@ NTNU

Norwegian University of
Science and Technology

Autonomous Bicycle

Snorre Eskeland Brekke

Master of Science in Engineering Cybernetics
Submission date: September 2010
Supervisor: Amund Skavhaug, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem Description

The Department of Engineering Cybernetics at NTNU wish to complete a project on an
autonomous unmanned bicycle, which has been developed by the department’s students during
the past few years.

Work that has to be done reach this goal involved:
-software development with real-time requirements
-use of a real-time operating system
-electronic/hardware development and circuit analysis
-control theory

-mechanical engineering

-power electronics

The candidate have to i.a:

-gain an understanding of the existing system

-on an independent basis, point out and suggest what has to be done
-as far as time permits; implement the suggested solutions

Assignment given: 25. April 2010
Supervisor: Amund Skavhaug, ITK

Autonomous Bicycle

Master’s Thesis

Snorre Eskeland Brekke

snorrees@stud.ntnu.no

Engineering Cybernetics
Embedded Systems

Supervisor:
Amund Skavhaug

Hand in date: September 8, 2010

@ NTNU

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Engineering Cybernetics
TRONDHEIM

Preface

As I am handing over this thesis for evaluation, I am inspired by the knowledge that the
autonomous bike will have two new students continuing the work I now leave behind.
The project, a daunting task in its own right, is in my opinion the epitome of Engineering
Cybernetics, revealing the field in all its gore and glory. Personally, I had never really
contemplated how varied Cybernetics could be.

Throughout the work of the thesis, I stepped out of my comfort zone, out of the
software domain, and into the comparatively unreliable world governed by hardware.
Up until this project, the very idea of even probing electronics was very foreign and
unfamiliar terrain. I have never, unlike most of my fellow peers, built a computer, and
the bike system is so much more than a mere workstation. The autonomous bike is
responsible for teaching me a methodical approach to problems, breaking them down to
the basics, and solving them step by step. I have also surprised myself as to what can
be accomplished alone, given sufficient time.

I am torn by the thought of stopping work on the bike. On one hand, the project
has been a lot of fun, both challenging and entertaining. On the other hand, grueling,
unexplained system failure, very much following Murphy’s Law will not exactly be missed.

I would like to thank and give a loud shoutout to my supervisor Amund Skavhaug,
whose understanding and guidance has served as a rock for the duration. Without his
continued encouragement and patience, this thesis, and indeed my master’s degree, might
not have come to be. I would also like to thank the guys at the workshop, dealing with
my timid questions even as they missed their bus ride home.

Finally T would like to thank my girlfriend Sara, for simply being there through it
all. Your nuanced view on life is indeed an inspiration to a square like myself.

Trondheim, September 8, 2010

Snorre Eskeland Brekke

ii

Contents

Abbreviations and acronyms

1 Introduction

1.1
1.2
1.3
1.4

Motivation
Problem
Earlier work
The thesis structure

2 Background

2.1

2.2

2.3

24

The Bike model
2.1.1 Important assumptions and simplifications
2.1.2 Modelling the different parts
2.1.3 Other important parameters
QNX Neutrino e
2.2.1 Message Passing oo
2.2.2 Resource Managers oo
Real-time Workshop
2.3.1 Configuration
2.3.2 S-functions Lo
2.3.3 Communication
2.3.4 Compiling and Running the Code
System flow

3 Hardware

3.1
3.2
3.3
3.4

3.5

Current source
Computer
Storage
I[/Ocard
3.4.1 Motor controller card L
Motors
3.5.1 Propulsion motor oo
3.5.2 Motor for the inverted pendulum
3.5.3 Steering motor

iii

vii

3.6 IMU-Xsens (MTi) o

3.7 IMU-Spark Fun
3.8 GPS . .
3.9 Emergency Stop
310 Fan oL
3.11 Batteries
3.12 Pendulum Limit Switches
3.13 Potmeters
Software
4.1 Software
42 OSY L
4.3 Drivers
4.3.1 Resource Manager: deve-dmm32at
4.3.2 Resource Manager: devec-imu
4.3.3 Resource Manager: deve-mt
4.3.4 Resource Manager: devc-gpso
4.3.5 Resource Manager: devc-velo
4.3.6 Simulink Bike Demo oo

Problems and Solution

5.1 New Motherboard
5.2 New Harddrive
53 OS Update
5.4 The Cyberbike Model
5.5 Bike Control Demo
5.6 Driver Enhancements

5.6.1 The Velodriver
5.7 Physical Challenges and Enhancements

5.7.1 Cabinet Frame

5.7.2 Potmeter strain

5.7.3 Pendulum Limit Switches
5.8 The Propulsion motor L
5.9 Wiring issues
5.10 The MTi. e
5.11 The Wireless Issue

Tests and Experiments

6.1 Test equipment
6.2 The Wafer-945GSE2
6.2.1 USBPorts.
6.2.2 COM Ports

!Operating System

v

37
37
37
37
39
40
42
43
43
44

47
47
49
50
51
52
o8
o8
o8
o8
99
60
60
60
60
61

6.2.3 Network Issues

6.2.4 Harddrive Issues
6.3 Motor tests e
6.4 Batteries stresstest
6.5 Simulink tests
6.5.1 Cyberbike model tests L.
6.5.2 Bikedemotests
6.6 Device Peripherals and associated drivers
6.7 GPS . . .
7 Further Work
7.1 Recap of Existing Problems
7.1.1 The first journey
7.1.2 Minor Issueso
7.1.3 Wireless networking Lo
7.2 Moving Forward L o
7.2.1 Simulink model
7.2.2 Optimizing deve-dmm32at
7.2.3 Videocamera
7.2.4 Mechanical Brakes and Overall Safety
7.2.5 Overall system
8 Discussion
8.1 Choice of new motherboard
8.2 Choice of storage medium
8.3 Unresolved problems o
8.3.1 Lack of Wireless Networking
84 Reflection
9 Conclusion
Bibliography
A Contents on DVD
B How to start the bike system
C Connection tables
C.1 Terminal block outside suitcase
C.2 Baldor
C.3 Terminal Blocks
C4 J3on DMM-32-AT

69
69
69
69
71
71
71
72
72
72
73

75
75
75
76
76
7

79

81

83

85

vi

Abbreviations and acronyms

A/D Analog-to-Digital

AC Alternating current

APl Application programming interface

BIOS Basic Input/Output System

DAC Digital-to-Analog Converter

DC Direct Current

DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access

EIDE Enhanced IDE (Integrated Drive Electronics, se ATA)
FIFO First In - First Out

GUI Graphical User Interface

/O Input/Output

IOV I/O vector

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IPC Inter Process Communication

LQG Linear quadratic Gaussian (control)

OS Operating System

PID Proportional-Integral-Derivative (controller)

POSIX Portable Operating System Interface
"X refers to the Unix heritage of POSIX

vii

QNX A RTOS developed by QSSL
QSSL QNX Software Systems Limited

RM Resource Manager
also refered to as “device drivers”

RTOS Real-Time Operating System

RTW Real-Time Workshop

TLC Target Language Compiler

TCP/IP Transmission Control Protocol/Internet Protocol
SATA Serial Advanced Technology Attachment

SBC Single-board computer

UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus

#C micro controller

viii

Abstract

The autonomous bike was conceived by Jens G. Balchen back in the eighties, and later
picked up by Amund Skavhaug. The idea of a two-wheeled, self-powered, yet riderless
bike has since been pursued intermittently over the years. Audun Sglvberg was the last
person working on the project in 2007, making large headway towards the final goal of
the bike: An outdoor ride, preformed by a riderless bicycle.

The same goal is shared by this thesis; to make the bike work as intended and get the
bicycle running outside. Additionally, as it would be naive to assume that this work would
leave the bike in perfect condition, the thesis focuses on documenting issues that are left
unfixed upon completion. Unfortunately, a fully functional, outdoor demonstration was
not achieved, but half of the battle was won: Two of the three motors residing on the
bike can be fully controlled by an external device.

At the start of the work, the instrumentation system was mostly completed. A com-
puter, running a QNX Neutrino Operating System, interfacing with potmeters, motors,
Inertial Measurement Units and a GPS where available, mounted on the bike. Drivers
communicating with the hardware was already written, and a Simulink model, meant to
control the bike had been developed. However, the motherboard was in need of replace-
ment, and the Simulink model was not finalized or even tested. The system was also
lacking wireless networking capabilities.Yet, at the onset of the thesis, it was believed
that the project was very close to reaching its ultimate goal.

As the work progressed, several issues became apparent, emerging along with prob-
lems being solved. The motherboard was replaced with a Wafer-945GSE2, implicitly
requiring a new hard drive to be installed. The OS was upgraded from version 6.3.0 to
6.4.1, to bring it up to date and as a requirement for some of the motherboard hardware.
All of the device drivers where modified to work without their counterpart hardware
connected, easing development of the Simulink model. The model was shown to be unre-
liable, but the hardware interface subsystem was completed and tested to allow for easy
integration in separate projects.

To demonstrate the capabilities of subsystem, a Bike Demo model was created, allow-
ing the steer and pendulum to be controlled by the used of the bike accelerometer, using
orientation data as reference. The intent was for the demo to serve as a control system
for an outdoor ride. Ultimately the motor controller card was found to be incompatible
with the propulsion motor, unable to deliver sufficient current. At the time of discovery,
too little time reminded for the problem to be rectified. A demonstration of control
system however, was successfully concluded.

An attempt to bring wireless networking to the bike failed. Arguably too much time
was spent making USB Wifi devices working with the QNX OS, when easier alternatives
could perhaps have solved the problem earlier.

The thesis has a large focus on the work ahead, as the system is complex and unreliable
by its very nature. All known issues are detailed and summarized, and the various
chapters describing hardware and software have been outlined in an attempt to serve as
a go-to reference for students taking on the autonomous bike project in the future.

ii

Chapter 1

Introduction

1.1 Motivation

The autonomous bike was conceived by Jens G. Balchen back in the eighties. He imagined
the construction of a two-wheeled, autonomously running bicycle, an idea picked up and
future developed by Amund Skavhaug. Since its conception, the autonomous bike project
has intermittently been the center of attention, slowly nearing completion. The goal of
this master thesis has therefor been twofold: to take the bike on a ride outdoors for the
first time, and prepare the bike for future development, documenting problems as they
appear.

The Department of Engineering Cybernetics can conceivably use the bike as a advert
and poster child, attracting potential students or as an exhibit for visitors. The bike
covers a wide variety of subjects relevant to Cybernetics, and will serve as an excellent
example of what can be achieved throughout the studies. The theory backing the bike
dynamics is also of interest, as presumably no bicycle has ever been controlled in this
manner: an inverted pendulum for balance, a motor for controlling the steering direction,
and a motor providing propulsion.

1.2 Problem

The main goal is to get the bike running. The instrumentation system is mostly complete,
but a new motherboard and damaged weiring has to be repaired. Making accommoda-
tions for wireless networking is necessary. Furthermore, the Simulink model responsible
for controlling the bike has to be completed, as it is not operational. Based upon earlier
work, it is also assumed that an instrumentation system of this magnitude will present
a host of unforeseen problems, all of which will have to be dealt with as they appear.
As such, another important aspect of the thesis is documenting issues and uncompleted
tasks so that the work can be easily continued in the future.

This thesis, along with the work done to get the bike on the road, can hopefully
be used as a point of reference and documentation for the system. The autonomous

2 CHAPTER 1. INTRODUCTION

bike is a relatively complicated instrumentation system, and unifying previous work and
documentation should be prioritized.

1.3 Earlier work

This thesis is based upon the fall project of the candidate. As the project and the
master thesis is part of an integral process, the project report will not be referenced,
but instead be used directly. The most important previous work is the master thesis
of [Selvberg, 2007], who came close to conducting an outdoor ride. [Sglvberg, 2007]
enhanced the instrumentation systems already implemented on the bike, and updated
the software. He installed a GPS-module and made a new and improved accelerometer
available for the bike. [Sglvberg, 2007] based most of his work on the theses of Loftum
[2006] and Bjermeland [2006]. Bjermeland [2006] developed a mathematical model for
the bike, and implemented a Simulink model and simulator. Bjermeland [2006] developed
the bike instrumentation system, and was responsible for installing the bike computer
running QNX. Fossum [2006] continued the work of Bjermeland [2006] , improving the
instrumentation system further.

1.4 The thesis structure

The layout of this thesis has been done for it to function as a "go to" reference for
future work. Combining the work of the previous theses, and putting relevant material
in comprehensive chapters has been important. The background chapter focuses on
the underlying theory backing up the bike system. The hardware chapter describes
the instrumentation system, giving a broad overview of the components composing the
system. The software chapter is meant as a reference guide for new users, explaining
their use and functioning. Both of these chapters present the system as is, at the end
of the thesis work. Chapter 5 covers the practical work preformed during the thesis,
outlining problems faced and solutions to them, followed by a chapter detailing tests and
experiments performed during the thesis work. Chapter 7, detailing further work, is put
before the conclusion, and indeed, before the discussion. The reason for this is simple;
the tasks that remain for the autonomous bike are numerous, and detailing what needs
to be done is as much part of the documentation as anything else. Therefore it is natural
to include it as a part of the main text.

Chapter 2

Background

This chapter describes theory theory and systems upon which the autonomous bike is
based. The mathematical model and the computer software which runs on the bike
computer work in unison, and to get an understanding of how this is accomplished,
several terms and principles will be presented. Finally a broad picture of how the total
system works in terms of signal flow is presented.

2.1 The Bike model

Bjermeland [2006] developed a mathematical model of the bike, as well as implementing
a control algorithm which was tested using simulation. To get an understanding of how
the bike is supposed to operate, it is therefore important to understand some of the
underlying theory. Bjermeland [2006] developed the model, controller and simulator for
the bike using steering and leaning (the inverted pendulum) as the manipulated variables.
This summary is in large based upon [Sglvberg, 2007|, and the background presented
there. |Lebedonko, 2009] also made a tremendous effort detailing theory and modelling
of a bike. His work will not be presented here, as it has not been implemented into the
actual system in any way. His work, however, will possibly become important moving
forward.

2.1.1 Important assumptions and simplifications

To ease the modelling of the bike, some assumptions and simplifications where made:
The bike was first divided into five rigid bodies:

1. The front wheel
2. The rear wheel

3. The rear frame

4 CHAPTER 2. BACKGROUND

4. The front frame (handlebars and front fork)

5. The inverted pendulum

Figure 2.1 shows the simplified model of the bike, where the centers of mass is indi-
cated. Elasticity and other non-ideal movements and deformations is neglected.

my,

C,
w o

Figure 2.1: The bike main parameters. Figure from [Sglvberg, 2007].

The bike orientation is space is shown in Figure 2.2; the Z-axis points upwards and
the X-axis points in the bike direction of travel when the yaw-angle v is zero.

A rotational matrix can be approximated for small angles as shown in Equation (2.1):

Rg = RZ(I/))Ry(G)Rx((JS) (2‘
[cosv¥ —siny 0 cosf 0 sinf 1 0 0
= sintyy cosy 0 0 1 0 0 cos¢p —sing
0 0 1 —sinf 0 cosf 0 sing cos¢

cos() cos(f) —sin(1)) cos(¢) + cos() sin(f) sin(v)) sin(v)) sin(¢) + cos()) cos(¢) sin(h)
= sin(¢) cos(f) cos(v)) cos(p) + sin(¢) sin(f) sin(yp) — cos(v)) sin(¢) + sin(0) sin()) cos(¢)

| —sin(6) cos(#) sin(¢) cos(#) cos(¢)
[1 -y 0
~ P 1 —¢
-0 ¢ 1

This is a linear rotational matrix. Note that this model will produce large errors
when the angles become wider.

2.1. The Bike model 5

<« <P

X

Figure 2.2: Space orientation in a right hand coordinate system.

Another important assumption is that the bike is symmetrical lengthwise while in
equilibrium. For the autonomous bike this does not hold true , as the steering motor is
placed on the left side of the frame. However, the batteries are heavy compared to most
of the bike elements and contributes greatly to the rear frame center of mass, somewhat
reducing the effect of the motor placement.

Furthermore; it is assumed, as a consequence of the linearized equations, that the bike
speed is kept constant. This is a problem in a real world scenario where keeping constant
speed can be hard to achieve. This comes in addition to the fact that the pitch-angle is
assumed to be zero at all times. In other words, the bike model is meant for movement
on a flat surface.

2.1.2 Modelling the different parts

The position and parameters of the five rigid bodies can be described with with rotation
and transformation matrices relative to the inertial frame ¢. Connecting the rear wheel
and the rear frame, the front wheel and the front frame reduces the total number of mass
centers from five to three. The posision of these centers of mass is then given:

Rear frame and rear wheel m,.:

‘ Ty + Ty
qunr = Yrw + xrwr - Z’V‘¢7‘ (22)

Zr

where:

® 7., and ¥y, forms the x- and y-component of the vector ¢, which is the position

of the point where the rear wheel is in contact with the ground surface

6 CHAPTER 2. BACKGROUND

e 7., Yy and z. are the wheel position of the center of mass.
e ¢, is the lean angle of the rear wheel /rear frame from the vertical

e 1, is the rear frame’s yaw-angle (heading).

Pendulum m,:

) Trw + Zp
T:np = | Yrw + Tptr — 2pPr — hpp (2.3)
Zp

where:

e 1, and z, is the position of the pendulum center of mass, relative to the rear wheel
to ground contact point

e 1, is the length of the pendulum, from the rotating center, to the pendulum center
of mass

e ¢, is the pendulum angle

Front frame and front wheel m;:

‘ Trw T+ 2f
rinp = | Yrw +ud+ x5 — 250, (2.4)
zf

where:

e x; and zy is the position of the m; related to the rear wheel to ground contact
point

e u is the lenght from the front fork to the m; center of mass point, measured in a

direction perpendicular to the front fork (i.e. § — a from the horizontal forward

(x) axis).

e J is the steer angle

2.1.3 Other important parameters

To get an understanding of how the Simulink model is connected to the actual bike, some
important variables needs to be explained. Two important vectors used are:

2.1. The Bike model 7

= [g][}] 25)
f—[ﬁ]—_[gMﬂ (26)
L ép

where:

e My, is the leaning torque on the total system
e My, is the leaning torque on pendulum rider

e My, is the steering torque

Controller design

The controller is designed to get a set turnrate for the bike. This is measured or estimated
through an observer as described in [Bjermeland, 2006, chap. 6]. A LQG! controller is
used, making it possible to weigh the different error stats in the physical system, and
penalize excessive actuator use. The observer states are shown in Equation (2.7) and
(2.8), and the state space model is described by Equation (2.10) and 2.11).

6
r1 = 1) (2.7)

L ¢p |

€T2 = T1

6T
=19 (2.8)

L dp |

M,

= (2.9)
&y = a9 (2.10)
iy = MY (—(KO0+v?K2)z; — vClxy + u) (2.11)

where

e M is the 3 x 3 Mass Matriz

e KO0 is the 3 x 3 Velocity Independent Stiffness Matrix

'Linear quadratic Gaussian (control)

8 CHAPTER 2. BACKGROUND

o K2 is the 3 x 3 Velocity Dependent Stiffness Matrix
o (1 is the 3 x 3 Velocity Dependent Damping Matrix

e v is the speed vector

[Bjermeland, 2006] gives a much more throughout explanation of the different param-
eters, as a full coverage here is beyond the scope of the thesis.

The Kalman fliter is based on Equation (2.11). In the model it is assumed that the
turning rate of the bike is estimated through the measurement of the steering angle.
On the actual bike implementation, the gyro is used to measure yaw, so this has to be
considered when working on the actual bike.

Matlab and Simulink model

The Simulink model was initially developed by [Bjermeland, 2006] and then future en-
hanced by [Sglvberg, 2007]. A Matlab S-function reads data from the devc-velo resource
manager, and transmits this data to the control block. The model is shown in Figure 2.3.

The model is dependent upon several files to work as intended. These are shown in
Table 2.1, and are automatically loaded when the Simulink model is initialized.

Number in sequence File — Generates
1 load_parameters.m — parameters.mat
2 initModel.m — bikesystem.mat
3 get_lqg.m — kalman.mat
— lqgr.mat

— speed.mat

Table 2.1: Matlab files to initiate the parameters used in the Simulink model.

A GUI? is displayed when the simulation is completed or stopped, as shown in
Figure 2.4 .

A Runge-Kutta fixed step solver is used for the model. Section 2.3 will cover how the
bike can be run and communicate with hardware.

2Graphical User Interface

The Bike model

2.1.

‘PO JUIMUIG OII0qAD) o) UI SPO[q UreW dY, :g'g omSL]

oL

yonms

Bumoid

oL
oL

ClapEl]

oy1g4egqhD ay L

Uied/soILeuAq Jepr/aiholg
40 19POW

A ‘90uaiajel peads

d

es A.M_\,__uh

wajsAg |04u0)

(-]

110p1sd

20UBI9JeY

10 CHAPTER 2. BACKGROUND

) path_fig

Bicycle Path

— Cortral

Play

Duration sec

I

Interval sec.:

=]
T
=}

Plats

[close-up

—Plots ———————

Xy -plot

Time selection: 4 ‘ | » |

Psi-plot

Phi-plot

Elevation 4 ‘ | L4 | Al

Detta-plat

21 4 Phi_-plot
Azimuth >|

0 1 W_p-plot

Zoom d

T e

N | ol] M_deta-plat

Figure 2.4: Screenshot of the simulation GUI, constructed by Bjermeland [2006].

2.2. QNX Neutrino 11

2.2 QNX Neutrino

QNX? Neutrino is a RTOS* developed by QSSL?. QNX has a micro kernel architecture;
only the most fundamental services are run by the kernel. Beyond simple primitives and
system calls to assign runtime, address space and process communication, all services
run in user space. These programs are typically called servers. The operating system is
therefor completely modular, and the user can start and stop servers as needed. As the
modules do not share memory with the kernel - QNX has protected memory - servers
that hangs will not crash the system. This has great impact on systems where system
failure can lead to damaged equipment or bodily harm.

QNX Neutrino relies on two important concepts, the first being message passing and
the second being resource managers. Both will be explained in the following sections,
based upon [QNX Software Systems, 2009b, Kap. 3] and [QNX Software Systems, 2009a,
Kap. 4].

2.2.1 Message Passing

IPCS or interprocess communication, is a major part of what transforms QNX Neutrino
from being an embedded realtime kernel to a fully fledged POSIX” operating system.
Modules can communicate through messages, and the architecture ensures that IPC on
separate, distributed nodes can seamlessly be included. This is a major advantage over
traditional systems, where local and external communication is treated very differently.
Through the Neutrino C library, which handles the message passing, POSIX C calls can
be used without having to write separate functions for message handling.

Message passing uses a server/client model. A server awaits client requests, which in
turn are blocked until the server responds. Under Neutrino, the delivery of messages is
done using interconnected channels, and are not directed to one particular thread. This
is a strength in that only one kernel object is need for all threads that are connected
to a given channel, which in turn increases efficiency. Another advantage is that when
a threads becomes blocked, the receiving thread is immediately readied to run, without
any explicit work being done by the kernel, something which is common for other types
of IPC.

A server will first create a channel using the ChannelCreate() function. Clients can
then connect to the channel by calling ConnectAttach(), which returns a connection ID
(coid). The ID is used by the client to send messaged to the server with the MsgSend()
function. The server is blocked through MsgReceive(), a function call that awaits request
sent by MsgSend(). When the server has handled the request, a response is sent using
MsgReply(), upon which the client can continue. MsgReply() does not block the server,

3A RTOS developed by QSSL
*Real-Time Operating System

S5QNX Software Systems Limited
SInter Process Communication
"Portable Operating System Interface

12 CHAPTER 2. BACKGROUND

as it is implied that the client is already awaiting an answer from the server. If for
whatever reason the request was denied, the server will replay using MsgError(), giving
the client some information about the failed request.

This type of communication is synchronised, and as such a strict message hierarchy
has to be adhered to. This is important to avoid deadlocks, where two servers ends up
waiting for each others response. Two threads should never send messages to each other;
all cross communication should come in the form of replies from the server. In a similar
fashion, MsgSend() should only be used by threads on a higher level in the hierarchy as
shown in Figure 2.5.

.......... ; MsgSend()
P .
(87 Lo
A A
MsgSend() MsgSend()

'y - ' .]
STANNS VS
Figure 2.5: Communication hierarchy, taken from [QNX Software Systems, 2009b] .

If greater flexibility beyond the protocol presented thus far is needed, QNX Neutrino
provides the MsgDeliverEvent() function. This is a asynchronous, non-blocking function
call. It is useful when a client wants a server to initiate a time consuming process, but
does not want to be blocked while the server is working. The function also allows threads
on a higher level to message threads lower in the hierarchy about timers, interrupts and
other events, independent of client requests.

Another, non-blocking option, is pulses. When MsgReceive() returns 0 as receiver 1D,
this indicates a pulse. A pulse is limited by 40 bits of information, thus limiting the use.

QNX messages are transferred by copying the message directly from one memory
address space to another. By doing so, extra buffers to transfer the messages are avoided,
and the kernel can preform the transfer without the need for additional meta information.
This has the benefit of low overhead and high bandwidth, close to that of the underlying
hardware. If a message is larger than the server is can receive, the server can use the
MsgRead() function to read the rest of the data, directly from client memory. Similarly,
the server can use MsgWrite() to transfer large messages directly to client memory,
should it be necessary. This is particularly useful when transferring large amounts of
information, and avoids large buffers to handle large requests.

The message passing primitives also supports transfers with several parts. The parts
need not be a continuous memory space, but can be specified with a table which indicates

2.2. QNX Neutrino 13

where the message fragments can be located (see Figure 2.6). IOV® is used to assemble
such a message, and is sent similarly to single part messages, using functions with a v
appended to the function name. In other words, MsgWritev() replaces MsgWrite() and
so forth.

10V Message Data
Len Addr

Each 0 L » Part 1

1oV
may have Each part

any * * Part2 may be
number - = 0to4 GB
of parts 5 . > Part 3

Figure 2.6: Data structure for multi part message . From [QNX Software Systems, 2009b]

As mentioned earlier, these function calls are not needed when programming standard
POSIX C, as the underlying library handles the actual message passing. Knowledge about
QNX message passing, however, is a important to understand the system architecture,
and plays a major part in the basis for the bicycle drivers: resource managers.

Qnet

Another feature of QNX is Qnet. In a network with all QNX Neutrion nodes, an appli-
cation can access any resource on the network as if it was available locally. It is even
possible to start programs on other nodes. The Qnet protocol makes the network solu-
tion for QNX appear transparent, by the use of message passing. The protocol is meant
for protected networks, and provides little in the way of network security. Nodes on the
network appear in the /net directory, listed by their host name. Section 5.3 describes
how Qnet was configured for the bike system.

2.2.2 Resource Managers

Resource managers, or device drivers, are programs running in user space as servers.
They receive messages from other programs and can communicate with hardware. As
a process, a resource manager registers a path name prefix in the system which other
processes can open with standard C open() or fopen() calls. Clients can then use read(),
write() or other calls using file pointers and file descriptors. Resource managers are
generally used as an interface to other devices. In other words, device drivers run in user
space on QNX - separating it from typical operating systems - and can be started and
stopped in real-time.

81/0 vector

14 CHAPTER 2. BACKGROUND

There are several strengths to this implementation. Resource managers have POSIX
API° and adheres to the documentation from the bottom up. This way, the learning
curve for new developers is reduced. The number of interfaces is also low, as all server
processes has the same form. This has the added benefit of making it easy for clients
to connect to several different servers: all that is needed is open(), read() og write().
Last, but not least, resource managers are very easy to test. Command-line tools can
be used to access a newly developed manager, without any additional test application.
For instance, to test a resource manager that has registered the pathname /dev/server,
a simple use of cat /dev/server would print what a read() call would have received.
To test the write() function, using, for instance, echo 50 >/dev/server would send the
value 50 to the manager as if a write() with 50 as an argument had been called.

Beneath the surface of the resource managers, QNX uses message passing for commu-
nication. The manager has a MsgReceive() loop answering any MsgSend() from external
clients. A typical request is shown in Code sample 2.3.

Code sample 2.1 Typical request to a resource manager with the filepath /dev/server
registered.

/= In this stage, the client talks to the process manager and the resource manager.x/

fd = open("/dev/server", 0 RDWR);

/xIn this stage, the client talks directly to the resource manager. */
for (packet = 0; packet < npackets; packet++)

write(fd, packets[packet], PACKET SIZE);
close(£fd);

First the client calls open(), which in turn asks the process manager to return data
associated with the given file path. If a resource manager has registered the path, the
process manager is responsible for keeping track of it, and provide the necessary infor-
mation. The client library proceeds with a connection message to the resource manager,
using a ConnectAttach() call. The file descriptor which is returned by the call is then
used to send messages directly to the manager, and validates if the call is valid (in the
case of write protection or similar). Finally the open() call returns the file descriptor.
The descriptor is used as an argument to all read() and write() calls to the resource
manager.

Code sample 2.3 shows pseudo code for a typical resource manager, and all of the
drivers on the bike computer is build using a similar principle.

Note that when using the library available in QNX, it is not necessary to explicitly
call MsgReceive(). Instead serveral functions are available to ease the implementation.
The most important functions are:

dispacth create() creates a dispatch struct which blocks when receiving messages.

9 Application programming interface

2.2. QNX Neutrino 15

Code sample 2.2 Pseudo code for a typical resource manager.

initialize the resource manager
register the path with the process manager
DO forever
receive message
SWITCH message type
CASE _IO_CONNECT:
call io_open handler
ENDCASE
CASE _IO_READ:
call io_read handler
ENDCASE
CASE _IO_WRITE:
call io_open handler
ENDCASE
/=other file calls are possible as wellx/
END SWITCH
END DO

tofunc_ attr init() initializes the attribute struct used by the device.

tofunc_ func_init() initializes two data strucs, cfuncs and ifuncs, containing point-
ers to connect- and 1/O'-functions, accordingly.

resmgr_attach() creates the channel used by the resource manager to receive mes-
sages, and indicates to the process manager which path the resource manager
should be responsible for. During this call, the three strucs mentioned above are
connected, and the channel ID is created.

dispatch context alloc() allocates the internal context for the resource manager,
which is used to process messages.

dispatch block() the function call which will run while the resource manager is block-
ing, and awaiting client requests.

dispatch handler() the function call which will run when a message is received and
processes the request.

When the resource manager is started, there is typically only a small segment of code
that runs continuously, as shown in Code sample 2.3.

When combined with the client example above, it is this part of the code which
processes open(), read() and write() from the client. dispatch_block() receives a mes-
slage, and transfers it to the dispatch handler() function, which processes the message

OTnput/Output

16 CHAPTER 2. BACKGROUND

Code sample 2.3 Typical blocking loop run by a resource manger.

/* start the resource manager message loop x/
while(1) {
if ((ctp = dispatch_block(ctp)) == NULL) {
fprintf (stderr, "block error\n");
return EXIT FAILURE;

}

dispatch_handler(ctp);

depending on the message type. The array with connect- and I/O-functions is then used
to determine where the final processing is done. Finally the dispatch handler() returns,
and the resource manager goes back to the blocking routine until another message is
received.

The behaviour of any resource manager is ultimately the implementation of the
connect- and I/O-functions. These are determined by iofunc func_init(). Additional
functionality can be achieved by overwriting the standard functions with customized func-
tions. The easiest way to do this is to create a new function that calls iofunc_ * default()
("*’ can be open, read, write or devctl()), as part of the code. This ensures that the frame-
work is kept intact, as well as additional code can be added.

The devctl() function is a general way to communicate with a resource manager.
Clients can send data to, receive data from a resource manager, or even both, using
devctl()) . For the bike drivers devctl()) plays a central role, and is therefor covered in
more detail here. The function name is a short for DEVice ConTroL, and requires the
following five arguments:

fd is the file descriptor of the resource manager that is receiving the devctl-request.

dcmd is the command itself, consisting of 2 bits describing the direction of the data
transfer (if any), and 30 bits describing the command.

dev_data_ptr is a pointer to a data area for sending to, receiving from, or both.
nbytes is the size of the dev_data_ptr data area.

dev_info_ptr is an extra information variable that can be set by the RM!!.

The command sent to devctl() is constructed by macros defined in <devctl.h>. The
command word indicates the direction of data transfer, as well as the size of the data
struct being sent. This way messages of the same class but with different datatypes can
be identified, and the manager can handle several different type of messages, all using
the same function.

" Resource Manager

2.3. Real-time Workshop 17

The bike has the following drives running their own versions of devctl(): devc-dmm32at,
devc-velo, devc-imu, devc-gps and devc-mt.

2.3 Real-time Workshop

To connect hardware and drivers on the bike to the Simulink model, RTW? is needed.
RTW is an addition to Simulink which generates C-code and Makefiles based on Simulink
models (|[The MathWorks, Inc., 2009]). It is a powerful tool for rapid software develop-
ment, as complex models easily can be created graphically and then compiled to run on
very different hardware. Additionally, Simulink can be used as a tool to present data
from the model which runs externally on the target computer. This section tries to ex-
plain how RTW works, as a good understanding of the tool is need for the autonomous
bike. Here, the goal is to explain the process of RT'W, more so than to explain how
to make it work. A more detailed description of how to start using RTW is given by
[Fossum, 2006, Vedlegg 2|. New versions of Matlab has introduced some deviations from
guidelines given by [Fossum, 2006, Vedlegg 2|, and if so, this will be mentioned here.

2.3.1 Configuration

Figure 2.8 shows the RTW configuration pane. There are several important aspects, each
treated separately. Target is the hardware or operating system where the generated code
will run. Host computer is the computer running Simulink and RTW, and is responsible
for file generation. The generation process is dictated by a system target file, template
makefile and a make command.

The make command given here, make rtw, tells Simulink how to start the build
process.

The system target file is a .tlc file. This file contains specification of compiler
command, build file and similar. TLC!3 is a compiler working in unison with RTW to
create the final source code. TLC uses the model descriptions RTW creates using the
Simulink model (clear text, .rtw files describing the model) and generates target specific
code. Figure 2.8 shows a overview of the process.

The template makefile, a .tmf file, is a dynamic makefile containing variable fields.
The fields are filled out based the Matlab and Simulink preferences, making it possible
to customize the build process without editing the makefile. The template makefile has
to contain the file paths for all libraries and external source code which should be linked
to the build process. When embarking on the bike project it became apparent that the
existing tmf file was incompatible with the newest (2009) Matlab version. Based on the
general unix os .tmf files provided with Matlab, and guided by the previous bike .tmf
file developed by |Lasse Bjermeland and Nessjgen, 2007| an new file was made. The file
was named gnx_unix_2009.tmf as shown in Figure 2.8 .

"?Real-Time Workshop
13Target Language Compiler

18 CHAPTER 2. BACKGROUND

*% Configuration Parameters: model/Configuration (Active) E|
Select: Target selection -
~Solver
{~Data Import/Export e
|~ Optimization Language: < v
~-Diagnostics % ¥ 5
[i-sample Time Description: QMY Neutrino Real-Time Target
“Data Validity . Build process
-Type Conversion
-Connectivity Compiler optimization level: |Optimizations off (Faster builds)
|} -Compatibility !
| ~Model Referencing TLC options:
'~Saving Makefile configuration
= Hardware Implementation
~Model Referencing Generate makefile
<-Simulstion Target Make command: make_rtw
i ~Symbols
I Lecustom Code Template makefile: qrix_unix_2009. tmf
=--Real-Time Workshop
i~ Report
=~ Comments Select objective: Unspecified v
i~ Symbols
I=Custom Code Check model before generating code: |Off b
- Debug
e) ot co oty
v
Q [o J[cancel J[bep] avoy

Figure 2.7: Configuration window for RTW.

In addition to the above mentioned files, a custom main function for the target
computer is required to communicate with the host computer. For the QNX OS, such a
file was developed by |Lasse Bjermeland and Nessjgen, 2007|. This file handles the IPC
required for the TCP/IP protocol so Simulink can access data from code running on the
bike.

2.3.2 S-functions

S-functions can be used as customized Simulink blocks which determines how the blocks
are initialized, updated, outputting data and terminates. S-functions can work as an
interface to different environments, hardware or software. For the bike, a S-function is
written in C, similarly to how the rest of the drivers are done. The S-function contains
two parts, one generated by Simulink and one custom written. bike_io.c is generated
code for initialization, updating block state, outputting data and termination, serving as
an interface to the custom written code. bike_io_wrapper.c is the custom written part,
and the functions defined by the wrapper are called by the bike_io.c interface. The
wrapper code is responsible for opening the resource managers running on the bike with
open() during initialization and running devctl() for all managers every time the model
is updated. When the model is stopped, the resource manager file paths are closed.

2.3. Real-time Workshop 19

Simulink Model

Real-Time Workshop

v

* . tlc model.rtw

Target Files

Target Language Compiler

v

Generated source files

in build directory Jfmodel_target_rtw

Figure 2.8: Broadly how RTW creates target files.

20 CHAPTER 2. BACKGROUND

2.3.3 Communication

It is desirable for the host computer to be able to observe the model running on the bike
through Simulink. This is achieved by assigning a IPC channel for the host and the client
to use for communication. Figure 2.9 shows how the channel is selected, by setting Inter-
face to External. Several targets are supported by Matlab "out of the box", unfortunately
QNX is not one of them. With the introduction Matlab 2009, custom targets require a
sl_customization.m file in the Matlab file path during startup. Code sample 2.4 shows
the function used to allow TCP/IP communications for the bike. This file defines which
IPC channels are available for the custom target, and selectable using the pull-down
menu. When available tcpip is selectable under Transport Layer, and the IP-address for
the target computer can be specified.

figuration Parameters: model/Configuration (Active)

Software environment b
. Target function library: | CB9/C50 (ANST v
ImportExport o d /Co0)
ization Utility function generation: |Auto v
ostics
Sample Time Verification
Data Validity -
ype Conversion MAT-file variable name modifier: rt_ v
onnectivity
ompatibility Data exchange
odel Referencing
Saving Interface: External mode v
e Imple.mentatim Host/Target interface
el Referencing
ation Target Transport layer: ¥ | MEX-file name: ext_comm
Symbols
iictom Code MEX-file arguments: |'129.241.154.87' 1
Time Workshop
eport Memory management
omments [Static memory allocation
Symbols
ustom Code
Debug Host/Target Interface: custom transport layers requires
erface asl_customization.m file for the currently
selected TLC file to be found in the MATLAB path.
v
o [comel J[b | apoh

Figure 2.9: Interface settings for host/target communication.

Code sample 2.4 The sl_customization.m file, specifying available IPC-channels for
a custom target.

function sl_customization(cm)
cm.ExtModeTransports.add(,qnx.tlc,, ,tcpip,, ,ext_comm,, ,Levell,);

end

2.4. System flow 21

2.3.4 Compiling and Running the Code

When the RTW has finished the build process, a makefile and source code has been
generated necessary to compile an executable for the target machine. The compile process
is dependant upon libraries specified in the template makefile, mentioned above. [Fossum,
2006, Vedlegg 2| gives a detailed description of the required Matlab folders, but note that
the folders should be acquired from Matlab directly and not from earlier bike projects,
for compatibility. The executable is compiled with the command

make -f model.mk

model is the name of the Simulink-model. The executable can be run with

./model -tf x -w

x specifies the runtime of the model, in seconds. Alternatively, inf can be used to
indicated infinite time, ie. the model runs until it is stopped. The -w flag indicates that
the model should await a remote communication and start signal from the host running
Simulink before starting.

2.4 System flow

Putting everything mention previously into context, the system flow of the bike can be
explained. When the autonomous bicycle is started, the hardware sends data to the
resource managers which in turn provides measurements and signals to the bike model
via a S-function. The model updates itself based on the data provided in real-time, and
transfers the model state over TCP/IP' to Simulink set to external mode on a host
computer. The state of the bike is now observable from the host computer; a riderless
bike has been set in motion.

M Transmission Control Protocol/Internet Protocol

22

CHAPTER 2. BACKGROUND

Chapter 3

Hardware

Over the course of this chapter, a broad overview of the physical components found on the
bike are given. It is meant as a point of reference for the various hardware available, and
draws documentation from the master theis of [Sglvberg, 2007] and [Loftum, 2006], as
well as various data sheets. The chapter describes the state of the bike at the end of this
thesis, and Figure 3.1 shows the equipment currently connected to the bike. Peripherals
such as network cables, keyboard, mouse, monitor and so forth are left out, but are also
trivial to connect.

3.1 Current source

The current source used for DC/DC conversion is a ACE-890C from IEI Technology
Corporation. The source is capable of delivering 18-36V DC, and requires 7TA (RMS) at
24V DC. Refer to Table 3.1 for additional data, and Figure 3.2 where the ACE-890C is
shown.

3.2 Computer

The autonomous bike is run by a Wafer-945GSE2 "Single-board Computer" (SBC!).
The Intel Atom processor N270 embedded on the WAFER-945GSE2 has a 1.60 GHz
clock speed, a 533 MHz FSB and a 512 KB L2 cache. The Wafer-945GSE2 also includes
onboard 1.0 GB DDR2 SDRAM (as per IEI Technology Corp. [2009]). Table 3.2 gives
an overview of some board specifications.

!Single-board computer

23

24 CHAPTER 3. HARDWARE

Fan

Power

Power source Power supply unit (psu)

(Batteries) ACE-890C

1 — GPS
Power

Single Board Computer

Measure-
(GES) e Ment == Spark Fun IMU
data
Wafer-945GSE2
PC/104 b : il
us connection
Power - MTi
1/0 Card

Reference signal——————

Diamond-MM-32-AT
Measurement

Propulsion motor '—4 Propulsion tachometer |——

Motor controller card PWM Steering tachometer |—
— A—Power—{ Steering motor ’—E: N
Baldor TFM 060-06-01-3 signal Steering potmeter ||

Pendulum tachometer |}—
Pendulum motor
Pendulum potmeter |—

Rotational velocity feedback

Figure 3.1: Overview of the current bike hardware. Based on picture from [Sglvberg, 2007]

3.2. Computer 25

Input

Voltage 18 ~ 36VDC
Input Current 7A(RMS)@24VDC

Output

Voltage Min. load Max. load Ripple & Noise

+5V 0A 10A 50mV

+12V 0A 2.5A 100mV

-12V 0A 0.5A 100mV
General

Power S6W

Efficiency 70 %

MTBF 251,000hrs

Temperature 0 ~ 5000C(Operating)
-20 ~ 8500C(Storage)
Dimension 152.4 x 89 x 39mm

Table 3.1: ACE-890C specific data.

Figure 3.3: Wafer-945GSE2 SBC used by the bike. Picture from [IEI Technology Corp.,
2010].

CHAPTER 3. HARDWARE

Parameter Value

Product WAFER-9371A

Form Factor 3.5” SBC

CPU ULV Intel Atom N270 1.60 GHz
Memory 1.0 GB DDR2 SDRAM

Display VGA

18-bit or 36-bit LVDS

Dual display support

I/O Interface

1x 1.5 Gbps SATA

1 x Keyboard and mouse connector
1x RS-232/422/485

1x RS-232

1x PC/104 ISA

1x CompactFlash socket

Ethernet 2x 10/100/1000 Mbps RTL8111CP
USB 2x USB 2.0 connectors (supports 4x)
Audio ALC655 AC’97

Power consumption 5V @ 3.1 A

WDT 1 ~ 1-255 sec

Dimension

146 mm x 102 mm

Table 3.2: Specific Wafer-945GSE2 data.

3.3. Storage 27

Figure 3.4: Samsung HD322HJ 320 GB/7200RPM/16M hard drive. Picture from Samsung
[2010].

3.3 Storage

The storage device is a Samsung HD322HJ with 320 GB of space operating at 7200RPM
(shown in Figure 3.4). It is connected to the Wafer-945GSE2 with a SATA? cable, and
receives power from a Molex connector.

3.4 1/0O card

An I/O card is required to access the potmeter and tachometer measurements , as well
as adjusting the voltage supplied to the motor controller card. The bike uses a Diamond-
MM-32-AT 16-bit analog I/O modul, or DMM-32-AT, as show in Figure 3.5. The card
is connected to theWafer-945GSE2 via a PC/104 connector.

Among the various functions provided by the card, the most relevant are mentioned
here ([Diamond Systems Corporation, 2003]):

Analog Inputs

e 32 input channels, may be configured as 32 single-ended, 16 differential, or 16 SE
+ 8 DI

e 16-bit resolution

e Programmable gain, range, and polarity on inputs

e 200,000 samples per second maximum sampling rate
e 512-sample FIFO? for reduced interrupt overhead

e Auto calibration of all input ranges under software control

2Serial Advanced Technology Attachment
3First In - First Out

28 CHAPTER 3. HARDWARE

1DT7202
LA2550|
Q0242P

Figure 3.5: The DMM-32-ATcard, from [Diamond Systems Corporation, 2003]

Analog Outputs

4 analog output channels with 12-bit resolution, 5mA max output current

Multiple fixed full-scale output ranges, including unipolar and bipolar ranges
e Programmable full-scale range capability

e Auto calibration under software control

Additionally the DMM-32-AT sports 24 bidirectional digital I/O lines, a 32 bit coun-
ter/timer for A/ D pacer clock and interrupt timing, and a 16 bit general purpose coun-
ter /timer, both with programmable input sources, and multiple-board synchronization
capability. Section 4.3.1 describes the software driver responsible for controlling the I/0O-
card.

3.4.1 Motor controller card

The motors on the CyberBike are powered through a Baldor TFM 060-06-01-3, as shown
in Figure 3.6. |Baldor ASR, 1988| provides data for the card, and some highlights are
given here:

e 4 quadrant operation.
e 360 Watts possible continuous output power.

e GA continuous phase current.

4 Analog-to-Digital

3.5. Motors 29

e 12A peak phase current, for a short while.

e 24V nominal DC® bus voltage (which makes it possible to operate it from two 12V
batteries in series circuit).

e Double eurocard format.

e Internal power supply, accepting 24 to 65 V as input.

e Differential reference input, to avoid ground loops.

e Short-circuit-proof between the outputs, and to ground.

e Bandwith from DC (0 Hz) up to 2.5 kHz (= 14.7 % of the switching frequency of
the pulse width modulated output signal).

e Ca. 80 % efficiency

Figure 3.6: The CyberBike’s motorcontroller card, a Baldor TFM 060-06-01-3. Seen both
from the rear and the front. Pictures from [Loftum, 2006].

It has, during the course of this thesis, become clear that since the card is incapable of
providing more than 6A continuous output current, which is insufficient for the propulsion
motor.

3.5 Motors

The autonomous bike has three motors attached; one connected to the rear wheel, pro-
viding propulsion; one connected to the steer, providing directional steering; and one
connected to the inverted pendulum, providing balance.

5Direct Current

30 CHAPTER 3. HARDWARE

3.5.1 Propulsion motor

The propulsion motor is made by [DtC-Lenze as, 2007] of the type 13.121.55.3.2.0, SSN31
and shown in Figure 3.7. [Sglvberg, 2007] gives a more throughout description of the
individual numbers, and their meaning. Technical specifications are shown in Table 3.3.
Note that the motor is rated for currents not supported by the motor controller card;
this problem is discussed in Section 5.8.

Name Variable Value Unit
Motor Rated power P, 200 w
Rated torque M, 0.64 Nm
Moment of inertia J 3.2 kg cm?
Rated rotational speed Ny 3000 rpm
Outer diameter dout 80 mm
Motor weight (mass) Moot 3.7 kg
Rated current I, 11.8 A
Armature resistance Ra 0.19 Q
Permissible radial load Fr 340 N
Permissible peak current Imax 77 A
Gear Max continuous torque Moz 16 Nm
Rated output torque Mo 2.7 Nm
Ratio i)
Operating factor c 5.15

Table 3.3: Specifications for the propulsion motor.

Figure 3.7: The propulsion motor; a Lenze Worm Geared motor. Picture from [Sglvberg,
2007]

3.5.2 Motor for the inverted pendulum

The pendulum motor is a I'TT GR 63 x 55 TG11, operating at 24V DC and 4A nominal
current. Nominal rotation speed is 3350 rpm. The motor is mounted a planetary gear

3.5. Motors 31

with ratio 79:1 and shown in Figure 3.8.

o
I
I
1
:
I
I
I
I
I
|

|

Figure 3.8: Pendulum motor; a ITT GR 63 x 55 TG11. Picture from [Fossum, 2006].

3.5.3 Steering motor

The steering motor is a I'TT GR 53 x 58 TG11, operating at 24V DC and 4A nominal
current. It is shown in Figure 3.9. Nominal rotation speed is 3000 rpm.

Figure 3.9: The steering motor; a ITT GR 53 x 58 TG11. Picture from [Loftum, 2006].

32 CHAPTER 3. HARDWARE

3.6 IMU - Xsens (MTi)

As the positional measurement device of choice, the IMU® from Xsnes dubbed "MTi" is
available for the bike (shown in Figure 3.10). The MTi makes a 3D positional description
through acceleration, turn rate, and earth magnetic field measurements. It is an excellent
device for providing data to control scheme and system model, and provides Simulink
access to the data through a S-function communicating with a resource manager.

Figure 3.10: "MTi” from Xsens.

The MTi can send measurements over RS-232 or USB, but at this time, a RS-232 has
been selected as the transfer method. The measurements are calculated relative to two
reference systems. On is relative to the sensors, and the other relative to Earth, both as
right-handed Cartesian coordinate systems where:

e X is positive when facing the magnetic north.
e Y is positive when facing west, relative to X.

e 7 is positive along the vertical axis.

The data can be received as either rotational matrices, Euler angles or quaternions.
The MTi driver handling the software communication with the device is covered in
Section 4.3.3.

3.7 IMU - Spark Fun

The IMU from Spark Fun can at this point be considered an obsolete piece of equipment
on the bike, as a better alternative is found in the MTi (Section 3.6). However, it is
available and fully functional and can potentially be used given some additional work.
Therefore a short description is provided here. The IMU consist of a small motherboard
and three gyros as show in Figure 3.11. The card was originally installed to provide

5Tnertial Measurement Unit

3.8. GPS 33

measurements from the gyros. The card has a PIC16F88 nC”, integrated DAC® and a
CDT74HC4067 multiplexer. The multiplexer gathers the five measurement signals from
the gyro cards and sends them to the uC. The data is then available via UART?. A
description of the IMU driver can be found in Section 4.3.2.

Figure 3.11: IMU from Spark Fun Electronics with 6 degrees of freedom. Picture from
[Loftum, 2006]

3.8 GPS

The absolute position of the bike can be determined using the GPS-module available
on the bike. It is a GlobalSat EM-411 and shown in Figure 3.12. Sglvberg developed
and installed a PCB card, to allow the Wafer-945GSE2 to access the GPS-module (show
in Figure 3.13). A description of the GPS-driver interfacing with the device is given in
Section 4.3.4. At this point the GPS-module has not been used in any actual application
on the bike.

3.9 Emergency Stop

The bike has an emergency stop button accessible from the outside of the cabinet hous-
ing, to increase the safety of the system. Figure 3.14 shows the button. Generally the
emergency stop should be activated during startup of the bike, as a standard safety
precaution.

“micro controller

8Digital-to-Analog Converter
9Universal Asynchronous Receiver Transmitter

34 CHAPTER 3. HARDWARE

Figure 3.12: EM-411 GPS from GlobalSat.

Figure 3.13: Component side of the GPS-card, showing the PCB.

Figure 3.14: Emergency Stop. Picture from [Sglvberg, 2007].

3.10. Fan 35

3.10 Fan

To avoid overheating the electronics contained in the cabinet, a 12V fan is installed in the
cabinet wall. This is connected to a switch, only enabling the fan whenever the cabinet
cover is closed. This has been done to avoid unnecessary noise during development.

3.11 Batteries

Two ATUI12-35 batteries from [ACT Batteries, 2007| are available to power the bike on
demand. They provide 12V each, and has a total weight of 21 kg, considerably increas-
ing the weight of the autonomous bike. Each battery is mounted in a separate frame,
distributing their weight equally on both sides of the bike. A power switch accessible on
the outside of the cabinet can toggle the system on or off.

3.12 Pendulum Limit Switches

The inverted pendulum can inflict severe equipment damage if allowed to spin out of
control for whatever reason. To combat the problemSglvberg installed limit switches
which triggers whenever the pendulum reaches a certain angle in either direction. The
intent was to prevent the motor from applying pressure when the pendulum reaches its
end points, thereby preventing damage to the motor brushes. Figure 3.15 shows how this
has been implemented.

The current implementation stops all power to the motor when a switch is activated,
preventing the pendulum from being controlled in either direction. The implementation
will not prevent the pendulum from crashing with the frame, as gravity and current
inertia will still take its course - there is no velocity control.

During the course of the thesis, the limit switches where shown to be mounted in
such a way that they severely restricted any control scheme from functioning properly.
As such, they where unscrewed to allow for greater pendulum movement. However, it is
a simple task to reattach them to their original position, should this be desirable.

3.13 Potmeters

The bike sports two potmeters, used to measure the angle of the steer and the pendulum.
Figure 3.16 shows the potmeter connected to the steer. The potmeters vary from 0 to 5V
based upon the angle. After the signal has been received by the Diamond-MM-32-AT,
the signal is interpreted as a value from -5V to 5V.

36 CHAPTER 3. HARDWARE
BALDOR
DMM-32-AT Vier+ Viey—
Agnd Vout3 (2:a26) (2:¢26)
(33:1) (J3:35)
D1 D2
17 18 19 20 15 16 1 2
Terminal Block X2
Pendulum
-
B2

Pendulum frame

Figure 3.15: Pendulum limit switch circuit. Figure from Sglvberg.

Figure 3.16: Steer potmeter.

Chapter 4

Software

4.1 Software

This chapter aim so cover the software available on the bike computer. The following
sections will cover the use, and briefly, the implementation of the software, based on
the work done during the course of thesis, and the work done by [Selvberg, 2007] and
[Loftum, 2006]. In the same way that Chapter 3 is meant as an overview and starting
point for future development, this chapter gives a description of the work done thus far.
For a more comprehensive and throughout explanation of the various drivers, references
to relevant master thesis are given where needed.

4.2 OS?

The bike runs QNX Neutrion RTOS 6.4.1. This is a fully fledged RTOS, displayed
through the Photon graphical user interface. The OS was chosen because the autonomous
bike requires strict real-time response. QNX is developed with embedded systems in
mind, and has been widely used for exactly systems such as this. Section 2.2 covers
many important concepts related to QNX, and how they relate to the bicycle project.

4.3 Drivers

The following sections gives a description of the bike drivers, focusing on their wuse.
The drivers are all implemented as resource managers and adheres to the principles
described in Section 2.2.2. The drivers has to be started separately after QNX has
booted, optionally with the & flag added to the start command. This makes the driver
run in the background.

Typically the resource managers contain a string array with file paths to device
files. The drivers are accessed through these files. During initialization of a driver the

!Operating System

37

SOFTWARE

CHAPTER 4.

38

Control algorithm

|

devc-velo

| | |

devc-dmm32at devc-imu devc-mt devc-gps

| | |

DMM-32-AT IMU MTi GPS

|

sensors
and actuators

Figure 4.1: Overview of the modular software structure of the bike.

4.3. Drivers 39

file paths are registered with the OS, as well as a set of open(), read(), write() and de-
vetl() function calls for each device file. The subsections indicate where the resource
managers put the device files and their file paths for easy reference, as well as any op-
tional modifiers available for the driver. Figure 4.1 show how the drivers are separated
into different modules, and which parts are dependant upon each other. The drivers
should be started from the bottom up, in other words, devc-velo should be started last.

During the thesis, the ability to run the drivers without having the actual hardware
connected was implemented. If a driver fails to detect hardware, it will be running in
"zero-return mode". This basically means that the driver will populate the file path
with device fils which will return 0 or the equivalent whenever they are read. This allows
the driver to be run on any QNX system, making it possible to debug, for instance, the
Simulink models by connecting to the QNX development PC instead of the bike PC.
This has been very useful thorough the working process.

4.3.1 Resource Manager: devc-dmm32at
File paths: /dev/dmm32at/analog/out, /dev/dmm32at/analog/in

Optional modifiers: [-v| [verbose| [autocal]

The DMM-32-AT-driver was initially written by |Loftum, 2006]|, future developed
by [Selvberg, 2007| and finally modified during the course of this thesis. The driver
initializes and controls the I/O card on the bicycle and handles A/D-conversion from
analog in channels and D/A-conversion to the analog out channels. A resource manager
thread process request from clients. write() calls made on the device files in the out file
path, converts the argument value given to a 16-bit number which is forwarded to the
D/A-converter. The signal is used to control the voltage to the motors, and can be done
using a terminal window as described in Section 2.2.2. The driver is started with the
command:

devc-dmm32at [-v]

The -v flag is optional. If provided, the flag will put the driver in verbose mode,
making the driver output debug information. Alternatively, verbose can be used, and
serves the same purpose.

Client programs can communicate with the driver by using devctl() call. Code sample 4.3.1
shows an exaple of this. The variables fd1 and fd1 are file descriptions referencing the de-
vice files in question, and the val is the value to be written or read. DMM32AT DEVCTL GETVAL
and DMM32AT DEVCTL SETVAL are macros which defines the direction of the data
transfer. This implementation is very similar for all the device drivers.

[Selvberg, 2007| discovered that DMM-32-AT has to be calibrated now and again.
This should only be performed when da0 is disconnected from the J3-header on DMM-
32-AT. In effect, this means that much of the connector to the I/O card has to dislodged

40 CHAPTER 4. SOFTWARE

Code sample 4.1 Example: Usage of devctl() with devc-dmm32at
int fdi, £d2;
double val=2,5;

if ((fdl=open("/dev/dmm32at/analog/in/ad1", O_RDWR)) == —1) {
printf("Couldn,t open file!\n");
return(1);

}

if ((fd2=open("/dev/dmm32at/analog/out/da2", O_RDWR)) == —1) {
printf("Couldn,t open file!\n");
return(l);

}

ret = devctl(fdl, DMM32AT_DEVCTL_GETVAL, &val, sizeof(val), NULL);
devctl(fd2, DMM32AT_DEVCTL_SETVAL, &val, sizeof(val), NULL);

ret

before auto-calibrating, as just disconnecting the da0 channel is impossible. Calibration
can be initiated using the following command:

devc-dmm32at -v autocal

The -v flag is optional, but recommended. When the calibration is completed, the
driver exits. Be sure to use this feature if no hardware fault can be found in connection
with signal drift from the potmeters.

This driver is responsible for applying power to the motors. The device file da0

controls the propulsion motor, d1 the steer motor and da3 the pendulum motor. A
simple way to test a motor can be done as following:

echo 0 > /dev/dmm32at/analog/out/dal
echo 1 > /dev/dmm32at/analog/out/dal

It is advisable to always start testing by echo 0 to the device file, so the motor can
be stopped quickly through the terminal history.
4.3.2 Resource Manager: devc-imu
Main file path: /dev/imu
Sub paths: /pitch/, /roll/, /yaw/, /battvoltage/

Optional modifiers: [-v] [verbose|

4.3. Drivers 41

The IMU driver is a resource manager written by [Loftum, 2006] and future developed
by [Selvberg, 2007]. The driver has one thread reading data from the serial port and
one resource manager thread intercepting client requests. the IMU starts transferring
data whenever a ASCII ’7’ sign is received on the serial port. 34 byte packets are sent
at 23.5H z in a specific pattern.

The stream starts with an ASCII *A’ sign, proceeded by 16 DAC measurement values
in the following order:

1. Pitch, Rate out

2. Pitch, 25V

3. Pitch, Temperature
4. Pitch, YFilter

5. Pitch, XFilter

6. Roll, Rate out

7. Roll, 25V

8. Roll, Temperature
9. Roll, YFilter
10. Roll, XFilter
11. Yaw, Rate out
12. Yaw, 25V
13. Yaw, Temperature
14. Yaw, YFilter
15. Yaw, XFilter

16. Battery Voltage

Finally the stream completes by the ASCII °Z’ sign, simplifying synchronization. The
measurements are available through the device files, one for each measurement.

The driver can be started with the following command:

devc-imu [-v]

42 CHAPTER 4. SOFTWARE

The -v flag is optional and puts the driver in verbose mode. The flag will make
the driver output debug text to screen during run time. Note that the IMU driver is
hard-coded to use COM port 2 to interface with the IMU device.

At the time of writing, this driver can be considered obsolete in the sense that the
MTi can do everything the IMU can, but better. Furthermore, the data provided by the
IMU cannot be used by Simulink in a trivial manner, and as such renders the device
unpractical.

4.3.3 Resource Manager: devc-mt

Main file path: /dev/mt
Sub paths: /calib/acc/, /calib/gyr/, /calib/mag/, /orientation/, /samplecounter/

Optional modifiers: [-v| [-vv| [-m3] [-f3] [-s /dev/ser2]

Important note: At the time of writing, this particular driver does not support the ||
modifier. Ie. it cannot be run in the background. This is caused by some a stack overflow
on the serial device, which results in the driver terminating if it is put in the background.
Therefor the driver has to be run in its own, seperate terminal window.

The MTi-driver is a recourse manager developed by [Selvberg, 2007|, based on the
standard driver available from Xsens. The driver, similarly to the IMU-driver, runs two
thread. One thread read data from the serial port, and one thread serves the role of
the resource manager, managing client requests. The measurements from the serial port
are stored in a measurement array, protected by a mutex. There is currently no write()
function support, as only data acquisition is required from the gyrometer.

The driver can be started by typing:

devc-mt -vv

This starts the driver in noisy mode, showing calibration and orientation data con-
tinuously in the terminal. Printout 4.3.3 shows the use-file available for the driver, it
explains the driver options in more detail.

4.3. Drivers 43

Syntax:
devc-mt [optionsx]

Options:
-m [mode] Output mode. Available modes are:
1 - Calibrated data
2 - Orientation data
3 - Both Calibrated and Orientation data (default)
-f [format] Output format. Available formats are:
1 - Quaternions
2 - Euler angles (default)
3 - Matrix
-v Be verbose (-vv will give noisy mode)
-s [com_port] Specifies which device file name to read from (default /dev/serl)

Examples:
devc-mt -m 3 -f 1 -vv -s /dev/ser2 &

4.3.4 Resource Manager: devc-gps
File path: /dev/gps/

Optional modifiers: [-v| [-vv| [verbose| [noisy]

The GPS driver is a resource manager written by [Sglvberg, 2007]. It has one thread
responsible for acquiring data from the serial port (hard coded to /dev/ser2), and one
resource manager thread responding to client requests. Received gps messages are ana-
lyzed by gps-messages.c which is run by the serial port thread. There is one function of
every type of message. The functions store the values to local variables, locks a mutex,
store the measurements in an array, before unlocking the mutex. [Sglvberg, 2007| goes
into greater detail about how the measurements are stored and used throughout the code.
Sufficient to know to use the drivers is that there is one device file for every measurement
in the array, all available through the /dev/gps/ file path.

4.3.5 Resource Manager: devc-velo
File path: /dev/velo/

Optional modifiers: [-v| [-vv| [-a number]| [-q net path]

This driver is the top level interface to all the bike measurements and motors. The
driver is ultimately responsible for communicating with the bike model through an S-
function. It was originally developed by [Loftum, 2006], future modified by [Selvberg,
2007] and reaching its current state during the course of this thesis. devc-velo depends
on the other drivers presented thus far to populate its device files. Whenever this resource
manager is accessed, it uses devctl() calls to the other drivers, scaling the data as necessary
before finally replying to the client request. As such, devc-velo cannot be started before
the other drivers are running.

devc-velo can be started with the following command:

44 CHAPTER 4. SOFTWARE

devc-velo [-v]

The -v flag is optional and indicates to the driver that it should run using verbose
mode. Printout 4.3.5 shows the use-file available for the driver. By default the IMU
driver is not sampled, but it is possible to select either or both of the gyrometers. The
-q flag makes it possible to specify a remote path for communicating with the MTi
resource manager. This makes it possible to have the MTi device connected to a remote
computer, but still have the bike receive orientation data. Section 5.5 discusses why this
was implemented.

Syntax:
devc-velo [options*] &

Options:
-q [net_path] If specified, the driver will remotely aquire MTi data. Disabled by default.
Example:
"-q /net/dev_pc" will set the path to the MTi device driver to:
/net/dev_pc/dev/mt
-v Be verbose (-vv will give noisy mode)
-a [number] Selects the preferred accelerometer.
Available options are:

1 - Both
2 - MTi (default)
3 - IMU

Examples:
devc-velo -q /net/dev_pc -a 1 -vv &

A preferences file, potmeter.cfg, located under /root, is used by the driver to adjust
the minimum and maximum voltages for the steer and pendulum potmeters. Bias values
representing the offset angle required for the angle measurement to return zero when the
steer and pendulum is centered is also set through this file. This simplifies the tuning
process of the potmeters, should they have to be readjusted.

Refer to Section 2.3.2 for an explanation of how the driver can be used to communicate
with Simulink by the use of a S-function.

4.3.6 Simulink Bike Demo

A Simulink model, capable of controlling the steer and the pendulum by using the MTi
roll and pitch values as control variables is available. It is intended for a simple way to
steer the bicycle as a "proof of concept" implementation. The controller gains are tunable
through Simulink by adjusting tunable gain blocks, found in the controller subsystems.
Figure 4.2 shows the overall model.

For the control scheme to work, the model has to be build by RTW and compiled
for QNX as described in Section 2.3.4. Before starting the executable on the bike PC,

4.3. Drivers 45

Fie Edt View Simulation Format Tools Help

OD@d&| tBR =492 Floo [eera =

Hamhe mEB

Constant

Steer_contrller

pend_controller

pend_setpoint_scaling

S-Function

Ready l100% ode ¥

Figure 4.2: The bike demo model.

46 CHAPTER 4. SOFTWARE

at the minimum, devc-dmm32at, devc-mt and devc-velo should be running in default
mode (no modifier argument). The executable can than be started in wait mode (see
Section 2.3.4), and the host computer can connect using external mode to the bike PC.
The bike IP can be obtained by using:

ifconfig

After the host has connected, the model can be started, and the bike controlled using
the MTi device. For anyone new to the system, a step by step guide of how to test the
Bike Demo with the development environment used during this thesis, please refer to
Chapter B.

Chapter 5

Problems and Solution

During the the fall project preceding this master thesis, several issues affecting the au-
tonomous bike became apparent. The thesis work itself gave rise to new problems as well,
some of which where solved and some of which where left unfixed.This chapter will cover
the obstacles and hurdles laying in the way of a complete control system, the actions
taken to rectify the problems and the issues that remain. Problems where fixed on a
priority basis, where the most pressing issues being handled first. Several minor issues
where allowed to remain in the system, if workarounds where possible. The issues still
plaguing the system, serve as points of discussion in Chapter 7.

5.1 New Motherboard

[Selvberg, 2007] had the misfortune of working with broken COM ports on the single
board computer that previously operated the bicycle. To allow communication with the
COM peripherals like the MTi and GPS, the ports had to be repaired, or the moth-
erboard replaced. Repairing the ports on the existing motherboard had the benefit of
limiting monetary costs, but have the price of an unpredictable time frame. Additionally,
[Selvberg, 2007, Chap. 6.6] suggested that the 400 MHz of the Wafer-9371A could be a
limiting factor in the control system, preventing the Simulink model from executing more
than a few time steps. As such, the decision to upgrade the motherboard was made, and
the Wafer-945GSE2 was purchased.

Some of the differences between the Wafer-9371A and the Wafer-945GSE2 are shown
in in Table 5.1. As can be seen, the new board is significantly more powerful than the
old, and can have more peripherals attached, at a modest increase in power consumption.
The motors already require significant current to operate, so 1A increase is quite small
for the overall system.

The new motherboard has only SATA connectors available for accessing external
hard drives. As the existing Fujitsu MHK2060AT HD was an EIDE! drive, it could

'Enhanced IDE

47

48 CHAPTER 5. PROBLEMS AND SOLUTION

Feature 9371A 945GSE2

CPU 400 MHz 1.6 GHz

RAM 256 MB 1.0 GB DDR2

USB ports 2x USB 1.1 4x USB 2.0

Ethernet 1x 10/100 Mbps 2x 10/100/1000 Mbps
Power consumption 5V @ 2.01A 5V @ 3.1A

Table 5.1: A comparison between Wafer 9371A and 945GSE2 .

[

Figure 5.1: Hiyatek SATA/IDE HDD to USB 2.0 Adapter.

not be accessed using an EIDE cable directly. However, as the Wafer-945GSE2 sports
two immediately available USB? connectors, an IDE to USB converter could serve as a
temporary solution to the problem. After unmounting the motor controller card hiding
the hard drive in the bike cabinet, the Fujitsu HD was connected to Wafer-945GSE2
via a Hiyatek SATA/IDE HDD to USB 2.0 Adapter (shown in Figure 5.1). Accessing
the hard drive in this fashion is expected to preform poorly, as it introduced unwanted
overhead compared to using the drive directly. Only the most basic peripherals where
connected in addition to power and hard drive; a monitor, mouse, keyboard and network
cable.

When applying power, the system boot sequence completed successfully, and pre-
sented the Photon login GUI. As expected, the startup time was longer than it had been
on the previous motherboard, due to the USB converter. However, the screen resolution
was very low, a maximum of 640x480, and a change in the Wafer-945GSE2 BIOS? was
necessary to increase it. After the change had been made and the system rebooted, the
screen could be set to a more comfortable size.

At this point, the autonomous bike had QNX 6.3.0 SP3 installed. As it turned
out, 6.3.0 does not support the Realtek RTL8111CP Ethernet controllers on the Wafer-
945GSE2 . Therefor, no networking was possible at this time. However, an OS upgrade
was already planned, and under 6.4.1 RTL8111CP was known to be supported.

Later, when the hard drive, OS and network issues had been solved, a dual USB cable
was connected to Wafer-945GSE2. The bike computer is therefore capable of having 4

2Universal Serial Bus
3Basic Input/Output System

5.2. New Harddrive 49

USB devices connected at any one time. Unfortunately, the dimensions of the dual cable
where different from dual cable used by the previous motherboard, preventing it from
being mounted onto the bike cabinet. At the completion of this thesis, a firm mounting
of the cable is left undone, but it is fully functional and available for use.

Section 6.2 gives a description of how the Wafer-945GSE2 was tested.

5.2 New Harddrive

As a direct consequence of the new motherboard, a new hard drive had to be acquired.
The USB converter used for accessing the old drive could only serve as a temporary
workaround, as it made the system slower, more complex and required additional power.
Furthermore, as the final nail on the coffin for the Fujitsu HD, the hard drive stopped
working shortly after QNX 6.4.1 was installed. No exact testing was done to determine
the cause, but the hard drive, originally a relic from the Eurobot project, was believed
to simply have reached the end of its lifespan. As not to delay the work on the thesis
a new Samsung HD322HJ 320 GB/7200RPM/16M hard drive was bought. This is a
cheap, yet new SATA harddrive. Optimally, the bike should have a flash drive with no
moving parts, as a HD with mechanically moving parts is prone to damage if the bike
should run out of control.

At this point it was necessary to install QNX Neutrino RTOS 6.4.1 onto the new
hard drive. The QNX stationary host workstation did not have SATA ports, so the USB
converter was used to connect the new drive to the workstation. A DVD with the OS
was used to install QNX 6.4.1.

The disk was plugged into the QNX stationary host workstation, and the OS installed
per the guidelines in [QSSL, 2005, chap.3]. The GNU Public License where chosen to be
included in the installation. Using the workstation to install the OS is possible because
both the stationary and the bike CPU are X86 Intel based computers. When prompted
for a reboot, the system was completely shut down, the converter unplugged, and the
hard drive connected to the Wafer-945GSE2 directly using a SATA cable. When the bike
system was powered up, it booted significantly faster than before, but upon reaching the
QNX login screen, the screen froze, exhibiting signs of a system crash. Some testing and
research revealed (Section 6.2.4) that the culprit was having DMA* enabled.

Under QNX, DMA is enabled when the .boot file is loaded during startup. It can be
disabled by pressing 'D’, or by pressing 'space’ when prompted. Pressing space will load
the .altboot file instead of .boot. The files are identical in every way, except for the
fact that .altboot has DMA disabled. It is unreasonable to expect a system to require
user input during startup for it not to crash. To circumvent the problem, the .boot and
.altboot files where swapped, in effect making .altboot the default boot file. This was
done by making gnxbase.ifs the .boot file and gqnxbasedma.ifs the .altboot.

The disk was finally mounted at the bottom plate in the suitcase, below the Bal-
dor TFM 060-06-01-3, to utilize space.

4Direct Memory Access

50 CHAPTER 5. PROBLEMS AND SOLUTION

5.3 OS Update

It is desirable to have the autonomous bike running software that is as up to date as
possible, without affecting system stability. When starting the thesis, QNX 6.3.0 was an
outdated OS, with the newer 6.4.1 available. Research also revealed that 6.3.0 has no
support for wireless networking, so based on that fact alone a system upgrade seemed
prudent (QSSL [2009]). A public beta version of 6.5.0 was available (in fact, the release
version became available towards the end of the thesis), but running beta software can
lead to unknown pitfalls by its very nature, so 6.4.1 was chosen as the new OS version.

The OS was installed on the development workstation as well as the bike PC. A minor
problem with the introduction of QNX 6.4.1, is that the QNX Momentics Development
Suite is no longer available for QNX itself, so all code development using the development
suite has to be done using a Windows computer. As such the MDS was installed on the
Windows workstation.

QNX 6.4.1, with support for the Wafer-945GSE2 Ethernet ports, made networking
available without requiring additional setup. The bike PC was given the hostname "bike",
while the development PC was given the name "dev" using the following command:

hostname name

Here, "name", is the name by which the different computers will be identified over
Qnet. Qnet was enabled on both computers with:

touch /etc/system/config/useqnet

This creates an empty file in the indicated directory, indicating to the system that
qnet should be enabled during startup. Reboot was required for qnet to start, after which
the development workstation and the bike PC appeared under /net as dev and bike,
respectively.

An attempt was made to compile the bike drivers under the new OS version, but
this failed. Poking around revealed that the sys/neutrino.h apparently is buggy under
6.4.1, as it is missing a code piece. Some tidbits of code had to be added to the file
to rectify the problem, as shown in Code sample 5.1. This allowed the bike drivers to
compile successfully.

Another minor issue plaguing the compile process of the generated Matlab files from
the Simulink build process where "//" comments. "//" comments seemed to be un-
supported under the new OS, as they produced all sorts of wierd compile errors. The
problem was fixed by replacing all "//" comments with "/* */" comments. However,
as the files had compiled without problems under 6.3.0 this seemed a little odd. No in
depth testing was done to find the cause of the problem, as adhering to ANSI C coding
standards solves the problem.

5.4. The Cyberbike Model 51

Code sample 5.1 Missing code in sys/neutrino.h.
#if defined(__CLOCKADJUST)
struct _clockadjust __CLOCKADJUST,;

#undef __CLOCKADJUST
#endif

#if defined(__ITIMER)
struct _itimer

#undef __ITIMER

_ITIMER;

#endif

What immediately springs to mind, however, is the .tmf file. The target make file
might not correctly identify 6.4.1 as a QNX system, and as such is using different compile
flags in the final generated Makefile. The compile errors are similar to what would happen
when using -ansi instead of -std=c99.

The bike driver executables where put under usr/bin, so they can be started by
name anywhere in the system (through the terminal).

5.4 The Cyberbike Model

The Cyberbike Simulink model was developed by Bjermeland [2006]. Cyberbike is here
referring to the actual Simulink model (not to be confused with Sglvberg [2007] name of
the autonomous bicycle project). Sglvberg [2007] did some work to connect the model
to the bike drivers, but was unable to complete it when the COM ports of the old
motherboard stopped working. A lot of work was put into finalizing this model and to
make it work as intended. Unfortunately, several issues plague the model, tied to the
physical components of the bike and the nature of the bike drivers. Section 6.5.1 covers
how the model was tested.

Selvberg [2007, Chap. 6.6] failed to make the model run more than a few steps before
stopping. He speculated that the processing power of the current CPU might have been
exhausted, due to the complexity of the model.

It was determined that the Cyberbike model cannot operate at a sample rate quicker
than 0.15 seconds. Verbose mode cannot be enabled for any of the drivers, as printf()
introduces significant delay to the driver response. These restrictions will most likely
apply to any use of the bike drivers. However, if not all device files needs to be sampled,
the sample time can probably be improved.

The bike_io_wrapper code developed by Sglvberg [2007] did not work as intended,
as the the device files was incorrectly ordered. This was fixed, along with adding some
additional safeguards during the start, update and stop functions. The code was also
using fd|0] instead of fd|[i] when setting the output for the motors, in effect only controlling
the propulsion motor. Along with this, some of the for loops where using "<" signs

52 CHAPTER 5. PROBLEMS AND SOLUTION

instead of "<=". As Sglvberg (2007, Chap. 6.6] himself noted; the code was largely
untested.

Whenever the estimator was used for the model, the system tried to apply expo-
nentially increasing power to the motors. Disabling the estimator and forwarding the
measurements directly avoids the exponential behaviour, but the pendulum and steer
oscillates continuously, showing no sign of stability. The main culprit is believed to be
the way torque is modeled in the bike drivers. Currently torque is reported as the voltage
applied to a motor multiplied by 10. An alternative to this has not been explored, but
is a problem that should be solved for a safe and stable system.

Working past many of the issues that presented themselves when testing the Cyber-
bike system, will most likely require a major overhaul of the bike model. As the focus
of this thesis was not on the theory behind the bike model implementation, this has not
been contemplated at all. However, the Cyberbike subsystem, serving as the interface to
the bike measurements has been brought as up to date as possible, hopefully making it
easy to connect to an enhanced model tackling these issues. The subsystem routes the
measurements to the plotting facilities made by Bjermeland [2006]; the 3D model of the
bike now uses to the physical position of the steer and pendulum, as well as the MTi
accelerometer values for orientation and speed.

See Figure 5.2 for the Simulink implementation, and Figure 5.2 for how the bike 3D
model appears. Everything shown in the plotting window was developed by Bjermeland
[2006], this only shows how it responds when fed real world measurements through the
Cyberbike subsystem. Note the "Substract Gravity" subsystem present in the model.
This is a weak attempt at removing gravity from the acceleration data, but nowhere near
an optimal solution. Section 5.10 discusses this further.

5.5 Bike Control Demo

The overall goal of this thesis, was the realization of a outdoor ride with the bike. When
it became apparent that the current bike model implementation would not be able to
control the bike, an alternative had to be presented. To control the bike, it has to be
possible to set the steering angle, use the pendulum for balance, and apply some power
to the propulsion motor. A simple approach would be to use a PID® controller for the
steer and pendulum position and apply a constant voltage to propulsion. The control
signal could be set by some external device, like a keyboard or remote controller. An
attempt was made to send data from the host computer keyboard via Simulink to the

bike PC.

Based on [Emanuele Ruffaldi, 2009], which is a control scheme for reading data from
the keyboard into Simulink, a model which increased or decrease the reference signal
based on the right and left arrow key was made. A custom tlc file had to be written
for the code to compile. Unfortunately, this implementation failed miserably. The input
scheme is dependent upon an open GUI window to register keystrokes, and since the code

SProportional-Integral-Derivative (controller)

5.5. Bike Control Demo 53

=] cyberbike3/The CyberBike

Fle Edt Viw Smuaton Formst Tooks Help

DSES T F [External V| BB e BBE
Mode Bronser 7[5, =
= B oybeibike3
). 2] Contral System welosity

- 2] Modelof Bicyole/Rider Dy

ssssss

]

nnnnnnnn

Ready 100%. oded.

Figure 5.2: Cyberbike subsystem - the S-function.

is running on the bike PC in the terminal this does not work. Even if there was a window
for accessing keystrokes, the input would have to come from the bike PC keyboard.

An alternative was attempted by connecting a constant signal to the steer and pen-
dulum, with a tunable gain-block inserted in the signal path. The idea was to control
the steer and pendulum by adjusting the gain during run-time using the mouse. This is
of course a very crude and indeed inefficient way to do it, but the goal was to be able
to control the bike at all. However, as it turned out, Simulink does not allow tuning of
blocks during run-time when the sample time is constant, so the attempt was a failure.

Finally the idea to use the MTi as a remote controller came to mind. Using yaw,
pitch and/or roll to control the steer and pendulum should be somewhat intuitive, if not
directly easy. If the MTi could be connected to a laptop running QNX, and the bike
accessing the MTi via the laptop using Qnet, remote control should be fairly easy to
implement. First, the devc-velo driver was modified to make the MTi device accessible
over Qnet.

What he candidate failed to remember is that the MTi device requires 5V DC, which
the COM port does not provide. As a consequence, the MTi cannott be used from
a remote computer, unless the power is available. Instead of pursuing electronics for
something not directly applicable to the actual bike, it was decided use the MTi as a
control device connected to the bike directly. The cable connecting the two is fairly long,
so a test run should not require anything else for a "pipes and whistles" demonstration.

Some C code for a control system was then developed. This was two separate PID

controllers for the steer and the pendulum, capable of being tuned using command line
arguments. Tuning the pendulum this way was exceedingly difficult, and indeed, con-

54 CHAPTER 5. PROBLEMS AND SOLUTION

) path_fig

=1

Bicycle Path

— Contral ——

Duration sec
0|
Interval sec..

0,30

3D-Camera

Close-up

—Plots —————

X'-plot

Time: selection: 4 J]

Pzi-plot
0.4 20

Phi-plat
ozt Deta-plot

1 Phi_p-plot
02t

¢ [cleg]

B M_p-plot
(Bl |8

M_cleta-plot

TG

Figure 5.3: Plotting of the real world data.

5.5. Bike Control Demo 55

trolling the pendulum based on position alone is no easy task. The code tries to scale
the applied voltage based upon angle, to limit the effect of gravity. However, the code
was never fully tuned; the initial values for the PID controllers are not stable. Further-
more, the control is flawed in that it does not time the control loop iteration, making
the deviate and integral output incorrectly dependant upon response time of the system.
Therefore, the system behaves significantly different based upon the amount of printf()
calls used. The current implementation of the code works best if the -v argument is
given. Printout 5.5 shows the usefile available for the executable. Using keyboard or
MTi as input device, as well as disabling any of the motors is a possibility.

Syntax:
bike_demo [options*]
Important: devc drivers should NOT run in verbose mode.

Options:

Warning: These values may seriously affect system stability.

-q [value] Sets Kp_steer value (0.001 default)

-w [value] Sets Ki_steer value (0.00005 default)

-e [value] Sets Kd_steer value (0.005 default)

-a [value] Sets Kp_pend value (0.003 default)

-s [value] Sets Ki_pend value (0.00005 default)

-d [value] Sets Kd_pend value (0.005 default)

-g [value] Sets g_scaling value, the effect of gravity) (0.5 default)

-k Enables keyboard input, disables MTi input(reversed by default)
-m [num] Motor selection. Options:

1 - Both (Default)

2 - Steer motor only

3 - Pendelum motor only

4 - None

-v Be verbose (-vv will give noisy mode)

Examples:
bike_demo -q 0.003 -w -0.02 -e 0.002 -vv -k

A Simulink "Bike Demo" was then developed when it was realized that taking the
C code route is both more time consuming and harder than simply creating a Simulink
model and to have RTW generate the code. Figure 5.4 shows the overall system, while
Figure 5.5 shows the pendulum PID controller subsystem. Note that the reference signal
is scaled and subject to saturation before reaching the controller. Here, the roll controls
the the steer and pitch controls the pendulum. Even though yaw would serve as a more
intuitive way to control the steer, leaving roll for the pendulum, the fact that yaw has a
tendency to "wrap around", jumping from -180 degrees to 180 during operation became
somewhat of a problem, and the current implementation was therefor preferred.

The "Bike Demo" model serves both as a control system for the steer and the pen-
dulum, and as a "bare bones" implementation of the cyberbike subsystem, stripped of
unnecessary files and settings. It can be used for future work if simply the interface to
the bike sensors is needed, if it is shown that future developing the Cyberbike model is

56 CHAPTER 5. PROBLEMS AND SOLUTION

Fie Edt View Simdation Format Tools Help

D& iBR| = 4|5 r Bl [Eend N BsRe s mEBB S

Constant

Steei_contraller

pend_controller

S-Function

Ready l100%% odes ¥

Figure 5.4: The bike demo model.

5.5. Bike Control Demo 57

= bike_demo/pend_controller.

File Edit Wew Simulation Format Tools Help

ODE2EE i 2| p & [lo0 [Estemal - #20 mEEE

Fend SetiAngle

[|pendetum Eror
u

F 3

pendangle_setpoint

>

+ L pend_u
U Limiter
pendangle
Triganometric
Function 1
Froduct
u to Iift pendelum fram 80 deg
Ready |100% | Joded

Figure 5.5: The PDI controller for the pendulum.

58 CHAPTER 5. PROBLEMS AND SOLUTION

more hassle than it is worth. Section 6.5.2 details the behaviour of the bike demo system,
and how it was tested.

5.6 Driver Enhancements

When working on a project like the autonomous bike, being able to work with and test the
various drivers without the hardware available can be helpful. As such, all of the resource
managers where modified to work without their hardware counterpart connected. If now
hardware device is not detected, the device driver enters a "zero return mode". While
in this mode, all the device files related to the driver returns 0 or the equivalent when
accessed. This enables the QNX development PC to be used for testing the drivers or
serve as a testing platform for the generated model code without involving the bike PC
directly. Throughout the working process, this has served as an invaluable tool, and a
time saver.

The various drivers has also had some of their error-return codes modified, as some
of the error handling routines where returning ambiguous error messages. Overall, error
handling should use more specific return codes now.

5.6.1 The Velo driver

At the start of the thesis, the devc-velo driver was dependant upon both devc-mt and
devc-imu to run. This was determined to be redundant at this point, as the bike will
most likely only need one accelerometer to operate. Therefor, devc-velo was modified
to use the MTi as the default device, with the IMU or both available through command
line options.

To accommodate the possibility of using the MTi connected to a remote computer, a
command line option for setting a Qnet path for the devc-velo driver was implemented.

Tuning the potmeter values for the driver was originally done by adjusting the con-
stant values defined in the driver H file. In effect, this means that whenever the potmeters
become unaligned or needs readjustment, the driver has to be recompiled. A preferences
file, potmeter.cfg, located under /root, was therefor created to adjust the minimum
and maximum voltages for the steer and pendulum potmeters. Bias values representing
the offset angle required for the angle measurement to return zero when the steer and
pendulum is centered can also set through this file. This simplified the tuning process of
the potmeters.

5.7 Physical Challenges and Enhancements

5.7.1 Cabinet Frame

During the course of the fall project, the autonomous bike sustained damage to the cables
and cabinet, resulting in a dislodged the cabinet and unreliable connections. The bike

5.7. Physical Challenges and Enhancements 59

Figure 5.6: The bike with the new frame for the cabinet.

PC cabinet is made of a somewhat frail material, and keeping it attached to the bike with
screws directly is bound to inflict future damage to the electronics. As an improvement,
a frame for the cabinet to be mounted into was designed. It was made out of wood from
an old pallet, painted black and attached to the bike rear frame with screws. The cabinet
has a tight fit with the frame, and will remain firmly in place as long as the bicycle does
not completely topple over. Figure 5.6 shows the bike with the frame attached, and the
cabinet mounted.

With this construction, the cabinet can be easily removed from the bike if serious
tinkering inside the cabinet is required. All the external wires where labeled with a
number indicating their terminal location, making reconnecting a quicker procedure. It
is no longer necessary to consult the connection tables during mounting and unmounting.

5.7.2 Potmeter strain

The potmeters on the bike led to complications. The mechanical connection between
the potmeters and the drive-shaft of the steer and the pendulum motor is subject to
great strain. This can be problematic when the bike becomes unstable, requiring the
potmeters to be re-tuned. The screws keeping the potmeters in place where replaced
to allow greater force to be applied. Unfortunately, one screw on both the steer and
pendulum broke during this process. Hopefully no future adjustment has to be made to

60 CHAPTER 5. PROBLEMS AND SOLUTION

these screws, but should the potmeters have to be removed or replaced, this could turn
out to be a big problem, as special tools for screw removal is required.

5.7.3 Pendulum Limit Switches

The limit switches served more as a hindrance than anything, when trying to develop a
functioning control scheme for the pendulum. The limit switches where activated when
the pendulum reached +/- 17 degrees, well short of the +/- 45 range the pendulum is
capable of. As the switches cut all power to the motor when activated, whenever the
pendulum exceeded the limits, it would ram the pendulum frame with whatever momen-
tum it had at the time. The switches where therefore unscrewed and left unattached to
allow for greater movement.

5.8 The Propulsion motor

The autonomous bike did not have a chain connecting the rear wheel gear to the motor
and the bike main gear. It turned out that the size of the gear was so big, that two
chains intended for motorcycles had to be interconnected, trimmed, and used as the bike
chain. However, the motor controller card is incapable of delivering sufficient current
to the propulsion motor, rendering the bike unable to take an outdoor ride. Section 6.3
briefly describes how this was tested. This realization came as a hard blow during the
latter parts of the thesis work, after the bike demo Simulink file had been tuned. Unable
to bare the weight of the bike, the hope of first time a ride with the autonomous bike
came to a full stop. A hardware solution is required to finalize this dream.

5.9 Wiring issues

Throughout the project, the motors intermittently stopped working. Probing revealed
that the wires connecting the motors from the inside of the cabinet to the outside are
unreliable, as poking at the wires could stop the motors from working. This problem has
not been fixed. However, the problem should be viewed in connection with the , which
most likely has to be replaced. In doing so, a full system check of all weiring should be
preformed, and fixing the problem at this time would be work done in vain.

5.10 The MTi

The MTi had been used by another project during the spring on a remote controlled
car. When it was handed over for use with autonomous bike, the serial connector at the
end of the MTi cable had been replaced by a MOLEX connector. Following the Xsens
[2005] guidelines, the MOLEX connector was unsoldered and removed, and replaced by
the previously connected COM interface. Note that only TX, RX, VCC and GND where
soldered to the MTi connector, the reminding wires where cut and left unconnected.

5.11. The Wireless Issue 61

When the MTi was finally connected to the bike PC, the device functioned correctly,
supplying the devc-mt driver with data. However sloginfo -c revealed the following
continuous error: "io-char: S/W Buffer Overrun Error on /dev/serl". This rendered
the devc-mt unable to run in the background without being terminated by the OS, but
could be circumvented by letting the driver run in the foreground in a separate terminal
window. The cause of the problem is yet to be determined, but its believed to be related
with the rate at which the MTi transfers data.

A separate issue, related to how an accelerometer functions, also presented itself.
From Xsens [2005]:

"NOTE: The linear 3D accelerometers measure all accelerations, including the accel-
eration due to gravity. This is inherent to all accelerometers. Therefore, if you wish to use
the 3D linear accelerations output by the MTi / MTzx to estimate the "free" acceleration
(i.e. 2nd derivative of position) gravity must first be subtracted.”

Subtracting gravity is a non trivial problem, as the local gravity-field varies. The cy-
berbike subsystem in the Cyberbike Simulink model (Figure 5.2) has a block subtracting
gravity based on roll and pitch. The subsystem is but a lighthearted attempt at obtain-
ing a steady position signal after double integrating the acceleration, when the bicycle
is motionless. A more throughout approach is very much required in an final control
scheme.

For the MTi it is also important to be aware of how the yaw, pitch and roll values
"wrap around", with the critical values being 180 and -180 degrees. Any control scheme
utilizing the MTi should keep this in mind, especially considering the yaw measurement,
as this is the value determine the heading of the bike. The yaw angle likely to use the
whole 360 degree spectre during a ride.

5.11 The Wireless Issue

When starting the thesis, wireless connection to and from the bike was not possible. A
lot of research has gone into making wireless networking work for the autonomous bike
during this time. The most obvious route, and indeed the route given most attention,
for wireless networking, is a USB Wireless device. One of the selling points for QNX
6.4.1 (QSSL [2009]) was the support for wireless network protocols. However, it quickly
became apparent that QNX only supports a limited assortment of chip-sets, most of
which are not used by USB Wifi devices available today, due to age. QSSL [2009] lists
all wireless chip-sets supported by QNX 6.4.1. Ralink [2009] lists alot of wireless devices
which uses the RT2500 and RT2501 chipset.

Digging around the Internet indicated that the Cisco Compact Wireless-G USB
Adapter WUSB54GC-EU uses the RT2501 chipset. To make sure, Cisco tech support
was contacted to verify that claim. According to Cisco, the USB device uses the Ralink
RT2501USB chipset, which is listed QNX hardware database to be supported by the
devnp-rum.so driver. In the belief that the WUSB54GC-EU would run on QNX; it was
purchased. Upon delivery, the device failed to work on the QNX development PC, and

62 CHAPTER 5. PROBLEMS AND SOLUTION

after a lengthy wait for a response on the QNX community forums, it turned out that
the USB device apparently did not use the RT2501, but instead the RT3070 chip(V3).
The advice given was to use the devnp-run.so driver. This particular driver is not, at
the time of writing, available to the public. The driver was attempted to be obtain af-
ter a series of communication with the Norwegian QNX company ARX Innovation, who
forwarded the driver request to the QNX headquarters in Canada. However, after some
delay, they replied that the driver was "unreliable, and development had been stopped
due to serious issues". In other words, the WUSB54GC could not be made to work any
time soon.

In an attempt to obtain an USB dongle with a supported chip-set, all companies on
the Ralink [2009] list where mailed. A simple request for them to provide the chip-set
of their product, or an alternative product with one of the QNX supported chip-sets.
Most companies did not reply at all, and the few that did cited "The chip-set in our
products are kept secret for marketing reasons". The fact that Cisco actually gave out
their information, seems, at this point, like the exception.

Following the negative response from the USB Wifi companies, the candidate was
left with the unreliable Internet as the sole source of information. D-Link DWA-140
was obtained after a lengthy search seemed to indicate that it used the RT2600, avail-
able through Norwegian suppliers. This USB dongle turned out to use the unsupported
RT2870 chip.

At this time, the quest for wireless networking using a USB Wifi device was aban-
doned. Having full network support in not necessary, as RT'W support external mode
using serial transfer as IPC. This means that a dedicated radio transmitter/transceiver
will suffice for the control system. However, the serial transfer protocol used for ex-
ternal mode is only supported for Windows applications. This was realized too late in
the project, so no attempt was made to port the code to the QNX platform. Wireless
networking was not to be, not this time around.

Chapter 6

Tests and Experiments

This chapter describes some of the more throughout tests preformed during the work
with the bike. Most of the probing with the multimeter as well as debugging software
has been left out, as this is obviously integral to this type of work.

6.1 Test equipment

The multimeter used during the work on this thesis is an “FLUKE 289 True RMS Mul-
timeter", see Figure 6.1. The multimeter has got the most usual functions expected
from such a device, including voltmeter, ampere-meter, ohmmeter, DC and AC! setting,
capacitance measurements, connectivity check (“beeping”), etc.

6.2 The Wafer-945GSE2

This section covers the test that where performed to ensure that the new motherboard
was working correctly.

6.2.1 USB Ports

All four of the USB 2.0 ports where tested. This was done by connecting the mouse to
each port, reboot and see if the start-up screen recognized the USB device. This was done
successfully for both the on board ports, as well as the two additional ports available via
the dual USB cable that was connected to the Wafer-945GSE2.

6.2.2 COM Ports

Both the COM ports where tested using the GPS device, similarly to how Sglvberg [2007,
chap. 6.3.2] did it. The device was connected to a COM port, and the cat utility used

1Alternating; current

63

64 CHAPTER 6. TESTS AND EXPERIMENTS

Figure 6.1: FLUKE 289 True RMS Multimeter.

to investigate the /dev/serX file path to see if a bit stream was being received from the
device. This gave positive results. The findings where future confirmed when the use of
the MTi and IMU connected to both ports proved to be unproblematic.

6.2.3 Network Issues

During the course of the thesis, some trouble with the networking aspects of the bike PC
appeared. During testing of the Cyberbike Simulink model, the Windows computer was
unable to connect to the bike, resulting in Matlab crashing. The bike pc was at the time
still able to access the Internet and the QNX development workstation. sloginfo -c
indicated that the DHCP? client had been assigned a duplicate IP address. This would
explain how the bike could use the net, but could not be accessed: The Windows computer
was told by the DHCP sever that the IP-address belonged to a different computer. To
future test the Simulink model, the problem was bypassed by setting the bike I[P manually
by using:

ifconfig rtl 129.241.154.2/24

This sets the IP-address for a network interface (rtl), to the specified IP and net-
work mask. This workaround allowed the Windows workstation and the bike PC to
communicate, at the cost of Internet connectivity on the bike.

2Dynamic Host Configuration Protocol

6.3. Motor tests 65

This problem should be fixable by obtaining a permanent IP for the bike PC from the
network administrator. However, before the candidate got around to do so, the DHCP
duplicate IP issue disappeared.

6.2.4 Harddrive Issues

As described in Section 5.2, the system does not have DMA enabled. This was in spite
of the fact that every possible hard drive option in the BIOS related to DMA was tested
by selecting an option, rebooting and loading the .boot file with DMA enabled. Every
single alternative resulted in a frozen login screen/system crash. Unable to determine
the cause of the problem, the bike system now has DMA disabled by default.

6.3 Motor tests

After the chain had been mounted on the bike, the propulsion motor was tested to see
if it could handle the strain of pulling the wheel load. Applying 5V by the use of the
echo tool, the motor managed to make the rear wheel spin. The current indicator on the
power source peaked at about 14 A for a short while, before stabilizing around 8 A. If the
wheel was subject to hardly any resistance at all (like the tip of a shoe), the motor would
stop. The propulsion motor is rated at 18A, but since the Baldor TFM 060-06-01-3 is
only capable of delivering 6 A continuously, the motor controller card was identified as
the culprit. Unless this problem is fixed, the bike will not be able power itself forward.

Both the steer and propulsion motor functioned perfectly during tests with the echo
tool.

6.4 Batteries stress test

When starting the thesis, the batteries where completely depleted. The workshop had to
charge the batteries for several weeks, before they regained their former 12V potential.
To test if the batteries would still be able to deliver sufficient current to the system, the
batteries where connected and the system booted. The motors where then started one
by one, finally engaging everything at once. No problem seemed to arise; the system
behaved identically to using a power generator. At this point, the batteries are given a
clean bill of health.

6.5 Simulink tests

This section covers the testing that was performed on the existing Simulink model when
the thesis started, and the Bike Demo model that was developed during the thesis work.

66 CHAPTER 6. TESTS AND EXPERIMENTS

6.5.1 Cyberbike model tests

The Cyberbike Simulink model was extensively tested to determine why it would termi-
nate after only a few time-steps. The model did originally use a fixed time-step of 0.02
seconds. [Sglvberg, 2007, chap.6.6] suggested that the cause of the problem could be
related the old motherboard being too slow, so this was the first part to be examined.
By running the bike drivers on the QNX workstation in "zero-return mode", 2.0 GHz
of processing power was available; a significant increase over the measly 400 MHz of the
Wafer 971A. It was quickly determined however, that model communicating with the
Windows computer running Simulink still terminated only a few time-steps after being
started. The error produced was "Memory fault (core dumped)". This gave reason to
believe that the problem was not, at least primarily, related to processing speed.

To determine the root of the problem, a lot of debugging messages where added to
the core C files generated by RTW, trying to track down exactly where the memory fault
appeared. Unfortunately, it became apparent that the exact point of failure was hard to
track down, as the RTW framework is dependant upon a vast amount of files. Keeping
it simple (stupid), quickly presented itself as a better alternative: Disable the S-function
code, and see if the problem disappeared. This was done by simply stopping the device
files from being sampled. And indeed, now the code initiated, executed and terminated
properly. At this time it was attempted to sample just one device, but this resulted in
an error message. To see if increasing the sample time could rectify the problem, the
fixed time-step was at first set to 0.25 seconds. Now the model ran smoothly, successfully
terminating when stopped through Simulink. At this point, all device files where enabled,
and, by trying to bound the sample time from below, 0.15 seconds was determined as a
stable value, constantly running without failure.

Throughout the testing process, several bugs with the bike_io_wrapper.c code
where fixed, some described in Section 5.4.

6.5.2 Bike demo tests

The bike demo Simulink model was tuned and tested for stability. This was done sep-
arately for the steer and the pendulum by starting in centered position, with the angle
close to zero, and set the reference to the face left after five seconds. Figure 6.2 shows
how the steer position follows the reference for the final tuning, while Figure 6.3 shows
the same for the pendulum.

The stability of the control scheme was determined to be satisfactory as a "proof of
concept" demonstration. The steer and pendulum should follow the reference to such a
degree that a operating the two is possible within reasonable limits.

6.6 Device Peripherals and associated drivers

All the drivers where, at the minimum, modified to work even with no hardware con-
nected, so everything had to be properly tested for any bugs or errors with and without a

6.6. Device Peripherals and associated drivers 67

100

00
a

ime offzet; 0

Figure 6.2: Steer referance vs. steer position.

Time offset; 0

Figure 6.3: Pendulum referance vs. pendulum position.

68 CHAPTER 6. TESTS AND EXPERIMENTS

device connected. The cat utility was used to access every device file for a given driver,
and see if the output was as expected. This way the read() and open() functions where
accounted for. For all but the the devc-velo driver, the devc-velo device files where
used to test the various devctl() for the drivers, as devc-velo uses devctl() to access the
underlying resource managers. The echo utility was used to test the write() functions.
All tests where preformed with the driver set to noisy mode, to provide as much debug
information as possible. The devc-velo was tested with custom code that performed
open(), read(), write() and devctl() calls on the velo device files, and printed the results.
All of these tests where completed successfully.

6.7 GPS

The GPS driver, with the GPS connected, gave numerous errors and warning during
operation. Upon inspection, it was determined that this was not a physical issue, as the
data packets received over the serial port adhered to the GPS documentation. The GSV
messages revealed that the GPS had 12 satellites in view. However, the GSA messages
indicated that no fix was possible. This was compliant with the status of the LED on
the GPS which had a solid red light; indicating that no fix has been made (as opposed
to a flashing light, indicating a fix).

It is believed that the electromagnetic noise and concrete walls in the development
area prevented the GPS from working properly. A possible solution could have been
to put the GPS device outside the window, but the way the device is installed onto
the bike cabinet, makes removing it hard. As the tests implies that the GPS device
is still functioning correctly, and a fix is possible environment permitting, further work
interested in utilizing the the device should be possible.

Chapter 7

Further Work

Typically, the chapter describing alternatives for future work is reserved for later. How-
ever, as the autonomous bike project has come to be a large and complex system, there
are so many minor and major tasks to be accomplished that a simple afterthought about
the work ahead would not serve the project well. This chapter seeks to recap the prob-
lems remanding to be tackled and to highlight critical issues that should be fixed before
moving ahead. Additionally, this chapter will point out larger tasks waiting to be un-
dertaken, ideas for expanding the bike horizons, task perhaps serving as master theses
in their own right.

7.1 Recap of Existing Problems

This section repeats the problems that are unfixed, which where described Chapter 5,
and possible work that can be done to rectify them.

7.1.1 The first journey

The first outdoor ride with the bike was stopped short by the limits of the Baldor TFM 060-
06-01-3, described in Section 5.8. In that regard the most pressing issue would be to
replace the motor controller card, or amplify the power output to allow the propulsion
motor enough power to pull the bike. It would be natural to test and fix the motor wires
covered in Section 5.9 at the same time. If these two issues are corrected, there should
be nothing preventing the bike from using the Bike Demo Simulink model to control the
bike using the MTi, and taking the first ride outdoors.

7.1.2 Minor Issues

Below is a listing of minor issues that should be dealt with as time permits:

69

70

CHAPTER 7. FURTHER WORK

The screws fixing the potmeters in place are damage. The university workshop can
probably be very helpful in removing the broken screws. However, this will not
change the fact that the mechanical strain will eventually lead to the potmeters
having to be re-tuned. Fortunately, tuning the potmeters is now relatively easy, as
it can be done as described in Section 4.3.5.

If the .tmf file is used in future work, would be advisable to investigate why the
Makefile is compiling using -ansi and not -std=c99 as an option. The file works
completely as is, but coding using -std=c99 might be preferable.

The sample time used in the Simulink models is now relatively high at 0.15 sec-
ond. Sampling fewer device files in the S-function might allow this interval to be
shortened.

The devc-velo driver is currently assuming that torque produced by the motors is
the voltage applied multiplied by ten. Improving this relationship would be a good
idea, moving forward with a more complex control scheme.

Implementing a velocity control scheme for the bike would be highly beneficial
and would probably serve stability, especially for the pendulum, well. This is not
necessarily a trivial task, but should be investigated.

The inside of the bike cabinet is somewhat of a mess. Lose wires and cables are
a hazard to the system, and the metal floor inside could accidentally connect or
short wires touching it. A major "spring cleaning" could serve the cabinet well.

The dual USB cable connected to the Wafer-945GSE2 is lose, as the mount point for
the previous USB cable had different dimensions. Accommodating a new mounting
point for the cable could be beneficial.

The Ethernet port available on the outside of the cabinet is believed to be damaged.
Plugging directly into the Wafer-945GSE2 works perfectly, but using the cabinet
port indirectly sometimes disrupts the network. Either the wires should be fixed,
or the port replaced.

The GPS device is believed to be fully functional, but unable to fix its location,
due to the development environment. An outdoor test of the GPS device should
be preformed, to determine if it is indeed functional.

The MTi driver is plagued by an stack overflow issue. As a result it cannot be run
in the background using the modifier. It is believed to be caused by high transfer
rate. Lowering the rate of transmission requires a write function to be made for
the MTi driver, for device to recieve commands externally.

The pendulum limit switches has been unscrewed and remind loose. An alternative
mounting point should be considered, or even a different approach altogether. Hav-
ing some sort of hardware limiter for the pendulum however, is important, both for

7.2. Moving Forward 71

the preservation of the motor and for human safety. Implementing some additional
limit into the software drivers could also be advisable.

e A new release version of QNX, version 6.5.0, is available. Upgrading the bike OS
should be done to benefit from whatever upgrades the new version provides.

7.1.3 Wireless networking

Section 5.11 describes how a lengthy attempt at making Wifi available for the bike was
failed to be realized by the use of a USB dongle. Should the devnp-run.so driver ever be
released, than the WUSB54GC-EU USB Adapter should be capable of providing Wifi.
No research has to been done regarding QNX 6.5.0 and how it relates to wireless USB
devices. The new version can possibly provide a solution.

Alternatively, the RT'W code for serial IPC could be ported to QNX, and the bike
controlled by the use of a radio transmitter/transceiver. There are PC/104 cards that
available that can sever this function, so some research should be put into exploring this
alternative.

The final, and perhaps easies solution would be the acquisition of a WiFi bridge.
A WiFi bridge can be connected directly to the ethernet port of the Wafer-945GSE2,
and requires no drivers to work. The challenge of using a bridge is finding a device
small enough that it can be fitted on the bike, and that is not too expensive. A way
to power the device should also be explored. The candidate recommends checking out
WiFi bridges made for gaming devices like the Xbox or Wii for alternatives fitting these
criteria.

7.2 Moving Forward

This section covers some of the broader tasks that can be undertaken to further the bike
project. [Selvberg, 2007, Chap. 8| discusses interesting alternatives, some of which will
be summed up here.

7.2.1 Simulink model

At this time, the Simulink model developed by [Bjermeland, 2006] does not integrate
well with the cyberbike subsystem. Assumptions and simplifications done for the model,
renders the bike unstable with the current control scheme. A deeper diagnostic of the
existing model could be performed, but without taking a better look at the underlying
theory, the time might be better spent elsewhere. [Lebedonko, 2009] takes a more com-
prehensive look at bike modelling, and one would be well advised to take his master thesis
into consideration if a new model is to be constructed. If a model could be created, based
upon the measurements available through cyberbike subsystem, a truly autonomous is a
possibility. A challenge in this regard would be to implement a intuitive way for a bike
operator to set the reference signal for the bike, through Simulink. Handling the MTi

72 CHAPTER 7. FURTHER WORK

acceleration data should also put up for consideration, and how best to subtract gravity
from the data, as well as a method for handling angles "wrapping around" from -180 to
180 degrees. A way for the model to use the GPS would be optimal. An extract from
the MTi documentation (|Xsens, 2006|) is presented here for inspiration:

"It’s possible to double integrate accelerometer data, after proper co-ordinate trans-
formations and subtraction of the acceleration due to gravity, to obtain 3D position data.
To implement this in a practical implementation some issues will be encountered: 1) You
will need a ’starting point’, a reference 3D position, from which you can start to integrate
the 3D acceleration data. 2) Noise on the acceleration data (about 1 mg RMS) and small
offset errors and/or incorrectly subtracted acceleration due to gravity, will be integrated
and over time will cause huge (drift) errors in the position and velocity estimate. The
conclusion is that it depends very much on the (type) of motion you want to register if
this approach is feasible. Typically, short duration movements, preferably cyclical, with
frequent known reference positions will work well. "

Line of Sight

[Selvberg, 2007, Chap. 8.3] mentiones how a Line of Sight algorithm could be used with
the bike, as suggested by [Bjermeland, 2006]. This involves defining waypoints for the
bike, while using a a control algorithm for making the bike take the shortest path to the
destination. For this purpose, the GPS device should come in handy.

7.2.2 Optimizing devc-dmm32at

[Selvberg, 2007, Chap. 8.4] explains how the DMM-32-AT driver can be utilized to save
on processing power. With the introduction of the Wafer-945GSE2, processing power is
abundantly less scarce, so the priority of this task should be considered low.

7.2.3 Videocamera

[Selvberg, 2007, Chap. 8.5] mentions that the installation of a camera for recording the
bike’s point of view would be interesting. As the development of the autonomous bike
comes along, this also becomes more relevant. The system has access to four times the
processing power it once did, making this option very plausible to implement. How-
ever, focusing on implementing a wireless connection should be prioritized, as a camera
mounted on a bike requiring an Ethernet cable seems redundant at best.

7.2.4 Mechanical Brakes and Overall Safety

Today, the bike is not safe for public demonstration. This is not only caused by an unsta-
ble controllers or unreliable wires; the autonomous bike cannot break. One alternative
could be to mount regular bike breaks, but this might turn out to be difficult, as the
bike-frame dates back to the eighties, with none of the parts adhering to today’s bike

7.2. Moving Forward 73

standards. An alternative could be to install a motor for controlling something imitating
human legs; a way for the bike to force a dead stop through fiction with the ground.

Additionally, the gears of the bike are fully exposed, and is a safety hazard in their
own right. Some protective housing could be beneficial, to prevent fingers from snapping.

7.2.5 Overall system

Moving forward, some way to power up the system and automatically have all drivers
and applications necessary to control the bike start should be implemented. Currently,
a lot of tinkering is needed to prepare the bike for external communication. As most
of the underlying drivers should work properly at this point, focusing on making the
autonomous bike a polished and solid system is possible.

74

CHAPTER 7. FURTHER WORK

Chapter 8

Discussion

Working on the autonomous has presented a varied assortment of challenges, some of
which where dealt with satisfactory, and some of which arguable could have been handled
better. This chapter discusses how the work could have been done differently, and reflects
upon choices made throughout.

8.1 Choice of new motherboard

The Wafer-945GSE2 was chosen, as it represented a significant upgrade over the old
hardware, as described in Section 5.1. The cost, about 3000 NOK, was comparable to
similar SBC on the marked. The board has preformed well throughout the work, the
only persisting problem relates to DMA having to be disabled. This might just as well
be caused by the new hard drive. The board was bought outside the normal avenues
used by the University, as it was easier to have the costs reimbursed than to wait for
purchase approval. This means that the MVA had to be paid in full, which could have
been avoided. However, as the candidate already was late starting the project, it was
decided to acquire a motherboard as quickly as possible.

8.2 Choice of storage medium

The reason for choosing a hard drive instead of a flash card was twofold. Firstly, when
the old Eurobot HD died, a replacement had to be found quickly. Previous theses gave
the impression that working with flash cards was riddled with problems, and to avoid un-
necessary complications these where avoided. Secondly SSD drives, containg no moving
parts was also an alternative, but these are significantly more expensive than a regular
HDD. [Sglvberg, 2007, Chap. 7.1] discusses the problems related to hard drives of the
type chosen: the mechanical parts of the drive are subject to external disturbances, very
much prevalent in the bike system. Should the bike topple over, the contents of the
hard drive could be permanently damage. However, so far the hard drive has functioned

75

76 CHAPTER 8. DISCUSSION

satisfactory, and unless experience indicates otherwise, it might serve its purpose for the
duration of the first outdoor ride.

8.3 Unresolved problems

Chapter 7 covers a lot of the issues that remain in the system to this day. One could
argue that some of these problems are so minute that they should have already been
handled. However, when working on a complex system, such as the autonomous bike,
alone, issues has to be prioritized: there are only so many work hours to go around. As
the main focus of the work was to get the bike out the doors and sent on a first time ride,
some corners where cut to move the project along. When the ride never materialized, one
could argue that all the issues should have been fully resolved before moving on to the
next task. However, it was not always possible to fix a problem immediately, an therefor
other tasks where undertaken in the mean time, sometimes uncovering yet different issues
to be resolved. Simply working through the issues is not always straightforward or even
possible.

The candidate very much shares the sentiment expressed by [Sglvberg, 2007, Chap.
7.4]: "A human weakness is that they make mistakes”. The act of probing a physical
system of this nature can in an of itself lead to problems; writing software code can result
in minor bugs or even hardware damage. However, a more methodical approach to the
system, especially during the earlier work with the bike should have been contemplated.
Time and time again, it became apparent that breaking problems down to linearly de-
pendant tasks, cut down on the time needed for development and testing. Early on,
when getting familiarized with the system, aimless actions with no real rhythm or reason
where preformed, sometimes causing more harm than good. More thought should have
been put into the way the work was being preformed. Being methodical is key.

8.3.1 Lack of Wireless Networking

The failure to introduce wireless networking to the bike project was a hard burden to
bare. The problem alone consumed far to much time considering no actual solutions
where presented. Scourging the Internet for tidbits of information about various chipsets
and USB devices is time that could have been well spent elsewhere. The QNX community
forums have very little traffic, and posts made there where very slowly responded to, if
at all. Combined with mailing uncooperative corporations in vain, these actions took a
heavy toll on morale. If nothing else, the challenge has thought the candidate how fickle
consumer electronics can be, if one wishes to detail the gritty bitty insides. Hopefully
options presented in Section 7.1.3 can make further attempt easier to accomplish.

8.4. Reflection 77

8.4 Reflection

Very much like [Sglvberg, 2007]|, the errors inherent in the bicycle system where larger
than expected at the starting point of the thesis work. Overall, the limiting factor
throughout was time, as problems starting piling up and system components, previously
tested and given a clean bill of health, started to fail. At times it feels like the same
tasks has to be redone time and time again, for no apparent reason. With the benefit of
hindsight, where the correct decisions made?

As mentioned above, the work put into USB Wifi devices, seemed like a waste of
time. Had the realization that Wifi bridges where an option come earlier, perhaps the
time spent on the dongles could have used to modify a bridge to comply with the physical
system. As for the failure to conduct a outdoor ride with the bike, the candidate is not
as disappointed. Even if it had been know that the motor controller card was insufficient
to power the propulsion motor, it is not a given that simply replacing it would not have
cut into some of the other tasks that actually where finalized during the work. The fact
that a functional bike demo model has been implemented, and a final Simulink interface
to the hardware has been completed, is just as important for the completion of the bike
system as a functional propulsion motor.

Things take time. FEvery little problem that arises can turn out to require hours
of work, and working completely isolated on a complex system can sometimes be a
daunting task. Optimally, students continuing the work on the bike should work in
pairs, as running ideas and experiments past a fellow student before jumping to action
be quite valuable.Hopefully, the issues still persisting in the bike system has been fully
documented throughout this thesis, serving as both a sign of warning and a source for
inspiration for kindred spirits embarking on the journey that is the autonomous bike.

78

CHAPTER 8. DISCUSSION

Chapter 9

Conclusion

The idea of an autonomous bicycle, dating back to the early eighties, is starting to gain
momentum. The goal is to have a bike take a ride outdoors, without the assistance of
a rider. To achieve this, balance is provided by an inverted pendulum, controlled by a
motor. Yet other motors control the steer and provide propulsion, everything controlled
by a onboard computer interfacing with various measurement devices. The dream is to
have a complex computer model control these devices, resulting in a stable, riderless
bicycle.

The main part of the thesis consisted of finalizing the hardware and software parts of
the system, all of which where believed to be near completion at the onset of the project.
Part of the assignment was to determine and solve the problems preventing the system
from conducting a first journey outside.

This first ride was not realized, but came immensely close. A "proof of concept" con-
trol system has been developed, to allow the steer and pendulum to be controlled by the
MTi accelerometer device. The overall instrumentation system has been improved, with
a new motherboard and hard drive added to the system. The physical frame supporting
the bike cabinet has been constructed and mounted. It should make further work easier,
as the cabinet can easily be dismounted. All the drivers have been modified to function
without their respective hardware device connected, and overall the software system has
been made more stable and reliable. The cyberbike subsystem available through Simulink
has been fully implemented and tested, and should serve as a easy way for more complex
models to interface with the bike hardware in the future.

Arguably, too much time was spent trying to introduce wireless networking to the
system, by the use of USB Wifi devices. QNX turned out to provide little in the way of
support of new USB Wifi dongles, and tracking down supported chip-sets was determined
to be nigh impossible. Hopefully, the fruitless work done to make the USB devices work,
has revealed compelling alternatives for further work on the project.

The thesis itself can be viewed as reference documentation for the hardware and
especially, software, as a go-to point for new students starting work on the autonomous
bicycle. Including further work as a part of the main text was intentionally done to

79

80 CHAPTER 9. CONCLUSION

allow a quick-start, point-by-point guide to the work required to finalize the project.
The appendix provides a step-by-step guide for making the bike demo work, making it
possible to see the bike in action early, to get a sense of what the system can do.

Bibliography

ACT Batteries. [online|, 2007. URL http://www.actbatteries.co.uk/. [Accessed 30
Dec 20009.

Baldor ASR. Pulse Width Modulated Transistor Servodriver TFM Instruc-
tion Manual. Baldor ASR GmbH, Dieselstrae 22, D-8011 Kirchheim-
M-IInchen, WestGermany, 1988. Versionl : 11/07/88.

Lasse Bjermeland. Modeling, simulation and control system for an autonomous bicycle.
Master’s thesis, Norwegian University of Science and Technology (NTNU), Trondheim,
June 2006.

Diamond Systems Corporation. Diamond-MM-32-AT 16-Bit Analog 1/0O PC/104 Module
with Autocalibration, User Manual, V2.64. 8430-D Central Ave., Newark, CA 94560,
2003. URL http://www.diamondsystems. com.

DtC-Lenze as. |online|, May 2007. URL http://www.dtc.no. [Accessed 25 Dec 2009].

Emanuele Ruffaldi. Simulink keyboard input v2. [online|, 2009. URL http://www.
mathworks.com/matlabcentral/fileexchange/24216. |Accessed 1 June 2010].

John A. Fossum. Instrumentering og datasystemer for autonom kybernetisk sykkel. Mas-
ter’s thesis, Norges teknisk-naturvitenskapelige universitet (NTNU), Trondheim, Dec
2006.

IEI Technology Corp. WAFER-945GSE2 3.5" SBC, User Manual, Rev 1.0, March 2009.

IEI Technology Corp. WAFER-945GSE2 Image. [online|, 2010. URL http:
//t0.gstatic.com/images?q=tbn:11XoU1_8q9GKKM:http://www.nmr-corp.com/
product/cat09/images/entry001. jpg&t=1. |[Accessed 20 August 2010].

Vegard Larsen Lasse Bjermeland and Pal Jacob Nessjgen. Using simulink real time
workshop™ to create programs for qnx™platform. Technical report, ITK, NTNU, Trond-
heim, Norway, Feb 2007.

Igor Olegovych Lebedonko. Autonomous bicycle. Master’s thesis, Telemark University
College (NTNU), Telemark, June 2009.

81

82 BIBLIOGRAPHY

Hans Olav Loftum. Styresystem for kybernetisk sykkel - instrumentering for styring av
en tohjuls herresykkel. Master’s thesis, Norges teknisk-naturvitenskapelige universitet
(NTNU), Trondheim, June 2006.

QNX Software Systems. Programmer,Aés Guide. QNX Software Systems GmbH Co, 6.3
edition, 2009a. URL http://www.qnx.com/. [online.

QNX Software Systems. System Architecture. QNX Software Systems GmbH Co, 6.4.1
edition, 2009b. URL http://www.qnx.com/. [online]|.

QSSL. 10 Steps to your first QNX program, Quickstart guide. QNX Software Systems, 127
Terence Matthews Crescent, Ottawa, Ontario, Canada, K2M 1W8, second edition, Sept
2005.

QSSL. Qnx product documentation. [online|, 2009. URL http://www.qnx.com/
developers/docs/index.html. [Accessed 20 June 2010].

Ralink. Ralink rt2500 chipsets based wireless 802.11g devices. [online|, Feb 2009. URL
http://ralink.rapla.net/. [Accessed 20 May 2010].

Samsung. HD322HJ 320 GB/7200RPM/16M Image. |online|, 2010. URL http://forum.
ge/uploads/post-54-1272375242. jpg. |Accessed 20 August 2010].

Audun Sglvberg. Cyberbike. Master’s thesis, Norges teknisk-naturvitenskapelige universitet
(NTNU), Trondheim, June 2007.

The MathWorks, Inc. Real-time workshop user’s guide. [online|, 2009. URL http://www.
mathworks.com/access/helpdesk/help/toolbox/rtw/ug/ug_intropage.html. [Ac-
cessed 15 Dec 2009].

Xsens. MTi and MTx Low-Level Communication Documentation, Revision E. Xsens Tech-
nologies B.V., Capitool 50, P.O. Box 545, 7500 AM Enschede, The Netherlands, March
2 2005. URL http://www.xsens.com.

Xsens. MTi and MTz User Manual and Technical Documentation. Xsens Technologies
B.V., Capitool 50, P.O. Box 545, 7500 AM Enschede, The Netherlands, revision g edition,
March 2 2006. URL http://www.xsens.com.

Appendix A

Contents on DVD

e code: Contains all the code for the bike drivers, as well as some support programs.
e matlab: Files needed for RTW.

e Simulink: Contains the bike demo, and cyberbike Simulink model, along with some
older versions.

e Report: The latex files used for this thesis.
e Documents: Contains datasheets, manuals and documentation.

e Velo CD: Backup of previous master theses work. Files of interest might be the
test programs available for some of the drivers.

83

84

APPENDIX A. CONTENTS ON DVD

Appendix B

How to start the bike system

This chapter is intended to give a flying start of how to start the system.

1.

10.

Push the emergency button, and make it stay in activated position (no torque on
motors)

. Put the power switch in off-condition (a zero is visible at the top of the switch).

. Connect a power source to the rightmost circular 4-pins connector at the suicase

(marked 24V), either from the batteries, or from an external power supply.

. Make sure the MTi is inside it’s housing right behind the front wheel.

. Plug a screen cable (from an available screen) to the VGA connector on the Wafer-

945GSE2 (SBC).

. Connect a keyboard into the K connector on the mouse and keyboad cable con-

nected to the Wafer-945GSE2.

Plug an ethernet cable into one of the RJ-45 connecters on the Wafer-945GSE2.
The RJ-45 on the cabinet is damaged, and should not be used.

. Connect a mouse (if wanted) into one of the USB connector of the Wafer-945GSE2.

Alternatively, the dual USB cable connected to the Wafer-945GSE2can be used.

. Make also sure that the hard drive are connected to one of the SATA connectors

on the board. The hard drive is placed under the motor controller card (Bal-
dor TFM 060-06-01-3).

Connect the desired serial device to the available com port (a D-SUB 9 connector)
directly on the wafer board. The device cables should be labled. Only the MTi is
required for the control system to work, as the IMU is somewhat redundant. The
IMU is also hardcoded to use COM2. The GPS device has been shown to not work

indoors. If the MTi is chosen, make sure it is powered by the three-pins contact,

85

86

APPENDIX B. HOW TO START THE BIKE SYSTEM

11.

12.

13.

14.

15.

16.

17.

from the ACE-890C. This connector is made such that it has ground on pin 1 and 3,
and Vcc on the pin in the middle. This is to avoid destroying the device if plugging
it in upside down.

Push the power button. If an external power source is used, it should be set to
24V. Make sure it could deliver enough current. Rememember that the motors are
capable of using 11,84 4+ 2.94 + 4A = 18.7TA at rated speed. However, the motor
controller card cannot continuously provide more than 6A to any one motor. The
fuses on the batteries are chosen to be 15A, which should be more than sufficient
for the load applied to the motors in this case.

If the suicase is closed (be careful if cables are hanging out) make sure the fan is
running. The fan is a bit noisy, and therefore a switch, placed at the foremost left
corner in the suitcase, is made such that the fan stops when the suitcase is open.

The QNX Neutrino login screen should appear on the screen. Press the “Superuser”
icon, or type “root”. No password is needed.

If another PC with the QNX Momentcs IDE! are to be used for development, go
through the QNX Quickstart guide [QSSL, 2005|, to set up the host system (the
target system; CyberBikePC, should not be altered). If the development PC used

during this thesis is available, the login is user: "root" with no password, similarly
to the bike PC.

The emergency button should now be deactivated by turning it counterclockwise,
if some output on the motors are desired.

Start the drivers on the target machine by typing:

devc-dmm32at
devc-imu

devc-mt

devc-gps

devc-velo

each in a seperate terminal window (only deve-mt requires a seperate terminal, as
it cannot be run in the background). For a typical test run, only devc-dmm32at,
devc-mt and devc-velo has to be started. The devc-velo has to be started last.
Device files should be accessible from the /dev/ directory when the drivers are
successfully started.

The easiest way to share files between computers is to work out of your sambaad
domain. The domain can be mounted in QNX by typing:

fs-cifs -1 //sambaad.stud.ntnu.no:/username /home

ntegrated Development Environment

87

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

in a terminal window. This will prompt for username and password and then mount
your sambaad files in the /home directory. If the computers used for this thesis are
used, it is sufficent to mount the disk on the QNX development workstation. The
bike PC can access the dev PC files through the /net/dev directory.

Assuming the Windows workstation used for this thesis is available, login using your
own user name and password on the win-ntnu-no domain. On the C: drive there
should be a folder labeled CYBERBIKE. Inside, a cyberbike folder and bike_demo
folder can be found.

Mount your sambaad domain, and copy the bike_demo folder over to your domain.

Open the bike_demo folder copied (now working in the mounted folder), and load
the bike_demo .mdl found inside the bike_demo folder.

Hit ctrl+B when the model has loaded. This will initiate the Real-Time Workshop
build process.

On the QNX workstation, locate the bike_demo folder you copied to your domain.
All your files should be accessible from the /home folder.

In the terminal, positioned inside the bike_demo folder, type:

cd bike_demo_gnx_rtw
make -f bike_demo.mk

This will build an executable, which will be located in the bike_demo folder.

On the bike PC, locate the bike_demo folder using the terminal, by accessing the
development PC through:

cd /net/dev

Take note of the bike PC IP address using:
ifconfig

Start the executable with:

./bike_demo -tf inf -w

The bike PC will now await a start signal from Simulink from the Windows work-
station.

On the Windows computer, in the Simulink model locate Real Time workshop
settings from pull down menu. Click "Interface". In the MEX-file arguments field,
type in 'BIKE 1P’ in the same way the IP appearing in the field already has been.
Most likely only the last part of the IP will differ (or it might even be the same).
Click OK.

88 APPENDIX B. HOW TO START THE BIKE SYSTEM

28. Hit the connect button in the Simulink window. This will initiate external commu-
nication with the bike. When the Play button becomes clickable, start the model.
It is now possible to control the steer and pendulum using the MTi through roll
and pitch.

Appendix C

Connection tables

This appendix provides tables covering most of the connections in the bike. The tables
where in full created by [Sglvberg, 2007| and are identical to the ones in his master thesis,
but has been included here for consistency and ease of use.

89

90 APPENDIX C. CONNECTION TABLES

C.1 Terminal block outside suitcase

Legend: NO = Normally Open

NC = Normally Closed

B1 = left switch

B2 = right switch

BX - in = connected to DMM-32-AT

BX - NC-out; connected to positive side of diode
BX - NO-out; connected to negative side of diode

91

Terminal block outside suitcase

C.1.

*98BD)INS APISINO JOO[[RUIWLIRT, :T°0) d[qeL

A0 ‘8UL199)S 1930UI}0]
AG {8ULI09)S 1930UI}0]

MO-DN - Td ‘YPIMS WNNPUS]
ul - ¢ ‘YOIMS wnnpuaJ
MO-DN - ¢ UoIms wnnpusd
AND ‘SulI09)s 1919WO0IR],

wnnpuad I9jomoyor],
[eusts cwnnpuad I9jeaujog
uorsndoid 1ojowoyoR],

qc
€¢
1¢
61
L1
a1

A
i

M 0 I~ O

T

9¢
4
GG
0¢
81
91
4!
¢l
0T
8
9
i
4

AQ ‘umnpued 19jourjog
AG ‘wmnpued 19jomjog

MO-ON - Td ‘Y2IMS WNMPUdJ
ur - T¢ ‘YoIIMS wnmpuag
MO-ON - ¢f ‘YOIMSs Wnmnpusg
(AND ‘wnmpuod I91omWoyoR],
ANH ‘uotsindoid 1s38mIOYOR],

BULI99)S I9)oWOYDIE],
[eu3Is (3ULI99)S 1030UI}O]

sreuruio) roddn

S[eUIlLIo) JoMOT

92

APPENDIX C. CONNECTION TABLES

Terminal | Connection

1 Tachometer propulsion

2 Potmeter steering; signal

3 Potmeter pendulum; signal

4 Tachometer steering

5 Tachometer pendulum

6

7

8

9

10

11

12 Tachometer propulsion; GND
13 Tacometer steering; GND

14 Tachometer pendulum; GND
15 Pendulum switch; B2 - NC-out
16 Pendulum switch; B2 - NO-out
17 Pendulum switch; B2 - in

18 Pendulum switch; B1 - in

19 Pendulum switch; B1 - NC-out
20 Pendulum switch; B1 - NO-out
21

22

23 Potmeter steering; 5V

24 Potmeter pendulum; 5V

25 Potmeter steering; OV

26 Potmeter pendulum; 0V

Table C.2: Sorted two-column version of Table C.1.

C.2. Baldor

93

C.2 Baldor

CONNECTION TABLES

APPENDIX C.

94

Pin row - ¢

Pin row - a

Axis Motor Pin Name Connected to Pin Name Connected to
Connector 2 3 Propulsion 2 Ref. Input X2:5 2 Ref. Input X2:6
3 Propulsion 4 Tacho in X1:1 4 Disable-input EmergencyButton con2
3 Propulsion 6 NC 6 Current monitor
8 NC 8 NC
10 NC 10 NC
3 Propulsion 12 Fault-out OC 12 NC
3 Propulsion 14 Ref. GND X1:12 14 NC
3 Propulsion 16 +V DC 24V Battery/Power source | 16 +V DC
3 Propulsion 18 Power Motor Al 18 Power Motor A1 Propulsion Motor +V
3 Propulsion 20 Power Motor A2 20 Power Motor A2 Propulsion Motor -V
3 Propulsion 22 0V DC 0V Battery/Power source 22 0V DC
24 NC 24 NC
2 Pendulum 26 Ref. input X2:1 26 Ref. Input X2:2
2 Pendulum 28 Current monitor 28 Tacho in
2 Pendulum 30 30 Disable-input EmergencyButton con2
2 Pendulum 32 Fault out OC 32 Ref. GND
Connector 1 2 Pendulum 2 +V DC 2 +V DC 24V Battery/Power source
2 Pendulum 4 Motor Al 4 Power Motor A1 Pendulum Motor +V
2 Pendulum 6 Motor A2 6 Power Motor A2 Pendulum Motor -V
2 Pendulum 8 0V DC 8 0V DC
1 Steering 10 NC 10 Current monitor
1 Steering 12 Tacho in 12 Fault-out OC
1 Steering 14 Ref. Input X2:3 14 Disable input EmergencyButton con2
1 Steering 16 Ref. GND 16 Ref. Input X2:4
1 Steering 18 +V DC 18 +V DC 24V Battery/Power source
1 Steering 20 Power Motor Al 20 Power Motor A1 Steering motor +V
1 Steering 22 Power Motor A2 22 Power Motor A2 Steering motor -V
1 Steering 24 0V DC 24 0V DC
1 Steering 26 0V DC 0V Battery/Power source 26 0V DC
1 Steering 28 +V DC 28 +V DC 24V Battery/Power source
1 Steering 30 Fault-out 30 Synchron-input
1 Steering 32 +14V / 50mA out EmergencyButton conl 32 -14V / 50mA out

Table C.3: Connection table for Baldor TFM 060-06-01-3

C.3. Terminal Blocks

95

C.3 Terminal Blocks

APPENDIX C. CONNECTION TABLES

96

Outside Inside
Card/unit Pin Block Terminal | Card/unit Pin || Comment:
Propulsion tacho Signal X1 1 BALDOR 2:a4 | Measurement signal for speed control on BALDOR card
Potmeter steering Signal X1 2 DMM-32-AT J3:5 || Input Channel 1
Potmeter pendulum Signal X1 3 DMM-32-AT J3:7 || Input Channel 2
Steer tacho Signal X1 4 DMM-32-AT J3:9 || Input Channel 3
Pendulum tacho Signal X1 5 DMM-32-AT J3:11 || Input Channel 4
X1 6 DMM-32-AT J3:13 || Input Channel 5
X1 7
X1 1 X1 8 DMM-32-AT J3:19 || Connects propulsion tacho to I/O-Vin 8+ (differential input)
X1 12 X1 9 DMM-32-AT J3:20 || Connects propulsion tacho to I/O-Vin 8- (differential input)
X1 10
X1 11
Propulsion tacho ~ GND X1 12 BALDOR 2:c14 || Measurement ground for speed control on BALDOR card
Steer tacho ~ GND X1 13 DMM-32-AT J3:2 || Agnd on I/O card
Pendulum tacho ~ GND X1 14 DMM-32-AT J3:2 | Agnd on I/O card
Pendulum sw. B2 NC-out X1 15 D2 /X2 + /2 | Connected to positive side of Diode 1 and X2:2
Pendulum sw. B2 NO-out X1 16 D2 - Connected to positive side of Diode 2
Pendulum sw. B2 In X1 17 X1 19 Series connection of the two switches
Pendulum sw. Bl In X1 18 DMM-32-AT J3:35 || Vout 3 on I/O card
Pendulum sw. B1 NC-out X1 19 X1 17 Series connection of the two switches
Pendulum sw. B1 NO-out X1 20 D1 - Connected to negative side of Diode 1
X1 21
X1 22
Potmeter steering oV X1 23 DMM-32-AT J3:39 || Vref. out on I/O card
Potmeter pendulum oV X1 24 DMM-32-AT J3:39 || Vref. out on I/O card
Potmeter steering ov X1 25 DMM-32-AT J3:2 | Agnd on I/O card
Potmeter pendulum ov X1 26 DMM-32-AT J3:2 | Agnd on I/O card
BALDOR 2:c26 X2 1 DMM-32-AT J3:1 || Connects I/O-Agnd to pendmotor Vref-
BALDOR 2:a26 X2 2 D2 /X1 - /15 | Connects I/O-Vout 3 (da3) to pendmotor Vref+ (via switches)
BALDOR 1:icl4 X2 3 DMM-32-AT J3:1 | Connects I/O-Agnd to steermotor Vref-
BALDOR 1:al6 X2 4 DMM-32-AT J3:37 || Connects I/O-Vout 1 (dal) to steermotor Vref+
BALDOR 2:b2 X2 5 DMM-32-AT J3:1 | Connects I/O-Agnd to propmotor Vref-
BALDOR 2:a2 X2 6 DMM-32-AT J3:38 || Connects I/O-Vout 0 (da0) to propmotor Vref+

Table C.4: Connection table for the terminal blocks X1 and X2.

C.4. J3 on DMM-32-AT

97

C.4 J3 on DMM-32-AT

CONNECTION TABLES

APPENDIX C.

98

On DMM-32-AT Connected to Further connected to Comment

Pin Name | Block Terminal Card /unit Pin

1 Agnd X1 17 Pendulum switch B2 In

1 Agnd X2 3 BALDOR 1:cl4 | Vref - steermotor

1 Agnd X2 5 BALDOR 2:b2 | Vref - propulsion motor
2 Agnd X1 13 Tacometer steering ~ GND

2 Agnd X1 14 | Tachometer pendulum GND

2 Agnd X1 25 Potmeter steering ov

2 Agnd X1 26 Potmeter pendulum ov

5 Input Channel 1 X1 2 Potmeter steering Signal

7 Input Channel 2 X1 3 Potmeter pendulum Signal

9 Input Channel 3 X1 4 Tachometer steering Signal

11 Input Channel 4 X1 5 | Tachometer pendulum Signal

13 Input Channel 5 X1 6 Easy Available

19 Differential Input Channel 8+ X1 8 X1 1 | Propulsion tacho +
20 Differential Input Channel 8- X1 9 X1 12 | Propulsion tacho -
35 Vout 3 X1 18 Pendulum switch B1 In

37 Vout 1 X2 4 BALDOR 1:al6 | Vref 4 steermotor
38 Vout 0 X2 6 BALDOR 2:a2 | Vref + propulsion motor
39 Vref. out X1 23 Potmeter steering 5V

39 Vref. out X1 24 Potmeter pendulum 5V

Table C.5: Connection table for J3 on DMM-32-AT.

	Title Page
	Problem Description
	masteroppgave.pdf

