
Doctoral theses at NTNU, 2010:235

Giancarlo Marafioti
Enhanced Model Predictive Control:
Dual Control Approach and State
Estimation Issues

ISBN 978-82-471-2461-1 (printed ver.)
ISBN 978-82-471-2462-8 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f
ph

ilo
so

ph
ia

e 
do

ct
or

Fa
cu

lt
y 

of
 In

fo
rm

at
io

n 
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s 
an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
sD

octoral theses at N
TN

U
, 2010:235

G
iancarlo M

arafioti





NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Engineering Cybernetics

c©Giancarlo Marafioti

ISBN 978-82-471-2461-1 (printed version)
ISBN 978-82-471-2462-8 (electronic version)
ISSN 1503-8181

ITK Report 2010-15-W

Doctoral Theses at NTNU, 2010:235

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Engineering Cybernetics

c©Giancarlo Marafioti

ISBN 978-82-471-2461-1 (printed version)
ISBN 978-82-471-2462-8 (electronic version)
ISSN 1503-8181

ITK Report 2010-15-W

Doctoral Theses at NTNU, 2010:235

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Engineering Cybernetics

c©Giancarlo Marafioti

ISBN 978-82-471-2461-1 (printed version)
ISBN 978-82-471-2462-8 (electronic version)
ISSN 1503-8181

ITK Report 2010-15-W

Doctoral Theses at NTNU, 2010:235

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Engineering Cybernetics

c©Giancarlo Marafioti

ISBN 978-82-471-2461-1 (printed version)
ISBN 978-82-471-2462-8 (electronic version)
ISSN 1503-8181

ITK Report 2010-15-W

Doctoral Theses at NTNU, 2010:235

Printed by Tapir Uttrykk



Summary

The main contribution of this thesis is the advancement of Model Predictive Control
(MPC). MPC is a well known and widely used advanced control technique, which is
model-based and capable of handling both input and state/output constraints via receding
horizon optimization methods. The complex structure of MPC is delineated, and it is
shown how improvements of some of its components are able to enhance overall MPC
performance.

In more detail, in Chapter 3, the definition of a state dependent input weight, in the
cost function, shows satisfactory controller performance for a large region of working
conditions, compared to a standard MPC formulation. The robustness of the optimization
problem is improved, i.e., this particular weight configuration yields a ‘better’ conditioned
problem than the standard MPC will produce. This is demonstrated by a simulation study
of a particular Autonomous Underwater Vehicle.

Chapter 4 presents a novel formulation named Persistently Exciting Model Predic-
tive Control (PE-MPC). The fundamental idea is that because of its use of a model, MPC
should be amenable to adaptive implementation and on-line tuning of the model. Such
an approach requires guaranteeing certain signal properties, known as ‘persistent excita-
tion’, to ensure uniform identifiability of the model. An approach to augment the input
constraint set of MPC to provide this guarantee is proposed. It is also shown, how this
formulation has properties that are typical of Dual Control problems. Theoretical results
are proven and simulation-based examples are used to confirm the strength of this new
approach.

Chapter 5 takes state estimation issues into account. Kalman filtering for nonlin-
ear systems is described, and throughout the chapter, a comparison of the more recent
Unscented Kalman Filter (UKF), with the well known Extended Kalman Filter (EKF) is
given. Two examples are presented, first a photobioreactor for algae production, and then
a simple but effective example of locally weakly unobservable nonlinear system. In both
cases, simulation-based results prove the advantages of using UKF as an alternative to
EKF.
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Chapter 1

Introduction

This thesis presents an investigation of Model Predictive Control (MPC) and some related
issues. MPC has found widespread application in industry, in particular in the chemical
processing industries. The main objective of this thesis is to contribute to further enlarge
the application area of MPC. In order to put the contributions of the thesis in context,
and make it easier for the reader to appreciate these contributions, background material
covering the fundamental ideas, general classifications and some properties of MPC are
presented. This thesis touches three large branches of control theory, i.e., Model Pre-
dictive Control, Dual Control, and State Estimation. Thus it is practically impossible to
present a comprehensive exposition of those control areas of interest. However, in Chap-
ter 2, and the first sections in Chapters 3 and 5, background results, general formulations,
technical definitions and concepts are given. In addition, the references to the literature
given should be suitable as starting points for more in-depth examinations of background
concepts and development.

In the following part of this chapter, the main contributions, thesis structure and
associated publications are indicated.

1.1 Motivation
Due to the great success of MPC, see for example Qin & Badgwell [2003], the demand of
applying this advanced control technique to a larger set of plants is constantly increasing.
In Chapter 2, and references therein, some of the most important advantages of this control
approach are described.

The results obtained in this thesis, are inspired by the desire to extend MPC applica-
tions to new areas, and in general to improve its performance. Therefore, an attempt has
been made to enhance MPC, by exploiting its structure and properties.

Figure 1.1 presents a general structure of MPC. Clearly, there are several parts (shown
as blocks) which are interconnected (as illustrated by the arrows), resulting in a complex
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1. Introduction
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Figure 1.1: General MPC structure.

structure. In general, it is desired to control a specific plant by manipulating its inputs
and using its outputs to gather state information. However, an external disturbance may
affect plant operations. A controller, based on a model of the plant, tries to optimize a
specific control cost function, while satisfying a set of constraints and following a given
reference. The model is generally unable to exactly represent the plant dynamics, thus a
receding horizon is introduced, and the control function is re-optimized at every time step,
as means to obtain some feedback. This is necessary to reduce the effects of model/plant
mismatch, and also to counteract the effect of unknown disturbances. Also, it is likely
that the measured plant output does not contain all information needed for the controller,
thus a state estimator is often used to overcome this problem.

To enhance MPC performance, and extend its range of application, focus is mainly
placed on the ‘cost function & constraints’, ‘model’, and ‘state estimator’ blocks of Figure
1.1. More in detail, the results obtained in Chapter 3, enhance the MPC cost function to
increase the region of operation where the controller has satisfactory performance. This
is desired, and in the past gain-scheduling techniques were developed to obtain similar
results. The particular nonlinear input weight introduced, that depends on the state of
the system, has also benefits for the implicit robustness of the problem formulation with
respect to numerical solutions. Finally, the chapter illustrates the use of different model
representations in the MPC formulation.

In Chapter 4 the constraint set is properly augmented to incorporate dual control
features. This allows the particular MPC to work in an adaptive context, where ‘learning’
algorithms may be implemented to estimate, and update the MPC model. Finally, in
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Contribution

Chapter 5, the focus is on state estimation, and it is shown how improving this part of the
system has direct impact on the proper control operation. If the estimate has poor quality,
the controller may be not able to achieve its task.

1.2 Contribution
The main contributions in this thesis are:

• The state dependent input weight introduction for MPC applied to an Autonomous
Underwater Vehicle (AUV). The standard MPC formulation is enhanced by the
introduction of a state dependent cost function input weight. This has similarity
to gain-scheduling controllers, where control of nonlinear systems is obtained by
several sub-controllers, designed to provide satisfactory performance, each one in a
sub-set of operating conditions. The AUV example also results in an ill-conditioned
optimization problem. The introduction of the novel input weight has benefits on
the Hessian condition number, improving robustness for optimization algorithms.

• The formulation of Persistently Exciting Model Predictive Control (PE-MPC), to
deal with parameter estimation in an adaptive context. In general, when adaption
is required in closed-loop systems, persistence of excitation becomes an issue due
to the conflict between the control and adaption actions. PE-MPC includes both
actions in its formulation, yielding a control signal that is obtained as a trade-off
between these two considerations. This is a feature that is present in dual control
problems.

• Methods are studied for state estimations in nonlinear systems. The commonly used
Extended Kalman Filter is compared to the more recently developed Unscented
Kalman Filter. The first comparison scenario is the implementation of both filter
in a photobioreactor that produces microalgae. The operational data are available
and are used to validate the results. The second comparison scenario consists of a
simulation study of a locally weakly unobservable system. In both examples the
UKF is found to give superior performance.
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1. Introduction

1.3 Thesis Organization

The remainder of the thesis is organized as follows:

• Chapter 2 - A general introduction to Model Predictive Control is presented. A his-
torical discussion is given about its origins and the receding horizon principle. For
linear state space models, and for Finite Impulse Response (FIR) models, standard
MPC formulations, and their equivalent Quadratic Programming problems are pre-
sented. Thereafter, there is a description of a general Nonlinear MPC formulation
(NMPC), and the classification into Convex or Non-convex optimization problems.
Explicit MPC is briefly introduced. These formulations are important because are
used in the subsequent chapters to present the main contributions.

• Chapter 3 - A novel MPC formulation with state dependent input weight in the cost
function is given. This is analyzed in a simulation study controlling an Autonomous
Underwater Vehicle (AUV). Its nonlinear model description is presented. Several
linear model approximations are obtained. With respect to the AUV example a state
dependent input weight is defined, and its application benefits are shown. Combin-
ing different model approximations, the standard MPC, and the particular input
weight, six different controllers are obtained. Their performance are compared by
simulation, and finally discussed from a robust MPC point of view.

• Chapter 4 - A novel MPC formulation, named Persistently Exciting Model Predic-
tive Control, is presented. The MPC problem is discussed in an adaptive context,
where data quality requirements for model adjustment are built into the MPC for-
mulation. The relationship to the dual control problem is explained. Results on
dual control theory, and the Persistence of Excitation Condition (PEC) are consid-
ered fundamental for understanding the context of the new formulation. Therefore
they are given in a background section. The proposed approach augments the input
constraint set of MPC to guarantee a sufficient excitation level such that adaptive
estimation algorithms can be used to estimate and update the model uncertain pa-
rameters. Finally, an example using FIR models and the Recursive Least Square
algorithm for parameter estimation is presented.

• Chapter 5 - The state estimation problem is discussed. This mainly focuses on
Kalman filtering for nonlinear systems. Two popular nonlinear estimators, the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are compared
in two different examples. The first performance comparison is presented by es-
timating the state of a photobioreactor for microalgae production. The obtained
results are then validated using plant operational data. The second filter perfor-
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Explicit MPC is briefly introduced. These formulations are important because are
used in the subsequent chapters to present the main contributions.

• Chapter 3 - A novel MPC formulation with state dependent input weight in the cost
function is given. This is analyzed in a simulation study controlling an Autonomous
Underwater Vehicle (AUV). Its nonlinear model description is presented. Several
linear model approximations are obtained. With respect to the AUV example a state
dependent input weight is defined, and its application benefits are shown. Combin-
ing different model approximations, the standard MPC, and the particular input
weight, six different controllers are obtained. Their performance are compared by
simulation, and finally discussed from a robust MPC point of view.

• Chapter 4 - A novel MPC formulation, named Persistently Exciting Model Predic-
tive Control, is presented. The MPC problem is discussed in an adaptive context,
where data quality requirements for model adjustment are built into the MPC for-
mulation. The relationship to the dual control problem is explained. Results on
dual control theory, and the Persistence of Excitation Condition (PEC) are consid-
ered fundamental for understanding the context of the new formulation. Therefore
they are given in a background section. The proposed approach augments the input
constraint set of MPC to guarantee a sufficient excitation level such that adaptive
estimation algorithms can be used to estimate and update the model uncertain pa-
rameters. Finally, an example using FIR models and the Recursive Least Square
algorithm for parameter estimation is presented.

• Chapter 5 - The state estimation problem is discussed. This mainly focuses on
Kalman filtering for nonlinear systems. Two popular nonlinear estimators, the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are compared
in two different examples. The first performance comparison is presented by es-
timating the state of a photobioreactor for microalgae production. The obtained
results are then validated using plant operational data. The second filter perfor-
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mance comparison is obtained in an NMPC scenario defined by a nonlinear system
with observability issues. Simulation-based examples show the advantage of using
UKF over EKF.

• Chapter 6 - General conclusions, and recommendations for further work are given.

1.3.1 Notation
In this thesis, conventional notation for control theory is used. For instance, scalars will
be denoted by plain symbols, vectors by lowercase bold symbols, matrices by uppercase
bold symbols, vector/matrix transpose by (·)T , positive definiteness by (·) > 0 or negative
definiteness by (·) < 0, the n-dimensional identity matrix, by In. Through the exposi-
tion of results, when new notation is introduced, then it is properly defined. For ease of
consultation, some of the most used notation is listed in Table 1.1.

Table 1.1: Notation
Symbol Representation
s, S Scalar, plain character
v,M Vector or matrix, bold character
(·)T Vector or matrix transpose

(·) > 0 Positive definite for matrices, positive for scalars
(·) < 0 Negative definite for matrices, negative for scalars
In Identity matrix of (n× n) dimensions

1.4 List of publications
Most of the material contained in this thesis has been either published or recently submit-
ted for publication. The following is the list of publications related to the work presented
in this thesis.

Book chapter
• [Marafioti et al., 2009a] - G. Marafioti, S. Olaru, M. Hovd. State Estimation in

Nonlinear Model Predictive Control, Unscented Kalman Filter Advantages. In
Nonlinear Model Predictive Control Towards New Challenging Applications Se-
ries: Lecture Notes in Control and Information Sciences, Vol. 384 - L. Magni, D.
M. Raimondo, F. Allgöwer (Eds.), 2009 - ISBN: 978-3-642-01093-4.
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Chapter 2

An introduction to Model Predictive
Control

Model Predictive Control (MPC), also referred as receding horizon control or moving
horizon control, is an advanced control technique. In more detail, it is an optimal con-
trol procedure that easily allows engineers to enter constraints directly into the control
problem formulation. Furthermore, it explicitly uses a process model to predict the future
response of a plant. In general, MPC is applied in a discrete time framework, although
in the literature continuous time formulations are available. At each control interval,
the future plant behavior is optimized according to some cost criterium, and an associ-
ated constraint set. As result of the optimization, a sequence of manipulated variables is
obtained. Thus, the first element of this sequence is sent into the plant, and the entire
computation is repeated at subsequent control intervals.

MPC-based technology was originally developed for controlling petroleum refiner-
ies and power plants. Nowadays, it is possible to find this technology in a wide range
of applications, such as chemical industries, food processing, automotive, and aerospace
industries. The development of MPC techniques is due to the increasing research effort
from both the academic community and industry. Thus, by understanding MPC proper-
ties, it is possible to improve performance, to add new features, and expand applicability.

The importance of taking constraints into account arises from the reason that most
of real world systems are subject to physical constraints. Thus, the ability of handling
constraints in a straightforward way makes MPC very attractive. For instance, this is
particularly helpful in process industries where the most profitable operations are often
obtained when running at one or more constraints. Constraints are often associated with
available range of actuators, safe operating regions, product quality specifications. For
example, when manufacturing a product that requires heat, being able to minimize the
energy needed for heating can reduce the production cost, however a certain amount of
heat is needed to guarantee that the final product is correctly manufactured. This defines a
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2. An introduction to Model Predictive Control

quality specification that the addition of heat is intended to ensure. Therefore, this may be
represented by a constraint. For a general plant, there may be input constraints (saturation
on actuators), state and/or output constraints (safety limits on pressure or temperatures),
and they may be represented as inequality or equality and then included into MPC formu-
lation.

Another interesting feature of MPC is the adoption of a model to predict the fu-
ture plant behavior. These models are obtained from simple plant tests, or by applying
some system identification technique to the plant operational data. However, the effort
of designing better plant models, the increasing availability of computational power, the
improvement of optimization algorithms, the constant pursuit of better performance, all
contribute to increasing the trend of using first-principle models. In general these are non-
linear models obtained directly from the application of well established laws of physics
and chemistry. For instance, in a chemical plant they can be derived starting from the
chemical transformations and reactions occurring inside a process.

In a fairly recent survey on industrial MPC technology (Qin & Badgwell [2003]),
the authors claim that there are thousands of successful applications, and this number is
still increasing. An interesting introduction, with a complete mathematical formulation,
is given in Findeisen & Allgöwer [2002], where theoretical, computational, and imple-
mentation aspects are discussed. A less mathematically formal introduction, but compre-
hensive and straightforward to understand is Camacho & Bordons [2007]. Several books
have been written about linear MPC. Some of these are Maciejowski [2002], Rossiter
[2003], Camacho & Bordons [2004]. They describe and analyze MPC theory and its ap-
plication in slightly different ways. In Maciejowski [2002] more effort is spent on how
to handle constraints, and the author starts from a simple formulation adding step by step
more details such as integral effect and constraint softening. In Rossiter [2003] MPC is
viewed from a practical approach, avoiding jargon, and giving interesting examples about
MPC tuning and numerical issues. Finally, in Camacho & Bordons [2004] an extensive
review of MPC controllers is given, with focus on a variant of MPC known as Gener-
alized Predictive Control. The authors attempt to reduce the distance between the way
practitioners use control algorithms and the more abstract way researchers formulate the
control technique.

A more recent book, and perhaps the one that can be considered the most complete,
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Origins

tinuously valued (in space). Moreover, the focus in this chapter is on quadratic objective
functions and linear constraints, because this particular MPC is predominant in industry
and it is related to the LQR problem.

2.1 Origins

The control action of MPC is determined as the result of an online optimization problem.
As consequence, the behavior of an MPC controller may be rather complex. The earliest
MPC implementations were limited by the low computational resource availability. Al-
though only steady-state models were used, depending on the plant dimension, several
hours could be needed for the optimization problem solution.

The first ideas on receding horizon control and model predictive control can be traced
back to the 1960s [García et al., 1989]. In Propoi [1963] the receding horizon approach
was proposed. However, real interest in this innovative approach started later, in the
1980s, after the first publications on Model Algorithmic Control (MAC) [Richalet et al.,
1978], Dynamic Matrix Control (DMC) [Cutler & Ramaker, 1979, 1980], and a complete
description on Generalized Predictive Control (GPC) [Clarke et al., 1987a,b].

DMC was developed mostly for the oil and chemical industries. Its goal was to tackle
multivariable constrained control problems. In fact, the previous approach to these prob-
lems, was to solve them by integrating several single loop controllers augmented by many
time-delay compensators, overrides, selectors, etc. With DMC, a time domain model,
either finite impulse or step response, was used to predict the plant behavior. The origi-
nal DMC formulation was completely deterministic with no explicit disturbance model.
GPC formulation was designed as a new adaptive control scheme, where transfer func-
tion models were adopted. Since it does not come naturally to use GPC with multivariable
constrained systems, DMC was adopted by most of the oil and chemical companies.

As mentioned in Qin & Badgwell [2003], the success of DMC in the oil and chemical
industries attracted the academic community. Therefore, primordial research on MPC was
intended as an attempt to understand DMC.

2.2 The Receding Horizon Principle

Before discussing the receding horizon principle, let us briefly introduce the well known
Linear Quadratic Regulation (LQR) problem for discrete systems, [Naidu, 2003]. Simply
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2. An introduction to Model Predictive Control

stated, the LQR problem is

min
x,u

N∑
i=0

xT
i Qxi + uT

i Rui (2.1a)

xi+1 = Axi +Bui, given x0, (2.1b)

where the optimization horizon N may be either finite or infinite. It is possible to write
the optimal solution of (2.1) in the feedback form

uopt
i = Kix

opt
i , i = 1, . . . , N (2.2)

where the state feedback gain Ki is calculated from the corresponding Riccati equation.
For example, for an infinite horizon LQR the optimal state feedback gain is

K∞ = − (
R+BTPB

)−1
BTPA, (2.3)

where P is the unique positive definite solution to the discrete time algebraic Riccati
equation

P = Q+AT
(
P − PB

(
R+BTPB

)−1
BTP

)
A. (2.4)

Now, if we add inequality constraints to (2.1), it is not possible to find a closed-form
solution such as (2.2). However, online optimization, and a finite length horizon can be a
strategy to overcome this problem.

The idea is to re-formulate the constrained, infinite horizon, optimization problem as
a constrained, finite horizon, optimization problem. This may be done by representing the
‘tail’ of the infinite horizon as a ‘cost to go’ term to be added to the existing cost function.

Note that this re-formulation results in an open-loop optimization, therefore if model
errors and/or disturbances occur it is necessary to introduce some feedback technique
to compensate for both. The function of receding (or moving) horizon is to introduce
feedback. This finite horizon, which shifts as the time passes, is the basic idea of any
MPC. Figure 2.1 illustrates this principle. Given the last measurement available at the
present time k, the controller predicts the dynamic behavior of plant, over a prediction
horizon Np. This is based on an internal model of the system. To introduce feedback
only the first element of the predicted optimal input sequence is applied to the plant until
the next measurement is available. Then, horizons are shifted one step forward, and a
new optimization problem is formulated and solved. Note in Figure 2.1, the difference
between the set-point and the reference trajectory. A set-point is a constant reference that
the output should ideally follow. Instead, a reference trajectory defines how the plant
should reach the set-point from the current output.
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2. An introduction to Model Predictive Control

Some considerations are needed regarding the model used for prediction. As men-
tioned for example in Bemporad [2006], it is necessary to observe that models are ob-
tained as a tradeoff between their accuracy and the complexity of resultant optimizations.
In fact, while models used for simulations tend to have the best accuracy to numerically
reproduce the behavior with the minimum error, prediction models are usually more sim-
ple, but yet they are able to capture the main dynamics of the system.

Nowadays, an essential MPC model distinction must be made between linear and
nonlinear models. The application of the first types result in linear MPC formulations,
while the second types produce Nonlinear MPC (NMPC) formulations. In general, non-
linear models are more complex and the associated optimization problem solution is com-
putationally demanding. Moreover, the most important intention of this classification is
that in general when a nonlinear model is used the optimization loses its convexity prop-
erty. Thus, NMPC is a non-convex problem, while MPC is a convex one. The implications
of this distinction are discussed briefly in a succeeding section in this chapter.

In the following section, a detailed MPC formulation is presented and its properties
are given.

2.3 Formulations

2.3.1 Linear Model Predictive Control

There are several linear MPC formulations in the literature. In this section, two very
common discrete time formulations are described. The first one uses state space models,
while the second one uses finite impulse response models for prediction.

Linear MPC is used in process control even if the process to control is nonlinear.
The reason is that when the process is working in the neighborhood of some equilibrium
point, a linear model is often a good approximation of its dynamics. In such applications,
MPC is used primarily to reject disturbances, while optimizing the operation of the plant
in some sense.

State space models

Consider the following discrete state space model

xk+1 = Axk +Buk (2.5)
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Formulations

for prediction of the open-loop system, where x is the state vector, u is the input vector,
and k is the time step index. Using (2.5) the MPC finite-time optimal control problem is

min
ū

J(k, ū) = xT
k+Np

Sxk+Np
+

Np−1∑
j=0

xT
k+jQxk+j + uk

k+j
TRuk

k+j (2.6a)

s.t. xk+1+j = Axk+j +Buk
k+j , from xk, j = 0, . . . , Np − 1

(2.6b)

umin ≤ uk
k+j ≤ umax , j = 0, . . . , Np − 1

(2.6c)

xmin ≤ xk+j ≤ xmax , j = 1, . . . , Np

(2.6d)

lmin ≤ L(xk+j) ≤ lmax , j = 1, . . . , Np

(2.6e)

where Np is the prediction horizon, ūk = [uk
k
T
,uk

k+1
T
, . . . ,uk

k+Np−1
T
]T is the sequence

of manipulate variables or inputs, S = ST ≥ 0, Q = QT ≥ 0, R = RT > 0 are weight
matrices, of appropriate dimensions, defining the performance index, and umin, umax,
xmin, and xmax are vectors of appropriate dimensions defining input, state, constraints,
respectively. Finally, L(x) and lmin, lmax indicate the possibility to have constraints on
linear combinations of states.

The state at time k can be written as a function of the initial state x0 and the previous
inputs uk−1−i (i = 0, 1, . . . , k − 1)

xk = Ax0 +
k−1∑
i=0

AiBuk−1−i. (2.7)

Thus, now (2.6) can be reformulated as the following QP problem

ū∗(x0) = argmin
ū

1

2
ūTHū+ xT

0G
T ū+

1

2
xT
0Y x0 (2.8a)

s.t. Lū ≤ W + V x0, (2.8b)

where

ū∗(x0) =
[
uT∗

0 , . . . ,uT∗
Np−1

]T
(2.9)

is the optimal solution, and H = HT ≥ 0, G, Y , L, W , and V are matrices of ap-
propriate dimensions (see Bemporad et al. [2004]). Note that the term 1

2
xT
0Y x0 can be

dropped since it does not affect the optimization result. Simply, the difference is that the
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ū

J(k, ū) = xT
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2. An introduction to Model Predictive Control

QP cost function value will be different from the one in (2.8a), but in MPC, but the value
of u at the optimal solution will be identical.

At every iteration k, the MPC algorithm consists of measuring or estimating the state
x0, then solving the QP problem (2.8), and finally applying only the first element of the
optimal sequence (2.9), uk = u∗

0(x0), to the process. Then the procedure is repeated for
the subsequent time step k + 1.

It is possible to extend (2.6) in several ways. For example, in order to obtain a
tracking formulation such that an output vector yk = Cxk follows a certain reference
signal rk, the cost function (2.6a) may be replaced by

Np−1∑
j=0

(yk+j − rk+j)
TQy(yk+j − rk+j) + Δuk

k+j
TRΔuk

k+j, (2.10)

where Qy = QT
y ≥ 0 is a matrix of output weights, and Δuk

k � uk
k − uk

k−1 is the new
optimization variable, possibly constrained as Δumin ≤ Δuk

k ≤ Δumax. As for the QP
formulation, it is sufficient to define the tracking vector

[
xT
k , r

T
k , u

k
k−1

T
]T and use it in

the same way in (2.7).
If it is necessary to reduce the optimization complexity, an MPC with multiple hori-

zons may be used. It is possible to have a prediction horizon NP , and a control horizon
Nc ≤ Np. A shorter control horizon reduces the number of optimization variables, yield-
ing a smaller optimization problem. Similarly, forcing the input(s) to be constant over
several time steps (so-called ’input blocking’) also reduces the size of the optimization
problem.

A problem that may occur with MPC is that the optimization problem is infeasible.
The feasibility of MPC is connected with constraint satisfaction. That is, a constraint set
defines the space where candidate solutions (feasible solutions) may be searched to find
the optimal solution with respect to the cost function, and outside the constraint set there
exists no solution satisfying all constraints. An MPC may become infeasible for several
reasons. For instance, a large disturbance may occur and as consequence it may be not
possible to keep the plant within the specified constraints. Moreover, it is also difficult to
anticipate when an MPC becomes infeasible, thus a strategy to recover from infeasibility
is essential for practical implementations.

Constraint softening may be used as an expedient to deal with infeasibility. For
example, to implement output constraint softening, it is necessary to modify the output
constraint as follows

ymin − ευmin ≤ yk+j ≤ ymax + ευmax (2.11)

where ε is a slack variable introduced to allow constraint violation, υmin and υmax are
vectors with nonnegative elements. There are also terms (linear and/or quadratic) that
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are added to the cost function in order to penalize the constraint violation. Typically,
these terms are designed to ensure that any constraint violation is kept small. The ad-
ditional terms in the cost function, together with the magnitude of the elements in vmin,
vmax, determine how soft the corresponding constraint will be. Note that MPC with soft
constraints as (2.11) can be still formulated as a QP problem.

Other techniques for dealing with infeasibility are to remove the constraints at the
beginning of the horizon [Rawlings & Muske, 1993]. When input constraints represent
a physical limitation, only state constraints can be softened. However, not all constraints
may be relaxed at the same way, and generally softening one constraint instead of another
may have less effect on the overall MPC performance. To prioritize which constraint has
to be softened in an optimal fashion, it is possible to apply more complex and effective
methods as in Scokaert & Rawlings [1999] or in Vada et al. [1999].

FIR models

It is well known that stable processes can be represented by Finite Impulse Response
(FIR) models. For a Single-Input Single-Output (SISO) system, the FIR model is

yk = φkθ
T + vk, (2.12)

where {vk} is a Gaussian measurement noise sequence, θT =
[
θ1 θ2 . . . θn

]
is the

vector of impulse coefficients, the regressor vector is φk =
[
uk−1 uk−2 . . . uk−n

]T
with {uk−i}ni=1 past n inputs to the process, finally n is the number of Markov parameters.

The FIR-based MPC may be formulated as

min
ūk

J(k, ū) =
1

2

Np−1∑
j=0

‖ yk+j+1 ‖2Q + ‖ uk
k+j ‖2R, (2.13a)

s.t. yk+j = φk+jθ̂
T
k , j = 1, . . . , Np, (2.13b)

umin ≤ uk
k+j ≤ umax, j = 0, . . . , Np − 1, (2.13c)

ymin ≤ yk+j ≤ ymax, j = 1, . . . , Np, (2.13d)

where ūk =
[
uk
k uk

k+1 . . . uk
k+Np−1

]T
is the control sequence vector, and Q and R are

the cost function output and input weights, respectively.
Clearly, the solution of (2.13) may be found by converting the problem into an equiv-

alent Quadratic Programming (QP) problem. QP problems (with positive definite Hessian
matrices) are known to be convex, and thus have a unique unique global optimum. Ef-
ficient and reliable algorithms are available to solve them. Straightforward manipulation
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a physical limitation, only state constraints can be softened. However, not all constraints
may be relaxed at the same way, and generally softening one constraint instead of another
may have less effect on the overall MPC performance. To prioritize which constraint has
to be softened in an optimal fashion, it is possible to apply more complex and effective
methods as in Scokaert & Rawlings [1999] or in Vada et al. [1999].

FIR models

It is well known that stable processes can be represented by Finite Impulse Response
(FIR) models. For a Single-Input Single-Output (SISO) system, the FIR model is

yk = φkθ
T + vk, (2.12)

where {vk} is a Gaussian measurement noise sequence, θT =
[
θ1 θ2 . . . θn

]
is the

vector of impulse coefficients, the regressor vector is φk =
[
uk−1 uk−2 . . . uk−n

]T
with {uk−i}ni=1 past n inputs to the process, finally n is the number of Markov parameters.

The FIR-based MPC may be formulated as

min
ūk

J(k, ū) =
1

2

Np−1∑
j=0

‖ yk+j+1 ‖2Q + ‖ uk
k+j ‖2R, (2.13a)

s.t. yk+j = φk+jθ̂
T
k , j = 1, . . . , Np, (2.13b)

umin ≤ uk
k+j ≤ umax, j = 0, . . . , Np − 1, (2.13c)

ymin ≤ yk+j ≤ ymax, j = 1, . . . , Np, (2.13d)

where ūk =
[
uk
k uk

k+1 . . . uk
k+Np−1

]T
is the control sequence vector, and Q and R are

the cost function output and input weights, respectively.
Clearly, the solution of (2.13) may be found by converting the problem into an equiv-

alent Quadratic Programming (QP) problem. QP problems (with positive definite Hessian
matrices) are known to be convex, and thus have a unique unique global optimum. Ef-
ficient and reliable algorithms are available to solve them. Straightforward manipulation
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1

2

Np−1∑
j=0

‖ yk+j+1 ‖2Q + ‖ uk
k+j ‖2R, (2.13a)

s.t. yk+j = φk+jθ̂
T
k , j = 1, . . . , Np, (2.13b)

umin ≤ uk
k+j ≤ umax, j = 0, . . . , Np − 1, (2.13c)

ymin ≤ yk+j ≤ ymax, j = 1, . . . , Np, (2.13d)

where ūk =
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2. An introduction to Model Predictive Control

yield the standard QP formulation

min
U

1

2
U ′HU + gTU (2.14a)

s.t. Umin ≤ U ≤ Umax (2.14b)

where H is the Hessian matrix, and g the gradient vector.

2.3.2 Nonlinear Model Predictive Control
Assume that

xk+1 = f(xk,uk,ωk;θ) (2.15a)
yk = h(xk,uk,vk;θ) (2.15b)

is the plant to be controlled, where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, ωk and vk are
sequences of independent zero-mean random variables, and θ ∈ RN denotes the vector
of unknown plant parameters.

Let ūk = [uk
k
T
,uk

k+1
T
, . . . ,uk

k+Np−1
T
]T be the control sequence vector where Np is

the prediction horizon assumed coincident with the control horizon for simplicity. The
standard Model Predictive Control is specified by solving the following finite horizon
optimal control problem posed at time k from plant state value xk, see Mayne [2000],
and using plant model parameter estimate θ̂.

min
ūk

J(k, ū) = F (x̂k+Np
) +

Np−1∑
j=0

g(x̂k+j,u
k
k+j) (2.16a)

s.t. x̂k+j+1 = f(x̂k+j,u
k
k+j, θ̂), from xk, j = 1, . . . , Np − 1,

(2.16b)

uk
k+j ∈ U , j = 0, . . . , Np − 1,

(2.16c)

x̂k+j ∈ X , j = 0, . . . , Np, (2.16d)

where the following conditions are assumed to hold:
• the dynamics f(·), the terminal cost F (·), and the stage cost g(·) are continuous;
• f(0, 0) = 0, F (0) = 0, g(0, 0) = 0;
• the process noise in (2.16b) is replaced by its (zero) mean, and the parameter vector
θ is considered constant along the horizon Np;

• U ⊆ Rm contains the origin in its interior;
• X ⊆ Rn contains the origin in its interior.
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Formulations

2.3.3 Convex and non-convex Model Predictive Control

The concept of convexity is very important in optimization. Problems that are convex are
generally easier to solve. Convex optimization is a very well defined and studied area
[Boyd & Vandenberghe, 2004]. Convex problems have the characteristic that if a local
solution exists, it is also a global solution. Standard Quadratic Programming optimization
problems (QPs) are a subset of the class of convex optimization problems. QPs have
convex objective functions, linear equality constraints and linear inequality constraints.

MPC with a linear model, a convex cost function, and a convex set of constraints,
results in a convex optimization problem. As seen previously, formulations (2.6) and
(2.13) can be easily converted to standard QP problems. For solving these problems,
efficient and reliable algorithms are available [Nocedal & Wright, 2000].

Nonlinear models in MPC lead to non-convex optimization problems. A method for
solving non-convex optimization problems is Sequential Quadratic Programming (SQP)
[Nocedal & Wright, 2000]. SQP is one of the most popular methods for solving nonlin-
early constrained optimization problems. Fundamentally, an SQP algorithm decomposes
the non-convex problem into a series of QPs, and sequentially solves them. The main
drawback of SQP algorithms is their computational complexity, especially if compared
with QP algorithms. Furthermore, SQP will typically find a locally optimal solution, but
this local solution is not guaranteed to also be the globally optimal solution.

The next chapter describes an example of MPC, where a novel state dependent weight
is defined. Despite the fact that the model is nonlinear, several approaches using linearized
approximated models and a standard QP solver are used, instead of SQP solvers.

2.3.4 Explicit Model Predictive Control

When an MPC is implemented, it is well known that at every sampling time an opti-
mization problem must be solved online. Although faster algorithms are developed and
computational power availability increases constantly, for some systems with fast dynam-
ics it is not possible to apply the standard MPC. Explicit MPC has been developed as a
solution to this problem. The basic idea is to transfer the computation offline. This is done
by computing a closed-form solution to the optimization problem, leading to a reduction
in the complexity of the online algorithm.

An algorithm to explicitly determine the linear quadratic state feedback control law
for constrained linear systems is developed in Bemporad et al. [2002]. It is shown that
the control law obtained is piece-wise linear and continuous, and the only online compu-
tation consists of a simple evaluation of an explicitly defined piece-wise linear function.
Another interesting algorithm is developed in Tøndel et al. [2003], where the results from
Bemporad et al. [2002] are extended avoiding unnecessary partitioning, and improving
the efficiency in the online evaluation.
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2. An introduction to Model Predictive Control

One should note, however, that Explicit MPC algorithms are applicable in practice
only to systems with few states (not much higher than five). This is caused mainly by
the fast increase of the table dimensions, required to define the piece-wise linear func-
tions. The offline computation for obtaining the explicit solution, and the organization
for an efficient online evaluation, becomes prohibitive for systems with a large number of
states. Present research is focused on sub-optimal Explicit MPC in order to find a simpler
solution that can be applicable to larger systems. Extensions to nonlinear systems are
investigated as well.

For the reader who wishes to find a more detailed introduction of this approach, a
starting point can be Kvasnica [2009].
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Chapter 3

Model Predictive Control with state
dependent input weight, a
simulation-based analysis

This chapter presents a simulation-based study that investigates and compares the effects
of different cost function formulations, as well as several model simplifications using lin-
earization, for application of linear(ized) MPC to a nonlinear system. An Autonomous
Underwater Vehicle (AUV) is used for the study. The main contribution of this chapter
is to introduce and illustrate the effects of a novel state dependent input weight, which
is shown to improve performance compared to other simple MPC formulation modifica-
tions.

A nonlinear two-dimensional model is described, and it is used as the plant. Two
different linearized models are implemented in the MPC, a Linear Time Invariant (LTI)
and a Linear Time Varying (LTV), respectively. Controlling a nonlinear system by using
linear models is common in MPC practice. MPC implementation for this particular AUV
system is interesting, especially because it is possible to appreciate the significant control
performance improvement when a nonlinear input weight for the MPC cost function is
coupled with the LTV model.

For this application, the state dependent input weight idea in the cost function is a
novelty, and resembles the use of a varying controller gain adopted in gain scheduling
techniques [Rugh & Shamma, 2000]. In fact, due to the different input weights the con-
troller gain, obtained at every time step after solving a QP optimization problem, varies
as a function of AUV position. The state dependent input weight improves the solution
robustness of QP problem.

The LTI model yields a standard linear MPC, which has the least computational
demand. The LTV model yields an MPC which is still convex, but since the model state
space matrices are computed every sampling time, and they are different for each time step
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

within the prediction horizon, the overall problem requires more computational effort.
However, its solution requires less effort than an NMPC problem.

The underwater vehicle dynamics of the AUV are described in Sutton & Bitmead
[1998]. It moves in a two-dimensional space, and it has a constant forward speed (surge).
Thus, by controlling the vehicle rudder angle, that is physically constrained between
[−0.5, 0.5] radians, the goal is to follow the ocean floor at a certain constant distance.
A rigorous mathematical formulation is given in next section.

3.1 The Autonomous Underwater Vehicle example
To illustrate the benefits of the state dependent input weight described in detail in Section
3.2.2 a simulation-based analysis of different approaches for controlling an Autonomous
Underwater Vehicle (AUV) is presented.

The particular AUV model chosen has some features that make it of relevant interest.
That is, due to the limited range of achievable control values the vehicle is unable to ac-
celerate in an arbitrary direction. The response of the AUV to positive step changes in the
rudder turning is initially to accelerate in the opposite direction, this behavior is reminis-
cent of non-minimum phase systems. These observations would suggest not attempting
the use of feedback control which relies on high-gain or on system inversion. Finally, this
class of systems may lead to difficulties in addressing issues on robustness and tuning of
the controller. For more details see Santos & Bitmead [1995].

Note that the choice of taking this AUV example is made in order to illustrate the
results using a relatively simple model, which still has the capability to display complex
nonlinear behavior. The purpose of this chapter is not to make a realistic contribution
to the control of underwater vehicles, which would clearly require a model in a three-
dimensional space. However, this example makes clear the contribution of the state de-
pendent input weight, highlighting the benefits.

For more details on underwater vehicles see Fossen [1994], which gives a compre-
hensive and extensive discussion on the guidance and control of ocean vehicles.

3.1.1 A two-dimensional model
Figure 3.1 shows a sketch of the vehicle. To describe the AUV dynamics a model is
defined with respect to two frames of reference. This gives the possibility to know the
position and orientation of the vehicle while moving in its environment. The vehicle
dynamics, in continuous time, is given in the body-fixed frame defined by Cxz. The
surge and heave speed are defined by u1 and w, respectively. The pitch angle rate is

1To have a standard description of the underwater vehicle model, an abuse of notation is required. In
this case, u denotes the state variable surge, and not the system input.
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The Autonomous Underwater Vehicle example

Figure 3.1: Underwater vehicle reference frames.

denoted q. Thus (u, w, q) are respectively, the forward, perpendicular and anti-clockwise
rotational velocities of the submarine along, to and around its major axis in the body-fixed
frame.

In the earth-fixed reference frame OXZ we describe the motion of the vehicle as
shown in (3.2). The attitude of the vehicle is defined by θc. The vehicle dynamics is
described, according to Sutton & Bitmead [1998], as

MI

⎡
⎣ u̇(t)
ẇ(t)
q̇(t)

⎤
⎦ = mq(t)

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦
⎡
⎣u(t)
w(t)
q(t)

⎤
⎦+ u(t)Dh

⎡
⎣u(t)
w(t)
q(t)

⎤
⎦+ γg(t) + ucw(t) + ucp(t)

(3.1)

⎡
⎣ẋc(t)
żc(t)

θ̇c(t)

⎤
⎦ =

⎡
⎣ cos(θc(t)) sin(θc(t)) 0
− sin(θc(t)) cos(θc(t)) 0

0 0 1

⎤
⎦
⎡
⎣u(t)
w(t)
q(t)

⎤
⎦ (3.2)

where MI is the inertia matrix including the hydrodynamic added mass, m is the vehicle
mass, Dh is the damping matrix, and the buoyancy term γg(t) is zero because the vehicle
is assumed to be neutrally buoyant. ucw(t) and ucp(t) are respectively the forces and the
moments generated by the rudder and propeller. Their expressions are given by (3.3-3.12).
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v2 � u2 + w2, (3.3)

ε � sin−1
(w
v

)
, (3.4)

Jp �
u

|νDp| , (3.5)

where ε is the angle between the Cx axis and the velocity vector v, which is not neces-
sarily the same as θc. Jp is the propeller advancement coefficient, ν is the propeller shaft
rotational speed, and Dp is the propeller diameter.

Cxsw � −Cxow − cw
C2

zow(ε+ β)2

2πbw
, (3.6)

Czsw � −Czow(ε+ β)− 2.1(ε+ β)2, (3.7)

ucw = [ucw11 , ucw21 , ucw31 ]
T , (3.8)

ucw11 = 0.5ρSwv
2(Czsw sin(β) + Cxsw cos(β)), (3.9)

ucw21 = 0.5ρSwv
2(Czsw cos(β)− Cxsw sin(β)), (3.10)

ucw31 = −ucw21(0.2cw cos(β) + daw)− ucw11(0.2cw sin(β)), (3.11)

ucp =

⎡
⎣ρ|ν|νD4

p(Ct0p + Ct1pJp + Ct2pJ
2
p + Ct3pJ

3
p )

−ρ|ν|D3
pwCn

ρ|ν|D3
pwCnDap

⎤
⎦ , (3.12)

where Sw = bwcw is the rudder surface, and ρ is the sea water density. Cxow, Czow, daw,
bw, cw, are the rudder characteristics, and Ct0p, Ct1p, Ct2p, Ct3p, Cn, Dap, are the propeller
characteristics. More details can be found in Santos & Bitmead [1995].

The vehicle has two inputs that can be used for control purposes. They are the rudder
deflection β, and the propeller rotation frequency ν, respectively. The ocean bottom po-
sition is modeled as a disturbance to be rejected by the controller. Its model is described
by state xf which is the rate of change of the absolute angle of the ocean bottom defined
by θ∗(t) at x∗

f (t). The angular velocity of the sea floor θ̇∗(t) is modeled as the negative
output of a first order filtered white noise process driven by ξ(t)

ẋf (t) = Afxf (t) + Bfξ(t) (3.13a)
f(t) = Cfxf (t) (3.13b)

The relative angle θ between the ocean bottom and the vehicle is given by

θ(t) = θc(t)− θ∗(t), (3.14)
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rotational speed, and Dp is the propeller diameter.

Cxsw � −Cxow − cw
C2

zow(ε+ β)2

2πbw
, (3.6)

Czsw � −Czow(ε+ β)− 2.1(ε+ β)2, (3.7)

ucw = [ucw11 , ucw21 , ucw31 ]
T , (3.8)

ucw11 = 0.5ρSwv
2(Czsw sin(β) + Cxsw cos(β)), (3.9)

ucw21 = 0.5ρSwv
2(Czsw cos(β)− Cxsw sin(β)), (3.10)

ucw31 = −ucw21(0.2cw cos(β) + daw)− ucw11(0.2cw sin(β)), (3.11)

ucp =

⎡
⎣ρ|ν|νD4

p(Ct0p + Ct1pJp + Ct2pJ
2
p + Ct3pJ

3
p )

−ρ|ν|D3
pwCn

ρ|ν|D3
pwCnDap

⎤
⎦ , (3.12)

where Sw = bwcw is the rudder surface, and ρ is the sea water density. Cxow, Czow, daw,
bw, cw, are the rudder characteristics, and Ct0p, Ct1p, Ct2p, Ct3p, Cn, Dap, are the propeller
characteristics. More details can be found in Santos & Bitmead [1995].

The vehicle has two inputs that can be used for control purposes. They are the rudder
deflection β, and the propeller rotation frequency ν, respectively. The ocean bottom po-
sition is modeled as a disturbance to be rejected by the controller. Its model is described
by state xf which is the rate of change of the absolute angle of the ocean bottom defined
by θ∗(t) at x∗

f (t). The angular velocity of the sea floor θ̇∗(t) is modeled as the negative
output of a first order filtered white noise process driven by ξ(t)

ẋf (t) = Afxf (t) + Bfξ(t) (3.13a)
f(t) = Cfxf (t) (3.13b)

The relative angle θ between the ocean bottom and the vehicle is given by

θ(t) = θc(t)− θ∗(t), (3.14)
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which gives

θ̇(t) = θ̇c(t)− θ̇∗(t)

= q(t) + Cfxf (t) (3.15)

where θ̇∗(t) = −f(t) = −Cfxf (t).
The relative distance between the ocean bottom and the vehicle center is given by

κ(t) and its rate of change is computed with

κ̇(t) = u(t) sin(θ(t))− w(t) cos(θ(t)). (3.16)

It is assumed that the distance between the vehicle center and the ocean bottom is mea-
sured, and the measurement is affected by a white Gaussian noise η

y(t) = κ(t) + η(t). (3.17)

For representing the system (3.1-3.17) in a more compact form, let us define the state
vector

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u
w
q
θ
κ
xf

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.18)

thus (3.1-3.17) becomes

ẋ(t) = f (x(t), β(t), ξ(t)) (3.19a)
y(t) = Cx(t) + η(t) (3.19b)

where the dynamics (3.19a) is nonlinear, and the measurement (3.19b) is linear, with

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

. (3.20)

The vehicle parameters can be found in Santos & Bitmead [1995]. The system (3.19)
has non-minimum phase behavior, in the sense that a positive input step change on β
makes the vehicle accelerate in the opposite direction before converging eventually to the
steady state value of the response. Furthermore, an inability to accelerate in an arbitrary
direction, due to the limited range of the control value reachable ucw, makes the sys-
tem nonholonomic. These considerations make the control of the vehicle interesting and
suitable for investigating model predictive control features.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

3.2 Model-Based Predictive Control
The standard linear MPC framework (2.6) is implemented. However, since the AUV
model is nonlinear, (3.19) is linearized. Two different strategies are applied, using first an
LTI internal model, and then an LTV model.

3.2.1 Internal models used for prediction
The internal linear model is obtained by linearizing the underwater vehicle dynamics
(3.19). Thus, for a sufficiently small interval around the equilibrium point, it is possible
to suitably approximate the nonlinear behavior of the AUV by the state space system

ẋ(t) = Ax(t) +Bβ(t) (3.21a)
y(t) = Cx(t) (3.21b)

where A and B are the following Jacobians

A =
∂f(x, β)

∂x

∣∣∣∣
x=x∗,β=β∗

(3.22)

B =
∂f(x, β)

∂β

∣∣∣∣
x=x∗,β=β∗

(3.23)

calculated about some point (x∗, β∗) in the combined state and input space. The measure-
ment matrix C is given in (3.20).

In MPC using linearized models, is it common practice to linearize around an equi-
librium point, and to ‘move the origin to the equilibrium point’ by the introduction of
deviation variables. Here, the AUV is moving forward along some trajectory, and the
deviation variables in (3.21) are therefore relative to the nominal trajectory.

The MPC linear model thus obtained is sufficiently accurate when AUV is close to
the point where the linearization is obtained. However, when increasing the initial offset
between the working point and the initial condition the LTI approach fails. Therefore, as
a candidate strategy for solving this issue, an LTV model is implemented as follow.

ẋ(t) = Atx(t) +Btβ(t) (3.24a)
y(t) = Ctx(t) (3.24b)

where At and Bt are computed by

At =
∂f(x, β)

∂x

∣∣∣∣
x=x∗(t),β=β∗(t)

(3.25)

Bt =
∂f(x, β)

∂β

∣∣∣∣
x=x∗(t),β=β∗(t)

(3.26)
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ẋ(t) = Atx(t) +Btβ(t) (3.24a)
y(t) = Ctx(t) (3.24b)

where At and Bt are computed by

At =
∂f(x, β)

∂x

∣∣∣∣
x=x∗(t),β=β∗(t)

(3.25)

Bt =
∂f(x, β)

∂β

∣∣∣∣
x=x∗(t),β=β∗(t)

(3.26)

24

3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

3.2 Model-Based Predictive Control
The standard linear MPC framework (2.6) is implemented. However, since the AUV
model is nonlinear, (3.19) is linearized. Two different strategies are applied, using first an
LTI internal model, and then an LTV model.

3.2.1 Internal models used for prediction
The internal linear model is obtained by linearizing the underwater vehicle dynamics
(3.19). Thus, for a sufficiently small interval around the equilibrium point, it is possible
to suitably approximate the nonlinear behavior of the AUV by the state space system
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Model-Based Predictive Control

and Ct is (3.20). Note that β∗(t) and x∗(t) define the trajectory where the Jacobians are
computed, and are generated by using the MPC optimal solution at the previous step, as
the algorithm in Section 3.2.3 describes.

Since MPC requires a discrete time framework, (3.21) is discretized by using the
standard Euler approximation

ẋ(t) � xk+1 − xk

δ
(3.27)

where δ is the sampling time.
Analogously, for LTV model we have that

Ak+i = I + δAt, Bk+i = δBt, (3.28)

where k is the current discrete time step, and i = {0, 1, . . . , Np − 1} indicates the step
interval where the discretized Jacobian is applied, within the MPC prediction horizon.

Although the LTV approach allows the AUV to meet the control goal, the transient
response of the system is not satisfactory, as discussed more in detail in the simulations
in Section 3.3. Thus a nonlinear state dependent cost function is defined as shown next.

3.2.2 Nonlinear state dependent cost function weight
In Sutton & Bitmead [1998] the following cost function is defined

J =

Np−1∑
i=0

y2i +Rcβ
2
i +Qcθ

2
i (3.29)

where Rc is the input weight, and Qc is a penalty on the angle θ in order to avoid the
vehicle heading backward.

To use (3.29) as the MPC objective function, it is then necessary to reformulate it in
a more standard form, resulting in

J(x, β) = (xNp − xref )
TS(xNp − xref )

+

Np−1∑
i=0

(xi − xref )
TQ(xi − xref ) + (βi − βref )R(βi − βref ) (3.30)

where

S = Q =

⎡
⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 Qc 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , R = Rc, (3.31)
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⎡
⎢⎢⎢⎢⎣
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and

xi =

⎡
⎢⎢⎢⎢⎢⎢⎣

ui

wi

qi
θi
κi

xfi

⎤
⎥⎥⎥⎥⎥⎥⎦
, xref =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
, βref = 0 (3.32)

To improve control performance, a computationally effective solution is to define the
nonlinear input weight

Rc = Rc(k) = aκ2
k + b (3.33)

where κk is the relative depth, between the reference (that is a constant distance from the
ocean floor) and the AUV center of gravity, at the time step k, a and b are positive constant
design parameters. Thus, for every time step a new input weight is calculated.

From (3.19b) it is possible to note that κ is the only state directly measured. As
general practice, when implementing MPC, a full state knowledge is needed. Thus, an
Extended Kalman Filter (EKF) is implemented for estimating the AUV state. In particular,
for calculating the nonlinear weight the estimate κ̂ is used instead. With this framework,
the measurement noise is also filtered by the EKF. Thus, the input weight is computed by

Rc(k) = aκ̂2
k + b. (3.34)

Finally, the use of (3.34) improves optimization solution robustness as discussed in
the end of this chapter.

3.2.3 Algorithms
The discrete MPC algorithm is applied to the underwater vehicle system (3.19). For the
linear MPC formulation with the LTI model, the MPC described in Chapter 2 is applied.
In this section, we go through the LTV-MPC algorithm details. Thus, the tail of the
optimal solution at the previous time step k − 1 is defined as

β∗
k−1,Np

= [β∗
k|k−1, β

∗
k+1|k−1, . . . , β

∗
k+Np−1|k−1, 0]

T , (3.35)

which is used for computing the trajectory x∗
k−1,Np

about where the Jacobians (3.28) will
be calculated.

LTV-MPC algorithm

Consider a generic sampling time instant k, then the LTV-MPC algorithm is defined
by the following steps:
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Simulation results

1. use βk−1, yk−1 and EKF to estimate the state x̂k−1;
2. use the nonlinear model (3.19) and the tail of the optimal solution at the previous

step (3.35) to compute the trajectory

x∗
k−1,Np

= [x∗
k|k−1,x

∗
k+1|k−1, . . . ,x

∗
k+Np−1|k−1,x

∗
k+Np|k−1]

T ; (3.36)

3. compute the Jacobians (3.28), for i = 0, 1, . . . , Np − 1, about the predicted x∗
k−1,Np

and β∗
k−1,Np

;
4. cast the MPC problem as a QP and then find its optimal solution;
5. from the optimal solution

β∗
k = [β∗

k|k, β
∗
k+1|k, . . . , β

∗
k+Np−1|k]

T , (3.37)

apply β∗
k|k to the underwater vehicle, increment k and go to the algorithm step 1.

Moreover, when the state dependent weight is applied either to an LTI model ap-
proach, or to LTV-MPC, it is sufficient to include an extra step (between step 3 and step
4), which consist on calculating the state dependent nonlinear weight (3.34).

3.3 Simulation results
A series of MATLAB simulations are carried out to analyze and compare control perfor-
mance of the different frameworks presented. The AUV is released some distance above
the desired depth relative to the sea floor, and should quickly descend to the desired depth
and then follow the sea floor at this depth. Note that in the following, the surge u is
assumed constant and not estimated. This is a reasonable assumption since the task of
bottom following will typically require a nominal constant value u = u0. Furthermore,
since this is primarily the concern of the rotational shaft speed ν control, the regulation of
u can be separated from the regulation of the other variables, which focuses on the use of
rudder angle β to permit bottom following.

The following corresponding MPC controllers are defined. In detail, their character-
istics are:

(C1) - LTI internal model with constant input weight in the MPC cost function;
(C2) - LTI internal model with state dependent input weight in the MPC cost function;
(C3) - LTV internal model with constant input weight in the MPC cost function;
(C4) - LTV internal model with state dependent input weight in the MPC cost function.
(C5) - LTV-LTI internal model with constant input weight in the MPC cost function;
(C6) - LTV-LTI internal model with state dependent input weight in the MPC cost func-

tion.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

Note that LTV-LTI is an MPC where the model used for prediction is linear time invariant
within the prediction horizon, however it is re-linearized about the current state every time
step, hence having a time-varying behavior.

All six controllers are re-formulated as QP problems, which are solved online, with
the standard MATLAB QP solver ‘quadprog’. Relevant simulation parameters are: sam-
pling period δ = 0.2 s; input constraints |β| � 0.5 rad; cost function state weight
Qc = 10, and input weight Rc = 150, when controllers (C1), (C3), and (C5) are used;
when controllers (C2), (C4), and (C6) are implemented, the input weight is the one de-
fined in (3.34), with a = 1 and b = 150, while the state weight is unchanged.

In all simulation instances, the same ocean bottom profile is considered. This is done
by using the same noise sequence ξ in (3.13a). Finally, the common control goal is to
follow the ocean bottom with a 10 m offset.

Simulation-based analysis

• In Figures 3.2, 3.4, 3.6, 3.8, 3.10, 3.12, 3.14, 3.16, 3.18, 3.20, 3.22, 3.24, 3.26, 3.28,
3.30, 3.32 θv = −π/2 indicates the vertical trajectory, that would be the shortest
path for the AUV to follow for reaching the desired depth.

• Figures 3.2 and 3.3 are obtained by applying the MPC approach (C1). Starting
from an initial offset of 20 m, the controller is able to drive the AUV to the desired
altitude (10 m distance from the ocean bottom) and to follow the seafloor profile.
Note that in the first time steps the input constraint is hit (Figure 3.3(a)), moreover
since the system has non-minimum phase, note how the vehicle starts going on the
opposite direction for eventually converging on the desired path (Figure 3.3(b)). As
visible in Figure 3.3(a), the EKF state estimation gives very satisfactory estimates.

• Figures 3.4 and 3.5 are obtained by applying the MPC approach (C2). These results
are very similar to the previous analysis. Thus, when starting from a 20 m offset,
the controller with the nonlinear input weight has the same performance as the one
with the constant weight.

• Figures 3.6 and 3.7 are obtained by applying the MPC approach (C1). Starting from
an initial offset of 50 m, the controller is not able to regulate the system. This is due
to the poor approximation from the LTI model.

• Figures 3.8 and 3.9 are obtained by applying the MPC approach (C2). Starting
from 50 m offset, the variable input weight is not a sufficient improvement and the
controller fails as in the previous case.
Thus to improve the prediction accuracy, the LTV model is used instead with the
following results.

• Figures 3.10 and 3.11 are obtained by applying the MPC approach (C3). Starting
from an initial offset of 20 m, the controller performance is very similar to the LTI
model approach.
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Note that in the first time steps the input constraint is hit (Figure 3.3(a)), moreover
since the system has non-minimum phase, note how the vehicle starts going on the
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visible in Figure 3.3(a), the EKF state estimation gives very satisfactory estimates.
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• Figures 3.10 and 3.11 are obtained by applying the MPC approach (C3). Starting
from an initial offset of 20 m, the controller performance is very similar to the LTI
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Simulation results

• Figures 3.12 and 3.13 are obtained by applying the MPC approach (C4). Again,
from an initial offset of 20 m, the introduction of the state dependent input weight
yield similar results to the LTI model approach with and without variable input
weight, and also similar to the LTV approach.

• Figures 3.14 and 3.15 are obtained by applying the MPC approach (C3). This time,
although starting from an initial offset of 50 m, the controller is able to make the
AUV following the ocean bottom. However, as shown in Figure 3.15(a), in the
transient part, the input presents large oscillations that could damage the actuator
system. Thus, even if the control goal is reached, this solution it is not practicable.

• Figures 3.16 and 3.17 are obtained by applying the MPC approach (C4). Starting
from 50 m offset, this time, due to the gain scheduling property of the variable input
weight and to the better approximation of the LTV model, the AUV is able to follow
the ocean bottom, without any potentially dangerous transient.

• Figures 3.18 and 3.19 are obtained by applying the MPC approach (C3). Starting
from 100 m offset, and using only the LTV model with a constant input weight the
control goal is met, but again with a not satisfactory input transient.

• Figures 3.20 and 3.21 are obtained by applying the MPC approach (C4). Also from
100 m offset, the combined approach is able to produce a very smooth control input
following the ocean bottom.

Approaches (C5) and (C6) allow some interesting observations to be made. In fact,
as shown in:

• Figures 3.22, 3.23, obtained by implementing the MPC (C5), starting from 20 m
offset;

• Figures 3.24, 3.25, obtained by implementing the MPC (C6), starting from 20 m
offset;

• Figures 3.26, 3.27, obtained by implementing the MPC (C5), starting from 50 m
offset;

• Figures 3.28, 3.29, obtained by implementing the MPC (C6), starting from 50 m
offset;

• Figures 3.30, 3.31, obtained by implementing the MPC (C5), starting from 100 m
offset;

• Figures 3.32, 3.33, obtained by implementing the MPC (C6), starting from 100 m
offset;

all controllers manage to follow the ocean bottom. This is due to better accuracy of time-
varying models. However, it is possible to note the presence of input oscillations, that are
larger when starting from a larger offset. These oscillations are due to the poor accuracy
of the model within the prediction horizon.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

Clearly, the best approach is to use the LTV model with the state dependent input
weight. Here it is interesting to note how the variable weight in the cost function im-
proves the Hessian condition number as explained in Section 3.2.2. Figures 3.34, and
3.35 show how switching from constant to state dependent input weight, reduces the Hes-
sian condition number, yielding a well-conditioned optimization problem.
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Simulation results

0 10 20 30 40 50 60
2.5

3

3.5
State (red), State Estimate (blue)

u

0 10 20 30 40 50 60

0

2

0 10 20 30 40 50 60

0

2

q

0 10 20 30 40 50 60

0

5

v
 / 2

0 10 20 30 40 50 60

0

50

k

0 10 20 30 40 50 60

0

0.05

x
f

Time [s]

Figure 3.2: AUV real state, and EKF state estimate, using the LTI model and constant
input weight. Initial condition of 20 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis
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Figure 3.3: Case with LTI model and constant input weight. Initial condition of 20 meters
offset from the reference.
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Figure 3.4: AUV real state, and EKF state estimate, using the LTI model and state depen-
dent input weight. Initial condition of 20 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

0 10 20 30 40 50 60

0

Control Input

Time [s]

[r
ad

]

0 10 20 30 40 50 60

0

5

10

15

20

25
Measured Output

Time [s]

(a) AUV Control Input and Measured Output.

0 20 40 60 80 100 120 140 160

0

(b) AUV trajectory in the earth-fixed frame.

Figure 3.5: Case with LTI model and state dependent input weight. Initial condition of 20
meters offset from the reference.
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Figure 3.6: AUV real state, and its EKF state estimate, using the LTI model and constant
input weight. Initial condition of 50 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
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Figure 3.7: Case with LTI model and constant input weight. Initial condition of 50 meters
offset from the reference.
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Figure 3.8: AUV real state, and EKF state estimate, using the LTI model and state depen-
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Figure 3.10: AUV real state, and EKF state estimate, using the LTV model and constant
input weight. Initial condition of 20 meters offset from the reference.
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Figure 3.12: AUV real state, and EKF state estimate, using the LTV model and state
dependent input weight. Initial condition of 20 meters offset from the reference.
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Figure 3.13: Case with LTV model and state dependent input weight. Initial condition of
20 meters offset from the reference.
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Figure 3.14: AUV real state, and its EKF state estimate, using the LTV model and constant
input weight. Initial condition of 50 meters offset from the reference.
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Figure 3.15: Case with LTV model and constant input weight. Initial condition of 50
meters offset from the reference.
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Figure 3.16: AUV real state, and EKF state estimate, using the LTV model and state
dependent input weight. Initial condition of 50 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
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Figure 3.17: Case with LTV model and state dependent input weight. Initial condition of
50 meters offset from the reference.
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Figure 3.18: AUV real state, and its EKF state estimate, using the LTV model and constant
input weight. Initial condition of 100 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis
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Figure 3.20: AUV real state, and EKF state estimate, using the LTV model and state
dependent input weight. Initial condition of 100 meters offset from the reference.
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Figure 3.21: Case with LTV model and state dependent input weight. Initial condition of
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Figure 3.22: AUV real state, and EKF state estimate, using the LTV-LTI model and con-
stant input weight. Initial condition of 20 meters offset from the reference.
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Figure 3.23: Case with LTV-LTI model and constant input weight. Initial condition of 20
meters offset from the reference.
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Figure 3.24: AUV real state, and EKF state estimate, using the LTV-LTI model and state
dependent input weight. Initial condition of 20 meters offset from the reference.
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Figure 3.25: Case with LTV-LTI model and state dependent input weight. Initial condition
of 20 meters offset from the reference.
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Figure 3.26: AUV real state, and its EKF state estimate, using the LTV-LTI model and
constant input weight. Initial condition of 50 meters offset from the reference.
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Figure 3.27: Case with LTV-LTI model and constant input weight. Initial condition of 50
meters offset from the reference.
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Figure 3.28: AUV real state, and EKF state estimate, using the LTV-LTI model and state
dependent input weight. Initial condition of 50 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
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Figure 3.29: Case with LTV-LTI model and state dependent input weight. Initial condition
of 50 meters offset from the reference.
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Figure 3.30: AUV real state, and its EKF state estimate, using the LTV-LTI model and
constant input weight. Initial condition of 100 meters offset from the reference.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis
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Figure 3.32: AUV real state, and EKF state estimate, using the LTV-LTI model and state
dependent input weight. Initial condition of 100 meters offset from the reference.
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Figure 3.34: Hessian Condition Numbers, when using the LTV model. Initial condition
of 100 meters offset from the reference.
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Figure 3.35: Hessian Condition Numbers, when using the LTV model. Initial condition
of 20 meters offset from the reference.
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3.4 Discussion

In order to clarify the contribution of this chapter, a brief introduction to the robustness
of MPC is given. In addition the use of the state dependent input weight is discussed.
Note that no attempt is made at providing an exhaustive exposition of the area of robust
MPC. Instead, the focus will be on MPC for constrained, linear systems, which covers the
majority of industrial applications [Qin & Badgwell, 2003]. The analysis of robustness for
nonlinear systems is generally much more difficult, the interested reader should consult
Rawlings & Mayne [2009] and references therein where some results in this direction are
described.

3.4.1 A brief introduction to robustness of MPC controllers

The robustness of a closed-loop system indicates the extent to which the behavior of the
system is sensitive to uncertainty. Here the term uncertainty refers to anything that may
affect system behavior that is unknown at the controller design stage, such as errors in the
model on which the controller design is based, unknown disturbances or measurement
noise.

In linear systems theory, it is common to distinguish between Robust Stability (RS)
and Robust Performance (RP) [Zhou et al., 1996]. For a robustly stable system, uncer-
tainty cannot cause the closed-loop system to become unstable. Similarly , for a system
with robust performance uncertainty can only cause modest performance degradation.
H∞ control theory provides powerful methods for the design and analysis of robustness
for linear systems.

In MPC, a constrained optimization, such as (2.6), is solved for every time step and
the optimal input is applied to the plant. If the initial state xk is such that there is no
sequence ū that fulfills constraints (2.6c)-(2.6e), thus the optimization problem is denom-
inated infeasible. In general the fulfillment of the constraints is desired not only at a given
time, but also at all subsequent times. In Chisci et al. [2001] it is shown how to ensure
recursive feasibility and also how this can be ensured for bounded disturbances by ap-
propriately restricting the constraints. The approach also ensures robust stability in the
case of bounded disturbances. It is interesting to note that in case of non-constant distur-
bances there is no guarantee that the state will converge to the origin, however it will stays
within the neighborhood of the origin. In similar fashion, Pluymers et al. [2005] shows
how to ensure robust feasibility and robust stability for systems with parametric model
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uncertainty, where the model uncertainty is represented as

xk+1 = Akxk +Bkuk (3.38)

Ak =
m∑
i=1

λikAi

Bk =
m∑
i=1

λikBi

m∑
i=1

1, λik ≥ 0. (3.39)

That is, the true plant must lie inside a polytope whose vertices are given by the ‘extreme’
models (Ai,Bi). This approach may be adopted for both time-invariant and time-varying
models. Kothare et al. [1996] shows an approach to deal with this model uncertainty by
using Linear Matrix Inequalities.

The approaches in the papers referenced above are numerically tractable and poten-
tially implementable. However, they address only robust feasibility and robust stability
of uncertain, constrained linear systems. No attempt is made to optimize robust per-
formance. Instead, nominal performance is optimized. Several authors have proposed
optimizing robust performance by solving specific min-max optimization problems, see
Mayne et al. [2000] and references therein. However, these latter approaches are not prac-
ticably tractable due to the computational burden, especially for online implementations
[Rawlings & Mayne, 2009].

For an introduction to MPC for optimization of robust performance as well as ro-
bust MPC for nonlinear systems the reader is referred to Rawlings & Mayne [2009] and
references therein.

3.4.2 Industrial approaches to robust MPC

This brief introduction to robust MPC above refers mainly to ‘academic’ approaches.
Industrial MPC controllers seem to deal with this problem in a different way [Qin &
Badgwell, 2003].

Feasibility issues are generally addressed by controlling what constraints are violated
and by how much, instead of ensuring that constraints are never violated. This can be done
by:

• Solving one or more smaller optimizations prior to solving the ‘main’ MPC prob-
lem. These first stage optimizations determine how much the main MPC constraints
will have to be relaxed such that a feasible solution can exist.

• Alternatively, the main MPC problem can be augmented with slack variables in the
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references therein.
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by:
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lem. These first stage optimizations determine how much the main MPC constraints
will have to be relaxed such that a feasible solution can exist.

• Alternatively, the main MPC problem can be augmented with slack variables in the

66



Discussion

constraints and additional terms in the cost function to penalize constraint viola-
tions.

These approaches to ensure feasibility are discussed in works such as Scokaert & Rawl-
ings [1999]; Hovd & Braatz [2001]; Vada [2000].

From the literature on robustness of linear systems it is easy to obtain an intuitive un-
derstanding of the robustness problems with ill-conditioned plants. Consider a Multiple-
Input Multiple-Output plant y = Mu, with y output vector, u input vector. The model
M is matrix valued, that is only the steady state response is considered for simplicity of
presentation. The condition number cn(M ) is defined as

cn(M ) =
σ(M )

σ(M )
(3.40)

where σ and σ are the largest and the smallest singular values, respectively.
The generalization to dynamic models in the frequency domain is straightforward

if we consider M , and hence also the singular values, as functions of frequency. 1 If
cn(M ) = 1, the gain from input to output is independent on the direction of the input,
whereas a large cn(M ) indicates that the gain is strongly dependent on input direction.

For a reference vector r, the input u0 which removes the offset in the output is easily
determined2

u0 = −M−1(y − r) (3.41)

The singular values of M−1 are the inverses of the singular values of M , which means
that a large input will have to be applied in order to remove an offset in a direction where
the input has a low gain. It is well known from linear algebra that a small change (error)
in an ill-conditioned matrix can lead to a large change (error) in the inverse. Applied to
our simple example this means that the controller will attempt to apply a large input in
the low gain directions, but due to model error there are some differences between the
low gain directions of the ‘true’ plant and the plant ‘model’. As a result, part of this large
input will miss the low gain direction of the true plant, and instead be fed into a high gain
direction of the true plant. The result can be a large (unwanted) effect on the output. In a
feedback system, such model errors can easily degrade performance and also jeopardize
stability.

1Singular values are scaling dependent, so in order to use the singular values for analysis, the plant
M needs to be appropriately scaled. Skogestad & Postlethwaite [2005] recommend scaling the inputs
according to their range of actuation and the output according to the maximum acceptable offset in each
output.

2Here issues regarding invertibility of a dynamic model are neglected, see Skogestad & Postlethwaite
[2005] for details.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

Consider now (2.6) - (2.7). It is possible to express the predicted future states as⎡
⎢⎣

xk+1
...

xk+Np

⎤
⎥⎦ = Âxk + B̂

⎡
⎢⎣

uk
...

uk+Np−1

⎤
⎥⎦ . (3.42)

Recalling the QP form (2.8), in which the Hessian has the following structure [Ma-
ciejowski, 2002]

H = B̂T Q̂B̂ + R̂ (3.43)

where

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

B 0 . . . . . . 0

AB +B B 0
...

... . . . . . . . . . ...

... . . . B 0∑Np−1
i=0 AiB . . . . . . AB +B B

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.44)

and

Q̂ =

⎡
⎢⎢⎢⎣
Q 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 Q

⎤
⎥⎥⎥⎦ , (3.45)

R̂ =

⎡
⎢⎢⎢⎣
R 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 R

⎤
⎥⎥⎥⎦ , (3.46)

and the Gradient is instead

G = B̂T Q̂Â (3.47)

where

Â =

⎡
⎢⎢⎢⎣

A
A2

...
ANp

⎤
⎥⎥⎥⎦ . (3.48)
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⎥⎦ = Âxk + B̂

⎡
⎢⎣

uk
...

uk+Np−1

⎤
⎥⎦ . (3.42)

Recalling the QP form (2.8), in which the Hessian has the following structure [Ma-
ciejowski, 2002]

H = B̂T Q̂B̂ + R̂ (3.43)

where

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

B 0 . . . . . . 0

AB +B B 0
...

... . . . . . . . . . ...

... . . . B 0∑Np−1
i=0 AiB . . . . . . AB +B B

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.44)

and

Q̂ =

⎡
⎢⎢⎢⎣
Q 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 Q

⎤
⎥⎥⎥⎦ , (3.45)

R̂ =

⎡
⎢⎢⎢⎣
R 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 R

⎤
⎥⎥⎥⎦ , (3.46)

and the Gradient is instead

G = B̂T Q̂Â (3.47)
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Discussion

In the case of no active constraints, the optimal input sequence for MPC can easily
be found by differentiating the criterion in (2.8a), and solving for the input sequence. This
gives

ūk =

⎡
⎢⎣

uk
...

uk+Np−1

⎤
⎥⎦ = −H−1Gxk =

(
B̂T Q̂B̂ + R̂

)−1

B̂T Q̂Âxk (3.49)

It is clear that if the Hessian matrix H is ill-conditioned, a small error in H (stemming
from a small model error) can lead to a large error in H−1, and hence the effect of the
input sequence may be far from excepted, with strong detrimental effect on control perfor-
mance. Industrial MPC controllers often address this problem in one of the two following
ways:

• Using Singular Value Thresholding (SVT), where the plant model (that is, B̂) is de-
composed using Singular Value Decomposition (SVD), and small singular values
are set to zero, and an approximate model B̃ is assembled after setting the small
singular values to zero. The approximate model is then used when solving the MPC
optimization problem. Inspecting (3.49), it is clear that singular value thresholding
does not actually reduce the ill-conditioning of the Hessian. Instead, the predic-
tions are effectively modified such that the controller ‘does not see’ future offsets
in directions where the inputs have little effect. SVT is used in Honeywell’s Robust
Multivariable Predictive Control Technology (RMPCT) [Qin & Badgwell, 2003].

• Increasing the input weight R (that is, the weight on all inputs) reduces the ill-
conditioning of the Hessian, and thus avoids excessive input moves. This technique
is used in Aspentech’s DMCplus controller [Qin & Badgwell, 2003].

It should be noted that SVT deliberately introduces a model error, whereas increasing
the input weight detunes the controller and makes nominal response slower. Thus, both
approaches reduce nominal performance. The use of these techniques in industrial con-
trollers therefore reflects the fact that most MPC controllers in industry are implemented
on open-loop stable systems. These two ’robustification techniques’ are studied and com-
pared in Aoyama et al. [1997].

3.4.3 The state dependent input weight
Considering the brief introduction to the robustness of MPC controllers presented above,
it is clear that the use of the state dependent input weight is a refinement of the indus-
trially popular technique of increasing the input weight. Making the input weight state
dependent (when properly applied) will, however, only reduce the controller gain when
this is required by the operating conditions, and will not reduce performance in ’safe’ op-
erating regions. From this point of view, the state dependent input weight introduces gain
scheduling into the MPC controller, as claimed in the introduction to this chapter.
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3. Model Predictive Control with state dependent input weight, a simulation-based
analysis

The state dependent input weight requires that the control engineer has a sound un-
derstanding of the control problem, and implementing it in standard MPC controllers
(with a quadratic objective function) is very simple. Also, the weight calculation results
in a negligible increase in computational cost1.

3.5 Conclusions
The industrial ‘robustification techniques’, described in Section 3.4.2, are motivated as
ways of avoiding drastic performance degradation stemming from small model errors.
For the AUV example, it seems clear that these model errors stem from using a linearized
model of the AUV. The linearized model used in the MPC produces then an ill-conditioned
optimization problem. This generates performance degradation, and in some cases the
control fails to reach its goal.

A model predictive control framework for the depth control of an underwater vehicle
is presented where different MPC approaches are implemented. It is shown how by using
an LTV model, and the state dependent input weight it is possible to improve the region
of attraction of the controller and have a smooth control action. The nonlinear input
weight definition is inspired by the gain-scheduling technique. It helps to better adapt the
control response to the initial condition (depth of the AUV). In fact, although the system is
nonlinear, the state dependent input weight allows the use of linear models for prediction,
giving the best performance with the LTV model. Related to this gain-scheduling effect is
the reduction in the condition number of the Hessian that results from the state dependent
input weight. As discussed, reducing the ill-conditioning of the Hessian is a common
approach to improve the robustness of industrial MPC. This is of particular importance
for this problem when the AUV is far from the reference and large inputs would otherwise
be demanded.

An alternative approach is to solve the nonlinear model equations, which would
typically require solving a Sequential Quadratic Programming (SQP) problem 2 (Nocedal
& Wright [2000]), instead of solving a single QP problem at each time step, as briefly
introduced in Section (2.3.3). Such an approach may be computationally tractable, but the
computational cost (and difficulty of coding) is much higher than for the state dependent
input weight, which requires solving only a single QP at each time step. In addition,
even if all available physical knowledge may be applied when formulating the nonlinear
model, all models are in practice uncertain to some extent. Thus, although direct use of the
nonlinear model removes inaccuracies stemming from model linearization, the resulting

1Actually, for ordinary MPC problems where the optimization problem is solved online, the state depen-
dent input weight probably saves online computing compared to solving QP problems with ill-conditioned
Hessians.

2That is, as sequence of QP problems that gradually converge to the solution of the nonlinear problem.
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Conclusions

MPC controller may nevertheless still experience robustness problems.
In summary, the state dependent input weight is clearly related to approaches in

use in industry to enhance robustness of MPC controllers. Although more sophisticated
methods exist in the academic literature, there seems to be little need for such methods
for the problem studied here. The main advantages of using the state dependent input
weight is the low computational cost and easy implementation, compared with min-max
robustification techniques, or SQP, for example. With the state dependent approach the
controller gain is increased smoothly and automatically when entering the safe operating
region. The main disadvantage is the need for the control engineer to know where the safe
operating region is, in order to be able to reliably design the state dependent input weight.
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Chapter 4

Persistently Exciting Model Predictive
Control, a dual control approach

In this chapter, MPC is considered in an adaptive context where the model adjustment
requirements are built into the MPC formulation. This is a general question of dealing
with the dual adaptive control problem, discussed in Section 4.1.1. The input has the dual
purpose of regulating the system via feedback and providing the excitation necessary for
the identification and adaptation of the system. It is well known that these two purposes
are generally in conflict. Further, it is well known that attempting to optimize a control
performance criterion over both the regulation and excitation frameworks is essentially an
intractable problem. However, several interesting results have been obtained by approxi-
mating the original dual control problem.

Fundamentally, MPC is a non-dynamic or memoryless state feedback control. Be-
cause of its use of a model, MPC should be amenable to adaptive implementation and
to online tuning of the model. Such an approach requires guaranteeing signal properties,
known as ‘persistent excitation’, to ensure uniform identifiability of the model, often ex-
pressed in terms of spectral content or ‘sufficient richness’ of a periodic input. Thus, an
approach to augment the input constraint set of MPC to provide this guarantee is pro-
posed. This requires equipping the controller with its own state to capture the control
signal history. The feasibility of periodic signals for this condition is also established, and
several computational examples are presented to illustrate the technique and its properties.

The approach taken here is to augment the constrained optimization of MPC to in-
clude an additional constraint to ensure that a minimal level of excitation is preserved. The
normal statement of the persistence of excitation condition (PEC) is via uniform positive
definite matrix bounds on the running summed outer products of the regressor sequence
in the system identification. In the context of open-loop, stationary, linear system iden-
tification of models with N parameters to be identified, this excitation requirement is
reinterpreted as the input signal sufficient richness condition (SRC) that the vectors com-
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posed of N delayed values of the input signal themselves satisfy the PEC. In turn and
still for stationary scalar systems, this condition can be converted to a requirement that
the input signal contains at least N distinct complex frequency components [Goodwin &
Sin, 1984], that is, as many complex sinusoids as there are parameters to identify. Al-
though the terms PEC and SRC are used almost interchangeably [Green & Moore, 1986],
SRC is reserved here for the PEC property pertaining to vectors composed solely of the
manipulable input signal.

For closed-loop system identification the regressor PEC requirement is normally
transferred to the reference input signal and requires the stability and/or stationarity of
the closed-loop to achieve a signal upper bound. An equivalent condition to ensure the
convergence of system identification using pseudo-linear regression is that the input signal
to the plant yields a persistently exciting pseudo-regressor sequence, in order for the pa-
rameter estimation error algorithm to converge sufficiently rapidly. For open-loop output
error schemes applied to minimal systems satisfying the standard positive real condition,
Anderson & Johnson Jr [1982] show that input richness conditions alone suffice for the
entire regressor to satisfy the excitation condition. Accordingly, for many standard linear
system identification schemes, the uniform convergence of the parameter estimator may
be ensured provided the plant input signal {uk} satisfies a sufficient richness property.
The development in this chapter, denominated Persistently Exciting MPC (PE-MPC), is
to include an input sufficient richness constraint directly into the MPC formulation. In the
absence of prevailing signal conditions in the MPC-controlled loop yielding excitation,
this constraint becomes active to ensure plant identifiability in closed-loop. It is shown
that, in this circumstance, periodic inputs are feasible.

Due to the focus of MPC on stabilization and regulation, the controller does not need
to inherently produce a plant input signal {uk} that satisfies the SRC. Indeed, the in-
clusion of input richness into PE-MPC, since it adds another constraint, could diminish
regulation performance in line with expectations from dual adaptive control. Different
approaches have been proposed earlier to ensure richness. For example, in Sotomayor
et al. [2009] it is shown that by incorporating an additive external signal, also known as
a dithering signal, it is possible to obtain sufficiently rich closed-loop signals for pro-
cess identifiability. However, in an MPC framework, an unfortunate choice of dithering
signal might cause constraint violation. For example, after the manipulated variable is
calculated, if the magnitude of a dithering signal is large enough, some input or output
constraint may be violated. One might accommodate the dither by tightening the con-
straints to conservative values. However, the dither must diminish control performance
even when the closed-loop signals are otherwise persistently exciting by dint of, say, ref-
erence changes or other transients. In Genceli & Nikolaou [1996] an approach, named
MPCI, is presented. In this case, the input is forced to be persistently exciting by impos-
ing a Persistently Exciting (PE) constraint. However, the MPCI has the drawback that its
formulation contains the definition of an equality constraint to enforce periodic solutions.
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Background results

Another approach is Hovd & Bitmead [2004], where an augmented cost function is intro-
duced in an NMPC contest to add the dual effect necessary such that state estimation is
improved.

We consider incorporating the input PEC into the formulation of an MPC controller
through the inclusion of an additional constraint, guaranteeing a sufficiently rich input
signal but with the possibility of this constraint being inactive during normal system
transients. In the stationary case, this approach admits, rather than imposes, a periodic
input. Since MPC involves the receding horizon computation at time k of a plant-state-
dependent control sequence, {uk,uk+1, . . . ,uk+Np−1}, of which only the initial element,
uk, is applied. The remaining elements are relegated to the initial feasible solution of
the subsequent solution and sufficient richness asserted on the forward-looking Np-step
MPC solution need not occur as result, because of the optimization problem restatement
after the application of the first element. Thus, it is necessary to introduce a state into
the MPC controller to effectively look backwards to ensure that uk satisfies the SRC with
respect to its immediate predecessor inputs. This is a novelty when compared to the for-
mulation of MPC as a non-dynamic (memoryless) function of the plant state; PE-MPC is
now a dynamic plant state feedback control law. By the same token, our formulation of
PE-MPC associates this new constraint only with the first manipulated variable uk. This
has a direct consequence on the analysis of the constraint, simplifying the solution of the
corresponding optimization problem. Finally, we also need to assume for our analysis, as
with most early approaches to adaptive control, that other mechanisms are at play to en-
sure the closed-loop system is stabilized so that an upper bound is available for the input
to ensure that the PEC is a feasible constraint for the MPC problem. That is, our methods
will need to assume and rely on the effectiveness and feasibility of the regulation side of
the MPC controller.

In this chapter, we shall denote by: n the plant system state dimension, m the input
dimension, p the output dimension, Np the control and prediction horizon of the MPC, N
the number of parameters to be identified in a plant model, P the input sufficient richness
backwards-looking horizon to be defined.

4.1 Background results

In this section, a short general introduction to dual control is given. Then, technical
concepts are defined and introduced to arrive at the main results of the chapter. These
background results are fundamental to understand how the Persistently Exciting Model
Predictive Control formulation is obtained.
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4. Persistently Exciting Model Predictive Control, a dual control approach

4.1.1 Fundamentals of Dual Control theory
In general, control systems are designed to spend as little control effort as possible in order
to obtain the required control performance. That is, a controller that achieves its perfor-
mance specifications while using the minimum amount of energy is wanted. However,
when we have to learn from a system, it is necessary to have a certain level of excitation,
such that the ‘learning procedure’ can work properly. To obtain a minimum level of exci-
tation, a certain level of energy has to be used. Thus, it is obvious that control action and
learning action are in conflict. The compromise between these two actions leads to the
dual control problem.

The dual control problem was first defined and introduced by Feldbaum at the begin-
ning of the Sixties with a series of four seminal papers, [Feldbaum, 1960a,b, 1961a,b].
In his work he discussed the problem of conflict between control quality and information
gathering. Feldbaum introduced the dual effect and neutral system notions, discussed
more in detail in next section. He defined the dual control system such as a system char-
acterized by having a dual effect.

It is difficult to have a formal definition of dual control, however as mentioned in
Brustad [1991], the following definition may be given:

Definition 4.1.1. Dual controller:
A dual controller is a model-based controller where the model is, to some degree, uncer-
tain, and where the controller in addition to its usual control task, spends some energy in
reducing the model uncertainties (learning) in such a way that the overall control perfor-
mance is improved.

This is a general definition which covers a large range of controllers. The scope of
this chapter is to describe the dual control problem in a general manner. It is hoped that
this introduction to dual control will make easier to appreciate the results in the chapter.

In 2000, IEEE Control System Society listed dual control as one of the 25 most
prominent subjects in the last century which had a great impact on control theory devel-
opment [Li et al., 2005].

In principle, the optimal solution of a dual control problem can be found by dynamic
programming, by solving the Bellman functional equation. However, it is well known
that is very difficult to find an analytical recursive solution, and the problem is generally
considered intractable [Kumar & Varaiya, 1986]. Moreover, the dimensionality of the
underling spaces causes several numerical problems that makes this problem practically
unsolvable [Bayard & Eslami, 1985], [Bar-Shalom & Tse, 1976].
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Background results

Dual effect and neutral systems

The principal characteristic of a dual controller is to have a dual effect. Feldbaum de-
scribed the dual effect as the application of the following two actions,

• directing, and
• investigating.

In Bar-Shalom [1981] both features are described as caution and probing, respec-
tively. In more detail, a dual controller is capable of

• driving the system towards a desired state (directing);
• performing some learning procedure such that system uncertainties are reduced (in-

vestigating).

Typically, these two aspects are in conflict, and they are source of difficulties when finding
the optimal dual control solution.

It is worth mentioning that not every system can have a dual effect. In fact it is pos-
sible to define a neutral system [Bar-Shalom & Tse, 1974].

Definition 4.1.2. Neutral system:
A system that does not have a dual effect is called neutral.

A practical way to understand whether a system is neutral or not is to check that the
uncertainty in the system is totally independent from the past control sequence.

In Brustad [1991] an example of neutral system is given. It is shown that a linear
Gaussian system does not have dual effect. Consider the problem of estimating the state
of the following linear system

xk+1 = Axk + vk

yk = Cxk +wk (4.1)

where vk and wk are white Gaussian noise distributed signals, with covariances P v and
P w, respectively. The uncertainty in the system is expressed by the state covariance
matrix P x. Using the standard Kalman Filter (see Chapter 5) the covariance is computed
by

Kk = P x
k|k−1C

T (CP x
k|k−1C + P w)−1 (4.2)

P x
k|k = (I −KkC)P x

k|k−1 (4.3)

P x
k+1|k = AP x

k|kA
T + P v (4.4)
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4. Persistently Exciting Model Predictive Control, a dual control approach

Thus, as it can be seen, A, C, P v, and P w are all independent of the input uk. Therefore,
the state covariance matrix P x is totally independent from the past input sequence, and
thus the system (4.1) is neutral.

Formulation

In Filatov & Unbehauen [2004] a general formulation of the dual control problem is
presented. The formal solution using Stochastic Dynamic Programming is given, and
the main difficulties on finding the optimal solution are discussed. It is shown how to
improve (but not optimize) the performance, using the dual effect, of different adaptive
control problems without excessively complicating the original algorithms, such that it is
possible to have practical online implementations.

According to Filatov & Unbehauen [2004], let us define the following dual control
problem. Consider the state space representation

xk+1 = f(xk,uk,ωk;θk) (4.5a)
yk = h(xk,vk;θk) (4.5b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, ωk and vk are sequences of independent zero-mean
random variables, and θk ∈ RN denotes the vector of unknown parameters, with assumed
time-varying dynamic

θk+1 = p(θk, εk) (4.6)

where the function p(·) describes the time-varying nature of the parameter vector θ, and
εk is a vector of independent random white noise sequence with zero-mean and known
probability distribution.

Control inputs and outputs, available at time k, are denoted by

Υk = {uk−1,uk−2, . . . ,u0,yk,yk−1, . . . ,y0} (4.7)

for k = 1, . . . , Np − 1 and Υ0 = {y0}.
The performance index

J = E

{
Np−1∑
k=0

g(xk+1,uk)

}
(4.8)

is used for control optimization purpose, where g(·) is a positive, convex, scalar function.
The operator E{·} denotes the expectation, and it is taken with respect to all the random
variables x,θ,ω,v, ε.

The dual control problem consists of finding the control policy

uk(Υk) ∈ Ωk, k = 0, 1, . . . , Np − 1 (4.9)
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that minimizes the performance index (4.8) for the system (4.5), where the unknown pa-
rameter dynamics is described in (4.6). The optimal control sequence has to be contained
in Ωk, that defines the admissible control values domain, in the space Rm.

To find the optimal solution (4.9), stochastic dynamic programming is used [Kall &
Wallace, 1994; Birge & Louveax, 1997]. Thus the backward recursion

JCLO
Np−1(ΥNp−1) = min

uNp−1∈ΩNp−1

[
E
{
g[xNp ,uNp−1]|ΥNp−1

}]
, (4.10)

JCLO
k (Υk) = min

uk∈Ωk

[
E
{
g[xk+1,uk] + JCLO

k+1 (Υk+1)|Υk

}]
, (4.11)

for k = Np − 2, Np − 3, . . . , 0 is obtained. The superscript CLO means Closed-Loop
Optimal, that is the current control signal is obtained by considering knowledge about
dynamic, probability statistics, and input/output measurements, in accordance to Bar-
Shalom & Tse [1976] formulation. A simple recursive solution of (4.10) and (4.11) is
difficult to find due to both analytical difficulties and numerical issues of the problem
dimensionality. Therefore, even for small size, simple problems it is, with few excep-
tions, practically impossible to find solutions [Bar-Shalom & Tse, 1976; Bayard & Es-
lami, 1985]. One notable exception is Sternby [1976], who presents a simple example of
a dual control problem with an analytical solution. However, the dual control approach is
trying to simplify the problem such that a possible numerical solution is found. Thus, the
analysis of this formulation may lead to insights that can help identify the main dual prop-
erties. This can then be used to define a simpler problem, which is an approximation, but
contains the dual effect. The advantage is that the new problem is practically solvable, as
in Wittermark [2002], for example. Note that, however, the solution of an approximated
dual control problem is typically sub-optimal rather than truly optimal.

An example of an application of dual effect, probing and controlling, is in Allison
et al. [1995], where it is shown how to implement a dual control strategy for a wood chip
refiner. A more recent application to a coupled multivariable process for paper coating is
shown in Ismail et al. [2003], where the authors implement an adaptive dual control law,
and a Kalman Filter for estimating the variable process gain. Moreover, the controller
is run for a trial period in the mill with successful results. This is an example of how
adding the probing effect, in addition to the control effect, can substantially improve the
production.

Difficulties in finding the optimal solution of the dual control problem (4.10-4.10)
have contributed to discovering several approaches for deriving simpler sub-optimal dual
controllers. As mentioned in Wittermark [1995], some approximated dual controllers may
be obtained by constraining the variance of parameter estimates, using serial expansion, or
even modification, of the performance index (4.8), using ideas from robust control design.
Other approximation policies are discussed in Filatov & Unbehauen [2004], where an
exhaustive classification of sub-optimal dual controllers is given.
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4. Persistently Exciting Model Predictive Control, a dual control approach

Fundamentally, dual control approximations may be gathered into two distinct cate-
gories.

• Implicit Dual Control
• Explicit Dual Control

The first category contains all methods obtained by approximating the original dual
control problem (4.10-4.10), or the performance index (4.8). The main characteristic of
these controllers is that they provide good performance, but due to a significant computa-
tional requirement their application in real time is practically restricted.

The second category contains all ad-hoc controllers, and all methods based on a
sort of bi-criterial approach. The bi-criterial approach can be obtained by modifying the
performance index (4.8), such as two distinct parts may be defined

J = J c + Je (4.12)

where J c is the cost function term that contributes to the ‘control’ part of the resulting
controller, while Je is the cost function term that contributes to the ‘excitation’ level
of the resulting control signal. This particular form of the performance index (or cost
function) makes it possible to explicitly enforce the dual effect.

The persistently exciting model predictive control formulation given in this chapter
can be classified as an explicit dual controller.

4.1.2 Schur complement
Given a matrix

M =

[
P Q
R S

]
, (4.13)

with nonsingular trailing principal square sub-matrix S, the Schur complement is defined
as

M/S = P −QS−1R. (4.14)

The notation M/S indicates the Schur complement of S in M .

Definition 4.1.3. Inertia of Hermitian Matrices
The inertia of an n× n Hermitian matrix H is the ordered triple

In(H) := (p(H), q(H), z(H)) (4.15)

where p(H), q(H), and z(H) are the numbers of positive, negative, and zero eigenvalues
of H including multiplicity, respectively. The rank is rank(H) = p(H) + q(H).
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Background results

Theorem 4.1.1 (Zhang [2005]). Let H be a Hermitian matrix and let S be a nonsingular
principal sub-matrix of H . Then

In(H) = In(S) + In(H/S). (4.16)

A direct consequence of this theorem is the following.

Theorem 4.1.2. Let H be a Hermitian matrix partitioned as

H =

[
H11 H12

H∗
12 H22

]
(4.17)

where H22 is square and nonsingular. Then H > 0 if and only if both H22 > 0 and
H/H22 > 0.

4.1.3 Persistence of excitation for adaptive control schemes
In general, for uniform convergence of system identification schemes it is desired that the
regressor vectors generated in the time-varying closed-loop must be persistently exciting,
i.e. summed outer products of the regression vector, ψk, should satisfy uniform bounded-
ness conditions.

Definition 4.1.4. [Goodwin & Sin, Sec 3.4 Goodwin & Sin [1984]] A sequence of vectors
{ψk : k = 1, 2, . . . } in RN is persistently exciting if there exist real numbers α and β and
integer P such that

0 < αIN ≤
k0+P∑

k=k0+1

ψT
k ψk ≤ βIN < ∞, ∀k0.

This is not easily verifiable, instead it is more convenient to investigate how the
persistence of excitation propagates from input signal to the regressors. This problem has
been studied by a number of researchers and follows if the regressor vectors are reachable
from the input. For Single-Input, Single-Output (SISO) cases, the authors in Anderson &
Johnson Jr [1982]; Mareels [1985]; Dasgupta et al. [1990] have derived conditions on the
input that guarantee parameter convergence. For multivariable cases, results have been
obtained in Green & Moore [1986]; Moore [1982]; Bai & Sastry [1985].

In Goodwin & Sin [1984] general definitions on persistence of excitation of a signal
are given. We choose the following definition from Bai & Sastry [1985] and adopt the
convention from Green & Moore [1986] of referring to regressors as satisfying PEC and
inputs satisfying the SRC.
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4. Persistently Exciting Model Predictive Control, a dual control approach

Definition 4.1.5. A sequence of input signals, {uk},∈ Rm is sufficiently rich of order N ,
in P steps, if there exist positive integers P , ρ1 and ρ0 such that

0 < ρ0INm ≤
k0+P∑

k=k0+1

⎡
⎢⎢⎢⎣

uk−1

uk−2
...

uk−N

⎤
⎥⎥⎥⎦
[
uT

k−1 uT
k−2 . . . uT

k−N

] ≤ ρ1INm < ∞, ∀k0.

(4.18)

This definition states that the signal uk is uniformly strongly persistently exciting
in the parlance of Goodwin & Sin [1984]. Moreover, this has an interpretation in the
frequency domain. Lemma 3.4.6 of Goodwin & Sin [1984] states that a scalar (m = 1)
quasi-stationary uk satisfying this definition must have a two-sided spectrum which is
non-zero at at least N frequencies.

We now state a definition and an important theorem of Green & Moore [1986], which
permits the derivation of conditions on the input sequence {uk} to ensure persistency of
excitation of the regressors. This problem is also very well characterized by Anderson &
Johnson Jr [1982].

Consider the minimal state space system

xk+1 = Axk +Buk (4.19a)
yk = Cxk +Duk (4.19b)

with xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, and the associated proper transfer function

T = C(zI −A)−1B +D.

Definition 4.1.6. The system (4.19) is called output reachable if, for any ȳ ∈ Rp and
arbitrary initial state, there exists an input sequence {ui, i = 0, . . . , k < ∞} such that
its output at time k satisfies yk = ȳ.

Definition 4.1.6 is satisfied if the following Markov parameter matrix

Mn =
[
D CB CAB . . . CAn−1B

]
,

associated with the system (4.19) has full row rank p.

Theorem 4.1.3. [Green & Moore, Green & Moore [1986]] A necessary and sufficient
condition for the output of every output reachable system (4.19) of McMillan degree n
to be persistently exciting over the interval [k + 1 − n, k + l] independent of initial
conditions, is that the vector ũi = [uT

i ,u
T
i−1, . . . ,u

T
i−n]

T is sufficiently rich over the
interval [k + 1, k + l].
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Background results

Theorem 4.1.3 simply states that a sufficiently rich (of order n in l steps) input se-
quence ũi provides a persistently exciting output sequence. Also, any system that is not
output reachable cannot have a persistently exciting output sequence. When adaptive es-
timation is considered, the requirement is that the regressor vectors involving past inputs,
past outputs and possible noise estimates are persistently exciting. The methods of Green
& Moore [1986] may now be applied by defining the output reachable system to be that
which has input ũk and output ψk, the complete regressor. Then the output being suffi-
ciently rich coincides with the regressors being persistently exciting if the system is output
reachable. Thus, similar conditions to Theorem 4.1.3 are needed. For example, consider
the multivariable ARMA model

yk +A1yk−1 +A2yk−2 + · · ·+A�yk−� = B1uk−1 +B2uk−2 + · · ·+Bquk−q

with transfer matrix

T (z) = A−1(z)B(z)

where

A(z) = Iz� +A1z
�−1 · · ·+A�,

B(z) = B1z
�−1 + · · ·+Bqz

�−q.

Then, the associated regressor

φ�q(k) =
[
yT
k−1 yT

k−2 . . . yT
k−� uT

k−1 . . . uT
k−q

]T
(4.20)

must be reachable from the input, and the input itself must be persistently exciting. To
check the reachability of (4.20), the following result may be used.

Corollary 4.1.4. [Green & Moore Green & Moore [1986]] The regressor (4.20) is reach-
able from uk if and only if [A(z) B(z)] is irreducible (has full row rank for all z) or,
equivalently, A(z) and B(z) are left coprime.

When, ARMAX models are considered, pseudo-linear regressor vectors are used,
instead. In this case the persistence of excitation is analyzed by Moore [1982]. Briefly,
consider here

yk +A1yk−1 + · · ·+A�yk−� = B1uk−1 + · · ·+Bquk−q + ωk +C1ωk−1 + · · ·+Crωk−r

where the associated regressor is

φ�qr(k) =
[
yT
k−1 . . . yT

k−� uT
k−1 . . . uT

k−q ω̂T
k−1 . . . ω̂T

k−r

]T
(4.21)
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4. Persistently Exciting Model Predictive Control, a dual control approach

with ω̂k noise estimates, generated in terms of parameter estimates

θ̂ = {Âi, i = 1, . . . , �; B̂i, i = 1, . . . , q; Ĉi, i = 1, . . . , r}

via

ω̂k = yk − ŷk,

= yk −
[
−Â1yk−1 − · · · − Â�yk−� + B̂1uk−1 + · · ·+ B̂quk−q + Ĉ1ω̂k−1 + . . .

+ Ĉrω̂k−r

]
.

Similarly to Corollary 4.1.4, we have the following result for ARMAX models.

Corollary 4.1.5 (Green & Moore [1986]). The pseudo-regressor (4.21) is reachable from
uk, if and only if both [A(z), B(z)], and [Ĉ(z), A(z)B̂(z)−Â(z)B(z)] are left coprime.

4.2 Persistently Exciting Model Predictive Control

4.2.1 Derivation of constraints for persistence of excitation

To include the PEC into MPC, we observe that the MPC controller is a receding hori-
zon method. That is, at the current time index k, the approach proceeds by calcu-
lating the finite-horizon, open-loop, optimal constrained future control input sequence
{uk

k,u
k
k+1, . . . ,u

k
k+Np−1} for the horizon value Np.

Since this depends on the current plant state value, xk, a feedback control law,
uk

k = 
(xk), is achieved from the open-loop calculation. Because the optimization (2.16)
is time-invariant, this feedback law is also time-invariant if the plant model is fixed. When
a PEC is included into the MPC, as the MPC solution looks forward Np steps but im-
plements only a single term in the solution, it is necessary to insist that the PEC con-
siders the relationship between the applied new control signal, uk

k, and its recent past,
{uk−P−N+2

k−P−N+2, . . . ,u
k−1
k−1}. This does not affect the feedback nature of the control law. But

it does force its dependence on more than the current plant state value. That is, PE-MPC
requires that the state feedback control law has the memory of a certain number of pre-
vious inputs. Hence PE-MPC is a dynamic state feedback controller. We formulate this
next.

Using Definition 4.1.5, a constraint suitable for implementation with PE-MPC may
be derived. The basic idea of the sufficient richness constraint implementation is to spec-
ify an additional constraint at time k on the first solution variable uk

k alone. Subsequently
the superscripts on uk are omitted.
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θ̂ = {Âi, i = 1, . . . , �; B̂i, i = 1, . . . , q; Ĉi, i = 1, . . . , r}
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k, and its recent past,
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k−1}. This does not affect the feedback nature of the control law. But

it does force its dependence on more than the current plant state value. That is, PE-MPC
requires that the state feedback control law has the memory of a certain number of pre-
vious inputs. Hence PE-MPC is a dynamic state feedback controller. We formulate this
next.

Using Definition 4.1.5, a constraint suitable for implementation with PE-MPC may
be derived. The basic idea of the sufficient richness constraint implementation is to spec-
ify an additional constraint at time k on the first solution variable uk

k alone. Subsequently
the superscripts on uk are omitted.
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θ̂ = {Âi, i = 1, . . . , �; B̂i, i = 1, . . . , q; Ĉi, i = 1, . . . , r}
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Persistently Exciting Model Predictive Control

Define P ≥ N as the backwards-looking input excitation horizon and

Ωk =
P−1∑
j=0

⎡
⎢⎢⎢⎣

uk−j

uk−1−j
...

uk−N+1−j

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

uk−j

uk−1−j
...

uk−N+1−j

⎤
⎥⎥⎥⎦
T

then write the richness condition (4.18) as

ρ1INm > Ωk > ρ0INm. (4.22)

The focus from here on is solely on the lower bound in (4.22), because the achievement
of the upper bound is a requirement of the MPC controller achieving regulation, such as
is addressed in many works on MPC using techniques such as terminal state constraints
and horizon choice. We assume that this condition has been met and that the inclusion
of an additional lower-bounding excitation constraint to be asserted in PE-MPC does not
violate this. Our focus is on achieving uniform adaptation of plant models via persistence
of excitation. Without assuming adequate bounds on the loop signals, the focus of the
adaptation on model consistency is moot.

Thus (4.22) can be written in a more compact form

Ω̃k =
P−1∑
j=0

φk−jφ
T
k−j − ρ0INm > 0, (4.23)

where

φi =

⎡
⎢⎢⎢⎣

ui

ui−1
...

ui−N+1

⎤
⎥⎥⎥⎦ . (4.24)

Further, rewritten as

φi =

[
ui

φ−
i−1

]

where φ−
i−1 is a m(N−1)×1 dimensional vector obtained from φi−1 by removing the last

m elements, which by time k have already been determined and therefore are not subject
to the current optimization. With this new notation, (4.23) becomes

Ω̃k =
P−1∑
j=0

[
uk−j

φ−
k−1−j

] [
uT

k−j φ−T
k−1−j

]− ρ0INm

=

[
uku

T
k +

∑P−1
j=1 uk−ju

T
k−j − ρ0Im ukφ

−T
k−1 +

∑P−1
j=1 uk−jφ

−T
k−1−j

φ−
k−1u

T
k +

∑P−1
j=1 φ−

k−1−ju
T
k−j

∑P−1
j=0 φ−

k−1−jφ
−T
k−1−j − ρ0Im(N−1)

]
> 0.
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Now applying Theorem 4.1.2 we obtain that Ω̃k > 0 if the previous regressors fulfill

Ω̃−
k−1 =

P−1∑
j=0

φ−
k−1−jφ

−T
k−1−j − ρ0Im(N−1) > 0 (4.25)

and the Schur complement satisfies

Ω̃k/Ω̃
−
k−1 = uku

T
k +

P−1∑
j=1

uk−ju
T
k−j − ρ0Im −

(
ukφ

−T
k−1 +

P−1∑
j=1

uk−jφ
−T
k−1−j

)

(
Ω̃−

k−1

)−1
(
φ−

k−1u
T
k +

P−1∑
j=1

φ−
k−1−ju

T
k−j

)
> 0. (4.26)

By noticing that Ω̃−
k−1 is the leading principal submatrix of Ωk−1 − ρ0INm > 0, it is

concluded that (4.25) is always satisfied if (4.23) holds at time k − 1. Thus, after some
simple manipulation of (4.26), the PE candidate constraint for the MPC is

αuku
T
k + ukβ

T + βuT
k + Γ > 0 (4.27)

where

α = 1− φ−T
k−1

(
Ω̃−

k−1

)−1

φ−
k−1, (4.28a)

β = −
P−1∑
j=1

uk−jφ
−T
k−1

(
Ω̃−

k−1

)−1

φ−
k−1, (4.28b)

Γ =
P−1∑
j=1

uk−ju
T
k−j − ρ0Im −

P−1∑
j=1

uk−jφ
−T
k−1−j

(
Ω̃−

k−1

)−1
P−1∑
j=1

φ−
k−1−ju

T
k−j. (4.28c)

Note that α is a scalar, β is an m× 1 vector, and Γ is an m×m matrix.

Proposition 4.2.1. The MPC candidate PE constraint (4.27) is non-convex.

Proof. Relation (4.23) is equivalent to

Ω̃k = φkφ
T
k +Ωk−1 − φk−Pφ

T
k−P − ρ0INm > 0. (4.29)

Thus, defining
Ω̃+

k−1 = Ωk−1 − φk−Pφ
T
k−P − ρ0INm,

Ω̃k may be written as
Ω̃k = φkφ

T
k + Ω̃+

k−1 > 0.
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Proof. Relation (4.23) is equivalent to
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T
k +Ωk−1 − φk−Pφ

T
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From the matrix determinant lemma, we have that, for an invertible matrix M , and two
column vectors v1, v2

det(M + v1v
T
2 ) = (1 + vT

2 M
−1v1) det(M ).

Applying it to Ω̃k and assuming that det(Ω̃+
k−1) �= 0, we obtain

det(Ω̃k) = det(Ω̃+
k−1 + φkφ

T
k ) = (1 + φT

k (Ω̃
+
k−1)

−1φk) det(Ω̃
+
k−1) > 0.

Now, let us distinguish three cases:
Ω̃+

k−1 < 0 =⇒ det(Ω̃+
k−1) < 0, thus to have det(Ω̃k) > 0, we need 1 +

φT
k (Ω̃

+
k−1)

−1φk < 0 which implies that uk must be outside the ellipsoid

φT
k (Ω̃

+
k−1)

−1φk > 1.

Ω̃+
k−1 > 0 =⇒ det(Ω̃+

k−1) > 0, thus to have det(Ω̃k) > 0, we need 1 +

φT
k (Ω̃

+
k−1)

−1φk > 0 which is always satisfied. This could happen if
P > N , and the previous input sequence excitation level is such that,
adding any new input to the sequence at time k, will still conserve the
minimum excitation requirement.

Ω̃+
k−1 is indefinite then it will be still non-convex but in a lower dimension.

Remarks:
• Note that (4.27) defines the non-convex exterior of an ellipsoid.
• By using the Schur complement the PEC matrix (4.22) dimensions are reduced,

from Nm×Nm to m×m, (4.27), with obvious benefits on its implementation.

4.2.2 Persistently Exciting Model Predictive Control formulation
The Persistently Exciting Model Predictive Control formulation that is proposed here is
obtained by augmenting the constraint set of (2.16) with the PE constraint (4.27).

Persistently Exciting Model Predictive Control

min
ūk

J(k, ū) = F (x̂k+Np
) +

Np−1∑
j=0

g(x̂k+j,u
k
k+j) (4.30a)

s.t. x̂k+j+1 = f(x̂k+j,u
k
k+j, θ̂), from xk, j = 1, . . . , Np − 1,

(4.30b)

uk
k+j ∈ U , j = 0, . . . , Np − 1,

(4.30c)

x̂k+j ∈ X , j = 0, . . . , Np, (4.30d)

αuku
T
k + ukβ

T + βuT
k + Γ > 0, (4.30e)
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J(k, ū) = F (x̂k+Np
) +

Np−1∑
j=0

g(x̂k+j,u
k
k+j) (4.30a)

s.t. x̂k+j+1 = f(x̂k+j,u
k
k+j, θ̂), from xk, j = 1, . . . , Np − 1,

(4.30b)

uk
k+j ∈ U , j = 0, . . . , Np − 1,

(4.30c)

x̂k+j ∈ X , j = 0, . . . , Np, (4.30d)

αuku
T
k + ukβ

T + βuT
k + Γ > 0, (4.30e)

87

Persistently Exciting Model Predictive Control

From the matrix determinant lemma, we have that, for an invertible matrix M , and two
column vectors v1, v2

det(M + v1v
T
2 ) = (1 + vT

2 M
−1v1) det(M ).

Applying it to Ω̃k and assuming that det(Ω̃+
k−1) �= 0, we obtain

det(Ω̃k) = det(Ω̃+
k−1 + φkφ

T
k ) = (1 + φT

k (Ω̃
+
k−1)

−1φk) det(Ω̃
+
k−1) > 0.

Now, let us distinguish three cases:
Ω̃+

k−1 < 0 =⇒ det(Ω̃+
k−1) < 0, thus to have det(Ω̃k) > 0, we need 1 +

φT
k (Ω̃

+
k−1)

−1φk < 0 which implies that uk must be outside the ellipsoid

φT
k (Ω̃

+
k−1)

−1φk > 1.

Ω̃+
k−1 > 0 =⇒ det(Ω̃+

k−1) > 0, thus to have det(Ω̃k) > 0, we need 1 +

φT
k (Ω̃

+
k−1)

−1φk > 0 which is always satisfied. This could happen if
P > N , and the previous input sequence excitation level is such that,
adding any new input to the sequence at time k, will still conserve the
minimum excitation requirement.

Ω̃+
k−1 is indefinite then it will be still non-convex but in a lower dimension.

Remarks:
• Note that (4.27) defines the non-convex exterior of an ellipsoid.
• By using the Schur complement the PEC matrix (4.22) dimensions are reduced,

from Nm×Nm to m×m, (4.27), with obvious benefits on its implementation.

4.2.2 Persistently Exciting Model Predictive Control formulation
The Persistently Exciting Model Predictive Control formulation that is proposed here is
obtained by augmenting the constraint set of (2.16) with the PE constraint (4.27).

Persistently Exciting Model Predictive Control

min
ūk
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4. Persistently Exciting Model Predictive Control, a dual control approach

where α, β and Γ are defined in (4.28) and are functions of previous inputs only.
Note that the PE constraint (4.30e) is a quadratic function of only the first input

uk. The coefficients of this constraint, α, β, and Γ, are computed every time step and
are time-varying. The constrained optimization problem (4.30) is a standard Nonlinear
Model Predictive Control (NMPC) formulation as for example defined in Mayne [2000].
The additional constraint (4.27) or (4.30e) is fundamental to preserving a minimal level
of excitation for the identification and adaptation of the system. We next explore some of
its properties.

Theorem 4.2.2. Consider the PE-MPC problem (4.30) at time k with input-only con-
straints, i.e. X = Rn. Assume that the solutions at times k−1 through k−P −N+1 are
feasible and that the resulting PE-MPC solutions yield strictly bounded plant state xk.
Then the solution uk = uk−P at time k is feasible, although not necessarily optimal, and
its repeated application for all k is feasible and yields a P -periodic solution for {uk}.

Proof. At time k − 1 a feasible solution is {uk−1
k−1,u

k−1
k , . . . ,uk−1

k+Np−2}. This indicates
the input constraint (4.30c) is satisfied. Moreover, (4.30e) and the PEC (4.23), thus the
constraint (4.30e) is derived and are both satisfied.

At time k, due to the time-varying nature of the constraint (4.27), it is necessary to
guarantee that the solution {uk

k,u
k
k+1, . . . ,u

k
k+Np−1} is still feasible.

Recalling that (4.30e) is equivalent to (4.29) and considering that Ωk−1 − ρ0INm >
0, since it is the PEC at time k − 1, then (4.30e) (or equivalently (4.29)) is satisfied if
φkφ

T
k − φk−Pφ

T
k−P ≥ 0.

Recalling (4.24), and that the constraint (4.30e) affects only the first input uk, it is
clear that choosing uk = uk−P in φk results in a feasible solution at time k. Obviously,
uk = uk−P also satisfies the input constraint.

Finally, note that due to the receding horizon property, only the first input uk of the
sequence {uk

k,u
k
k+1, . . . ,u

k
k+Np−1} is applied. This, would naturally yield a P -periodic

input sequence if exactly this input was repeatedly chosen.

Corollary 4.2.3. Consider the PE-MPC problem of Theorem 4.2.2 with feasible periodic
input uk = uk−P in the scalar (m = 1) case, then this input sequence is the sum of at
least N complex sinusoids with non-zero amplitudes and different frequencies.

Proof. Since {uk} is feasible and periodic, the regressor vector φk is also periodic and
has associated N×N matrix Ωk from (4.22) fixed and positive definite. The result follows
by appealing to the frequency domain interpretation of the SRC (4.18) from Goodwin &
Sin [1984].
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Examples using Finite Impulse Response models

Remarks:
• The dual adaptive control effect is evident in the PE-MPC formulation. While the

standard MPC seeks to drive the input uk to zero, stabilizing the plant, the PE
constraint (4.27) tries to bound uk away from zero. Indeed, the cost of persistence
of excitation is seen explicitly in the inclusion of an additional constraint (4.30e).

• The periodic solution uk = uk−P is feasible, but not necessarily optimal.
• In the case where state constraints are considered, their satisfaction would need to

be separately ensured to establish feasibility of the PE-MPC problem.
• In time-invariant situations where the MPC is able to stabilize the system to the

strict interior of the state-constraint set, X , and where the requisite excitation level,
ρ0, is correspondingly modest, one would presume that the periodic solution would
be the asymptotic limit of the control signal. This has yet to be proven. Although,
this is the case in the following example.

• The periodic solution arises directly from the PEC formulation. Thus, there is no
need to force it by an equality constraint as done in Genceli & Nikolaou [1996].

4.3 Examples using Finite Impulse Response models

This and subsequent sections give several examples to show how the PE-MPC can in-
herently produce persistently exciting inputs and tend towards periodic solutions. Some
interesting properties of the proposed approach are discussed.

In the first example a plant is regulated by a constrained predictive controller based
on an FIR model and an RLS algorithm is used to continually estimate the Markov pa-
rameters of the plant. The coefficients of the FIR model used in the MPC are updated
every 50 time steps.

The plant is itself described by an FIR model and so is open-loop stable;

yk = φkθ
T + vk,

where {vk} is a Gaussian measurement noise sequence with covariance σv = 6.25 · 10−4,
N = 3, the regressor is φk =

[
uk uk−1 uk−2

]T , and

θ =

⎡
⎣ 0.03

0.28
0.63

⎤
⎦

are the ‘true’ system parameters.
In this case, for a scalar input, starting from the FIR based MPC formulation (2.13),
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of excitation is seen explicitly in the inclusion of an additional constraint (4.30e).

• The periodic solution uk = uk−P is feasible, but not necessarily optimal.
• In the case where state constraints are considered, their satisfaction would need to

be separately ensured to establish feasibility of the PE-MPC problem.
• In time-invariant situations where the MPC is able to stabilize the system to the

strict interior of the state-constraint set, X , and where the requisite excitation level,
ρ0, is correspondingly modest, one would presume that the periodic solution would
be the asymptotic limit of the control signal. This has yet to be proven. Although,
this is the case in the following example.

• The periodic solution arises directly from the PEC formulation. Thus, there is no
need to force it by an equality constraint as done in Genceli & Nikolaou [1996].

4.3 Examples using Finite Impulse Response models

This and subsequent sections give several examples to show how the PE-MPC can in-
herently produce persistently exciting inputs and tend towards periodic solutions. Some
interesting properties of the proposed approach are discussed.

In the first example a plant is regulated by a constrained predictive controller based
on an FIR model and an RLS algorithm is used to continually estimate the Markov pa-
rameters of the plant. The coefficients of the FIR model used in the MPC are updated
every 50 time steps.

The plant is itself described by an FIR model and so is open-loop stable;

yk = φkθ
T + vk,

where {vk} is a Gaussian measurement noise sequence with covariance σv = 6.25 · 10−4,
N = 3, the regressor is φk =
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4. Persistently Exciting Model Predictive Control, a dual control approach

the PE-MPC formulation becomes

min
ū

Jk =
1

2

Np−1∑
j=0

‖ yk+j+1 ‖2Q + ‖ uk+j ‖2R, (4.31a)

s.t. yk+j = φk+jθ̂
T
k , j = 1, . . . , Np, (4.31b)

umin ≤ uk+j ≤ umax, j = 0, . . . , Np − 1, (4.31c)
αu2

k + 2βuk + γ > 0. (4.31d)

with prediction horizon Np = 10, input constraints −5 ≤ u ≤ 5, cost function output
weight Q = 5, and input weight R = 0.3. The time varying scalars (α, β, γ), from the PE
constraint (4.31d), are computed every time step as in (4.28), and the backwards-looking
excitation horizon length is chosen as P = 7 which exceeds N = 3, and the SRC design
parameter is selected as ρ0 = 2.5.

Decomposing the quadratic constraint (4.31d) into two linear constraints, it is pos-
sible to formulate the FIR model MPC as two Quadratic Programming (QP) problems.
Thus, the optimal solution is obtained by choosing the better solution between the two
QP problems.

A standard RLS algorithm without the forgetting factor, and initial conditions

θ̂0 =

⎡
⎣ 0

0
0

⎤
⎦ , P0 =

⎡
⎣ 1000 0 0

0 1000 0
0 0 1000

⎤
⎦ ,

is used to adapt the model parameters. The estimation algorithm is not reset but the MPC
has its model updated every 50 samples.

In the second example, to allow set-point changes, the cost function (4.31a) is modi-
fied as follows

Jk =
1

2

Np−1∑
j=0

‖ yk+j+1 − ys ‖2Q + ‖ Δuk+j ‖2R, (4.32)

where ys is the set-point and Δuj = uj − uj−1.
Finally in both cases the MPC model is initialized with the following FIR coefficients

θ0 =

⎡
⎣ 0.13

0
1.26

⎤
⎦ .
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Examples using Finite Impulse Response models

4.3.1 Simulation results
The simulations are run in MATLAB 7.9 using the solver e04nf from the NAG library
to solve the QP problems every time step. For every simulation, in the first P + 1 time
steps standard FIR MPC (without PE constraint) is used and it is also checked that all the
necessary vectors for the PE constraint formulation are properly initialized.

Regulation to zero
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Figure 4.1: Plant input and output signals.

Figure 4.1 shows the plant input and output. Input magnitude constraints are never
active and the input signal is effectively driven entirely by the SRC/PEC constraint. In
Figure 4.2 the FIR coefficients are shown, the dashed lines represent the real parameter
values θ0, the solid lines are the RLS estimates, and the stars are the occasionally updated
values used in the MPC model. For example, the stars at time step 50 are the FIR co-
efficients θ̂, they are used in the controller for the first 50 steps, then the estimate from
RLS is used to update the MPC model, which is again kept constant until the next update
occurs (50 steps later).

Finally, Figure 4.3 shows the plant input in the time domain, and more importantly
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4. Persistently Exciting Model Predictive Control, a dual control approach
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Figure 4.2: FIR parameters: RLS estimates (solid line), ‘real’ values (dashed line), MPC
model parameter (stars).
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Figure 4.3: Persistently exciting input and its spectrum indicating excitation suited to the
fitting of a three-parameter model.
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Examples using Finite Impulse Response models

the magnitude of its Fourier transform. The three peaks confirm that the input is per-
sistently exciting of order three, which is the minimum order needed to estimate three
parameters. This figure also confirms that uk is tending to become periodic, as expected.

Variable output set-point

A more complex scenario is shown here, where at steps k = 75 and k = 200 set-point
changes are given. In addition, at step k = 125 a plant change is simulated with the new
plant coefficients being

θ =

⎡
⎣ 0.5

0.2
0.3

⎤
⎦ .

The simulation parameters are the same as in the previous case with the exception of the
cost function output weight Q = 1, the weight on the input difference (Δu) R = 3,
the backwards-looking excitation horizon length P = 4, and the SRC design parameter
ρ0 = 4.9.

Figure 4.4 shows plant input and output signals. It is evident that the PE-MPC con-
troller is able to follow the output set-point (red-dashed line). The oscillation along the
set-point is due to the effect of the PE-constraint, that is expected and needed to produce
an SRC signal for estimating the three FIR parameters. As result in Figure 4.5 the esti-
mated parameters converge to the true values, even when at step k = 125 a change in the
plant occurs. Note that at step k = 150 the speed of converge suddenly increases, this is
due to the covariance resetting into the RLS estimate algorithm that is performed every
time the MPC model is updated. To confirm that the input signal is sufficiently rich, the
amplitude spectrum is plotted in Figure 4.6.

Finally, Figure 4.7 shows an instance of how PE-MPC is divided into two QP prob-
lems, and how the PE constraints are positioned with respect to the bound constraints on
the input. It is possible to note the dual effect introduced by the PE constraints. While the
standard MPC would try to drive the input to zero, the new constraint bounds the input
away from zero. This produces a small performance degradation, but it is necessary to ob-
tain the dual control feature such that the controller is able to produce sufficient excitation
to learn from the plant (estimate its parameters). The PE-MPC optimal solution is chosen
between the two QP optimal solutions, and when one is not feasible it is chosen from the
remaining one. Note that at no point both QPs are infeasible. If both QPs are infeasible
at the same time, this would indicate a too high value of the SRC design parameter ρ0.
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the input. It is possible to note the dual effect introduced by the PE constraints. While the
standard MPC would try to drive the input to zero, the new constraint bounds the input
away from zero. This produces a small performance degradation, but it is necessary to ob-
tain the dual control feature such that the controller is able to produce sufficient excitation
to learn from the plant (estimate its parameters). The PE-MPC optimal solution is chosen
between the two QP optimal solutions, and when one is not feasible it is chosen from the
remaining one. Note that at no point both QPs are infeasible. If both QPs are infeasible
at the same time, this would indicate a too high value of the SRC design parameter ρ0.
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Figure 4.4: Plant input and output signals. The dashed line indicates the set-point.
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Figure 4.5: FIR parameters: RLS estimates (solid line), ‘real’ values (dashed line), MPC
model parameter (stars).
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��� ��� ��� ��� ��� � ��� ��� ��� ��� ���
�

���

���

��	

��


�

���

���
���
����������������������

��������������

 �
!

��
� 

Figure 4.6: Spectrum of the input indicating excitation suited to the fitting of a three-
parameter model.
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Figure 4.7: Representation of PE-MPC constraints and optimal solution for a short simu-
lation interval.
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4. Persistently Exciting Model Predictive Control, a dual control approach

Next, it is shown how the choice of certain design parameters such as the backwards-
looking excitation horizon P and the SRC design parameter ρ0 affects the excitation level
and thus the speed of convergence of the FIR estimates. Figures 4.8 and 4.9 are obtained
with a zero set-point, ρ0 = 2.5, P = 3, and are used as base for comparison. Note that at
k = 55 a plant change occurs. When a longer excitation horizon P = 5 is used, the input
changes shape (Figure 4.10) and this has a direct effect by slowing the estimate speed
of convergence as shown in Figure 4.11. When instead a smaller ρ0 = 1.8 is chosen
(with P = 3), the input keeps almost the same shape (Figure 4.12), but with a reduced
excitation level the FIR parameter estimates converge slowly (Figure 4.13).
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Figure 4.8: Plant input and output signals, base example for comparison. The dashed line
indicates the set-point.
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Figure 4.9: FIR parameters, base example for comparison: RLS estimates (solid line),
‘real’ values (dashed line), MPC model parameter (stars).
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Figure 4.10: Plant input and output signals when using longer excitation horizon P . The
dashed line indicates the set-point.
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Figure 4.11: FIR parameters when using longer excitation horizon P : RLS estimates
(solid line), ‘real’ values (dashed line), MPC model parameter (stars).
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Figure 4.12: Plant input and output signals when using smaller SRC design parameter ρ0.
The dashed line indicates the set-point.
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Figure 4.12: Plant input and output signals when using smaller SRC design parameter ρ0.
The dashed line indicates the set-point.
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Examples using Finite Impulse Response models
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Figure 4.13: FIR parameters when using smaller SRC design parameter ρ0: RLS estimates
(solid line), ‘real’ values (dashed line), MPC model parameter (stars).
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4. Persistently Exciting Model Predictive Control, a dual control approach

4.4 Examples using state space models
This section describes two examples of an PE-MPC controller based on state space mod-
els. The plant is itself described by the following state space model

xk+1 = Axk +Buk + wk

yk = xk + vk,

with A = 1 and B = 0.5, and where {wk}, and {vk} are Gaussian process and measure-
ment noise sequences with zero means and covariances σw = 1·10−4 and σv = 6.25·10−4,
respectively.

The PE-MPC formulation is

min
ū

Jk =
1

2

Np−1∑
j=0

‖ ys − yk+j+1 ‖2Q + ‖ Δuk+j ‖2R, (4.33a)

s.t. xk+1+j = Âxk+j + B̂uk+j, j = 1, . . . , Np, (4.33b)

umin ≤ uk+j ≤ umax, j = 0, . . . , Np − 1, (4.33c)
αu2

k + 2βuk + γ > 0. (4.33d)

with Δuj = uj − uj−1, prediction horizon Np = 10, input constraints −0.1 ≤ u ≤ 0.1,
cost function output weight Q = 0.1, and weight on the input changes R = 1000. The
time varying scalars (α, β, γ), from the PE constraint (4.33d), are computed every time
step as in (4.28), and the backwards-looking excitation horizon length is chosen as P = 18
which exceeds N = 2, finally the SRC design parameter is selected as ρ0 = 0.01.

An RLS algorithm is implemented to estimate the parameter of the following ARMA
model

yk = ayk−1 + buk−1

where

θ̂k =

[
a
b

]
=

[−Â

B̂

]
, (4.34)

and the associated regressor is

φ(k) =
[
yk−1 uk−1

]T
. (4.35)

It is important to note that the regressor contains past inputs and outputs, thus Corollary
4.1.4 must be verified. In this case this is done trivially, thus a persistently exciting output
may be obtained by a sufficiently rich input.
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s.t. xk+1+j = Âxk+j + B̂uk+j, j = 1, . . . , Np, (4.33b)

umin ≤ uk+j ≤ umax, j = 0, . . . , Np − 1, (4.33c)
αu2

k + 2βuk + γ > 0. (4.33d)

with Δuj = uj − uj−1, prediction horizon Np = 10, input constraints −0.1 ≤ u ≤ 0.1,
cost function output weight Q = 0.1, and weight on the input changes R = 1000. The
time varying scalars (α, β, γ), from the PE constraint (4.33d), are computed every time
step as in (4.28), and the backwards-looking excitation horizon length is chosen as P = 18
which exceeds N = 2, finally the SRC design parameter is selected as ρ0 = 0.01.

An RLS algorithm is implemented to estimate the parameter of the following ARMA
model

yk = ayk−1 + buk−1

where

θ̂k =

[
a
b

]
=

[−Â
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Examples using state space models

4.4.1 Simulation results
The first simulation (Figure 4.14(a)) shows that starting from zero initial condition, the
output is driven to ys = 1 and then at k = 200 a set-point change occurs. The model
parameter convergence and MPC model parameter updates are shown in Figure 4.14(b).

It is important to note in Figure 4.15 that due to the difference between the zero
initial condition and the output set-point ys = 1, both PE constraints are not active. In
fact only one QP problem (green color in Figure 4.15(b)) is solved every time step for the
first part. Then when the actual plant output gets close to the set-point the excitation level
diminishes making the PE constraints active and yielding two distinct QP problems (blue
and red Figure 4.15(b)). This is interesting behavior because it shows that when, for some
external reason, the input is already sufficiently rich the PE constraints are not active and
thus only one QP problem (corresponding to a standard MPC implementation) has to be
solved.

While in the first example full state feedback was assumed, in the next example a
standard linear Kalman Filter is used for state estimation. The steady state Kalman gain
is re-calculated every time the model is updated (each 50 steps). Figures 4.16(a) and
4.16(b) show input, output and model parameters, respectively. This example illustrates
that starting from zero steady state, once the PE-MPC is activated, it drives the plant
away from the steady state, due to the lack of excitation. At step k = 200 a sinusoidal
set-point is applied which makes both PE constraints become inactive as given in Figure
4.17. Finally, Figure 4.18(a) shows that input and output have two peaks respectively on
their amplitude spectrum, which confirms the minimum frequency content for estimating
N = 2 parameters. Figure 4.18(b) compares the Kalman state estimate with the real state.
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(a) Plant input and output signals. The dashed line indicates the set-point.
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(b) ARMA parameters: RLS estimates (solid line), ‘real’ values (dashed
line), MPC model parameter (stars).

Figure 4.14: Input, output and parameters for state space case.
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Examples using state space models
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(a) Representation of PE-MPC constraints and optimal solution.
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Figure 4.15: PE-MPC constraints and solved QP problems for state space case.
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Figure 4.15: PE-MPC constraints and solved QP problems for state space case.
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(a) Plant input and output signals. The dashed line indicates the set-point.
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(b) ARMA parameters: RLS estimates (solid line), ‘real’ values (dashed
line), MPC model parameter (stars).

Figure 4.16: Input, output and parameters for state space case with Kalman Filter state
estimate.
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(a) Representation of PE-MPC constraints and optimal solution.
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indicates which QP is solved.

Figure 4.17: PE-MPC constraints and solved QP problems for state space case with
Kalman Filter state estimate.
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(a) Input and output spectrum.
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(b) State and its estimate.

Figure 4.18: Input and output spectrum, and state and its estimate for state space case
with Kalman Filter state estimate.
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Conclusions

4.5 Conclusions
A simple modification of the model predictive control formulation is given which yields
persistently exciting regressor vectors suited to online model adaptation or tuning. Its ef-
fectiveness is shown by several computational examples. The approach chosen is similar
to the one in Genceli & Nikolaou [1996], but with the difference that the PE constraint is
imposed only on the first MPC manipulated variable and via a backwards-looking addi-
tional constraint. This alters the MPC controller from memoryless full-state feedback to
dynamic full-state feedback. This novel framework allowed us to show formally and by
examples that a periodic control signal is feasible and arises autonomously, avoiding the
necessity of explicitly forcing this by adding an equality constraint. Several simulation
examples, for FIR and state space models, with full state and also output feedback are
given. In all examples it is possible to note that the particular structure of the PE con-
straint with scalar inputs gives PE-MPCs that are expressed as two QP problems. In gen-
eral, the PE-MPC formulation given is valid for MIMO systems and for general adaptive
schemes, yielding a non-convex optimization problem. In this case general non-convex
solvers may be required or, alternatively, the non-convex SRC constraint (4.30e) might
be broken down into the union of a number of convex constraints. Efficient numerical
implementation for MIMO systems will be a topic for future research.
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Chapter 5

State estimation issues

5.1 The state estimation problem

The state estimation problem can generally be seen as a probabilistic inference problem,
which means how to estimate hidden variables (state) using a noisy set of observations
(measurement) in an optimal way. In probability theory, this solution is obtained using the
recursive Bayesian estimation algorithm. For linear Gaussian systems, it can be shown
that the closed-form of the optimal recursive solution is given by the well known Kalman
Filter.

For real world applications, which are neither linear nor Gaussian, the Bayesian ap-
proach is intractable. Thus, a sub-optimal approximated solution has to be found. For
instance, in the case of a nonlinear system with non-Gaussian probability density func-
tion (pdf), the Extended Kalman Filter (EKF) algorithm approximates a nonlinear system
with its truncated Taylor series expansion around the current estimate. Here, the non-
Gaussian pdf is approximated with its first two moments, mean and covariance. A more
elaborate approach is to use a Sequential Monte-Carlo method, where instead of approxi-
mating the system or the probability distribution, the integrals in the Bayesian solution are
approximated by finite sums. Although a famous Monte-Carlo filter is the Particle Filter,
in this chapter the focus is on Kalman filtering for two simple reasons. Firstly, Kalman
algorithms are easy to understand and to implement. Secondly, they do not have high
computational complexity, making them suitable to be coupled with a model predictive
controller. This is a benefit for real-time implementation. Since all computation must be
done within a maximum time interval, having a quick estimation algorithm allows the use
of the remaining time to be used for solving the control optimization problem.

The focus is mainly on Kalman filtering for nonlinear systems. In detail, the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are described and
their performances are compared in two specific cases.
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5. State estimation issues

5.1.1 Definitions of Observability
When state estimation is considered, it is very important to understand the concept of the
observability of a system. Observability is used to determine whether the internal state of
a system can be inferred by knowledge about its external output. A formal definition of
observability is the following [Kailtah, 1980].

Definition 5.1.1. Observability:
A system is said to be observable if for any possible sequence of state and control vectors,
the current state can be reconstructed in finite time as a function of only the past output
sequence.

Although Definition 5.1.1 is very clear, it has the drawback that is not straightfor-
ward to check. Therefore, a more practical mathematical tool or condition is needed to
determine whether or not it is possible to estimate the state of a system.

Linear systems

Consider the SISO discrete linear system

xk+1 = Axk +Buk

yk = Cxk (5.1)

where xk ∈ Rn, uk ∈ R, yk ∈ R, and n is a positive scalar.
Given the linear system (5.1), define the following observability matrix

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦ . (5.2)

As shown in Kailtah [1980], or any other reference on linear system theory, using (5.2)
the following definition is given.

Definition 5.1.2. Observable system:
A time-invariant linear system in the state space representation (5.1) is observable if the
rank of the observability matrix (5.2) is equal to n, where n is the state dimension.

Definition 5.1.2 is straightforward to check, and this may be considered the first step
to do when state estimation has to be implemented for a linear system.
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The state estimation problem

Nonlinear systems

The determination of observability for nonlinear systems is more complicated than the
one for linear systems. The principal reason is that, for nonlinear systems, the observ-
ability depends on the system input itself. In Hermann & Krener [1977] the property of
observability for nonlinear systems is discussed extensively. While for linear systems the
observability is a unique and global property, for nonlinear systems this is not. In fact,
there are four different forms of observability.

Given the general continuous time nonlinear system

ẋ(t) = f(x(t),u(t)) (5.3a)
y(t) = h(x(t)) (5.3b)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp, the system may be

Locally observable ⇒ Observable
⇓ ⇓

Locally weakly observable ⇒ Weakly observable

where the arrows show their relationships.
Rather than stating all four observability definitions (they can be easily found in

Hermann & Krener [1977]) in this thesis the focus is only on the ‘locally weakly ob-
servability’ property. This is mainly due to the fact that the locally weakly observability
attribute is the only one which is possible to test in practice.

Thus, for the system (5.3), let us define an open set U contained in Rn, and then
define the concept of ‘U -Indistinguishability’.

Definition 5.1.3 (Hermann & Krener [1977]). U -Indistinguishability:
A pair of points x0 and x1, contained in U are called U -Indistinguishable if, for i = 0, 1,
we have that solutions xi(t) of (5.3a) with respect to initial conditions xi(0) = xi are
identical, for every admissible control u(t) defined in the interval [0, T ].

Note that we denote all points x1 ∈ U that are U -Indistinguishable from x0 by
I(x0,U).

Definition 5.1.4 (Hermann & Krener [1977]). The system (5.3) is locally weakly ob-
servable at x0 if there exists an open neighborhood U of x0, such that for every open
neighborhood V of x0 contained in U

I(x0,V) = x0 (5.4)

111

The state estimation problem

Nonlinear systems

The determination of observability for nonlinear systems is more complicated than the
one for linear systems. The principal reason is that, for nonlinear systems, the observ-
ability depends on the system input itself. In Hermann & Krener [1977] the property of
observability for nonlinear systems is discussed extensively. While for linear systems the
observability is a unique and global property, for nonlinear systems this is not. In fact,
there are four different forms of observability.

Given the general continuous time nonlinear system
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5. State estimation issues

Moreover

Definition 5.1.5 (Hermann & Krener [1977]). If U coincides with Rn, and Definition
5.1.4 is valid for every x ∈ Rn, we say that the system (5.3) is locally weakly observ-
able.

Locally weakly observability can be easily tested using a rank condition [Hermann
& Krener, 1977; Besançon, 1999] similar to the one for linear systems.

For system (5.3) the following observability matrix

O(x) =

⎡
⎢⎢⎢⎢⎢⎣

dh(x)
d(Lfh(x))
d(L2

fh(x))
...

d(Ln−1
f h(x))

⎤
⎥⎥⎥⎥⎥⎦ (5.5)

is defined, where the differential of h is defined as

dh =
∂h

∂x
=

[
∂h

∂x1

, . . . ,
∂h

∂x1

]
, (5.6)

and for a constant input ū

Lfh(x) =
∂h

∂x
f(x, ū) (5.7)

defines the Lie derivative [Khalil, 2002] with the following property

Li
fh(x) = LfL

i−1
f h(x) =

∂(Li−1
f )

∂x
f(x, ū) (5.8)

for i = 1, . . . , n− 1.
Note that (5.5) is state dependent and has dimension n × n. The following are im-

portant theorems for testing the locally weakly observability.

Theorem 5.1.1 (Hermann & Krener [1977]). If the system (5.3) satisfies the rank condi-
tion on (5.5) at x0 then (5.3) is locally weakly observable at x0.

In practice, the rank condition states that if, for a given x0, (5.5) has full rank n then
the system (5.3) is locally weakly observable at x0. Note that the converse is almost al-
ways true due to the following theorem.

Theorem 5.1.2 (Hermann & Krener [1977]). If the system (5.3) is weakly controllable,
then it is weakly observable if and only if it is locally weakly observable if and only if the
observability rank condition is satisfied.
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f(x, ū) (5.8)

for i = 1, . . . , n− 1.
Note that (5.5) is state dependent and has dimension n × n. The following are im-

portant theorems for testing the locally weakly observability.

Theorem 5.1.1 (Hermann & Krener [1977]). If the system (5.3) satisfies the rank condi-
tion on (5.5) at x0 then (5.3) is locally weakly observable at x0.

In practice, the rank condition states that if, for a given x0, (5.5) has full rank n then
the system (5.3) is locally weakly observable at x0. Note that the converse is almost al-
ways true due to the following theorem.

Theorem 5.1.2 (Hermann & Krener [1977]). If the system (5.3) is weakly controllable,
then it is weakly observable if and only if it is locally weakly observable if and only if the
observability rank condition is satisfied.

112

5. State estimation issues

Moreover

Definition 5.1.5 (Hermann & Krener [1977]). If U coincides with Rn, and Definition
5.1.4 is valid for every x ∈ Rn, we say that the system (5.3) is locally weakly observ-
able.

Locally weakly observability can be easily tested using a rank condition [Hermann
& Krener, 1977; Besançon, 1999] similar to the one for linear systems.

For system (5.3) the following observability matrix

O(x) =

⎡
⎢⎢⎢⎢⎢⎣

dh(x)
d(Lfh(x))
d(L2

fh(x))
...

d(Ln−1
f h(x))

⎤
⎥⎥⎥⎥⎥⎦ (5.5)

is defined, where the differential of h is defined as

dh =
∂h

∂x
=

[
∂h

∂x1

, . . . ,
∂h

∂x1

]
, (5.6)

and for a constant input ū
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A solution: Kalman filtering

5.2 A solution: Kalman filtering
It is well known that the Kalman Filter (KF) [Kalman, 1960] is the optimal state estimator
for unconstrained, linear systems subject to a normally distributed process and measure-
ment noise. In this part of the thesis, general filter formulations are presented, more details
and formulations are available in the literature. As a starting point several references are
given during this discussion.

Given the following system

xk+1 = Akxk +Bkuk +Gkwk (5.9)
yk = Ckxk + vk (5.10)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, and n, m, p are positive scalars, wk and vk are
mutually independent sequences of zero mean white Gaussian noise with joint covariance

E

[
wkw

T
k wkv

T
k

vkw
T
k vkv

T
k

]
=

[
P w

k 0
0 P v

k

]
. (5.11)

Given, also, the initial conditions

x̂0 = E [x0] (5.12a)

P x
0 = E

[
(x0 − x̂0)(x0 − x̂0)

T
]

(5.12b)

the Kalman Filter is obtained by minimizing the mean-square error between the state and
its estimate. Generally, the KF algorithm is formulated in two steps, known as prediction
and filtering. When the prediction step is running the filter computes the a priori state
estimate and its covariance

x̂k+1|k = Akx̂k|k +Bkuk, (5.13)

P x
k+1|k = AkP

x
k|kA

T
k +GkP

w
k GT

k . (5.14)

When the new measurement (5.10) is available, the a priori statistics, (5.13) and (5.14),
are updated by the filtering step

Kk = P x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k + P v

k

)−1
, (5.15)

x̂k|k = x̂k|k−1 +Kk

(
yk −Ckx̂k|k−1

)
, (5.16)

P x
k|k = [I −KkCk]P

x
k|k−1, (5.17)

where Kk is the Kalman gain.
Kalman Filter and its several extensions are well established, and successfully ap-

plied to solve estimation problems. Among them the Extended Kalman Filter and the
Unscented Kalman Filter will be presented for the state estimation of nonlinear systems.

For a more detailed Kalman Filter presentation, including the case where the cross-
covariance terms vkw

T
k and wkv

T
k are not zero, the reader is referred to Simon [2006].
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Given the following system

xk+1 = Akxk +Bkuk +Gkwk (5.9)
yk = Ckxk + vk (5.10)
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Given, also, the initial conditions

x̂0 = E [x0] (5.12a)

P x
0 = E
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(x0 − x̂0)(x0 − x̂0)

T
]

(5.12b)

the Kalman Filter is obtained by minimizing the mean-square error between the state and
its estimate. Generally, the KF algorithm is formulated in two steps, known as prediction
and filtering. When the prediction step is running the filter computes the a priori state
estimate and its covariance

x̂k+1|k = Akx̂k|k +Bkuk, (5.13)

P x
k+1|k = AkP

x
k|kA

T
k +GkP

w
k GT

k . (5.14)

When the new measurement (5.10) is available, the a priori statistics, (5.13) and (5.14),
are updated by the filtering step

Kk = P x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k + P v

k

)−1
, (5.15)

x̂k|k = x̂k|k−1 +Kk

(
yk −Ckx̂k|k−1

)
, (5.16)

P x
k|k = [I −KkCk]P

x
k|k−1, (5.17)

where Kk is the Kalman gain.
Kalman Filter and its several extensions are well established, and successfully ap-

plied to solve estimation problems. Among them the Extended Kalman Filter and the
Unscented Kalman Filter will be presented for the state estimation of nonlinear systems.

For a more detailed Kalman Filter presentation, including the case where the cross-
covariance terms vkw

T
k and wkv

T
k are not zero, the reader is referred to Simon [2006].
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5. State estimation issues

5.2.1 Extended Kalman Filter
The Extended Kalman Filter (EKF) is perhaps the most famous extension of the KF for
nonlinear systems. There are several versions available in the literature, see for example
Simon [2006].

Consider the following nonlinear system

xk+1 = f(xk,uk,wk) (5.18a)
yk = h(xk,vk) (5.18b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, n, m, p are positive scalars, wk and vk are normally
distributed Gaussian noise sequences with joint covariance (5.11).

The EKF gives an approximation of the optimal state estimate, and the nonlinearities
of the system (5.18) are approximated by a linearized version of the nonlinear model
around the last state estimate. For this approximation to be valid, it is very important
that the linearization is a good representation of the nonlinear model in all the uncertainty
domain associated with the state estimate.

Given initial conditions

x̂0 = E[x0] (5.19a)

P x
0 = E[(x0 − x̂0)(x0 − x̂0)

T ] (5.19b)

for each sample k = 1, ...,∞, the EKF algorithm is formulated by the following steps.

• Calculate the following Jacobians around the last filtered state estimate x̂k|k

Ak =
∂f(x,u,w)

∂x

∣∣∣∣
x=x̂k|k

Gk =
∂f(x,u,w)

∂w

∣∣∣∣
w=w̄

(5.20)

where w̄ is the mean value of the process noise sequence wk.
• Apply the prediction step of the Kalman Filter

x̂k+1|k = f(x̂k|k,uk, w̄) (5.21)

P x
k+1|k = AkP

x
k|kA

T
k +GkP

w
k GT

k (5.22)

• Calculate the following Jacobians around the predicted state estimate x̂k+1|k

Ck =
∂h(x,v)

∂x

∣∣∣∣
x=x̂k+1|k

Lk =
∂h(x,v)

∂v

∣∣∣∣
v=v̄

(5.23)

where v̄ is the mean value of the measurement noise sequence vk.
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A solution: Kalman filtering

• Apply the filtering step to the linearized observation dynamics

Kk = P x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k +LkP

v
kL

T
k

)−1
, (5.24)

x̂k|k = x̂k|k−1 +Kk

(
yk − h(x̂k|k−1, v̄)

)
, (5.25)

P x
k|k = [I −KkCk]P

x
k|k−1, (5.26)

where Kk is the Kalman gain.

The EKF is not an optimal filter, but rather it is implemented based on approximations.
This implies that the matrix P x is not the true covariance but an approximation. While the
Kalman Filter for linear systems is an optimal state estimator, which always provides state
estimate convergence, if the observability condition (5.1.2) is met, the EKF may diverge
if the approximation due the the consecutive linearization is not sufficiently accurate.

5.2.2 Unscented Kalman Filter
A more recent approach than the EKF, to the state estimation problem, is the Unscented
Kalman Filter. The UKF uses the Unscented Transformation, which is based on the idea
that is easier to approximate a probability distribution than an arbitrary nonlinear function
or transformation [Julier & Uhlmann, 1996]. This approximation is done using a finite
set of points, called sigma points. An important feature of the UKF, with respect to the
EKF, is that no Jacobians need to be computed. This is relevant especially in the case of
strong nonlinearities, as the introduction of linearization errors is avoided. In general both
filters have similar computational complexity Wan & Van Der Merwe [2000], and both
implementations are straightforward.

In the following a UKF formulation is presented, more precisely the one used in Wan
& Van Der Merwe [2001].

Given the nonlinear system (5.18), define L = n+ dim(w)+ dim(v), where dim(·)
indicates the dimension of (·). Define the following scalar weights Wi

W
(m)
0 =

λ

(L+ λ)
(5.27a)

W
(c)
0 =

λ

(L+ λ)
+ (1− α2 + β) (5.27b)

W
(m)
i = W

(c)
i =

1

2(L+ λ)
, i = 1, ...2L (5.27c)

with λ = α2(L + κ) − L. Note that these weights may be positive, or negative, but to
provide an unbiased estimate,

∑2L+1
i W

(m)
i = 1 must be satisfied. The design parameters

α and κ control the spread of sigma points, β is related to the distribution of the random
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variable x. In most cases typical values are β = 2, and κ = 0 or κ = 3− n, leaving only
the parameter α as design parameter. Considering that 1 · 10−5 ≤ α ≤ 1, the tuning of
the UKF becomes simpler. For finer tuning and a more comprehensive description of the
UKF parameters see Wan & Van Der Merwe [2001]. As it is the case for the EKF, the
initial covariance matrices can be also used for performance tuning.

Given initial conditions

x̂0 = E[x0] (5.28a)

P x
0 = E[(x0 − x̂0)(x0 − x̂0)

T ], (5.28b)

the modified nonlinear dynamics matrix F
(X x

j ,uj,Xw
j

)
[
f
(
X x(0)

j ,uj,Xw(0)
j

)
f
(
X x(1)

j ,uj,Xw(1)
j

)
. . . f

(
X x(2L+1)

j ,uj,Xw(2L+1)
j

)
,
]

(5.29)

and the observation mapping H
(X x

j ,X v
j

)
[
h
(
X x(0)

j ,uj,Xw(0)
j

)
h
(
X x(1)

j ,uj,Xw(1)
j

)
. . . h

(
X x(2L+1)

j ,uj,Xw(2L+1)
j

)
,
]

(5.30)

where f(·) and h(·) are defined in (5.18b); the subscript j indicates the sampling time
index; the superscript (i) for i = (0, 1, . . . , 2L + 1) and the sigma points X j are defined
in (5.32-5.33).

For each sample k = 1, ...,∞, the UKF algorithm is formulated as follow.

• Augment the state vector and the covariance matrix

x̂a
k = E[xa

k] = [xT
k 0T

w 0T
v ]

T (5.31a)

P a
k =

⎡
⎣P x

k 0 0
0 P w

k 0
0 0 P v

k

⎤
⎦ (5.31b)

• Calculate the sigma point matrix X a
k−1, where its i-th column vector X a(i)

k−1 is de-
fined as

X a(0)
k−1 = x̂k−1 (5.32a)

X a(i)
k−1 = x̂k−1 + γ

(√
P a

k−1

)
i

i = 1, . . . , L (5.32b)

X a(i)
k−1 = x̂k−1 − γ

(√
P a

k−1

)
i−L

i = L+ 1, . . . , 2L (5.32c)
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• Calculate the sigma point matrix X a
k−1, where its i-th column vector X a(i)
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A solution: Kalman filtering

where γ =
√
L+ λ, and

(√
P a

k−1

)
i

is the i-th column vector of the square root of
the covariance matrix P a

k−1. Note that X a
k−1 has dimension L × (2L + 1) and is

partitioned as

X a
k−1 =

⎡
⎣X x

k−1

Xw
k−1

X v
k−1

⎤
⎦ (5.33)

with respect to row vectors.
• Propagate the sigma points through the nonlinear dynamics matrix defined in (5.29),

properly modified to allow the correct sigma point propagation, and compute the
predicted state estimate, where the index i is used to select the appropriate sigma
point column

X x
k|k−1 = F

(X x
k−1,uk−1,Xw

k−1

)
(5.34)

x̂−
k =

2L∑
i=0

W
(m)
i X x(i)

k|k−1. (5.35)

Note that the a priori state estimate x̂−
k is found as a weighted sum of the propagated

sigma points.
• Compute the predicted covariance, instantiate the prediction points through the ob-

servation mapping defined in (5.30). This is properly modified to allow the correct
sigma point propagation, compute the predicted state estimate, and calculate the
predicted measurement

P x−
k =

2L∑
i=0

W
(c)
i

[
X x(i)

k|k−1 − x̂−
k

] [
X x(i)

k|k−1 − x̂−
k

]T
(5.36)

Yk|k−1 = H
(X x

k|k−1,X v
k|k−1

)
(5.37)

ŷ−
k =

2L∑
i=0

W
(m)
i Y (i)

k|k−1. (5.38)

• Obtain the innovation covariance and the cross covariance matrices

Pỹk ỹk
=

2L∑
i=0

W
(c)
i

[
Y (i)

k|k−1 − ŷ−
k

] [
Y (i)

k|k−1 − ŷ−
k

]T
(5.39)

Pykxk
=

2L∑
i=0

W
(c)
i

[
X (i)

k|k−1 − x̂−
k

] [
Y (i)

k|k−1 − ŷ−
k

]T
. (5.40)
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ŷ−
k =

2L∑
i=0

W
(m)
i Y (i)

k|k−1. (5.38)

• Obtain the innovation covariance and the cross covariance matrices
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k

] [
Y (i)

k|k−1 − ŷ−
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5. State estimation issues

• Perform the measurement update

Kk = Pykxk
P−1

ỹk ỹk
, (5.41)

x̂k = x̂−
k +Kk

(
yk − ŷ−

k

)
, (5.42)

P x
k = P x−

k −KkPỹk ỹk
KT

k . (5.43)

Note that no linearization procedure is required. Moreover, a square root of ma-
trix,

√
P a

k−1, has to be calculated at every time step, thus a numerical stable and efficient
algorithm must be used, for example the Cholesky factorization. This is the most compu-
tationally demanding operation. A more efficient implementation is the square-root UKF
[Van Der Merwe & Wan, 2001] which uses a recursive form of the Cholesky factorization.

The algorithm implementation is straightforward, since only simple operations need
to be performed, e.g. weighted sums. Other UKF formulations are available in the lit-
erature, see for instance Wan & Van Der Merwe [2001] where an algorithm that uses a
reduced number of sigma points is shown. For example, this is well suited when process
and measurement noise realizations are assumed to be additive.

In general, UKF gives an accuracy of the second-order for the state estimate. This
is the same as the standard EKF algorithm approach. However, for Gaussian distribution,
a particular choice of the UKF parameter β, i.e. β = 2, gives an accuracy of the fourth-
order term in the Taylor series expansion of the covariance, as discussed in the appendix
of Julier & Uhlmann [2004].

Some successful applications of the UKF are described in Kandepu et al. [2008],
where several comparisons with the EKF are discussed, for standard examples used in
the literature, such as Van der Pol oscillator, and also for a solid oxide fuel cell combined
gas turbine hybrid system. Van Der Merwe et al. [2004] give an interesting discussion
of a family of Sigma-point based filters and compares their performance with the EKF,
for an unmanned aerial vehicle where GPS measurements are integrated with a inertial
measurement unit. An interesting discussion on UKF estimation and noise modeling is
included in Kolås [2008]. Finally, in Spivey et al. [2010] the UKF is applied to an indus-
trial process fouling and its performance is compared with Moving Horizon Estimation
and EKF for a set of experimental data.

In next sections, the advantages of UKF compared to EKF are illustrated in two
examples. Firstly, estimation for a microalgae photobioreactor is given. The results pre-
sented are particularly interesting since the performance of both estimators are compared
with respect to real data obtained from laboratory experiments. Secondly, a well con-
structed example shows how both filters perform when a locally weakly unobservable
nonlinear system is considered. This is shown in an NMPC framework.
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ỹk ỹk
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Unscented and Extended Kalman filtering for a photobioreactor

5.3 Unscented and Extended Kalman filtering for a pho-
tobioreactor

Frequently, in the chemical and biochemical process industry, there is the necessity to
monitor and control chemical reactions. This is usually done by using sensors that give
measurements. Typically, measurements of reactant and product concentrations, operat-
ing temperatures, pressures, and other parameters are obtained. In general, a measurement
has to be reliable, i.e. it has to be available and accurate. However, there are several rea-
sons why the required measurements may not be reliable. Some of these reasons are the
impracticability of building an appropriate sensor due to lack of technology, the diffi-
culty of the positioning the sensor, the associated cost. In such cases, an attempt to use
estimation techniques may be necessary.

Dochain [2003] presents an interesting overview of available results on state and
parameter estimation in chemical and biochemical processes. A comparison of several
traditional state and parameter estimation approaches is given, discussing the pros and
cons of different cases, and describing how the most common implementation problems
are solved (see Dochain [2003] and references therein).

In this section, an application of the UKF to a photobioreactor for microalgae produc-
tion is shown. Microalgae have many applications such as the production of high value
compounds (source of long-chain polyunsaturated fatty acids, vitamins, and pigments),
in energy production (e.g. microalgae hydrogen, biofuel, methane) or in environmental
remediation (especially carbon dioxide fixation and greenhouse gas emissions reduction).
However, the photobioreactor microalgae process needs complex and costly hardware,
especially for biomass measurement. There are also problems with the practicability
of finding reliable online sensors that are able to measure the state variables (Shimizu
[1996]). Thus, state and parameter estimation seems to be a critical issue and is studied
in the case of a culture of the microalgae Porphyridium purpureum.

The intention of this work is to present the advantages of UKF in terms of perfor-
mance and implementation ease, compared to the EKF. The work of Becerra-Celis et al.
[2008] is considered as starting point. Therein it is shown how to implement an EKF for
state estimation in a photobioreactor. Due to the operational data availability for biomass
measurement, the results are thus validated. Numerical simulations in batch mode, and
real-life experiments in continuous mode are given in order to highlight the performance
of the proposed estimator. For the state estimation work on the photobioreactor presented
in this chapter, both the model and the experimental data used for validating the result are
taken from Becerra-Celis et al. [2008]
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5. State estimation issues

5.3.1 Photobioreactor for microalgae production

Strain and growth conditions

The photobioreactor is used to produce the red microalgae Porphyridium purpureum SAG
1830-1A obtained from the Sammlung von Algenkulture Pflanzenphysiologister Insti-
tut Universität Göttingen, Germany. The strain is grown and maintained on Hemerick
medium (Hemerick [1973]). The pH of the Hemerick medium is adjusted to 7.0 before
autoclaving it for 20 minutes at 121 ◦C. Cultures are maintained at 25 ◦C in 500 ml flask
containing 400 ml culture under continuous light intensity of 70 μEm−2s−1 and aerated
with air containing 1% (v/v) CO2 at 100 rpm on an orbital shaker. During the exponen-
tial growth phase, within an interval of two weeks, 200 ml of culture are transferred to a
new flask containing fresh medium.

Culture conditions and measurements

Figure 5.1 illustrates the photobioreactor diagram where the growth of cultures is per-
formed. The bubble column photobioreactor has a working height of 0.4 m and a diame-
ter of 0.1 m. The total culture volume is 2.5 l, and the cylindrical reactor, made of glass,
has an illuminated area of 0.1096 m2. To agitate the culture an air mixture with 2% (v/v)
CO2 is continuously supplied at a flow rate of 2.5 V.V.H (gas volume per liquid culture
volume per hour). 0.22 μm Millipore filters, appropriate valves and flowmeters are used
to filter and to control the air flow rate entering the photobioreactor. Four OSRAM white
fluorescent tubes (L30W/72) and three OSRAM pink fluorescent tubes (L30W/77) are
arranged around the bubble column to provide the external light source. The incident
light intensity on the reactor surface is measured at ten different locations with flat sur-
face quantum sensors (LI-COR LI-190SA). The average light intensity is computed by
the weighted average of all measurements. The optimal value of irradiance on surface
for the reactor is found to be 120 μEm−2s−1. A transparent jacket connected to a ther-
mostat unit enables the temperature control, regulated to 25 ◦C. Other sensors are a pH
sensor (Radiometer Analytical) and a dissolved oxygen sensor (Ingold type 170). A sam-
pling port is applied to the top of the column, from where samples for off line analysis
are collected after 6, 8, and 12 hours. The number of cells is counted using an optical
microscope ZEISS Axioplan-2 on Malassez cells. The total inorganic carbon (T.I.C.) in
the culture medium is calculated by gas phase chromatography. This method, proposed
by Marty et al. [1995], is used to measure low inorganic carbon concentrations down to
(10−6mol l−1) within an accuracy of 10 %.
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5. State estimation issues

Mathematical model

The bioprocess model presented in Baquerisse et al. [1999] is used. It consists of two
sub models, one describing the growth kinetics, and the other representing the gas-liquid
mass transfer in the photobioreactor. This results in two differential equations describing
the state of the reactor

dX

dt
=

Fin

V
Xin + μX − Fout

V
X (5.44a)

d[TIC]

dt
=

Fin

V
[TIC]in − Fout

V
[TIC]out − μ

X

YX/S

mX + kLa ([CO∗
2]− [CO2])

(5.44b)

where X is the biomass, and [TIC] is the inorganic carbon concentration. The subscripts
[·]in and [·]out indicate quantities flowing into, and out from the reactor, respectively. V is
the culture volume, and F is the medium flow rate. The mass conversion yield is defined
by YX/S , m is the maintenance coefficient, and kLa is the gas-liquid transfer coefficient.
The carbon dioxide concentration for the fresh medium is defined as

[CO∗
2] =

PCO2

H (5.45)

where PCO2 is the partial pressure of carbon dioxide, and H is the Henry’s constant for
Hemerick medium. Moreover, the carbon dioxide concentration in the medium is given
by:

[CO2] =
[TIC][

1 + K1

[H+]
+ K1K2

[H+]2

] (5.46)

where K1, K2 are dissociation equilibrium constants, and [H+] is defined as

[H+] = 10−pH (5.47)

representing the hydrogen ions concentration in the culture media.
In addition, a light transfer model is considered, which describes the evolution of

incident and outgoing light intensity

E =
(Iin − Iout)Ar

V X
, (5.48)

Iout = C1IinX
C2 , (5.49)
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Hemerick medium. Moreover, the carbon dioxide concentration in the medium is given
by:

[CO2] =
[TIC][

1 + K1

[H+]
+ K1K2

[H+]2

] (5.46)

where K1, K2 are dissociation equilibrium constants, and [H+] is defined as

[H+] = 10−pH (5.47)

representing the hydrogen ions concentration in the culture media.
In addition, a light transfer model is considered, which describes the evolution of

incident and outgoing light intensity

E =
(Iin − Iout)Ar

V X
, (5.48)

Iout = C1IinX
C2 , (5.49)
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where E is the light "energy" accessible per cell, Iout is the outgoing light intensity, Iin is
the ingoing light intensity. C1, C2 are constants depending on the reactor geometry, and
Ar is its area.

The light intensity and the total carbon concentration influence the specific growth
rate

μ = μmax
E

Eopt

e

(
1− E

Eopt

)
[TIC]

[TIC]opt
e

(
1− [TIC]

[TIC]opt

)
(5.50)

where μmax, Eopt, and [TIC]opt are model parameters identified from the batch data ex-
periments. Finally, the substrate limitation effect, which is the tendency of cells to dis-
tribute in layers, is taken into account in (5.50). An example of substrate limitation is
when cells accumulate close to the light source.

Batch and continuous operating conditions

The photobioreactor can work in two different operating conditions, batch mode and con-
tinuous mode. In batch mode:

Fin = Fout = 0; [TIC]in = 0; Xin = 0. (5.51)

In continuous mode, instead:

Fin = Fout �= 0. (5.52)

Model parameters

The model parameters used in this work are the ones identified in Becerra-Celis et al.
[2008]. For more details on the system identification procedure the reader is referred to
their work. Tables 5.1 and 5.2 contain the parameters for the microalgae and the total
inorganic carbon dynamics, respectively.

Table 5.1: Model parameters for Porphyridium purpureum at 25 ◦C.
Parameter Unit Value

μmax h−1 0.0337
Eopt μEs−1(109cell)−1 1.20

[TIC]opt mmolel−1 12.93
C1 0.28
C2 −0.55
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5. State estimation issues

Table 5.2: Model parameters for [TIC] dynamics.
Parameter Unit Value

K1 1.02 · 10−6

K2 8.32 · 10−10

kLa h−1 41.40
m h−1mmole(109cell)−1 0.004

YX/S 109 cell per mole TIC 198.1
H atm l mole−1 34.03

5.3.2 Biomass estimation

Using an appropriate numerical integration routine, the photobioreactor model (5.44) can
be written in the following form

ξk+1 = f(ξk, uk,w
ξ
k;ηk) (5.53a)

ηk+1 = ηk +wη
k (5.53b)

yk = [0 1]ξk + vk (5.53c)

where the state vector is

ξk =

[
Xk

[TIC]k

]
(5.54)

uk = Fin is the input, yk = [TIC] is the measurement, vξ
k is the process noise, vk

is the measurement noise, of appropriate dimensions, respectively. Here, (5.53b) is the
parameter equation, where the parameter dynamics is modeled as a random walk driven by
a white noise process wη

k . A relatively small covariance is associated to wη
k to consider the

slowly varying nature of the parameter vector. Finally, when the measurement of PCO2,
pH , and Iin are available, they are used for updating model parameters.

It may happen that parameters used in the model (5.53) are uncertain or inaccurate.
This would decrease the estimator model accuracy. One method to obtain sufficiently
good estimate is to make the estimator algorithm robust with respect to the parameter
variations. Another method is to try estimating the uncertain parameters for updating the
model, and thereby obtaining better accuracy. However, joint parameter and state estima-
tion may lead to observability problems. Therefore one has to be careful about choosing
a subset of parameter to estimate, so that the system observability is not penalized. A
general framework to introduce the parameter estimation is to extend the state with the
uncertain parameters vector and then estimate the augmented state, as shown next for the
UKF case.
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Unscented and Extended Kalman filtering for a photobioreactor

Modified Unscented Kalman Filter algorithm

To use the UKF for joint state and parameter estimation, the algorithm (5.28-5.43) must
be modified as follow.

Define the new state vector

x̂k =

[
ξ̂k
η̂k

]
(5.55)

which has as elements, the state and parameter estimates, respectively. The vector

wk =

[
wξ

k

wη
k

]
(5.56)

contains the process noises in the evolution of ξ and η. Analogously, define the aug-
mented covariance matrix

Pk =

[
P x

k P x,w
k

P w,x
k P w

k

]
(5.57)

where P x
k consists of the state and parameter error covariances, while P w

k includes the
process noise covariance associated to state and parameters. In addition, the off diag-
onal entries are cross covariance terms represented by the notation P ·,·

k . Obviously, all
elements of x̂k and Pk are of appropriate dimensions.

Given the initial conditions

x̂k =

[
ξ̂k
η̂k

]
P0 =

[
P x

0 0
0 P w

0

]
(5.58)

where the new system state x̂ has dimension n, it is possible to apply the UKF algorithm
(5.28-5.43) and jointly estimate the state and parameter vectors.

Simulation results with experimental data

Due to modifications just introduced, the UKF described in Section 5.3.2 can be imple-
mented. The main objective is to estimate the biomass X in the photobioreactor of Section
5.3.1. Focusing on the two different working conditions defined in Section 5.3.1, it is ob-
served how in batch mode the UKF has excellent performance, which also is the case for
the EKF designed in Becerra-Celis et al. [2008]. This is due to the fact that the model
parameters are identified in batch mode, and the measurements have a constant sampling
time. A more complex scenario appears for continuous cultures. The model parameters
are still the ones from the batch experiments, and the experimental data are collected at
variable instant intervals. Due to the variable time steps, Becerra-Celis et al. [2008] im-
plement a continuous discrete version of the EKF. In the present work, this problem is
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5. State estimation issues

tackled in two steps. Firstly, a zero order hold is applied to the measurements, secondly
the standard UKF algorithm is properly modified. In more detail, the discrete UKF al-
gorithm with an augmented state to consider parameter estimation and process noise is
implemented. The sigma points are recomputed, before propagating them through the ob-
servation model. This modification gives the possibility to use the discrete algorithm with
the irregular measurement sampling time of the continuous culture case. Furthermore, the
parameter μmax in (5.50) is chosen to be estimated. Finally, despite the fact that a zero
order hold is used to permit a discrete UKF implementation, the UKF accuracy and speed
of convergence are improved with respect to those in the EKF.

� � �� �� �� ��
�

���

�

���

�

���

�

���

��������&('�

	
��
�

'

'�
�

���

�

��
��
���
�

�

�

���&�
$���'$
$�
���


 � �
 �� �
 ��
�

�

�

�

�


��������&('�

��
��
���
�


 
! ��

��
��
��

�

�

���&�
$�����
'&(���"$��
##��$����$+��"��'�
���

Figure 5.2: UKF estimation for simulated batch mode.

Figure 5.2 illustrates the convergence of the UKF in simulated batch mode, for which
conditions (5.51) hold. In this case the nonlinear model (5.44a-5.44b) is discretized at
sampling time Ts = 0.5 h and used to simulate the state of the process, starting from
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Figure 5.2 illustrates the convergence of the UKF in simulated batch mode, for which
conditions (5.51) hold. In this case the nonlinear model (5.44a-5.44b) is discretized at
sampling time Ts = 0.5 h and used to simulate the state of the process, starting from

126

5. State estimation issues

tackled in two steps. Firstly, a zero order hold is applied to the measurements, secondly
the standard UKF algorithm is properly modified. In more detail, the discrete UKF al-
gorithm with an augmented state to consider parameter estimation and process noise is
implemented. The sigma points are recomputed, before propagating them through the ob-
servation model. This modification gives the possibility to use the discrete algorithm with
the irregular measurement sampling time of the continuous culture case. Furthermore, the
parameter μmax in (5.50) is chosen to be estimated. Finally, despite the fact that a zero
order hold is used to permit a discrete UKF implementation, the UKF accuracy and speed
of convergence are improved with respect to those in the EKF.
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(b) Measurement of [TIC]

Figure 5.3: Experimental data: input and output of the photobioreactor collected in con-
tinuous mode.

initial conditions X0 = 2.44 · 109cell/l, [TIC]0 = 2.55 10−3mole/l. After that, [TIC] is
corrupted by additive Gaussian white noise with standard deviation σ = 0.2 10−3mole/l,
and used as measurement for the UKF. Thus, the state is estimated successfully with ex-
cellent noise rejection in TIC. The results obtained for continuous cultures are even more
interesting. Initial conditions are X0 = 1.8 · 109cell/l, [TIC]0 = 4.51 · 10−3mole/l, and
in addition real experiment data, presented in Figure 5.3, are used as input to the filters.
The EKF designed in Becerra-Celis et al. [2008], the UKF with only state estimation, and
the UKF with joint state and parameter estimation are simulated. The results obtained
are shown in Figure 5.4 and discussed here. In Figure 5.4(a) it is noticeable how both
UKF implementations have faster speeds of convergence than the EKF. In Figure 5.4(b)
the state estimation error of the three different approaches are compared, and it is evi-
dent how the UKFs give smaller estimation errors. Note that it was possible to compute
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5. State estimation issues

the state estimation error because experimental data for the biomass, shown with a star
in Figure 5.4(a), was available. Moreover the mean squared error (MSE) between the
biomass and its estimate is computed. Table 5.3 shows the MSE index, which is obtained
averaging the MSE along the entire simulation period. From both figures it is noticeable

Table 5.3: Mean Squared Error Index
EKF UKF UKF with par. est.
13.60 6.12 6.12

how the UKF performs better than the EKF, and how the introduction of parameter es-
timation in the UKF improves the accuracy of the estimation in the final part (after 300
hours), although it slightly reduces the speed of convergence.

Since the parameters are identified from batch experiments, as shown in Becerra-
Celis et al. [2008], adding parameter estimation may be useful when the photobioreactor
is run in continuous mode. Figure 5.5 shows the evolution of the μmax estimation, the
estimated value is compared with the identified value and the UKF error covariance is
also shown.
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(b) State Estimation Error

Figure 5.4: Biomass estimation comparison for continuous cultures.
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(b) UKF error covariance of μmax

Figure 5.5: UKF parameter estimate and its covariance for continuous culture.
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State estimation in Nonlinear Model Predictive Control, UKF advantages

5.4 State estimation in Nonlinear Model Predictive Con-
trol, UKF advantages

As discussed in Chapter 2, nonlinear model predictive control has proved to be a suitable
technique for controlling nonlinear systems, since the simplicity of including constraints
in its formulation makes it very attractive for a large class of applications. A limitation
for the application of NMPC is that at every time step the state of the system is needed
for prediction. However, it is not always possible to measure all the states, thus a filter or
observer may be used. For nonlinear systems a Separation Theorem does not exist, so that
even if the state feedback controller and the observer are both stable, there is no guarantee
of closed-loop nominal stability. Findeisen et al. [2003] give an interesting overview on
both state and output feedback NMPC, and Kolås et al. [2008] focus also on high order
state estimators and noise model design.

State estimation introduces an extra computational load which can be relevant in the
case of systems with relatively fast dynamics. In this case accurate estimation methods
with low computational cost are desired, for example the Extended Kalman Filter. Clearly,
the EKF does not perform well with all nonlinear systems, but its straightforwardness is
the main reason of its popularity.

In this section, a type of locally weakly unobservable system is studied. For this type
of system, we find that the EKF drifts because the system is unobservable at the desired
operation point. Instead, it is shown how the UKF is used for state estimation in this type
of nonlinear systems, and that it provides a stable state estimate, despite the fact that the
system is locally unobservable.

5.4.1 An example of locally weakly unobservable system
As seen in Section 5.1.1, the fundamental requirement for an observer to work properly
is to be associated with an observable system. The following example is constructed
such that the the observability rank condition derived in Hermann & Krener [1977] is not
satisfied. Thus, the state estimator might have problems once it reaches locally weakly
unobservable regions.

Consider the scalar nonlinear system

ẋ(t) = (0.1x(t) + 1)u(t)

y(t) = x3(t) (5.59)

and apply the rank condition described in Section 5.1.1. Clearly for this system the ob-
servability matrix (5.5) is

O(x) =
[
3x2

]
(5.60)
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ẋ(t) = (0.1x(t) + 1)u(t)

y(t) = x3(t) (5.59)

and apply the rank condition described in Section 5.1.1. Clearly for this system the ob-
servability matrix (5.5) is

O(x) =
[
3x2

]
(5.60)

131

State estimation in Nonlinear Model Predictive Control, UKF advantages

5.4 State estimation in Nonlinear Model Predictive Con-
trol, UKF advantages

As discussed in Chapter 2, nonlinear model predictive control has proved to be a suitable
technique for controlling nonlinear systems, since the simplicity of including constraints
in its formulation makes it very attractive for a large class of applications. A limitation
for the application of NMPC is that at every time step the state of the system is needed
for prediction. However, it is not always possible to measure all the states, thus a filter or
observer may be used. For nonlinear systems a Separation Theorem does not exist, so that
even if the state feedback controller and the observer are both stable, there is no guarantee
of closed-loop nominal stability. Findeisen et al. [2003] give an interesting overview on
both state and output feedback NMPC, and Kolås et al. [2008] focus also on high order
state estimators and noise model design.

State estimation introduces an extra computational load which can be relevant in the
case of systems with relatively fast dynamics. In this case accurate estimation methods
with low computational cost are desired, for example the Extended Kalman Filter. Clearly,
the EKF does not perform well with all nonlinear systems, but its straightforwardness is
the main reason of its popularity.

In this section, a type of locally weakly unobservable system is studied. For this type
of system, we find that the EKF drifts because the system is unobservable at the desired
operation point. Instead, it is shown how the UKF is used for state estimation in this type
of nonlinear systems, and that it provides a stable state estimate, despite the fact that the
system is locally unobservable.

5.4.1 An example of locally weakly unobservable system
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such that the the observability rank condition derived in Hermann & Krener [1977] is not
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Consider the scalar nonlinear system

ẋ(t) = (0.1x(t) + 1)u(t)

y(t) = x3(t) (5.59)
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servability matrix (5.5) is

O(x) =
[
3x2

]
(5.60)
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with rank equal to n = 1 for x �= 0, and rank null for x = 0. Therefore, if we apply
theorems 5.1.1 and 5.1.2 we can conclude that (5.59) is locally weakly observable for
x �= 0. At x = 0 the system is not locally weakly observable. Thus, in an NMPC context
we implement both EKF and UKF state estimators. Note that the control goal is to drive
the system to the origin.

Since a discrete time framework is required, we discretize (5.59) using the Euler
approximation, and a sampling time of 1 second.

xk+1 = xk + (0.1xk + 1)uk + wk

yk = x3
k + vk (5.61)

where x is the state, u is the input, y is the measurement, w is the excitation state noise,
v is the measurement noise, and the subscript k is the sampling time index. The noise
sequences are both assumed to be Gaussian white noise.

Simulation-based results will show that while the EKF fails to estimate the state, the
UKF is able to give a stable state estimate. This is due to the implicit structure of the
UKF algorithm, in fact no linearization is used. Whereas, when the EKF algorithm is
implemented, the linearization at x = 0 is the origin of EKF failure. In addition the pdf
approximation obtained with the sigma points is more accurate than the EKF one.

Simulation-based results

The NMPC framework (2.16) is applied with the quadratic stage cost function J(x, u) =
qx2 + ru2, where the corresponding state weight is q = 2, and the input weight is r = 1.
The prediction horizon length is Np = 10. The process and measurement noises have
additive white Gaussian distributions with zero means and variances σ2

ω = 0.01, σ2
v = 0.1,

respectively.
For state estimation, the EKF (5.19-5.26) first, and then with the UKF (5.28-5.43)

are implemented. All the simulations are started from an initial condition x0 = 0.5, with
initial state variance P0 = 0.02. The UKF tuning parameters are n = 1, α = 1, β = 2,
and κ = 2.

Figure 5.6 shows how the EKF fails. It is possible to note how once both the state
and its estimate reach zero, the estimator is not able anymore to reconstruct the actual
state (Figure 5.6(b)). This is due to the linearization problem. At zero the Kalman gain
becomes zero and the filter is not able to correct the estimate with the future measure-
ments. The controller uses the estimate, yielding a zero control signal as soon as the state
estimate is null. As a result the controller is not able to regulate the state anymore and the
state drifts.

In Figure 5.7 the UKF is used instead. It is possible to observe how the filter is able
to estimate the state, and in the meantime there is no drift in the state estimation. Having
a correct state estimate allows the NMPC to regulate the state, achieving its goal.
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Figure 5.6: Simulation-based results: EKF as state estimator.
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Conclusions

5.5 Conclusions
In this chapter Kalman filtering for state estimation in a model predictive control frame-
work is presented. Two examples of state estimation for non nonlinear systems are stud-
ied, and the EKF and UKF performances are compared.

In the first example, which can be considered as an extension of Becerra-Celis et al.
[2008], it is shown how to improve the estimation performance by using UKF to imple-
ment a biomass estimator for a microalgae photobioreactor. In both batch and continuous
mode, the approach presented produces faster estimate convergence and better estimate
accuracy. The possibility to easily introduce joint parameter and state estimation, the
absence of linearization, the comparable computational complexity make the UKF an at-
tractive estimator for nonlinear systems. The results are validated by comparison with
operational data.

In the second example, an output feedback Nonlinear Model Predictive Control is
implemented for a regulation problem with a particular example from the family of lo-
cally weakly unobservable nonlinear systems. For these types of systems the Extended
Kalman Filter may fail to give a correct state estimate, leading to a drift in the state esti-
mation. Using a simple but effective state space representation of a particular nonlinear
model, a set of simulations were carried out to show how the UKF gives a stable state
estimate, despite operating at locally weakly unobservable operating points. Other esti-
mation algorithms could be used, for instance Monte-Carlo-based methods, but the choice
of a Kalman-based filter gives the advantage of lower overall computational complexity.
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Chapter 6

Conclusions and recommendations for
further work

In this chapter, first general conclusions, and then directions for future work are presented.

6.1 Conclusions
The thesis has focused on MPC performance improvement, and extending the range of ap-
plicability for MPC controllers. This is motivated by the success of MPC as an advanced
control technique. MPC has a complex structure:

• internal model for plant behavior prediction;
• cost function for control quality/index definition;
• constraints for representing limitations in the plant, actuators, etc.;
• capacity of handling model/plant mismatch and unknown disturbances introducing

feedback action by a receding horizon strategy.
All these elements give flexibility and adaptability, but at the same time introduce difficul-
ties for theoretical analysis and possible extensions. This neither discourages researchers
nor industry, as matter of fact, it is possible to find a vast body of literature and a large
number of applications of MPC. The results presented in this thesis can be summarized
in three points.

The state dependent input weight in the MPC cost function

This approach introduces smooth gain scheduling functionality into the MPC formulation,
and simultaneously improves the conditioning of the Hessian, thus yielding a more robust
optimization formulation. In Chapter 3 this is combined with various representations
of the internal model in the MPC. The best performance and largest operating region is
achieved with the state dependent input weight and an LTV model.
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• cost function for control quality/index definition;
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• capacity of handling model/plant mismatch and unknown disturbances introducing

feedback action by a receding horizon strategy.
All these elements give flexibility and adaptability, but at the same time introduce difficul-
ties for theoretical analysis and possible extensions. This neither discourages researchers
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6. Conclusions and recommendations for further work

The novel PE-MPC formulation

This new formulation is obtained by extending standard MPC to allow for on-line model
adaptation or tuning. It is shown how to extend the constraints set to include the per-
sistence of excitation condition, necessary to obtain unbiased parameter estimation. The
particular method of imposing the PE constraint introduces a new constraint only on the
first manipulated variable, and the introduction of a backwards-looking horizon alters the
MPC controller from memoryless full-state feedback to dynamic full-state feedback. This
novel framework allows us to show formally and by examples with FIR and state space
models that a periodic control signal arises autonomously, avoiding the necessity of forc-
ing this condition by an equality constraint. In general, the formulation given is valid for
Multi Input Multi Output systems and general adaptive schemes, yielding a non-convex
optimization problem.

State estimation using UKF

The Unscented Kalman Filter was proposed relatively recently compared to the well
known Extended Kalman Filter. They can both be used for state estimation of nonlin-
ear systems. In UKF there is no need to use linearization procedures, eliminating then
linearization errors. A set of well specified points, called sigma points, is used instead
to approximate the statistics of the state. This resembles particle filtering, however, the
Unscented Transformation allows to choose a relatively small set of ‘particles’ with ob-
vious benefits on computational complexity. In fact, the UKF computational burden is
comparable to the EKF one.

Two examples are used to illustrate and compare the performance of the two filters.
In the first example a photobioreactor model is introduced, and operational data is also
used to compare the state estimation error. In the second example a simulation-based
study for a locally weakly unobservable nonlinear system is carried out. In both cases,
UKF outperforms EKF, especially in the second case where the EKF fails to estimate once
the system reaches a locally weakly unobservable operating point.

6.2 Further work

This thesis addresses some issues in the areas of MPC, dual control, adaptive control, as
well as state estimation.

Each of these are by themselves large and important problem areas, with many rele-
vant research issues. In the following, some remaining topics that are natural extensions
and continuations of the work in this thesis will be proposed.
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Further work

Cost function with state dependent input weight

This approach could be extended to other applications, where for instance there is a need
to increase the region where the controller is able to perform its duties. Verification of the
results in experiments and/or industrial applications would be of interest.

Persistently Exciting Model Predictive Control

Multi Input Multi Output system implementations yield non-convex optimization prob-
lem. A general non-convex optimizer may be used, but it would be interesting to exploit
the PE-constraint structure to obtain efficient optimization implementation. The presented
Single Input Single Output examples show efficient implementations of the optimiza-
tion problems. However, extension to problems with multiple inputs is not necessarily
straightforward. Comparison of different parameter estimation algorithms would also be
of interest.

State Estimation issues

For the photobioreactor example, controller implementation coupled with UKF/EKF is
the subsequent step. This will necessarily be left to our collaborators at Supélec.

For the observability issue, the study of larger scale systems would be the natural
subsequent step. Furthermore, a more theoretical/analytical analysis, aimed at character-
izing the locally weakly unobservable systems for which the UKF can work, could be
performed.

Dual Control

It is well known that dual control is in general an intractable problem, but with continued
improvements in both systems theory and computational power, the area should be re-
visited at regular intervals to re-assess what can realistically be achieved.
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