.1: Parameters of a joint module.

Parameter Value
Total weight of a joint module | 960 g
Outer diameter 130 mm
Degrees of freedom 2
Max joint travel +45°
Max continuous joint torque 4.5 Nm
Max joint speed (no load) 70°/sec

The steel roller chain between the servo motor and the worm gear is rated
to handle forces significantly higher than the forces produced by the servo
motor.

Experiments indicate that the servo motors produce a maximum con-
tinuous torque of about 1.6 Nm (at 6V supply voltage with a maximum
current drain of about 3A). The rated power efficiency of the worm gears is
about 75 %. This should theoretically give the joint mechanism a maximum
continuous torque of around 7 Nm. However, experiments with the imple-
mented joint mechanism indicate that the maximum continuous torque lies
around 4.5 Nm. This is probably due to more friction in the worm gear
than expected and also some friction in the chain drive. Table 3.1 lists the
parameters characterizing the actuation mechanism.
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Figure 3.6: A ring with 12 plastic wheels encloses each joint module in
order to give the robot anisotropic ground friction properties.

3.2 The Passive Wheels

As shown in Fig. 3.6, each joint module of Wheeko is enclosed by a plastic
ring mounted with 12 plastic wheels. The wheels are passive, i.e. not mo-
torized, and ensure that the ground friction forces acting on the robot are
anisotropic (see Section 2.4.1), i.e. that the friction coefficient character-
izing the ground friction forces in the normal (sideways) direction of each
joint is larger than the friction coefficient characterizing the ground fric-
tion forces in the tangential (forward) direction of the joint. Note that the
wheels are able to slip sideways, so they do not introduce nonholonomic
constraints in the system.

3.3 The Power and Control System

The power and control system of Wheeko is described in Chapter 11 since
the system is identical to the power and control system of Kulko.

3.4 The Experimental Setup of the Snake Robot

The experiments carried out with Wheeko are described in Chapter 7 and
Chapter 8. The experiments were performed on a white horizontal surface
measuring about 240 cm in width and 600 cm in length. The surface is
shown in Fig. 3.7. In order to measure the horizontal position of the snake
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| Camera 3 Camera 2 Camera 1

Figure 3.7: The experimental setup. Three cameras mounted in the ceiling
measured the position of the snake robot on a horizontal surface measuring
about 240 c¢m in width and 600 cm in length.

robot during the experiments, we employed the open source camera track-
ing software SwisTrack (Lochmatter et al., 2008). Three firewire cameras
(Unibrain Fire-i 520c) were mounted in the ceiling above the snake robot
as shown in Fig. 3.7 and to the left in Fig. 3.8. The use of multiple cameras
allowed for position measurements over a greater distance than the area
covered by a single camera. The cameras were mounted facing downwards
approximately 218 cm above the floor and 132 cm apart. The distance be-
tween the cameras was chosen so that there was a slight overlap between the
images from two neighbouring cameras. Each firewire camera was sampled
at 15 frames per second.

SwisTrack was configured to track three black circular markers (40 mm
in diameter) mounted on the snake robot as shown to the right in Fig. 3.8.
The conversion from the pixel position of a marker to the real-world position
(in cm) was conducted by SwisTrack based on a specific calibration method
available in this software. SwisTrack estimated the maximum position error
to be about 1.9 cm and the average position error to be about 0.6 cm. The
global frame coordinates of the head link, (xy,yn), and the absolute angle
of the head link, 6y, were calculated based on the position of the three
individual markers. Knowing the position and orientation of the head of the
snake robot, and also the individual joint angles, the kinematic relationships
presented in Section 2.3 enabled us to calculate the CM position, p, and the
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Camera
markers

Figure 3.8: Left: The firewire cameras mounted in the ceiling above the
snake robot. Right: The black markers mounted on the snake robot to
allow the position to be tracked by SwisTrack.

absolute link angles, 6, of the snake robot. We ran three separate instances
of SwisTrack in order to process data from all three cameras and developed
our own software in order to merge the output from each SwisTrack instance
into the final position measurement of the snake robot.

3.5 Chapter Summary
This chapter is summarized as follows:

e We have presented the design of the snake robot Wheeko, which was
developed for the purpose of experiments related to snake robot lo-
comotion across flat surfaces.

e The robot consists of 10 identical joint modules, and each joint has
two degrees of freedom (pitch and yaw).

e The joint modules are equipped with passive wheels to give the robot
anisotropic ground friction properties.

e The internal structure of Wheeko is identical to the internal structure
of the snake robot Kulko, which is described in Chapter 11.



Chapter 4

Analysis and Synthesis of
Snake Robot Locomotion

Research on snake robots has been conducted for several decades. How-
ever, our understanding of snake locomotion so far is for the most part
based on empirical studies of biological snakes and simulation-based syn-
thesis of relationships between parameters of the snake robot. Armed with
the mathematical model of the snake robot presented in Chapter 2, we at-
tempt in this chapter to contribute to the understanding of snake robots
by employing nonlinear system analysis tools for investigating fundamental
properties of their dynamics. We will also derive several interesting prop-
erties of snake robot locomotion simply by investigating the equations of
motion of the robot, some of which will be instrumental in the development
of a simplified model in Chapter 6.

In this chapter, we investigate the motion pattern which is most com-
mon among biological snakes, namely lateral undulation (see Section 1.2.2).
This motion pattern is considered in the majority of the snake robot lit-
erature, and will also receive much attention throughout this thesis. A
well-known mathematical description of the shape of a snake during lateral
undulation was presented in Hirose (1993) based on empirical studies of bi-
ological snakes. In this chapter, we develop analytical results that support
this mathematical description.

Contributions of this Chapter: The first contribution of this chapter
is a stabilizability analysis that proves that any asymptotically sta-
bilizing control law for a planar snake robot to an equilibrium point
must be time-varying, i.e. not of pure-state feedback type (see Theo-
rem 4.3).
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The second contribution is a controllability analysis of planar snake
robots influenced by viscous ground friction forces. The analysis
shows that a snake robot is not controllable when the viscous ground
friction is isotropic (see Theorem 4.4), but that a snake robot becomes
strongly accessible when the viscous ground friction is anisotropic (see
Theorem 4.5). The analysis also shows that the snake robot does
not satisfy sufficient conditions for small-time local controllability (see
Theorem 4.6). To our best knowledge, no formal controllability analy-
sis has previously been reported for the position and link angles of a
wheel-less snake robot influenced by ground friction. The results from
the controllability analysis prove that propulsion of a snake robot un-
der viscous friction conditions requires the friction to be anisotropic,
and also that the joint angles of a snake robot should be out of phase
during snake locomotion. These claims have been assumed in the
snake robot literature, but have never before been formally proven.
The third contribution is the development of a simple relationship be-
tween link velocities normal to the direction of motion and propulsive
forces in the direction of motion. This relationship explains how snake
robots influenced by anisotropic ground friction are able to locomote
forward on a planar surface, and enables us to derive several funda-
mental properties of snake locomotion (see Properties 4.2, 4.3, and
4.4). In our opinion, previously published research on snake robots
has not presented an explicit mathematical description that easily ex-
plains how a snake robot achieves forward propulsion.

As a fourth and final contribution, we use the derived properties of
snake robot locomotion to provide support for the empirically de-
rived mathematical description of lateral undulation proposed in Hi-
rose (1993). We also identify an important property concerning the
turning motion of a snake robot (see Property 4.7), and a property
related to the relative displacements of the links during lateral undu-
lation (see Property 4.8).

Organization of this Chapter: Section 4.1 introduces some selected tools

for analysing controllability of nonlinear systems. Section 4.2 and
Section 4.3 study, respectively, the stabilizability and controllability
properties of planar snake robots. Section 4.4 explains how a snake
robot is able to move forward, while Section 4.5 deduces how the
links of the robot can be moved in order to achieve forward propul-
sion. The deduced link motion is identified as the gait pattern lateral
undulation in Section 4.6, and two different control laws for the joints
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of the snake robot are presented in Section 4.7. The properties re-
lated to the turning motion and the relative displacements of the links
during lateral undulation are derived in Section 4.8 and Section 4.9,
respectively. Finally, the chapter is summarized in Section 4.10.

Publications: The material in this chapter is based on the journal papers
Liljebéick et al. (2011b) and Liljebéick et al. (2011d), and on the con-
ference papers Liljebéck et al. (2009b), Liljebiick et al. (2009¢), and
Liljebéck et al. (20107).

4.1 Introduction to Nonlinear Controllability Analy-
sis

This section presents a brief summary of selected tools for analysing the
controllability of nonlinear systems. The summary given below is formu-
lated in an intuitive form that aims to be easily understandable for readers
unaccustomed with nonlinear controllability analysis. For a rigorous pre-
sentation, the readers are referred to Bianchini and Stefani (1990); Nijmeijer
and Schaft (1990); Sussmann (1987).

Analysing the controllability of a linear system is straightforward and
involves checking if the system matrices satisfy the Kalman rank condition
(see Nijmeijer and Schaft, 1990). However, studying the controllability of
a nonlinear system is far more complex and constitutes an active area of
research. In the following, we summarize important controllability concepts
for control-affine nonlinear systems, i.e. systems of the form

=1 (z)+) g; (), (4.1)
j=1

where € R™ is the state vector, w € R™ is the control input, f () € R”
is the drift vector field, and g, (z) € R", j € {1,...,m}, are the control
vector fields of the system. Note that the model of the snake robot was
written in this form in Section 2.7.

A nonlinear system is said to be controllable if there exist admissible
control inputs that will move the system between two arbitrary states in
finite time. However, general conditions for this kind of controllability that
are both necessary and sufficient do not exist. Nonlinear controllability is
instead typically analysed by investigating the local behaviour of the system
near equilibrium points.
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The simplest approach to studying the controllability of the system (4.1)
is to linearize the system about an equilibrium point ¢ according to

z = Az + Bu, (4.2)

where z = & — z¢, A= 8157553)‘ > and B=[g,,...,g,]. If the linearized
system satisfies the Kalman rank condition at x®, which requires that the
controllability matrix given by [B, AB, A2B, ..., A" 'B] has full rank,
then the nonlinear system (4.1) is controllable in the sense that the set of
states that can be reached from z° contains a neighborhood of z°. Un-
fortunately, many underactuated systems do not have a controllable lin-
earization. Moreover, a nonlinear system can be controllable even though
its linearization is not.

A necessary (but not sufficient) condition for controllability from a state
xop (not necessarily an equilibrium) is that the nonlinear system satisfies
the Lie algebra rank condition (LARC), also called the accessibility rank
condition (see Nijmeijer and Schaft, 1990). If this is the case, the system is
said to be locally accessible from xg. This property means that the space
that the system can reach within any time 7" > 0 is fully n-dimensional,
i.e. the reachable space from (¢ has a dimension equal to the dimension of
the state space. A slightly stronger property is strong accessibility, which
means that the space that the system can reach in ezactly time T for any
T > 0 is fully n-dimensional.

Accessibility of a nonlinear system is investigated by computing the
accessibility algebra, here denoted A, of the system. Computation of A
requires knowledge of the Lie bracket (see Nijmeijer and Schaft, 1990),
which is now briefly explained. The drift and control vector fields of the
nonlinear system (4.1) indicate directions in which the state & can move.
These directions will generally only span a subset of the complete state
space. However, through combined motion along two or more of these
vector fields, it is possible for the system to move in directions not spanned
by the original system vector fields. The Lie bracket between two vector
fields Y and Z produces a new vector field defined as [Y, Z] = %—i Y- %Z .
When Y and Z are any of the system vector fields, the Lie bracket [Y, Z]
approrimates the net motion produced when the system follows these two
vector fields in an alternating fashion. The classical example is parallel
parking with a car, where sideways motion of the car may be achieved
through an alternating turning and forward/backward motion. Note that
Lie brackets can be computed from other Lie brackets, thereby producing
nested Lie brackets. The accessibility algebra, A, is a set of vector fields
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composed of the system vector fields, f and g, the Lie brackets between
the system vector fields, and also higher order Lie brackets generated by
nested Lie brackets. The LARC is satisfied at xg if the vector fields in
A (zg) span the entire n-dimensional state space (dim (span(A)) = n).
The following result is proved in Nijmeijer and Schaft (1990):

Theorem 4.1 The system (4.1) is locally accessible from xq if and only if
the LARC is satisfied at xg. The system is locally strongly accessible if the
drift field f by itself (i.e. unbracketed) is not included in the accessibility
algebra.

Accessibility does not imply controllability since it only infers conclu-
sions on the dimension of the reachable space from xg. Accessibility is,
however, a necessary (but not sufficient) condition for small-time local con-
trollability (STLC). STLC is desirable since it is in fact a stronger prop-
erty than controllability. If a system is STLC, then the control input can
steer the system in any direction in an arbitrarily small amount of time.
For second-order systems, STLC is only considered from equilibrium states
since it is generally not possible for a second-order system to instantly move
in one direction if it already has a velocity in the opposite direction. For
example, an airplane in flight is not STLC since it cannot instantly move
opposite to its direction of motion.

Sufficient conditions for STLC were presented by Sussmann (1987), and
later extended by Bianchini and Stefani (1990). We now summarize these
conditions. For any Lie bracket term b € R" generated from the system
vector fields, define the 6-degree of b, denoted dy (b), and the I-degree of b,
denoted 0; (b), as

5o (b) = ;50(b)+§:5j (b), (4.3)
j=1
Sib) = S 0 (b)) (1.4
=0

respectively, where 6% (b) is the number of times the drift vector field f
appears in the bracket b, 87 (b) is the number of times the control vector field
g; appears in the bracket b, 6 is an arbitrary number satisfying 6 € [1,00),
and [ is an arbitrary number satisfying [; > lop > 0,V j € {0,...,m}. The
bracket b is said to be bad if 6° (b) is odd and &1 (b) ..., 5™ (b) are all even.
A bracket is good if it is not bad. As an example, we have that the bracket
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[gj, [f.gi]] is bad for j = k and good for j # k. This classification is
motivated by the fact that a bad bracket may have directional constraints.
E.g. the drift vector f is bad because it only allows motion in its positive
direction and not in its negative direction, —f. A bad bracket is said to be 6-
neutralized (resp. l-neutralized) if it can be written as a linear combination
of good brackets of lower 0-degree (resp. [-degree). The Sussmann condition
and the Bianchini and Stefani condition for STLC are now combined in the
following theorem:

Theorem 4.2 The system (4.1) is small-time locally controllable (STLC)
from an equilibrium point ¢ ( f (x¢) = 0) if the LARC is satisfied at x°
and either all bad brackets are f-neutralized (Sussmann, 1987) or all bad
brackets are l-neutralized (Bianchini and Stefani, 1990).

4.2 Stabilizability Properties of Planar Snake Ro-
bots

In this section, we present a fundamental theorem concerning the prop-
erties of an asymptotically stabilizing control law for snake robots to any
equilibrium point. The model of the snake robot is given by (2.46) and we
make no assumptions regarding the ground friction forces other than that
they are given on the form of (2.16).

The equation (2.46) maps the state  and the control input @ of the
robot into the resulting derivative of the state vector, . For any equilib-
rium point (z; = x§, z2 = x5, €3 = 0, z4 = 0), where (z, 5) is the con-
figuration of the system at the equilibrium point, we have that £ = 0. A
well-known result presented in Brockett (1983) states that a necessary con-
dition for the existence of a time-invariant (i.e. not explicitly dependent on
time) continuous state feedback law, w = u (z), that makes (z{, 5,0,0)
asymptotically stable, is that the image of the mapping (x, @) — & contains
some neighbourhood of & = 0 (this requirement is explained below). A re-
sult presented in Coron and Rosier (1994) states that a control system that
can be asymptotically stabilized (in the Filippov sense) by a time-invariant
discontinuous state feedback law can be asymptotically stabilized by a time-
varying continuous state feedback law. If, moreover, the control system is
affine (i.e. linear with respect to the control input), then it can be asymp-
totically stabilized by a time-invariant continuous state feedback law. We
now employ these results to prove the following fundamental theorem for
planar snake robots:
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Theorem 4.3 An asymptotically stabilizing control law for a planar snake
robot described by (2.46) to any equilibrium point must be time-varying, i.e.
of the form w = u(z,t).

Proof. The result in Brockett (1983) states that the mapping (x1, x2,
x3, T4, W) — (3, 4, w, A(z) + B(x1)w) must map an arbitrary neigh-
bourhood of (z1 = x§, 2 = x5, x3 = 0, x4 = 0, w = 0) onto a neigh-
bourhood of & = 0, i.e. a neighbourhood of (3 = 0, z4 = 0, w = 0,
A(x) + B(xz1)w = 0). For this to be true, points of the form (x3 = 0,
z4=0,u=0, A(z)+ B(x1)u = €) must be contained in this mapping
for some arbitrary € # 0 because points of this form are contained in every
neighbourhood of & = 0. In other words, there must exist some state and
control input (x1, x2, T3, 4, W) that can be mapped to points of the form
(z3 =0, z4 = 0, u =0, A(z) + B(z1)u = € # 0). However, these
points do not exist for the system in (2.46) because 3 = 0, 4 = 0, and
u = 0 means that A (x)+ B (z1) uw = 0 # €. Hence, the snake robot cannot
be asymptotically stabilized to (z; = z{, &2 = x5, x3 = 0, x4 = 0) by
a time-invariant continuous state feedback law. Moreover, since the sys-
tem in (2.46) is affine and cannot be asymptotically stabilized by a time-
invariant continuous state feedback law, the result in Coron and Rosier
(1994) proves that the system can neither be asymptotically stabilized by
a time-invariant discontinuous state feedback law. We can therefore con-
clude that an asymptotically stabilizing control law for a planar snake robot
to any equilibrium point must be time-varying, i.e. of the form w = w (z, t).
]

Remark 4.1 Theorem 4.3 is independent of the choice of friction model
and applies to any planar snake robot described by a friction model with the
property that A(x¢) = 0 for any equilibrium point x€.

4.3 Controllability Analysis of Planar Snake Ro-
bots

This section studies the controllability of planar snake robots described
by the model (2.46). As described in Section 2.4.1, we conjecture that the
motion of a snake robot is qualitatively (although not quantitatively) similar
with anisotropic viscous friction as with anisotropic Coulomb friction. In
the following, we therefore assume that the ground friction is viscous since
the simplicity of the viscous model compared to the Coulomb model is more
suitable for controllability analysis purposes.
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4.3.1 Controllability with Isotropic Viscous Friction

We begin the controllability analysis of the snake robot by first assuming
that the viscous ground friction is isotropic. In this case, it turns out that
the equations of motion take on a particularly simple form that enables us
to study controllability through pure inspection of the equations of motion.
From (2.32b), the acceleration of the CM of the snake robot is given as

N
|:p95:| _ 1 |:eTfR,r:| _ 1 zglf fot (4 5)
B, = N ey~ Nm |2, | -
Y Ry ;fR,y,i

By inserting (2.20) into (4.5), the CM acceleration of the robot is given as

N .
i=1

|:p:c:| . _ ¢ px:| (4 6)
.. - N . i . .
Py Nm _Np, - (Z%) C,0 m | Dy

i=1

N

because it may be shown that > o; = 0. This enables us to state the
i=1

following theorem:

Theorem 4.4 A planar snake robot influenced by isotropic viscous ground
friction is not controllable.

Proof. In order to control the position, the snake robot must accelerate
its CM. From (4.6), it is clear that the CM acceleration is proportional
to the CM velocity. If the robot starts from rest (p = 0), it is therefore
impossible to achieve acceleration of the CM. The position of the robot is
in other words completely uncontrollable in this case, which renders the
robot uncontrollable. m

4.3.2 Controllability with Anisotropic Viscous Friction

The equations of motion of the snake robot in (2.46) become far more
complex under anisotropic friction conditions. We therefore employ the
controllability concepts presented in Section 4.1 and begin by computing
the Lie brackets of the system vector fields. The drift vector field f (x)
and the control vector fields g, (z1), j € {1,...,m}, of the snake robot
are defined in (2.46). As explained in Section 4.1, Lie bracket computation
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involves partial derivatives of the components of the vector fields. These

computations can be carried out without dealing with the complex expres-

sions contained in A (x) and B (x1) given by (2.45) since we only need to

know which variables each vector field depends on. As an example, con-

sider column j of B (x1). Since we know that it only depends on z;, we
9B;(x1) OB; (1)

may immediately write —5-=> = [ o 035 (N +5)}. This methodology

enables us to compute the following Lie brackets of the system vector fields
(evaluated at an equilibrium point):

190=0 — =5 4.7a
f,9;] Ovomr | (4.72)
L =G
[O(N—1)x1]
11970 = Ci 4.7b
7,179, o] (4.7h)
IA 0.
- 821‘:4 ] -
[0(n_1)x1]
» 4=0 _ Dik 4.7c
[[f7 gj]7 [fa gk]] O(N71)><1 ) ( )
L &
where j,k € {1,...,N — 1} and
0A 0A
0By 0B;
D]k = 873316‘7 — Tmek7 (49)
oCy, oC; oCy, oC; oCy, oC;
N o L ) “Reo 22041
g]k 6&01 eJ 8$1 Ek + (9(122 BJ 8(122 Bk + (9(1246] (9£B4 Ck( 0)

The Lie brackets have been evaluated at zero velocity (g, = 0) since we are
interested in controllability from an equilibrium point. The above vector
fields represent our choice of vector fields to be contained in the accessibil-
ity algebra, A, of the system. To construct A of full rank, we need to find
(2N + 4) independent vector fields since the snake robot has a (2N 4 4)-
dimensional state space. Each of the four types of vector fields above repre-
sent (N —1) vector fields. Solving 4(N —1) > 2N +4 gives that our analysis
is only valid if the snake robot has N > 4 links. This is a mild requirement,
however, since a snake robot generally has more than four links. In the re-
mainder of this controllability analysis, we assume that the robot consists
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of exactly N = 4 links (and thereby N —1 = 3 active joints) and argue that
the following controllability results will also be valid for snake robots with
more links. In particular, a robot with N > 4 links can behave as a robot
with N = 4 links by fixing (N —4) joint angles at zero degrees and allowing
the remaining three joint angles to move. This means that controllability
of the robot with N = 4 is a sufficient although not necessary condition for
controllability with N > 4.

With N = 4 links, the system has a (2N + 4) = 12-dimensional state
space. The system satisfies the Lie algebra rank condition (LARC) if the
above vector fields span a 12-dimensional space. We therefore assemble the
12 vector fields into the following matrix, which represents the accessibility
algebra of the system evaluated at an equilibrium point x¢:

A (z°) = (91,92, 95:[f . 91]. [f, 92] . [f . 93] »
[fv[fagl]]’[fa[f792“7[f7[ 793]]a
H.fv gl] ’ [.fa 92” ’ [[f7gl] ’ [.fv 93]] ’ Hf? g2] ’ [f? 93”]
03x3 —I3 O3x3 Osxs (4.11)
03«3 —B C D

_ 12x12
N I3 0343 O3x3 033 €R ’
B —C Hc ¢
where
0A oA
C = — 4+ BeR¥>3 4.12
8$3+8:B4 < ’ ( )
D = [Dia Dig Do) € R, (4.13)
E = [512 513 523]€R3X3. (4.14)

We now state the following theorem regarding the accessibility of the
snake robot:

Theorem 4.5 A planar snake robot with N > 4 links influenced by anisotropic
viscous ground friction (c; # ¢,) is locally strongly accessible from any
equilibrium point ¢ (g, = 0) satisfying det (C) # 0 and det (5—%@) #0,

where det (x) denotes the determinant evaluated at x€.

Proof. By Theorem 4.1, the system is locally strongly accessible from x€ if
A (z°), given by (4.11), has full rank, i.e. spans a 12-dimensional space. The
proof is complete if we can show that this is the case as long as det (C) # 0

and det (8 —%D) # 0 at ¢, The matrix A () has full rank when all its
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columns are linearly independent. By investigating the particular structure
of A (x°), we see that the first and third row contains an identity matrix
and then zeros in the remaining elements of these rows. It is therefore
impossible to write the columns containing the two identity matrices as
linear combinations of other columns. We can therefore conclude that any
linear dependence between the columns of A (z¢) must be caused by linear
dependence between the columns of the following submatrix of A (z€):

~ c D
A (a:e) = | a4 € R6X6. (415)
5.C &
4
Linear dependence between columns of a square matrix causes its determi-
nant to become zero. We therefore calculate the determinant of A (x¢) by
employing the following well-known mathematical relationship concerning
the determinant of a block matrix (see e.g. Harville, 2000):

det <[‘é g]) = det (A)det (D — CA™'B), (4.16)

where A and D are any square matrices and A is non-singular. The deter-
minant of A () can now be calculated as

det (3 ((Be)> = det (C) det (5—?4D> , (4.17)

T4

which is zero when det (C) = 0 or when det (5 —g—éD) = 0. This means

that A (z¢), and thereby also A (z¢), has full rank whenever det (C) # 0
and det (8 —%D) # 0. This completes the proof. m

The requirement regarding the two determinants in Theorem 4.5 is not
very restrictive, but it implies that the snake robot can attain configurations
that are singular, i.e. certain shapes of the snake robot are obstructive from
a control perspective since the dimension of the reachable space from these
configurations is not full-dimensional. These singular configurations are
revealed by the following property:

Property 4.1 The accessibility algebra A (x€) drops rank at equilibrium
points where all relative joint angles are equal (¢ = ... = dn_1).

This property can be shown to hold with a mathematical software
tool such as Matlab Symbolic Math Toolbox since it can be verified that
det (C) | 61=..—¢y_, = 0, thereby violating the full rank conditions stated
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in Theorem 4.5. Property 4.1 is interesting since it implies that the joint
angles of a snake robot should be out of phase during snake locomotion.
This claim has been stated in several previous works, such as Gray (1946);
Hicks (2003); Hirose (1993); Kane and Lecison (2000), but no formal math-
ematical proof was given.

We now show that the snake robot does not satisfy sufficient conditions
for small-time local controllability (STLC).

Theorem 4.6 At any equilibrium point x° (% = 0), a planar snake robot
with N > 4 links influenced by viscous ground friction does not satisfy the
sufficient conditions for small-time local controllability (STLC) stated in
Theorem 4.2.

Proof. The proof is complete if we can show that there are bad brack-
ets of the system vector fields that cannot be neither 8-neutralized nor
l[-neutralized (see Theorem 4.2). The bad brackets with the lowest 0-degree
and the lowest I-degree (except for f, which vanishes at any equilibrium
point) are [g]-, [f, gj]], j € {1,2,3}. Theorem 4.2 requires these vectors to
be written as linear combinations of good brackets with either lower §-degree
or lower [-degree. The only such good brackets are g;, [f, gj], [f, [f, gj]],
- [f, [ [f,gj]] -], j € {1,2,3}. Brackets of the form [gk,gj] are
not considered because [gk, gj] =0, j,k € {1,2,3}. For a proper choice
of 6§ and I, j € {0,1,2,3}, these brackets have both lower §-degree and
lower [-degree. It is straightforward to verify that [gj, [f, gj]] € R2N+4=12
is a vector of all zeros except for element number 2N + 2 = 10. The
only way to write this vector as a linear combination of the good brackets
listed above is if these good brackets span the entire 12-dimensional state
space. This is not the case, however, because the vectors [f, [f, gj]], ey
.S gj]] --+], 7 € {1,2,3}, are linearly dependent, as can be seen by
assembling the matrix

Hf7[f7gj”7[f7[f7[f:gj]”7[fv[fv[fv[f7?j”” ’]

03«3 0343 03><32
dA dA
| ¢ ~ 52sC (M) c - (4.18)
03x3 03x3 , 03><33 ’
dA oA dA
e —(8A) e ()¢

and noting that the fourth row is a multiple of the second row. It is therefore
not possible to either #-neutralize nor l-neutralize the bad brackets of the
system in (2.46). The linear dependence in (4.18) is also present for N > 4
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links since the six non-zero rows of (4.18) concern the position and head
angle of the snake while the 2N — 2 remaining rows will be zero regardless
of N. This completes the proof. m

Note that Theorem 4.6 does not claim that the snake robot is not STLC.
In other words, the snake robot may be STLC even though the sufficient
conditions of Theorem 4.2 are violated. Note also that STLC is not a re-
quirement for controllability since, as described in Section 4.1, it is in fact
a stronger property than controllability. In summary, the above results
do not enable us to conclude that a wheel-less snake robot influenced by
anisotropic viscous ground friction is controllable. However, the above re-
sults are hopefully an important step towards formally proving that such
mechanisms are controllable, which we consider highly likely to be the case.

We end this section with a note on Theorem 4.5. This theorem clearly
shows that anisotropic friction is an important property for a snake robot.
In the snake robot literature, it is common for snake robots to exhibit the
property ¢, > ¢;. The extreme case of this property is realized by installing
passive wheels (that cannot slip sideways) along the snake body since this
ideally means that ¢; = 0 and ¢, = co. However, from Theorem 4.5 it is
clear that the only requirement for strong accessibility is that the friction
coefficients are mot equal. The property c¢; > ¢, is therefore also valid.
This means that the passive wheels commonly mounted tangential to the
snake body may equally well be mounted transversal to the snake body.
The resulting motion will of course be different, but the strong accessibility
property is still preserved.

4.4 Analysis of Propulsive Forces during Snake
Locomotion

Having derived some fundamental properties of snake robot locomotion in
Section 4.2 and Section 4.3, we now turn our attention to the following
question: How and why does anisotropic viscous ground friction enable
snake robots to locomote forward on a planar surface? We will answer this
question simply by investigating the equations of motion of the snake robot.

We begin by deriving an expression for the total force propelling the CM
of the snake robot forward as a function of the linear link velocities. We
call this the propulsive force on the robot and denote it by Fj,rop € R. The
forward direction of motion is assumed to be along the global positive x
axis, which means that the propulsive force is simply the sum of all external
forces on the snake robot in the global x direction. From (2.32b) and (2.24),
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we can calculate Fprop as

Forop= Nmp, = eTvax :—eT<(ct(C9)2—|—cn(Sg)2>X +(ct—cn)SQC9Y) .

(4.19)
The result of multiplying the vector e/ = [1,...,1] € RY with f R D
(4.19) is an addition of all elements in f p ,, which means that (4.19) can
be written as

N
Forop = — Z ((ct cos? 0; + ¢, sin® 91-) x; + (¢t — ¢p) sin b; cos HZyZ) . (4.20)
i=1
The propulsive force contribution from a single link, Fprop i € R, is in other
words given by

Forop,i = —Fy (0:) & — Fy (0;) Ui, (4.21)
where

F,(0;) = cicos?0; + c,sin?b;, (4.22)

Fy(0;) = (ct—cp)sinb;cosb;, (4.23)

and where we recall from Section 2.3 that the angle 0; of link ¢ is expressed
with respect to the global x axis with counterclockwise positive direction.
We see from (4.21) that Fj,yop,; consists of two components, i.e. one involving
the linear velocity of the link in the forward direction of motion, F, (6;) &;,
and one involving the linear velocity normal to the direction of motion,
Fy(;)9;. Due to the minus signs in (4.21), the products Fj (6;) &; and
F, (0;) y; provide a positive contribution to the propulsive force only if they
are megative. Since the viscous friction coeflicients, ¢; and ¢, are always
positive, the expression F, (6;) is obviously always positive. We assume that
the snake robot is not generating waves that involve x direction velocities
of any of the links opposite to the direction of motion. When the snake
robot is moving in the forward direction (p, > 0), we therefore have that
#; > 0, which means that the product F, (6;); of the propulsive force is
always positive. This product is therefore not contributing to the forward
propulsion of the robot, but rather opposing it. This is also expected since
the snake robot must naturally be subjected to a friction force opposite to
the direction of motion.

Any maintained propulsive force in the forward direction of motion must
therefore be produced by the sideways motion of the links, i.e. the product
Fy (0;) 9;. A plot of F, (6;) for different values of the normal friction coeffi-
cient ¢,,, while keeping the tangential friction coefficient ¢; fixed, is shown in



4.4 Analysis of Propulsive Forces during Snake Locomotion 79

-2 1
-100 -80 -60 -40 -20 0 20 40 60 80 100
Link angle, 6; [deg]

Figure 4.1: The mapping from sideways link motion to forward propulsion
for different viscous friction coefficients.

Fig. 4.1. For each plot, the angle between the link and the forward direction,
0;, is varied from —90° to 90°. The sideways motion of a link has no effect
on the propulsive force on the snake robot when the friction coefficients
are equal since this gives Fy (6;) = 0. However, when ¢, > ¢, Fig. (4.1)
reveals that F), (6;) is negative as long as 6; is positive, and vice versa. This
means that the product F, (6;) y; is negative (the sideways motion of link i
contributes to the propulsion) as long as sgn (6;) = sgn (y;). The sideways
motion of link ¢ is in other words contributing to the propulsion of the snake
robot as long as 0; is positive during leftward motion of the link (left with
respect to the direction of motion) and negative during rightward motion of
the link (right with respect to the direction of motion). This fundamental
relationship may be written sgn (Fprop,i) = sgn (sgn (6;) sgn (9;)).

It is straightforward to calculate that the extrema of Fj (6;) occur at
0; = £45°. This is also seen from Fig. 4.1. This means that, for a given y;,
a link produces its highest propulsive force when it forms an angle of £45°
with the forward direction of motion. It is also evident from (4.21) that the
magnitude of F, (6;) ;, and thereby the magnitude of the propulsive force,
| Forop,i|, is increased by increasing ¢, with respect to ¢, or by increasing
the magnitude of the sideways link velocity, |y;|.

It should now be clear that the function Fy (6;) maps the link velocities
normal to the direction of motion into force components in the direction
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of motion. The following simple analogy may help understand this result.
Imagine a small, hand-held, wheeled wagon of some sort. The direction
of the wheels corresponds to the tangential direction of a snake robot link.
Obviously, the friction coefficient of the wagon in the direction of the wheels
is smaller than the friction coefficient normal to the wheels. Now assume
that you push the wagon across a table in the direction of the wheels. While
maintaining constant direction of motion, assume that you slowly rotate the
wagon about the vertical axis, thereby forcing the wheels to slip. The hand
that push and rotate the wagon will now feel a tendency of the wagon to
move sideways in the same direction towards which the wagon was rotated.
This is in accordance with the results presented above.

The above analysis is summarized by the following properties of planar
snake robot locomotion under viscous friction conditions:

Property 4.2 For a snake robot described by (2.84) with ¢, > ¢, forward
propulsion s produced by the link velocity components that are transver-
sal to the forward direction. The function F, (0;) maps the link velocities
transversal to the direction of motion into force components in the direction
of motion.

Property 4.3 For a snake robot described by (2.34) with ¢, > ¢, the
propulsive force generated by the transversal motion of link i is positive as

long as sgn (0;) = sgn (;).

Property 4.4 For a snake robot described by (2.34) with ¢, > ¢, the
magnitude of the propulsive force produced by link i, |Fprop,i|, is increased
by increasing ¢, with respect to c;, or by increasing the magnitude of the
sideways link velocity, |y;|, or by increasing |0;| as long as |0;| < 45°.

Property 4.5 For a given v;, a link produces its highest propulsive force
when it forms an angle of 0; = +45° with the forward direction of motion.

4.5 Synthesis of Propulsive Motion for the Snake
Robot

The results presented so far in this chapter are general in the sense that
no assumptions have yet been made regarding the actual motion pattern
displayed by the snake robot. In this chapter, we use these results as a
basis for deducing how the links of a snake robot can be moved in order to
propel the robot forward along the global x axis. In order to deduce the
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propulsive link motion, we focus on manipulating the magnitude, |Fpyrop,il,
and direction, sgn (Fprop.i), of the propulsive force from each link.

Theorem 4.3 in Section 4.2 suggests that the angle of each link should
be time-varying. Furthermore, Property 4.2 shows that propulsive forces
are generated by moving the links transversally to the desired direction of
motion. We therefore conclude that the links must have a periodic velocity
component normal to the direction of motion. This suggests that each link
should be moved alternatingly to the left and right with respect to the
direction of motion, which can be achieved by letting the trajectory of each
link angle have the form

0; = asin (wt) , (4.24)

where i € {1,..., N}, a > 0 is the amplitude of the link angles during the
locomotion, w > 0 is the angular frequency of the periodic motion, and ¢
denotes time. For simplicity, we assume that « and w are constant and
identical for all links.

In accordance with Property 4.1 in Section 4.3.2, the joint angles should
be out of phase during snake locomotion since this improves the controlla-
bility properties of the robot. This suggests that (4.24) should be modified
to

0; = asin (wt + (i — 1) 9), (4.25)

where ¢ is the phase shift between adjacent links, which, for simplicity, is
assumed to be constant.

We now investigate how «, w, and § affect |Fprop,i| and sgn (Fpropi) as
the snake robot moves along the global = axis. To simplify the analysis,
we assume that the snake robot consists of only N = 3 links. This is the
minimum number of links required to achieve propulsion since phase shift
between joints requires at least two joints. The below analysis for N = 3
links also apply to robots with N > 3 links since a snake robot can be
regarded as a connection of multiple three-linked segments. The link angle
trajectories are given from (4.25) as

01 = asin(wt), (4.26a)
0 = asin(wt+9), (4.26b)
03 = asin(wt+29), (4.26¢)

which, when differentiated with respect to time, gives the angular link
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velocities
01 = oawcos(wt), (4.27a)
0y = awcos(wt+0), (4.27Db)
03 = awcos(wt+26). (4.27¢c)

The normal direction velocity of each link is given by (2.13b). We disregard
the normal direction velocity of the snake robot by setting p, ~ 0. This
approximation is a fairly accurate during motion along the global z axis,
which is the case for this analysis. Inserting (4.26) and (4.27) into (2.13b)
gives

U = a‘*’l (2 cos (wt) cos (asin (wt)))

— 22l (3 cos (wt + &) cos (asin (wt + 4))) (4.28a)

—a‘g’l (cos (wt + 20) cos (asin (wt + 29))) ,

awl (

Yo = cos (wt) cos (asin (wt)))

ag’l (cos (wt + 20) cos (asin (wt + 26))), (4.28b)
g3 = 22 (cos (wt) cos (arsin (wt)))
+“T°” (3 cos (wt + 6) cos (asin (wi + 6))) (4.28¢)

—i—% (2 cos (wt + 20) cos (asin (wt + 29))) .

Property 4.4 tells us that |Fprop| is increased by increasing |y;|. From
(4.28a)-(4.28c¢), it is therefore clear that |Fpyop ;| is increased by increasing
a and/or w. We now determine if § should be positive or negative in
order to achieve sgn (Fyropi) = 1, which is necessary to propel the snake
robot forward along the global x axis. From Property 4.3, we know that
sgn (Fprop,i) = 1 requires sgn (6;) = sgn(y;). Considering g2 in (4.28b)
(since this expression is easy to analyse), it is seen through pure inspection
that g2 = 0 when wt = —0. When wt = —§, we see from (4.26b) and
(4.27b) that 3 = 0 and 92 = aw > 0. 03 is in other words about to become
positive, which means that we also require 72 to become positive. This is
the case if §o > 0 when wt = —§. Differentiating (4.28b) with respect to
time gives

y 2021 9 o . . .
2| 5= 3 (cvcos® (6) sin (asin (6)) + sin (6) cos (asin (9))) ,
wt = —
(4.29)
from which it is easily seen that §j» > 0 when 6 > 0, i.e. sgn (Fprop,i) = 1
when § > 0. This indicates that the links generate positive propulsive forces
if 6 > 0.
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In order to verify that forward propulsion requires § > 0, we have
plotted (4.26) and (4.28) together in Fig. 4.2 for a = 70°, w = 70°, and for
different positive values of § over a period of wt from 0 to 2w. The figures
show that sgn (Fprop,i) = sgn(sgn (0;)sgn (y;)) = 1 is always satisfied for
link 2, but only satisfied over about half the period for link 1 and 3 when §
is small. As 0 is increased, sgn (Fprop,i) = 1 is satisfied over a larger portion
of the period. The optimal choice of § will be derived in Chapter 7. For
now, however, we simply conclude that positive propulsive forces requires
6> 0.

The following property summarizes the above analysis.

Property 4.6 A snake robot described by (2.34) with anisotropic viscous
ground friction properties (c, > ¢;) achieves forward propulsion by moving
its links according to 0; = asin (wt + (i — 1) ) wherei € {1,...,N}, a > 0,
w >0, and 6 > 0. Increasing o and/or w increases the magnitude of the
propulsive forces generated by the links.

4.6 The Gait Pattern Lateral Undulation

During locomotion according to the gait pattern presented in Property 4.6,
the snake robot produces continuous body waves that are propagated back-
wards from the head to the tail. This form of motion is called lateral undu-
lation and is the most common form of locomotion displayed by biological
snakes (see Section 1.2.2). As described in Section 1.4, motion by lateral
undulation has a central role in the control design efforts described in this
thesis since we consider this motion pattern to be most relevant and most
efficient for planar snake robot locomotion.

A well-known mathematical description of lateral undulation was pre-
sented in Hirose (1993) based on empirical studies of biological snakes.
Hirose discovered that a close approximation to the shape of a biological
snake during lateral undulation is given by a planar curve whose curva-
ture varies sinusoidally. Hirose named this curve the serpenoid curve and
described it by

x(s) = jcos (acos (bo) 4+ co)do, y(s)= bfsin (acos (bo) + co) do,

(4.30)
where (z(s),y(s)) are the coordinates of the point along the curve at arc
length s from the origin, and where a, b, and ¢ are positive scalars. The



84 Analysis and Synthesis of Snake Robot Locomotion

0 2 4 6 8
wt [rad] = 0 to 2w wt [rad] = 0 to 27

(a) Plot of #; and y;. (b) Plot of 62 and ¥s.

80

- <03 {deg]
60F Yo

N % ys [em/s]
ao0p\’ :

20,

wt [rad] = 0 to 27

(c) Plot of f3 and ys.

Figure 4.2: The relation between 0; and ¢;, i € {1,2,3}, for a = 70°,
w="70° and § = 10° (dotted) , 40° (dashed) ,70° (solid).
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curvature k of the serpenoid curve varies sinusoidally according to k(s) =
|absin (bs) — ¢|. Note that we have used the notation from Saito et al.
(2002), which considers motion control of snake robots based on the ser-
penoid curve. It is shown in Saito et al. (2002) that a serpenoid curve of
arc length 1 can be approximated by N identical discrete segments by cal-
culating the angle 0; of segment 7 € {1,..., N} with respect to the z axis

according to
b
- . 4.31
0; = acos <N> (4.31)

This implies that a snake robot with N identical discrete links attains a
discrete approximation to the serpenoid curve by moving its link angles si-
nusoidally with a constant phase shift between the links, which means that
the motion pattern that we derived in Property 4.6 is a discrete approx-
imation to the serpenoid curve. The analysis leading up to Property 4.6
is therefore a support of the serpenoid curve motion proposed by Hirose.
However, while Hirose derived the serpenoid curve based on empirical stud-
ies of biological snakes, we have in this chapter based our arguments on the
mathematical properties derived from the equations of motion of the snake
robot. The choices made in the analysis leading up to Property 4.6 are
obviously inspired by the serpenoid curve. However, it is still interesting to
see how logical arguments that support an empirically derived result can
be developed through a mathematical analysis.

Since there are N link angles, but only N — 1 control inputs (i.e.
the snake robot is underactuated), it is more suitable to specify the ser-
penoid curve motion by the N — 1 joint angles. Since the angle of joint
ie{l,...,N —1} is given from (2.1) as ¢; = 0; — 0,41, it is easy to verify
that the reference motion of the joint angles will have the same form as
the reference motion of the link angles specified in Property 4.6. In accor-
dance with Hirose (1993), we also introduce a joint angle offset ¢ g in
the reference motion of the joints. It will be shown in Section 4.8 that this
offset can be used to control the direction of the locomotion since the offset
makes the link motion asymmetrical with respect to the current heading of
the robot. We now summarize the above discussion.

Definition 4.1 Lateral undulation.
The gait pattern lateral undulation is achieved by moving the joints of a
planar snake robot according to

Gjret = asin (wt + (1 — 1) 6) + ¢, (4.32)
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where i € {1,...,N —1}, a and w are the amplitude and frequency, respec-
tively, of the sinusoidal joint motion, § determines the phase shift between
the joints, and ¢, is a joint offset, which we assume to be identical for all
joints.

4.7 The Control System of the Joints

In this thesis, we consider two different control laws for making the joint
angles ¢ = [gi)l, e ,ng,l]T € RV~ track the joint reference angles given

by ¢ror = [qblyref, cee gzﬁN_l’ref]T € RV~ We assume that the control input
u € RV~! of the model (2.34) is set according to the linearizing control law
(2.43) so that the joint dynamics of the snake robot is given by ¢ = .
Both control laws are therefore defined in terms of the linearized control
input w € RV—1,

4.7.1 A Simple Joint Controller

The first control law, which we refer to as the simple joint controller, com-
bines proportional action with velocity damping as follows:

U = ky (yer — ) — kb, (4.33)

where k£, > 0 and kg > 0 are controller gains, and where (bref = 0 since
the purpose of the derivative part is simply to damp the joint motion if the
joint velocities become large. The advantage of this controller is that it does
not require calculation of the derivative of ¢,.s with respect to time, which
e.g. allows ¢, to be discontinuous. The disadvantage of the controller,
however, is that its stability properties are not as easy to establish as the
stability properties of the second control law.

4.7.2 An Exponentially Stable Joint Controller

The second control law, which we refer to as the exponentially stable joint
controller, is defined as

u= (‘ﬁref + kg ((.ﬁref - ¢> + kp (¢ref - ¢) s (434)

where k, > 0 and kg > 0 are scalar controller gains. Since the joint dynam-
ics is given by q.’) = w, the resulting error dynamics of the joints is given
by

(brer = @) + ki (brer = &) + ko (Brcr — @) =0, (4.35)
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which is clearly exponentially stable (see Khalil, 2002) During lateral un-
dulation according to (4.32), we can easily calculate ¢,o; and ¢, if ¢, is
assumed to be a constant offset since this gives

Oret = 0w cos (wi + (i = 1)6), (4.362)
Gier = 0w’ sin (Wt + (i — 1) ). (4.36b)

If, on the other hand, ¢, is a complex function of time so that (;bref and
gbref cannot easily be calculated analytically, then qbref and qbref can be
obtained by passing the commanded reference angles, ¢,.¢, through a 3rd
order low-pass filtering reference model, as described in Appendix C.2.

4.8 Analysis of Turning Motion during Lateral
Undulation

In this section, we investigate how the joint offset ¢, in (4.32) affects the
heading of the snake robot during lateral undulation. To this end, the
model of the snake robot in (2.46) was implemented in Matlab R2008b,
where the dynamics of the model was calculated by use of the ode45 solver
with a relative and absolute error tolerance of 10~6

We considered a snake robot with N = 10 links of length 2] = 0.14
m, mass m = 1 kg, and moment of inertia J = 0.0016 kgm?. The ground
friction forces were assumed to be of the viscous type defined in (2.24) with
friction coefficients ¢ = 1 and ¢, = 10. The simple joint controller in
(4.33) was used to control the joints of the robot according to (4.32) with
gait pattern parameters o = 30°, w = 70°/5, and § = 40°. In order to
study the effect of ¢, on the motion, the offset angle was set to ¢, = 5° in
the time interval ¢ € [20,30] and ¢, = —10° in the time interval ¢ € [50, 60].
The offset angle was set to ¢, = 0° outside these two time intervals.

The simulation result is shown in Fig. 4.3. The top of Fig. 4.3 shows the
trace of the head during the motion, while the bottom of the figure shows
the average joint angle, which we denote by ¢ = ﬁ Zf\i 11 ¢;. The trian-
gles pointing up and down in the top of Fig. 4.3 indicate, respectively, the
beginning and end of the two time intervals where ¢, is non-zero. Fig. 4.3
shows that the snake robot crawls forward without turning as long as the
average joint angle, ¢, is zero. However, when the average joint angle is
non-zero, the direction of the motion changes. We see from the figure that
a positive (resp. negative) average joint angle produces a counterclockwise
(resp. clockwise) rotation of the snake robot. We also see that the speed
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Figure 4.3: Simulated motion of a snake robot with NV = 10 links. A joint
offset angle of ¢, = 5° and ¢, = —10° is introduced at ¢t = 20 s and ¢ = 50
s, respectively. Top: Trace of the head of the snake robot. Bottom: The
average joint angle.

of the directional change is correlated with the amplitude of the average
joint angle. This result is supported by the directional controllers for snake
locomotion considered in e.g. Saito et al. (2002); Sfakiotakis and Tsakiris
(2007). The following property summarizes this analysis:

Property 4.7 During lateral undulation with a snake robot described by
(2.46) with ¢, > ¢, the overall direction of the locomotion will remain
constant as long as the average joint angle is zero, but will change in the
counterclockwise (resp. clockwise) direction when the average joint angle is
positive (resp. negative). The rate of directional change increases when the
amplitude of the average joint angle increases.

Remark 4.2 A formal proof that ¢, affects the motion direction of the
snake robot still remains. One possible approach is to prove this property
by investigating Lie brackets of the system vector fields (see Section 4.1).
Such an approach is employed in e.g. Morgansen et al. (2001) to study the
motion of robotic fish. A challenge in the present work, however, is that a
snake robot with revolute joints has no explicitly defined orientation since
there is an independent link angle associated with each link. An estimate of
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the heading of the robot was given in Definition 2.3 as the average of the link
angles. The summed dynamics of all the links is, unfortunately, extremely
complex, which makes it difficult to analyse the Lie bracket motion of the
heading.

4.9 Analysis of Relative Motion between Consec-
utive Links during Lateral Undulation

From the results presented so far in this chapter, it should be clear that
planar snake robot locomotion consists of periodic body shape changes that
generate external forces that propel the robot forward. Since body shape
changes is equivalent to displacing the links relative to each other, we can
always partition the body shape changes into relative link displacements
that are, respectively, tangential and transversal to the forward direction
of the robot. We know from Property 4.2 that the transversal link displace-
ments are what propel the snake robot forward.

With respect to the gait pattern lateral undulation presented in De-
finition 4.1, it seems natural to ask how large part of the body shape
changes during lateral undulation that constitute tangential and transver-
sal link displacements, respectively. To answer this question, we employed
the simulation setup presented in Section 4.8 to simulate a snake robot
with NV = 10 links during lateral undulation along the global x axis with
a =30° w =30°/s, 6 = 40°, and ¢, = 0°. The trace of the head of the
snake robot is plotted in the top of Fig. 4.4, while the two bottom plots in
Fig. 4.4 show the relative displacements between the CM of two arbitrarily
chosen links (link 4 and link 5) in the global = and y direction, respectively.
The plots indicate that, during lateral undulation, the relative displace-
ments between the CM of two adjacent links along the forward direction of
motion are approximately constant, while the relative displacements nor-
mal to the direction of motion oscillate around zero. This observation is
formalized as follows:

Property 4.8 The change in body shape during lateral undulation consists
mainly of relative displacements of the CM of the links normal to the for-
ward direction of motion. The relative displacements of the CM of the links
along the forward direction are approximately constant.

Remark 4.3 Property 4.8 and Property 4.2 constitute the basis for the
simplified model of the snake robot presented in Chapter 6. The properties
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Figure 4.4: Top: Simulated motion of a snake robot with N = 10 links.
Middle: Relative displacements between the CM of link 4 and link 5 in the
global x direction. Bottom: Relative displacements between the CM of link
4 and link 5 in the global y direction.

tell us two things, namely 1) that lateral undulation mainly consists of link
displacements that are transversal to the direction of motion, and 2) that
the transversal link displacements are what propel the robot forward. These
results are appealing since they suggest that snake robot locomotion can be
described in terms of the transversal displacements of the links instead of

the more complex rotational link motion. We elaborate this approach in
Chapter 6.

4.10 Chapter Summary

This chapter is summarized as follows:

e We have presented a stabilizability analysis that proves that any as-
ymptotically stabilizing control law for a planar snake robot to an
equilibrium point must be time-varying, i.e. not of pure-state feed-
back type (see Theorem 4.3).

e We have presented a controllability analysis of planar snake robots
influenced by viscous ground friction forces that proves that:
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— A snake robot is not controllable when the viscous ground fric-
tion is isotropic (see Theorem 4.4).

— A snake robot is strongly accessible from any equilibrium point
(except for certain singular configurations) when the viscous
ground friction is anisotropic (see Theorem 4.5).

— A snake robot does not satisfy sufficient conditions for small-
time local controllability (see Theorem 4.6).

— The joint angles of a snake robot should be out of phase during
snake locomotion (implied by Property 4.1).

e We have identified a simple relationship between link velocities nor-
mal to the direction of motion and resulting propulsive forces in the
direction of motion that:

— revealed several fundamental properties of snake robot locomo-
tion (see Properties 4.2, 4.3, and 4.4).

— explains how anisotropic ground friction enables snake robots to
locomote forward on a planar surface.

e We have employed the derived properties to synthesise how the links
of a snake robot can be moved in order to propel the robot forward
(see Property 4.6).

e We have identified the synthesised motion as the gait pattern lateral
undulation (see Definition 4.1), which is the most common form of
biological snake locomotion.

e We have explained how offsetting the joint angles during lateral un-
dulation enables directional control of the motion (see Property 4.7).

e We have shown that the body shape changes during lateral undula-
tion mainly consist of relative displacements of the links normal to
the forward direction of motion, while the relative displacements of
the links along the forward direction are approximately constant (see
Property 4.8).
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Chapter 5

Path Following Control and
Analysis of Snake Robots
based on the Poincaré Map

In Chapter 4, we derived the gait pattern lateral undulation, which enables
planar snake robots with anisotropic ground friction properties to locomote
forward on a planar surface. We now turn to the problem of controlling the
heading and position of the snake robot, and in particular, we consider the
problem of enabling the robot to track a straight path. Straight line path
following capabilities are important since they enable a snake robot to follow
a desired path given by waypoints interconnected by straight lines. Straight
line path following is therefore relevant for many future applications of
snake robots, such as automated inspection rounds in inaccessible areas of
industrial process facilities or mapping of confined spaces by moving along
prescribed paths.

Control design for snake robots is challenging since these mechanisms
are underactuated. In particular, the model of the snake robot in (2.46)
contains N + 2 degrees of freedom, but only N — 1 control inputs. The un-
deractuated degrees of freedom, i.e. the heading and position of the robot,
make it impossible to independently control all degrees of freedom of the
robot. During path following control of snake robots, there is additionally
the challenge that the CM position p does not trace out a straight path dur-
ing forward locomotion, but rather oscillates periodically about the straight
line pointing in the forward direction of the robot. Moreover, we also ex-
pect the heading 6 of the robot, which was defined in (2.2), to oscillate
periodically during forward locomotion since we cannot generally assume



94 Path Following Control and Poincaré Map Analysis

that the average of the link angles is always zero. As long as the heading
and position of the robot display such oscillating behaviour, it makes no
sense to attempt to control these states to stationary values with respect to
the desired straight path (which we normally would during path following
control of more conventional propulsion mechanisms, such as marine vessels
and wheeled robots).

With these challenges in mind, it becomes clear that we need a mathe-
matical tool which allows us to study the periodically oscillating behaviour
of the system states. We find such a tool in the theory of Poincaré maps.
The Poincaré map represents a widely used tool for analysing the existence
and stability of periodic orbits of dynamical systems. In this chapter, we
first propose a path following controller for planar snake robots, and subse-
quently we analyse the stability of the locomotion along the path by use of
a Poincaré map. In particular, we show that all state variables of the snake
robot, except for the position along the path, trace out an exponentially
stable periodic orbit during path following with the proposed controller.
We also present simulation results that illustrate the performance of the
controller. Note that the path following controller considered in this chap-
ter is extended in Chapter 8, where we employ cascaded systems theory to
investigate the convergence of the snake robot to the desired path based
on the simplified model presented in Chapter 6. The path following con-
troller in Chapter 8 circumvents the oscillating behaviour of the snake robot
through a coordinate transformation combined with feedback cancellation
of the oscillating dynamics.

Contributions of this Chapter: The contribution of this chapter is a
control law that enables snake robots to track a straight path. To our
best knowledge, a Poincaré map has never before been used to study
the stability properties of snake robot locomotion. We therefore also
consider the methodology of this chapter to be a contribution within
the snake robot literature.

Organization of this Chapter: Section 5.1 gives a brief presentation of
the Poincaré map. The path following controller is presented in Sec-
tion 5.2, and the stability of this controller is investigated in Sec-
tion 5.3 by use of a Poincaré map. Simulation results are presented
in Section 5.4. Finally, the chapter is summarized in Section 5.5.

Publications: The material in this chapter is based on the journal pa-
per Liljebidck et al. (2011b) and the conference paper Liljebéck et al.
(2009¢).
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Figure 5.1: Illustration of the Poincaré map corresponding to a Poincaré
section S.

5.1 Introduction to Poincaré Maps

In this section, we give an introduction to the Poincaré map since this is
used as a stability analysis tool in Section 5.3. For further details on the
topic, the reader is referred to Parker and Chua (1989) and Westervelt et
al. (2007).

5.1.1 General Description of Poincaré Maps

The Poincaré map represents a widely used tool for analysing the exis-
tence and stability of periodic orbits of dynamical systems. Consider an
autonomous (not explicitly dependent on time) n-dimensional dynamical
system of the form

z=f(x), xR (5.1)

where f (x) is assumed to be continuously differentiable. Assume that the
solution of this differential equation for a particular initial condition is a
limit cycle. Then the flow of x in the n-dimensional state space will return
to the initial condition after a time 7', corresponding to the period of the
limit cycle.

We now define an (n — 1)-dimensional hyperplane S (called a Poincaré
section) such that the limit cycle intersects and passes through S at some
instant in time. We denote by Z € R""! the (n — 1)-dimensional state
vector when « is constrained to S. The point on S where the limit cycle
intersects S is denoted Z * € R"~!. Assume now that we initialize (5.1)
on the hyperplane & somewhere close to *. Due to the continuity of the
solutions of (5.1) with respect to the initial condition, the flow of = will,
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in approximately T seconds, return to and intersect S somewhere close to
z*. This is illustrated in Fig. 5.1. The mapping from an initial point T on
S to the next point where the flow of x intersects S is called the Poincaré
map and is denoted by P (%) € R"~!. The Poincaré map is in other words
a function that accepts an initial point on a Poincaré section as input and
outputs where the Poincaré section will be intersected next by the flow of x.
This is written more formally as P : § — S§. The point * is called a fixed
point of the Poincaré map since the Poincaré map maps * back to itself.
This is also illustrated in Fig. 5.1. We only consider one-sided Poincaré
maps, i.e. we only consider crossings of S in directions corresponding to
the direction of & when « initially left S.

The Poincaré map can be interpreted as a discrete-time system with an
(n — 1)-dimensional state space that evolves on the Poincaré section. This
is seen by denoting by Z [k] € S the point of the k-th intersection with S
by the flow of . The Poincaré map may then be written as

Zlk+1) =P @[k]), T|0]€S. (5.2)

The usefulness of the Poincaré map for stability analysis lies in the fact
that local exponential stability of the fixed point * on the Poincaré section
is equivalent to local exponential stability of the underlying periodic orbit
(see e.g. Westervelt et al., 2007), i.e. nearby orbits converge exponentially
to the periodic orbit. Note that the stability is only asymptotic (i.e. not
exponential) if f () in (5.1) is continuous but not continuously differen-
tiable (Westervelt et al., 2007). The problem of determining if a periodic
orbit of the system (5.1) is exponentially stable is, in other words, reduced
to determining if Z* is an exponentially stable equilibrium point of the
discrete-time system in (5.2), which is a much simpler problem to solve.
A significant drawback of Poincaré maps is that they provide little insight
into properties of the system dynamics.

Note that the method of Poincaré maps may also be applied to non-
autonomous periodic systems, i.e. systems of the form & = f (x,t), by
incapsulating the time ¢ in an augmented periodic state variable 8 = 2xt/T.
This is performed for the snake robot in Section 5.3.1.

5.1.2 Practical Application of Poincaré Maps

This section provides an informal description of the practical use of Poincaré
maps. The aim is to show how this method can be employed in practice
in order to investigate the stability properties of a time-periodic dynamical
system.
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Calculating the Poincaré Map

It is difficult to determine the Poincaré map analytically since it requires
the solution of the differential equation (5.1). However, the Poincaré map
of (5.1) is simply the forward integration of this differential equation. It
is therefore possible to compute the Poincaré map P (Zp) numerically by
initializing (5.1) on S at Ty and simulating (5.1) until S is intersected. The
state corresponding to this intersection is the Poincaré map P (Tp).

Locating Fixed Points of the Poincaré Map

The easiest way of locating a fixed point T* of the Poincaré map is to
simply let the simulation of (5.1) run until it reaches the steady state. This
is called the brute-force approach and has three serious disadvantages. First
of all, convergence to the fixed point can be exceedingly slow. Secondly,
the method can only locate stable fixed points. Thirdly, it may be difficult
to tell when the steady state has been reached.

A more sophisticated method is to exploit the fact that locating T* is
equivalent to locating zeros of the error function

E(Z)=P(z)-z, E(z)cR" (5.3)

since we have that z* = P (Z*). The Newton-Raphson algorithm (Parker
and Chua, 1989) is a general algorithm for locating zeros of a differentiable
function, and it may therefore be employed for locating *. By starting
from an inital guess, Z*, of the fixed point, the Newton-Raphson algorithm
calculates a more accurate estimate of " through the formula

=gk — Jp (ﬁ)fl E <§’€) : (5.4)

where J g ("), which is the Jacobian of the error function E (), is defined
by

1558 - 0E
o0T1 OTn_1
Jg = a—f: = : | eRx(mD) (5.5)
8m 8Enfl 8En71
aj1 e aEnfl

The Jacobian J g (Ek) can be calculated numerically by defining

dfi = [07 R ’07 Aiao’ cee 70]T € Rn_l? (56)
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where the i-th element is non-zero, and A; is a small perturbation of T;
along §. Column ¢ of J g (5"3) may then be approximated numerically as

OE E (z* + dz;) - E (z*
8:1% Ai

This enables a column-wise construction of J g (Ek) If the initial condition
is within the basin of attraction of a periodic orbit, the Newton-Raphson
algorithm will converge rapidly towards the fixed point x*.

Analysing Stability of a Periodic Orbit

As explained in Section 5.1.1, a fixed point z* of the Poincaré map corre-
sponds to a periodic orbit of the underlying dynamical system. Once the
fixed point has been found using e.g. the Newton-Raphson algorithm, the
stability of the periodic orbit may be tested by investigating if the fixed
point is a stable equilibrium point of the Poincaré map. This is done by
calculating the Jacobian linearization of the Poincaré map about the fixed
point, i.e. by calculating the Jacobian Jp (Z*) = %‘E:ﬁ € R(n=Dx(n=1),
Jp (ZT*) is calculated by following the same procedure as for calculating
Jg (") in (5.5). The Poincaré map linearized about the fixed point is
thereby given as T[k+ 1] = Jp (Z*) T [k]. This is a linear discrete-time
system which is exponentially stable if the magnitude of all the eigenvalues
of Jp (x*) are strictly less than one. The fixed point * of the Poincaré
map, and thereby also the periodic orbit of the underlying dynamical sys-
tem, is therefore locally exponentially stable if the magnitude of all the
eigenvalues of J p (Z*) are strictly less than one.

5.2 Straight Line Path Following Control of Snake
Robots

In this section, we propose a control law that enables a snake robot to track
a straight path. We assume that the snake robot is described by the model
in (2.34) and that the robot is influenced by anisotropic viscous ground
friction forces described by (2.24).

5.2.1 Control Objective

In order to track the desired straight path, we define the global coordinate
system so that the global x axis is aligned with the desired path. The
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position of the snake robot along the global y axis, p,, is then the shortest
distance from the robot to the desired path (i.e. the cross-track error) and
the heading @ of the robot, which was defined in (2.2), is the angle that
the robot forms with the desired path. The control objective is thereby
to regulate p, and 0 so that they oscillate about zero, i.e. so that their
trajectories trace out a limit cycle containing (py =0,0 = O) in its interior.
As explained in the introduction of this chapter, we do not attempt to
regulate p, and 0 to zero since we expect the heading and position of the
robot to display oscillating behaviour during locomotion along the desired
path.

Since snake robot locomotion is a slow form of robotic mobility, which
is generally employed for traversability purposes, we consider it less impor-
tant to accurately control the forward velocity of the robot. During path
following with a snake robot, it therefore makes sense to focus all the con-
trol efforts on converging to the path and subsequently progressing along
the path at some nonzero forward velocity v,(t) > 0, where v;(t) is the
forward velocity of the robot defined in (2.5).

From the above discussion, the control problem is to design a feedback
control law such that for all ¢ > ¢. > 0, there exists a 7 € [t,t + T satisfying

py(7) =0, (5.8)
0(1) =0, (5.9)
T (t) > 0, (5.10)

where ¢, is some (unknown) finite time duration corresponding to the time
it takes the snake robot to converge to the desired straight path, and T > 0
is some constant that characterize the time period of the cyclic gait pattern
of the snake robot. In other words, we require that p, and 0 are zero at
least once within each cycle of the locomotion since this means that p, and
0 oscillate about zero. Note that we require 7;(¢) > 0 for all ¢ > .

5.2.2 The Straight Line Path Following Controller

We choose to propel the snake robot forward according to the gait pattern
lateral undulation defined in (4.32), which is achieved by controlling joint
i€ {l,...,N — 1} according to

¢z‘,ref = asin (Wt + (Z - 1) 5) + ¢o> (511)

where o and w are the amplitude and frequency, respectively, of the sinu-
soidal joint motion, & determines the phase shift between the joints, and
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¢, is a joint offset, which we assume to be identical for all joints. Note
that with the gait pattern in (5.11), the period of the cyclic locomotion
considered in control objectives (5.8) and (5.9) will be T' = 27 /w.

The heading 6 of the robot was defined in (2.2) as

1 X
0= ;ei. (5.12)

In order to steer the snake robot towards the desired straight path (i.e.
the global x axis), we define the heading reference angle according to the
Line-of-Sight (LOS) guidance law

Oref = — arctan (%) , (5.13)

where p, is the cross-track error, and A > 0 is a design parameter referred
to as the look-ahead distance that influences the rate of convergence to the
desired path. This LOS guidance law is commonly used during e.g. path
following control of marine surface vessels (see e.g. Fossen, 2002; Fredriksen
and Pettersen, 2006). As illustrated in Fig. 5.2, the LOS angle O, COTTE-
sponds to the orientation of the snake robot when it is headed towards the
point located a distance A ahead of itself along the desired path.

We know from Property 4.7 that ¢, can be used to control the direction
of the locomotion, and we therefore conjecture that we can steer the heading
# according to the LOS angle in (5.13) by defining this joint angle offset
according to

Gy = ko (0 — Orer) , (5.14)

where kg > 0 is a controller gain. To make the joints track the reference
angles given by (5.11), we set the control input u € RY~! of the model
(2.34) according to the linearizing control law (2.43), and we set the new
control input @ € RV~! according to the simple joint controller defined in
(4.33) as

Ui = kp (@ pet — 0i) — kad;, (5.15)

where k, > 0 and kg > 0 are controller gains.

5.3 Stability Analysis of the Path Following Con-
troller based on the Poincaré Map

In this section, we employ the theory of Poincaré maps (see Section 5.1) to
prove that the path following controller proposed in Section 5.2 generates
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Figure 5.2: The Line-of-Sight (LOS) guidance law.

a locally exponentially stable periodic orbit in the state space of the snake
robot as the robot locomotes along the desired straight path, i.e. the global
T axis.

5.3.1 Converting the Snake Robot Model to a Time-periodic
Autonomous System

Stability analysis of the time-periodic state variables of the snake robot by
use of Poincaré maps requires that the model of the snake robot represents
an autonomous system, i.e. a system not explicitly dependent on time.
More specificly, the stability conclusions described in Section 5.1.2 are not
valid if the Jacobian matrix J p (Z*) is a function of time ¢. However, since
the path following controller proposed in Section 5.2 depends explicitly on
time, i.e. w = u(x,t), the model of the snake robot (2.34) with the path
following controller can be written as

0
& = g = F (z,t), (5.16)
D

which is a non-autonomous system since time ¢ is explicitly present in the
system equations. We therefore follow the approach described in Parker and
Chua (1989) in order to convert the snake robot model to an autonomous
system by simply augmenting the state vector & with an extra state g =
27t /T, where T = 27 /w is the period of the cyclic locomotion generated by
the gait pattern in (5.11). We make 3 periodic by enforcing that 0 < g <
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27, i.e. we set (3 to zero each time = 27. The model (2.34) with the path
following controller can thereby be written as the following autonomous
System:
i:F($7%)7 $<t0):$07
8 =2, B (to) = 4.
We have, in other words, encapsulated time ¢ in the new state variable [3,
which is periodic since 0 < 8 < 2.

(5.17)

5.3.2 Specification of the Poincaré Section for the Snake
Robot

During locomotion along the global positive x axis, our goal is that the
x axis position of the snake robot, p,, increases, while all other states of
the snake robot in (2.34) trace out a stable limit cycle in the state space.
We therefore exclude p, from the Poincaré map of the snake robot, which
produces a partial Poincaré map (Westervelt et al., 2007). Exclusion of p,
has no effect on the other state variables since p, is not present in any of
their derivatives in (2.34). The synthesis and analysis of lateral undulation
in Chapter 4, which is the basis of the path following controller proposed
in Section 5.2, enable us to argue that forward motion along the z axis
(increase of p,) is achieved as long as the remaining state variables trace
out a stable periodic orbit.

We choose the global x axis as the Poincaré section S of the sys-
tem in (5.17). Since p, is not included in the Poincaré map, we write

S = { (B,py, 0, p, B) lpy = 0}. Following the notation in Section 5.1, the

vector of independent time-periodic states constrained to S is given by

6
€ R2NVH3, (5.18)

gl
I

6
p
B

Note that the considered Poincaré map is one-sided, which means that the
Poincaré section is crossed when p, switches from a positive to a negative
value, i.e. when the CM position of the robot crosses the x axis from above.

5.3.3 Stability Analysis of the Poincaré Map

In order to investigate the stability of the path following controller, we
considered a three-linked snake robot where N = 3,1 = 0.07 m, m = 1 kg,
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Figure 5.3: The motion of the snake robot over one period of the cyclic
locomotion.

and J = 0.0016 kgm?. The ground friction coefficients were chosen as
¢t = 1 and ¢, = 10, and the parameters of the path following controller in
Section 5.2 were a = 70°, w = 70°/s, 0 = 70°, k, = 20, kq = 5, kg = 0.3,
and A = 0.42 m.

The Poincaré map of the snake robot model in (5.17) was calculated
as described in Section 5.1.2 using Matlab R2008b on a laptop running
Windows XP. The ode4b solver in Matlab was used with a relative and
absolute error tolerance of 1075, The Newton-Raphson algorithm described
in Section 5.1.2 calculated the fixed point, Z* € R?, of the Poincaré map as

Z* = [—15.0°, —32.6°, 27.6°, —72.4° /s, 13.7° /5, 66.7° /s,

1
4.6 cm/s, —1.2 ecm/s, 182.5°]7 . (5.19)

A plot of the cyclic locomotion of the snake robot over one period is
shown in Fig. 5.3. The initial state of the snake robot was given by x*
and the initial position was p = 0. After one period of the motion, the
state variables returned to their initial value, Z*. At this point, however,
the position of the snake robot along the x axis had increased, which was
also our goal. To clearly illustrate the limit cycle behaviour of the periodic
state variables in (5.18), a 3D plot of the three absolute link angles over
one period is given to the left in Fig. 5.4.

The Jacobian linearization of the Poincaré map about the fixed point
(5.19) was calculated as described in Section 5.1.2. The magnitude of the
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Figure 5.4: Left: The limit cycle traced out by the link angles of the snake
robot. Right: Plot of §; and y; (¢ = 1,2,3) over one period of the cyclic
locomotion.

eigenvalues of J p (2*) € R?Y was

leig (J p (%)) = [0.78,0.78,0.0022,2.1 x 107%,4.9 x 1075, (5.20)
41%1075,9.6 x 1076,2.9 x 1076,1.6 x 1076]" . '

The magnitude of all the eigenvalues are strictly less than one, which means
that the periodic orbit traced out by the variables in (5.18) is locally ex-
ponentially stable for the given choice of controller parameters. All initial
states inside the basin of attraction of this periodic orbit will converge
exponentially to this periodic orbit.

We now summarize the above analysis with regards to the control objec-
tivesin (5.8), (5.9), and (5.10). Since the path following controller generates
an exponentially stable periodic orbit, and since p, = 0 is the Poincaré sec-
tion of this periodic orbit (i.e. the system returns to p, = 0 with time
period T'), we can conclude that control objective (5.8) is achieved from all
initial states inside the basin of attraction of this periodic orbit. Since the
snake robot is conducting lateral undulation under anisotropic ground fric-
tion conditions, the synthesis and analysis of this gait pattern in Chapter 4
implies that the robot is locomoting forward, i.e. control objective (5.10)
is satisfied. In particular, Proposition 4.3 in Section 4.4 states that the
propulsive force generated by the transversal motion of link ¢ € {1,2,3} is
positive as long as sgn (0;) = sgn (¢;). A plot of 6; and y; over one period
is given to the right in Fig. 5.4, which clearly shows that sgn (6;) = sgn (;)
over the majority of the period. This means that the net propulsive force
on the robot is positive. Finally, since control objectives (5.8) and (5.10)
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are both satisfied, control objective (5.9) must also be satisfied. In particu-
lar, if the heading did not oscillate about zero, then the snake robot would
drift away from the z axis, which contradicts the achievement of objective
(5.8).

Remark 5.1 Note that since the Poincaré map and its Jacobian lineariza-
tion are found basically by simulating the model of the snake robot, we have
only proved that the periodic orbit of the state variables is locally exponen-
tially stable for the given choice of numerical parameters described in the
beginning of this section. This is a drawback of stability analysis based on
the Poincaré map.

5.4 Simulation Study: The Performance of the
Path Following Controller

In order to illustrate the performance of the path following controller, we
provide in this section a simulation result where the three-linked snake
robot starts from rest with initial configuration given by 8 =0°, p, = 0 m,
and p, = 1 m, i.e. the snake robot is initially headed away from the desired
path (the z axis) and the initial distance from the CM to the desired path
is 1 m. We employ the model and controller parameters described in the
beginning of the previous subsection.

The path traced out by the CM of the snake robot is shown in Fig. 5.5(a),
where the shape and position of the robot are shown in red at t = 0 s,
t=30s,t=060s,t=90s, and t = 120 s, respectively. We see that the po-
sition of the snake robot converges nicely to the desired path, i.e. the x axis.
From Fig. 5.5(b), which shows the heading of the robot (solid blue) and the
reference angle of the heading (dashed red), we see that the heading also
converges nicely to zero, i.e. to the direction of the desired path. During
the motion along the x axis near the end of the simulation, Fig. 5.5 clearly
shows the oscillating behaviour of the heading and the position, which was
predicted in the introduction of this chapter.

5.5 Chapter Summary

This chapter is summarized as follows:

e We have proposed a control law that enables snake robots to track
straight paths.
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Figure 5.5: Simulation of the straight line path following controller.
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e We have analysed the stability of the path following controller by use
of a Poincaré map, and in particular, we have shown that all state
variables of the snake robot, except for the position along the path,
trace out an exponentially stable periodic orbit during path following
with the proposed controller.

e We have presented simulation results that illustrate the performance
of the path following controller.
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Chapter 6

A Simplified Model of Snake
Robot Locomotion on
Planar Surfaces

Faced with the problem of proving that a control strategy for the snake
robot satisfies some control objective, an attractive idea is to base the
controller analysis on a simplified model of the snake robot that avoids the
complex expressions contained in the model given by (2.46). The hypothesis
behind this idea is of course that the complex model in (2.46) contains
nonlinear dynamics that is not essential to the overall locomotion of the
snake robot. We have already seen support of this claim in the simulation
results of the path following controller proposed in the previous chapter.
In particular, Fig. 5.5 clearly shows that the heading and position of a
snake robot display an oscillating behaviour during locomotion. However,
for control design and analysis purposes, we are not particularly interested
in this oscillatory dynamics as we are primarily concerned with the overall
motion of the heading and position of the robot.

In this chapter, we therefore propose a simplified model of a planar
snake robot aimed at simplifying analytical investigations of the equations
of motion. The basic idea behind the model is to capture only the essential
properties of snake robot dynamics that we derived in Chapter 4, i.e. the
features that determine the overall behaviour of the snake. In order to verify
that the essential features of snake robot locomotion are contained in the
simplified model, we will also in this chapter repeat the stabilizability and
controllability analysis presented in Chapter 4, but this time based on the
simplified model. It will be shown that the stabilizability and controllability
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properties of the simplified model are indeed similar to the properties of
the complex model. Simulation results that compare the complex and the
simplified model are presented to provide further support of this claim.

Contributions of this Chapter: The main contribution of this chapter
is the simplified model of planar snake robot locomotion. The stabi-
lizability and controllability analysis of the simplified model is similar
to the analysis presented in Chapter 4, but is still a contribution since
the analysis in this chapter is based on a different model.

Organization of this Chapter: An overview of the simplified modelling
approach is given in Section 6.1. The models of the snake robot
kinematics, the ground friction forces, and the snake robot dynamics
are presented in Sections 6.2, 6.3, and 6.4, respectively. Subsequently,
the complete simplified model is summarized in Section 6.5. The
stabilizability and controllability properties of the model are studied
in Section 6.6 and Section 6.7, respectively, and simulation results
that compare the simplified and the complex model are presented in
Section 6.8. Finally, the chapter is summarized in Section 6.9.

Publications: The material in this chapter is based on the journal paper
Liljebdck et al. (2011d) and the conference papers Liljebiick et al.
(20107) and Liljebéck et al. (20101).

6.1 Overview of the Modelling Approach

Property 4.8 from Section 4.9 tells us that lateral undulation mainly con-
sists of link displacements that are transversal to the direction of motion.
At the same time, Property 4.2 from Section 4.4 tells us that the transversal
link displacements are what propel the robot forward. From these results
sprung the idea of describing the mapping from body shape changes to
propulsion in terms of the translational displacements of the links instead
of the rotational joint motion. The motivation behind this idea is that
translational motion is generally less complex to model than rotational mo-
tion. In particular, the model given by (2.46), which describes the mapping
from the rotational joint motion to the propulsion of a snake robot, is quite
complex.

The simplified modelling approach is illustrated in Fig. 6.1, where we
see that the body shape changes of the snake robot are described, not as
rotational link displacements, but as linear link displacements transversal to
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Direction of
motion U

Figure 6.1: The snake robot is modelled as a series of prismatic joints that
displace the CM of each link transversal to the direction of motion.

the forward direction of motion. This essentially means that we will model
the revolute joints of a snake robot as prismatic (translational) joints. The
rotational motion of the links during body shape changes will in other
words be disregarded. However, the model will still capture the effect of
the rotational link motion during body shape changes, which we know from
Property 4.8 to be primarily a linear displacement of the CM of the links
normal to the forward direction of motion.

The kinematics and dynamics of the snake robot will be detailed in the
following subsections in terms of the symbols illustrated in Fig. 6.2 and
Fig. 6.3. The following vectors and matrices are used in the development

of the model:
1 1 1 -1

A= L c R(N_l)XN,D _ . . c R(N—l)XN
11 1 -1

e=[1,....1]" erRN, e=[1,...,1]7 e RN,

— D" (DD”)™' e RVX(N-1),

wl

Remark 6.1 Property 4.2 makes no assumption regarding the gait pattern
of the snake robot. Property 4.8, however, is only valid for gait patterns
where the relative link displacements transversal to the direction of motion
dominate over the relative link displacements tangential to the direction of
motion. The simplified model should therefore only be used to study gait
patterns that comply with this condition, i.e. gait patterns with limited link
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Figure 6.2: Illustration of the two coordinate frames employed in the sim-
plified model. The global x-y frame is fixed. The t-n frame is always aligned
with the snake robot.
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Figure 6.3: Parameters characterizing the kinematics and dynamics of the
snake robot.
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angles with respect to the forward direction.

6.2 The Kinematics of the Snake Robot

We consider a planar snake robot with IV links of length [ interconnected
by N — 1 motorized prismatic (translational) joints. All N links have the
same mass m, and the total mass of the snake robot is thus Nm. Note that
we denote the total link length in the simplified model by [, whereas the
total link length in the complex model is 2/ for notational convenience.

The snake robot moves on a horizontal and flat surface, and has N + 2
degrees of freedom. We define the motion of the robot with respect to the
two coordinate frames illustrated in Fig. 6.2. The z-y frame is the fixed
global frame. The t-n frame is always aligned with the snake robot, i.e.
the ¢ and n axis always point in the tangential and normal direction of the
robot, respectively. The origin of both frames are fixed and coincide. We
will denote the direction of the ¢ axis as the tangential or forward direction
of the robot, and the direction of the n axis as the normal direction. Note
that we do not refer to the t-n frame as the body frame of the snake robot
since the t-n frame is not fixed to the robot. However, if a body frame
fixed to the robot had been defined, the orientation of this frame would be
identical to the orientation of the t-n frame.

The position of the snake robot is described through the coordinates
of its CM (centre of mass). As seen in Fig. 6.2 and Fig. 6.3, the global
frame position of the robot is denoted by (pg,p,) € R?, while the t-n frame
position is denoted by (pi, pn) € R2. The global frame orientation of the
robot is denoted by # € R and is expressed with respect to the global x
axis with counterclockwise positive direction. The angle between the global
x axis and the t axis is also 8 since the t-n frame is always aligned with
the robot. Describing the position in a frame which is always aligned with
the snake robot is inspired by and similar to a coordinate transformation
proposed in Pettersen and Egeland (1996).

Remark 6.2 A snake robot with revolute joints has no explicitly defined
orientation. We therefore estimated the orientation of the snake robot in
the complex model (2.46) as the mean of the absolute link angles (see Defi-
nition 2.3). With the simplified modelling approach, however, we avoid this
issue since the scalar variable 6 provides an explicit representation of the
orientation of the snake robot.

The relationship between the t-n frame position and the global frame
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position is given by

Pt = Do cos 0 + p, sind, (6.1a)
Pn = —pgsind + p, cos 6. (6.1Db)

As illustrated in Fig. 6.2, the forward and normal direction velocity of the
CM of the snake robot are denoted by v; € R and v, € R, respectively.
Using (2.3), the relationship between the global frame velocity of the robot
and the t-n frame velocity is given by

Py = v cosf — vy, sin 6, (6.2a)

Py = v¢siné + v, cos b, (6.2b)
and the inverse relationship is given by

vy = Py cos O + pysind, (6.3a)
Up = —Pg sinf + py cos 6. (6.3b)

Differentiating (6.1) with respect to time and inserting (6.3) gives

Pt = vt + pub, (6.4a)

Pn = vn — pib). (6.4b)

We denote the t-n frame position of the CM of link i by (¢;,n;) € R2.
The N — 1 prismatic joints of the snake robot control the normal direc-

tion distance between the links. As seen in Fig. 6.3, the normal direction
distance between link ¢ and link ¢ 4+ 1 is given by

¢; = N1 — Ny, (6.5)

and represents the coordinate of joint ¢. The controlled distance ¢; replaces
the controlled joint angle in the original model given by (2.46).

Remark 6.3 The state ¢; of joint ¢ in the simplified model is a transla-
tional distance, while the state ¢; of joint ¢ in the complexr model is a joint
angle. In the simplified model, we therefore refer to ¢, as a joint coordinate
instead of a joint angle.

The link positions are constrained by the prismatic joints according to

ti—tiy1+1=0, (6.6&)
n; — Nj+1 + ¢1 =0. (6.6b)
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These holonomic constraints may be expressed in matrix form for all links
as

Dt+le=0, (6.7a)
Dn+¢=0, (6.7b)
where D and ‘€ are defined in Section 6.1, t = [tl,...,tN]T eRN, n =

(n1,...,nn]" € RY, and ¢ = [¢y,...,6y_1] € R¥"L. The t-n frame
position of the CM of the snake robot can be written in terms of the link
positions as

1

pr = NeTt, (6.8a)
1

Pn =€ (6.8b)

where e is defined in Section 6.1. Combining (6.7) and (6.8) gives

Pl [ e [2) e

Similar to the approach in the complex model, we can use (2.10) to solve
(6.9) for the link positions as

t=pe—IDe, (6.10a)
n=p,e— Do, (6.10Db)

where D = DT (DDT)_1 € RVX(V=1) By differentiating (6.10) with
respect to time and inserting (6.4), the individual link velocities are given
as

t= (vt +pné) e, (6.11a)

n= (vn — pté) e— ﬁd) (6.11b)

6.3 The Ground Friction Model

Following the argumentation in Section 2.4.1, we assume that the snake
robot is influenced by anisotropic viscous ground friction forces, and we
assume that these forces act on the CM of each link. The ground friction
forces must be defined so that Property 4.2, Property 4.3, and Property 4.4
from Section 4.4 also apply to the simplifed model of the snake robot.
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Figure 6.4: The body angle of link ¢ is §; for a snake robot with revolute
joints. For a snake robot with prismatic joints, we can regard ¢, _; + ¢;
to be approximately proportional to the body angle with respect to the
forward direction.

Property 4.2 requires that the normal direction velocity of link 4, which
is given by n;, produces a friction force component in the tangential di-
rection. Furthermore, Property 4.4 states that the magnitude of this force
component is increased by increasing the link angle. In order to preserve
these properties, we assume that the magnitude of this tangential friction
force component is proportional to ¢;_; + ¢;, i.e. the relative distance be-
tween link 7 — 1 and link ¢ + 1. This assumption is illustrated in Fig. 6.4,
which shows that we can regard ¢;_; + ¢; to be approximately proportional
to the body angle with respect to the forward direction. Property 4.3 is pre-
served if the tangential friction force component produced by 7; is positive
when sgn (qbi_l + qﬁi) = sgn (n;) and negative otherwise.

We denote the tangential and normal direction friction force on link ¢
by fi; and f,;, respectively. The following friction model complies with
the above requirements:

fril —c1 co (i1 + &) [t
= ; . (6.12)
fri ¢ (¢i_1 + &) ! Milp—o
The viscous friction coefficient ¢; determines the magnitude of the friction
force components resisting the tangential and normal link motion, while ¢y
determines the magnitude of the tangential and normal friction force com-

ponents induced by the normal and tangential link velocities, respectively.
The subscript § = 0 after the link velocity means that the friction model
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disregards the link velocity components due to the angular velocity of the
snake robot, 0. This is a reasonable assumption since the dynamics of the
angular rotation of the snake robot will generally be much slower than the
body shape dynamics. This assumption also simplifies the friction model
significantly. The friction forces on all N links can now be expressed as

Fol —caln co diag (AT @)] [
[ :L] - [62 diag (AT¢) —c1ly ] [n] 9:0’ (6.13)

where f, € RY and f, € RY contain, respectively, the tangential and
normal direction friction forces on the links, Iy is the N x NN identity
matrix, A is defined in Section 6.1, and the operator diag(-) produces
a diagonal matrix with the elements of its argument along its diagonal.
Inserting (6.11) into (6.13) with = 0 gives

fi=—cave+ cydiag (AT¢) (vne — ﬁqb) ) (6.14a)
f,=—-cuv,e+ clﬁ(}b + covy diag (ATqb) e. (6.14Db)

6.4 The Dynamics of the Snake Robot

We now develop the equations that describe the accelerations of the snake
robot. From Fig. 6.3, it can be seen that the force balance for link ¢ is given
by

mt; = fri+ hei — b1, (6.15a)
mity = fni — i +ui-1, (6.15b)

where f;; and f,,; are the ground friction forces defined in (6.12), hy;
and h;;—1 are the joint constraint forces on link ¢ from link ¢ 4+ 1 and
link ¢ — 1, respectively, and u; and u;_1 are the actuator forces at joint 4
and joint ¢ — 1, respectively. The joint constraint forces, h;; and h;—1,
prevent relative motion between the links in the tangential direction, while
the actuator forces, u; and w;_1, produce relative motion between the links
in the normal direction. The force balance for all links can be written in
matrix form as

mt=f, + DThy, (6.16a)
mi=f, — DT u, (6.16b)
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where D is defined in Section 6.1, h; = [hm,...,ht,N_l]T e RN-1 and
u=[u,... 7uN,l]T € RV~ Premultiplying (6.16b) by %D gives

1 1
Di=—Df, 6 — —DD"u. (6.17)
m m

By differentiating (6.7b) twice with respect to time, it is easily seen that
D# = —¢. We can therefore write the body shape dynamics of the snake
robot as

. 1 1
¢=—-——Df, +—DD7u. (6.18)
m m

Inserting (6.14b) into (6.18) and using the easily verifiable relations De =
0, DD =1y_1, and D diag (AT¢) e=—ADT¢, we get

, . 1
b=-SLé+ 20,ADT¢ + —DD"w. (6.19)
m m m

The tangential and normal direction acceleration of the CM of the snake
robot, denoted by v¥; and ¥,,, respectively, are given as the sum of all tan-
gential and normal direction forces on the links divided by the mass of the
snake robot, Nm. This is written

1 1
Vt = m (e mt) = N7m8 ft7 (6208.)
. 1 . 1

Unp = Nim (eTm’n) == TmeTfn, (620b)

where we note that the joint constraint forces, h;, and the actuator forces,
u, are eliminated when the link accelerations are summed (i.e. e/ DT =
0). Inserting (6.14) into (6.20) and using the easily verifiable relations
el diag (ATqb) e=2e’¢p, D =0, and e’ diag (ATqb) D = ¢"AD, we
get

. C1 262 _T Co T A=
=—— — - —¢*'AD 21
Ut o + N € ¢ Nm(f’ P, (6.21a)
c 2c0 _
b = —— vy + N—;vteTgb. (6.21b)

As noted in Remark 6.2, a significant difference between the snake robot
with revolute joints in (2.46) and the snake robot with prismatic joints in the
simplified model concerns the absolute orientation of the robot. The snake
robot with revolute joints has no explicitly defined orientation since there
is an independent link angle associated with each link. The orientation of
the robot with prismatic joints, however, is explicitly defined in terms of
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the scalar angle 0, which is also the angle of all the links. This difference
must be taken into account when we model the angular acceleration, 6,
of the snake robot with prismatic joints. The model must comply with
Property 4.7 from Section 4.8, which basically requires that the direction
of the forward motion (i.e. the orientation #) changes when the average of
the joint coordinates, ﬁéTqb, is nonzero. A model that complies with
this property is
C4

N -1

0 = —c30 + viel . (6.22)

The rotation of the snake robot is opposed by a viscous friction torque
determined by the friction coefficient c¢3. In addition, the average of the
joint coordinates induces a torque on the robot which is scaled through the
coefficient ¢4 and also through the forward velocity v;. The induced torque
must be multiplied by v; since the snake robot otherwise would experience a
constant angular velocity when it is lying still with a nonzero average joint
coordinate. Even though the model of 0 is not based on first principles,
Property 4.7 suggests that the behaviour of this model will closely resemble
the behaviour of a snake robot with revolute joints when the coefficients c3
and ¢4 are properly chosen.

6.5 The Complete Simplified Model of the Snake
Robot

We now summarize the complete simplified model of the snake robot. Since
the robot has IV + 2 degrees of freedom, a state vector containing the gen-
eralized coordinates and velocities of the robot will have dimension 2N +4.
We choose the state vector of the system as

T
€r = |:¢T’ 07px7py7 ’l7,£7'l)9,'l)t7'l)n:| c R2N+47 (623)

where ¢ € RV~ are the joint coordinates, 6 € R is the absolute orientation,
(pz,py) € R? is the global frame position of the CM, vy = ¢ € RV-1 are
the joint velocities, vg = 0 € R is the angular velocity, and (v, v,) € R?
is the tangential and normal direction velocity of the snake robot. From
(6.2), (6.19), (6.21), and (6.22), we can write the complete model of the
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snake robot as

¢ = vy, (6.24a)
0 = vy, (6.24D)
Pz = Vg COS B — vy sin b, (6.24c¢)
Dy = V¢ sinf + vy, cos b, (6.24d)
by = —ci% + —futADT¢) + DDT (6.24e)
U9 = —C30g + NC vteT(ﬁ, (6.24f)
. c1 2¢o =T C2 T —
=—— ———¢ AD 6.24

U ot van @ Nm¢ Vg, (6.24g)
. c 2c9
Up = —Elvn N 2 vie p, (6.24h)

where u € RV1 are the actuator forces at the joints, A, D, D, and € are
defined in Section 6.1, and cq1, c2, c3, and ¢4 are positive scalar constants
characterizing the external forces acting on the snake robot.

Similar to the partial feedback linearization performed for the complex
model in Section 2.7, we will usually assume that the actuator forces of the
simplified model are set according to the linearizing control law

=m (DD") " (u+2p— 2u,AD70), (6.25)

where w = [uy,... 7gN71]T € RV~ is a new set of control inputs. This
control law transforms the joint dynamics (6.24e) into

’I'J¢ =u. (6.26)

6.6 Stabilizability Analysis of the Simplified Model

In this section, we show that the simplified model maintains the stabi-
lizability properties of snake robot locomotion that were derived in Sec-
tion 4.2. In particular, we investigate the properties of an asymptotically
stabilizing control law for the simplified model to any equilibrium point

T
z° [(d’e)T 987px7py7lu¢ 0,v9 =0,v; = 0,v,, = 0} . As explained in
Section 4.2, a well-known result presented in Brockett (1983) states that a

necessary condition for the existence of a time-invariant (i.e. not explicitly
dependent on time) continuous state feedback law, u = u (), that makes
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x¢ asymptotically stable, is that the image of the mapping (z, u) — & con-
tains some neighbourhood of & = 0. A result presented in Coron and Rosier
(1994) states that a control system that can be asymptotically stabilized
(in the Filippov sense) by a time-invariant discontinuous state feedback
law can be asymptotically stabilized by a time-varying continuous state
feedback law. If, moreover, the control system is affine (i.e. linear with
respect to the control input), then it can be asymptotically stabilized by a
time-invariant continuous state feedback law. We now employ these results
to prove the following fundamental result:

Theorem 6.1 An asymptotically stabilizing feedback control law for a pla-
nar snake robot described by (6.24) to any equilibrium point must be time-
varying, i.e. of the form u = wu (x,t).

Proof. The result in Brockett (1983) states that the mapping (x, u) — &
must map an arbitrary neighbourhood of ¢ onto a neighbourhood of & = 0.
For this to be true, points of the form

. T ; . . T . . . T
&= [qb —0,0=0,p,=0,p, =0, 85 =0,39=0,i,—¢ # 0,5,=0|  (6.27)

must be contained in this mapping for some arbitrary € # 0 because points
of this form are contained in every neighbourhood of & = 0. However,
these points do not exist for the model (6.24) because v = 0 # ¢ when all
the other derivatives of the state vector are zero. Hence, the snake robot
cannot be asymptotically stabilized to x® by a time-invariant continuous
state feedback law. Moreover, since the model is affine and cannot be as-
ymptotically stabilized by a time-invariant continuous state feedback law,
the result in Coron and Rosier (1994) proves that the system can neither be
asymptotically stabilized by a time-invariant discontinuous state feedback
law. We can therefore conclude that an asymptotically stabilizing control
law for the snake robot to any equilibrium point must be time-varying, i.e.
of the form u = u (x,t). =

The stabilizability properties of the simplified model stated in Theo-
rem 6.1 are similar to the stabilizability properties of the complex model
stated in Theorem 4.3, which supports the conjecture that the simplified
model captures the essential part of the dynamics of planar snake robot
locomotion.
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6.7 Controllability Analysis of the Simplified Model

In this section, we show that the simplified model maintains the controllabil-
ity properties of snake robot locomotion that were derived in Section 4.3.2.
We assume that the joint dynamics has been linearized by the control law
(6.25) so that 94 = u. This enables us to rewrite the model of the snake
robot (6.24) in the standard form of a control affine system as

N—-1
&=f(z)+ ) g4, (6.28)
j=1

where f (x) contains all the terms from (6.24) with @ = O(y_1)x1, W; is
the jth element of the control input vector @ € R¥~!, and

O(N#Q)xl
g=1 e |, (6.29)
03><1

where e; denotes the jth standard basis vector in RV=! (the jth column
of Iy—1). It can easily be shown that the linearization of the model (6.28)
about an equilibrium point x€ is not controllable since the Kalman rank
condition is not satisfied (see Section 4.1). To study the controllability of
the model in (6.28), we must therefore consider nonlinear controllability
concepts.

In the following, we investigate the controllability of the simplified
model (6.28) in terms of strong accessibility and small-time local controlla-
bility (STLC) (see Section 4.1) by following the same approach as for the
complex model in Section 4.3.2. We assume that the snake robot consists
of N = 4 links interconnected by N —1 = 3 joints. The model of this robot
has 2N + 4 = 12 states. We argue that the following controllability results
will also be valid for a snake robot with more links. In particular, a snake
robot with IV > 4 links can behave as a snake robot with N = 4 links by
fixing (N — 4) joint coordinates at zero and allowing the remaining joints
to move. By calculating Lie brackets of the system vector fields in (6.28),
we can construct the following accessibility algebra of the system evaluated
at an equilibrium point x¢:

A(zf) =[A1,...,A] . € RI2X15 6.30
T

where
Ay =gy, A2 = gy, A3 = g3,
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Ay = [fvgl]7A5: [fagQ]7A6:[fag3]7
A7 = [fv[fvgl]]vAS = [f?[fa[fagl]]]a
Ag = [fv[f?[f?[fvgl]“]7

A = [g1,[f,[f, goll]

A =g, [, [f,[f, 92]]

App = [917 [fv [f? [fv [f792“]]]7

Az = [glv [.f> [f? [fv [.f> [fﬂz]]]m’

Ay = [917 [f? [f? [.fv [f? [f7g3]]]”]7

A5 = [927 [f> [f7 [fv [f> [fvg?)]]]”] :

The accessibility algebra satisfies the following property:

Property 6.1 The accessibility algebra A (z€) in (6.30) has full rank
(rank (A (x€)) = 12) as long as the sum of the joint coordinates is nonzero,
i.e. as long as €' ¢ # 0.

We do not present the expressions contained in each column of A (z€)
since the expressions are rather excessive. However, Property 6.1 can be
shown to hold by employing a computer software for symbolic mathematics,
such as Matlab Symbolic Toolbox. Note that we have included three more
columns than rows in A (z¢) because different pairs of columns become
linearly independent at certain configurations. Including three redundant
columns ensures that A (z¢) does not drop rank at these configurations.
We are now ready to state the following result:

Theorem 6.2 A planar snake robot described by (6.24) with N = 4 links is
locally strongly accessible from any equilibrium point ¢ satisfying €’ ¢ # 0.

Proof. By Theorem 4.1, the system is locally strongly accessible from x¢
if A(z¢) in (6.30) has full rank (i.e. spans a 12-dimensional space) and
does not contain the drift vector field f by itself (i.e. unbracketed). By
Property 6.1, the snake robot satisfies these conditions as long as €’ ¢ # 0.
This completes the proof. m

We now show that the snake robot does not satisfy sufficient conditions
for small-time local controllability (STLC). As described in Section 4.1,
STLC requires that we classify the Lie brackets of the system vector fields
in terms of good and bad brackets. A Lie bracket is said to be bad if it
contains the drift vector field f an odd number of times and each control
vector field g; an even number of times (0 is even). This classification is
motivated by the fact that a bad bracket may have directional constraints.
E.g. the drift vector f is bad because it only allows motion in its positive
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direction. According to Theorem 4.2, the snake robot is STLC from an
equilibrium point x¢ if it is accessible from x¢ and all bad brackets of
the system can be neutralized, i.e. written as linear combinations of good
brackets of lower 0-degree or lower [-degree. The model of the snake robot
satisfies the following property:

Property 6.2 The brackets g;, [f.9;], [9;.[Fa1)]. [9;.1F.[F> a]l]
(1F.9,0. - 9u]). [ 1] (- 171 g )] o [T [Fag)] 0,
where j, k € {1,2,3} and j # k, are all good brackets, but does not span
the entire 12-dimensional state space.

We do not present the expressions contained in the brackets in Prop-
erty 6.2 due to their excessive nature. However, the property can be shown
to hold by employing a computer software for symbolic mathematics, such
as Matlab Symbolic Toolbox. Property 6.2 enables us to state the following
result:

Theorem 6.3 At any equilibrium point ¢, a planar snake robot described
by (6.24) with N = 4 links does not satisfy the sufficient conditions for
small-time local controllability (STLC) stated in Theorem 4.2.

Proof. The bracket [gj, [f, [f, [f,gj]]]] of the system, where j € {1, 2, 3},
is a bad bracket. The only good brackets of lower 0-degree or lower [-degree
that can neutralize this bad bracket are of the form g, [f, gj], [gj, If, gk]],
g5, [F 1 gull]s [[f 93] 155 ill, £ LF 5 g5l)s 17 UF [ 9]l -
ol [fs gj]] -], where j,k € {1,2,3} and j # k. By Property 6.2, these
brackets do not span the entire 12-dimensional state space. We therefore
cannot express the bad bracket as a linear combination of good brackets of
lower #-degree or lower [-degree. Since there are bad brackets of the system
that cannot be neutralized, the system does not satisfy the conditions for
STLC stated in Theorem 4.2. =

The result in Theorem 6.3 is similar to the result concerning STLC
of the complex model in Theorem 4.6. Regarding local accessibility of
the complex model, Theorem 4.5 and Property 4.1 in Section 4.3.2 state
that the accessibility algebra of the complex model has full rank except
for configurations where all joint coordinates are equal (¢; = ¢ = ... =
®n_1), which will be the case when the snake robot is lying straight or
forming an arc. The condition /¢ # 0 stated in Theorem 6.2 states
that a configuration is singular when the sum of the relative linear link
displacements is zero. Since the sum of the relative linear link displacements
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is zero for both straight and arc shaped snake robots with revolute joints,
the singular configurations of the complex model revealed by Property 4.1
are actually contained in the singular configurations stated in Theorem 6.2.
This similarity supports the conjecture that the simplified model captures
the essential part of the dynamics of planar snake locomotion. Note that
there are singular configurations of the simplified model that do not easily
translate to the complex model. A wave shape where the sum of the relative
linear link displacements is zero is a singular configuration in the simplified
model, but is not singular to a snake robot with revolute joints. These
additional singular configurations of the simplified model arise since the
sum of the joint coordinates is employed to model the rotation of the robot
in accordance with Property 4.7 in Section 4.8. Nonetheless, the most
important conclusion to be drawn from Theorem 6.2 is that the snake robot
is locally strongly accessible from almost any equilibrium point, except for
certain singular configurations. This is in accordance with Theorem 4.5.

6.8 Simulation Study: Comparison between the
Complex and the Simplified Model

This section presents simulation results in order to compare the complex
snake robot model given by (2.46) and the simplified model given by (6.24).

Remark 6.4 No definite mapping exists between the friction coefficients
¢t and ¢, of the complex model and the coefficients c¢1 - c4 of the simplified
model. However, knowing this mapping is not critical to the intended use of
the simplified model for controller design purposes as long as we know that
the qualitative and the approximate quantitative behaviour of the complex
model is contained within the simplified model for some choice of friction
coefficients. The purpose of this section is to illustrate this qualitative and
quantitative similarity between the two models.

6.8.1 Simulation Parameters

Both models were implemented and simulated in Matlab R2008b on a laptop
running Windows XP. The dynamics was calculated using the ode45 solver
in Matlab with a relative and absolute error tolerance of 1075,

We considered a snake robot with N = 10 links of length [ = 0.14 m and
mass m = 1 kg. The links of the snake robot with revolute joints had mo-
ment of inertia J = 0.0016 kgm?. The ground friction in the complex model
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was defined by the viscous friction forces in (2.24) with friction coefficients
¢t = 0.5 and ¢, = 3. The friction coefficients of the simplified model were
c1 = 0.45, co = 3, c3 = 0.5, and ¢4 = 20. The linearized control input w of
both models were set according to the exponentially stable joint controller
defined in (4.34) with controller gains set to k, = 20 and kg = 5. The joint
reference coordinates in ¢,.; were calculated according to the motion pat-
tern lateral undulation defined in (4.32), and we calculated q'bref and ébref
according to (4.36). The gait pattern parameters in the complex model
were a = 30°, w = 70°/s, and § = 40°, while the parameters in the simpli-
fied model were a@ = 0.1 m, w = 70°/s, and 6 = 40°. The correspondance
between o = 30° in the complex model and o« = 0.1 m in the simplified
model was found from Fig. 4.4 in Section 4.9. The joint offset coordinate
was set to ¢, = #a in the time interval ¢ € [20,30] and ¢, = —f« in the
time interval ¢ € [50,60]. The offset angle was set to ¢, = 0 outside these
two time intervals. The intial state of both models were set to the origin.

6.8.2 Simulation Results

The simulated motion of the CM of the snake robot with the complex and
the simplified model is shown in Fig. 6.5(a) and Fig. 6.5(b), respectively.
In both figures, the configuration of the snake robot is shown at ¢ = 10
s, t =40 s, and t = 70 s, respectively. The simulated orientation of the
snake robot with both models is shown in Fig. 6.6(a). The orientation in
the complex model was calculated according to (2.2), while the orientation
in the simplified model was given by 6. Fig. 6.6(b) and (c) show the CM
velocity of the snake robot in the global x and y direction, respectively.

The simulation results indicate that the qualitative behaviour of the
snake robot from the simplified model is similar to the behaviour from
the complex model. With the chosen numerical values of the friction coeffi-
cients, we also achieved a good quantitative similarity between the two mod-
els. The plots corresponding to the complex model contain high-frequency
components that are not visible in the plots from the simplified model. This
indicates that there are nonlinear components of the complex model that
are not included in the simplified model. However, the similar behaviour of
the two models indicates that the simplified model contains the parts of the
complex model that determine the overall motion of the snake robot. This
suggests that we may use the simplified model to develop general analysis
and control design results that will also apply to the complex model.
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(a) The CM position from the complex model.

b, m]
(b) The CM position from the simplified model.

Figure 6.5: The simulated path of the CM of the snake robot.
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(c) The CM velocity in the global y direction, p,.

Figure 6.6: Simulation results that compare the complex and the simplified
model of the snake robot.



6.9 Chapter Summary 129

6.9 Chapter Summary
This chapter is summarized as follows:

e We have presented a simplified model of a planar snake robot in (6.24),
which is intended for control design and stability analysis purposes.

e We have provided support of the claim that the simplified model
captures the essential part of the dynamics of planar snake robot
locomotion. In particular, we have shown that:

— The stabilizability properties of the simplified model (stated in
Theorem 6.1) are similar to the stabilizability properties of the
complex model (stated in Theorem 4.3).

— The simplified model is locally strongly accessible from almost
any equilibrium point (see Theorem 6.2), which is also the case
for the complex model (see Theorem 4.5).

— The simplified model does not satisfy sufficient conditions for
STLC (see Theorem 6.3), which is also the case for the complex
model (see Theorem 4.6).

— The simulated behaviour of the snake robot from the simplified
model is qualitatively similar to the behaviour from the complex
model, and also quantitatively similar with a proper choice of
friction coeflicients.
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Chapter 7

Analysis of Snake Robot
Locomotion based on
Averaging Theory

In the previous chapter, we extended our toolbox with a new and more
manageable model of snake robot locomotion. With this new model at our
disposal, an intriguing question is whether we can use the model to derive
new properties of snake robot dynamics. In this chapter, we will show that
this indeed is the case.

The simplified model maps the periodic motion of the joints into the
resulting propulsion of the snake robot. Since the joint motion is periodic,
there must be some average effect of the joint motion that propels the
robot. In this chapter, we will use averaging theory (see Sanders et al.,
2007) to study this average effect of the joint motion during the gait pattern
lateral undulation. The analysis will reveal new properties of snake robot
locomotion that are both fundamental and useful from a motion planning
perspective.

Contributions of this Chapter: The first contribution of this chapter
is an averaged model of the velocity dynamics of a snake robot dur-
ing lateral undulation. As a second contribution, we show that the
average velocity of a snake robot during lateral undulation converges
exponentially fast to a steady state velocity, and an analytical ex-
pression for calculating the steady state velocity is presented as a
function of the gait pattern parameters. To our best knowledge, this
is the first formal proof that a wheel-less snake robot with anisotropic
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ground friction properties achieves forward propulsion when it moves
by lateral undulation. The third contribution is a set of fundamental
relationships between the gait pattern parameters of lateral undula-
tion and the resulting forward velocity of a planar snake robot. In
particular, the derived properties state that the average forward ve-
locity of a snake robot 1) is proportional to the squared amplitude of
the sinusoidal motion of each joint, 2) is proportional to the angular
frequency of the sinusoidal motion of each joint, 3) is proportional to
a particular function of the constant phase shift between the joints,
and 4) is maximized by the phase shift between the joints that also
maximizes the particular phase shift function. To our best knowl-
edge, these fundamental properties of snake locomotion have never
before been derived analytically. Each of the contributions described
above are accompanied by simulation results that support the theo-
retical findings. Additionally, we provide experimental results with
the snake robot Wheeko, which was presented in Chapter 3, in order
to validate the derived relationships between the gait pattern para-
meters of lateral undulation and the resulting forward velocity of the
robot.

Organization of this Chapter: Section 7.1 gives a brief introduction to
averaging theory. The model of the velocity dynamics of the snake
robot is presented in Section 7.2, and the averaged form of this model
is developed in Section 7.3. Section 7.4 studies the steady state be-
haviour of the averaged velocity dynamics, while the relationships
between the gait pattern parameters of lateral undulation and the
resulting forward velocity of a planar snake robot are derived in Sec-
tion 7.5. Simulation results are provided in Sections 7.6 and 7.7 in
order to support the validity of the theoretical findings, while Sec-
tion 7.8 presents experimental results in order to investigate the va-
lidity of the derived properties of the velocity dynamics. Finally, the
chapter is summarized in Section 7.9.

Publications: The material in this chapter is based on the journal paper
Liljebéick et al. (2011d) and the conference papers Liljebéick et al.
(20101), Liljebéck et al. (2010f), and Liljebéick et al. (2010d).
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7.1 Introduction to Averaging Theory
Consider a system of the form
T=cf (tv (B), (71)

where € is a small positive parameter characterizing the magnitude of the
perturbations of the system, x € R"™, and f (¢, x) is T-periodic, i.e. f(t +
T,x) = f(t,z). A system that, in ‘average’, behaves similarly to the system
in (7.1) is given by

T = Efav(a:)’ (72)

where

fav(w) =

N[~

/f (1, x)dT. (7.3)
0

The above integral is calculated by treating the elements of the state vector
x as constants since the underlying assumption is that the overall change
of x is slow compared to the T-periodic fluctuations of . More specificly,
the smallness requirement on € ensures that x varies slowly with ¢ relative
to the periodic excitation of the system. The system response will thereby
be determined predominantly by the average of the excitation. The follow-
ing theorem follows directly from a more general theorem stated in Khalil
(2002) (Theorem 10.4):

Theorem 7.1 Let f(t,x) and its partial derivatives with respect to x be
continuous and bounded for (t,x) € [0,00) x R™. Suppose f is T-periodic
in t for some T > 0 and ¢ is a positive parameter. Let x (t,e) and
Za(t,€) denote the solutions of (7.1) and (7.2), respectively. If the av-
erage system (7.2) has a globally exponentially stable equilibrium point
and ||z (0,€) — ©4(0,€)|| < koe for some ko > 0, then there exist k > 0 and
e* > 0 such that for all 0 < e < &,

|z (t,e) — Tay(t,e)|| < ke for allt € ]0,00). (7.4)

This theorem basically says that, for sufficiently small ¢, the solutions
of the original system (7.1) and the average system (7.2) remain close (of
order ¢) for all time if the initial conditions of the systems are close and the
average system is globally exponentially stable. This implies that the original
system will remain close to a trajectory which converges exponentially to
the equilibrium point.
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7.2 The Velocity Dynamics during Lateral Undu-
lation

We will now study the velocity dynamics of the snake robot during the
gait pattern lateral undulation. As defined in (4.32), lateral undulation is
achieved by controlling joint ¢ € {1,..., N — 1} according to

Gjret = asin (wt + (1 — 1) 6) + o, (7.5)

where a and w are the amplitude and frequency, respectively, of the sinu-
soidal joint motion, § determines the phase shift between the joints, and ¢,
is a joint offset. In this chapter, we assume that ¢, is constant so that

q'bmef = awcos (wt+ (1 —1)9). (7.6)

It was shown in Section 4.7.2 that we can achieve exponentially stable
tracking of the joint reference coordinates (7.5) with the control law (4.34).
In the following, we will therefore assume that the joint coordinates ¢ and
the joint velocities vy = ¢ are given by (7.5) and (7.6), respectively.

We define the velocity dynamics of the simplified model in terms of the
dynamics of the forward direction velocity v¢, the normal direction velocity
v, and the angular velocity vg of the snake robot. From (6.24f), (6.24g),
and (6.24h), the velocity dynamics is thereby given as

_T C2 T Ay
- 22 ~ 2 4TAD .
N v + N € [0) quf) Vg, (7.7a)
2
Uy, = —ﬂvn + NﬁvtETqﬁ, (7.7b)
. C. _
Vg = —c3vg + N i 1vteT¢. (7.7¢)

In order to arrive at a model of the velocity dynamics during lateral undu-
lation which is in the standard averaging form (7.1), we assume that the
amplitude « and frequency w of the joint motion are always set according

to the rule
kaw

w=
a?’

(7.8)

where k., > 0 is a controller parameter. Note that a and w are still
independent parameters since any choice of a and w can be obtained by
choosing ku, = o’w. Using (7.5), (7.6), and (7.8), and introducing the
velocity state vector v = [vt,vn,vg]T € R3, the velocity dynamics of the



7.3 The Averaged Velocity Dynamics 135

snake robot during lateral undulation can be written as

o
V= |Up :f(tv ’U), (79)
Vg
where
CLyy, o 22 1, fl(wt) 2 fo(wt)
f(t,v)= Lop + N2 vtfl(wt) , (7.10)
—C3U9—|- N v fi(wt)
N-1
filwt)=(N—-1)¢,+ Zasm (wt+ (1 —1)0), (7.11)
=1
N—1N—
fa(wt) = Z; ]g [ ow  aijcos (wt + (j — 1) 0) (7.12)

+hawaij sin (wt + (i — 1) §) cos (wt + (5 — 1) 0)],

and a;; denotes element 4 of the matrix AD € RN=DX(N=1) (the matrices
A and D were defined in Section 6.1). To transform the model (7.9) into
the standard form of averaging (7.1), we change the time scale from ¢ to

7 = wt and define € = 1/w. Since % = ad'r’ the model (7.9) can now be
written as d

CTZ = ef (1, 0), (7.13)
where

Ut vanfl( ) — (1)
f(rv)= rop + vatfl( ) : (7.14)
—c3vg + §Agvefi(T)

This model is in the standard form defined in (7.1). Note that when we
require € to be small, we equivalently require that the frequency of the joint
motion w = 1/e is large.

7.3 The Averaged Velocity Dynamics during Lat-
eral Undulation

The averaged model of (7.13) is calculated in accordance with (7.2) as

dT /f 7, v)d (7.15)
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It can be verified that

2
1
or [ DT =V =1)4,, (7.16)
T
0
2
1 1
L / Jo(r)dr = — kauks, (7.17)
2 2
0
where the constant ks € R is defined as
N—1N-1
ks= > > agsin((j—1i)d). (7.18)
i=1 j=1

The averaged model can therefore be written as
dv

— =c(Av+b), (7.19)
dr
where
-5 Mmiad, 0
A = A (¢o) = 2(1]\\/(;11) 02¢0 —% 0 9 (720)
c4¢o 0 —C3
ﬁkawké
b=>b(a,w,d) = 0 (7.21)
0

By changing time scale back to ¢ using that % = €%, the averaged model
is given by

v = Av + b. (7.22)
We see that the averaged model of the velocity dynamics is a linear system
characterized by the parameters of the joint reference coordinates, i.e. by
o, w, d, and @,.

Remark 7.1 The term average velocity will hereafter be used to denote the
velocity described by the averaged model (7.22) and should not be confused
with the average velocity over time that we normally would define as

1
n / v(T)dr. (7.23)

In other words, the average velocity described by the averaged model (7.22)
is the velocity that changes according to the average changes of the original
model (7.9).



7.4 The Steady State Behaviour of the Velocity Dynamics 137

7.4 The Steady State Behaviour of the Velocity
Dynamics during Lateral Undulation

In order to determine the stability properties of the averaged model (7.22),
we remove the constant offset term b with the coordinate transformation
z = v+ A~1b. This gives

t=v=A(z—A'b) + b= Az (7.24)

By employing a computer software for symbolic mathematics, such as Mat-
lab Symbolic Toolbox, the eigenvalues of A are easily calculated as

c 2(N-1)
. Nm C2¢o

eig(A) = | —a 4 20016 | (7.25)

The equilibrium point z = 0 is globally exponentially stable if all eigenvalues
of A are negative (see Khalil, 2002), which is easily seen to be the case if

N C1

(7.26)
This is a limit on the amplitude of the joint coordinate offset ¢,, and is a
function of the friction coefficients ¢; and co. It is not surprising that the
model of the snake robot (6.24) can become unstable since the approach
of modelling the link motion as translational displacements must naturally
break down at some point. The instability issue in (7.26) is not relevant
to a snake robot with revolute joints since the normal direction distance
between the links of this mechanism will be physically constrained by the
revolute joints.

Assuming that we choose ¢, to satisfy the limit (7.26), then z will con-
verge exponentially to zero, which means that v will converge exponentially
to —A~1'b, which means that the average velocity will converge exponen-
tially to the steady state velocity

v = |vi| = A1, (7.27)
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which is given analytically by

Nclcg
0F = kowk , 7.28a
¢ °2 (N2c2 — (4N2? — 8N + 4) 2¢?) (7.282)
N—-1)c3
vl = kawks—s— Do ( )% — (7.28b)
N2¢i — (AN?2 — 8N + 4) 3¢5
N
v = kawk PoNercacs (7.28¢)

*2cs (N2 — (AN? — 8N + 4) 262)

We can see that the resulting steady state velocity of the snake robot is
proportional to the controller parameters ko, = o?w and ks, and that
the velocity also depends on nonlinear terms involving the joint coordinate
offset ¢,,.

Since the averaged model of the velocity dynamics given by (7.22) is
globally exponentially stable (assuming that (7.26) is satisfied), it follows
from Theorem 7.1 that, for sufficiently small ¢ (i.e. for sufficiently large
w), the average velocity given by (7.22) will approximate the exact velocity
(7.9) for all time, and that the error of this approximation is of order ¢, i.e.
bounded in accordance with (7.4). In this thesis, we will not investigate the
lower limit of w corresponding to some maximum error bound. However,
the simulation results presented in Section 7.6 show that the exact and the
average velocity agree well when w is set to values that are commonly used
for snake robot locomotion.

We now summarize the above conclusions.

Theorem 7.2 Consider a planar snake robot described by (6.24). Suppose
the joint coordinates ¢ are controlled in exact accordance with (7.5) and
(7.6), and that the joint coordinate offset ¢, satisfies (7.26). Then there
exist k > 0 and w* > 0 such that for all w > w*,

o(t) = var(®)]| < & for all t € [0,00), (7.29)

where v(t) denotes the exact velocity of the snake robot given by (7.9) and
va(t) denotes the average velocity given by (7.22). Furthermore, the aver-
age velocity vq,(t) of the snake robot will converge exponentially fast to the
steady state velocity v* given by (7.27).
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7.5 Relationships between the Gait Parameters
and the Forward Velocity during Lateral Un-
dulation

Theorem 7.2 is a powerful result. First of all, it proves mathematically a
hypothesis on snake robot locomotion developed in the research community
through empirical studies of biological snakes and simulation results, but
for which there has, to our best knowledge, not been presented any proof
before. In particular, it proves that lateral undulation enables a wheel-less
snake robot with anisotropic ground friction properties to achieve forward
propulsion. Secondly, the result gives an analytical expression for the steady
state velocity as a function of the controller parameters o, w, d, and ¢,, i.e.
the amplitude, frequency, phase shift and offset of the joint motion during
lateral undulation. This information is relevant for motion planning pur-
poses. We can for example immediately see that the steady state velocity
of the snake robot when it conducts lateral undulation with zero joint offset
(¢, = 0) is given by vi = 5R2-kawks, v, = 0, and vy = 0. A final powerful
feature of Theorem 7.2 is that it applies to snake robots with an arbitrary
number of links N.

In the following, we will use Theorem 7.2 to deduce some fundamental
relationships between the gait pattern parameters and the forward velocity
of the snake robot. The forward velocity is seen from (7.28a) to be propor-
tional to the controller parameter ko, = a’w, i.e. the forward velocity is
proportional to the square of the amplitude of the joint motion, &%, and also
proportional to the angular frequency, w, of the joint motion. This infor-
mation is useful from a motion planning perspective since it tells us that an
increase/decrease of the forward velocity by a certain factor can be achieved
by increasing/decreasing w by the same factor or by increasing/decreasing
« by the square root of this factor.

It is also seen from (7.28a) that the forward velocity of the snake robot
is proportional to the function ks defined in (7.18). Since ks is a function
of the phase shift § between the joints, this means that the phase shift §
that will maximize the forward velocity can be determined analytically as
the § that maximizes k5. This is particularly interesting since we are now
able to analytically determine the optimal phase shift § that maximizes the
forward velocity of a planar snake robot with an arbitrary number of links
N. Fig. 7.1 presents a plot of the maximum value of ks as a function of
the number of links N. For each N, the maximum value of ks was found
using the mathematical computer software Matlab. The optimal phase shift
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Figure 7.1: The phase shift § that maximizes the forward velocity of a
planar snake robot as a function of the number of links V.

is e.g. & = 90° for N = 3 links, § = 50.4° for N = 5 links, § = 24.1° for
N =10 links, and 6 = 11.5° for N = 20 links.

The above results can be summarized as follows:

Theorem 7.3 Consider a planar snake robot with N links modelled by
(6.24) and controlled in exact accordance with (7.5) and (7.6). The average
forward velocity of the snake robot given by (7.22) will converge exponen-
tially to a value which is proportional to:

- the squared amplitude of the sinusoidal joint motion, o?.
- the angular frequency of the sinusoidal joint motion, w.

- the function of the constant phase shift, §, between the joints given by

N—-1IN-1

ks = > > aisin((j—14)d), (7.30)

i=1 j=1

where a;j denotes element ij of the matriv AD. Moreover, for a given o
and w, the phase shift, §, that maximizes the average forward velocity is

given by the § that maximizes k.
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7.6 Simulation Study: Comparison between the
Exact and the Averaged Velocity Dynamics

This section presents simulation results in order to investigate the validity
of Theorem 7.2, i.e. to validate the agreement between the exact model of
the velocity dynamics (7.9) and the averaged model (7.22).

7.6.1 Simulation Parameters

The exact model of the snake robot was given by (6.24) under the assump-
tion that ¢ was controlled in exact accordance with (7.5). The averaged
model of the snake robot was given by (7.22). Both models were imple-
mented and simulated in Matlab R2008b on a laptop running Windows
XP. The dynamics was calculated using the ode45 solver in Matlab with a
relative and absolute error tolerance of 1075,

We considered a snake robot with N = 10 links of length [ = 0.14 m and
mass m = 1 kg. The ground friction coefficients were ¢; = 0.45, co = 3,
cg3 = 0.5, and ¢4 = 20, and the intial state of both models were set to
the origin. The values of the gait pattern parameters «, w, J, and ¢, are
presented with each simulation result below.

7.6.2 Simulation Results

The motion of the snake robot during lateral undulation was first simulated
with the gait parameters a = 0.1 m, w = 70°/s, § = 40°, and ¢, = 0 m.
Theorem 7.2 then states that the average velocity of the snake robot will
converge exponentially fast to the steady state velocity vj = m@—ilkawk(; R
0.10 m/s, vy = 0 m/s, and v; = 0°/s. This is in agreement with the
simulation result shown in Fig. 7.2. The top left plot illustrates the CM
position of the snake robot from the exact model together with the body
shape at ¢t = 1 s and t = 30 s, respectively. The other three plots show
the exact (blue) and the average (red) velocity of the snake robot. There is
almost an exact overlap between the plots from the exact and the averaged
model. This suggests that w = 70°/s is well above the (unknown) value of
w* described in Theorem 7.2.

In the next simulation, the gait parameters were o = 0.1 m, w = 70°/s,
d = 40°, and ¢, = /8 m. The joint coordinates were, in other words,
offseted by 1/8 of the link length I. In accordance with Theorem 7.2, the
average velocity of the snake robot should then converge exponentially fast
to vf = 0.11 m/s, v} ~ 0.022 m/s, and v; ~ 4.23°/s. This agrees very
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Figure 7.2: Lateral undulation along a straight line with the gait parameters
a=0.1m,w="70°s,§=40° and ¢, = 0 m. Both the exact (blue) and
the average (red) velocities are plotted.

well with the simulation result shown in Fig. 7.3, which also shows a close
overlap between the velocity plots from the exact (blue) and the averaged
(red) model.

In the final simulation, the gait parameters were set to a = 0.1 m,
w=30°/s,d =40°, and ¢, = —1/4 m. The joint coordinates were, in other
words, offseted by 1/4 of the link length [. In addition, we reduced the
frequency of the sinusoidal motion from w = 70°/s to w = 30°/s to see how
this affected the estimate of the average velocity. From Theorem 7.2, the
average velocity should converge to v; ~ 0.052 m/s, v} ~ —0.022 m/s, and
vp ~ —4.20°/s. This agrees very well with the simulation result shown in
Fig. 7.4. The figure shows that there is still a good agreement between the
velocities from the exact and the averaged model even though we reduced
w considerably.
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Figure 7.3: Counterclockwise turning during lateral undulation with the
gait parameters « = 0.1 m, w = 70°/s, § = 40°, and ¢, = [/8 m. Both the
exact (blue) and the average (red) velocities are plotted.
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Figure 7.4: Clockwise turning during lateral undulation with the gait pa-
rameters @ = 0.1 m, w = 30°/s, 6 = 40°, and ¢, = —{/4 m. Both the exact
(blue) and the average (red) velocities are plotted.
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7.7 Simulation Study: Investigation of the Rela-
tionships between Gait Parameters and For-
ward Velocity

This section presents simulation results in order to investigate the validity
of Theorem 7.3, i.e. the validity of the relationships between the gait pattern
parameters of lateral undulation and the resulting forward velocity of the
snake robot. In addition to presenting simulation results from the simplified
model (6.24), this section also shows that the relationships in Theorem 7.3
apply to the velocity from the complex model given by (2.46).

Remark 7.2 The joint coordinates of the simplified model (linear link dis-
placements) are different from the joint coordinates of the complex model
(joint angles). However, it still makes sense to investigate the validity of
Theorem 7.3 for a snake robot with revolute joints since, as implied by Prop-
erty 4.8, the rotational link motion is what produces the linear displacements
captured by the simplified model. Note also that there is an approrimately
linear relationship between the amplitude of the angular joint motion and
the corresponding amplitude of the transversal link displacments. The rela-
tionship stated in Theorem 7.8 between the forward velocity and the squared
amplitude of the sinusoidal joint motion, ?, can therefore be expected to
hold also when o denotes the amplitude of the angular joint motion of a
snake robot with revolute joints.

7.7.1 Simulation Parameters

Both the complex model (2.46) and the simplified model (6.24) were im-
plemented and simulated in Matlab R2008b on a laptop running Windows
XP. The dynamics was calculated using the ode45 solver in Matlab with a
relative and absolute error tolerance of 1072 and 107% in the complex and
the simplified model, respectively.

We considered snake robots with N =3, N =5, N =10, and N = 20
links of length [ = 0.14 m, mass m = 1 kg, and moment of inertia J =
0.0016 kgm?. For the complex model, both wviscous and Coulomb ground
friction were considered. The friction coefficients of the viscous friction
model defined in (2.24) were ¢; = 0.5 and ¢, = 3, while the friction coef-
ficients of the Coulomb friction model defined in (2.19) were pu, = 0.1 and
iy, = 0.4. The friction coeflicients of the simplified model were ¢; = 1,
ca = 3, c3 = 3, and ¢4 = 10. Note that the friction coefficients were more
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or less arbitrarily chosen, so we did not seek to achieve agreement between
the simulated velocities from the two models.

The linearized control input w of both models were set according to
the exponentially stable joint controller defined in (4.34) with controller
gains k, = 20 and kg = 5. The joint reference coordinates were calculated
according to the motion pattern lateral undulation defined in (7.5) with
zero joint angle offset (¢, = 0), and the values of the controller parameters
«, w, and § are presented with each simulation result below. The intial
state of both models were set to the origin.

The simulation results below present the forward speed of the snake
robot, denoted by @, for different sets of controller parameters. This speed
was calculated at the end of each simulation run as the linear distance
travelled by the CM of the snake robot divided by the simulation time,
which was chosen to be g, = 10 s. The forward speed was, in other
words, calculated as

V(s (10) =z (0))? + (p, (10) — py (0))?
10 '

T =

(7.31)

7.7.2 Simulation Results
Relationship between the Forward Velocity and «

Theorem 7.3 states that the average forward velocity of a planar snake ro-
bot is proportional to the squared amplitude of the sinusoidal joint motion,
a?. We investigated the validity of this result by simulating the snake ro-
bot with different values of « and calculating the resulting average forward
velocity according to (7.31). The simulation results from the simplified
model are shown in Fig. 7.5(a), while the simulation results from the com-
plex model with viscous and Coulomb ground friction, respectively, are
shown in Fig. 7.5(b). The number of links N and the corresponding values
of w and ¢ are shown at the top of each plot. In the complex model, the
range of a values is shorter for large N compared to for small N since a
large angle amplitude would cause a ‘collision’ between the head and the
tail of the snake when N is large. The plots clearly show an exponential
increase in the forward speed v as the amplitude « increases. This is in
accordance with Theorem 7.3.

Note that the amplitude of the joint motion cannot be increased in-
definitely in the complex model. For sufficiently large «, the relative link
velocity components that are tangential to the forward direction will no
longer be negligible, which is assumed in the simplified model of the snake
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robot. It is therefore reasonable to expect that the increase in the forward
velocity from the complex model will decay for large «. This decay can be
seen in the plots with viscous friction in Fig. 7.5(b), which shows that the
increase of the velocity has a more linear character when o becomes large.

Relationship between the Forward Velocity and w

Theorem 7.3 states that the average forward velocity of a planar snake robot
is proportional to the angular frequency, w, of the joint motion. This result
was investigated by simulating the snake robot with different values of w and
calculating the resulting average forward velocity. The simulation results
from the simplified model are shown in Fig. 7.6(a), while the simulation
results from the complex model with viscous and Coulomb ground friction,
respectively, are shown in Fig. 7.6(b). The number of links N and the
corresponding values of o and § are shown at the top of each plot. The
linear increase in the forward speed v as the frequency w increases is clearly
present in the plots from the simplified model and also the plots from the
complex model with viscous ground friction. This is in accordance with
Theorem 7.3. With Coulomb friction, the forward speed increases linearly
for N = 3 links. However, for N = 5, N = 10, and N = 20 links, the
forward speed seems to increase linearly up to a certain frequency, after
which the forward speed decreases. This suggests that Coulomb friction in
the complex model introduces nonlinear couplings between the controller
parameters «, w, and § that are not present with viscous ground friction.

Relationship between the Forward Velocity and 4

The final result stated in Theorem 7.3 is that the average forward velocity
is maximized by the phase shift § that maximizes the function k5. To inves-
tigate the validity of this result, we simulated the snake robot with different
values of § to identify the phase shift that produced the highest forward
velocity. The simulation results from the simplified model are shown in
Fig. 7.7(a), while the simulation results from the complex model with vis-
cous and Coulomb ground friction, respectively, are shown in Fig. 7.7(b).
The number of links N and the corresponding values of @ and w are shown
at the top of each plot. The ¢ value that maximizes ks is indicated with a
vertical dashed line in each plot. Except for the case of Coulomb friction in
the complex model with N = 3 links, the maximum velocity of each plot in
Fig. 7.7 seems to agree well with the § value that maximizes ks. The reason
for the disagreement for the case of Coulomb friction with N = 3 links is
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Figure 7.6: The forward velocity of the snake robot for different values of
w. The number of links N and the corresponding values of « and ¢ are
shown at the top of each plot.
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Figure 7.7: The forward velocity of the snake robot for different values of §.
The number of links NV and the corresponding values of a and w are shown
at the top of each plot. The vertical dashed line indicates the estimated §
value that, by Theorem 7.3, maximizes the forward velocity.
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probably due to nonlinear effects not captured by the simplified model on
which Theorem 7.3 is based. Note that the forward velocity in this case is
very small.

In summary, the simulation results with both the simplified model (6.24)
and the complex model (2.46) agree well with the prediction in Theorem 7.3
concerning the phase shift § that maximizes the average forward velocity
of a snake robot during lateral undulation.

7.8 Experimental Study: Investigation of the Re-
lationships between Gait Parameters and For-
ward Velocity

In order to provide further support of the validity of Theorem 7.3, we
present in this section results from an experimental investigation with the
snake robot Wheeko. The design of the robot and the experimental setup
(including the camera-based position measurement system) were presented
in Chapter 3.

7.8.1 Layout of the Experiment
Controlling the Joints according to Lateral Undulation

During the experiment, the joint reference angles were calculated on an ex-
ternal computer and sent to the snake robot through a wireless Bluetooth
connection. The reference angles corresponding to the horizontal joint mo-
tion of the robot were calculated according to (7.5) with N = 10 links. The
reference angles corresponding to the vertical joint motion were set to zero.
The joint torque controller given by (4.34) was not employed since accurate
torque control is not supported by the servo motors installed in the snake
robot. Instead, the joint angles in the robot were controlled according to
a proportional controller implemented in the microcontroller of each joint
module. In order to show that the joint modules were able to track their
joint reference angles, we provide in Fig. 7.8 a plot of the measured and the
corresponding reference angles of two arbitrarily chosen joints (joint 3 and
joint 7) during a run of lateral undulation with the snake robot. The plot
indicates that the tracking of the joint reference angles was satisfactory.
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Figure 7.8: A plot of the measured (solid) and the corresponding reference
angles (dashed) of joint 3 and joint 7 during lateral undulation.

Calculating the Forward Velocity of the Robot

To visualize how lateral undulation was carried out by the snake robot, we
provide in Fig. 7.9 a few screen shots from a video recording of the robot.
The position of the robot was recorded by the camera system described
in Section 3.4, and the average forward velocity was calculated after each
run as the travelled distance divided by the travel time. A typical plot
of the measured position of the snake robot from a single run is shown
in Fig. 7.10, which shows that the foremost joint module moves from side
to side along the x direction, but has a steady increase in the position
along the y direction. The markers py,,; and pg,, in the plot have been
placed near the beginning and near the end of the dataset, respectively, at
the approximate centre point of the cyclic sideways motion of the snake.
We used the distance between these two markers to represent the distance
travelled by the snake robot and calculated the travel time as the difference
in sample time between the position measurements corresponding to the
two markers. The average forward velocity of the snake robot was then
calculated as

\/(pstop,x - pstart,x)2 + (pstop,y - pstart,y)2
T = . (7.32)
tstop - tstart
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Figure 7.9: The motion of the snake robot during a single run of lateral
undulation.

When the duration, tsop — fstart, of a single run of the robot is long, we
conjecture that the accuracy of this velocity estimate will be sufficient for
investigating the validity of Theorem 7.3. We developed a special software
based on Matlab in order to easily identify the markers py.,,, and pg,, in
the position plot from each run of the robot.

7.8.2 Experimental results
Relationship between the Forward Velocity and «

Theorem 7.3 states that the average forward velocity of a planar snake robot
is proportional to the squared amplitude of the sinusoidal joint motion, o?.
We investigated the validity of this result by running the snake robot with
different values of « and calculating the resulting average forward velocity
according to (7.32). For each value of «, we ran the snake robot three times
in order to get multiple velocity measurements. The remaining controller
parameters were set to w = 80°/s, § = 25° and ¢, = 0°. Fig. 7.11 presents
the experimental results together with a dashed line between the average of
the three velocities measured for each value of a. The plot clearly shows an
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Figure 7.10: A typical plot of the measured position of the snake robot
during lateral undulation. The distance between the markers pgia.ry and
Dstop represents the distance travelled by the snake robot.

exponential increase in the forward speed v as the amplitude « increases.
This is in accordance with Theorem 7.3.

Relationship between the Forward Velocity and w

Theorem 7.3 states that the average forward velocity of a planar snake robot
is proportional to the angular frequency, w, of the joint motion. This result
was investigated by running the snake robot with different values of w and
calculating the resulting average forward velocity according to (7.32). For
each value of w, we ran the snake robot three times in order to get multiple
velocity measurements. The remaining controller parameters were set to
a = 30° 0 = 25° and ¢, = 0°. Fig. 7.12 presents the experimental results
together with a dashed line between the average of the three velocities
measured for each value of w. The plot clearly shows a linear increase in
the forward speed T as the frequency w increases. This is in accordance
with Theorem 7.3.
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Figure 7.11: The average forward velocity of the snake robot from three

trials at different values of a. The remaining controller parameters were
set to w = 80°/s, § = 25° and ¢, = 0°.
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Figure 7.12: The average forward velocity of the snake robot from three

trials at different values of w. The remaining controller parameters were
set to a = 30°, 0 = 25° and ¢, = 0°.
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Figure 7.13: The average forward velocity of the snake robot from eight
trials at different values of 4. The remaining controller parameters were set
to a = 30°, w =80°/s and ¢, = 0°.

Relationship between the Forward Velocity and §

The final result stated in Theorem 7.3 is that the average forward velocity
is maximized by the phase shift § that maximizes the function ks. To
investigate the validity of this result, we ran the snake robot with different
values of § to identify the phase shift that produced the highest forward
velocity. For each value of §, we ran the snake robot eight times in order to
get multiple velocity measurements. The remaining controller parameters
were set to @ = 30°, w = 80°/s and ¢, = 0°. Fig. 7.13 presents the
experimental results together with a dashed line between the average of the
eight velocities measured for each value of 6. The § value that maximizes
ks for N = 10 links is 6 = 24.1°, and is indicated with a vertical dashed line
in Fig. 7.13. The plot indicates that the phase shift 6 = 25° produced the
highest forward velocity. This agrees well with the phase shift § = 24.1°
that maximizes k5. The average velocity of the eight trials at § = 25°
was slightly below 4 cm/s. In summary, the experimental results indicate
that Theorem 7.3 provides a reasonable prediction of the phase shift, 9,
that maximizes the average forward velocity of a planar snake robot during
lateral undulation.
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7.9 Chapter Summary
This chapter is summarized as follows:

e We have in (7.22) presented an averaged model of the velocity dy-
namics of a planar snake robot during lateral undulation.

e We have shown that the upper bound of the error between the exact
and the averaged velocity during lateral undulation is proportional
to the inverse of the frequency of the sinusoidal joint motion, w (see
Theorem 7.2).

e We have shown that the average velocity of a snake robot during
lateral undulation converges exponentially fast to the steady state
velocity given analytically in (7.27) as a function of the gait pattern
parameters.

e We have derived fundamental relationships between the gait pattern
parameters of lateral undulation and the resulting forward velocity of
a snake robot (see Theorem 7.3). In particular, the derived properties
state that the average forward velocity of a snake robot 1) is propor-
tional to the squared amplitude of the sinusoidal motion of each joint,
2) is proportional to the angular frequency of the sinusoidal motion
of each joint, 3) is proportional to the phase shift function given by
(7.18), and 4) is maximized by the phase shift between the joints that
also maximizes the phase shift function in (7.18).

e We have presented simulation results that support the theoretical
findings.

e We have presented experimental results with the snake robot Wheeko
that support the derived relationships between the gait pattern para-
meters of lateral undulation and the resulting forward velocity of the
robot.



Chapter 8

Path Following Control of
Snake Robots through a
Cascaded Approach

In this chapter, we return to the problem of enabling a snake robot to track
a planar path. In Chapter 5, we proposed a straight line path following
controller and employed a Poincaré map to prove that the state variables
of the snake robot, except for the position along the path, trace out a locally
exponentially stable periodic orbit during motion along the desired path.
The drawback of the analysis based on the Poincaré map, however, is that
we are only able to infer conclusions regarding the local stability properties
in the vicinity of the desired path. Moreover, since the analysis is based on
simulating the model of the snake robot, the stability proof is only valid
for the given choice of numerical controller parameters.

In order to elude the shortcomings of the previous analysis, this chapter
extends the path following controller from Chapter 5 based on the simpli-
fied model of the snake robot. Using cascaded systems theory, we prove
that the modified path following controller K-exponentially stabilizes the
snake robot to any desired straight path. In particular, under the assump-
tion that the forward velocity of the snake robot is nonzero and positive,
we show that the model of the snake robot and the controller can be writ-
ten as a cascaded system where the body shape changes affect the global
orientation of the robot, which subsequently affects the cross-track error
between the robot and the desired path. The K-exponential stability of the
cascaded system guarantees that the cross-track error and the heading of
the snake robot with respect to the direction of the path converge to zero.
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The performance of the path following controller is investigated through
simulations and through experiments with the snake robot Wheeko. The
simulations and the experimental results show that the proposed controller
successfully steers the snake robot towards and along the desired straight
path.

This chapter also considers path following of more general paths. In
particular, we propose a waypoint guidance strategy which provably steers
a snake robot along a path defined by waypoints interconnected by straight
lines. In addition, we describe how the straight line path following controller
can be extended to path following of curved paths by employing an approach
previously presented in Bgrhaug (2008) in the context of path following
control of marine vessels.

Note that this chapter considers path following, in contrast to trajectory
tracking, where the goal is additionally to control the position of the system
along the path. During path following, we steer the system towards and
along the path, but do not consider the temporal position of the system
along the path. We will not consider trajectory tracking in this thesis.

Contributions of this Chapter: The first and main contribution of this
chapter is the straight line path following controller, which, using cas-
caded systems theory, is proved to -exponentially stabilize a snake
robot to any desired straight path. To our best knowledge, this is the
first time the stability properties of a path following controller for a
snake robot without nonholonomic constraints are formally proved.
The experimental investigation of the path following controller us-
ing the snake robot Wheeko is also considered to be a contribution.
The second contribution is the description of how the straight line
path following controller can be extended to path following of general
curved paths. Finally, the third contribution is the waypoint guidance
strategy for steering a snake robot along a path defined by waypoints
interconnected by straight lines. Waypoint guidance has, to our best
knowledge, not previously been considered for motion control of snake
robots. The waypoint guidance strategy builds on the straight line
path following controller and represents an operator-friendly frame-
work for steering a snake robot between arbitrary locations on a flat
surface.

Organization of this Chapter: Section 8.1 presents some mathemati-
cal preliminaries. The straight line path following controller is pre-
sented and analysed in Section 8.2, while Section 8.3 describes how
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the controller can be extended to path following of general curved
paths. The waypoint guidance strategy is proposed in Section 8.4.
Simulation results and experimental results concerning the straight
line path following controller are presented in Section 8.6, while Sec-
tion 8.7 presents simulation results concerning the waypoint guidance
strategy. Finally, the chapter is summarized in Section 8.8.

Publications: The material in this chapter is based on the journal paper
Liljebéck et al. (2011a) and the conference papers Liljebéck et al.
(20100), Liljebéck et al. (2010a), and Liljebiéick and Pettersen (2011).

8.1 Mathematical Preliminaries

We begin by presenting some stability concepts that will be employed to
analyse the straight line path following controller of the snake robot. The
stability concepts make use of class K and class KL functions. A function
being of class K basically means that the function is strictly increasing with
respect to its argument. A function of class L has two arguments, and is
strictly increasing with respect to the first argument when the second argu-
ment is fixed, and is decreasing with respect to the second argument when
the first argument is fixed. Class K and class KL functions are formally
defined as follows.

Definition 8.1 (Class K functions, see Definition 4.2 in Khalil (2002)).
A continuous function o : Rt — RT is said to belong to class K if it is
strictly increasing and a(0) = 0.

Definition 8.2 (Class KL functions, see Definition 4.3 in Khalil (2002)).
A continuous function B : RT x RT — RT is said to belong to class KL
if, for each fized s, the mapping B(r,s) belongs to class K with respect to
r and, for each fixed r, the mapping [(r,s) is decreasing with respect to s
and B(r,s) — 0 as s — oo.

We now present some stability concepts for systems of the form

&= f(t,z), (8.1)

where f : R>o x R" — R" is piecewise continuous in ¢ and locally Lipschitz
in .
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Definition 8.3 (UGAS, see Lemma 4.5 in Khalil (2002)).

The equilibrium point * = 0 of the system (8.1) is uniformly globally as-
ymptotically stable (UGAS) if there exists a class KL function B such that
for any initial state x(to)

lz(@)]l < B2 o)ll ;£ —to), VE=to = 0. (8.2)

A system being UGAS basically means that the state & converges to
zero as t — oo. A special case of UGAS arises when the class KL function
[ takes the form of an exponential function as follows.

Definition 8.4 (UGES, see Definition 4.5 in Khalil (2002)).

The equilibrium point * = 0 of the system (8.1) is uniformly globally expo-
nentially stable (UGES) if there exist positive constants k and \ such that
for any initial state x(to)

|z (t)|| < k||2(to)|| e *Et0), Wt >t > 0. (8.3)

A slightly weaker form of stability than exponential stability is K-
exponential stability, which is defined as follows.

Definition 8.5 (Global K-exponential stability, see Definition 2 in Sordalen
and Egeland (1995)).

The equilibrium point € = 0 of the system (8.1) is globally K-exponentially
stable if there exist a positive constant A and a class IC function a such that
for any initial state x(to)

lz(®)] < allz(to)l)e 1), vt >t > 0. (8.4)
As first noted in Lefeber (2000), the following Corollary holds.

Corollary 8.1 Global K-exponential stability is equivalent to the system
being both UGAS and ULES (uniformly locally exponentially stable).

Remark 8.1 For simplicity, if the equilibrium point x = 0 of a system is
UGAS/UGES /globally K-exponentially stable, we often say that the system
itself is UGAS/UGES/qglobally K-exponentially stable.

Next, we present some stability concepts for cascaded systems of the
form

?) = f2(ta y)a



8.2 Straight Line Path Following Control of Snake Robots 161

where £ € R", y € R™, f,(t, ) is continuously differentiable in (¢, ), and
fa(t,y), g(t,z,y) are continuous in their arguments and locally Lipschitz
in y and (x,y), respectively. Many dynamical systems can be written in
this cascaded form, where we see that the y-dynamics in (8.6) perturbs the
x-dynamics in (8.5) through the interconnection term g(¢, z, y)y.

Theorem 8.1 (See Theorem 2 in Panteley and Loria (1998)).

The cascaded system (8.5), (8.6) is UGAS if the following three assump-
tions are satisfied:

(A1) The system & = f(t,z) is UGAS with a radially unbounded Lya-
punov function satisfying

1V ||| < eV (t,2), V2| >mn, (8.7)

where ¢ > 0 and n > 0 are constants.
(A2) The function g(t,x,y) satisfies

lg(t; 2, y)ll < O:(llyl) + O2(llyl) =[], (8.8)

where 01,02 : R>g — R>q are continuous.
(A3) The system § = fo(t,y) is UGAS and for all to > 0

/ ly(t)l dt < s(ly(to)]), (8.9)

where the function k() is a class K function.

Lemma 8.1 (See Lemma 8 in Panteley et al. (1998)).
If in addition to the assumptions in Theorem 8.1 both & = f(t,z) and

Uy = fo(t,y) are globally K-exponentially stable, then the cascaded system
(8.5), (8.6) is globally K-exponentially stable.

8.2 Straight Line Path Following Control of Snake
Robots

In this section, we design and analyse a straight line path following con-
troller for a snake robot described by the simplified model in (6.24).
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8.2.1 Control Objective

The control objective is to steer the snake robot so that it converges to and
subsequently tracks a straight path while maintaining a heading which is
parallel to the path. To this end, we define the global coordinate system
so that the global = axis is aligned with the desired straight path. The
position of the snake robot along the global y axis, py, is thereby the shortest
distance from the robot to the desired path (i.e. the cross-track error) and
the orientation of the snake robot, 6, is the angle that the robot forms with
the desired path. The control objective is thus to regulate p, and ¢ to zero.
Since snake robot locomotion is a slow form of robotic mobility, which
is generally employed for traversability purposes, we consider it less impor-
tant to accurately control the forward velocity of the robot. During path
following with a snake robot, it therefore makes sense to focus all the con-
trol efforts on converging to the path and subsequently progressing along
the path at some nonzero forward velocity vy € [Vinin, Vinax), where Vipin
and Viax represent the boundaries of some positive interval in which we
would like the forward velocity to be contained.
From the above discussion, the control problem is to design a feedback
control law
u = u(t, P, 0,py,ve,v9,v¢,0p) € RN (8.10)

such that the following control objectives are reached:

tlim py(t) =0, (8.11)
lim 0() = 0. (8.12)

Remark 8.2 The path following controller proposed in Chapter 5 did not
attempt to suppress the oscillatory behaviour of the heading and position of
the snake robot during motion along the desired path. Howewver, since the
path following controller proposed in the following is based on the simpli-
fied model of the snake robot, circumuventing this oscillating behaviour is a
more manageable task. In this chapter, we therefore do not just attempt to
requlate the cross-track error and the heading so that they oscillate about
zero, but also so that they converge to zero.

8.2.2 Assumptions

Similar to the approach in Chapter 5, we will base the path following con-
troller on the gait pattern lateral undulation, which was defined in (4.32).
In Chapter 7, we investigated the velocity dynamics of a snake robot during
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lateral undulation. In particular, Theorem 7.3 implies that the forward ve-
locity during lateral undulation oscillates around a positive nonzero average
velocity that can be predetermined based on the gait pattern parameters.
In other words, when the snake robot conducts lateral undulation, Theo-
rem 7.3 suggests that the forward velocity is contained in some nonzero and
positive interval [Vinin, Vinax] that can be scaled based on the gait pattern
parameters. We therefore choose to base the path following controller of
the snake robot on the following assumption:

Assumption 8.1 The snake robot moves by lateral undulation and has a
forward velocity which is always nonzero and positive, i.e. v¢ € [Vinin, Vinax)
V t >0 where Vimax > Vinin > 0.

Remark 8.3 In addition to the support from Theorem 7.3, the validity of
Assumption 8.1 can be seen by inspecting the equations of motion in (6.24).
The dynamics of the forward velocity in (6.24g) contains three terms. As
implied by the averaging analysis in Chapter 7, the term —ﬁq’)TAﬁvd, 18
positive and accelerates the robot forward during lateral undulation, while
the term — vy is the ground friction force. The combined effect of these
two terms can never make the forward velocity v, become zero during lateral
undulation. This leaves ]%%vnETqb as the only term that can produce a
negative forward acceleration that forces vy to zero. This term is negative
when the sideways velocity v, and the sum of the joint coordinates €' ¢
have opposite signs. However, it can be seen from (6.24h) that v, and e’ ¢
will always tend in the same rather than the opposite direction when vy > 0.
It is therefore unlikely for v, and €' ¢ to have opposite signs over the long
period required to force vy to zero.

8.2.3 Model Transformation

On the basis of the preceding discussion and Assumption 8.1, we will not
control the dynamics of the forward velocity v; given by (6.24g) and in-
stead treat the forward velocity as a positive parameter satisfying v; €
[Vmina Vmax] .

As seen in (6.24f) and (6.24h), the joint coordinates ¢ are present in
the dynamics of both the angular velocity vg and the sideways velocity v,
of the snake robot. This complicates the controller design since the body
shape changes will affect both the heading and the sideways motion of the
robot. Motivated by Do and Pan (2003), we see that it is possible to remove
the effect of ¢ on the sideways velocity by a coordinate transformation. In
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particular, we move the point that determines the position of the snake
robot a distance € along the tangential direction of the robot from the CM
to a new location, which is precisely where the body shape changes of the
robot (characterized by e’'¢) generate a pure rotational motion and no
sideways force. This coordinate transformation is illustrated to the left in
Fig. 8.1 and is defined as

Zﬁa: = Pz + ECOSH, (813&)
Py = Dpy +€sinb, (8.13b)
Uy, = Up, + €vg, (8.13c)

where € is a constant parameter defined as

2(N — 1) C9
===, 14
¢ Nm ¢y (8.14)

With the new coordinates in (8.13), the model (6.24) is transformed into

b = vy, (8.15a)
0 = vy, (8.15b)
foy = vy sinf + v, cos 0, (8.15¢)
by = —C—1v¢, + —vtADTé 41 —DD"u, (8.15d)
Gp = —c3vp + NC vel, (8.15¢)
Tn = Xvg + Yy, (8.15f)

where, by Assumption 8.1, the parameter v; € [Vinin, Vinax] With Viax >
Viin > 0, and where

X=c (% - 03> , (8.16a)

C1
— 8.16b
o (8.16b)

The two scalar constants X and Y have been introduced in (8.15f) for
simplicity of notation in the following sections. Note also that (6.24c) is
not included in (8.15) since we do not consider the temporal position of the
system along the path during path following.
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8.2.4 The Straight Line Path Following Controller

The path following controller of the snake robot consists of two main com-
ponents. The first component is the gait pattern controller, which propels
the snake robot forward according to the gait pattern lateral undulation
(as stated in Assumption 8.1). The second component is the heading con-
troller, which steers the snake robot towards and subsequently along the
desired path. The two components of the path following controller are now
presented.

Gait Pattern Controller

As stated in Definition 4.1, a snake robot moves by lateral undulation by
controlling joint i € {1,..., N — 1} according to

¢i,ref = asin (Wt + (7’ - 1) 6) + ¢o> (817)

where a and w are the amplitude and frequency, respectively, of the sinu-
soidal joint motion, ¢ determines the phase shift between the joints, and ¢,
is a joint offset, which the heading controller will use to control the direc-
tion of the locomotion. The average forward velocity v} of the snake robot
during straight path motion is given from Theorem 7.3 as

C

vy = o2wk;, (8.18)
where kg is a constant parameter determined by the phase shift §. This
relation can be used to choose the gait parameters «, w, and § in order to
achieve the desired average forward velocity.

As proposed in Section 6.5, we set the actuator forces according to the
linearizing control law

u=m(DDT) " (w+ 2 - 20,AD70), (8.19)
m m
where @ € RV~ is a new set of control inputs. This control law transforms
the joint dynamics (8.15d) into vy = ¢ = @. In order to make the joints
track the joint reference coordinates given by (8.17), we employ the joint
controller from Section 4.7.2, i.e. we set the new control input uw according
to

U= (.ﬁref + kvq; ((bref - ¢> + k¢ (¢ref - ¢) ) (820)

where kg > 0 and k,, > 0 are scalar controller gains and ¢, € RN~ are
the joint reference coordinates given by (8.17). By introducing the error
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variable B

b =& — Py, (8.21)
the joint dynamics given by (8.15a) and (8.15d) can be written in terms of
the error dynamics

& + iy + ko = O, (8.22)

which is clearly exponentially stable (see Khalil, 2002). This means that
the joint coordinates exponentially track the reference coordinates given by
(8.17).

Heading Controller

In order to steer the snake robot towards the desired straight path, we
employ the Line-of-Sight (LOS) guidance law that was also employed in
Chapter 5, which is defined as

Oret = — arctan(%), (8.23)

where p,, is the cross-track error and A > 0 is a design parameter referred to
as the look-ahead distance. This LOS guidance law is commonly used during
e.g. path following control of marine surface vessels (see e.g. Fossen, 2002;
Fredriksen and Pettersen, 2006). As illustrated to the right in Fig. 8.1, the
LOS angle 0, corresponds to the orientation of the snake robot when it
is headed towards the point located a distance A ahead of the snake robot
along the desired path. The value of A is important since it determines the
rate of convergence to the desired path.

Based on Property 4.7, we will use the joint offset coordinate ¢, in
(8.17) to ensure that the heading of the snake robot 6 tracks the LOS
angle given by (8.23). Motivated by Fredriksen and Pettersen (2006) and
Pettersen and Lefeber (2001), we conjecture that making 6 track the LOS
angle 0. will make the snake converge to the desired path and subsequently
follow the path with its heading parallel to the path. In other words, we
conjecture that a control law that makes 6 track 6.o¢ will fulfill the control
objectives (8.11) and (8.12). To derive the control law for ¢,, we first
rewrite the dynamics of vg given by (8.15¢) with the new coordinates ¢ in
(8.21), which gives the dynamics of vy as a function of the joint reference
coordinates given by (8.17). From (8.21), we have that ¢ = ¢,s+¢. Using
(8.17), we can therefore rewrite (8.15¢) as

N-1
. C4 . . T
Vg = —C3Vg + caV P, + N1 ( El asin(wt+ (i —1)d) +e qb) . (8.24)
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Figure 8.1: Left: The coordinate transformation of the snake robot. Right:
The Line-of-Sight (LOS) guidance law.

Consequently, choosing ¢, as

N—-1
1 /. ) c . .
b, = @ <9ref + 30t — k(0 — Orer) — N i 1vt;asm(wt +(1—1) 5)) ,

(8.25)
where kg > 0 is a scalar controller gain, enables us to write the dynamics
of the heading angle 6, which is given by (8.15b) and (8.15¢), in terms of
the error dynamics

Cq

0+ 30 + kol = . 1vtéT<$, (8.26)
where we have introduced the error variable
0 =0 — Ore. (8.27)

Remark 8.4 The joint coordinate offset in (8.25) depends on the inverse
of the forward velocity vi. This does not represent a problem since, by As-
sumption 8.1, the forward velocity is always nonzero. When implementing
the path following controller, this issue can be avoided by activating the
controller after the snake robot has obtained a positive forward velocity.

Remark 8.5 The error dynamics of the joints in (8.22) and the error dy-
namics of the heading in (8.26) represent a cascaded system. In particular,
the system (8.22) perturbs the system (8.26) through the interconnection
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Figure 8.2: The structure of the straight line path following controller.

term - 1vt€T<$. Using cascaded systems theory, it will be shown in Sec-

tion 8.2.6 that the origin of this cascaded system is globally KC-exponentially
stable.

We have now presented the complete path following controller of the
snake robot. The structure of the complete controller is summarized in
Fig. 8.2.

8.2.5 The Stability Properties of the Path Following Con-
troller

Based on the guidance and control laws presented in the previous sub-
section, we now state the main result concerning the straight line path
following controller. The result specifies a lower bound on the look-ahead
distance A employed in (8.23). This bound is given a physical interpretation
in Remark 8.7 below, and is derived in the proof presented in Section 8.2.6.

Theorem 8.2 Consider a planar snake robot described by the model (8.15)
and suppose that Assumption 8.1 is satisfied. If the look-ahead distance A
of the LOS guidance law (8.23) is chosen such that

X Vmax
A > ’|Y|| <1+ v > , (8.28)

then the path following controller defined by (8.17), (8.19), (8.20), (8.23),
and (8.25) guarantees that the control objectives (8.11) and (8.12) are
achieved for any set of initial conditions satisfying vi € [Vinin, Vinax|-

Proof. The proof of this theorem is given in Section 8.2.6. ®
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Remark 8.6 Theorem 8.2 does not specify the boundary values Viin and
Vmax of the interval in which the forward velocity v, is contained. By As-
sumption 8.1, however, there exists a positive interval that contains vs for
all time t > 0. In practice, conservative values for these boundary values
can be chosen, but in order to achieve a tighter bound on A, we would like
to specify Vimin and Vipax as a function of the gait pattern parameters o, w,
0, and ¢,. This remains a topic of future work.

Remark 8.7 The lower bound on the look-ahead distance A in (8.28) en-
sures that the sideways velocity Uy, of the snake robot in (8.15f) is well
behaved under the perturbations from the angular velocity vg. In particular,
the magnitude of vg during convergence to the desired path is determined by
the look-ahead distance A, i.e. the robot rotates fast when A is small (and
vice versa). We see from (8.15f) that vy only has a small influence on Uy,
when | X| < |Y|, which means that we then can allow the magnitude of vy
to be large, i.e. A can be small. Similarly, vy has a great influence on vy,
when | X| > Y|, which means that the magnitude of vg must be restricted,
i.e. A must be large. These conditions are directly reflected by the lower
bound in (8.28).

Remark 8.8 As explained in Remark 6.1 in Section 6.1, the assumptions
underlying the simplified model are only valid as long as the link angles with
respect to the forward direction are limited. The stability result in Theorem
8.2 is therefore claimed only for snake robots conducting lateral undulation
with limited link angles.

8.2.6 Proof of Theorem 8.2

We will prove Theorem 8.2 in three steps. In the first step, we show that
the complete system, including the path following controller, can be written
as a cascaded system. In the second step, we prove stability of the nominal
systems in the cascade. Finally, we derive bounds on the interconnection
terms between the nominal systems, which, by Theorem 8.1 and Lemma 8.1,
allow us to conclude stability of the complete cascaded system. We will
follow the steps of a similar proof presented in Pavlov et al. (2007).

We begin by rewriting the dynamics of the cross-track error p, and the
sideways velocity Ty, in terms of the heading error §. From (8.27) and (8.23)
we have that

0=— arctan(%) +0. (8.29)
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By using the relations

l>‘ i

sin(— arctan(

__ Py _ Pyyy _ A
) = - i cos(—arctan(R) = A (830
it can be verified that (8.15c¢) can be written in terms of the heading error
0 as
A
p,=——DP,+ —Un + 70, (8.31)

= \/P: + A, (8.32)

_ sin @ (v A + UnDy) N 1—cosf (0D, — TnA) (8.33)

0 o 0 o

where

Through similar manipulations, we can rewrite (8.15f) in the new coordi-
nates as

2
Uy = %py + ( XA) Uy, — XQAw + Xe (8.34)

Collecting the error variables as
cRN-2 ¢=|.

_[®
n=|g :

and using (8.22), (8.26), (8.31), and (8.34), the model of the snake robot
(8.15) during path following can be written as

€ R?, (8.35)

[ff”] = C(py) m + He(Dy, U, §)§, (8.36a)
s 0 1
§= [—ke _CJ &+ H,m, (8.36b)
. [ON—pxv—1)  In-a1 ]
= ) 8.36
K |: _k¢IN—1 _k%IN—l n ( C)
where
0 0 B
H., = 1>< }12 Ix(N— ):| c RQX(ZN 2)’ (837)
T e Oy
_ [ 0
H¢(py,0n, &) = —i?v X] e R?*2, (8.38)
C A
Cp,) = | xau (v _UX%Q) € R (8.39)
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The system (8.36) is a cascaded system. In particular, the n-dynamics
in (8.36¢) perturbs the &-dynamics in (8.36b) through the interconnection
term H,n, and the &-dynamics perturbs the (p,,v,)-dynamics in (8.36a)
through the interconnection term H¢(p,, U, §)€.

We now investigate the stability of the nominal systems of the cascade,
i.e. all parts of (8.36) except the interconnection terms. The origin 7 = 0 of
the linear system (8.36¢) and the origin & = 0 of the linear nominal system
in (8.36b) are UGES (see Definition 8.4) since the system matrices clearly
are Hurwitz (Khalil, 2002) for kg, c3, k¢, ky » > 0. The nominal system of
(8.36a) is given by

M —c,) 2], (5.40)
Un

Un

and has the stability properties established by the following two Lemmas.

Lemma 8.2 Under the conditions of Theorem 8.2, the origin of the system
(8.40) is UGAS with a quadratic Lyapunov function.

Proof. The proof of this lemma has previously been presented in Pavlov
et al. (2007) and is included in Appendix A for completeness. ®

Lemma 8.3 Under the conditions of Theorem 8.2, the origin of the system
(8.40) is globally K-exponentially stable.

Proof. The proof of this lemma is presented in Appendix B. =

Since exponential stability implies K-exponential stability, we can con-
clude that all nominal systems of the cascade (8.36) are globally K-exponentially
stable. Next, we derive bounds on the interconnection terms in the cascade.
The induced 2-norm of the matrix H, satisfies (see Appendix A in Khalil,
2002)

|H, |, < V2N =2 i{H J, < V2aVma (8.41)
— 2max L )
ni2 = i = wH=/N=1
while the induced 2-norm of the matrix H¢(p,,n, §) satisfies
[Hell, < Vamax X2, {Hehyy < v2max (o] + S ), 1x]) .

X|A
<v2 (17l + ERpy 4 1x1).
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The function v given by (8.33) is bounded according to

,.y < Sig’é VmaxA‘HEnHﬁ“ + ‘1—C~OS§ Vmax‘ﬁy|+|5n‘A
Vonsd o [5alBy] . VinaslB mem T (8.43)
< smaxs g — 8+ — + = < 2Vinax + 2[0x|.

By inserting (8.43) into (8.42), it is straightforward to verify that
Py
Un,

Fi=V2 <2vmax <1 + pA(’) + \X|> , (8.45)

Fo=2V2 <1 + f) . (8.46)

[Hell, < Fi+ F2 : (8.44)

2

where

We are now ready to apply Theorem 8.1 to the cascaded system (8.36).
We first consider the cascade of (8.36b) and (8.36¢), for which it is straight-
forward to verify that Assumptions A1l and A3 of Theorem 8.1 are satisfied
since the system (8.36¢) and the nominal system of (8.36b) are both UGES
(see Definition 8.4). Furthermore, Assumption A2 is trivially satisfied since
|H ||, is bounded by the constant derived in (8.41). The cascaded system
(8.36b), (8.36¢) is therefore UGAS and, by Lemma 8.1, also globally -
exponentially stable.

Next, we consider the cascade of (8.36a) and (8.36b), for which Assump-
tion A1 of Theorem 8.1 is satisfied since, by Lemma 8.2, the nominal system
of (8.36a) is UGAS with a quadratic Lyapunov function. Furthermore, it
follows directly from (8.44) that Assumption A2 is satisfied. Finally, since
the perturbing system (8.36b) is globally K-exponentially stable, Assump-
tion A3 is satisfied since the bound in Assumption A3 is easily shown to
hold for any K-exponentially stable system by integrating both sides of (8.4)
from ¢y to co. The cascaded system (8.36a), (8.36b) is therefore UGAS
and, by Lemma 8.1, also globally K-exponentially stable since the nomi-
nal system of (8.36a) and the perturbing system (8.36b) are both globally
KC-exponentially stable.

In summary, the complete cascaded system (8.36) is globally K-exponentially
stable. This means that p,(t) — 0 and 6(t) — 0, which, by (8.29), implies
that 6(t) — 0, which means that control objective (8.12) is achieved. It
subsequently follows from (8.13b) that p,(t) — 0, which means that control
objective (8.11) is achieved. This completes the proof of Theorem 8.2.
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Remark 8.9 Any gait pattern controller that exponentially stabilizes the
error variable (8.21), i.e. not just the joint controller proposed in (8.19)
and (8.20), makes the complete cascaded system globally KC-exponentially
stable. This is a nice feature of cascaded systems theory.

8.3 Path Following Control of Snake Robots along
Curved Paths

The straight line path following controller presented in Section 8.2.4 can be
extended to path following of general curved paths by following an approach
presented in Bgrhaug (2008) in the context of path following control of
marine vessels. In this section, we describe how this extension can be
achieved.

8.3.1 Comments on the Curved Path Following Controller

The stability proof regarding the convergence of the snake robot to the
curved path will not be detailed in this thesis since the proof is developed
by following similar steps as the approach presented in Bgrhaug (2008).
Moreover, we do not consider curved path following control to be particu-
larly relevant to our long-term goal of achieving snake robot locomotion in
unstructured environments. In particular, we would like our control design
efforts for snake robots on flat surfaces to be extendable to the case where
the environment is unstructured and no longer flat. The idea of requiring
a snake robot to follow a nice and smooth curved path in an unknown and
unstructured environment (i.e. where external contact forces will influence
the motion significantly) seems unrealistic. A more realistic and applicable
approach for path following of general paths is, in our opinion, to charac-
terize the general path in terms of waypoints interconnected by straight
lines, where the straight line reference path between each waypoint basi-
cally tells the robot to take the shortest possible path to each waypoint.
We will elaborate this approach in Section 8.4, and will further develop the
approach in Chapter 13 in order to enable snake robot locomotion along
general paths in an unstructured environment.

8.3.2 The Curved Path Following Controller

The desired curved path that the snake robot should follow is a continu-
ously differentiable curve denoted by C (see Fig. 8.3). The idea behind the
controller is to steer the snake robot towards a virtual particle that moves
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Figure 8.3: The guidance strategy for path following of general curved
paths.

along the path. The distance travelled by the particle along the curve is
denoted by s, which means that § is the instantaneous speed of the particle
along the curve. Furthermore, we define a moving coordinate frame with
axes denoted by T and N such that the origin of the frame coincides with
the particle and the T axis is always tangential to the curve. This is called
a Serret-Frenet coordinate frame (see e.g. Egeland and Gravdahl, 2002).
As visualized in Fig. 8.3, the angle of the T" axis with respect to the global
x axis is denoted by 67 and the position of the snake robot in the T-N
frame is denoted by (pr, pn).

Since the goal is to make the snake robot converge to and follow the
desired path C, we state the control objective as

lim pr(t) =0, lim py(t) =0. (8.47)
t—o00 t—o00

Based on the curved path following controller for marine vessels proposed
in Bgrhaug (2008), we claim that control objective (8.47) is achieved by
steering the heading 6 of the snake robot according to the guidance law

v,
Oret = 07 — arctan(—) — arctan( PN

——),
(%7 /AQ +p%—v

and updating the position of the virtual particle along the curve according

(8.48)
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to

\/AQ—l-p%—i-pT
s=U U =/o? + 72 (8.49)
\/ A%+ p2 4 p%

The curved path following controller is, in other words, defined by (8.17),
(8.19), (8.20), and (8.25), where 6, is given by (8.48) and where s is up-
dated according to (8.49). The proof of the achievement of control objective
(8.47) can be developed based on the results in Bgrhaug (2008) by taking
into account a few differences between the model of the snake robot and the
model of the vessel considered in Bgrhaug (2008). The proof also requires
us to make specific assumptions regarding the minimum forward velocity of
the robot, the maximum forward acceleration of the robot, the maximum
curvature of the path, and the look-ahead distance A.

8.4 'Waypoint Guidance Control of Snake Robots

In this section, we employ the straight line path following controller pre-
sented in Section 8.2 in order to propose a guidance strategy for steering a
snake robot between a set of reference locations, or waypoints, in the envi-
ronment of the robot. Waypoint guidance is, in our opinion, an approach
which is well suited for general motion control of snake robots. The way-
point guidance strategy proposed in the following represents an operator-
friendly framework for steering a snake robot between arbitrary locations
on a flat surface.

8.4.1 Description of the Approach

Future applications of snake robots will generally involve motion in chal-
lenging and unstructured environments where the aim is to bring sensors
and/or tools to a single or several specified target location(s). In these
situations, the exact path taken by the robot as it moves towards the tar-
get(s) is generally of less interest as long as the robot reaches the target(s)
within a reasonable amount of time. Specifying the motion in terms of way-
points supports this target-oriented control approach. Waypoint guidance
is a commonly used approach for control of e.g. marine surface vessels (see
e.g. Fossen, 2002), but has, to our best knowledge, not been considered for
motion control of snake robots.

In accordance with the target-oriented approach discussed above, we
choose to interconnect the waypoints by straight lines and employ the path
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Figure 8.4: The waypoint guidance strategy.

following controller presented in Section 8.2 in order to steer the snake robot
towards the straight line leading to the next waypoint. This approach is
illustrated in Fig. 8.4. As argued in Section 8.3.1, the reason for considering
straight lines instead of curved paths is our long-term goal of also employing
the guidance strategy in unstructured environments. The idea of requiring
a snake robot to follow a nice and smooth curved path in an unknown and
unstructured environment seems unrealistic, while a straight line reference
path between each waypoint basically tells the robot to take the shortest
possible path to the next waypoint.

A common rule for switching between the waypoints is to proceed to-
wards the next waypoint as soon as the position of the system enters inside
an acceptance circle enclosing the current waypoint (see Fossen, 2002). In
the present work, we propose that the acceptance circle is replaced by an
acceptance region composed of an acceptance circle and also the right half
plane of a coordinate system with origo in the current waypoint and x
axis pointing away from the previous waypoint (see illustration in Fig. 8.4).
With this definition, we are guaranteed that the robot will reach the ac-
ceptance region of the current waypoint no matter how the waypoints are
defined. With only acceptance circles enclosing each waypoint, there would
be the risk that the robot misses a waypoint which is placed too close to the
previous waypoint, which would make the robot proceed indefinitely along
the path away from the waypoint that was missed. Note that although the
acceptance region is infinitely large, the path following controller presented
in Section 8.2 guarantees rapid convergence to the straight path between
two waypoints.
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8.4.2 The Waypoint Guidance Strategy

In the following, we formalize the guidance strategy described in the previ-
ous subsection.

Definition 8.6 Waypoint.
A waypoint is a reference position along the path of the snake robot. There
are k waypoints and the ith waypoint is denoted by W P;, wherei € {1,...,k}.

Definition 8.7 Acceptance region.

The acceptance region of W P;, denoted Awp,, is the union of all points
inside a circle centred in W P; with radius 74ccept and the right half plane of
a coordinate system with origo in W P; and x axis aligned with the vector
from WP;_1 to WP,

Definition 8.8 The waypoint guidance problem.

Given a set of k waypoints WPy, ..., W Py, the waypoint guidance problem
1s the task of steering the position of the snake robot into the acceptance
region of each of the waypoints W Py, ..., W Py in consecutive order.

In accordance with the above definitions and the description in the
previous subsection, we now present the waypoint guidance strategy for
the snake robot.

Algorithm 8.1 The waypoint guidance strategy.

1. Define the initial position of the snake robot as W P.

2. Repeat for all i € {0,...,k —1}:

(a) Move the origin of the global frame to W P; and orient the global
x axis towards WP;1;.

(b) Conduct straight line path following according to the controller
from Section 8.2 until (ps,py) € Awp,, ;.

The guidance strategy proposed in Algorithm 8.1 satisfies the following
result:

Theorem 8.3 The waypoint guidance problem presented in Definition 8.8
is solved by Algorithm 8.1 for a planar snake robot described by the model
(8.15) under the conditions of Theorem 8.2.
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Proof. Given any waypoint W P; that the snake robot is crawling towards,
where ¢ € {1,...,k}, we are ensured by Definition 8.7 that the desired
straight path of the robot points into the acceptance region of WP;,. By
Theorem 8.2, the snake robot will eventually reach the desired straight path
and progress along the path indefinitely, which means that the position of
the snake robot will eventually reach the acceptance region of W FP;. This
completes the proof. m

8.5 Simulation Study: The Performance of the
Straight Line Path Following Controller

In this section, we present simulation results that illustrate the performance
of the straight line path following controller proposed in Section 8.2.

8.5.1 Simulation Parameters

The model of the snake robot (6.24) and the path following controller de-
fined by (8.17), (8.19), (8.20), (8.23), and (8.25) were implemented and
simulated in Matlab R2008b on a laptop running Windows XP. The model
dynamics was calculated using the ode45 solver in Matlab with a relative
and absolute error tolerance of 1076,

We considered a snake robot with NV = 10 links of length | = 0.14 m
and mass m = 1 kg. Furthermore, we chose the friction coefficients as
c1 = 0.45, ca = 3, c3 = 0.5 and ¢4 = 20, the controller gains as k4 = 20,
kv, = 5, and kg = 0.05, and calculated the coordinate transformation
distance according to (8.14) as € = —27 cm. The gait parameters were
a =0.1m, w = 70°s, and § = 40°, which by (8.18) corresponds to
the average forward velocity vf = 5% a?wks = 0.1 m/s. By making the
conjecture that the forward velocity will always be contained in the interval
vt € [Viin, Vmax] = [0.5vf, 2vf] = [0.05 m/s,0.2 m/s|, the lower bound on
the look-ahead distance A is given by (8.28) as A > 0.15 m. During the
simulations, we chose the look-ahead distance equal to the length of the
snake robot, i.e. A = 1.4 m, which is well above the estimated lower limit.

The derivatives q'bo, <.;'SO, 0ef, and éref, which are needed for the calcula-
tion of the control input in (8.20) and (8.25), were obtained by passing ¢,
and 6 through a 3rd order low-pass filtering reference model (see Appen-
dix C.2). The parameters of the reference model were set to w = 7/2 and
¢=1.

The initial state of the snake robot was chosen as ¢ = 0°, § = 90°,
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pe =0m, py =1m, vy =0°/s, vy =0°/s, v, = 0.1 m/s, and v,, = 0 m/s,
i.e. the snake robot was initially oriented along the global y axis and located
1 m away from the z axis with an initial forward velocity of 0.1 m/s, i.e.
moving away from the desired path.

8.5.2 Simulation Results

The simulation results are shown in Fig. 8.5. From Figures 8.5(a)-(b), we
see that the position of the snake robot converges nicely to the desired path
(i.e. the = axis). Fig. 8.5(a) shows the configuration of the snake robot at
t=1s,t=30s,and t = 70 s. Note that Fig. 8.5(b) shows the cross-track
error in terms of the y axis coordinate of the CM of the robot, not the
transformed y axis coordinate given by (8.13b). The heading of the snake
robot, shown in Fig. 8.5(c), also converges nicely to zero, i.e. to the direction
of the desired path. As seen in Fig. 8.5(e), the forward velocity is always
nonzero and positive, as required by Assumption 8.1, and converges to the
velocity v} = 532 a?wks = 0.1 m/s, which was estimated above. Fig. 8.5(f)
shows the joint coordinate of an arbitrarily chosen joint (joint 5) during the
path following. The plot shows a very good tracking of the corresponding
joint reference coordinates. In summary, the simulation results illustrate
that the proposed path following controller successfully steers the snake
robot towards and along the desired straight path.

8.6 Experimental Study: The Performance of the
Straight Line Path Following Controller

We have experimentally investigated the performance of the straight line
path following controller proposed in Section 8.2 by use of the snake robot
Wheeko, which was presented in Chapter 3. The experimental results are
presented in the following.

8.6.1 Implementation Issues

The joint coordinates of the simplified model (linear link displacements),
on which the path following controller is based, are different from the joint
coordinates of the physical snake robot (joint angles). However, it still
makes sense to employ the path following controller to control the physical
snake robot since, as implied by Property 4.8, the rotational link motion is
what produces the linear displacements captured by the simplified model.
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Figure 8.5: Simulation of straight line path following with the snake robot

initially headed away from the desired path.
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The simplified model describes the qualitative behaviour of a snake ro-
bot with revolute joints, and also approximates the quantitative behaviour
of the robot for some choice of the ground friction coefficients ci, ¢, c3,
and c4. However, no definite mapping exists between the ground friction
coefficients of a snake robot with revolute joints and the friction coefficients
c1 - ¢4. In other words, the values of ¢; - ¢4 that reflected the specific ground
friction conditions of the experiments were not know. Since c3 and ¢4 ap-
pear in the equations of the path following controller, we chose to treat
these coefficients as controller gains in order to implement the controller of
the physical robot.

The unspecified values of ¢; - ¢4 prevented us from determining the
coordinate transformation distance € in (8.14), which depends on ¢ and c4.
During the experiments, we therefore set this coordinate transformation
distance to € = 0, i.e. we measured the cross-track error as p, = p,. Note
that the value of € could anyhow be expected to be small based on the
interpretation of this parameter given in Section 8.2.3, which means that
measuring the cross-track error from the CM of the robot or from a point
located a small distance € away from the CM can be expected to produce
similar motion. Note also that since the e transformation is tangential to
the robot, the value of € has approximately no effect on the cross-track
error when the heading of the snake robot with respect to the path is close
to zero.

8.6.2 Implementation of the Path Following Controller of
the Physical Snake Robot

The experimental setup, which consisted of the snake robot Wheeko and
the camera-based position measurement system, is presented in Chapter 3.
The path following controller of the snake robot was implemented on an
external computer according to (8.17), (8.23), and (8.25). We did not im-
plement the joint torque controller given by (8.19) and (8.20) since accurate
torque control is not supported by the servo motors installed in the snake
robot. The joint angles were instead controlled according to a proportional
controller implemented in the microcontroller of each joint module. Note
that we can experimentally validate Theorem 8.2 without implementing
the joint controller in (8.19) and (8.20) since, as stated in Remark 8.9, the
global [C-exponential stability of the complete system only requires that the
error dynamics of the joints is exponentially stabilized.

The orientation § of the snake robot was estimated according to (2.2),
i.e. as the average of the individual link angles. Furthermore, the forward
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velocity 7y of the robot, which is needed to calculate the joint angle offset
n (8.25), was estimated at 0.5 Hz as the displacement of the CM of the
robot divided by the sampling interval (i.e. 2 s). The sampling interval
was chosen to be large to obtain a reasonably accurate velocity estimate,
but was sufficiently short for the experiments since the robot was moved at
a slow pace. As explained in Section 8.6.1, the coordinate transformation
distance in (8.14) was set to € = 0, i.e. we measured the cross-track error
as Tay = Dy-

The LOS angle 6, given by (8.23) was calculated with a look-ahead
distance A equal to half the length of the snake robot, i.e. A = 0.7 m. We
conjecture that this value is well above the lower limit of A given by (8.28).
The actual values of Vi, and Viax are not known a priori, and as noted in
Remark 8.6, specifying the bounds on A as a function of the gait pattern
parameters «, w, J, and ¢, remains a topic of future work. To ensure a
smooth control input, the LOS angle 6, was passed through a 3rd order
low-pass filtering reference model (see Appendix C.2). The parameters of
the reference model were set to w = 7/2 and ¢ = 1. The output from this
filter also provided the derivatives me and Gref, which are required in the
calculation of ¢, in (8.25). The evolution of the reference values from the
filter were calculated with a first-order numerical integration scheme.

The joint angle offset ¢, given by (8.25) was calculated with the gains
set to kg = 1, cg = 0.5 and ¢4 = 20. The friction coeflicients cg and ¢4 were
treated as controller gains, as explained in Section 8.6.1. We saturated the
joint angle offset according to ¢, € [—25°,25°] in order to keep the joint
reference angles within reasonable bounds with respect to the maximum
allowable joint angles of the physical snake robot. This saturation also
avoided the singularity in (8.25) at v; = 0 (see Remark 8.4). Furthermore,
to ensure that the joint angle offset was smooth despite of any steps in the
estimate of the forward velocity v, we filtered ¢, with a 1st order low-pass
filter with cutoff frequency at 1.25 Hz.

The reference angles corresponding to the horizontal joint motion of
the robot were calculated according to (8.17) with NV = 10 links and with
gait parameters o = 30°, w = 50°/s, and § = 36°. The reference angles
corresponding to the vertical joint motion were set to zero to achieve a
purely planar locomotion.

8.6.3 Experimental Results

The straight line path following controller was experimentally investigated
from three different sets of initial conditions. In the first trial of the ex-
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periment, the initial state of the snake robot was approximately ¢ = 0°,
0 =0° p, =0m, py = 1.3 m, vy =0°s, vy =0°/s, v, =0 m/s, and
v, =0 m/s, i.e. the snake robot was initially headed along the desired path
(the x axis) and the initial distance from the CM to the desired path was
1.3 m. In the second trial, the initial state of the snake robot was approx-
imately ¢ =0°, 6 =90°, p, = 0 m, p, =0.5 m, vy =0°/s, v9 =0°/s, v; =0
m/s, and v, =0 m/s, i.e. the snake robot was initially headed away from
the desired path (the x axis) and the initial distance from the CM to the
desired path was 0.5 m. In the third and final trial, the initial state of the
robot was approximately ¢=0°, =-90°, p,=0m, p,=0.9 m, v4=0°/s,
vg =0°/s, vy =0 m/s, and v,, =0 m/s, i.e. the snake robot was initially
headed towards the desired path (the z axis) and the initial distance from
the CM to the desired path was 0.9 m.

The experimentally measured motion of the snake robot from the first
trial is presented in Figures 8.6 and 8.7, from the second trial in Figures
8.8 and 8.9, and from the third trial in Figures 8.10 and 8.11. The desired
path, i.e. the global x axis, is indicated with a black line on the floor in the
pictures of the snake robot during the three trials.

The visualizations in Figures 8.6, 8.8, and 8.10 indicate that the snake
robot converged nicely towards and along the desired path during all three
trials. This claim is supported by the plots of the cross-track error in
Figures 8.7(b), 8.9(b), and 8.11(b), respectively, which show that the cross-
track error converges to and oscillates about zero. For a snake robot with
revolute joints, it is difficult to achieve a purely non-oscillating motion of the
CM, which was achieved in the simulation results based on the simplified
model in Section 8.5. We therefore expected the cross-track error to oscillate
about zero, as seen in the plots, rather than converge to zero.

Similar to the oscillatory behaviour of the CM, the heading @ of the
snake robot was also expected to oscillate. In particular, while 6 provides
an explicit representation of the heading in the simplified model, such a
representation is not available for a snake robot with revolute joints, which
forced us to estimate the heading according to 6, i.e. as the average of the
link angles (see Remark 6.2). The oscillatory behaviour of § was thereby
expected since the average of the link angles will not always be identically
zero during forward locomotion. The heading during the trials is shown
in Figures 8.7(c), 8.9(c), and 8.11(c), respectively, which clearly show that
0 oscillates nicely about the reference heading 0,¢r. In all three trials, the
heading converges to and oscillates about zero, i.e. the direction of the
desired path.
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The forward velocity of the robot during each trial is shown in Figures
8.7(d), 8.9(d), and 8.11(d), respectively. The variations in the velocity were
primarily caused by the joint angle offset ¢, during turning motion, which
sometimes interfered with the oscillatory body wave motion and caused the
robot to lose momentum.

The joint angle of an arbitrarily chosen joint (joint 5) during each trial
is shown in Figures 8.7(f), 8.9(f), and 8.11(f), respectively, which indicate
that the snake robot tracked its joint reference coordinates very well.

In summary, the proposed path following controller successfully steered
the snake robot towards and along the desired straight path during all three
trials of the experiment.

8.7 Simulation Study: The Performance of the
Waypoint Guidance Strategy

This section presents simulation results in order to investigate the perfor-
mance of the waypoint guidance strategy proposed in Algorithm 8.1. In
addition to simulation results from the simplified model of the snake ro-
bot given by (6.24), we also include simulation results from the complex
model (2.46) to show that the applicability of the guidance strategy does
not rely on the simplifications of the simplified model. Both models were
implemented in Matlab R2008b and the dynamics was calculated using the
ode45 solver in Matlab.

8.7.1 Implementation of the Guidance Strategy with the
Simplified Model

We considered a snake robot with N = 10 links of length [ = 0.14 m, mass
m = 1 kg, and moment of inertia J = 0.0016 kgm?. All initial state values
were set to zero. Furthermore, we chose the friction coefficients as ¢; = 0.4,
co = 2.2, c3 = 0.5 and ¢4 = 20.

The radius of the acceptance circle enclosing each waypoint was raccept =
0.5 m. The path following controller was implemented according to (8.17),
(8.19), (8.20), (8.23), and (8.25), and with the coordinate transformation
distance in (8.14) set to e = —19.8 cm. The controller gains were k¢ = 20,
kv, = 5, and kg = 0.06, and the gait parameters were o = 0.1 m, w = 70° /s,
and 6 = 40°. We chose the look-ahead distance as A = 1.4 m, which
corresponds to the length of the snake robot, and conjecture that this value
is well above the lower bound given by (8.28).
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Figure 8.6: The motion of the snake robot during path following with initial
heading along the desired path. The black line on the floor indicates the
desired path, i.e. the global = axis.
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Figure 8.7: Straight line path following with the physical snake robot ini-
tially headed along the desired path.
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Figure 8.8: The motion of the snake robot during path following with initial
heading away from the desired path. The black line on the floor indicates
the desired path, i.e. the global = axis.
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Figure 8.9: Straight line path following with the physical snake robot ini-
tially headed away from the desired path.
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Figure 8.10: The motion of the snake robot during path following with ini-
tial heading towards the desired path. The black line on the floor indicates
the desired path, i.e. the global = axis.
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Figure 8.11: Straight line path following with the physical snake robot
initially headed towards the desired path.
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The derivatives of O, and ¢, with respect to time, which are required
in (8.20) and (8.25), were calculated by using a 3rd order low-pass filtering
reference model (see Appendix C). The parameters of the reference model
were set to w = w/2 and ¢ = 1. The joint angle offset was saturated
according to ¢, € [—0.08 m,0.08 m| in order to avoid the singularity in
(8.25) at v, = 0.

8.7.2 Implementation of the Guidance Strategy with the
Complex Model

The ground friction in the complex model was defined by the viscous fric-
tion forces in (2.24) with friction coefficients ¢; = 0.55 and ¢, = 3. The
orientation @ and the forward velocity 7; were calculated according to (2.2)
and (2.5), respectively. Based on the argumentation given for the physical
snake robot in Section 8.6.2, the coordinate transformation distance € in
(8.14) was set to zero in the complex model (i.e. we measured the cross-track
erTor as p, = py).

The shape variables of the simplified model (i.e. the transversal distance
between the links) and the complex model (i.e. the joint angles) are differ-
ent. The controller parameters of the complex model were therefore scaled
to account for this difference. In particular, it is shown in Fig. 4.4 in Sec-
tion 4.9 that lateral undulation with o = 30° and ¢ = 40° will displace the
links transversally with amplitude of about 0.1 m. We therefore scaled the
controller parameters of the complex model with respect to the parameters
employed in the simplified model according to the scaling factor 30°/0.1

m. In other words, we set o = 30°, kg = 0.06 3076./1180 = 0.3, and saturated
the joint offset according to ¢, € [—0.08%9;,0.08%(_);] = [—25°,25°]. The

remaining controller parameters of the complex model were set equal to
the controller parameters of the simplified model.

8.7.3 Simulation Results

We defined k£ = 7 waypoints with global frame coordinates (3,0), (3,3),
(6,3), (6,6), (0,6), (2,3), and (0,0), respectively. Fig. 8.12 shows the mo-
tion of the CM of the snake robot from the simplified model (solid line)
and the complex model (dashed line), where each waypoint is indicated
with a black square. The figure also shows the shape and position of the
robot in green at t = 20 s, t = 90 s, and ¢t = 180 s for the simplified
model, and at t = 55 s, t = 125 s, and t = 235 s for the complex model.
Furthermore, Fig. 8.13 shows the cross-track error (in terms of the y axis
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coordinate of the CM of the robot), the heading angle, and the forward
velocity from the two models. The vertical lines in the plots indicate time
instants where the guidance strategy switches to the next waypoint. We
see that the state of the robot experiences a jump at each waypoint switch
since, by Algorithm 8.1, the global frame is redefined at a waypoint switch.

As seen in Fig. 8.12, the snake robot has a nice and smooth motion
towards each waypoint. The plotted paths, in particular the path near the
waypoint at coordinate (0, 6), indicate that the snake robot is able to turn
more rapidly in the complex model compared to the simplified model. The
qualitative behaviour of the two models are, however, similar. Fig. 8.13(a)-
(b) shows that the cross-track error converges nicely to zero after each
waypoint switch. The heading of the snake robot, shown in Fig. 8.13(c)-
(d), also converges nicely to zero, i.e. to the direction of the desired path.
In summary, the simulation results illustrate that the proposed waypoint
guidance strategy successfully steers the snake robot towards each of the
specified waypoints.

8.8 Chapter Summary

This chapter is summarized as follows:

e We have proposed a path following controller that enables snake ro-
bots to track straight paths.

e Using cascaded systems theory, we have proven that the proposed
path following controller K-exponentially stabilizes the snake robot
to any desired straight path (see Theorem 8.2).

e The proof relies on the assumption that the forward velocity of the
robot is contained in some nonzero and positive interval. Specifying
the bounds of this interval as a function of the gait pattern parameters
remains a topic of future work.

e We have investigated the performance of the path following controller
through simulations and through experiments with the snake robot
Wheeko, where the proposed controller was shown to successfully
steer the snake robot towards and along the desired straight path.

e We have described how the straight line path following controller can
be extended to path following of general curved paths by employing
an approach previously proposed in the marine control literature for
path following control of marine vessels.
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guidance.
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Figure 8.13: Simulation of the waypoint guidance strategy with the simpli-
fied (left) and the complex (right) model of the snake robot.



8.8 Chapter Summary 195

e We have proposed a waypoint guidance strategy for steering a snake
robot along a path defined by waypoints interconnected by straight
lines (see Algorithm 8.1).

e We have proven that the waypoint guidance strategy is guaranteed
to steer the position of the snake robot into the acceptance region of
each waypoint (see Theorem 8.3).

e We have presented simulation results that illustrated the successful
performance of the waypoint guidance strategy.
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Part 11

Snake Robot Locomotion in
Unstructured Environments






Chapter 9

Introduction to Part 11

The long-term goal of our research activities on snake robot locomotion is
to enable these mechanisms to move intelligently and efficiently in unknown
and unstructured environments (see Fig. 9.1). The second part of this thesis
is therefore devoted to snake robot locomotion in environments that are no
longer assumed to be flat, which is more in line with practical applications
of snake robots. The second part of the thesis is also in line with current
trends in robotic research, which aim at making robots more ‘aware’ of
their environment (e.g. for grasping and object manipulation purposes)
and enabling them to work in unknown and unstructured environments
(see EUROP/CARE, 2009). The results presented in Part II of this thesis

have been developed on the basis of the following fundamental hypothesis:

Hypothesis 9.1 Intelligent and efficient snake robot locomotion in un-
known and unstructured environments requires that the snake robot can
sense its environment and adapt its body shape and movements accordingly.

We can provide both theoretical and empirical justifications for Hy-
pothesis 9.1. A theoretical justification for the hypothesis follows from the
analysis in Chapter 4, which enables us to conclude that the fundamen-
tal control principle of snake robot locomotion is to produce body shape
changes that induce external contact forces whose sum points in the de-
sired direction of motion. Since controlled body shape changes for inducing
desired contact forces is equivalent to environment adaptation, and since
environment adaptation is not possible without sensing the environment in
some way, we have established a theoretical justification for Hypothesis 9.1.

An empirical justification for Hypothesis 9.1 follows from observations
of biological snakes in nature. As described in Bauchot (1994), the sensory
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Figure 9.1: Snake robot locomotion in an unstructured environment.

information transmitted by the skin of a snake influences the shape to which
the body adapts in a given situation. The body adaptation of snakes with
respect to external objects is studied analytically and empirically in Gray
(1946); Hirose (1993); Moon and Gans (1998). Environment sensing and
adaptation is, in other words, inherently present in the motion of any snake,
which serves as an empirical justification of Hypothesis 9.1.

Note that environment sensing and adaptation was not necessary in the
control design efforts of Part I of this thesis since the surface beneath the
snake robot was assumed to be flat, which allowed us to employ predeter-
mined gait patterns in open-loop without sensing the external forces.

It is implied by Hypothesis 9.1 that we recognize the interaction between
the snake robot and its environment as the propelling force. We also made
this recognition in Part I of this thesis. However, while ground friction rep-
resents the propelling forces during flat surface locomotion, the propelling
forces in Part IT will be contact forces from external objects (or obstacles)
in the environment of the snake robot. At this point in the discussion, we
are actually at the very core of the principle underlying snake robot locomo-
tion. In particular, by considering Hypothesis 9.1 at a glance, one realizes
that an interesting and unique feature of snake robot locomotion compared
to other forms of robotic mobility is that irregularities on the ground are
actually beneficial for the propulsion since they provide push points for the
robot. The word obstacle will be used in the following chapters to denote
an object or an irregular surface in the path of the snake robot that can
be utilized for propulsion. This may seem like a contradiction since it is, in
fact, not an obstacle from the point of view of the snake robot. However,
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the characterization is valid in the sense of mobile robotics in general. The
use of this denotation therefore helps emphasize one of the fundamental dif-
ferences between snake locomotion and other traditional means of mobility,
such as wheeled, tracked, and legged mobility. While in traditional mobile
robotics, the aim is typically to avoid obstacles, a snake robot should rather
seek out and make contact with obstacles since they represent push points
that can be utilized for more efficient propulsion. Hence, for snake robots,
the aim is not obstacle avoidance, but rather obstacle utilization. To fully
embrace this concept, the term obstacle-aided locomotion was previously
introduced by our research group in Transeth et al. (2008a).

We can now summarize the material in Part IT of this thesis as mod-
elling and control strategies for obstacle-aided locomotion. In accordance
with the scope of the thesis described in Section 1.4, we will maintain a
planar perspective throughout the remaining chapters, i.e. we consider the
motion of the snake robot to be purely horizontal on a surface with ver-
tical obstacles that induce horizontal contact forces on the robot. The
reason for only considering planar motion is, as explained in Section 1.4,
that we believe the essential control principles of snake robot locomotion
are contained in a planar perspective. In particular, since the fully three-
dimensional motion of a snake robot consists of motion components in a
horizontal and vertical plane, respectively, we conjecture that control laws
that fulfil some control objective in a planar perspective can be extended
to fulfil a similar control objective in a fully three-dimensional perspective.
Moreover, it makes no sense to attack the problem of three-dimensional
motion in an unstructured environment before the simpler case of planar
obstacle-aided locomotion is well understood.

We end this introductory text with a note on the literature review pre-
sented in Section 1.3. An interesting observation that can be made from
this literature review (one might even call this a paradox) is that the major-
ity of previous research on snake robots has focused on flat surface motion
even though the main advantage of snake robots are their potential ability
to move in unstructured environments. As described in Section 1.3, only
a few published works consider snake robot locomotion in situations where
the surface is no longer assumed to be flat. We therefore hope that the
material presented in the second part of this thesis addresses a small part
of the, in our opinion, large research gap that must be closed before we will
ever see useful snake robots outside the laboratory.
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Chapter 10

A Hybrid Model of Snake
Robot Locomotion in
Unstructured Environments

We begin the second part of this thesis by extending the model of the
snake robot presented in (2.34) to include contact forces from external
obstacles in the environment around the robot. Since the interaction with
an obstacle represents a discrete event that only occurs when a link of the
robot comes into contact with an obstacle, the snake robot will be subjected
to both continuous and discontinuous dynamics in this environment. We
will therefore describe the dynamics of the snake robot in terms of a hybrid
model by employing the hybrid modelling framework described in Goebel
et al. (2009).

An important difference between models of continuous dynamical sys-
tems, such as the model in (2.34), and models of hybrid dynamical systems,
is that while most continuous models always exhibit a unique solution to
the evolution of the state vector, a hybrid model may have a single solution,
several solutions, or no solution at all. For the hybrid model of the snake
robot, we will handle this existence and uniqueness issue by formulating the
equations governing the obstacle contact forces as a linear complementarity
problem (LCP). This formulation enables us to apply existing general re-
sults concerning existence and uniqueness of solutions to LCPs (see Cottle
et al., 1992) to the model of the snake robot.

A long-term goal of the model proposed in this chapter is to facilitate de-
velopment of model-based control laws for obstacle-aided locomotion with
provable stability properties. We will therefore make several simplifying
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assumptions during the modelling process so that the environment interac-
tion model maintains a simple and analytical form. In particular, we will
model the interaction with obstacles by introducing a wunilateral velocity
constraint on each contacted link of the snake robot. This approach simpli-
fies the equations of motion since the shape of the obstacles does not have
to be considered explicitly.

In order to illustrate the validity of the proposed modelling approach,
this chapter includes a simulation study where simulation results from the
proposed model of the snake robot are shown to agree well with simulation
results from a more extensive model of obstacle-aided locomotion previously
presented in Transeth et al. (2008a).

Contributions of this Chapter: The contribution of this chapter is the
hybrid model of a planar snake robot interacting with obstacles in its
environment. In contrast to the hybrid model presented in Transeth
et al. (2008a), which is based on a timestepping method that ap-
proximates trajectories of the hybrid system without tracking events,
the hybrid model presented in this chapter is based on event-tracking
(Schaft and Schumacher, 2000), where discrete events are tracked. We
believe the model formulation with this approach is better suited for
analysis and synthesis of model-based controllers. Modelling obstacle
interaction by introducing a unilateral velocity constraint on each con-
tacted link of the snake robot is a novel approach. In particular, the
conventional approach for modelling the obstacle interaction would
be to assume that the obstacle constraint force points in the normal
direction of the obstacle (see Brogliato, 1999). With the approach
described in this chapter, the shape of the obstacles does not have to
be considered explicitly as we instead calculate constraint forces with
respect to the normal direction of the contacted links, which simplifies
the equations of motion.

Organization of this Chapter: Section 10.1 gives a general presentation
of the hybrid modelling framework and also the linear complementar-
ity problem (LCP). The model of the snake robot without obstacles,
that was presented in Chapter 2, is reformulated in a slightly differ-
ent form in Section 10.2, and an overview of the contact modelling
approach is given in Section 10.3. The organization of the subse-
quent sections is illustrated in Fig. 10.1 to increase the readability
of this chapter. In particular, Section 10.4 describes the mechanism
for determining if a link is in contact with an obstacle, Section 10.5
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Section 10.4

New impact or detachment
between a link and an
obstacle?

Yes

Section 10.5

Continuous dynamics
during contact with
obstacles.

Section 10.6

Discontinuous dynamics
during impact or
detachment.

Section 10.7 The complete hybrid model.

Figure 10.1: The organization of this chapter.

presents the model of the continuous constrained dynamics of the ro-
bot during contact with a fixed set of obstacles, Section 10.6 presents
the model of the discontinuous dynamics of the robot when the set of
links in contact with obstacles changes, and Section 10.7 gives a uni-
fied presentation of the snake robot dynamics in terms of the hybrid
modelling framework. Simulation results that compare the hybrid
model with the model of obstacle-aided locomotion previously pro-
posed in Transeth et al. (2008a) are presented Section 10.8. Finally,
the chapter is summarized in Section 10.9.

Publications: The material presented in this chapter is based on the jour-
nal paper Liljebéck et al. (2010h) and the conference papers Liljebéick
et al. (2009a) and Liljebéck et al. (2010g).

10.1 Hybrid Dynamical Systems and Complemen-
tarity Systems

This section presents the framework employed in order to formulate the hy-
brid model of the snake robot, and also the linear complementarity problem
(LCP), which is instrumental in the modelling of obstacle contact forces in
this chapter.
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10.1.1 Modelling of Hybrid Dynamical Systems

A hybrid dynamical system is a dynamical system that exhibits both con-
tinuous and discontinuous state evolution. A snake robot interacting with
obstacles is a hybrid system since the impacts between the snake and the
obstacles represent discrete events.

Several modelling frameworks for hybrid systems exist, some of which
are presented in Schaft and Schumacher (2000). In this work, we have
chosen to employ the modelling framework described in Goebel et al. (2009)
since this framework captures a wide variety of hybrid phenomena, and it
also facilitates stability analysis of hybrid systems.

In accordance with Goebel et al. (2009), a hybrid system has a state
vector & € R™ that can both flow (evolve continuously) and jump (evolve
discontinuously). The data that determine the evolution of x is given by
the four elements (C, F, D, G), where C denotes the flow set, F denotes
the flow map, D denotes the jump set, and G denotes the jump map of the
hybrid system. Whenever the state & belongs to the flow set C, it flows
(or evolves continuously) according to F. During flows, the system acts
as an ordinary continuous dynamical system. However, when x belongs
to the jump set D, it generally jumps according to G to a new value =™
(superscript + and — denote ‘the next value’ and ‘the previous value’,
respectively). Hence, the general form of a hybrid dynamical system is
given by

t = F(z,u) forall ze C,

zt = G(z) forall ze€ D, (10.1)

where we have also included a control input, u € R™.

Ezistence and uniqueness of solutions is a very important issue when
modelling hybrid systems. From a given initial state, g, a hybrid system
may have a single solution, several solutions, or no solution at all. For a
general hybrid system, there are no easily verifiable necessary and sufficient
conditions for existence and uniqueness of solutions. However, such condi-
tions exist for special classes of hybrid systems, such as for complementarity
systems (see Section 10.1.2).

A hybrid system is simulated by letting the state vector x flow according
to the flow map F (z,u) as long as & € C. Whenever & € D, the state
vector jumps to the new value 1 according to the jump map G (z), and
the simulation of the flow map is restarted from the new initial value given
by . This approach for simulating hybrid systems is called event-tracking
(Schaft and Schumacher, 2000) since the discrete events of the model are
tracked.
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Remark 10.1 A note regarding the notation in this chapter.

We will employ boolean operators in the formulation of the hybrid model of
the snake robot to handle the discrete nature of the obstacle contact forces.
In particular, A denotes a logical AND operation, V denotes a logical OR
operation, N denotes the intersection of two sets, and U denotes the union
of two sets. For ease of notation, we will also often use , to denote the
logical AND operation. For example, the set S ={x|z> a,x < b} contains
all values of x that are greater than a AND less than b.

10.1.2 Complementarity Systems

A hybrid system is called a complementarity system if the flow of the sys-
tem states is constrained by a set of complementarity conditions (Schaft
and Schumacher, 2000). A complementarity condition between two scalar
variables requires that both variables are nonnegative and that their prod-
uct is always zero (i.e. one variable is always zero). In mathematical terms,
the complementarity condition between two scalar variables z and y can
be written x > 0Ay > 0 A xzy = 0. Two vectors € R™ and y € R™ are
said to be complementary if, for all i, the pair of variables (z;,y;) is subject
to a complementarity condition. We will see in Section 10.5 that we can
formulate complementarity conditions for the links of the snake robot that
are in contact with an obstacle.

The constraint equations of a complementarity system can often be for-
mulated as a linear complementarity problem (LCP). A LCP asks whether
there exist two complementary vectors £ € R™ and y € R™ such that

y=a+ Az,

z>0,y>0z"y=0, (10.2)

for a given vector @ € R™ and a matrix A € R™*™. The constraint

equations of the snake robot are given in this form in Section 10.5. The
following result is proved in Cottle et al. (1992):

Theorem 10.1 The LCP in (10.2) is uniquely solvable for all data vectors
a if and only if A is a P-matriz.

A P-matrix is a matrix whose principal minors are all positive. A prin-
cipal minor of the matrix A is the determinant of a square submatrix of A
consisting of the same set of rows and columns. A real symmetrical matrix
is a P-matrix if and only if it is positive definite. For a real symmetrical
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matrix, one can therefore apply the standard criteria for positive definite-
ness in order to check if the matrix is a P-matrix. If the matrix is not
symmetrical, one can e.g. apply the recursive algorithm proposed in Tsat-
someros and Li (2000), which is O (2™), in order to check if the matrix is a
P-matrix.

Several algorithms exist for solving the LCP in (10.2). A famous ap-
proach is the so-called Lemke’s algorithm (see e.g. Cottle et al., 1992), which
basically uses trial and error to find the non-zero elements of  and y, but
with clever rules for changing the non-zero elements between trials.

10.2 The Dynamics of the Snake Robot without
Obstacles

The hybrid model will be developed by extending the unconstrained (no
obstacles) model of the snake robot presented in (2.34). In this section, we
restate this model with two modifications. The first modification, which
concerns the ground friction model, is explained in Section 10.2.1. The
second modification, which involves a slight reformulation of the model to
a form which is more suitable for inclusion of obstacle contact forces, is
described in Section 10.2.2.

10.2.1 The Ground Friction Model

Since the goal of Part II of this thesis is to study snake robot locomotion
propelled by obstacle contact forces, we do not want the ground friction
forces to contribute to the propulsion since it would then be difficult to
know wether the robot is propelled by ground friction or by obstacle con-
tact forces. Consequently, Theorem 4.4 from Chapter 4 suggests that the
ground friction on the robot should be isotropic. We have considered vis-
cous ground friction in Part I of this thesis based on the argument stated
in Section 2.4.1, namely that the motion of the snake robot is qualitatively
similar with anisotropic viscous friction as with anisotropic Coulomb fric-
tion. With isotropic ground friction, however, this argument is no longer
relevant. We therefore choose to employ a Coulomb friction model in the
following since, as stated in Section 2.4.1, a Coulomb friction model is
more accurate from a physical point of view than a viscous friction model.
Moreover, to further increase the accuracy of the ground friction model,
we choose to also model the friction torque induced on a link due to the
rotation of the link.
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From the above discussion, we assume that each link of the snake robot
is subjected to an isotropic Coulomb ground friction force acting on the
CM of the link, and also a friction torque acting about the link CM. We
define the global frame friction force on link ¢ € {1,..., N} in the form of
(2.15) as

when |v;| >0

fri= [fR’“”'] :{ MGy (10.3)

’ fRy,i 0241 when |v;|=0 "~

where 1 > 0 is the Coulomb friction coefficient, g is the gravitational accel-
eration constant, and v; = [y, yz-]T is the velocity of link . We now define
the scalar value v; € R given by

1
= when |v; >0

5=d Wl W i 10.4

vi { 0 when |v;/=0" (104)

and also the diagonal matrix T' = diag (v1,0s,...,0n5) € RY*N which
enable us to express the friction forces on all links in the form of (2.16) as

I Rx:| [FX } 2N
= T = —um . | € R*. 10.5
fr Lc o pmg | s (10.5)

The friction torque about the CM of link ¢ is denoted by 7x; and is
produced by the friction forces acting normal to the link during link rota-
tion. As illustrated in Fig. 10.2, the friction force dfg; on an infinitesimal
mass element dm of link i due to the link rotation 6; produces a friction
torque drgr; about the CM of the link, which is given by

dTRr,; = sdfr; = s (—,ug - sgn (897) 'dm) , (10.6)

where s is the distance from the CM of link 7 to the mass element dm.
Using the relation dm = F;ds, the total friction torque on link ¢ can be

calculated as
l

1 .
TR = /dTR,i = —i,umgl - sgn (91) ) (10.7)
2

The global frame friction torque on all links can be expressed in matrix
form as

TR = —%umgl - sgn (9) , (10.8)

where Tp = [TR1,. .- ,TR,N]T e RN,



210 A Hybrid Model of Snake Robot Locomotion

Figure 10.2: The ground friction torque acting about the CM of each link.

10.2.2 The Equations of Motion without Obstacles

It follows directly from the equations of motion in (2.32) that the model of
a snake robot influenced by isotropic Coulomb ground friction forces on a
flat surface can be written as

M8 = ISyKf ., — 1CoKfp, — WO + 15+ DT, (10.9)
. T
.. Pz € fR x:| T
Nmp=Nm|"| = T =EK , 10.10
b [py] [eTfR,y Tn ( )

where 8 € RY and p € R? represent the N + 2 generalized coordinates of
the system, f p contains the Coulomb friction forces defined in (10.5), T
contains the friction torques defined in (10.8), and

Mg = JIy +mil’SyVSy+mi>CyVCy, ( )
W =mi?SyVCy — mi>Cy VS, (10.12)
v =AT (DD")"" A, (10.13)
K = A" (DDT) "' D. (10.14)

By introducing the configuration vector of the system

q= [ﬂ € RV*2, (10.15)

the model of the snake robot can be written compactly as
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where subscript ‘v’ denotes unconstrained since the motion is not con-
strained by obstacles, and where

-MG Onx1 Onxi
M(q) = |O1xy Nm 0 | e RNFx(VH2), (10.17)
_01><N 0 Nm
[1S)K  —1CyK WO +7p+D"u
ful@qu) =] €' Ounn |fp+ 0 (10.18)
_01><N el 0

10.3 Overview of the Contact Modelling Approach

The unconstrained dynamics of the snake robot given by (10.16) will be
extended in the following sections in order to include contact forces from
external obstacles in the environment of the robot (see section organization
in Fig. 10.1). We now describe the contact modelling approach in more
detail.

The planar environment of the snake robot consists of an arbitrary
number of external obstacles with circular shape. We consider circular
obstacles to simplify the process of detecting overlap between a link and
an obstacle, as described in Section 10.4. Note that this assumption is not
very restrictive since most objects can locally be approximated by circular
shapes. The friction coefficient between the snake robot and any obstacle
is denoted by p, > 0. Furthermore, we assume that the shortest distance
between the edges of any two obstacles is greater than the link length 2/ to
prevent contact on both sides of a link.

The interaction between a snake robot link and an obstacle is modelled
by introducing a unilateral velocity constraint for the link when it comes
into contact with the obstacle. The constraint is unilateral (acts in one
lateral direction only) since the constraint shall allow sideways motion of
the link away from the obstacle, but prevent any sideways motion towards
(and thereby into) the obstacle. As illustrated in Fig. 10.3, the interaction
model is somewhat similar to assuming that each contacted link is equipped
with tangentially mounted passive wheels with no-slip conditions. There
is, however, an important difference between the two situations illustrated
in Fig. 10.3 since the constraints introduced by the passive wheels act in
both lateral directions of the links (i.e. they are bilateral), while the con-
straints introduced by the obstacles are unilateral. Section 10.5.1 presents
the equations describing the unilateral constraints for all contacted links.
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Figure 10.3: The interaction model is similar to assuming that each con-
tacted link is equipped with passive wheels with no-slip conditions.

Remark 10.2 [t was noted at the very end of Section 4.3.2 that links with
anisotropic ground friction properties (where the normal direction friction
coefficient is much larger than the tangential direction coefficient) are sim-
tlar to links equipped with tangentially mounted passive wheels with no-slip
conditions. The comparison in Fig. 10.3 is therefore particularly interesting
since it implies that the phenomenon that propels a snake robot forward due
to the anisotropic ground friction properties of the links is similar to the
phenomenon that propels a snake robot forward due to the interaction of the
links with external obstacles. We will use this observation in Chapter 12
as an argument for continuing to consider lateral undulation motion also
in environments with obstacles.

The obstacle contact force on link ¢ € {1,..., N} consists of two orthog-
onal components, which are illustrated in Fig. 10.4. The first component
is the constraint force, f.; € R?, acting in the normal direction of link i
and away from the obstacle (parallel to the local y axis of link ). The
second component is the obstacle friction force, f, ; € R?, acting in the
tangential direction of link 7 and in the opposite direction of the tangential
link velocity (parallel to the local x axis of link 7).

We assume that an obstacle contact force (i.e. the constraint force and
the friction force from the obstacle) acts on the CM of a link only. Fur-
thermore, we disregard any contact torque about the CM of the link. This
simplifies the equations of motion considerably and does not have any sig-
nificant influence on the overall motion of the robot when the length of the
links is small.

During sustained contact with a fixed set of obstacles, we will show in
Section 10.5 how the problem of calculating the resulting obstacle contact
forces can be formulated as a LCP, which was introduced in Section 10.1.2.
By solving the LCP, we calculate the forces on the CM of the contacted
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Total contact

force\

fC,i
wnk velocity

External
obstacle

Figure 10.4: The obstacle contact force on link ¢ consists of the normal di-
rection constraint force, f.;, which acts normal to the link, and the friction
force, f, i, which acts in the tangential link direction.

links that are needed to satisfy the unilateral velocity constraints imposed
on each contacted link. These contact forces are then added to the equations
of motion in (10.16) in order to cancel out the applied forces acting against
the constraints. This represents the dynamics of the snake robot during
continuous constrained motion.

When a link (that was previously not in contact with an obstacle) comes
into contact with an obstacle, an impact occurs. We assume all impacts to
be completely inelastic, meaning that the normal direction velocity of the
link is completely absorbed during the impact. Furthermore, we assume
all impacts to be instantaneous. During an impact, the contacted link
is subjected to an impulsive constraint force in the normal direction of
the link which instantaneously changes the normal direction link velocity
in order to prevent it from continuing into the obstacle. This represents
the discontinuous impact dynamics of the snake robot. We assume that
the configuration g of the snake robot, which was defined in (10.15), is
unaltered during an impact. We also assume that the obstacle friction forces
cannot display impulsive behaviour, which means that we will disregard
obstacle friction forces during an impact. Similar to the calculation of
the continuous constraint forces, we will show in Section 10.6 that the
problem of calculating the impulsive constraint forces during an impact
can be formulated as a LCP. It will be seen in Section 10.7 that an impact
triggers a jump in the state of the hybrid snake robot model.

The above description of the contact modelling approach is summarized
by the following set of assumptions:

Assumption 10.1 All obstacles have a circular shape.
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Assumption 10.2 The distance between the edges of any two obstacles is
greater than the link length 21.

Assumption 10.3 The friction coefficient between the snake robot and any
obstacle is p, > 0.

Assumption 10.4 An obstacle contact force acts on the CM of a link only.
The link length is small so that contact torques about the link CM are neg-
lvgible.

Assumption 10.5 Impacts between the snake robot and the obstacles are
completely inelastic.

Assumption 10.6 All impacts are instantaneous in time and all impact
forces are impulsive.

Assumption 10.7 During an impact, the configuration q of the snake ro-
bot remains unaltered, while the velocity ¢ will generally experience a jump.

Assumption 10.8 Obstacle friction forces are negligible during an impact.

Remark 10.3 The common approach when modelling mechanical systems
with unilateral constraints is to calculate the direction of a constraint force
with respect to the normal direction of the constraint surface (see Brogliato,
1999), i.e. the normal direction of the obstacles in this case. With the ap-
proach taken in this chapter, the shape of the obstacles does not have to
be considered explicitly as we instead calculate the constraint forces with
respect to the normal direction of the contacted links. This simplifies the
equations of motion. Note that these two approaches produce similar con-
straint directions when the end point of a link is not in contact with an
obstacle. To verify this, consider a snake robot link in contact with a circu-
lar obstacle. Since the link is tangent to the obstacle, the normal direction
of the link and the obstacle must be equal. When the end point of a link,
.e. a joint, 1s in contact with an obstacle, however, both links attached to
the joint are in contact with the obstacle. The approach in this chapter will
then produce a normal constraint force on both links attached to the joint.

Remark 10.4 A consequence of modelling obstacle contact by a unilateral
force on the contacted link, is that there is nothing preventing the foremost
link (the head) of the snake robot from penetrating an obstacle head-on along
its tangential direction. Furthermore, a consequence of Assumption 10.4 is
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that a link in theory can rotate ‘into’ an obstacle while its CM has zero
normal direction velocity. These two consequences are results of the goal of
keeping the mathematical model as simple as possible, but are not critical
i practice. In particular, head-on collisions with the head of the snake
robot can be avoided through the control strategy, e.g. by assuming that the
head is equipped with distance sensors that enable the robot to actively avoid
head-on collisions with obstacles. Link rotations “into’ an obstacle may only
occur to a very small extent during obstacle-aided locomotion since this is
mostly a forward gliding type of motion.

10.4 Detection of Obstacle Impacts and Detach-
ments

The planar environment of the snake robot consists of k£ circular obstacles
indexed by j € {1,...,k}. The global coordinates of the centre of obstacle
7 is denoted by (:z:oj,yoj). The set O; of points occupied by obstacle j is
given by

0, = {(az,y)l(:c—xoj)2+(y—yoj)2§R2oj}, (10.19)

where Ro; is the radius of obstacle j. By studying Fig. 2.1, it is easily seen
that the set L; of points occupied by link ¢ € {1,..., N} is given by

L; ={(z,y) |x =z + scosb;,y = y; + ssinb;,s € [-1,1]}, (10.20)

where (z;,y;) and 6; are the CM coordinates and angle of link 4, respectively.
A collision between link 7 and obstacle j occurs whenever L;NO; # (), where
() denotes an empty set. There is no collision if L; N O; = .

We now introduce a vector of contact parameters, o = |a, . . ., aN]T S
RN, The contact parameter of link 4, denoted by a; € {—1,0,1}, is a
discrete state value that determines if the link is in contact with an obstacle
and also on which side of the link there is contact. As shown in Fig. 10.5,
a; = 1 when the obstacle constraint force points along the positive link y
axis, while o; = —1 when the obstacle constraint force points along the
negative link y axis. We set o; = 0 when link ¢ is not in contact with
an obstacle.Whenever link ¢ impacts an obstacle, we update the contact
parameter «; according to «; = (i), where the scalar function « (i) is

defined by

~ e\ global T .
a(i) = —sgn | [0,1] (Rlink’i > min }rLi’Oj , (10.21)

je{l,.k
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Oti=1

(Xo0;,Yo;)

Figure 10.5: The value of the contact parameter of link ¢ is a; = 1 when
the constraint force points along the positive link y axis, and o; = —1 when
the constraint force points along the negative link y axis. We set a; = 0
when there is no contact.

where 71, 0, € R? is the vector from link i to obstacle j, and Rﬁflz ?1 was

defined in (2.3) as the rotation matrix from the global frame to the local
frame of link 4. In (10.21), the global frame vector from link i to the closest
obstacle is first found by use of the min operator, which is assumed to find
the vector with the smallest Fuclidean norm. Subsequently, this vector is
transformed to the frame of link ¢ using the rotation matrix ngil;’lz ?1. Finally,
the y component of this vector is extracted using the vector [0, 1|. The sign
of the y component determines on which side of the link the obstacle is

located.

10.5 The Continuous Dynamics of the Snake Ro-
bot during Constrained Motion

In this section, we present the model of the continuous constrained dynam-
ics of the snake robot during sustained contact with a fixed set of obstacles.
The section consists of three parts. In particular, Section 10.5.1 presents
the equations describing the unilateral velocity constraints for the links that
are in contact with an obstacle, while Section 10.5.2 presents the resulting
equations of motion of the snake robot under the assumption that the ob-
stacles are frictionless (u, = 0). The equations of motion where obstacle
friction is present (u, > 0) are derived in Section 10.5.3. Note that the
discontinuous dynamics occurring when the set of contacted links changes
is treated in Section 10.6.
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10.5.1 The Unilateral Constraints from the Obstacles

With reference to Fig. 10.5, the unilateral velocity constraint imposed on
link ¢ during contact with an obstacle may be compactly expressed as

QiUn i Z 0, (10.22)

where «; is the contact parameter of link ¢ and vy, ; is the normal direction
velocity of link ¢, i.e. the velocity of the CM of link ¢ in the direction of
the local link y axis. This constraint prevents sideways link motion towards
(and thereby into) the obstacle. Using (2.3), the velocity constraint is given
in the global frame as

a; (—2;sin@; + y; cos ;) > 0, (10.23)

where (Z;,7;) and 0; are the CM velocity and angle of link i, respectively.
Hence, using notation from Section 2.3, the unilateral velocity constraints
for all links may be expressed in matrix form as

diag(a) (~S,X + CyY) = 0. (10.24)

By inserting (2.12) into (10.24) and rearranging we get
diag(a)C (q) ¢ > 0, (10.25)
where g € RV*2 was defined in (10.15) and C(q) € RV*(NV+2) is given by
C(q) = [-1(SeK"Sy+ CoK' Cy),—sinb,cos 0] . (10.26)

We denote the number of contacted links by m € {0,1,..., N}. In order
to easily select the velocity constraints from (10.25) that correspond to
contacted links, we define a selection matriz S, (a) € R™*N | which simply
contains the m rows from the matrix diag(a) € RY*N that contain a
nonzero element. With this selection matrix, we can write the velocity
constraints for all links that are in contact with an obstacle as

Clg.)q>0, (10.27)

where C(q,a) = S, (a) C(q) € R™*(N+2),
The calculation of the obstacle contact forces in the next subsection
requires the time derivative of the matrix C (q, ), which is given by

C(g,a)=S.(a) [z (sgk’ce - ce”ic’s,,) ,—Cy0, —seé] ., (10.28)
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where K = diag()K”™ — KT diag(f). Note that this derivative is only
valid over intervals where the set of contacted links remains constant. The
derivative of C (g, @) is not defined for time instants where an element of
« is changed.

The following rank property of the constraint matrix C is important in
order to uniquely determine the contact forces acting on the snake robot
(see Section 10.5.2).

Property 10.1 The matriz C has full rank (rank (6) =m) for all (q, ).

Remark 10.5 Due to the complexity of the elements in C, it is difficult to
present a purely mathematical proof that Property 10.1 holds. However, we
can argue from a physical perspective that this property must hold. Assume
that rank (6) < m. This implies linear dependence between some of the m
rows of C, i.e. there must exist a row of C, denoted C;, such that

Ci= )  kC, (10.29)
je{lv'” 7m}\{l}

where kj € R. The scalar C;q is the magnitude of the normal direction
velocity of link i, denoted by vy i|. Multiplying (10.29) by q therefore gives

il =Cig= " > kjlongl, (10.30)
je{lv'”vm}\{i}

which states that the normal direction velocity of link i can be written as a
linear combination of the normal direction velocities of all other contacted
links of the snake robot. From a physical perspective, such a dependence
could never occur unless all links are parallel since the couplings between
the link wvelocities are given in terms of both normal and tangential link
velocities. In particular, (2.7) in Section 2.8 implies that the velocity of
link i can be written in terms of the velocities of link i — 1 and link i + 1.
Unless link i — 1, i, and i + 1 are parallel, this is a relationship involving
both the normal and tangential velocities of link i — 1 and link ¢ + 1. This
contradicts (10.30) since the relationship in (10.30) only contains normal
direction velocities. This leaves the case of parallel links (61 = 03 = --- =
On) as the only way for (10.30) to be true. A straightforward calculation
of C in e.g. Matlab Symbolic Toolbox shows that C always has full rank
when the link angles are equal. We can therefore conclude that C never
drops rank.
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This subsection can be summarized as follows. At any given time in-
stant, the snake robot is in contact with m obstacles. The interaction
between the robot and these m obstacles is modelled by imposing the uni-
lateral velocity constraints in (10.27) on the m contacted links.

10.5.2 The Constrained Dynamics of the Snake Robot with-
out Obstacle Friction

We will now use the unilateral velocity constraints in (10.27) to derive the
resulting equations of motion of the snake robot. We assume that the
m contact points between the links and the obstacles have already been
established, i.e. we consider the continuous contact dynamics of the snake
robot over a time interval where the set of contacted links remains fixed.
We first consider the frictionless case in this subsection, followed by contact
forces with friction in the next subsection.

Let us first assume that the m velocity constraints on the snake robot
in (10.27) are bilateral, i.e. that they are given by

Cg=0, (10.31)

These are called Pfaffian constraints and are modelled by adding a term to
the equations of motion in (10.16) as follows (see Goldstein et al., 2002):

Mig=f,+C A (10.32)

The term C A ensures compliance with the imposed velocity constraints,
where A € R™ is a vector of scalars known as Lagrange multipliers (Gold-
stein et al., 2002). The Lagrange multipliers are important because mul-
tiplier A; equals the magnitude of the constraint force that ensures com-
pliance with the jth constraint. This means that if the jth constraint in
(10.31) corresponds to the velocity constraint on link 4, then A; equals the
magnitude of the constraint force f; acting on link 3.

We now argue that (10.32) also represent the equations of motion of the
snake robot when the velocity constraints are unilateral, as in (10.27). This
is quite obvious since the influence of a unilateral constraint on the snake
robot when this constraint is active (i.e. when the unilateral constraint
is preventing sideways motion of a link) must necessarily be identical to
the influence that the corresponding bilateral constraint would have. In
other words, the nature of the constraint (i.e. unilateral or bilateral) is
not apparent when the constraint is active since it is only active in one
direction at a time. The only difference between the bilateral and unilateral
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case concerns the calculation of the constraint forces given by A. In the
bilateral case, one may calculate A directly by differentiating (10.31) with
respect to time, inserting (10.32), and solving for A. In the unilateral
case, however, the constraint forces must be calculated so that they comply
with the directional requirements of the constraints, i.e. we require that
A > 0. This means that the constraint forces can only point away from the
obstacles.

We will now handle this directional requirement by employing the theory
of linear complementarity problems (LCPs) introduced in Section 10.1.2.
This approach is based on the work in Lotstedt (1982). The key obser-
vation is that the normal direction velocity of a contacted link and the
corresponding constraint force are subjected to a complementarity condi-
tion. If the normal direction velocity is non-zero (i.e. the link is moving
away from the obstacle), then the corresponding constraint force must be
zero. Likewise, the normal direction velocity must be zero if the corre-
sponding constraint force is non-zero. This complementarity condition also
applies to the normal direction acceleration of a contacted link and the
corresponding constraint force.

From the above discussion, the equations of motion of the snake robot
that include unilateral constraint forces from frictionless obstacles are given
by

Mg=f,+C X\ (10.33)

Cg>0, x>0, \XI'Cg=o. (10.34)

The vector C§ € R™ contains the normal direction velocity of each con-
tacted link in the direction away from each obstacle. The normal direction
acceleration of each contacted link in the direction away from each obstacle,
denoted by @, € R™, is given by

an

~ = (Cd) = Cij+ Cg>o. (10.35)
By solving (10.33) for ¢ and inserting into (10.35), we finally arrive at the
following model of the continuous contact dynamics of the snake robot with
frictionless obstacles:

Mi=f,+C A (10.36)

—  _ FAas—1 . Amar—1~T
a, >0, A>0, A'a,=0.

Equation (10.37) is in the form of the general LCP given in (10.2) with
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A=CM™'C" and a = éM_lfu + C¢q. In order to calculate the dy-
namics of the snake robot at any given time instant, this LCP must be
solved for the unknowns @, and A subject to the complementarity condi-
tions. The calculated A gives the constraint forces from the obstacles and
is plugged into (10.36) in order to calculate §.

In order to determine the existence and uniqueness properties of the
LCP in (10.37), we will need the following result, which is proved in Bern-
stein (2009) (Proposition 8.1.2, item wiii):

Proposition 10.1 Let M € RV*N pe ¢ symmetrical and positive definite
matriz (M > 0), and C € R™N be a matriz of full rank (rank (C) = m).
Then CM CT > 0.

We can now state the following result concerning the existence and
uniqueness properties of the LCP in (10.37):

Theorem 10.2 The LCP in (10.37) always has a unique solution (@, A).

Proof. From Theorem 10.1, the proof is complete if we can show that
A = CM'C" is a P-matrix. Since C has full rank (by Property 10.1)
and M = M7 >0 (the inertia matrix is always symmetrical and positive
definite), we have from Proposition 10.1 that A = CM~C" > 0. Since
A is symmetrical and positive definite, it must also be a P-matrix. This
completes the proof. m

Remark 10.6 The LCP in (10.37) can be regarded as the problem of, at
a given time instant, determining which obstacle contacts that will persist
onto the next time instant, and which will not. A link contact will persist
onto the next time instant if the corresponding value of A is non-zero. If,
howewver, the value of @, for a link contact is non-zero, then the link will
detach from the obstacle.

10.5.3 The Constrained Dynamics of the Snake Robot with
Obstacle Friction

We employ a Coulomb friction model in order to describe the gliding friction
force between the links and the obstacles. In accordance with Fig. 10.4, we
define the obstacle friction force on link i as

f/,,L,Z‘ — |:fu,af,i:| = —u, |:COS 02:| sgn ('Ut,z‘) ‘fqi} ’ (1038)

flhyﬂ‘ Sin 61
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where p, > 0 is the Coulomb friction coefficient of the obstacles, |f c,i‘ is
the magnitude of the obstacle constraint force acting on link ¢, and v ; is
the tangential direction velocity of link 4, i.e. the velocity of the CM of link
1 in the direction of the local link x axis. The obstacle friction forces on all
the links can be expressed as

fu= [Fe] = [§] s cen ozt 1039)

sy

T N -
where f, . = [f,hx’l, e ’-f,u,x,N] eR™and f,, = [-f,u,y,l’ o ’-f,u,y,N] c
RN contain the obstacle friction forces on the links in the global 2 and
fc,NHT € RY contains the

magnitude of the constraint force on each link, and v; = [vy1,..., v, N]T €
RY contains the tangential link velocities in the local z direction of each
link.

The mapping between the friction forces and the acceleration of the con-
figuration vector ¢ is identical to the mapping between the ground friction
forces f p and § given in (10.18) since f r and f, both act on the CM of
the links. By using the easily verifiable relation |f,| = |S. (a)|* A, where
S (a) is the selection matrix introduced in (10.27) and A is the vector of
Lagrange multipliers introduced in (10.32), we may write the accelerations
due to the obstacle friction forces, temporarily denoted ijfu, as

y direction, respectively, |f.| = Hf el

geeey

iy, = —HoAN, (10.40)

where A € RINVFT2)Xm ig given by

ISyK —ICyK
Alg, g ) = | e’ O1xn [Se} diag (sgn (v)) |Se (a)|7 . (10.41)
O1xn el o

By adding (10.40) to the equations of motion in (10.36) and following the
exact same approach that led to the LCP in (10.37), we get the following
equations describing the continuous contact dynamics of the snake robot
that include obstacle friction forces:

Mg=f,+ (ET - MOA> A, (10.42)

a@,=CM'f, +6q +CM! <€T — uOA) A,

_ N (10.43)
anZO, AZO, Aan—o.
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We again identify (10.43) as a LCP of the general form given in (10.2) with

A= éM_l(éT — u,A) and a = CM~'f , + Cqg. When obstacle friction
is present (1, > 0), we can no longer guarantee existence and uniqueness
of the solution to the LCP in (10.43) since it is no longer evident that the
matrix A is a P-matrix (A is no longer symmetrical, which complicates
the P-matrix check). This existence and uniqueness issue is a general and
well-known problem for acceleration LCPs that include Coulomb friction
(see e.g. Brogliato, 1999; Lotstedt, 1981; Mason and Wang, 1988; Song et
al., 2000; Trinkle et al., 1997). Due to the complexity of determining if A is
a P-matrix, we are unable to provide an analytical upper bound of p, that
must be satisfied to guarantee existence and uniqueness of the solution to
the LCP in (10.43). However, we can still state the following result:

Theorem 10.3 For a given (q, g, ), there exists a u > 0 such that the
LCP in (10.43) has a unique solution (G, X) for p, € [0, k).

Proof. Recall from Section 10.1.2 that A = CM ! (CT — ,uOA> is a P-

matrix if all principal minors of A are positive. We know from Theorem 10.2
that the LCP in (10.43) always has a unique solution for p, = 0 since A is a
P-matrix in this case. All principal minors of A must therefore be positive
for pu, = 0. Assume now that we increase p, until a principal minor of A
becomes zero, and denote the corresponding value of the friction coefficient
by @} > 0. It is then evident that the P-matrix property of A must be
preserved for p, < uy, i.e. existence and uniqueness of the solution to the
LCP in (10.43) must hold for p, < p}. This completes the proof. m

Remark 10.7 During our numerical treatments of the LCP in (10.43) so
far, we have not yet encountered a single instance where A has failed to be
a P-matrixz. We therefore conjecture that pu, must have an unrealistically
high value in order for A to no longer be a P-matriz, and that the LCP in
(10.48) will always be uniquely solvable during our simulations of the snake
robot.

Remark 10.8 Asimplied by Theorem 10.1, the matriz A being a P-matrix
is only required to guarantee existence and uniqueness of the solution to a
LCP for all data vectors a. The LCP in (10.43) may therefore have a
unique solution for a given (q, q, o) even if A is not a P-matriz (Cottle et
al., 1992).
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10.6 The Discontinuous Dynamics of the Snake
Robot during Obstacle Impacts and Detach-
ments

In this section, we present the model of the discontinuous dynamics of
the snake robot occurring when the set of links in contact with an ob-
stacle changes. We first present the dynamics during obstacle impacts in
Section 10.6.1, followed by the dynamics during obstacle detachments in
Section 10.6.2.

10.6.1 The Discontinuous Dynamics of the Snake Robot
during Obstacle Impacts

By Assumption 10.5, an inelastic impact occurs when a link (that was
previously not in contact with an obstacle) comes into contact with an
obstacle. By Assumption 10.6, the impact is instantaneous in time and the
resulting impact forces are impulsive, resulting in a discontinuous jump in
the velocity of the snake robot. Following an approach in Brogliato (1999),
we model the impact as

M (qu) q+ -M (qi) qg = Fimpulsm (1044)

where Fiypuse € RN*2 denotes the generalized impulsive impact forces
and q~, ¢, g, and ¢ denote the generalized coordinates and velocities
immediately before and after the impact, respectively. This superscript
notation is commonly used when modelling hybrid systems, as described in
Section 10.1.1. By Assumption 10.7, the configuration of the snake robot
is unaltered during an impact (¢* = ¢~ ). This means that M (q~) =
M (g*) = M (q). By Assumption 10.8, the impact forces are frictionless.
Following the same argumentation that led to the expression in (10.36), we
can now rewrite (10.44) as

M(q) (4" —¢)=C (ga*)A, (10.45)

where A € R™ is a vector of impulsive constraint forces. Note that the
constraint matrix C, which was defined in (10.27), depends on the contact
parameter vector after the impact, i.e. at. This is because the contact
parameter of the impacted link is zero immediately before the impact (i.e.
if link ¢ impacts an obstacle, then «; = 0). In order to include this link in
the impact dynamics, we must calculate C based on the value of oy after
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the impact, i.e. aj = & (i), where & (4) is given by (10.21). Note also that
C(q,a™) € RUDxIN+2) while C (g, a™) € R™*(N+2),

We will now calculate the impulsive constraint forces A and the post-
impact velocity ¢* by following an approach presented in Schaft and Schu-
macher (2000). The post-impact velocity and the impulsive constraint
forces are naturally subjected to the same complementarity conditions as

given in (10.34). We therefore have that
C(q,at)gt >0, x>0, AMI'C(q,a™) ¢ =0. (10.46)
Solving (10.45) for ¢* and premultiplying by C (q,a™) gives
Cqgt=Cq +CMIC" . (10.47)

Denoting the normal direction velocities of each of the contacted links (in
the direction away from each obstacle) by the vector v, € R™, we may
combine (10.46) and (10.47) into the following LCP describing the impact
dynamics of the snake robot:

v =v; + CM~'C' A\,

10.48
v, >0, A>0, Xwf=o0. (1048)

The LCP in (10.48) is in the general form of the LCP given in (10.2) with
A=CM'C" and a = v,,, and must be solved for the unknowns o,
and A. Subsequently, the post-impact velocity is found by solving (10.45)
for ¢© and inserting the calculated X. The following result concerns the

existence and uniqueness properties of the LCP in (10.48):
Theorem 10.4 The LCP in (10.48) always has a unique solution (U,7, X).

Proof. The proof is identical to the proof of Theorem 10.2. m

This subsection is now summarized. The discontinuous impact dynam-
ics of the snake robot when link ¢ impacts an obstacle and the state imme-
diately before the impact is (q*, q, of), is given by

9 = q, (10.49a)
it = ¢ +M (g T (g at)A, (10.49b)
v a (i) when j=i

& = { o; when jF#i’ (10.49¢)

where j € {1,...,N}, a(7) is given by (10.21), and X is calculated from
the LCP in (10.48).
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10.6.2 The Discontinuous Dynamics of the Snake Robot
during Obstacle Detachments

If, at any time instant, the normal direction acceleration vector @, in the
solution to the LCP in (10.43) contains a non-zero element, then the link
corresponding to this non-zero element will accelerate away from the obsta-
cle, meaning that the link will detach from the obstacle. The detachment
dynamics is trivial compared to the impact dynamics since it only involves
setting the contact parameter of the detached link to zero. In other words,
whenever a; # 0 and the collision detection mechanism described in Sec-
tion 10.4 detects that link ¢ no longer overlaps with an obstacle, then the
state of the snake robot is updated according to the discontinuous detach-
ment dynamics given by

g = q, (10.50a)
G = ¢, (10.50Db)
0 when j=1
-
& = { o; when j#i’ (10.50¢)

where j € {1,...,N}.

10.7 The Complete Hybrid Model of the Snake
Robot in an Obstacle Environment

In this section, we employ the framework of hybrid dynamical systems,
which was described in Section 10.1.1, in order to encapsulate the con-
tinuous dynamics from Section 10.5 and the discontinuous dynamics from
Section 10.6 into a single hybrid model, or a hybrid plant. We will denote
the hybrid model as a plant to distinguish it from a hybrid controller that
we will present in Chapter 12. In the following subsections, we first present
the jump set D,, jump map Gy, flow set C,, and flow map F, of the
plant, followed by a summary of the hybrid plant in the last subsection.
We define the state vector of the hybrid plant as

q
r=|q| e R¥NT (10.51)
(8%
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10.7.1 The Jump Set

A jump in the state vector x of the plant occurs when a link impacts
an obstacle (jump in ¢ and ) or when a link detaches from an obstacle
(jump in a). By employing the notation from Section 10.4, the jump set
corresponding to an impact between link ¢ and an obstacle may be expressed
as

D' —{2|L;N0; # 0,5 € {1,...,k},a(i) C;g <0},  (10.52)

where « (i) is given by (10.21) and C; denotes the ith row of the matrix
C (g) in (10.26). We use « (i) instead of oy; in (10.52) because a; = 0 before
the impact has taken place. The jump set corresponding to link ¢ detaching
from an obstacle may be expressed as

DYt = {2|L; N Oj = 0,5 € {1, - ,k},a; #0}. (10.53)

The jump sets comprising the impacts and the detachments of all the links,
respectively, are given by

i

ac Impact stac
Dlmpuct —_ | U Dgnpac , DDomch — | U D]gictah_ (10'54)
i€{1, N} ie{l,,N}

The complete jump set of the hybrid plant may now be compactly expressed
as

Dp — DImpact U DDetach' (1055)

10.7.2 The Jump Map

The jump map corresponding to the tmpact between link ¢ and an obstacle is
presented in (10.49), while the jump map corresponding to link i detaching
from an obstacle is presented in (10.50). By combining (10.49) and (10.50),
the complete jump map of the plant can be expressed as

zt=G,(z)=|¢"| forall ze D, (10.56)
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where
9 = q, (10.57a)
ol Impact

st g +M (g C (qat)X when zc D'™P 10.57h

1 { q when x ¢ DImpaCt( 0.57b)
o (Z) when e Dlmpact

of = 0  when x € DDe”"h ) (10.57c¢)
a; when z¢ ( ILTP‘M U DDetd‘h)

The value of @ (i) is given by (10.21) and A is calculated from the LCP in
(10.48).
10.7.3 The Flow Set

We define the flow set of the plant so that the state vector x always flows
as long as the jump set is empty. The flow set is therefore given as

C, = {z|z ¢ D,}. (10.58)

10.7.4 The Flow Map

The flow map of q is simply ¢ and the flow map of ¢ is given by (10.42).
The contact vector a remains unchanged between jumps of «, which means
that the flow map of a is the zero vector. The complete flow map of the
plant is given by

q
t=F,(x,u)=| ¢ for all x € C), (10.59)
Onx1
where .
§=M" (fu(g.qu)+(C" - pA)A), (10.60)

and A is calculated from the LCP in (10.43).

10.7.5 Summary of the Complete Hybrid Plant

In accordance with Section 10.1.1, the complete hybrid model of the plant
is written
& = Fy(xz,u) forall zeC,,

zt = Gp(z) forall xe€ D,. (10.61)
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The evolution of the state vector of the plant has the following existence
and uniqueness properties:

Theorem 10.5 Given a control input u, the evolution of the state x of
the hybrid plant in (10.61) from any initial state can always be uniquely
determined when the obstacles are frictionless (u, = 0). With obstacle
friction, there exists a ) > 0 such that existence and uniqueness of the
evolution of x is quaranteed for u,, € [0, ), but not guaranteed for j, > u’.

Proof. From (10.58), the flow and jump set are mutually exclusive, so
we can always uniquely determine whether x should flow or jump. By
Theorem 10.4, the jump map of x is always unique. By Theorem 10.2, the
flow map of x is always unique with frictionless obstacles. By Theorem 10.3,
there exists a p) > 0 such that the flow map of x is always unique when
i, € [0, u%). This completes the proof. m

10.8 Simulation Study: Comparison of the Hy-
brid Model with Previous Experimental and
Simulation Results

In order to investigate the validity of the hybrid plant proposed in (10.61),
we have compared simulation results from this hybrid plant with exper-
imental and simulation results presented in Transeth et al. (2008a). The
simulator of the hybrid plant in (10.61) was implemented in Matlab R2008b
on a laptop running Windows XP. The continuous dynamics of the plant
was calculated with the ode45 solver in Matlab with a relative and absolute
error tolerance of 1073,

The work in Transeth et al. (2008a), which was described in Section 1.3,
presents experimental results of obstacle-aided locomotion and also simula-
tion results from a model developed based on the framework of nonsmooth
dynamics. The joints of both the physical and the simulated snake robot in
Transeth et al. (2008a) were controlled according to the gait pattern lateral
undulation that was defined in (4.32). In particular, joint ¢ of the snake
robot was controlled according to the reference

Gj et = asin (wt + (1 —1)9), (10.62)

with ¢ € {1,...,N — 1}, a = 40°, w = 80°/s, and § = 50°. Furthermore,
the parameters characterizing the snake robot in Transeth et al. (2008a)
were N = 11, [ = 0.061 m, m = 0.682 kg, and J = 0.0013 kgm?. Obstacles
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of diameter 25 cm were placed in accordance with the expected motion
of the robot (see Transeth et al. (2008a) for details). We implemented
the plant in (10.61) in accordance with the above parameters and set the
control input w according to the joint controller in (4.33) to control the
joints of the robot according to (10.62) with k, = 20 and k; = 5.

The experimental and simulation results from Transeth et al. (2008a)
are reprinted in Fig. 10.6, while the corresponding simulation results from
the hybrid plant proposed in this chapter are presented in Fig. 10.7. We
see that there is a close resemblance between the results from Transeth et
al. (2008a) and the simulation results based on the plant in (10.61). The
y direction amplitude in Fig. 10.6(b) and Fig. 10.7(b) are slightly different
because the model in Transeth et al. (2008a) also considers the width of each
link, while the model in this chapter assumes the width to be infinitesimal.
In our opinion, the simulation results support the conjecture that, despite
its simplifying assumptions, the model proposed in this chapter captures the
essential part of the dynamics of a snake robot interacting with obstacles.

10.9 Chapter Summary

This chapter is summarized as follows:

e We have proposed an isotropic Coulomb ground friction model that
also considers the ground friction torque on the links. The uncon-
strained (no obstacles) model of the snake robot with this new friction
model is given in (10.16).

e We have extended the unconstrained model in (10.16) to include con-
tact forces from external obstacles in the environment around the
robot. In particular:

— Under Assumption 10.1 - Assumption 10.8 presented in Sec-
tion 10.3, the motion of the snake robot is constrained according
to the velocity constraints in (10.27) when one or several snake
robot links are in contact with obstacles.

— The continuous constrained dynamics of the snake robot during
sustained contact with a fixed set of obstacles is described by
(10.36) when the obstacles are frictionless, and by (10.42) when
obstacle friction is present.
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:

(a) The experimental (top) and
simulated (bottom) robot motion.

Yo [m]

-0.2F

6 8 10
(b) time [s]
(b) The experimentally measured (solid line)
and simulated (dashed line) position of link 6.

Figure 10.6: A reprint of Figures 14 and 15 from Transeth et al. (2008a),

which show experimentally measured and simulated lateral undulation in
an environment with obstacles.
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Y [m]

Y [m]

Y m]
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Y [m]

Time [s]

(b) The simulated position of link 6.

Figure 10.7: Simulation of lateral undulation in an environment with ob-
stacles based on the hybrid model presented in this chapter. The simulated
scenario is similar to the scenario shown in Fig. 10.6.



10.9 Chapter Summary 233

— Calculation of the constrained dynamics without obstacle friction
requires us to solve the LCP in (10.37). By Theorem 10.2, this
LCP always has a unique solution.

— Calculation of the constrained dynamics with obstacle friction
requires us to solve the LCP in (10.43). By Theorem 10.3, there
always exists a non-zero scalar p); > 0 such that this LCP has a
unique solution when the obstacle friction coefficient p, satisfies
0 < p, < ps. We were unable to derive an analytical expression
for p}.

— The discontinuous impact dynamics of the snake robot occurring
when a link (that was previously not in contact with an obsta-
cle) comes into contact with an obstacle is described by (10.49),
which requires us to solve the LCP in (10.48). By Theorem 10.4,
this LCP always has a unique solution.

— The discontinuous detachment dynamics of the snake robot oc-
curring when a link detaches from an obstacle is described by
(10.50).

— The complete hybrid model of a planar snake robot in an envi-
ronment with obstacles is given by (10.61).
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Chapter 11

Development of a
Mechanical Snake Robot for
Obstacle-Aided Locomotion

In this chapter, we describe the development of the snake robot Kulko,
which is shown in Fig. 11.1. While the snake robot Wheeko, described in
Chapter 3, was used as the experimental platform in Part I of this thesis,
Kulko serves as the experimental platform in Part II. The joint modules
of Kulko are covered by contact force sensors to allow the robot to sense
its environment, and spherical shells that give the robot a smooth outer
surface, thereby allowing slithering (gliding) motion in unstructured envi-
ronments. In the following, we will detail the design and implementation
of the robot, and present experimental results that validate the function of
the contact force measurement system.

Contributions of this Chapter: Previous snake robot design efforts have
given very limited attention to the exterior gliding surface of such ro-
bots, and to methods for enabling snake robots to sense their environ-
ment (see literature review in Section 1.3). The contribution of this
chapter is therefore the design of a spherical-shaped joint mechanism
for a snake robot that 1) allows the joint modules to be covered by
shells, thereby giving the robot a smooth outer surface independently
of how the joints are flexed, and that 2) allows contact force sensors
to be installed underneath the shells, thereby enabling the robot to
sense its environment. To our best knowledge, this is the first reported
snake robot that can measure the magnitude of external forces applied
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Figure 11.1: The snake robot Kulko developed for locomotion in unstruc-
tured environments.

along its body. This chapter also proposes an alternative strategy for
contact force sensing, which has the advantage that the sensor system
can be well protected inside the snake robot.

Organization of this Chapter: We provide an overview of the snake ro-
bot design in Section 11.1, followed by a description of the exterior
gliding surface, the force measurement system, and the power and
control system in Sections 11.2, 11.3, and 11.4, respectively. Sec-
tion 11.5 presents an experimental investigation of the contact force
measurement system, while Section 11.6 describes the setup of the
motion control experiments that have been carried out with the ro-
bot. An alternative approach to contact force sensing is outlined in
Section 11.7. Finally, the chapter is summarized in Section 11.8.

Publications: The material in this chapter is based on the journal papers
Liljebéck et al. (2010€), Liljebéck et al. (2010k), and Liljebéck et al.
(2011e), and on the conference papers Liljebiéck et al. (2009d) and
Liljebéck et al. (2010¢).

11.1 Overview of the Snake Robot Design

As we stated in Hypothesis 9.1, snake robot locomotion in an unstructured
environment requires that the snake robot can sense its environment, which
can be achieved by equipping the robot with contact force sensing capabil-
ities along its body. A force sensing system for a snake robot is challenging
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since the robot is articulated. In particular, the force sensing capabilities of
the robot should be maintained independently of how the joints are flexed,
which represents a significant design challenge.

Enabling a snake robot to glide forward in an unstructured environ-
ment requires that the body of the robot is sufficiently smooth, i.e. free
of obstructive features. In particular, irregularities along the body may
potentially induce large friction forces on the robot that obstruct the glid-
ing motion. Obtaining a sufficiently smooth surface combined with contact
force sensing along the articulated body is challenging.

The idea behind the design of Kulko, which was conceived with the
above challenges in mind, is to encapsulate each joint module by a spherical
shell that gives the joint a smooth outer surface independently of how the
joint is flexed. Contact force sensing is thereby achieved by mounting force
sensors underneath each spherical shell. As shown in Fig. 11.1, the complete
snake robot consists of a serial connection of 10 identical ball-shaped joint
modules. The smooth exterior surface and the force sensing capabilities of
the robot are maintained independently of how the joints are flexed.

Since the scope of this thesis is planar snake robot locomotion (as ex-
plained in Section 1.4), Kulko was primarily developed to study obstacle-
aided locomotion on a horizontal surface with vertical obstacles, which
corresponds to the environment captured by the hybrid model proposed
in Chapter 10. As a result, the contact force sensor system of Kulko was
implemented to primarily measure horizontal contact forces, even though
the design can be modified to measure contact forces of arbitrary direction.

In order to study obstacle-aided locomotion, we required Kulko to be
propelled solely by contact forces from external obstacles. To this end, we
deliberately designed the snake robot to have isotropic ground friction prop-
erties by making the shells completely smooth. Had we designed the robot
with anisotropic friction properties (e.g. by making shells with grooves to
produce larger friction forces in the normal direction of the body), the ef-
ficiency of the motion would have been improved according to the analysis
in Section 4.3. However, we then would have been unable to know if the
robot was propelled by obstacle contact forces or by the propulsive ground
friction forces produced due to the anisotropic friction property.

In the following sections, we describe the various components of Kulko
in more detail. The joint actuation mechanism of Kulko is identical to the
actuation mechanism of Wheeko, and is therefore described in Chapter 3.
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Figure 11.2: Left: The upper and lower hemispherical shell of a joint mod-
ule. Right: The smooth gliding surface along the snake robot.

11.2 The Exterior Gliding Surface

The smooth exterior gliding surface of Kulko is obtained by covering each
joint module by two hemispherical shells, as shown in Fig. 11.2. Each
hemispherical shell is 1.5 mm thick, weighs 42 g, and has an outer diameter
of 140 mm. The shells were moulded from a plastic material.

As illustrated to the left in Fig. 11.3, four aluminium plates (indicated
with a red colour) are bent around the joint in order to support the shells
and also to allow for contact force measurements. Each shell is attached to
the joint mechanism by two screws, as shown to the right in Fig. 11.3. The
locations of the attachment screws define the top and bottom of the snake
robot, respectively. The splice between the two hemispherical shells lies in
the horizontal plane. The shells have a slit on each side corresponding to
the range of motion of the connection points to the two neighbouring joints.

Note that an even more smooth exterior surface can be obtained by in-
stalling a thin hollow cylinder of e.g. a plastic material between each joint
module. This approach is illustrated in Fig. 11.4, but has not been imple-
mented on Kulko since it was not necessary for the experiments reported
in this thesis.

11.3 The Contact Force Measurement System

11.3.1 Assumptions Underlying the Sensor System

As explained in Section 11.1, the main goal of Kulko is to demonstrate
obstacle-aided locomotion on horizontal surfaces with vertical obstacles.
The design described in the following therefore assumes that all contact
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Mounting screws for shell

Figure 11.3: Left: The four curved aluminium plates (with red colour) used
for mounting force sensors. Right: The pair of screws for attaching the shell
to the joint mechanism.

Smoothing cylinder

Figure 11.4: Installing a thin cylinder between each joint module will fur-
ther smoothen the exterior surface of the snake robot.
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forces are applied at the sides of the joint and not at the top or bottom.
This assumption affects the placement of the contact force sensors. Note
that the design can be modified to measure contact forces of arbitrary
direction. However, these modifications are not considered in this thesis.

We require the contact force measurement system to provide informa-
tion about contact forces with respect to the macroscopic shape of the
snake robot. Information about the specific location of an applied contact
force within a single joint module is not believed to be of significant inter-
est during obstacle-aided locomotion since the location of a force within a
single joint module only has a minor effect on the motion compared to the
location of the force with respect to the overall shape of the robot. This
means that the sensor system is only required to determine the magnitude
of a contact force and also at which side of a joint module it is applied,
but not the specific location where the force is applied on the outer shell.
It should be noted that information about the force location within a joint
module could be extracted from the force measurements by relating the
magnitude of the measured forces to the relative placement of each sensor.

Since the location of the contact force with respect to the shell is not
determined by the sensor system, it will not be possible to determine the
exact direction of the contact forces. However, we conjecture that it will be
adequate to approximate the direction of any contact force as being normal
to the macroscopic shape of the snake robot at the location where the force
is applied. This approach is in line with the contact modelling approach of
the hybrid model presented in Chapter 10.

11.3.2 The Sensor System Setup

A set of force sensing resistors (FSRs) are used to measure the external
contact forces applied to each joint module. A FSR is a polymer thick
film device that exhibits a decrease in electrical resistance when the force
applied to the active surface area of the sensor increases. Due to effects such
as hysteresis, a FSR is not suited for precision measurements. However,
we conjecture that obstacle-aided locomotion with a snake robot does not
require very precise force measurements, which, combined with their low
cost and ease of use, make FSRs suitable as a force sensor for snake robots.

The FSR chosen for Kulko has a diameter (active sensor area) of 13
mm and is shown to the left in Fig. 11.5. The right of Fig. 11.5 shows
the placement of the FSRs on the curved aluminium plates covering each
joint. A small cotton pad (3 mm thick) is placed over each FSR in order
to distribute the applied force across the entire active area of the sensor.
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FSR with cotton pad

Figure 11.5: Left: FSR (force sensing resistor) used to measure contact
forces. Right: FSRs covered by cotton pads mounted to a joint module.

Four FSRs are placed at each side of a joint module in order to be able
to measure horizontal contact forces, as explained in Section 11.3.1. There
are, in other words, eight FSRs mounted to each joint module. The exact
placement of the FSRs around the joint is not critical since, as explained
in the next subsection, the magnitude of the contact force is estimated by
simply summing the contact forces measured by each FSR.

Note that the hemispherical shells enclosing the sensors are not com-
pletely rigid, i.e. the shells are, to some extent, deformable. This, combined
with the deformability of the cotton pads placed over each FSR, means that
there is compliance between the sensors and the location of an applied force.

The controller board for the joint, which is described in Section 11.4,
contains a set of identical voltage divider circuits for measuring the resis-
tance through the FSRs. The circuit diagram for the voltage divider circuit
is shown in Fig. 11.6. The voltage Vapc, where ADC denotes analog to dig-
ital converter, is the FSR measurement signal and is given as a function of
the variable resistance Rpggr across the FSR.

11.3.3 Calculation of Contact Forces

The force vs. resistance characteristic of a FSR is extremely nonlinear.
However, as shown in Fig. 11.7, there is a near linear relationship between
the conductance (1/resistance) of a FSR and the force applied to it. The
measurements in the figure are indicated by ‘*’ and were carried out by
placing an FSR on a digital scale. We used the scale to measure the force
applied to the FSR while simultaneously measuring the electrical resistance
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Figure 11.6: The voltage divider circuit used to measure the resistance
through the FSR.

through the FSR. A linear curve approximation to these measurements is
plotted with a solid line in Fig. 11.7. The linear curve approximates the
relationship between the force Frsgr applied to a FSR as a function of its
conductance Grsr and resistance Rpsr. Based on the measurements, the
expression for this linear curve was estimated as

18.9

Frsr = 18.9 - Gpsg = Resn

(11.1)

A simple mapping may now be derived between the FSR measurement
voltage in Fig. 11.6, Vapc, and the estimated applied force, Frsg. The
measurement voltage is given by

Vapg = ——————4.5. (11.2)

Solving (11.1) for Rpsr, inserting into (11.2), and solving for Frgr give

4.5 — Vapc
F = ——-18.9. 11.3
FSR 8.2Vanc ( )

As explained in Section 11.3.2, each side of the joint mechanism is equipped
with four FSRs. Since the spherical shell covering the joint mechanism is
only in contact with the internal structure of the joint through the FSR
measuring points, the magnitude of an external contact force applied to
the joint may be estimated by simply summing the forces measured at each
FSR. Note that the attachment of the shells causes the shells to induce
a constant pressure on the force sensors even when there are no external
forces acting on the shells. This produces a constant force offset which
we subtract from the force measurements, and which we calculate as the
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Figure 11.7: The measured conductance (1/R) of the FSR as a function
of applied force (measurements indicated by ‘*’). The solid line shows the
linear curve approximation to these measurements.

average force during the first second after the snake robot is powered up.
We denote the four FSR measurements on the left side of the joint by
FrsR jeft,15 --» FFSR Jeft,4, the measurements on the right side of the joint by
FysR right,15 --» FFSR right,4, and the force offset on the left and right side of
the joint by Flef offset and Fright offset, respectively. Consequently, we can
estimate the total external forces, Fiefp and Fyign, applied to the left and
right side of the joint, respectively, as

4

Fieft = (ZFFSR,left,i> - F‘left,offsem (114&)
=1
4

Fight = (ZFFSR,right,i> — Flight offset - (11.4b)
=1

11.4 The Power and Control System

Motion control and supply of power to the components of each joint module
are handled by three custom-designed circuit boards installed in each joint
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Figure 11.8: The three custom-designed circuit boards located in each joint
module. Top left: Microcontroller card that controls the joint mechanism.
Top right: Battery charger card. Bottom: Motor power supply card.

module. These circuit boards are shown in Fig. 11.8 and are described in
the following subsections.

11.4.1 The Power System

Fig. 11.9 illustrates the flow of power to the various components of a joint
module. Each joint is powered by two serially connected Lithium Ion bat-
teries from A 123Systems of the type ANR26650M1. The batteries produce
a supply voltage of about 6.6V at a capacity of 2.3Ah. The batteries were
chosen due to their ability to deliver high currents (rated at 70A continuous
discharge current) and also their short charge time (rated at 15 min charge
time at 10A charge current). In particular, the two Hitec servo motors
driving each joint (see Section 3.1) draw high current pulses each time the
motor direction changes rapidly. Had the power system not been able to
deliver such high currents, then the system voltage would drop and reset
the microcontroller card each time the motor direction changes rapidly.
Each battery is charged by an individual battery charger card shown
at the top right in Fig. 11.8. The charging is automatically initiated by
applying an external voltage to the external power connectors located at
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Figure 11.9: The flow of power to the components of a joint module.
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Figure 11.10: Left: The head of the snake robot. Right: The tail of the

snake robot.
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Figure 11.11: The data flow between the modules of the snake robot.

the tail of the snake robot (see the right of Fig. 11.10). Each battery is
connected in series with a relay, which is controlled by a power off button
also located at the tail of the snake robot.

The motor power supply card, shown at the bottom of Fig. 11.8, supplies
power to the two servo motors driving each joint. This card converts the
voltage supplied by the battery charger card to the motor voltage (6 V). The
voltage supplied by the battery charger card is either the battery voltage
(when external power is disconnected) or the external voltage.

11.4.2 The Control System

The data flow between the components of the snake robot is illustrated
in Fig. 11.11. Motion control of each joint module is handled by the mi-
crocontroller card shown to the top left in Fig. 11.8, which is based on the
Atmel microcontroller AT90CAN128. This card continuously reads angular
measurements from the two magnetic encoders (see Fig. 3.3 in Section 3.1)
and also contact force sensor data from the FSRs (see Fig. 11.5). This card
also generates PWM pulses that control the two servo motors driving each
joint module. The card has a CAN bus interface for communicating with
the other modules of the snake robot.

The brain (or head) of the snake robot, which is shown to the left in
Fig. 11.10, contains the same microcontroller card that controls the motion
of the joints. The brain card is responsible for sending joint reference
angles to all joint modules over the CAN bus. The joint reference angles
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Figure 11.12: The remote controller and the receiver used for demonstrating
the snake robot.

are calculated on an external computer in accordance with any desired
control strategy and sent to the brain card via a wireless connection based
on Bluetooth. The refresh rate for the two reference angles of each joint
module is about 20 Hz.

For simple demonstration purposes (not for experimental purposes), the
snake robot can also be manually controlled with a commercially available
radio transmitter (the DXb5e developed by Spektrum), which is shown in
Fig. 11.12. The receiver of the radio controller is connected to the brain
card, which calculates joint reference angles based on the input from the
radio controller. The mapping from radio control input to the resulting
joint reference angles will not be detailed here as it is not relevant to the
experiments reported in this thesis.

As shown to the left in Fig. 11.10, the head of the snake robot is
equipped with a small wireless camera and two IR distance sensors (Sharp
GP2D120). These sensors have not been employed in the experiments re-
ported in this thesis, but are intended for future experiments where the
goal is to prevent the head from colliding with obstacles in its path.

11.5 The Performance of the Snake Robot

In this section, we present experimental results that validate the function
of the contact force measurement system. We also show the ability of the
snake robot to display different motion patterns.
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Figure 11.13: The experimental investigation of the contact force measure-
ment system of Kulko.

11.5.1 Experimental Validation of the Contact Force Mea-
surement System

The force measurement system of Kulko was experimentally investigated
as shown in Fig. 11.13. In particular, we placed the robot against a wall
(to prevent it from rolling over) so that the left side of the robot was facing
upwards. Loads with different weights were then dragged backwards along
the part of the snake robot facing upwards (i.e. the left side), while each
joint module estimated the applied contact forces according to (11.4) at a
sampling frequency of 10 Hz. The joint modules reported the measured
forces over the CAN bus to the brain module, which redirected these mea-
surements to an external computer over the wireless Bluetooth connection.

Three different loads weighing 1350 g, 2750 g, and 4300 g, respectively,
were dragged from the head and backwards along the snake robot. The
resulting force measurements at joint 4, joint 5, and joint 6 (joint 1 is the
foremost module) are shown in Fig. 11.14(a)-(c), respectively. In theory,
the amplitude of each force curve should be 13.5 N, 27.5 N, and 43 N,
respectively, for the three different loads. Despite some deviations, the
measured forces agree well with the weight of the loads. As described
in Section 11.3.2, a FSR is not suitable for precision measurements, and
consequently, some deviations were expected. However, we conjecture that
obstacle-aided locomotion with a snake robot primarily requires the ability
to detect a contact force and also, to some extent, assess the magnitude
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of this force. The experimental results indicate that the proposed sensor
setup is able to meet these requirements.

Note that an ideal sensor system would produce a linear horizontal curve
corresponding to the weight of the load being dragged along the snake body.
Since the plots of the measured forces are instead given as peaks, it is clear
that the sensor system does not measure forces between the joints very
well. However, we do not consider this to be a critical issue in order to
demonstrate obstacle-aided locomotion, especially not if the obstacles are
large compared to the size of each joint module.

11.5.2 Demonstration of Motion Patterns

Some of the motion capabilities of Kulko are demonstrated in Fig. 11.15.
In Fig. 11.15(a), the snake robot conducts sidewinding across a flat surface.
This is a sideways motion produced by propagating both horizontal and
vertical body waves backwards along the snake (see e.g. Transeth et al.,
2008b). In Fig. 11.15(b), the snake robot conducts lateral rolling, which
is a rolling motion produced by continuously creating a U-shape with the
snake body that tips over to one side (see e.g. Mori and Hirose, 2002).

In summary, we conjecture that the motion capabilities of the snake
robot are satisfactory and adequate in order to demonstrate obstacle-aided
locomotion.

11.6 The Experimental Setup of the Snake Robot

The motion control experiments carried out with Kulko are reported in
Chapter 12 and Chapter 13. These experiments were carried out on a
black horizontal surface measuring about 100 cm in width and 200 cm in
length. As shown in Fig. 11.16, circular obstacles were placed around the
robot. The location of each obstacle could easily be changed by means of
a grid of mounting holes in the floor. The friction coefficient between the
floor and the robot, denoted by u, and the friction coefficient between the
obstacles and the robot, denoted by u,, were found experimentally to lie
between 0.2 and 0.3. Note that the physical environment of the snake robot
corresponds to the environment captured by the hybrid model proposed in
Chapter 10.

The horizontal position of the snake robot during the experiments was
measured by mounting black circular markers to the snake robot, as shown
to the right in Fig. 11.16, and then tracking these markers by use of the
camera system shown to the left in Fig. 11.16. This camera system is
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(c) Forces measured with a load weighing 4300 g.

Figure 11.14: Forces measured by joint 4 - 6 when three different loads were
dragged along the snake robot.
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(b) Kulko conducting lateral rolling across the floor.

Figure 11.15: Demonstration of the motion capabilities of Kulko.
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Figure 11.16: The experimental setup. Three cameras mounted in the
ceiling measured the position of the snake robot in a course with obstacles.

identical to the camera system used in the experimental setup of Wheeko,
and is described in more detail in Section 3.4.

11.7 An Alternative Approach for Measuring Ex-
ternal Contact Forces

We end this chapter by proposing an alternative strategy for environment
sensing based on force measurements. With respect to Kulko, this alterna-
tive approach leads to a simpler instrumentation system. The idea behind
the approach was, however, conceived after the development of Kulko. An
experimental validation of the approach is therefore a topic of future work.

The idea is simply to calculate the external forces on each link of the
robot based on measurements of the joint constraint forces that occur at the
connection between the links. As illustrated in Fig. 11.17, a major advan-
tage of this approach is that external forces on each link can be determined
based on force measurements conducted inside the robot. In particular,
the top of Fig. 11.17 illustrates force sensing based on direct measurement
of the external forces acting on each link, which basically requires that the
sensing area covers the link completely. Kulko is based on this force sensing
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Figure 11.17: Top: Sensor area required for direct measurement of external
forces. Bottom: Sensor area required for calculating external forces based
on internally measured joint constraint forces.

principle. Force sensing based on measured joint constraint forces, on the
other hand, only requires instrumentation at the locations of the joints,
and all the instrumentation can be well protected inside the joint modules.
This alternative approach, which is illustrated in the bottom of Fig. 11.17,
simplifies the development of the physical coverage of a snake robot since
the coverage can be developed more or less independently of the contact
force sensor system. Techniques for measuring the joint constraint forces,
of which there are many, remain a topic of future work.

To verify that the external forces on the snake robot indeed can be
determined from the joint constraint forces, we investigate the force balance
for the links. The force balance of a link which is not in contact with
an obstacle is given by (2.25). During contact with an obstacle, the link
is additionally influenced by an obstacle constraint force and an obstacle
friction force, as described in Section 10.3. The force balance of link i €
{1,..., N} can therefore be written as

ma; =fp;,+Ffci+Fui+hi—hia, (11.5)

where m and @; = [%;, gjl-}T € R? are the mass and translational acceleration,
respectively, of link i, f p; € R? is the ground friction force, f i € R? is the
constraint force from any external obstacle, f,, ; € R? is the obstacle friction
force, h; € R? is the joint constraint force from link i+1, and —h;_; € R? is
the joint constraint force from link ¢ — 1. With the alternative force sensing
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approach, the joint constraint forces h; and h;_; are measured. The sum
of the external forces on link 7, which we denote by f . ; € R?2, can thereby
be calculated as

Fexti =Fri T fcitFui=mai—hi+hi, (11.6)

which is given solely from the measured joint constraint forces when the
velocity of the link is zero or constant so that a; = 0. Moreover, since
snake locomotion is usually a smooth gliding form of locomotion with slowly
varying link velocities, we conjecture that (11.6), with @; set to zero, also
in general will provide a good approximation of f . ;. Alternatively, the
estimate of f.. ; can be improved by also measuring d;, which is easily
achieved by installing a small acceleration sensor inside each link.

11.8 Chapter Summary
This chapter is summarized as follows:

e We have presented the design of the snake robot Kulko, which was
developed for the purpose of experiments related to obstacle-aided
locomotion in unstructured environments.

e The robot consists of 10 identical joint modules covered by contact
force sensors (to allow the robot to sense its environment) and spher-
ical shells that give the robot a smooth outer surface (to allow slith-
ering motion in unstructured environments).

e The internal structure of Kulko is identical to the internal structure
of the snake robot Wheeko, which was described in Chapter 3.

e We have presented experimental results that validate the function of
the contact force measurement system, and also demonstrated some
of the motion capabilities of the robot.

e We have proposed an alternative strategy for contact force sensing
which is based on measuring the joint constraint forces at the connec-
tion between the links. The advantage of this approach is that the
sensor system can be well protected inside the snake robot.



Chapter 12

Hybrid Control of
Obstacle-aided Locomotion

In direct accordance with Hypothesis 9.1, we propose in this chapter a
control strategy that enables a snake robot to propel its body forward by
active use of the interaction with obstacles in its environment. This form of
propulsion is called obstacle-aided locomotion and was introduced in Chap-
ter 9. Obstacle-aided locomotion represents an interesting control problem
for which previous research is very limited. The literature review presented
in Section 1.3 clearly shows that a large majority of control strategies pro-
posed for snake robots so far assume that the environment of the robot is
flat. In fact, the works in Bayraktaroglu (2008); Bayraktaroglu and Blaze-
vic (2005); Hirose (1993) present, to our best knowledge, the only known
control strategies related to obstacle-aided locomotion. We believe control
strategies for snake robots that consider environment interaction are im-
portant since the main advantage of these mechanisms are their potential
ability to move in unstructured environments.

The difference in complexity between flat surface locomotion, which
was considered in Part I of this thesis, and obstacle-aided locomotion is
significant. Unlike flat surface locomotion, where we know that periodic
body waves will propel a snake robot forward under anisotropic ground
friction conditions, there exists no clear intuition as to how we can control
a snake robot so that it is propelled forward by obstacle contact forces.
One obvious and major challenge is that we do not know in advance how,
when, and where the snake robot will make contact with its environment.
A second major challenge is to develop a general strategy for adjusting
the shape of the robot so that forward propulsion is achieved in any given
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contact situation.

Our proposed solution to this problem is simple and, in many ways,
obvious. Since we know that the obstacle contact forces are what propel
the robot forward, and since the obstacle contact forces act in the normal
direction of each link (see Section 10.3), forward propulsion must obviously
be achieved due to the normal direction contact forces on the links. From
this observation, we state the following hypothesis:

Hypothesis 12.1 Obstacle-aided snake robot locomotion is achieved by
producing body shape changes where the links in contact with obstacles are
rotated so that the components of the contact forces in the desired direction
of motion are increased.

In order to investigate this fundamental control principle, we will in
this chapter introduce the concepts of jam detection and jam resolution. A
snake robot which moves in an unstructured environment without taking
the environment interaction into account, is likely to become jammed be-
tween the obstacles in its path. We will show that a control strategy based
on the control principle in Hypothesis 12.1 is efficient for resolving such
jams and maintaining the propulsion of the snake robot. Since a jam of the
robot can be regarded as a discrete event, we will employ a hybrid formula-
tion in the control strategy similar to the formulation of the hybrid model in
Chapter 10, i.e. we will propose a hybrid controller. The performance of the
controller will be illustrated with simulation results and with experimental
results based on the snake robot Kulko. In Chapter 13, the control princi-
ple in Hypothesis 12.1 will be employed to propose a more general control
law that combines environment adaptation with path following capabilities
in an unstructured environment.

Contributions of this Chapter: The contribution of this chapter is a
hybrid controller for obstacle-aided locomotion aimed at resolving sit-
uations where the snake robot is jammed between obstacles. Included
in this contribution is the control principle proposed in Hypothe-
sis 12.1. We strongly believe that this control principle is applicable
also in the general case of three-dimensional snake robot locomotion.
The concept of detecting and resolving snake robot jams has, to our
best knowledge, not been treated in previous literature, but is a gen-
uine challenge during snake robot locomotion in cluttered environ-
ments. To our knowledge, this is the first published control strategy
for a snake robot involving feedback and explicit use of measured con-
tact forces to achieve propulsion. Note that the work in Hirose (1993)
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also considers snake locomotion based on measured contact forces.
However, the contact forces in Hirose (1993) are employed to avoid
obstacles, whereas the contact forces in this chapter are employed to
push the snake robot forward. The experimental investigation of the
controller by use of the snake robot Kulko is also considered a novel
contribution of this chapter. To our best knowledge, this is the first
reported experiment where a snake robot is propelled forward based
on measurements of the amplitude of contact forces along the body of
the robot. The works in Bayraktaroglu (2008); Hirose (1993) also re-
port experiments where a snake robot is propelled by obstacle contact
forces. However, the control strategies in these works do not consider
the amplitude of the contact forces since discrete contact switches on
the robots are used to detect the obstacles.

Organization of this Chapter: A general description of hybrid controllers
is presented in Section 12.1. The objective and the basic assump-
tions underlying the hybrid controller are presented in Sections 12.2
and 12.3, respectively. Section 12.4 presents the hybrid controller,
while the closed-loop system (i.e. the hybrid model with the hybrid
controller) is summarized in Section 12.5. Sections 12.6 and 12.7
present, respectively, simulation results and experimental results that
illustrate the performance of the controller. Finally, the chapter is
summarized in Section 12.8.

Publications: The material in this chapter is based on the journal pa-
pers Liljebick et al. (2010h) and Liljebéck et al. (2010e), and on the
conference paper Liljebick et al. (2009a).

12.1 Preliminary Note on Hybrid Controllers

Consider any continuous or hybrid plant (i.e. a model of a dynamical sys-
tem) with state vector & € R™ and control input w € R™. If the controller
that generates the control input u for the system consists of an algorithm
with discrete-valued states, then we denote this a hybrid controller (Goebel
et al., 2009). A hybrid controller is a hybrid system with state n € RP
(which can contain e.g. logic states, timers, and counters) that evolves as a
function of both the controller state 7 and the plant state . The control
input is generally calculated according to a function u = k (,n). We can
describe a hybrid controller by the hybrid modelling framework introduced
in Section 10.1.1. Sometimes hybrid controllers are used to control plants



258 Hybrid Control of Obstacle-aided Locomotion

that are continuous-time systems (see e.g. Goebel et al. (2009) for various
examples). In this chapter, however, we will propose a hybrid controller for
a snake robot described by the hybrid model proposed in Chapter 10, i.e.
we will consider a hybrid controller for a hybrid plant.

12.2 Control Objective

A major challenge during obstacle-aided locomotion is to prevent the snake
robot from being jammed between the obstacles. In a jammed situation, the
propulsive components (i.e. the force components in the desired direction of
motion) of the contact forces from the obstacles are too small to overcome
the friction forces on the robot, and hence the forward motion stops. In this
jammed situation, the obstacle contact forces will also prevent a number
of the snake robot joints from moving to their reference angle. The goal of
this chapter is to employ the control principle in Hypothesis 12.1 to develop
a strategy for detecting and resolving situations where the motion of the
robot is jammed. To this end, we choose the control goal to be locomotion
along the global = axis with a positive and nonzero forward velocity. The
control problem is thereby to design a feedback control law for the joint
torques u € RY~! such that the following control objective is reached:

Palt) > 0. (12.1)

Note that the controller only targets the propulsion of the snake robot
without considering the direction of the motion. Directional control in an
obstacle environment is considered in Chapter 13. Another important lim-
itation of the control strategy is the underlying requirement of sufficiently
many obstacles in reach of the snake robot. Without obstacles, there are no
push-points that the robot can use for propulsion. At the same time, the
control strategy will not work if there are too many obstacles so that the
path of the robot is blocked. These are not critical issues, however, since
the main purpose of the controller is to demonstrate how a snake robot can
utilize contact forces from objects in its environment to achieve propulsion.

12.3 Notation and Basic Assumptions

With reference to the obstacle constraint force f; defined in Section 10.3,
the controller will make use of the following quantities:
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Definition 12.1 Measured contact force.
The measured contact force on link i € {1,...,N} is denoted by p; € R
and is defined as the component of the constraint force vector f . ; along the
y axis of the local frame of link i (see illustration of the local link frame in
Fig. 2.1), i.e. as

p; = [—sinb;,cos 0] f ;. (12.2)

Moreover, the force measurements of all links are assembled in the vector
T
p = [p17""pN] ERN

Remark 12.1 Since, as described in Section 10.3, the constraint force vec-
tor f ., always acts along the local y azxis of link i, we have that |p;| = ‘fc,i"

Definition 12.2 Propulsive component.

The propulsive component of the contact force on link i € {1,...,N} is
defined as the component of the constraint force vector f ., along the desired
forward direction of motion.

Since the desired forward direction of the controller considered in this
chapter is along the global x axis, the propulsive component of a contact
force is given as the component of the constraint force vector along the
global = axis. As illustrated in Fig. 12.1, this component is denoted by
pzi € R and is easily calculated as

Py = —p;Sinb;. (12.3)

Remark 12.2 Chapter 18 considers directional control of snake robots in
an obstacle environment where the desired forward direction of motion at
any time is along the current heading of the robot in order to maintain the
forward velocity. The propulsive component of a contact force in Chapter 13
1s therefore given as the component along the current heading instead of
along the global x axis.

We will base the controller on the following assumptions:

Assumption 12.1 The initial heading of the snake robot is along the global
T aTis.

Assumption 12.2 The control system has access to measurements of the
joint angles ¢, the joint angle velocities ¢, the contact forces p, and at least
one of the absolute link angles 0; for some i € {1,...,N}.

Note that the remaining link angles can be calculated from ¢ and 6;.
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Figure 12.1: The propulsive component p, ; of the contact force on link 1.

12.4 The Hybrid Controller for Obstacle-aided Lo-
comotion

The control strategy proposed in the following is a hybrid controller con-
sisting of a leader-follower scheme and a jam resolution scheme, and also a
supervisory mechanism for switching between these two schemes, denoted
the jam detection scheme. The leader-follower scheme is carried out as long
as the robot is able to move without being jammed between the obstacles.
If the jam detection scheme detects a jam, then the jam resolution scheme
is carried out in order to effectively ‘unlock’ the jammed joints.

The leader-follower scheme, the jam detection scheme, the jam resolu-
tion scheme, and the joint angle controller are presented in Sections 12.4.1,
12.4.2, 12.4.3, and 12.4.4, respectively, without considering the hybrid na-
ture of the controller. In Section 12.4.5, the complete hybrid controller is
summarized and formulated in terms of the framework described in Sec-
tion 12.1.

12.4.1 The Leader-follower Scheme

In Part I of this thesis, we employed cyclic body wave motion as a means
for propelling a snake robot forward. As we are now considering environ-
ments with obstacles, we will continue to base the motion of the snake robot
on such cyclic body wave motion. The reason for this choice is based on
Remark 10.2 in Section 10.3, where we noted that the phenomenon that
propels a snake robot forward due to the anisotropic ground friction prop-
erties of the links is similar to the phenomenon that propels a snake robot
forward due to the interaction of the links with external obstacles. Since
cyclic body wave motion produces forward propulsion under anisotropic
ground friction conditions, we can thereby expect this to also be the case
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in environments with obstacles.

In the leader-follower scheme, we will therefore produce oscillatory body
wave motion similar to the lateral undulation gait defined in (4.32). How-
ever, we do not specify the body shape motion in terms of (4.32) since the
shape of the robot then would be completely predefined, which makes no
sense when the environment is not known in advance. Instead, we define
the oscillatory body shape motion based on the observation that each part
of a biological snake conducting lateral undulation follows the path traced
out by the head (see e.g. Gray, 1946), which suggests that we should choose
the head joint angle (the angle of the foremost joint), ¢ _;, as the refer-
ence angle for all subsequent joints. This approach is called leader-following
since all joints follow the motion of the head, i.e. the leader. In contrast to
the predetermined lateral undulation motion in (4.32), environment adap-
tation is, at least to some extent, inherently present in the leader-following
motion since all joints follow the actual angle of the head joint.

In order to generate a leader-follower based control reference to the
joints, the head joint angle ¢ _; is propagated backwards along the snake
body at a constant predefined propagation velocity v, and used as the
reference angle for all subsequent joints according to

Pier (1) = dn_1(t — (N —i—1)At), (12.4)

where ¢ € {1,..., N — 2} and where the time offset At between two con-
secutive joints with intermediate distance 2! is found as At = 21/ Vyef.

In order to achieve the sinusoidal motion characteristic of lateral undu-
lation, we alternate between moving the head in the leftward and rightward
direction with respect to the global positive x axis. This may be achieved
by choosing the reference angle for the head link, 6y rcf, equal to a suitable
positive constant 0.y when the head should move leftward and a nega-
tive constant 6., when the head should move rightward. The criterion
for switching between these two reference directions is defined to be the
instant when the amplitude of the head motion perpendicular to the de-
sired forward direction becomes greater than some predefined amplitude. In
mathematical terms, we switch the head direction of motion when the dis-
tance Ay between the position of the head along the global y axis, yn, and
the y axis coordinate of the CM of the snake robot, p,, becomes greater
than some predefined amplitude, Aymax. This criterion is illustrated in
Fig. 12.2. The distance Ay is easily calculated as a function of measured
state values only. In particular, by inspecting the last row of the matrix
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Figure 12.2: The control strategy for the head of the snake robot.

equation in (2.11b), it can easily be verified that Ay is given by
N-1
Ay=yn—py= Y. 77J (5in6; +sin b 11). (12.5)
j=1
The reference angle of the head link is in other words set according to the
rule

Leftward motion: Oy et = Olere  until Ay > Aymax,

12.
Rightward motion: 0Oy yer = Oright  until Ay < —Aymax, (12.6)

which means that Oyvyef € {Biefr, Orignt }- Since the head joint (i.e. joint
N — 1) is at the front of the snake robot, the rotation of the head joint
mainly affects the angle of the head link (i.e. link N) and not the angle of
the subsequent links. From the relation ¢n_; = On_1 — Oy (see (2.1)), we
can therefore track the head link reference angle in (12.6) by controlling
the head joint angle ¢,_; according to the reference

¢N71,ref =0Nn-1— HN,ref- (127)

Note that ¢y _q e Will experience a jump each time Oy of switches. How-
ever, the actuator torque applied at joint N — 1 will still be bounded since
the derivative of ¢ _; ¢ With respect to time is not included in the joint
controller presented below in Section 12.4.4.

To summarize, the reference angles for all the joints of the snake robot
in this leader-follower scheme are

¢N—1,ref (t) = 9N—1 (t) - HN,ref; (128&)
¢i,ref (t) = ¢N71(t - (N —i— 1)At)7 (128b)

where ¢ € {1,..., N —2}. The design parameters Oics, Oright, AYmax, and
vref Were introduced in order to calculate these reference angles.
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Remark 12.3 The implementation of (12.8) requires a buffer which keeps
track of the angle history of the head joint, ¢pp_ (t).

12.4.2 The Jam Detection Scheme

We define a single joint of the snake robot to be jammed if the deviation
between the joint angle and its reference angle exceeds a certain limit,
Adp .« 1t is reasonable to assume that a jam of a single joint will resolve
by itself. However, two jammed joints could be caused by a situation where
the obstacle contact forces cause the jammed joints to act ‘against’ each
other. This situation may not always resolve by itself. The entire snake
robot is therefore defined to be jammed if two or more joints are jammed.
If the robot is jammed over a continuous period longer than tjam max, the
leader-follower scheme is stopped in order to carry out the jam resolution
scheme. We let the robot execute jam resolution for a predefined amount
of time Zresolution,max since it is difficult to come up with a specific criterion
for when a jam has been resolved. Subsequently, the leader-follower scheme
continues.

In summary, the design parameters A¢ .., tjammax, a0d tresolution,max
determine the switching between the leader-follower scheme and the jam
resolution scheme.

12.4.3 The Jam Resolution Scheme

As explained in the introduction, the main purpose of the controller pro-
posed in this chapter is to investigate the control principle proposed in
Hypothesis 12.1. To this end, we define the jam resolution scheme in ac-
cordance with this control principle, namely, we rotate the links affected
by contact forces so that the propulsive component of each contact force
increases. In a jammed situation, the propulsive components of the contact
forces from the obstacles are too small to overcome the friction forces op-
posing the motion of the robot. Rotating the contacted links (and thereby
the direction of the contact forces) to increase the total propulsive contact
force should therefore resolve the jammed situation.

The propulsive component of the contact force on link ¢ € {1,..., N},
denoted by p, ;, was defined in (12.3). The change of the propulsive force
due to a change of the link angle is found by differentiating (12.3) with
respect to ;, which gives

8paz,i
00;

= —p, cos 0;. (12.9)
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We see that changing a link angle near perpendicular to the direction of
motion (large 6;) has a greater effect on the propulsive force than a similar
change of a link angle near parallel to the direction of motion (small 6;).
During jam resolution, we therefore prioritize to rotate links with a high
propulsive force gradient with respect to the link angle, which suggests that
the link angles should be changed according to

apx,i
00;

A9i7ref = kg = —kgpl- COS Qi, (12.10)
where kg > 0 is a controller gain.

Let us now derive how the joint angles ¢;_; and ¢; at each side of link ¢
should be changed to comply with (12.10). We choose that the contact force
on link 7 only should affect the angle of link 7, so that Af;_1 yef = Abjf1 rer =
0. Since we have from (2.1) that ¢; = 6; — 0;+1, we can immediately write
the desired change of the joint angles ¢, ; and ¢, due to the contact force
on link ¢ as

Agbi—l,ref = A92’—1,ref - A91',1ref = k@pi cos 0;, (1211)
Aot = Ab;rer — Abiy1rer = —kop; cosb;. (12.12)

By combining the desired change of joint angle ¢, due to the measured
contact forces on the link at each side of the joint, i.e. the contribution
from both p; and p;,;, we get that the angle of joint i € {1,...,N —1}
should be changed during jam resolution as

A¢; o = kg (—p; o8 b + piyy cosbitr) . (12.13)

We now explain two important controller design choices. First of all,
during jam resolution, we leave the head joint angle ¢, _; unchanged to
maintain a smooth head angle. We thereby avoid that any jam resolu-
tion motion of the head link propagates backwards to all other links once
the leader-follower scheme resumes. This would create undesirable body
shapes. Secondly, we use the contact forces that were measured at the in-
stant the jam resolution scheme was initiated as feedback so that the force
measurements used in the feedback loop are constant during jam resolution.
This ensures a steady rotation of the contacted links in accordance with the
contact forces that produced the jam. If the force measurements had been
updated during jam resolution, then jam resolution would very quickly be
aborted for most of the contacted links because the link rotation carried out
during jam resolution generally causes the links to detach from the obsta-
cles. We denote the measured contact forces on all links at the instant the
jam resolution scheme was initiated by pjom = [pjam’l, . 7pjam,N] Te RN,
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From the above discussion, the reference angles for all the joints of the
snake robot in the jam resolution scheme are

ON-1ret = ON-15 (12.14a)
Giret = i+ ko (—Pjam.i €08 0i + Piamit1 cosiy1), (12.14b)

where ¢ € {1,..., N — 2} and ky is a design parameter.

12.4.4 The Joint Angle Controller

The leader-follower scheme and the jam resolution scheme provide the joint
reference angles ¢, = [qleef,...,qu_Lref]T € RV~ To ensure that
the reference angles comply with the maximum allowable deflection of the
joints, which we specify as [—¢paxs Pmax] fOr some ¢ ... > 0, we saturate
the reference angle of joint i € {1,..., N — 1} according to

ai,ref = max (mln (¢i,ref7 ¢max) y _¢max) 5 (1215)

where max (-) and min (-) are operators that return the maximum and
minimum value of their arguments, respectively. To make the joint an-
gles ¢ = [gbl, cees qu,l]T € RN~! track the saturated reference angles in
(12.15), we set the actuator torque of joint ¢ € {1,..., N — 1} according to
the PD-controller

U; = kp ($i,ref - ¢i) - kdéia (12-16)

where k, > 0 and kg > 0 are controller gains. A velocity reference is not
included in (12.16) since the transitions between the schemes of the control
strategy produce steps in the reference angles, which would lead to large
and undesirable velocity references.

Remark 12.4 Compliance is an important issue during control based on
force feedback. However, there is no need to explicitly consider compliance
for the proposed control strategy since we do not attempt to explicitly control
the contact forces on the snake robot. Note that the proportional action of
the joint torque controller in (12.16) introduces compliance in the system
since the dynamic properties of a proportional controller are similar to those
of a mechanical spring.

12.4.5 The Complete Hybrid Controller

Based on the controller schemes presented in the preceding subsections,
we now provide a formal and precise specification of the complete hybrid
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Figure 12.3: The block diagram of the closed-loop system (hybrid plant
and hybrid controller).

controller of the snake robot in terms of the modelling framework briefly
described in Section 12.1. We begin by defining the state vector of the
hybrid controller as

0N,ref
pjam
n= | jam |, (12.17)
T
z

where On ref € {Oieft, Orignt } is the current reference angle of the head link,
Pjam € RY denotes the measured constraint forces on all links at the instant
the jam resolution scheme is initiated, jam € {0,1} is a boolean variable
indicating if the robot is currently jammed (jam = 1 indicates a jam),
T € R>g is a timer variable, and finally z € {0, 1} is a boolean variable that
decides if the robot should currently execute the leader-follower scheme
(z = 0) or the jam resolution scheme (z = 1). The block diagram of the
closed-loop system is illustrated in Fig. 12.3, where the state vector 1 is
maintained inside the jam detection block. The state of the hybrid plant in
(10.61) and the state of the hybrid controller is hereafter written as (z,n).

In the following subsections, we define the jump set D, jump map G,
flow set C,., and flow map F. of the hybrid controller, where subscript ¢
is used to distinguish these sets from the corresponding sets of the hybrid
plant in Section 10.7.
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The Jump Set

A jump in the state vector i of the controller occurs either when the direc-
tion of the head link should change, when the jam state changes, or when
the jam resolution scheme is initiated or stopped (controlled by switching
the value of z).

In direct accordance with Section 12.4.1, the direction of the head link
should change when the state of the plant and the controller, (x,n), belongs
to the jump set

Ddir - {(:13777) ‘Z = 07 GN,ref = 91eft7 Ay > Aymax} U

12.18
{(:Ba 77) |Z =0, 9N,ref = eright, Ay < _Aymax} . ( )

In order to determine the jam state, we define the following index set
corresponding to pairs of jammed joints:

Ijam = {(Zvj) |Z 7& ja M)z - (bi,ref‘ > A¢max’ ‘¢j - gbj,ref‘ > Aqz)max} :
(12.19)
We consider pairs of jammed joints since the robot is defined to be jammed
when two or more joints are jammed, i.e. when Ijam # 0. In accordance
with Section 12.4.2, the jump set of the jam state is given by

Djam: {(:B,n)|z:0,jam:0,1jam7é®} U
{(z,m)|z=0,jam = 1, Tjpm = 0} .

In accordance with Section 12.4.2, the switching variable z should change
when (z,n) belongs to the jump set

(12.20)

Dyes = {(iL’,’l’}) |Z =0,jam=1,7 > tjam,max} U

12.21
{(33, 77) |Z =17> tresolution,max} . ( )

The complete jump set of the hybrid controller may now be compactly

expressed as
D, =Dy, U Djam U Des. (1222)

The Jump Map

From the description of the controller schemes in Sections 12.4.1, 12.4.2,
and 12.4.3, we can directly state the jump map of the hybrid controller as

+
0N,ref
+

pjam

n* = Ge(z,n) = |jam™ |, (12.23)
7-+
Z+
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where
Orety  when (x,7m) € Dair, AY < —AYmax
eﬁ,ref = eright when (ZB, 77) € Ddil‘? Ay > Aymax (1224&)
waef otherwise
P = Fo (12.24b)
1 when (z,1) € Djam,jam =0
. 0 when ((z,m) € Djam,jam =1)
+ ) jam>
am’ = , 12.24c
J V(z,m) € Dyes ( )
jam™ otherwise
o 07 when (z,n) € Djar}[1 U Dies ’ (12.24)
T otherwise
1 when (z,7) € Dyes,2 =0
+ _ ) res,
S { 0 otherwise : (12.24¢)

The Flow Set

We define the flow set of the hybrid controller so that the state vector n
always flows as long as the jump set is empty. The flow set is therefore
simply given as

C.={(z,n)[(z,n) ¢ D.}. (12.25)

The Flow Map

The only variable in the state vector i that should change between jumps
is the timer variable, 7. Since the time derivative of 7 is 1, the flow map is

given by
_éN,ref_ 0
Pijam Onx1
n=Fc(z,n) = ja'm = 0 1. (12.26)
+ 1
P 0

Calculation of the Control Input for the Plant

The joint torques u of the snake robot are calculated as

_ J FKnojam (337 ’17) when z=0
‘- { Kjam (z,m) when z=1" (12.27)
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where Kpojam @ Ce — RY!is defined by (12.8) and (12.16), and Kjam :
C. — RV~ is defined by (12.14) and (12.16).

12.5 Summary of the Closed-loop System

We are now ready to summarize the complete closed-loop system consisting
of the hybrid model of the snake robot from Chapter 10 and the hybrid
controller presented in Section 12.4.5. The block diagram of the closed-
loop system is illustrated in Fig. 12.3.

In accordance with the hybrid modelling framework presented in Sec-
tion 10.1.1, the closed-loop system is a hybrid system with state (z,n) and
data (C,F,D, G), where z is the state of the hybrid plant in (10.61) and
n is the state of the hybrid controller defined in (12.17). The closed-loop
system flows as long as neither & nor 1 should jump. In other words, (x,n)
flows as long as both € C,, and (x,n) € C., and jumps when x € D), or
(z,m) € D.. The closed-loop system can therefore be written as

= F(xz,n) forall (x,n)e€ C,

* (12.28)
x
|:/r’+:| = G(z,n) forall (z,n) €D,
where
C={(z,n)|z e CyA(z,n) € C.l, (12.29)
D ={(z,n)|z € DpV (z,n) € Dc}, (12.30)
+ _ D (x) when z €D,
v x~  otherwise ’ (12.31)
Gc (m 77) when (;13 'I’]) c Dc
+_ , 7
e { n otherwise : (12.32)

Since, by design, the evolution of 1 always can be uniquely determined, the
control input u to the plant is always well-defined. We can therefore con-
clude that the existence and uniqueness properties stated in Theorem 10.5
also apply to the closed-loop system in (12.28).
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12.6 Simulation Study: The Performance of the
Hybrid Controller

In this section, we investigate the performance of the hybrid controller
described in Section 12.4 by simulating the closed-loop system summarized
in (12.28).

12.6.1 Simulation Parameters

The simulator was implemented in Matlab R2008b on a laptop running
Windows XP. The continuous dynamics in (12.28) was calculated with the
ode/5 solver in Matlab with a relative and absolute error tolerance of 1073.

In accordance with the notation from Section 2.2, the parameters char-
acterizing the simulated snake robot were N = 10, [ = 0.07 m, m = 1 kg,
and J = 0.0016 kgm?. These parameters characterize the snake robot
Kulko described in Chapter 11. The ground friction coefficient was set to
i = 0.3 and the obstacle friction coefficient was set to p, = 0.2. Two
different obstacle environments were considered. In the first environment,
the obstacles were chosen to be three rows (parallel to the x axis) of cir-
cular objects with equal radius Rp, = 10 cm, j € {1,...,k}. The centre
distance between two obstacles in a row and the distance between two rows
were 25 cm. The middle row was displaced with respect to the other two
rows by 12.5 cm along the x axis. In the second environment, obstacles of
varying radius were placed in a random fashion around the snake robot.

The various parameters of the hybrid controller were 1o = 50°, Oyighy =
—50°, AYmax = 0.14 m, veer = 0.2 m/s, A¢p. = 20°, tjammax = 0.5 s,
tresolutionmax = 0.5 s, kg = 0.05, ¢ = 50°, k, = 20, and kg = 5. The
initial link angles and position of the snake robot were 8 = [7°, —32°,
—57°, —46°, —8°, 33°, 53°, 45°, 12°, —23°]T and p = 0241, respectively.
The initial shape was more or less randomly chosen in order to give the
robot an initial curl around the obstacles without intersecting them.

In order to ensure a unique solution to the LCP in (10.43), we verified
at each timestep of the simulation that the matrix A of the LCP in (10.43)
was a P-matrix by employing the P-matrix test algorithm presented in
Tsatsomeros and Li (2000).
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12.6.2 Attempting Lateral Undulation in Open-loop in a
Structured Obstacle Environment

We begin by illustrating the need for feedback of obstacle contact forces
by controlling the snake robot, not according to the hybrid controller, but
according to the open-loop lateral undulation gait defined in (4.32). This
simulation is similar to the simulation described in Section 10.8. However,
in the present simulation, we do not place the obstacles in accordance with
the expected evolution of the shape and position of the snake robot as was
done in Section 10.8. Instead, we place the obstacles according to the first
obstacle environment described in the previous subsection. We chose the
gait pattern parameters in (4.32) as a = 40°, w = 40°/s, and 0 = 40°.

The initial (¢ = 0 s) and final (¢ = 20 s) shape and position of the snake
robot are shown at the top of Fig. 12.4, where the trace of the head is
indicated with a dotted line. We see that the robot was only able to crawl
about 0.5 m in 20 s. Since there was no adaptation of the motion to the
environment, the obstacles prevented the snake robot from assuming the
predetermined body shape. This simulation illustrates that a snake robot
is generally unable to locomote in a cluttered environment when the joint
motion is preprogrammed.

12.6.3 Hybrid Controller in an Obstacle Environment

The next simulation shows the effectiveness of the hybrid controller pro-
posed in this chapter when the snake robot moves for 30 s in the two obstacle
environments described above. The initial (¢ = 0 s) and final (¢ = 30 s)
shape and position of the snake robot in these two environments are shown
in the middle and at the bottom of Fig. 12.4, respectively, while a plot of
the x direction velocity of the snake, p., is shown in Fig. 12.5. Vertical
dashed lines in Fig. 12.5 indicate time instants where the jam resolution
scheme is initiated. After 30 s, the snake robot has managed to crawl about
2.5 m along the global z axis in both environments. Fig. 12.5 shows that
the velocity in both environments varies around 10 cm/s. The jam resolu-
tion scheme was initiated six and eight times, respectively, in the first and
the second environment, and all the jams were successfully resolved by the
proposed algorithm.

In order to give an idea of the forces involved in obstacle-aided locomo-
tion, we provide a plot of the constraint forces on the centre link (link 5),
ps, at the top of Fig. 12.6. The actuator torque applied to joint 5, us, is
plotted at the bottom of this figure. We see that constraint forces above 200
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Figure 12.4: The initial and final shape and position, and the trace of the
head of the snake robot. Top: Lateral undulation (jam resolution disabled).
Middle: Jam resolution in the first obstacle environment. Bottom: Jam
resolution in the second obstacle environment.
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Figure 12.5: The global x direction velocity of the snake robot in the first
(top) and second (bottom) obstacle environment. Vertical dashed lines
indicate when the jam resolution scheme is initiated.

N occur during the motion, and that the applied joint torque is sometimes
as high as 10 Nm.

To clearly illustrate the effect of the jam resolution scheme, a plot of
the snake robot before (dashed) and after (solid) a jam resolution is shown
in Fig. 12.7. The figure shows the jam occurring in the first obstacle envi-
ronment at time ¢ = 17.05 s and ending at time ¢ = 17.55 s, which is caused
by contact forces acting on links 4 and 8 (link 1 is the tail). The jam is
resolved by rotating link 4 clockwise and link 8 counterclockwise, thereby
increasing the propulsive components of the two constraint forces enough
to overcome the friction forces from the ground and the obstacles.

In summary, the simulation results illustrate how the proposed jam
detection and resolution scheme can help to maintain the propulsion of
a snake robot in a cluttered environment. The successful performance of
the jam resolution scheme is a support of the control principle proposed in
Hypothesis 12.1.
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12.7 Experimental Study 275

12.7 Experimental Study: The Performance of
the Hybrid Controller

This section presents experimental results that illustrate the performance
of the hybrid controller described in Section 12.4. The experiments show
that the snake robot Kulko, which was described in Chapter 11, is propelled
through several different obstacle courses when the robot is controlled ac-
cording to the hybrid controller.

12.7.1 Experimental Setup

The experimental setup, which is described in more detail in Chapter 11,
consisted of the snake robot Kulko and the camera-based position measure-
ment system. The hybrid controller described in Section 12.4 was imple-
mented on an external computer with the parameters N = 10, [ = 0.07 m,
Oreft = 50°, Oright = —50°, AYmax = 14 cm, vt = 5 cm/s, Ady,, = 20°,
tjam,max = 1 S, tresolution,max = 1 S, and kg = 0.05. The joint torque con-
troller given by (12.16) was not implemented since accurate torque control
is not supported by the servo motors installed in the snake robot. The
joint angles were instead controlled according to a proportional controller
implemented in the microcontroller of each joint module.

Three different obstacle environments were considered. The first obsta-
cle environment contained five obstacles with x coordinates (—123.9, —89.6,
—48.4, —8.2, —0.6) cm, y coordinates (20.2, —15.7, 13.2, —23.5, 24.8) cm,
and diameters (30, 20, 30, 30, 20) cm, respectively. The second obstacle en-
vironment contained four obstacles with x coordinates (—90.9, —35.5, 5.1,
31.7) cm, y coordinates (—20.3, 4.2, —28.9, 15.9) cm, and diameters (30,
30, 30, 30) cm, respectively. The third and final obstacle environment con-
tained four obstacles with = coordinates (—93.1, —79.4, —17.4, 14.6) cm,
y coordinates (—61.7, —6.3, —18.9, 24.3) cm, and diameters (30, 30, 30,
30) cm, respectively.

Three trials were carried out in each obstacle environment. The initial
link angles in the first, second, and third environment were approximately
0 = [49°, 43°, 6°, 14°, —19°, —20°, —3°, 16°, 11°, 1°]7, @ = [58°, 47°, 25°,
—14°, —35°, —27°, —12°, 3°, 28°, 25°]7 and @ = [—4°, —4°, —2°, 15°, 30°,
65°, 40°, 29°, —3°, —22°|T" respectively. The initial position of the head
link was (zny = 0,yn = 0) and the initial reference angle for the head link
was O ref = Orignt in all three environments.
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12.7.2 Experimental Results

The experimental results from the three obstacle environments are shown
in Figures 12.8 and 12.9, Figures 12.10 and 12.11, and Figures 12.12 and
12.13, respectively. Three trials were carried out in each obstacle environ-
ment. The measured position of the head link along the forward direction
(the global z axis) during the three trials in each environment are shown in
Figures 12.8(a), 12.10(a), and 12.12(a), respectively, and the control scheme
executed during each trial (i.e. leader-following or jam resolution) is shown
in Figures 12.8(b), 12.10(b), and 12.12(b). Furthermore, the sideways po-
sition (along the global y axis) and the orientation of the head link are
shown in Figures 12.8(c)-(d), 12.10(c)-(d), and 12.12(c)-(d). In order to
give an idea of the forces needed to propel the robot forward, the measured
contact forces on joint modules 3 - 8 (module 1 is the tail) during the first
trial in each environment are shown in Figures 12.8(e)-(f), 12.10(e)-(f), and
12.12(e)-(f), respectively. The motion of the snake robot during the first
trial in each environment is visualized in Figures 12.9, 12.11, and 12.13,
respectively.

As seen by the plots of the head position along the forward direction
in Figures 12.8(a), 12.10(a), and 12.12(a), the overall forward propulsion
of the snake robot was maintained throughout the trials in all three envi-
ronments. This was also the main goal of the experiments. In other words,
using the same controller with the same set of controller parameters, the
snake robot was able to move through three different obstacle environments.
The plots of the sideways position and orientation of the head link suggest
that the reference angles from the leader-follower scheme were rather dif-
ferent in the individual trials in each environment. However, there is a
fairly good repeatability in the forward direction plots from the trials in
each environment, which is indicative of the robustness and environment
adaptability properties of the proposed controller.

The forward direction plots show that the forward speed of the robot was
relatively slow in all trials. This limited speed was due to the limited torque
of the joints of the snake robot compared to the rather large ground and
obstacle friction forces opposing the motion. In particular, the snake robot
is rather heavy (about 10 kg) compared to its maximum actuator torque
(about 4 Nm). To cope with the limited strength of the physical snake
robot, the propagation velocity of the head joint angle in the leader-follower
scheme was set to a rather small value during the experiments, namely
Uref = b cm/s. Since ver determines the propagation velocity of the body
waves produced during the locomotion, a small value of v.of will naturally
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lead to a small forward speed of the robot. In other words, we claim that
the limited speed during the experiments was caused by limitations of the
physical snake robot, and is not a general property of the proposed control
strategy. Had the experiments been carried out using a snake robot with
a larger actuator strength to weight ratio, then the controller parameters
could have been adjusted to increase the forward speed significantly.

There is a clear tendency in the forward direction plots from all three
environments that the forward velocity of the robot starts to decrease af-
ter about 50 s. The reason for this decrease in velocity is seen from the
visualizations in Figures 12.9, 12.11, and 12.13, which show that the robot
used about 50 s to pass through each obstacle course. Since the flat surface
outside the obstacle courses contained no push-points that the robot could
use for propulsion, the forward velocity decreased as the robot moved out of
each obstacle course. The proposed control strategy is, in other words, de-
pendent on external objects in order to propel a snake robot with isotropic
ground friction properties forward.

As seen in Figures 12.8(b), 12.10(b), and 12.12(b), the snake robot was
jammed and executed jam resolution several times during each trial. In
order to visualize the behaviour of the snake robot during jam resolution,
Fig. 12.14 shows the snake robot in the first obstacle environment at two
time instants when it was jammed (¢t = 6 s and ¢t = 21 s) and after jam
resolution had been carried out (¢t = 7 s and ¢ = 22 s). It is clearly seen
from the figure that the jam resolution scheme increased the angles of the
jammed joints with respect to the forward direction, thereby increasing the
propulsive components of the subsequent obstacle contact forces at these
locations. This behaviour is also the intended purpose of the jam resolution
scheme, as described in Section 12.4.3.

The high number of jams that occurred during the trials in the three
obstacle environments is an interesting observation since it suggests that
the jam state of the snake robot should be treated as a continuous rather
than a discrete state. Furthermore, the high number of jams suggests that
leader-following should not be conducted in open-loop, but rather com-
bined with continuous use of the measured contact forces. In particular,
the jam resolution scheme was active a large number of times during the
experiments because the leader-follower scheme did not consider the envi-
ronment interaction, which caused the robot to become jammed over and
over. Based on this observation, we will in Chapter 13 propose a contin-
uous control law for obstacle-aided locomotion where jam resolution is a
continuous action that is performed in parallel with the cyclic wave motion
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of the snake robot.

In summary, the experimental results indicate that the proposed control
strategy is robust with respect to maintaining the overall forward propul-
sion of a snake robot in various obstacle environments. The ability of the
robot to resolve jams clearly suggests that rotating links in contact with
obstacles to increase the propulsive force on the robot is a control principle
that should be pursued in further work on obstacle-aided locomotion. We
therefore claim that the experimental results support Hypothesis 12.1.

12.8 Chapter Summary
This chapter is summarized as follows:

e We have proposed a fundamental control principle (see Hypothe-
sis 12.1), where we claim that obstacle-aided snake robot locomotion
is achieved by producing body shape changes where the links in con-
tact with obstacles are rotated to increase the propulsive forces on
the robot.

e We have investigated this control principle by using it as a basis for
a proposed control strategy for obstacle-aided locomotion.

e The proposed control strategy is a hybrid controller aimed at resolving
situations where the snake robot is jammed between obstacles.

e In particular, body waves are produced in open-loop in a leader-
follower scheme as long as the robot is able to move without be-
ing jammed between the obstacles. If a jam is detected, then a jam
resolution scheme is carried out in order to effectively ‘unlock’ the
jammed joints.

e We have presented simulation results and experimental results based
on the snake robot Kulko, where the hybrid controller was shown
to maintain the propulsion of the snake robot in different obstacle
environments.

e The high number of jams that occurred during the experiments with
the snake robot suggests that the jam state of the robot should be
treated as a continuous rather than a discrete state, and that leader-
following should not be conducted in open-loop, but rather combined
with continuous use of the measured contact forces.
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Figure 12.8: Experimental results of obstacle-aided locomotion in the first
obstacle environment.
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Figure 12.9: The motion of the snake robot in the first obstacle environment
(Trial 1).
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Figure 12.11: The motion of the snake robot in the second obstacle envi-
ronment (Trial 1).
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Figure 12.12: Experimental results of obstacle-aided locomotion in the third

obstacle environment.



284 Hybrid Control of Obstacle-aided Locomotion

Figure 12.13: The motion of the snake robot in the third obstacle environ-
ment (Trial 1).
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After jam™
resolution

Figure 12.14: The shape of the snake robot before and after jam resolution
in the first obstacle environment.
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Chapter 13

Path Following Control of
Snake Robots in
Unstructured Environments

With respect to control design, this final chapter represents the culmination
of this thesis, and can be regarded as a fusion of the control efforts reported
in the previous chapters. In particular, forward propulsion of snake robots
on planar surfaces based on oscillatory body shape changes was studied
in Chapter 4. Subsequently, this oscillatory gait pattern was extended in
Chapters 5 and 8 with directional control capabilities that enabled the snake
robot to track straight paths and paths defined by waypoints. Furthermore,
the oscillatory gait pattern was extended in Chapter 12 with environment
adaptation capabilities that enabled the snake robot to maintain forward
propulsion in unstructured environments with obstacles. Directional con-
trol was, however, not considered in Chapter 12.

In this chapter, we will employ the knowledge gained from these control
design efforts to propose a general framework for motion control of snake
robots. The framework allows the motion of the snake robot to be specified
in terms of three separate components, namely a body wave component,
an environment adaptation component, and a heading control component.
The framework is subsequently used to propose a continuous control strat-
egy for straight line path following control of snake robots in unstructured
environments. We will also combine the proposed path following controller
with the waypoint guidance strategy from Chapter 8 in order to enable a
snake robot to move between waypoints in an obstacle environment. The
performance of the path following controller and the waypoint guidance
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strategy is illustrated with simulation results where a snake robot is suc-
cessfully steered between waypoints in an environment with obstacles. We
will also present results from an experimental validation of the path follow-
ing controller by use of the snake robot Kulko.

Contributions of this Chapter: The first contribution of this chapter
is the general framework for motion control of snake robots, where
the motion is specified in terms of a body wave component, an en-
vironment adaptation component, and a heading control component.
The second contribution is the control law (based on the controller
framework) for straight line path following control of snake robots in
environments with obstacles, and the fitting of this control law within
the waypoint guidance strategy from Chapter 8. A significant con-
tribution of the path following controller is the idea of a continuous
jam resolution action that is performed in parallel with the cyclic wave
motion of the robot to continuously adapt the body shape to the envi-
ronment and prevent the motion from being jammed. This continuous
jam resolution action is contained in the environment adaptation com-
ponent of the controller, and is based on the jam resolution scheme
from Chapter 12. However, whereas a complex hybrid formulation is
employed in Chapter 12, the jam resolution action will in this chap-
ter be specified in terms of simple continuous equations. We consider
the step from a hybrid to a continuous formulation to be important
since it makes a formal analysis of the controller more feasible. As
a third contribution of this chapter, we present experimental results
where the snake robot Kulko is successfully propelled through three
different obstacle environments with the proposed controller.

Organization of this Chapter: Section 13.1 presents the general frame-
work for motion control of snake robots. A straight line path follow-
ing controller based on this framework is proposed in Section 13.2,
and subsequently fitted within a waypoint guidance strategy in Sec-
tion 13.3. Simulation results and experimental results that illustrate
the successful performance of the path following controller are pre-
sented in Sections 13.4 and 13.5, respectively. Finally, the chapter is
summarized in Section 13.6.

Publications: The material in this chapter is based on the journal pa-
per Liljebick et al. (2010k) and the conference paper Liljebéck et al.
(2011c).
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13.1 A Controller Framework for Snake Robot
Locomotion

In this section, we propose a general framework for motion control of snake
robots. To motivate this framework, we begin by stating a set of claims
that we justify with reference to research results reported in the previous
chapters of this thesis:

Claim 13.1 The controller should produce body wave motion: Dur-
ing snake robot locomotion on flat surfaces, we showed in Chapter 4 that
cyclic body wave motion produces forward propulsion under anisotropic
ground friction conditions. The argument for also considering cyclic body
wave motion in environments with obstacles was given in the beginning
of Section 12.4.1. In particular, it was noted in Remark 10.2 in Sec-
tion 10.3 that the phenomenon that propels a snake robot forward due to the
anisotropic ground friction properties of the links is similar to the phenom-
enon that propels a snake robot forward due to the interaction of the links
with external obstacles. Since cyclic body wave motion produces forward
propulsion under anisotropic ground friction conditions, we can thereby ex-
pect this to also be the case in environments with obstacles. Note that the
claim is also supported by the motion of biological snakes in nature.

Claim 13.2 The controller should continuously perform environ-
ment adaptation: The experimental investigation of the hybrid controller
presented in Chapter 12, showed that the motion of the physical snake ro-
bot was jammed quite frequently. These experimental results indicate that
conducting cyclic body wave motion in open-loop will eventually jam the
motion of the robot, which strongly suggests that the cyclic body wave mo-
tion should not be conducted in open-loop, but rather adjusted continuously
according to the interaction of the robot with its environment. We there-
fore claim that environment adaptation should be conducted continuously in
parallel with the cyclic body wave motion of the snake robot.

Claim 13.3 The controller should steer the heading: This require-
ment is obvious in order to be able to steer the snake robot to a desired
location. We demonstrated path following capabilities of a snake robot in
Chapters 5 and 8.

Based on the above claims, we propose the following general controller
framework for snake robots:
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Hypothesis 13.1 The controller framework.

Efficient and intelligent snake robot locomotion in unknown and unstruc-
tured environments can be achieved by specifying the reference angles @,4=
[qbl’ref,...,(;SNil’ref]Te RN=1 of the robot as the sum of three individual
motion components, namely as

d)ref = d)w(we + ¢adapt + ¢heading7 (131)

where @40 15 @ body wave component that induces propulsive forces on
the robot from the environment, @,qqy; i an environment adaptation com-
ponent that adjusts the body shape to the environment, and @peqqing 1S @
heading control component that steers the robot according to a specified ref-
erence direction.

Remark 13.1 The lateral undulation gait considered in Part I of this the-
sis, which is also considered in the majority of the literature on snake robot
locomotion, fits nicely within the framework proposed in (13.1). As defined
in (4.82), this gait pattern is achieved by controlling joint i of the snake
robot according to

d)i,ref = asin (Wt + (Z - 1) 5) + gbo ) (132)
~ —~—
¢wuve ¢heading

where the sinus term constitutes the body wave component, @, e, and @,
which is an angular offset used to control the direction of the motion, con-
stitutes the heading component, @j.qqing- The gait pattern does not in-
volve adaptation of the body shape to the environment, which means that

¢adapt =0.

Remark 13.2 The environment adaptation component @ ,q,,: Tequires that
the snake robot can sense its environment in some way. We demonstrated
this capability in Chapter 11 by describing the development of a snake robot
with contact force sensors installed along its body. Snake robots with discrete
contact switches are employed in Bayraktaroglu (2008); Hirose (1993). The
environment can also be indirectly sensed through the joint angle measure-
ments, as considered in Andruska and Peterson (2008); Date and Takita
(2007).
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13.2 Straight Line Path Following Control in Un-
structured Environments

In this section, we employ the controller framework presented in Section 13.1
to propose a straight line path following controller for snake robots in en-
vironments with obstacles. The body wave component of the control law is
based on a predecessor-follower scheme, where each joint follows the angle
of the preceding joint ahead of itself. This approach is an improvement over
the leader-follower scheme considered in Chapter 12 since leader-following
relies on the assumption that the robot moves forward with the same speed
as the head angle propagates backward. The environment adaptation com-
ponent is based on the jam resolution principle from Chapter 12. However,
whereas a complex hybrid formulation is employed in Chapter 12, the jam
resolution motion of the present controller is specified in terms of simple
continuous equations. The heading control component is similar to a guid-
ance law of the straight line path following controllers proposed in Chapters
5 and 8.

13.2.1 Control Objective

We choose the control objectives to be identical to the objectives of the path
following controller proposed in Chapter 5. The objectives are restated here
for completeness.

In order to track the desired straight path, we define the global coordi-
nate system so that the global x axis is aligned with the desired path. The
position of the snake robot along the global y axis, p,, is then the shortest
distance from the robot to the desired path (i.e. the cross-track error) and
the heading 6 of the robot, which was defined in (2.2), is the angle that
the robot forms with the desired path. The control objective is thereby to
regulate p, and 0 so that they oscillate about zero. We will not attempt
to regulate p, and 0 to zero since the heading and position of the robot
are expected to display oscillating behaviour during locomotion along the
desired path.

Since snake robot locomotion is a slow form of robotic mobility, which
is generally employed for traversability purposes, we consider it less impor-
tant to accurately control the forward velocity of the robot. During path
following with a snake robot, it therefore makes sense to focus all the con-
trol efforts on converging to the path and subsequently progressing along
the path at some nonzero forward velocity v¢(t) > 0, where v.(t) is the
forward velocity of the robot defined in (2.5).
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From the above discussion, the control problem is to design a feedback
control law such that for all t > t. > 0, there exists a 7 € [t,t 4+ T satisfying

py(7) =0, (13.3)
0(r) =0, (13.4)
T(t) > 0, (13.5)

where ¢, is some (unknown) finite time duration corresponding to the time
it takes the snake robot to converge to the desired straight path, and 7" > 0
is some constant that characterize the time period of the cyclic gait pattern
of the snake robot. In other words, we require that p, and 0 are zero at
least once within each cycle of the locomotion since this means that p, and
0 oscillate about zero. Note that we require vy(t) > 0 for all ¢ > t,.

The idea behind the controller proposed in the following is to use
the body wave component ¢, and the adaptation component ¢4, to
achieve control objective (13.5), and simultaneously use the heading com-
ponent @q,ding to achieve control objectives (13.3) and (13.4).

13.2.2 Notation and Basic Assumptions

So far in this thesis, we have described the link angles 8 according to
Definition 2.1, i.e. with respect to the global x axis. During path following
in an obstacle environment, however, we will employ a measure of the link
angles with respect to the current heading # defined in (2.2). As illustrated
in Fig. 13.1, we define this measure as follows:

Definition 13.1 The heading-adjusted link angle. _
The heading-adjusted angle of link i € {1,..., N} is denoted by 0; and is
given as the angle of link © with respect to the current heading 0, i.e. as

0; =0; — 0. (13.6)

Control objective (13.5) simply states that the robot should maintain a
positive and nonzero forward velocity. This means that the desired forward
direction of motion at any time is along the current heading of the robot.
In accordance with Definition 12.2 in Section 12.3, the propulsive compo-
nent of the contact force on link 7 € {1,..., N} is therefore given as the
component of the constraint force vector f; along the current heading 0.
This component, which we denote by p,,,; € R, is illustrated in Fig. 13.1
and is easily calculated as

Pprop,i = ~Pi sin 0, (137)
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Figure 13.1: Tllustration of the heading-adjusted angle of link ¢, denoted by
#;, and the propulsive component of the contact force on link i, denoted by

pprop,i'

where p; was defined in Section 12.3 as the measured contact force on link
ie{l,....,N}.

Remark 13.3 In Chapter 12, the propulsive component of a contact force
was denoted by p,; and given as the force component along the global x
axis. As long as the robot is headed along the global x axis, we have that
Pzi = Pprop,i- An contrast to p, ;, however, py..,; represents a suitable
measure of the propulsive force on link i regardless of the heading of the
robot.

We will base the path following controller on the following assumption:

Assumption 13.1 The control system has access to measurements of the
cross-track error py, the joint angles ¢, the joint angle velocities (}b, the
contact forces p, and at least one of the absolute link angles 0; for some
ie{l,...,N}.

Note that the remaining link angles, and thereby also the heading 6,
can be calculated from ¢ and 6;.

13.2.3 The Body Wave Component

We begin by presenting the body wave component ¢, of the joint refer-
ence angles. The hybrid controller proposed in Chapter 12 produces body
waves through a leader-follower approach, where the angle of the foremost
(head) joint is propagated backwards along the snake body at a constant
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velocity and used as the reference angle for all subsequent joints. The draw-
back of this approach is that it relies on the assumption that the snake
robot moves forward with the same speed as the head angle propagates
backward. If this is not the case, then the head joint angle will generally
not be a suitable reference angle for the remaining joints.

In the following, we therefore employ a predecessor-follower scheme,
where each joint follows the angle of the preceding joint ahead of itself
with a specified time delay At. The angle of joint ¢ is always a suitable
reference angle for joint ¢ — 1 since the current shape of the snake robot
always represents a feasible reference trajectory. The resulting reference
angle of joint 4 € {1,..., N — 2} in this predecessor-follower scheme can be
written

¢Wave,i (t) = ¢i+1(t - At) (138)

In order to produce body wave motion, we introduce a sinusoidal ref-
erence angle for the heading-adjusted angle of the head link, Oy, given
by

On ret(t) = asin(wt), (13.9)

where a and w are the amplitude and angular frequency, respectively, of
the sinusoidal motion. Since the head joint (i.e. joint N — 1) is at the front
of the snake robot, the rotation of the head joint mainly affects the angle
of the head link (i.e. link V) and not the angle of the subsequent links.
Since it follows from (2.1) that ¢_; = Ony—1 — 0N, we can track the head
link reference angle in (13.9) by controlling the head joint according to the
reference

Sraven—1(t) = On_1 — asin(wt). (13.10)

From (13.8) and (13.10), we can now write the complete body wave
component @, in matrix form as

¢wave = Shead <5N—1 — asin(wt)) + Sjomts(f)(t — At), (13.11)

where ¢(t — At) are the measured joint angles at time ¢t — At, and where
Shead and Sjeints are, respectively, a selection vector and a selection matrix
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defined as
Shead = [0,...,0,1]" € RN, (13.12)
0 1 0 T
0 1 0
Sioints = e RIN-Dx(N=1), (13.13)
0 1

Remark 13.4 The implementation of (13.11) requires a buffer which keeps
track of the angle history of each joint except for the first (tail) joint.

13.2.4 The Environment Adaptation Component

The environment adaptation component ¢, 4, is based on the control prin-
ciple proposed in Hypothesis 12.1, that was implemented in the jam resolu-
tion scheme of the hybrid controller from Chapter 12. However, whereas a
complex hybrid formulation is employed in Chapter 12, the jam resolution
action of the present control strategy will be specified in terms of simple
continuous equations. We consider the step from a hybrid to a continuous
formulation to be a significant contribution since a continuous formulation
makes a formal analysis of the controller more feasible. As explained below
in Remark 13.5, a formal analysis of the present control strategy remains a
topic of future work.

In accordance with the derivation of the jam resolution scheme in Sec-
tion 12.4.3, the idea behind the adaptation strategy is to rotate the links
affected by contact forces so that the propulsive component of each contact
force increases. Since the propulsive components of the contact forces are
what propel the snake robot forward, we conjecture that rotating the con-
tacted links to increase the total propulsive force will adapt the body shape
to the environment in a way that maintains or increases the propulsion of
the robot. Note that the adaptation strategy only aims at satisfying control
objective (13.5), i.e. propelling the snake robot forward in the direction of
its current heading.

The change of the propulsive force on link ¢ € {1,...,N} due to a
change of the link angle is found by differentiating (13.7) with respect to
0;, which gives

approp,i

= — icosgl-. 13.14
5 p (13.14)
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During adaptation, we choose to rotate links with a high propulsive force
gradient with respect to the link angle, which suggests that link ¢ is rotated
according to

Ab; rof = kpy—22PL — [ b cos 0, (13.15)

where k, > 0 is a controller gain.

Let us now derive how the joint angles ¢,_; and ¢, at each side of link ¢
should be changed to comply with (13.15). We choose that the contact force
on link ¢ only should affect the angle of link 4, so that A0; 1 o = A1 rer =
0. Since we have from (2.1) that ¢; = 0; — 0,41, we can immediately write
the desired change of the joint angles ¢, _; and ¢; due to the contact force
on link 7 as

A(;Sifl,ref = Aféi_lﬂref — Agi,ref = kppi COSAéi, (1316)

A¢i,ref = A(%”mf — A0i+17ref = —I{Jppi COS Qi. (13.17)

By combining the desired change of joint angle ¢; due to the measured
contact forces on the link at each side of the joint, i.e. the contribution

from both p; and p;,;, we get that the angle of joint i € {1,...,N — 1} in
the environment adaptation component @,4,, is given by

Padapt.i = —FKp (pi cosf; — Pit1 cosgi+1> . (13.18)

The complete environment adaptation component ¢,q,,; can thereby be
written in matrix form as

Dadapt = —kpD diag(p) cos 5, (13.19)

where diag () produces a diagonal matrix with the elements of its argument
along its diagonal, and where

p=1Ipi - pn]" €RY, (13.20)

cos@ = [cosby,. .., cosby ! e RY, (13.21)
1 -1

D= T e RWV-DxN, (13.22)
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13.2.5 The Heading Control Component

The heading control component ¢ye,qing ©f the joint reference angles is
similar to the guidance law of the straight line path following controllers
proposed in Chapters 5 and 8. In particular, we steer the snake robot
towards the desired straight path by employing the Line-of-Sight (LOS)
guidance law

0,of = — arctan (%) , (13.23)

where p, is the cross-track error and A > 0 is a design parameter referred
to as the look-ahead distance that influences the rate of convergence to the
desired path. As illustrated in Fig. 13.2, the LOS angle 0, corresponds
to the orientation of the snake robot when it is headed towards the point
located a distance A ahead of itself along the desired path. To steer the
heading @ according to the LOS angle in (13.23), we employ the same
approach that was used for controlling the direction of the snake robot
with the lateral undulation gait in (4.32), i.e. we offset the reference angle
of the head joint according to

¢heading,N—1 = ky (5 - gref) , (1324)

where kg > 0 is a controller gain. Using (13.12), the heading component
can be written in matrix form as

¢heading = Sheadko (5 - aref) . (1325)

13.2.6 The Joint Angle Controller

In order to make the joint angles ¢ track the reference angles given by ¢,;,
we set the joint actuator torques u according to the PD-controller

w =k (et = @) + ba (et = &) - (13.26)

where k, > 0 and kg > 0 are controller gains.

13.2.7 Summary of the Path Following Controller

The complete straight line path following controller is now summarized.
In accordance with the general controller framework defined in (13.1), we
conjecture that control objectives (13.3), (13.4), and (13.5) are achieved by
employing the PD-controller in (13.26) to control the joint angles of the
snake robot according to

¢ref = ¢Wave + ¢adapt + ¢heading’ (1327)



298 Path Following Control in Unstructured Environments

where
Pwave = Shead @}H - asin(wt)) + Siomts@(t — At), (13.28)
qbadapt = —k,D diag(p) cos 5, (13.29)
¢heading = Sheadko (5 - aref) . (13.30)

Remark 13.5 Due to the complexity of the hybrid model of the snake robot
in (10.61), we are currently unable to provide a formal proof of the achieve-
ment of objectives (13.3), (13.4), and (13.5) with the proposed controller.
It is probably not possible to develop such a proof solely based on the model
and control strategy of the robot combined with knowledge of the obstacle
locations since it is difficult, if not impossible, to analytically predict the
interaction between the robot and the obstacles in advance. However, it
may be possible to develop logical arguments regarding the achievement of
the control objectives by making assumptions regarding the obstacle interac-
tions. One approach could be to parametrize the contact situation in some
way and show that, in certain contact situations, the control action defined
by (13.26) and (13.27) will move the snake robot a step closer to the desired
path. Such logical arguments remain a topic of future work.

13.3 Waypoint Guidance Control in Unstructured
Environments

The straight line path following controller defined by (13.26) and (13.27)
can easily be combined with the waypoint guidance strategy proposed in
Section 8.4. We thereby arrive at a complete control strategy for steer-
ing a snake robot between waypoints in an unstructured environment, i.e.
we obtain a control strategy for obstacle-aided locomotion along arbitrary
paths given by waypoints interconnected by straight lines. In the following,
we describe the waypoint guidance strategy from Section 8.4 within the
context of this chapter.

The reason for specifying the path of the robot in terms of waypoints
is that future applications of snake robots will generally involve bringing
sensors and/or tools to a single or several specified target location(s). In
these situations, the exact path taken by the robot as it moves towards
the target(s) is generally of less interest as long as the robot reaches the
target(s) within a reasonable amount of time. Specifying the motion of
a snake robot in terms of waypoints supports this target-oriented control
approach.
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Figure 13.2: Straight line path following control of the snake robot com-
bined with waypoint guidance in an obstacle environment.

There are k waypoints and the ¢th waypoint is denoted by W P;, where
i€ {l,...,k}. Asillustrated in Fig. 13.2, we interconnect the waypoints by
straight lines and control the snake robot according to (13.27) in order to
steer the robot towards the straight line leading to the next waypoint. The
next waypoint is activated as soon as the position of the robot enters inside
an acceptance region consisting of an acceptance circle (with radius Taccept )
centred in the current waypoint and also the right half plane of a coordi-
nate system with origo in the current waypoint and x axis pointing away
from the previous waypoint (see illustration in Fig. 13.2). The acceptance
region of W P; is denoted by Ay p,. The intended purpose of employing
the straight line path following controller is to steer the robot into the ac-
ceptance circle of the current waypoint. However, in situations where the
obstacle environment prevents the robot from entering inside the accep-
tance circle, the robot will still proceed towards the next waypoint as soon
as the position enters inside the right half plane contained in the acceptance
region. With only acceptance circles enclosing each waypoint, there would
be the risk that the robot misses a waypoint, e.g. due to the placement of
the obstacles, which would make the robot proceed indefinitely along the
path away from the waypoint that was missed.

The above definitions were formalized in Section 8.4. We can now state
the waypoint guidance strategy as follows:
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Algorithm 13.1 The waypoint guidance strategy.

1. Define the initial position of the snake robot as W F.
2. Repeat for all i € {0,--- ,k —1}:

(a) Move the origin of the global frame to W P; and orient the global
x axis towards W P;.

(b) Conduct path following according to (13.27) until (ps,p,) €
AWPi+1'

13.4 Simulation Study: The Performance of the
Path Following Controller

This section presents simulation results that illustrate how the path follow-
ing controller defined by (13.26) and (13.27) performs in combination with
the waypoint guidance strategy in Algorithm 13.1.

13.4.1 Simulation Parameters

The hybrid model of the snake robot (10.61) and the guidance strategy in
Algorithm 13.1 were implemented in Matlab R2008b on a laptop running
Windows XP. The continuous dynamics of the hybrid model were calculated
with the ode4d solver in Matlab with a relative and absolute error tolerance
of 1073,

The parameters characterizing the simulated snake robot were N = 10,
1 =0.07m, m=1kg, and J = 0.0016 kgm?. Circular obstacles measuring
10 ¢m in diameter were placed in a random fashion in the environment of
the snake robot. The ground and obstacle friction coefficients were = 0.3
and p, = 0.25, respectively. The initial link angles and position of the
snake robot were 8 = [—30°, —10°, 30°, 60°, 40°, 0°, —40°, —60°, —30°,
0°]7 and p = 091, respectively.

We defined & = 5 waypoints with global frame coordinates (2.5,0),
(2.5,1), (0,1), (1,2), and (3,2), respectively. The radius of the acceptance
circle enclosing each waypoint was 7y¢ccept = 0.5 m. The remaining controller
parameters were A = 0.7 m, kg = 1.3, k, = 0.02, At = 0.7 s, o = 60°,
w =40°/s, k, = 20, and kq = 5. In order to prevent the measured contact
forces in @,q,, from producing steps in the joint reference angles ¢, in
(13.27), the reference angles were filtered using a 2nd order low-pass filtering
reference model (see Appendix C.1). The parameters of the reference model
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were w = 37/2 and ¢ = 1. This filter also provided the derivative of ¢,
with respect to time, which is needed by the PD-controller in (13.26).

13.4.2 Simulation Results

To illustrate the importance of environment adaptation, the path following
controller of the waypoint guidance strategy was first simulated without
adaptation (@,q,,x = 0). The path of the centre link of the snake robot
(link 5) is shown in blue in Fig. 13.3(a), where black squares indicate the
waypoints, the dotted black lines indicate the straight paths between the
waypoints, and where the shape and position of the robot are shown in green
at t =0s,t=065s, and t = 125 s, respectively. Furthermore, Fig. 13.3(b)-
(c) show the forward velocity, Ty, and the obstacle constraint force on link 5,
ps, respectively. The vertical dashed lines in the plots indicate time instants
where the guidance strategy switched to the next waypoint. We see from
Fig. 13.3(a) that the robot managed to reach the acceptance region of the
two first waypoints. However, the motion was jammed about halfway to
the third waypoint, as can be seen from Fig. 13.3(b), which shows that the
forward velocity varied around zero after about 110 s. Note that there is a
slight overlap between the path of link 5 and some of the obstacles. This
issue was commented in Remark 10.4 of Section 10.3, and is a consequence
of modelling obstacle contact solely by a unilateral force on the contacted
link, which means that there is nothing preventing the foremost link (the
head) of the snake robot from penetrating an obstacle head-on along its
tangential direction.

The same plots for the case where environment adaptation was present
(i.e. where ¢@,q,,¢ Was set according to (13.29)) are shown in Fig. 13.4 and
Fig. 13.5. In addition to the forward velocity and the obstacle constraint
forces, Fig. 13.5 also shows the cross-track error p, and the heading angle 6.
With environment adaptation, the propulsion of the robot was maintained
through all the waypoints. As seen from Fig. 13.5(c), the forward velocity
varied between 5 - 10 cm/s, which suggests that control objective (13.5)
was achieved. Figures 13.5(a)-(b) show that the cross-track error and the
heading angle had an oscillatory behaviour around zero after each waypoint
switch, which suggests that control objectives (13.3) and (13.4) were also
achieved.

It is interesting to note that, in addition to improving the propulsion
of the robot, the environment adaptation strategy reduces the constraint
forces on the robot significantly, which is seen by comparing Fig. 13.5(d)
with Fig. 13.3(c). This is also expected since the environment contact forces
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Figure 13.3: Simulation of the waypoint guidance strategy without envi-
ronment adaptation.
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Figure 13.4: The path of the centre link (link 5) of the snake robot during
waypoint guidance with environment adaptation.

opposing the motion will naturally be larger when the motion is performed
without considering the environment.

In summary, the path following controller defined by (13.26) and (13.27)
combined with the waypoint guidance strategy in Algorithm 13.1 main-
tained the propulsion and steered the snake robot to the acceptance region
of each waypoint in the obstacle environment.

13.5 Experimental Study: The Performance of
the Environment Adaptation Strategy

In this section, we present experimental results in order to demonstrate that
a snake robot is propelled forward in an obstacle environment when the
joints are controlled according to (13.27). In particular, the results demon-
strate the propulsion produced by the body wave component in (13.28)
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and the environment adaptation component in (13.29). Due to the limited
range of the obstacle course, we did not consider heading control during the
experiments, which means that the heading control component in (13.30)
was set to zero.

13.5.1 Experimental Setup

We employed the same experimental setup that was used to investigate the
jam resolution controller in Section 12.7. In particular, the experimental
setup consisted of the snake robot Kulko and the camera-based position
measurement system presented in Chapter 11. The joint reference angles
defined by (13.27) were calculated on an external computer with the para-
meters N = 10, [ = 0.07 m, k, = 0.01, At =0.9 s, o = 60°, and w = 30°/s,
and with @peaqing = 0. The joint torque controller given by (13.26) was not
implemented since accurate torque control is not supported by the servo
motors installed in the snake robot. The joint angles were instead controlled
according to a proportional controller implemented in the microcontroller
of each joint module.

We considered three obstacle environments with similar obstacle config-
uration as in the experiments described in Section 12.7. The first obstacle
environment contained five obstacles with = coordinates (—123.9, —89.6,
—48.4, —8.2, —0.6) cm, y coordinates (20.2, —15.7, 13.2, —23.5, 24.8) cm,
and diameters (30, 20, 30, 30, 20) cm, respectively. The second obstacle
environment contained four obstacles with x coordinates (—90.9, —35.5,
5.1, 31.7) cm, y coordinates (—20.3, 4.2, —28.9, 15.9) cm, and diameters
(30, 30, 30, 30) cm, respectively. The third and final obstacle environment
contained five obstacles with x coordinates (—93.1, —79.4, —45.4, —17.4,
14.6) cm, y coordinates (—61.7, —6.3, 29.4, —18.9, 24.3) cm, and diameters
(30, 30, 20, 30, 30) cm, respectively.

The initial link angles in the first, second, and third environment were
0 = [49°, 43°, 6°, 14°, —19°, —20°, —3°, 16°, 11°, 1°]7, @ = [58°, 47°, 25°,
—14°, —35°, —27°, —12°, 3°, 28°, 25°]7 and @ = [—4°, —4°, —2°, 15°, 30°,
65°, 40°, 29°, —3°, —22°]T, respectively, and the initial position of the head
link was (xny = 0,yny = 0).

13.5.2 Experimental Results

The experimental results from the three obstacle environments are shown
in Figures 13.6 and 13.7, Figures 13.8 and 13.9, and Figures 13.10 and
13.11, respectively. As seen by the plots of the head position along the
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forward direction in Figures 13.6(a), 13.8(a), and 13.10(a), the overall for-
ward propulsion of the robot was maintained throughout all three trials.
This was also the main goal of the experiments. In other words, using the
same controller with the same set of controller parameters, the snake robot
was able to move through three different obstacle environments, which we
consider to be evidence that the proposed control strategy provides a snake
robot with environment adaptation skills.

As explained in conjunction with the experimental results of Section 12.7,
the forward speed of the robot was relatively slow in all trials mainly due to
the limited torque of the joints of the snake robot compared to the rather
large ground and obstacle friction forces opposing the motion. In particular,
the snake robot is rather heavy (about 10 kg) compared to its maximum
actuator torque (about 4 Nm). We therefore claim that the limited speed
during the experiments was caused by limitations of the physical snake ro-
bot, and is not a general property of the proposed control strategy. Had
the experiments been carried out using a snake robot with a larger actuator
strength to weight ratio, then the controller parameters could have been
adjusted to increase the forward speed significantly.

To give an idea of the forces needed to propel the robot forward in the
three environments, the measured contact forces on joint modules 4, 5, and
6 (module 1 is the tail) are shown in Figures 13.6(d), 13.8(d), and 13.10(d),
respectively. We see that contact forces in the range 30 - 60 N occurred
during the motion.

The motion of two joints of the snake robot during the three trials
is shown in Figures 13.6(e)-(f), 13.8(e)-(f), and 13.10(e)-(f), respectively.
These figures show the measured (solid line) and the reference angles (dashed
line) of the two joints interconnecting modules 4, 5, and 6, namely joints 4
and 5. In accordance with the environment adaptation strategy in (13.29),
the measured contact forces on modules 4, 5, and 6 affect the reference
angles of joints 4 and 5. To illustrate this effect, we have plotted the en-
vironment adaptation components of the reference angles, i.e. ¢,q,p¢4 and
Gadapt 5, With a dotted line together with the reference angles. It was clearly
observed during the experiments that the adaptation component of the joint
reference angles serves as a ‘curvature generator’ at contacted points along
the body of the snake robot. In other words, whenever the snake robot
makes contact with an obstacle, the environment adaptation component
in (13.29) produces more body curvature at this location. This curvature
is subsequently propagated backwards by the body wave component in
(13.28), which generates a push against the contacted obstacle.
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It is interesting to compare the experimental results of this section with
the experimental results from the jam resolution controller in Section 12.7.
In particular, the forward velocity of the snake robot in the experimental
results from this section is higher than in the experimental results from
Section 12.7, which can be verified by comparing the plots of the forward
position of the robot during the experiments. This difference in forward ve-
locity is not surprising since the jam resolution controller from Chapter 12
spends much time resolving jams that occur during the motion. With the
control strategy proposed in this chapter, jams are resolved continuously
since there is a continuous adaptation of the body shape to the environ-
ment, which is clearly a more efficient strategy than employing an explicit
jam resolution scheme. Moreover, the control strategy proposed in this
chapter is a lot easier to implement than the jam resolution controller from
Chapter 12.

13.6 Chapter Summary
This chapter is summarized as follows:

e We have proposed a general framework in (13.1) for motion control
of snake robots, where the motion is specified in terms of a body wave
component, an environment adaptation component, and a heading
control component.

e We have employed the controller framework to propose a continuous
control strategy, defined by (13.26) and (13.27), for straight line path
following control of snake robots in unstructured environments.

o We have fitted the path following controller within the waypoint guid-
ance strategy from Chapter 8 (see Algorithm 13.1).

e We have presented simulation results where the path following con-
troller, in combination with the waypoint guidance strategy, was seen
to successfully steer the snake robot between waypoints in an obstacle
environment.

e We have presented experimental results where the snake robot Kulko
was successfully propelled through three different obstacle environ-
ments when the joints were controlled according to (13.27).
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Figure 13.6: Experimental results of obstacle-aided locomotion in the first
obstacle environment.
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Figure 13.7: The motion of the snake robot in the first obstacle environ-
ment.
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Figure 13.9: The motion of the snake robot in the second obstacle environ-
ment.
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Figure 13.10: Experimental results of obstacle-aided locomotion in the third
obstacle environment.
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Figure 13.11: The motion of the snake robot in the third obstacle environ-
ment.
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Chapter 14

Conclusions and Future
Challenges

14.1 Conclusions of Part I - Snake Robot Loco-
motion on Planar Surfaces

The scope and objective of Part I

The objective of Part I of this thesis has been to increase our understand-
ing of snake robot locomotion across horizontal and flat surfaces through
analytical investigations of the equations of motion. We considered purely
planar motion based on the hypothesis that the essential control principles
of snake robot locomotion are contained in a planar perspective. In con-
trast to a significant part of previous research, which considers snake robots
with nonholonomic constraints that prevent sideways motion of the links,
this thesis has considered snake robots where the links are allowed to slip
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sideways. We consider results based on such conditions to be more relevant
to operations in unknown and cluttered environments, which represent the
long-term goal of our research.

In the following, we summarize the contributions and conclusions from
the individual chapters of Part I in relation to the scope and objective
presented above.

Conclusions of Chapter 2

We presented a mathematical model of a planar snake robot with anisotropic
ground friction properties moving across a flat and horizontal surface. A
change of coordinates enabled us to partition the model into an actuated
and an unactuated part, and a subsequent input transformation enabled us
to linearize the actuated part of the snake robot dynamics. The partially
feedback linearized model is more suitable for control design and analysis
than the more complex non-linearized model of the snake robot.

Conclusions of Chapter 3

We presented the design of the snake robot Wheeko, which was developed
for motion control experiments on flat surfaces. The robot consists of 10
identical modules with a novel joint design, and with anisotropic ground
friction properties by use of passive wheels.

Conclusions of Chapter 4

We employed nonlinear system analysis tools for investigating fundamental
properties of snake robot dynamics. In particular, we presented a stabiliz-
ability analysis that proves that any asymptotically stabilizing control law
for a planar snake robot to an equilibrium point must be time-varying, i.e.
not of pure-state feedback type. Furthermore, we presented a controllability
analysis of planar snake robots influenced by viscous ground friction forces
that shows that a snake robot is not controllable when the ground friction
is sotropic, but that a snake robot becomes strongly accessible when the
ground friction is anisotropic. The analysis also shows that the snake ro-
bot does not satisfy sufficient conditions for small-time local controllability.
To our best knowledge, no formal controllability analysis has previously
been reported for the position and link angles of a wheel-less snake robot
influenced by ground friction. The results from the controllability analysis
were not sufficient to conclude that a snake robot with anisotropic ground
friction is controllable. However, the analysis proves that propulsion of
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a snake robot under viscous friction conditions requires the friction to be
anisotropic, and also that the joint angles of a snake robot should be out
of phase during snake locomotion. These claims have been assumed in the
snake robot literature, but have never before been formally proven.

This chapter also presented a simple relationship between link velocities
normal to the direction of motion and propulsive forces in the direction of
motion that explains how snake robots influenced by anisotropic ground
friction are able to locomote forward on a planar surface. In our opinion,
previously published research on snake robots has not presented an explicit
mathematical description that easily explains how a snake robot achieves
forward propulsion.

Finally, this chapter presented mathematical arguments that support
the empirically derived description of lateral undulation, which is a gait
pattern previously proposed in the snake robot literature based on observa-
tions of biological snakes. Moreover, we explained how offsetting the joint
angles during lateral undulation enables directional control of the motion,
and pointed out the observation that the body shape changes during lat-
eral undulation mainly consist of relative displacements of the links normal
to the forward direction of motion, while the relative displacements of the
links along the forward direction are approximately constant.

Conclusions of Chapter 5

We proposed a control law that enables snake robots to track a planar
straight path, and we analysed the stability of this path following controller
by use of a Poincaré map. In particular, we showed that all state variables
of the snake robot, except for the position along the path, trace out an
exponentially stable periodic orbit during path following with the proposed
controller. To our best knowledge, a Poincaré map has never before been
used to study the stability properties of snake robot locomotion.

Conclusions of Chapter 6

We presented a simplified model of planar snake robot locomotion, which
is intended for control design and stability analysis purposes. Moreover,
we provided support of the claim that the simplified model captures the
essential part of the dynamics of planar snake robot locomotion. In partic-
ular, we showed that the stabilizability and controllability properties of the
simplified model are similar to the corresponding properties of the more
complex model of the snake robot.
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Conclusions of Chapter 7

We employed averaging theory to study the average effect of the joint mo-
tion that propels the robot during lateral undulation. In particular, we
developed an averaged model of the velocity dynamics of a snake robot
during lateral undulation, and we showed that the average velocity during
lateral undulation converges exponentially fast to a steady state velocity.
An analytical expression for calculating the steady state velocity as a func-
tion of the gait pattern parameters was presented. To our best knowledge,
this is the first formal proof that a snake robot with anisotropic ground
friction properties achieves forward propulsion when it moves by lateral
undulation.

This chapter also derived fundamental relationships between the gait
pattern parameters of lateral undulation and the resulting forward veloc-
ity of a planar snake robot. In particular, the derived properties state
that the average forward velocity of a snake robot 1) is proportional to
the squared amplitude of the sinusoidal motion of each joint, 2) is propor-
tional to the angular frequency of the sinusoidal motion of each joint, 3)
is proportional to a particular function of the constant phase shift between
the joints, and 4) is maximized by the phase shift between the joints that
also maximizes the particular phase shift function. To our best knowledge,
these fundamental properties of snake locomotion have never before been
derived analytically. The chapter presented experimental results based on
the snake robot Wheeko that supported the derived properties.

Conclusions of Chapter 8

We proposed a straight line path following controller, and employed cas-
caded systems theory to prove that the controller K-exponentially stabilizes
a snake robot to any desired straight path. The proof relies on the assump-
tion that the forward velocity of the robot is contained in some nonzero
and positive interval. Specifying the bounds of this interval as a function
of the gait pattern parameters remains a topic of future work. To our
best knowledge, this is the first time the stability properties of a path fol-
lowing controller for a snake robot without nonholonomic constraints are
formally proved. The performance of the path following controller was in-
vestigated through experiments with the snake robot Wheeko, where the
proposed controller was shown to successfully steer the snake robot towards
and along the desired straight path.

This chapter also described how the straight line path following con-
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troller can be extended to path following of general curved paths by em-
ploying an approach previously proposed in the marine control literature
for path following control of marine vessels.

Finally, this chapter proposed a waypoint guidance strategy for steering
a snake robot along a path defined by waypoints interconnected by straight
lines. It was proven that the waypoint guidance strategy is guaranteed to
steer the position of the snake robot into the acceptance region of each
waypoint. To our best knowledge, waypoint guidance has not previously
been considered for motion control of snake robots.

14.2 Conclusions of Part II - Snake Robot Loco-
motion in Unstructured Environments

The scope and objective of Part II

The objective of Part II of this thesis has been to develop new control
strategies for snake robot locomotion in environments containing external
objects (or obstacles), which is in line with practical applications of these
mechanisms. The underlying hypothesis has been that intelligent and effi-
cient snake robot locomotion in unknown and unstructured environments
requires that the snake robot can sense its environment and adapt its body
shape and movements accordingly. As a result, we have focused on control
strategies for obstacle-aided locomotion, where the snake robot is propelled
by active use of the interaction with obstacles in its environment. Previous
research on obstacle-aided locomotion is very limited. However, we believe
control strategies for snake robots that consider environment interaction are
important since the main advantage of these mechanisms are their potential
ability to move in unstructured environments.

In the following, we summarize the contributions and conclusions from
the individual chapters of Part II in relation to the scope and objective
presented above.

Conclusions of Chapter 10

We proposed a hybrid model of a planar snake robot interacting with obsta-
cles in its environment. Obstacle interaction was modelled by introducing
a unilateral velocity constraint on each contacted link of the snake robot,
which is a novel approach. In particular, the conventional approach for
modelling the obstacle interaction would be to assume that the obstacle
constraint force points in the normal direction of the obstacle. With the
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approach taken in this thesis, the shape of the obstacles does not have to
be considered explicitly as we instead calculate constraint forces with re-
spect to the normal direction of the contacted links, which simplifies the
equations of motion.

The equations governing the obstacle contact forces were formulated
as a linear complementarity problem (LCP). This formulation enabled us
to determine the existence and uniqueness properties of solutions to the
hybrid system equations by employing existing general results concerning
existence and uniqueness of solutions to LCPs.

Conclusions of Chapter 11

We presented the design of the snake robot Kulko, which was developed
for the purpose of experiments related to obstacle-aided locomotion in un-
structured environments. Previous snake robot design efforts have given
very limited attention to the exterior gliding surface of such robots, and
to methods for enabling snake robots to sense their environment. The de-
sign of Kulko is therefore novel since it combines a smooth outer surface
(independently of how the joints are flexed) with contact force sensing ca-
pabilities. Experimental results were presented that validated the function
of the contact force measurement system. To our best knowledge, this is
the first reported snake robot that can measure the magnitude of external
forces applied along its body. We also proposed an alternative approach
for sensing environment contact forces, which has the advantage that force
measurements are only required at the locations of the joints, and that the
sensor system can be well protected inside the snake robot.

Conclusions of Chapter 12

We proposed a general control principle for snake robots which suggests that
obstacle-aided locomotion is achieved by producing body shape changes
where the links in contact with obstacles are rotated to increase the propul-
sive forces on the robot. The control principle was used to propose a hybrid
controller for obstacle-aided locomotion aimed at resolving situations where
the snake robot is jammed between obstacles. The concept of detecting and
resolving snake robot jams has, to our best knowledge, not been treated in
previous literature, but is a genuine challenge during snake robot locomo-
tion in cluttered environments. Moreover, this is the first published control
strategy for a snake robot involving feedback and explicit use of measured
contact forces to achieve propulsion. We presented experimental results
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based on the snake robot Kulko, where the hybrid controller was shown to
maintain the propulsion of the snake robot in different obstacle environ-
ments. Also to our best knowledge, this is the first reported experiment
where a snake robot is propelled forward based on measurements of the
contact force amplitudes along the robot body.

Conclusions of Chapter 13

A general framework for motion control of snake robots was proposed, where
the motion is specified in terms of a body wave component, an environment
adaptation component, and a heading control component. Furthermore, we
employed the controller framework to propose a continuous control strat-
egy for straight line path following control of snake robots in unstructured
environments. A significant contribution of the controller was the idea of
a continuous jam resolution action that is performed in parallel with the
cyclic wave motion of the robot to continuously adapt the body shape to the
environment and prevent the motion from being jammed. A formal analy-
sis of the performance of the path following controller remains a topic of
future work. Experimental results were presented where the proposed con-
troller successfully propelled the snake robot Kulko through three different
obstacle environments.

14.3 Important Challenges of Future Research Ef-
forts

Based on our research on snake robot locomotion so far, we end this thesis
with an elaboration on what we consider to be the most significant research
challenges that must be addressed before we will ever see useful snake ro-
bots outside the laboratory. We have presented in this thesis experimental
results that demonstrate planar snake robot locomotion in unstructured
environments based on environment sensing and body shape adaptation.
However, to our best knowledge, the fact still remains that non-planar lo-
comotion in unstructured environments based on environment sensing and
body shape adaptation has not yet been demonstrated. Our primary claim
is therefore that future applications of snake robots require significantly
more research on adaptive behaviour during motion in unknown and clut-
tered environments.
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14.3.1 Control Design Challenges
Analysable Mathematical Models

Future control design efforts for adaptive motion of snake robots should go
beyond pure heuristics and instead base the controllers on analysable math-
ematical models and well established control design techniques. Model-
based control design for snake robots is, however, a major challenge. As
shown in this thesis, a mathematical model of the dynamics of a snake
robot on a flat surface is very complex due to the many degrees of free-
dom of the robot. When contact forces from an unstructured environment
are included, the model becomes even more complex because the discrete
nature of the contact forces turns the model of the robot into a hybrid
system. However, model-based control design can be achieved by pursuing
simplified mathematical descriptions of the interaction between a snake ro-
bot and its environment that can be analysed from a control perspective.
In particular, a simple relationship between body shape changes of a snake
robot during environment contact and the resulting translational and rota-
tional motion of the robot could enable an analytical derivation of the joint
torques that will produce the desired motion. The controller development
in this thesis based on the simplified model of snake robot locomotion is an
example of how a simplified modelling approach can be employed to derive
model-based control strategies for snake robots.

Feedback Control Laws based on Environment Sensing

Environment sensing is a requirement for efficient snake robot locomotion
in unknown and unstructured environments. The challenge of utilizing this
sensor information intelligently to maintain the propulsion of the robot is
closely related to the challenge of developing analysable models of the robot.
With a suitable description of how the environment interaction affects the
motion, it is possible to analytically derive the control action that, in a given
environment, will propel the robot in a desired direction. Control design
for snake robots is also challenging because these mechanisms are generally
underactuated, i.e. they have more degrees of freedom than actuators.
The approaches for adaptive motion control of snake robots considered
in this thesis are local approaches since the body shape is adjusted locally
at each contact point to increase the propulsive force without considering
how the adjustment affects the remaining contact forces on the robot. More
efficient control strategies are, however, likely to be obtained by consider-
ing global approaches to environment adaption, i.e. approaches where the
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body shape adjustments are made by considering the overall interaction
of the robot with its environment. In particular, situations where body
shape adjustments act ‘against’ each other are likely to occur with a local
approach, but are likely to be prevented by a global approach. Such global
approaches represent a significant control design challenge.

Motion Planning Strategies

Enabling a snake robot to plan a route through an unstructured environ-
ment has, to our best knowledge, not been treated in previous literature.
A snake robot can be equipped with vision capabilities by making use of
sensor techniques already considered for more conventional mobile robots.
However, due to their unique form of locomotion, motion planning for snake
robots should be attacked with a somewhat different approach than motion
planning for more conventional mobile robots. In particular, while obstacle
avoidance is an important topic for wheeled, tracked and legged robots, the
goal of snake robot locomotion is rather obstacle utilization since objects
in the environment of a snake robot represent push points that the robot
can use for propulsion.

14.3.2 Hardware Design Challenges
Environment Sensing

Measuring external contact forces on the snake robot is a natural approach
for sensing the environment. The force sensing system of a snake robot
is, however, particularly challenging since the robot is articulated, which
introduces the challenge of preventing the joint motion from interfering
with the measurements of the external forces. Measuring forces directly
along the body of a snake robot is, in other words, a significant design
challenge. The design of the snake robot Kulko, which was presented in
this thesis, represents a proposed solution to this challenge. However, the
robot cannot measure external forces very well at the connection point
between two modules.

An alternative approach, which was proposed in this thesis, is to es-
timate the external forces acting on the robot solely through force mea-
surements at each articulation point along the robot. The instrumentation
system of this solution is significantly simpler than the instrumentation
required to measure external forces on the robot directly. Further inves-
tigations of this approach represent an interesting and important topic of
future work.



324 Conclusions and Future Challenges

We consider research on environment sensing for snake robots to be
highly relevant also to many other application areas within robotics, which
suggests that researchers working with snake robots should identify and
pursue synergies with other robotic research areas where environment adap-
tation is important.

Ground Friction Force Limitation

If the propulsion of the snake robot is based on forward gliding motion
similar to the motion of biological snakes, then a sufficiently smooth exte-
rior surface is very important since any irregularities along the body may
potentially induce large obstructive friction forces on the robot. Obtaining
a smooth surface combined with contact force sensing at articulated parts
of the robot represents a significant design challenge. The snake robot
Kulko presented in this thesis has a smooth surface due to spherical shells
that cover each joint module, and can measure external forces due to force
sensors mounted underneath the shells.

The friction forces opposing the motion of a snake robot can also be
limited by introducing active propulsion along the body. This approach is
employed by the snake robot with active tracks presented in Granosik et al.
(2006) and by the skin drive mechanism described in McKenna et al. (2008).
The drawback of active propulsion along the body of a snake robot is that
the mechanical complexity of the robot is significantly increased. In our
opinion, the ideal solution is a snake robot with a passive and smooth tactile
skin that can glide forward like a biological snake. Mechanism simplicity is
important to the future use of snake robots since this increases the reliability
and reduces the development cost of the robots.

Robust and Strong Actuation Mechanisms

In order to move in unstructured environments, the snake robot must gen-
erally be able to lift parts of its body. This means that there is some lower
limit to the ratio between the strength of the actuators and the weight of
the robot. Developing joint mechanisms for snake robots where this ratio is
maximized is an important design challenge that must be addressed. Fur-
thermore, locomotion in unstructured environments generally requires that
the actuators can work against environment contact forces over time with-
out overheating. The modified servo motor for snake robots described in
Wright et al. (2007) targets this design challenge. A compliant joint mech-
anism is advantageous during locomotion in unstructured environments,
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which is the motivation for the use of pneumatic actuators in the snake
robot with active tracks presented in Granosik et al. (2006). However,
compliance can also be enforced by the controller of the robot if the con-
tact forces along the body are measured.

Dustproofing and Waterproofing

In order to make use of snake robots outside the generally clean lab envi-
ronments, the robots must be able to operate despite of mud and dirt in
their environment. Water resistance is also generally a great advantage.
Both dustproofing and waterproofing a snake robot is challenging, in par-
ticular when we also require force sensing capabilities and a smooth exterior
surface.
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Appendix A

Proof of Lemma 8.2

The proof of Lemma 8.2 has previously been presented in Pavlov et al.
(2007) and is included here for completeness. The Lemma is proved by
showing that a quadratic Lyapunov function candidate of the system (8.40)
is negative definite, thereby implying that (8.40) is UGAS.

The system (8.40) can be written as

p,| | VEA VA2 B, 1)
in - XAvy . Y — XA? . ) Ty | )
(VP +4%) (VP +42)

Consider the quadratic Lyapunov function candidate V' = 1/ 21722/ + K /202
with £ > 0. The derivative of V' along the solutions of (A.1) is given by
Utﬁg Aﬁyin

V=9, KTOnUp = —
PyPy - HonTn P+A? | /Al

- (A.2)
XAvtpyvn?) k(v = X A2 ﬁ2 '

T ma) ey )

Since v4 € [Vinin, Vimax] by Assumption 8.1, and since X < |X|, we can
estimate V as

* ‘/rninﬁ2 ATJ Un
V< — Y Y
T VEHA? AR (A.3)
‘X|Avmaxﬁy@n ‘X|A2 —2 :
—_— Y Y+ ————= | v-.
T (Jary *"“( Ty )

By introducing the variable z = ‘T)y} /A @Z + A2, this estimate can be writ-
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ten as

V < _Vminz2\/ﬁ§ + A?

| X |AVinax — |X|A2 )
*(A+“1@A2)ZW“+K<Y*<v%ﬁyf)“r

Finally, using the inequalities — /T?Z +A2< —-Aand1/ (T)Z + AZ) <1/A2,
we obtain

(A.4)

. X max _ X =
V < —ViinAz2 + (A + /<;||L/> Z2|Un| + K <Y + w> 72, (A.5)

We now choose k£ = A% (28 — 1) / (| X| Vinax), where

Vmin (_AY - |X|)
Vrnax |X|

6= (A.6)
It is straightforward to show that condition (8.28) of Theorem 8.2 is equiv-
alent to § > 1. The chosen value of k is therefore strictly positive. Substi-
tuting this k into (A.5) gives

V < —ViinA2® + 28z [5,] — 281872

Vmin n

N2 (A.7)
_ 7 Blvn A(B-1)B 2
== —A ( Vminz - F/mlln) - (Vmin U?’l'
Finally, substituting the expression for z into this estimate gives
2
. Vmin D Up, A -1
veoa VWPl B ) AG=DBL o

Since condition (8.28) guarantees that 5 > 1, we can conclude that V <0,
which implies that the origin of the system (8.40) is UGAS (see Khalil,
2002). This completes the proof of Lemma 8.2.



Appendix B

Proof of Lemma 8.3

The lemma is proved by showing that the system (8.40) is ULES (uniformly
locally exponentially stable), which, together with the UGAS property es-
tablished by Lemma 8.2, implies that (8.40) is globally K-exponentially
stable according to Corollary 8.1.

The linearization of the system (8.40) about the origin is easily calcu-

lated as .
AN IR
H ) (-0
Denoting the system matrix of (B.1) by W, we can calculate the eigenvalues
of W from its characteristic equation

A% — tr (W) A+ det (W) =0, (B.2)

where tr (W) and det (W) are the trace and the determinant of W, respec-
tively. W is Hurwitz (see e.g. Khalil, 2002) if the coefficients of this char-
acteristic equation are strictly positive, i.e. if tr (W) < 0 and det (W) > 0.
Since vy > 0, Y < 0, and A > 2|X|/|Y]| (this follows from (8.28)), the
trace of W satisfies

tr(W)=-%+Y - X <% —[Y]+ 3

(B.3)
S—E-IY[+3VI=-% -3V <0,
and the determinant of W satisfies
(% X X’Ut (0
det( W)=——= Y - — | - —% =—-Y . B.4
(W)= (Y- 3 ) - g =y >0 (B.4)

The system matrix W of the linearized system (B.1) is therefore Hur-
witz, which implies that the origin of the system (8.40) is ULES (see
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Khalil (2002), Corollary 4.3). Since, by Lemma 8.2, the origin of (8.40)
is also UGAS, Corollary 8.1 implies that the origin of (8.40) is globally
K-exponentially stable. This completes the proof of Lemma 8.3.



Appendix C

Low-pass Filtering Reference
Models

In order to ensure that the state reference of a control system complies
with the dynamical capabilities of the system, the commanded state of
the system can be passed through a low-pass filter. The filter, which is
called a reference model, keeps the output from the control system within
the physical capabilities of the actuators of the system. In addition to the
filtered state reference, the output from the filter typically also includes
the derivatives of the state reference with respect to time, which are often
needed in the control law of the system. A low-pass filtering reference model
can for example be used in combination with PD-control of the angle of a
mechanical joint. Since the derivative part of the PD-controller includes
the derivative of the reference angle with respect to time, any steps in
the reference angle would make the output from the PD-controller infinitly
large. This infinite control output is avoided by using a reference model to
low-pass filter the reference angle.

In the following, we present a 2nd order and a 3rd order low-pass fil-
tering reference model for a control system with a single scalar state value.
The commanded state reference is denoted by r € R and the filtered state
reference is denoted by z,.s € R. In other words, we want the system to
reach the state r, but we apply the filtered state reference x,e¢ to the con-
troller in order to ensure that the system is brought to r through smooth
control actions. For control systems with multiple states, the reference
model can be applied individually to each state. The following material is
based on Chapter 5 in Fossen (2002).
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C.1 A 2nd order low-pass filtering reference model

A reference model of 2nd order ensures smooth reference signals for xyef
and Zyef, but not for Z..r. We define the reference model as a mass-damper-
spring system with the transfer function

2
Lref w

r 824 2ws 4+ w?’

(C.1)

where w > 0 and ¢ > 0 are, respectively, the natural frequency and the
relative damping ratio of the mass-damper-spring system. The reference
model, which satisfies

lim zpe = 7, (C.2)
t—o0
can be written
j}ref + 2C("ij'ref + WZxref = w27'7 <C3)

and can be implemented in a control system by defining the state vector

w = [’fref] (C.4)

Tref

and calculating the dynamics of this state according to

i = [_32 _21@} w+ LS’Q} r (C.5)

C.2 A 3rd order low-pass filtering reference model

In order to ensure that x,ef, Tref, and Iy are all sufficiently smooth, the
filter should be of 3rd order. This is achieved by cascading the mass-
damper-spring system (C.1) with a 1st order low-pass filter, which gives
the transfer function

Tref w2
r (1+7Ts)(s?+ 2Cws + w?)

where T' = 1/w is the time constant of the 1st order low-pass filter. This
transfer function can be written

3
Tref w

r 3 (2C+1)ws?+ (2¢ + 1) w?s + w3’

(C.7)
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The reference model, which satisfies
lim zpe = T, (C.8)
t—o0

can be written

o)+ (2¢ + 1) witger + (2¢ + 1) Writyer + Witrer = Wir, (C.9)

ref

and can be implemented in a control system by defining the state vector

Tref
W= | Tref (C.10)

j:‘ref
and calculating the dynamics of this state according to

0 1 0 0
w=1|0 0 1 w+ [ 0] (C.11)
—w? — (2 +1D)w? —(2A+1w w3





