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Abstract

The work presented in this thesis is focused on developing a method for imaging
of nonlinear scattering from stiff particles using dual-frequency band pulses. The
pulse complexes are comprised of a low-frequency manipulation pulse and a high-
frequency imaging pulse where the the two pulses overlap in time and there is a
frequency relationship of 1:8-10. It may be shown that the polarity of the nonlinear
scattering follows the polarity of the low-frequency pulse, while linear scattering does
not. By transmitting two such dual-frequency band pulses in each beam direction
where the polarity of the low-frequency pulse is inverted from the first to the second,
nonlinear scattering may be detected. The low-frequency pulse not only manipulates
the scattering but also the propagation of the high-frequency imaging pulse. These
nonlinear propagation effects will mask the nonlinear scattering and must be corrected
for in order to suppress the linear scattering and detect the nonlinear scattering.

In the first paper of this thesis, the nonlinear propagation effects using confocal
low-frequency and high-frequency beams are investigated in a water tank setup. A
dual-frequency band annular array, where the low-frequency element is place behind
the high-frequency element, to form a stack, was used. When the high-frequency pulse
is short compared to the low-frequency pulse period, the nonlinear propagation effects
can be approximated by a nonlinear propagation delay and frequency shift. It is shown
how the delay and frequency shift increases close to linearly with increasing manip-
ulation pressure and how axis the profiles of the high-frequency beam are affected.
On transmit, the size relationship between the low and high-frequency apertures can
be varied, and it is shown how the nonlinear propagation effects is dependent on the
array setup.

By transmitting an unfocused low-frequency beam together with a focused high-
frequency beam, the position of the high-frequency pulse relative to the low-frequency
pulse can be kept close to constant over the whole imaging region. By placing the
imaging pulse at the peak of the manipulation pulse, the frequency shift due to non-
linear propagation can be minimized. In the second paper, the suppression of linear
scattering using such a beam setup and only correcting for the propagation delay is
investigated. Applying a low-frequency pressure of 85 to 500 kPa, the linear scatter-
ing could be suppressed 35 to 17 dB. It is shown that there is an amplitude difference
between the first and second received pulse which is due to diffraction differences of
the first and second beam. Since the low-frequency beam is unfocused, the manipula-
tion pressure will vary over the focused high-frequency beam and distort the spherical
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focusing. This distortion will be different for the first and second beam and pro-
duce different diffraction of the two beams, which will yield an amplitude difference.
Frequency shift due to nonlinear propagation will also affect the diffraction but it is
indicated that the nonlinear aberration is the dominating factor.

In the third paper three different beamforming strategies for dual-frequency band
imaging is investigated; 1. Focused low freq. + Focused high freq., 2. Unfocused low
freq. + Focused high freq. and 1. Unfocused low freq. + Unfocused high freq. The
nonlinear propagation delay and frequency shift are estimated and predicted based on
the estimated low-frequency manipulation pressure experienced by the high-frequency
pulse. There is good accordance between the estimated and predicted values until
diffraction becomes significant. When diffraction becomes significant, differences in
diffraction between the first and second pulse will also introduce a frequency shift and
delay other than that generated by the nonlinear manipulation pressure. Differences in
the pulse form of the first and second pulse is thus not only due to manipulation of the
propagation of the high-frequency pulse by the low-frequency, but also by differences
in diffraction.

The nonlinear propagation and scattering are generated by equal processes but
are different in the way that nonlinear propagation is an accumulative effect while
scattering is a local effect. In the last part of the thesis the difference between nonlinear
propagation and scattering is investigated using simulations, where the bandwidth of
the high-frequency pulse relative to the center frequency of the manipulation pulse is
varied. It is shown that when the high-frequency pulse is shorter in time than one
period of the low-frequency pulse, the nonlinear propagation and scattering becomes
different and the nonlinear scattering can be detected if the nonlinear propagation is
corrected for.

The correction of nonlinear propagation can be in the form of a filter, and a method
for estimating this filter is also presented in the last part. Based on statistical analysis
of the filter, it is shown that the average suppression of linear scattering using the
proposed correction filter, is dependent on the homogeneity of the relation between
the first and second pulse over the receive beam. Said in another way; if this relation is
not constant over the receive beam, the optimal correction for a given signal segment
is dependent on the unknown distribution of scatterers within the beam.

The level of suppression of linear scattering using the proposed filter method will
be dependent on the transmit beam setup. A simulation study where the effect of
aperture size relationship between the low- and high-frequency beams and f-number
of the high-frequency beam on the level of suppression of linear scattering is presented.
In order to achieve a high degree of homogeneity, the diffraction of the HF and LF
beams should be equal, which is not trivial to achieve in a medium with attenuation.
Choosing the aperture sizes in order for the fresnel numbers to be equal for the two
beams was thought to yield the optimal setup, but as attenuation affects the low and
high-frequency pulses differently, this is not necessarily true. The level of suppression
of linear scattering increases when the the high-frequency aperture is increased, making
the beam narrower, but the low-frequency aperture must also be increased accordingly.
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Introduction

Thor Andreas Tangen
Department of Engineering Cybernetics, NTNU

Among the general public, medical ultrasound is associated with imaging of the
unborn child in the womb of the mother, and imaging of the human heart. Though
these were some of the first applications of medical ultrasound, it is now a part of
routine diagnostic practice in many fields of medicine. The major strength of ultra-
sound is its ease of use, relatively low cost and real-time image acquisition, i.e. the
sonographer is provided the image while scanning the patient.

In screening for breast cancer, x-ray mammography is the primary tool, while
ultrasound is used in the follow up of suspicious findings in the mammograms. Mi-
cro calcifications detected in mammography are diagnostic indicators of pathological
changes in the breast [1]. Biopsies from the suspicious areas are performed where
ultrasound is used for guidance, since the biopsy needle can be visualized clearly in
the ultrasound image. Imaging of micro calcifications using ultrasound is crucial for
achieving a high degree of accuracy in the biopsy procedure. As the breast is composed
of heterogenous tissue, differentiating the micro calcifications from other specular re-
flectors in the image can be difficult, especially if the calcifications are not associated
with a mass [2]. In women with dense breast, x-ray mammography fails to detect mi-
cro calcifications, making MR and ultrasound the primary tool for investigating these
patients.

Nonlinear phenomena caught the attention of the ultrasound community after the
publications of Carstensen and Muir [3, 4] in 1980. Tissue harmonic imaging, which
utilizes the nonlinear accumulation of harmonics in the forward propagating pulse in
order to suppress pulse reverberations, is one of the most important developments
in diagnostic ultrasound since the introduction of Doppler ultrasound. Since then,
little development within nonlinear ultrasound has been seen except for some limited
interest in dual-frequency band ultrasound imaging.

Aim of thesis:
The work presented in this thesis is devoted to investigate how nonlinear scattering
from stiff particles embedded in soft tissue can be detected using dual-frequency band
ultrasound. In order to achieve this goal, the nonlinear propagation phenomena of
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1.1 Nonlinear ultrasound imaging

dual-frequency band ultrasound and their effect on suppression of linear scattering, as
well as the effect of transmit beamforming must be well understood.

In the introductory chapter a short review of nonlinear ultrasound imaging is given,
where the major applications of nonlinear ultrasound is presented. Further, a dual-
frequency band imaging technique developed at the Department of Circulation and
Medical Imaging, NTNU, coined SURF imaging is presented. This imaging technique
can be used to suppress reverberation noise and image nonlinear scattering from ultra-
sound contrast agents and possibly stiff particles embedded in soft tissue, like micro
calcifications. A short review of what has been presented in the literature on imaging of
micro calcifications then follows, before the contributions of this thesis are presented.

1.1 Nonlinear ultrasound imaging

In the nonlinear regime, the relative volume compression of tissue is modeled to have
a second order relationship to the applied pressure [5]

∂V

ΔV
≈ (1− βnκp)κp (1.1)

where ∂V is the volume compression of the material volume ΔV , κ is the compress-
ibility, p is the applied pressure, and βn is the nonlinearity parameter of the material.
Using this model for the relative volume compression, the nonlinear wave equation for
heterogenous tissue becomes

∇2p (r, t)− 1

c20 (r)

∂2p (r, t)

∂t2
+

βnaκa

c20 (r)

∂2p2 (r, t)
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−hp ⊗
t

1
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The scattering coefficients are then given as

σl (r) =
κf (r)

κa (r)

γ (r) =
ρf (r)

ρ (r)

σn (r) =
{
2βna (2 + σl)σl + βnf (1 + σl)

2
}
κa .

(1.4)

The squared pressure term on the left hand side of Equation (1.2) models the
generation of nonlinear forward propagation effects. The squaring of the pressure
generates harmonics of the center frequency of the forward propagating pulse. In
Figure 1.1(b), the pulse in figure 1.1(a) has propagated a distance of 20 mm in water,
and the nonlinear effect is clearly seen. The generation of nonlinear propagation effects
is accumulative and thus increases with depth. Attenuation increases with frequency
which counteracts the harmonic build-up.

(a) Linear non-distorted pulse (b) Nonlinear pulse

Figure 1.1: Nonlinear distortion

In harmonic imaging, the accumulation of higher harmonics with depth is used to
suppress reverberation noise and is most commonly known as tissue harmonic imaging
(THI) [6]. THI is based on the assumption that most of the reverberations originates
from the body wall which consists of layers of muscle and fat. For a focused transmit
beam, the pressure amplitude is low in the near field, which means that there is limited
accumulation of harmonics in this region. The reverberation echoes which has their
first scattering in the near field will contain low level of harmonic components, com-
pared to the echoes with their first echo in the focal zone of the transmit beam. The
generation of harmonics after the first scattering incident assumed to be insignificant.
By filtering out the higher harmonics on receive, the contrast between the reverber-
ations originating from the body wall and echoes from the region of interest will be
enhanced. Since attenuation increases with frequency, penetration is a problem for
THI. In addition, the transducers must have a high bandwidth to be able to transmit
fc and receive the higher harmonics, which limits the sensitivity of the method.

While THI utilizes the accumulation of nonlinear effects, contrast enhanced ultra-
sound (CEUS) utilizes the local nonlinear scattering from ultrasound contrast agents
in order to image micro-vascularization. The ultrasound contrast agents are gas filled
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1.1 Nonlinear ultrasound imaging

micro bubbles with diameters in the range 1-6 microns, and they typically have reso-
nance frequencies in the range 22 to 2 MHz. Commercially available contrast agents
has a dominant diameter distribution at around 5-6 microns, which correspond to res-
onance frequencies at about 2 to 3 MHz [7]. If insonified at, or near, their resonance
frequency, the bubbles will oscillate wildly, generating harmonics of the insonified fre-
quency. The tissue does not respond in the same way but forward propagation will
also accumulate harmonics which will decrease the specificity.

In a method known as Pulse Inversion (PI) [8], two pulses are transmitted in each
direction with the second pulse being the inverse of the first. Then by adding the
two received pulses, the linear scattered signal at fc will add destructively while the
harmonic signal at 2fc will add constructively, enhancing the contrast-to-tissue ratio
(CTR). Lately, more sophisticated methods using both PI and amplitude modulation
(AM) schemes has been proposed to further increase the CTR [9]. In AM, three
or more pulses are transmitted in each direction, where the phase and/or amplitude
of the transmitted pulse is altered over the sequence. This method utilizes the fact
that the third order nonlinearities has a signal component at the third harmonic as
well as the fundamental frequency [10]. By transmitting a sequence of pulses with
different amplitude and phase, the third order nonlinearities can be extracted while
suppressing the linear signal components. Since the nonlinear signal components are
in the fundamental band one can utilize the full sensitivity of the transducer compared
to PI.

Over the last decade several groups have investigated the use of dual-frequency
band methods for CEUS to improve the detection of micro bubbles to that of AM
and PI. AM and PI methods works well for transmit frequencies close to that of
the resonance frequency of the bubbles, while the dual-frequency methods aim to
increase the imaging frequency. One of the first to propose such a method was Deng
et. al. [11] and this has later been investigated by several groups [12–15]. In general
these methods use a low-frequency pulse to manipulate the bubble while using a high-
frequency pulse to image the bubble. The two pulses are overlapping in time, and the
low-frequency pulse manipulates the radius and scattering properties of the bubble
while the scattering from tissue is not affected in the same way. Dual-frequency
band methods also utilizes other nonlinear effects than the resonant behavior of the
bubble, thus making CEUS for higher imaging frequencies possible [13]. The frequency
difference between the low-frequency and high-frequency pulse for these methods is in
the range 1:7-20.

Dual-frequency band methods has also been applied for estimating the nonlinear
parameter B/A in tissues and liquids [16–19]. The B/A parameter varies over the
range 4 (blood) to 6.2 (fat) [20] in biological tissue. In Refs. [16, 17], the amplitude
of the signal component at the difference frequency of the low and high-frequency
pulses is used to estimate the nonlinearity parameter. They propose a computed
tomography method in order to be able to correct for the attenuation. Fukukita et.
al. [19] utilizes the compression/expansion of the high-frequency pulse which travels on
the negative or positive spatial gradient of the low-frequency pulse in order to estimate
the nonlinearity parameter. They propose a through transmission method, and also
here the attenuation must be corrected for. None of the proposed methods has made

14

1.1 Nonlinear ultrasound imaging

micro bubbles with diameters in the range 1-6 microns, and they typically have reso-
nance frequencies in the range 22 to 2 MHz. Commercially available contrast agents
has a dominant diameter distribution at around 5-6 microns, which correspond to res-
onance frequencies at about 2 to 3 MHz [7]. If insonified at, or near, their resonance
frequency, the bubbles will oscillate wildly, generating harmonics of the insonified fre-
quency. The tissue does not respond in the same way but forward propagation will
also accumulate harmonics which will decrease the specificity.

In a method known as Pulse Inversion (PI) [8], two pulses are transmitted in each
direction with the second pulse being the inverse of the first. Then by adding the
two received pulses, the linear scattered signal at fc will add destructively while the
harmonic signal at 2fc will add constructively, enhancing the contrast-to-tissue ratio
(CTR). Lately, more sophisticated methods using both PI and amplitude modulation
(AM) schemes has been proposed to further increase the CTR [9]. In AM, three
or more pulses are transmitted in each direction, where the phase and/or amplitude
of the transmitted pulse is altered over the sequence. This method utilizes the fact
that the third order nonlinearities has a signal component at the third harmonic as
well as the fundamental frequency [10]. By transmitting a sequence of pulses with
different amplitude and phase, the third order nonlinearities can be extracted while
suppressing the linear signal components. Since the nonlinear signal components are
in the fundamental band one can utilize the full sensitivity of the transducer compared
to PI.

Over the last decade several groups have investigated the use of dual-frequency
band methods for CEUS to improve the detection of micro bubbles to that of AM
and PI. AM and PI methods works well for transmit frequencies close to that of
the resonance frequency of the bubbles, while the dual-frequency methods aim to
increase the imaging frequency. One of the first to propose such a method was Deng
et. al. [11] and this has later been investigated by several groups [12–15]. In general
these methods use a low-frequency pulse to manipulate the bubble while using a high-
frequency pulse to image the bubble. The two pulses are overlapping in time, and the
low-frequency pulse manipulates the radius and scattering properties of the bubble
while the scattering from tissue is not affected in the same way. Dual-frequency
band methods also utilizes other nonlinear effects than the resonant behavior of the
bubble, thus making CEUS for higher imaging frequencies possible [13]. The frequency
difference between the low-frequency and high-frequency pulse for these methods is in
the range 1:7-20.

Dual-frequency band methods has also been applied for estimating the nonlinear
parameter B/A in tissues and liquids [16–19]. The B/A parameter varies over the
range 4 (blood) to 6.2 (fat) [20] in biological tissue. In Refs. [16, 17], the amplitude
of the signal component at the difference frequency of the low and high-frequency
pulses is used to estimate the nonlinearity parameter. They propose a computed
tomography method in order to be able to correct for the attenuation. Fukukita et.
al. [19] utilizes the compression/expansion of the high-frequency pulse which travels on
the negative or positive spatial gradient of the low-frequency pulse in order to estimate
the nonlinearity parameter. They propose a through transmission method, and also
here the attenuation must be corrected for. None of the proposed methods has made

14

1.1 Nonlinear ultrasound imaging

micro bubbles with diameters in the range 1-6 microns, and they typically have reso-
nance frequencies in the range 22 to 2 MHz. Commercially available contrast agents
has a dominant diameter distribution at around 5-6 microns, which correspond to res-
onance frequencies at about 2 to 3 MHz [7]. If insonified at, or near, their resonance
frequency, the bubbles will oscillate wildly, generating harmonics of the insonified fre-
quency. The tissue does not respond in the same way but forward propagation will
also accumulate harmonics which will decrease the specificity.

In a method known as Pulse Inversion (PI) [8], two pulses are transmitted in each
direction with the second pulse being the inverse of the first. Then by adding the
two received pulses, the linear scattered signal at fc will add destructively while the
harmonic signal at 2fc will add constructively, enhancing the contrast-to-tissue ratio
(CTR). Lately, more sophisticated methods using both PI and amplitude modulation
(AM) schemes has been proposed to further increase the CTR [9]. In AM, three
or more pulses are transmitted in each direction, where the phase and/or amplitude
of the transmitted pulse is altered over the sequence. This method utilizes the fact
that the third order nonlinearities has a signal component at the third harmonic as
well as the fundamental frequency [10]. By transmitting a sequence of pulses with
different amplitude and phase, the third order nonlinearities can be extracted while
suppressing the linear signal components. Since the nonlinear signal components are
in the fundamental band one can utilize the full sensitivity of the transducer compared
to PI.

Over the last decade several groups have investigated the use of dual-frequency
band methods for CEUS to improve the detection of micro bubbles to that of AM
and PI. AM and PI methods works well for transmit frequencies close to that of
the resonance frequency of the bubbles, while the dual-frequency methods aim to
increase the imaging frequency. One of the first to propose such a method was Deng
et. al. [11] and this has later been investigated by several groups [12–15]. In general
these methods use a low-frequency pulse to manipulate the bubble while using a high-
frequency pulse to image the bubble. The two pulses are overlapping in time, and the
low-frequency pulse manipulates the radius and scattering properties of the bubble
while the scattering from tissue is not affected in the same way. Dual-frequency
band methods also utilizes other nonlinear effects than the resonant behavior of the
bubble, thus making CEUS for higher imaging frequencies possible [13]. The frequency
difference between the low-frequency and high-frequency pulse for these methods is in
the range 1:7-20.

Dual-frequency band methods has also been applied for estimating the nonlinear
parameter B/A in tissues and liquids [16–19]. The B/A parameter varies over the
range 4 (blood) to 6.2 (fat) [20] in biological tissue. In Refs. [16, 17], the amplitude
of the signal component at the difference frequency of the low and high-frequency
pulses is used to estimate the nonlinearity parameter. They propose a computed
tomography method in order to be able to correct for the attenuation. Fukukita et.
al. [19] utilizes the compression/expansion of the high-frequency pulse which travels on
the negative or positive spatial gradient of the low-frequency pulse in order to estimate
the nonlinearity parameter. They propose a through transmission method, and also
here the attenuation must be corrected for. None of the proposed methods has made

14

1.1 Nonlinear ultrasound imaging

micro bubbles with diameters in the range 1-6 microns, and they typically have reso-
nance frequencies in the range 22 to 2 MHz. Commercially available contrast agents
has a dominant diameter distribution at around 5-6 microns, which correspond to res-
onance frequencies at about 2 to 3 MHz [7]. If insonified at, or near, their resonance
frequency, the bubbles will oscillate wildly, generating harmonics of the insonified fre-
quency. The tissue does not respond in the same way but forward propagation will
also accumulate harmonics which will decrease the specificity.

In a method known as Pulse Inversion (PI) [8], two pulses are transmitted in each
direction with the second pulse being the inverse of the first. Then by adding the
two received pulses, the linear scattered signal at fc will add destructively while the
harmonic signal at 2fc will add constructively, enhancing the contrast-to-tissue ratio
(CTR). Lately, more sophisticated methods using both PI and amplitude modulation
(AM) schemes has been proposed to further increase the CTR [9]. In AM, three
or more pulses are transmitted in each direction, where the phase and/or amplitude
of the transmitted pulse is altered over the sequence. This method utilizes the fact
that the third order nonlinearities has a signal component at the third harmonic as
well as the fundamental frequency [10]. By transmitting a sequence of pulses with
different amplitude and phase, the third order nonlinearities can be extracted while
suppressing the linear signal components. Since the nonlinear signal components are
in the fundamental band one can utilize the full sensitivity of the transducer compared
to PI.

Over the last decade several groups have investigated the use of dual-frequency
band methods for CEUS to improve the detection of micro bubbles to that of AM
and PI. AM and PI methods works well for transmit frequencies close to that of
the resonance frequency of the bubbles, while the dual-frequency methods aim to
increase the imaging frequency. One of the first to propose such a method was Deng
et. al. [11] and this has later been investigated by several groups [12–15]. In general
these methods use a low-frequency pulse to manipulate the bubble while using a high-
frequency pulse to image the bubble. The two pulses are overlapping in time, and the
low-frequency pulse manipulates the radius and scattering properties of the bubble
while the scattering from tissue is not affected in the same way. Dual-frequency
band methods also utilizes other nonlinear effects than the resonant behavior of the
bubble, thus making CEUS for higher imaging frequencies possible [13]. The frequency
difference between the low-frequency and high-frequency pulse for these methods is in
the range 1:7-20.

Dual-frequency band methods has also been applied for estimating the nonlinear
parameter B/A in tissues and liquids [16–19]. The B/A parameter varies over the
range 4 (blood) to 6.2 (fat) [20] in biological tissue. In Refs. [16, 17], the amplitude
of the signal component at the difference frequency of the low and high-frequency
pulses is used to estimate the nonlinearity parameter. They propose a computed
tomography method in order to be able to correct for the attenuation. Fukukita et.
al. [19] utilizes the compression/expansion of the high-frequency pulse which travels on
the negative or positive spatial gradient of the low-frequency pulse in order to estimate
the nonlinearity parameter. They propose a through transmission method, and also
here the attenuation must be corrected for. None of the proposed methods has made

14



Introduction

Figure 1.2: SURF pulse complex consisting of a high-frequency imaging pulse(dashed)
and a low-frequency manipulation pulse(solid)

it into the clinic.
In vibroacoustography [21–23], two confocal beams with slightly different frequency

(10-50 kHz) is used to image the mechanical properties of tissue. The two beams
overlap in the focal region, and the nonlinear interaction between the two beams
generates an oscillation at the difference frequency. The emitted acoustic signal due
to this oscillation is then recorded using a sensitive hydrophone. The phase and
amplitude of the recorded signal is dependent on the mechanical properties of the tissue
and a qualitative image of the tissue stiffness can be generated. In order to acquire a
complete 2D image, a raster scan over the region of interest must be performed. The
detection of micro calcifications in breasts and imaging of calcified arteries are among
the numerous suggested applications of this technique.

1.2 SURF imaging

SURF (Second order UltRasound Field) imaging is a dual-frequency band technique
developed at the Department of Circulation and Medical Imaging at the Norwegian
University of Science and technology [24]. The method utilizes pulse complexes con-
sisting of a low-frequency (LF) manipulation pulse and a high-frequency (HF) imaging
pulse. An example pulse complex is shown in Figure B.1, where the HF pulse is cen-
tered at the peak of the LF pulse oscillation. The frequency relationship between the
HF and LF is in the range 1:8-10. One or more pulse complexes are transmitted in
each beam direction where the phase and/or amplitude of the LF pulse is altered over
the pulse sequence in order to achieve the wanted nonlinear effect. The LF manipula-
tion pulse manipulates the forward propagation and local scattering of the HF imaging
pulse, and applications of SURF imaging utilizes one or both of these effects.
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Figure 1.2: SURF pulse complex consisting of a high-frequency imaging pulse(dashed)
and a low-frequency manipulation pulse(solid)
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1.2 SURF imaging

The nonlinear interaction between the HF and LF pulse will generate signal compo-
nents at the sum (fHF+fLF ) and difference (fHF−fLF ) frequencies of the HF and LF,
where the generated signal components will be dependent on the phase and amplitude
of the LF pulse. In forward propagation, the nonlinear effects are accumulative, while
for scattering they are a local effect. When the bandwidth of the HF pulse is large
compared to the center frequency of the LF pulse, the nonlinear forward propagation
effects can be approximated to be a propagation delay and compression/expansion of
the HF pulse relative to a non-manipulated HF pulse. The average LF pressure over
the HF pulse, pma, will generate an accumulative nonlinear propagation delay

τn (z) = −
∫ z

0

ds

c0
βnκpma (s) . (1.5)

The average spatial LF pressure gradient Δpm over the HF pulse will after propagating
a distance Δz, produce a change in wavelength of the HF pulse of

ΔλHF (Δz) = c0βnκΔpmΔz , (1.6)

which will produce a change in center frequency of

fHF (z +Δz) =
λHF

λHF +ΔλHF
fHF (z) (1.7)

in a loss-less medium. When the center frequency changes, so does diffraction of the
beam. HF pulses transmitted at different phases and amplitudes of the LF pulse will
then have different diffraction, introducing pulse form differences other than a pure
delay and frequency shift. Imaging techniques based on the SURF imaging method
has been developed for suppression of pulse reverberations [25] and imaging of contrast
agents [12, 14].

For reverberation suppression, the nonlinear forward propagation effects are used
to suppress reverberations originating from strong inhomogeneities in body wall. By
careful design of the dual-frequency band transmit beams, the nonlinear manipulation
of the HF pulse by the LF pulse, can be limited for shallow depths, while increasing
rapidly after a certain depth. By transmitting two pulse complexes in each beam di-
rection where the phase of the LF is shifted 180 degrees from the first to the second
pulse, and then subtracting the two received signals, pulse reverberations can be sup-
pressed. Echoes with their first reflection close to the transducer will have experienced
little manipulation and will thus be strongly suppressed. This is somewhat similar to
THI, but here imaging is performed at the fundamental frequency and there is greater
flexibility in the design of transmit beams.

For imaging of ultrasound contrast agents, the local nonlinear scattering is used in
order to increase the contrast-to-tissue ratio. In this application two pulse complexes
are transmitted in each beam direction where the LF phase is shifted 180 degrees
and the applied LF pressure is in the range 50-100 kPa for a 1:10 MHz setup. After
propagating 20 mm, the nonlinear propagation delay of the HF pulse will be in the
range 3-5 ns between the received signal from the first and second pulse complex. Since
the pressure is low, the frequency shift is neglected and only the nonlinear propagation
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Introduction

delay is estimated and corrected for before the two received signals are subtracted. The
LF pulse, which typically has a frequency below the resonance frequency of the bubble,
manipulates the radius of the bubble which changes its resonant behavior. The bubble
is thus imaged by the HF pulse at two different states, which will create a difference
in the backscattered signal from the two pulses and provide a means of detection of
the bubble since the surrounding tissue is not affected in the same way.

Another type of nonlinear scattering stems from inhomogeneities in the nonlinear-
ity parameters, βn, κ. From Equation (1.2) and (1.4) it is seen that strong inhomo-
geneities will generate nonlinear scattering. Such inhomogeneities is seen e.g.for stiff
particles embedded in soft tissue, like micro calcifications. The local nonlinear scat-
tering will generate signal components at the sum and difference frequencies of the LF
and HF due to the nonlinear interaction between the LF and HF pulse. The polarity
of the nonlinear scattering will thus be dependent of the polarity of the LF pulse and
the amplitude of the scattering will be proportional to the LF pressure amplitude.
For a LF pressure of 1MPa, the nonlinear scattering from a micro calcification par-
ticle is indicated to be 30 dB lower than that from a muscle/fat interface. Thus, in
order to achieve significant nonlinear scattering, a high LF pressure should be applied.
The high manipulation pressure will generate significant nonlinear propagation effects
which will have to be estimated and corrected for in order to detect the nonlinear
scattering. The work presented in this thesis focuses on how the nonlinear scattering
can be imaged using SURF imaging.

1.3 Imaging of Micro Calcifications

The detection of micro calcifications is of great importance in the early diagnosis of
breast tumors. Worldwide, breast cancer is the second most common type of cancer af-
ter lung cancer [26] and the fifth most common cause of cancer deaths [27], and in 2005
caused 502,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths) [27].
Micro calcifications are associated both with benign and malignant tumors and their
size is less than 500 μm. Calcifications of greater size are coined macro calcifications
and are usually not associated with cancer. Calcifications are also found in other types
of cancer like in the thyroid and prostate gland [28, 29] though they are not associated
with malignancy for prostate cancer [30].

The only accepted imaging modality for screening for breast cancer to date is x-
ray mammography [31]. Many countries have screening programs for women over
the age of 40 [32], where the women are screened annually or semi- annually. The
micro calcifications appear as white dots on the mammography image, and based
on the shape, number and distribution, some indication of malignancy can be given,
but usually biopsies are needed for confirmation. There exist several methods for
performing biopsies using x-ray, like stereotactic and wire localized biopsy, but in an
increasing number of cases ultrasound is used for guiding the biopsy [33]. Ultrasound
is arguably the most accurate method of performing core needle biopsies. The needle is
shown in the image in real-time, providing better feedback on position and the patient
is not exposed to unnecessary x-ray radiation associated with mammographic biopsy
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1.3 Imaging of Micro Calcifications

techniques [34, 35].
Ultrasound has been suggested as an alternative screening method to mammogra-

phy. The criteria for a screening method is that it must have high sensitivity for small
breast cancers, high specificity and be cost effective, safe and acceptable to the popula-
tion being screened [36]. Also, a good screening method would reduce morbidity while
having a low false alarm rate and being relatively cheap [37]. To replace mammog-
raphy ultrasound has to show at least the same sensitivity for small and pre-invasive
breast cancers, including detection of clinically occult solid mass lesions, architectural
distortions and micro calcifications [36].

Detection of micro calcifications by mammography in young women is made diffi-
cult by the radiologically dense breast, thus limiting the usefulness of x-ray mammogra-
phy. For this group of women, ultrasound is the imaging method of first choice [38, 39].

The feasibility of detecting micro calcifications using conventional B-mode imaging
has been investigated over the last 20 year both in vivo [2, 40, 41] and in vitro [42] as
well as in simulations [43, 44].

In [42] glass beads in the size range 110-460 μm are embedded in agar solutions with
varying level of ambient background scattering. It is shown that when the glass beads
are situated in low echogenic areas, glass beads of 110 μm can be detected robustly.
When the beads are situated in areas with a higher level of backscatter, even the
460 μm could not be detected. The scattered signal from the glass beads are masked
by the scattering from the background since it exhibits the same echogenicity. This
demonstrates one of the major limitations with conventional ultrasound; speckle noise
reduces the ability to detect micro calcifications. Though linear arrays with higher
frequency and larger bandwidth in addition to new methods for speckle reduction has
been introduced since this study, micro calcifications are not detected robustly when
the particles are not localized in low hypo-echoic or iso-echoic masses [2].

In [41], 84 patients with breast cancer where investigated with mammography and
ultrasound. In this study it is reported a sensitivity of 95%, specificity of 88% and
accuracy of 91% in detecting micro calcifications by ultrasound, using mammography
as a gold standard. The patients in this study had malignant tumors and the calci-
fications where associated with hypo-echoic masses, which facilitates the detection of
the calcifications by ultrasound.

While the results in [41] are encouraging, the study performed by Soo et. al. [2]
is not as positive; Only 23% of the calcifications detection by mammography where
detected by ultrasound. In this study the patients had calcifications detected by
mammography, without identifiable masses. In the cases where the calcifications where
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Introduction

detected in 78.4% of the cases. In most of the cases (81.3%) where the calcifications
where missed, the image quality was graded as fair, while it was graded good for
most of the cases (72.4%) where the calcifications were detected. Problems in tissue
sample preparation or image artifacts degrade image quality. Though the method
shows promising results, the scanning time of current implementations is 7 minutes
for a 5x5 cm area, which should be minimized for the method to be suited for routine
clinical application [46]. The method also suffers from artifacts due standing waves
of the transmitted CW beams and multipath travel of the emitted acoustic signal.
Methods for decreasing the scan time and suppressing multipath signals has been
proposed [47, 48].

Toshiba Medical Corporation (Otawara, Japan) has recently released a method
coined MicroPureTM. The method is not published, but to the author’s knowledge
a method coined DTHI [49] is used to suppress speckle and then an advanced image
filter is used in order to detect the calcifications. DTHI utilizes dual-frequency pulse
complexes with a relatively small difference between the two frequencies, e.g. 6+9
MHz, and then the image is formed using the signal components at the sum and dif-
ference frequencies. To the author’s knowledge, no clinical studies has been presented
on this method to date.

1.4 Summary of thesis

This thesis focuses on the investigation and understanding of nonlinear propagation
effects and how they affect the suppression of nonlinear scattering. It is also shown
how nonlinear scattering is different from nonlinear propagation.

At the time when the work with this thesis started, the first dual-frequency band
annular array prototype based on a dual stack design was available. This array was
designed to replace the annular arrays where the LF element was a confocal ring
placed outside the HF elements. This new array was used to investigate the nonlinear
propagation effects in a focused system where the LF and HF was transmitted from a
common surface. Until then, the length of the HF pulse was assumed to be adequately
short compared to the LF pulse period, so that nonlinear propagation effects could be
approximated as a nonlinear propagation delay. Especially in the application of imag-
ing ultrasound contrast agents, where the manipulation pressure is low, the nonlinear
propagation effects has been approximated to be a propagation delay.

The first measurements with this new array showed that the nonlinear propaga-
tion effects would, in addition to the nonlinear delay, produce significant compres-
sion/expansion of the HF pulse, i.e. a frequency shift compared to a non-manipulated
HF pulse. The results from these measurements are presented in Paper A. It is also
shown that the size relationship of the LF and HF apertures affect the accumulation
of nonlinear propagation effects.

In the time after these findings, work was initiated to build a new dual-frequency
band system with linear arrays and real time imaging. Until then, a GE VingMed
System5 (GE VingMed, Horten, Norway) with annular arrays was used to record data
which was later processed off line. The research group which the author is a member
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1.4 Summary of thesis

of, has in collaboration with Ultrasonix Medical Corp. (Vancouver, BC, Canada) and
Norbit (Trondheim, Norway) modified a Ultrasonix SonixRP system to make it ca-
pable of performing real-time dual-frequency band imaging. This modification work
has included design, manufacturing and integration of a low-frequency transmitter,
design of dual-frequency band linear arrays and implementation of signal processing
algorithms. The author has been responsible for implementation of the signal pro-
cessing algorithms specific to the dual-frequency band technique as well as standard
signal processing routines like IQ demodulation, envelope detection and compression
and transmit beamforming for the low-frequency pulse. The software had to be inte-
grated with the existing imaging software on the scanner, which was achieved through
a plug-in interface implemented by Ultrasonix. The author spent 1300 hours during
the PhD period on implementation and integration of the software as well as general
testing and getting the system ready for clinical trials.

When this new system was ready for use, one would like to determine what kind of
suppression of linear scattering could be achieved using an unfocused LF beam together
with a focused HF beam. Such a setup would provide little variation of the LF pressure
over the HF imaging region and would be interesting for imaging of nonlinear scattering
both from contrast agents and stiff particles in soft tissue. These investigations showed
that the suppression of linear scattering decreased with increasing LF manipulation
pressure and that in addition to the nonlinear delay there was a significant amplitude
difference between the first and second pulse. This amplitude difference was thought
the be caused by varying LF manipulation pressure over the HF beam since they where
not confocal. As the LF pulse manipulates the speed of sound experienced by the HF,
this variation can be seen as a kind of aberration. The aberration in this beam setup
distorts the spherical focusing and thus shifts the focus of the beam. Since the LF is
inverted from the first to the second pulse, the change in focus will be different and the
diffraction of the beams becomes different. The suppression achieved with this kind
of setup would not be adequate for imaging nonlinear scattering from stiff particles.
The results from these measurements are presented in Paper B.

These findings triggered investigations on different beamforming strategies for dual-
frequency band imaging. Three different strategies was investigated in the water tank;
1. Focused LF + Focused HF, 2. Unfocused LF + Focused HF and 3. Unfocused
LF + Unfocused HF. It was shown that the nonlinear propagation effects would make
the diffraction of the first and second pulse different, it is not just the accumulation
of nonlinear propagation effects which contributes to the pulse form distortion. The
relation between the LF pressure and pressure gradient experienced by the HF pulse
and the nonlinear propagation delay and frequency shift respectively, is demonstrated.
The delay and frequency shift could be predicted well until the diffraction becomes
significant. The results from these measurements are presented in Paper C.

The investigations so far indicated that correcting only for the nonlinear propaga-
tion delay does not provide adequate suppression of nonlinear scattering, one should
also correct for pulse form distortion due to accumulated nonlinear propagation ef-
fects other than delay, and differences in diffraction. These difference between the
first and second pulse can be modeled as a filter, and a method for estimating this
filter based on a minimum least squares method was proposed. When analyzing the
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not confocal. As the LF pulse manipulates the speed of sound experienced by the HF,
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fects other than delay, and differences in diffraction. These difference between the
first and second pulse can be modeled as a filter, and a method for estimating this
filter based on a minimum least squares method was proposed. When analyzing the
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statistical properties of this filter, it was discovered that in order to achieve optimal
suppression using the proposed estimation method, the relationship of the frequency
spectrums between the first and second pulse should be constant over the HF beam. A
simulation study was then initiated with the purpose to investigate how the transmit
beams should be designed in order to satisfy the requirements set by the estimation
method, and to investigate what level of suppression could be achieved with existing
transducers. This simulation study is presented in Paper D.

The process which generates the nonlinear propagation effect and the nonlinear
scattering is equal according to the nonlinear wave equation for heterogenous tissue.
The difference is that the nonlinear propagation effects are accumulative while the
nonlinear scattering is a local effect. In Paper D it is shown through simulations how
these two effects are different and what conditions must be satisfied for the two effects
to be separable.

Paper A: Nonlinear propagation acoustics of dual-frequency wide-
band excitation pulses in a focused ultrasound system

In this paper an annular two layer dual-frequency band array is demonstrated. The
nonlinear propagation effects in a focused ultrasound system are demonstrated in
vitro in a water tank setup. When the HF pulse is short compared to the LF pulse the
nonlinear propagation effects can be approximated by a nonlinear propagation delay
and a frequency shift. The average LF pressure over the HF pulse produces a delay
while the LF pressure gradient produces a compression/expansion of the HF pulse, i.e.
a shift in frequency. It is shown how the nonlinear propagation effects increase with
increasing LF pressure, and how the accumulation of propagation effects are dependent
on the array configuration.

The work was a joint effort with Post. Doc. Svein-Erik M̊asøy. Svein-Erik M̊asøy
conducted most of the writing while the experiments theoretical background was done
in collaboration between Svein-Erik M̊asøy and the author.

This paper was published in the Journal of the Acoustical Society of America
(JASA), Vol 128, No. 5, 2010.

Paper B: Suppression of linear scattering for a dual-frequency
band imaging technique

In the second paper, the level of suppression of linear scattering is investigated using
a unfocused LF beam together with a focused HF beam, and where the nonlinear
propagation delay is estimated and corrected for. This beam setup is of interest since
it yields an even LF pressure over the whole imaging range of the HF. For increasing
LF pressure the level of suppression of linear scattering decreases. It is shown that
there is an increasing amplitude difference between the two HF pulses transmitted at
opposite polarities of the LF pulse. This amplitude difference can be due to nonlinear
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1.4 Summary of thesis

distortion of the HF pulse or nonlinear aberration due to the fact the LF pressure
varies over the HF beam.

This paper is under review with IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control.

Paper C: Comparison of beamforming strategies for dual-frequency
band imaging using a large frequency separation

In the third paper different beamforming strategies for dual-frequency band imaging
is investigated. The three different strategies are; 1. Unfocused LF + Focused HF,
2. Focused LF + Focused HF, and 3. Unfocused LF + Unfocused HF. Pulses along
the beam axis are recorded in the water tank and the nonlinear propagation delay
and frequency shift is estimated. The nonlinear propagation delay and frequency shift
is produced by the average experienced LF pressure and LF pressure gradient over
the HF pulse, respectively. The experienced LF pressure and pressure gradient can
be estimated from the recorded pulses and the delay and frequency shift is computed
based on these estimates. It is shown that there is good correspondence between
the estimated and predicted values of the delay and frequency shift until diffraction
becomes significant. The diffraction is dependent on the frequency of the HF pulse and
when the frequency changes, so does the diffraction. Nonlinear abberation is shown
to shift the focused depth of the beam and thus also the diffraction.

This paper is under review with IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control.

Paper D: Imaging of Nonlinear Scattering using Dual-frequency
Band Ultrasound

In the last part of the thesis, nonlinear scattering is investigated in more detail. The
nonlinear propagation effects are generated by the same process which generates non-
linear scattering, it is the pressure squared. The difference is that the nonlinear propa-
gation effects are accumulative while the scattering is local. The nonlinear interaction
between the HF and LF pulse generates frequency bands at the sum and difference fre-
quencies of the LF and HF and the polarity of these signal components are dependent
on the polarity of the LF. Thus by transmitting two dual-frequency band complexes
in each direction, the nonlinear scattering can be detected if it is separable from the
nonlinear propagation. If the bandwidth of the HF is less than the center frequency
of the LF pulse, the sum and difference bands will not overlap with the fundamental
band and the accumulation of nonlinear propagation effects is equal to the nonlinear
scattering and the effects are not separable.

A method for estimating the nonlinear propagation is proposed an analyzed sta-
tistically. A performance measure for the proposed method is presented. In order to
achieve optimal suppression the relationship between the nonlinear pulse distortion for
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Introduction

the first and second pulse complex must be spatially invariant over the transmit/receive
beam of the HF. A simulation study is presented where the effect of f-number and size
relationship between the HF and LF aperture on the performance of the estimator is
investigated.

This paper is being prepared for submission, where results presented in chapter D.3
will be submitted to the Journal of the Acoustical Society of America (JASA) and
the results from chapter D.4 will be submitted to IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control.

Discussion and Conclusion

From the investigations carried out in this thesis it has become clear that when using
a frequency relationship between the HF and LF of 1:8-10, the nonlinear propaga-
tion effects cannot be approximated to be only a propagation delay but also includes
distortion of the pulse form, especially for imaging of nonlinear scattering from stiff
particles where a high LF manipulation pressure must be applied. When the pulse
forms are distorted the diffraction of the beam becomes different which will introduce
more differences between the pulses which has propagated on different phases of the
LF pulse.

Imaging of nonlinear scattering from stiff particles embedded in soft tissue has
proven to be challenging. The nonlinear scattering is weak compared to the linear
scattering, requiring accurate estimation and correction of the nonlinear propagation
effects. Unless the HF beams are homogenous over the receive beam, the correction
required to compensate for the nonlinear propagation for a given signal segment is
dependent on the position of the scatterers within the beam. By using a method for
estimating the correction filter by finding the filter which is optimal on average, one
is then sensitive to the scatterer distribution which is unknown. This problem can
be solved by designing beams which are sufficiently homogenous, or developing new
estimators for the correction filters which are not based on statistical methods. The
former has been shown to be difficult for available linear arrays, and the latter should
be investigated in future work.

The transmit beamforming can have a great influence on the accumulation of non-
linear propagation effects and time should be spent on designing the dual-frequency
transmit beams in order to optimize the imaging application.

Much time was spent during this PhD to develop the new dual-frequency band sys-
tem. With limited time and funding, this left little time for experiments demonstrating
nonlinear scattering from micro calcifications. This thesis has therefore focused on in-
vestigating how the dual-frequency nonlinear propagation and beamforming affects the
suppression of linear scattering, and how nonlinear scattering can be detected. It is
shown, using simulations that with available linear arrays, it will be difficult to image
nonlinear scattering using the proposed methods. With this knowledge, future work
should focus on setting up experiments for demonstrating nonlinear scattering in the
lab and new arrays should be designed where the new knowledge of dual-frequency
beamforming is incorporated.
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[25] S. Nasholm, R. Hansen, S.-E. Måsøy, T. Johansen, and B. Angelsen, “Transmit
beams adapted to reverberation noise suppression using dual-frequency SURF
imaging,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, vol. 56, no. 10, pp. 2124–2133, 2009.

[26] S. B. W. and K. P, eds., World Cancer report. WHO, IARCPress. Lyon, 2003.

[27] “World health organization, fact sheet no. 297: Cancer.”
http://www.who.int/mediacentre/factsheets/fs297/en/index.html, 2006.

[28] J. D. Iannuccilli, J. J. Cronan, and J. M. Monchik, “Risk for malignancy of thyroid
nodules as assessed by sonographic criteria: the need for biopsy,” Journal of
Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound
in Medicine, vol. 23, pp. 1455–1464, Nov. 2004. PMID: 15498910.

[29] S. Egawa, T. M. Wheeler, D. R. Greene, and P. T. Scardino, “Unusual hyperechoic
appearance of prostate cancer on transrectal ultrasonography,” British Journal
of Urology, vol. 69, pp. 169–174, Feb. 1992. PMID: 1311217.

[30] F. T. Abul, N. Arun, M. A. Abu-Assi, and A. M. Asbeutah, “Transrectal ul-
trasound guided biopsy for detecting prostate cancer: can random biopsies be
reduced using the 4-dimensional technique?,” International Urology and Nephrol-
ogy, vol. 39, no. 2, pp. 517–524, 2007. PMID: 17308874.

[31] A. Karellas and S. Vedantham, “Breast cancer imaging: A perspective for the next
decade,” Medical Physics, vol. 35, pp. 4878–4897, Nov. 2008. PMID: 19070222
PMCID: 2673595.

[32] J. G. Elmore, K. Armstrong, C. D. Lehman, and S. W. Fletcher, “Screening for
breast cancer,” JAMA, vol. 293, pp. 1245–1256, Mar. 2005.

[33] L. Liberman, T. L. Feng, D. D. Dershaw, E. A. Morris, and A. F. Abramson,
“US-guided core breast biopsy: use and cost-effectiveness,” Radiology, vol. 208,
pp. 717–723, Sept. 1998. PMID: 9722851.

[34] S. H. Parker and F. Burbank, “A practical approach to minimally invasive breast
biopsy,” Radiology, vol. 200, pp. 11–20, July 1996. PMID: 8657896.

29

Introduction

[22] M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-acoustic tissue
mammography,” IEEE Transactions on Medical Imaging, vol. 21, pp. 1–8, Jan.
2002. PMID: 11838661.

[23] A. Alizad, D. H. Whaley, J. F. Greenleaf, and M. Fatemi, “Potential applications
of vibro-acoustography in breast imaging,” Technology in Cancer Research &
Treatment, vol. 4, pp. 151–158, Apr. 2005. PMID: 15773784.

[24] R. Hansen, S. Masoy, T. F. Johansen, and B. A. Angelsen, “Utilizing dual fre-
quency band transmit pulse complexes in medical ultrasound imaging,” The Jour-
nal of the Acoustical Society of America, vol. 127, pp. 579–587, Jan. 2010.
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Svein-Erik Måsøy1, Thor Andreas Tangen2, Øyvind Standal1, Jochen
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Abstract

In this article, acoustic propagation effects of dual-frequency wide-band excitation
pulses in a focused ultrasound system are demonstrated in vitro. A designed and
manufactured dual-frequency band annular array capable of transmitting 0.9/7.5MHz
center frequency wide-band pulses was used for this purpose. The dual-frequency
band annular array, has been designed using a bi-layer piezo-electric stack. Water
tank measurements demonstrate the function of the array by activating the low- and
high-frequency layers individually and simultaneously. The results show that the ar-
ray works as intended. Activating the low- and high-frequency layers individually,
results in less than -50 dB signal level from the high- and low-frequency layers respec-
tively. Activating both layers simultaneously, produce a well defined dual-frequency
pulse. The presence of the low-frequency pulse leads to compression, expansion, and
a time delay of the high-frequency pulse. There is a phase shift between the low-
and high-frequency pulse as it propagates from the array to the focus. This makes
the latter described effects also dependent on the array configuration. By varying the
low-frequency pressure, a shift of up to 0.5MHz in center frequency of a 8.0MHz trans-
mitted high-frequency pulse is observed at the array focus. The results demonstrate
the high propagation complexity of dual-frequency pulses.
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A.1 Introduction

A.1 Introduction

The goal of this article is to present measurements detailing the complex nonlinear
propagation acoustics of dual-frequency wide-band excitation pulses with a large sepa-
ration in frequency, in a focused ultrasound system. For this purpose, a dual-frequency
band annular array has been developed with a bi-layer piezo-electric transducer de-
signed to transmit dual-frequency band pulses simultaneously using the same acoustic
surface.

The authors of this article have developed a method named Second-order UltRa-
sound Field imaging, abbreviated SURF imaging. [1–5] The SURF imaging technique
is based on transmission of dual-frequency band pulses from the same acoustic source
using a low-frequency (LF) manipulation pulse and a high-frequency (HF) imaging
pulse, typically having a frequency separation of greater than 1:7. The two pulses are
wide band, usually with a length less than 4 periods. The purpose of the LF pulse
is to manipulate the scattering and propagation of the HF imaging pulse, and is only
transmitted and not received. The HF imaging pulse is then used to image tissue or
nonlinear scatterers under the influence of the manipulation pulse.

The concept of using dual-frequency band pulses is not new, and in the following a
literature review of methods using dual-frequency band pulses is presented. In order
to utilize dual-frequency band methods in ultrasound applications, probes capable of
transmitting such pulses are required. Therefore a review of multi-frequency band
probes and their possible use is also given to provide perspective on the wide range of
potential applications for such probes.

Research on ultrasound methods that use dual-frequency band pulses started early
in the 1980s. A series of papers where dual-frequency pulse complexes were used
to estimate or image the nonlinear parameter B/A in tissues and liquids have been
published. [6–13]

Ultrasound contrast agents are particularly sensitive to the manipulation pulse,
and changes in their scattering properties may then be probed by the imaging pulse
to form a high-frequency contrast agent detection technique. These effects have been
demonstrated by several groups, including the authors of this article, through theory,
simulations and laboratory measurements. [1, 2, 14–19] Måsøy et al. also demonstrated
this in vivo in pigs using an experimental system with a 7.5MHz imaging frequency. [3]

SURF imaging techniques may also be used to form transmit beams for reverber-
ation noise suppression, similar to harmonic imaging, but with a range of adjustable
parameters to control the region of noise suppression. A recent paper and a PhD
study from the authors of this article demonstrates this in detail through theory and
simulations. [4, 20]

An ultrasound probe is usually composed of a single acoustic element or an array of
such elements. Each element is typically constructed as an impedance matching layer
on the tissue side, followed by a single layer piezo-electric transducer, and a backing
layer to remove multiple reflections in the element. The matching and backing layers
are passive, while the piezo-electric transducer is active using two electrodes on either
side of the transducer. In this article, the word transducer refers only to the active
part of an element, that is the piezo-electric component together with the electrodes.
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Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

In order to create dual- or multi-band probes with a large separation in frequency,
new designs needs to be generated since state-of-the-art piezo-electric components do
not have the necessary band width.

There has been interest in designing dual- or multi-frequency ultrasound probes for
medical applications in both the research and industrial communities. These probes
are generally aimed at improving harmonic imaging methods (tissue harmonic imag-
ing and/or ultrasound contrast detection), [21–24] creating new ultrasound contrast
detection schemes, [3, 25] optimizing imaging and Doppler velocity estimation, [26]
sizing of micro-emboli, [27] combining imaging with ultrasound generated/mediated
therapy schemes or a combination of any of the aforementioned methods. [28–33]

Takeuchi et al. [22], and Vos et al. [24] constructed double-peak frequency elements
by tuning either the matching layer, or the matching and backing layers of a standard
ultrasound element configuration. The purpose of these probes was to perform either
sub-harmonic or second-harmonic imaging for ultrasound contrast agent detection.
Schaetzle et al. [28] proposed to divide the single piezo-electric transducer into two
regions by using a third coupling electrode in order to perform imaging and therapy
alternately with the same probe.

Forsberg et al. [23] placed three separate linear arrays on a curved surface for
nonlinear contrast imaging. Based on this construction, two different probes were
made with center frequencies of 2.5/5.0/10.0MHz and 1.75/3.5/7.0MHz respectively.
Ferin et al. [33] stacked two linear arrays of approximately 3MHz center frequency
on each side of a 7.5MHz linear array. The total -6 dB bandwidth of the final probe
ranged from 2-10MHz, and the probe was intended for multi-purpose use.

Bouakaz et al. [25] created a probe where two different standard elements at
0.9MHz and 2.8MHz center frequency were interleaved to form an array for con-
trast agent imaging at frequencies higher than the second-harmonic component. [34]
This solution has also been proposed for combining high-resolution imaging and ther-
apy applications. [29] Palanchon et al. [27] used two independent concentric annular
elements for transmission of a 130 kHz and a 360 kHz pulse, and a polyvinylidene flu-
oride (PVDF) transducer glued on top of the matching layer of the annular elements
for reception. The purpose of this probe was to detect and size microemboli.

Fukukita et al. [13] used a five-element annular array to generate a 2.5MHz pulse,
and a coaxial concentric external ring element for a 0.3MHz pulse in order to trans-
mit these pulses simultaneously for B/A estimation. The same solution was used by
Måsøy et al. [3] to generate a dual-frequency band transmit pulse of 0.9MHz and
7.5MHz for ultrasound contrast detection at 7.5MHz.

Hossack et al. [21] implemented a bi-layer piezo-electric transducer in a single
element probe optimized for second-harmonic imaging. Each of the piezo-electric
transducers had the same thickness, and by switching the effective polarity of the two
layers between transmit and receive a wide-band probe was achieved. Saitoh et al. [26]
made a similar structure, but with a thickness ratio of 1/0.7 in the two piezo-electric
layers. This resulted in a probe with 3.75 and 7.5MHz frequencies for imaging at the
high frequency and Doppler estimation at the low frequency. Azuma et al. [30, 31]
designed a probe with 0.5 and 2MHz center frequencies for therapy and Doppler
monitoring using a bi-layer piezo-electric transducer.
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ranged from 2-10MHz, and the probe was intended for multi-purpose use.
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0.9MHz and 2.8MHz center frequency were interleaved to form an array for con-
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This solution has also been proposed for combining high-resolution imaging and ther-
apy applications. [29] Palanchon et al. [27] used two independent concentric annular
elements for transmission of a 130 kHz and a 360 kHz pulse, and a polyvinylidene flu-
oride (PVDF) transducer glued on top of the matching layer of the annular elements
for reception. The purpose of this probe was to detect and size microemboli.

Fukukita et al. [13] used a five-element annular array to generate a 2.5MHz pulse,
and a coaxial concentric external ring element for a 0.3MHz pulse in order to trans-
mit these pulses simultaneously for B/A estimation. The same solution was used by
Måsøy et al. [3] to generate a dual-frequency band transmit pulse of 0.9MHz and
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Hossack et al. [21] implemented a bi-layer piezo-electric transducer in a single
element probe optimized for second-harmonic imaging. Each of the piezo-electric
transducers had the same thickness, and by switching the effective polarity of the two
layers between transmit and receive a wide-band probe was achieved. Saitoh et al. [26]
made a similar structure, but with a thickness ratio of 1/0.7 in the two piezo-electric
layers. This resulted in a probe with 3.75 and 7.5MHz frequencies for imaging at the
high frequency and Doppler estimation at the low frequency. Azuma et al. [30, 31]
designed a probe with 0.5 and 2MHz center frequencies for therapy and Doppler
monitoring using a bi-layer piezo-electric transducer.
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A.2 Theory

In this article, acoustic propagation effects of dual-frequency wide-band pulses in
a focused ultrasound system are demonstrated in vitro. A designed and manufactured
dual-frequency band annular array with design center frequencies of 0.9/7.5MHz was
used for this purpose. In order to have a common acoustic radiation surface the LF
and HF piezo-electric elements are stacked on top of each other in a bi-layer structure.
A more detailed description of a similar design using the same bi-layer structure in a
linear prototype array with 1.25/10MHz center frequencies, can be found in Ref. 35.
The array is controlled by an 8 channel experimental ultrasound system named Pulse-
Echo Lab, equipped with an arbitrary waveform generator (AWG). The LF and HF
layers are excited individually and simultaneously to demonstrate the capabilities of
the array, and pulses are recorded using a needle hydrophone in a water tank setup.
The observed acoustic properties of the dual-frequency band pulses show that the
nonlinear interaction of the LF and HF pulses must be taken into account if such
pulses are to be used for imaging purposes.

A.2 Theory

In order to analyze the propagation of dual-frequency wide-band pulses and the results
in this paper, a presentation of the nonlinear wave equation and the pressure in the
focal point of a circular symmetric transducer is provided below.

A.2.1 Dual-frequency excitation pulses

Figure A.1 illustrates two overlapping wide-band pulses with a frequency separation
of ∼1:9. This represents typical dual-frequency wide-band excitation pulses used in
SURF imaging techniques, and are from now on referred to as dual-frequency excita-
tion pulses.

A.2.2 Nonlinear wave equation in a homogeneous medium

A general derivation of the nonlinear wave equation with scattering terms can be
found in Refs. 36, 37. In Ref. 1, 2, 5 a condensed version of this is provided. Unless
otherwise stated, the equations given in this section are taken from Ref. 5.

Disregarding scattering and absorption, the nonlinear wave equation in a homoge-
neous medium may be written as

∇2ϕ− 1

c2(p)

∂2ϕ

∂t2
= 0 , (A.1)

where ϕ represents the momentum potential, and c(p) is the propagation velocity
in a medium with nonlinear elasticity. Spatial and time coordinates are omitted for
notational convenience. The pressure dependent propagation velocity is given as

c(p) =
1√

ρκ(1− 2βnκp)
=

c0√
1− 2βnκp

≈ c0(1 + βnκp) , (A.2)
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Figure A.1: Illustration of two different dual-frequency excitation pulses. Left panel:
the imaging pulse is placed in a compression phase of the manipulation pulse. Right
panel: the imaging pulse is placed in a rarefaction phase of the manipulation pulse.
The horizontal axis displays time in μs and the vertical axis pressure in MPa. In
this plot, the frequency of the manipulation pulse is 0.9MHz and the imaging pulse
8.0MHz.

where c0 = 1/
√
ρκ and higher order terms are neglected. Here, ρ is the mass density,

κ the bulk compressibility, and βn = 1 +B/2A the tissue nonlinearity parameter.
Using dual-frequency band pulses, it is convenient to analyze the propagation ve-

locity c(p) by separating the pressure into two components, p = pm + pi, where pm
represents the low-frequency manipulation pulse pressure and pi the high-frequency
imaging pulse pressure. Using the approximation in Eq. (A.2) and inserting the pres-
sure gives

c(pm, pi) = c0(1 + βnκpm + βnκpi) . (A.3)

The two last terms in Eq. (A.3) generate nonlinear distortion of the manipulation and
imaging pulse. In addition to conventional harmonic distortion, the imaging pulse will
experience a local change in the speed of sound proportional to the manipulation pulse
pressure pm. This modified sound velocity for the imaging pulse may be expressed as

ci(pm, pi) ≈ c(pi)(1 + βnκpm) , (A.4)

where c(pi) is the speed of sound for the imaging pulse with no manipulation pulse
present. SURF imaging applications use short wide-band pulses, meaning that the
length of the imaging pulse will only cover a sub-period length of the manipulation
pulse (see Fig. A.1). If the imaging pulse travels close to a peak (or a trough) on
the manipulation pulse, then it experiences a nearly constant positive (or negative)
manipulation pressure over its duration, resulting in an increased (or decreased) sound
velocity. If it travels on a flank of the manipulation pulse it will experience a nearly
constant pressure gradient, resulting in a sound velocity varying almost linearly over
the imaging pulse. The increased or decreased sound velocity causes a time delay,
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A.2 Theory

and the linearly variable sound velocity a compression/expansion of the imaging pulse
relative to the case when no manipulation pulse is present. This phenomenon is
described and demonstrated by Fukukita et al., [10, 11, 13] and may be used for B/A
estimation.

A.2.3 SURF imaging using a focused ultrasound system

In a focused ultrasound system, special attention must be given to the propagating
effects of dual-frequency excitation pulses. The pressure in the focal point of a circular
symmetric vibrating surface in a rigid baffle may be given in the time and frequency
domains as [36, Ch. 4-5]

p(F, t) =
∂f(t− F/c)

∂t
ρUn

A

2πF
↔

p̂(F, ω) = −iωf̂(ω)ρUn

e−ikF

2πF
A .

(A.5)

Here, f(t) is the time excitation of the signal, F the focus position of the surface,
A the vibrating surface area, k = ω/c the wave number, and Un the normal veloc-
ity amplitude of the vibrating surface, assuming a constant velocity distribution (no
apodization).

Equation (A.5) shows that the time excitation at the focal point of a vibrating sur-
face is the derivative of the transmit excitation (or π/2 phase shifted in the frequency
domain). The differentiation may be explained in physical terms as an interference
effect between the edge wave and the wave from the center of the vibrating surface.
This effect strongly influences the phase relation between the manipulation and imag-
ing pulse in a dual-frequency excitation pulse.

Assuming the manipulation and imaging arrays are coaxial and have the same
focal point, Eq. (A.5) shows that in order to position the imaging pulse on a peak or
a trough of the manipulation pulse at the focal point of the array, the imaging pulse
must be transmitted on the gradient of the manipulation pulse (in the position of zero
manipulation pressure). The imaging pulse will in both cases travel Tm/4, where Tm

is the period of the manipulation pulse, relative to the manipulation pulse from the
array surface to the focal point. That is, if the manipulation and imaging arrays have
the same focal point, the propagating imaging pulse will experience both a varying
gradient and manipulation pressure using dual-frequency excitation pulses. There are
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Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

scheme where the contrast agent is interrogated with the imaging pulse first in a
compression phase (peak), and then in an expansion phase (trough). In Ref. 3, only
time delay compensation was used, which alone provided up to 6 dB increase in tissue
suppression.

In order to form transmit beams adapted to multiple scattering noise reduction, [20]
the distortion obtained between two imaging pulses propagating in different phases of
the manipulation pulse is the key factor to generate a synthetic transmit beam suitable
for reverberation suppression. A synthetic transmit beam may then be generated by
simply subtracting the two imaging pulses at all recorded depths. At the array surface,
the distortion is zero providing a strong suppression of the difference signal. As the
two pulses propagate, the distortion accumulates, providing a stronger and stronger
difference signal analogous to harmonic imaging techniques.

A.3 Method

A.3.1 Annular array

The designed dual-frequency band annular array was made to fit in a mechanically-
scanned annular probe (APAT II) of a GE Vingmed Ultrasound System 5 scanner
(GE Vingmed Ultrasound, Horten, Norway). This imposed limitations on the number
of elements, frequency, and dimensions as detailed below. For this paper, the array
was used with a custom made 8 channel bench top ultrasound system presented in
Section A.3.2.

The array consists of 5 elements (the System 5 scanner handles only 5 elements
for mechanical probes). Four equal area concentric HF elements with a design center
frequency of 7.5MHz, a total diameter of 10mm, and a kerf of 0.2mm. The fifth
element is a single LF element, with a design center frequency of 0.9MHz and diameter
of 10mm. In order to have a common acoustic radiation surface, the LF and HF
elements are stacked on top of each other in a bi-layer structure as shown in Fig. A.2.
The entire structure is geometrically focused at 20.6mm.

Figure A.2: Schematic drawing of the dual-band element structure.
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A.3 Method

The HF frequency was chosen to be as high as possible for use in the System 5
scanner (the scanner has a maximum receive frequency of 8MHz). The LF frequency
should be substantially lower than the HF. This in order to obtain as constant LF
pressure as possible over the HF pulse when the HF is located on a peak or a trough
of the LF. Here a ratio of HF/LF center frequency of approximately 8.3 was chosen
as this was deemed sufficient.

In a previous design by the authors, [3] the LF element was a co-axial ring placed
outside the HF rings and this allowed a total diameter of the entire array of 20mm to
fit inside the dome of the APAT II probe. Here, the LF is placed underneath the HF
in a sandwich structure and due to its thickness, the total diameter of the array had
to be limited to 10mm.

The design1 considerations of the bi-layer structure followed the same criteria as
a previous design by the authors. [35] A brief description of the principles behind the
design are provided here.

The array was manufactured by Imasonic (Imasonic, Besançon, France). No spe-
cific consideration about the LF and HF elements were made, and the producer man-
ufactured these as if they were individual conventional elements. In order to remove
ringing in the HF layer, an isolation layer was introduced. In a standard element, the
backing usually has a low impedance compared with the piezo-electric layer in order
to ensure λ/2 resonance and minimum losses into the backing. Here, the isolation
layer should have a substantially lower impedance and have a λ/4 thickness in the
center of the HF pass band. After manufacturing the nominal center frequencies and
band widths of the LF and HF elements were {926 kHz, 54%} and {8.0MHz, 46%}
respectively.

A.3.2 Pulse-Echo Lab system

The Pulse-Echo Lab (PE-Lab) is a custom made PC-based 8 channel transmit and re-
ceive ultrasound system. For brevity, only the transmit part of the system is described
here, as this was used for controlling the array in the water tank setup. A schematic
of the system is given in Fig. A.3.
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Figure A.3: Pulse-Echo Lab system.

The arbitrary waveform generator (AWG) consists of several components. Two

1The design of the array was made by authors T. Johansen and B. Angelsen
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Acquitek DA4300 D/A PCI boards (Acquitek, Massy, France), each with 4 channels
producing a 12 bit resolution analog output voltage with a maximum of 2V peak-
to-peak. The boards are synchronized with the receive boards using an Acquitek
CG400 clock synthesizer, and triggered with an 8 channel Acquitek Pulse Blaster
ESR-Pro pulser. All components of the AWG and receive chain (not presented here)
are connected through a PCI bus. In-house software with a graphical user interface
written in Matlab code (The Mathworks Inc., Natick, U.S.A), is used to program
the AWG.

For the HF signal chain, a 4 channel Tabor Electronics 3322, 20 dB wide-
band amplifier (Tabor Electronics Ltd., Tel Hanan, Israel) was used together with an
in-house diode expander to reduce noise and protect the receive chain. Finally, the
HF transmit signal chain was impedance tuned with serial inductors to maximize the
output. The LF signal chain used the AWG for generating pulses and the signal was
then amplified with a single channel 50 dB wide band ENI 2100L RF Power Amplifier
(ENI, Rochester, U.S.A).

Table A.1 presents the maximum peak-to-peak voltages applied to the LF and HF
elements given as a percentage value of the maximum output of the AWG (= 2V).
The maximum applied LF voltage was limited to 30% of the AWG output to prevent
delamination of the array. The linearity of the applied voltages to the elements were
checked for values below the maximum and was approximately linear for both signal
chains.

Table A.1: Maximum peak-to-peak voltages measured at the LF element and HF
elements (measured at point 1 in Fig. A.3 using an oscilloscope). The values are given
as a percentage of the maximum output of the AWG (= 2V).

Max AWG output Max voltage at element(s)
LF 30% 377 V
HF 100% 33 V

A.3.3 Water tank setup

For the water tank measurements, an 85 μm ONDA HGL-0085 hydrophone with
a 20 dB pre-amplifier was used (Onda Corporation, Sunnyvale, U.S.A.). The hy-
drophone was attached to a xyz translation stage robot (Physik Instrumente (PI)
GmbH & Co. KG, Karlsruhe, Germany). Acoustic pulses were recorded with a
LeCroy WaveSurfer 42Xs oscilloscope (LeCroy Corporation, Chestnut Ridge, U.S.A),
using a sampling frequency of 500MHz and set to average 128 recordings in each spa-
tial position. The whole setup is controlled by a PC with in-house software written in
Matlab.

The speed of sound of the water was estimated by measuring the temperature with
a thermocouple connected to a multimeter, and using the simplified equations from
Lubbers and Graaf. [39] The speed of sound found for the measurements presented
here was c ≈ 1490m/s.
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drophone was attached to a xyz translation stage robot (Physik Instrumente (PI)
GmbH & Co. KG, Karlsruhe, Germany). Acoustic pulses were recorded with a
LeCroy WaveSurfer 42Xs oscilloscope (LeCroy Corporation, Chestnut Ridge, U.S.A),
using a sampling frequency of 500MHz and set to average 128 recordings in each spa-
tial position. The whole setup is controlled by a PC with in-house software written in
Matlab.

The speed of sound of the water was estimated by measuring the temperature with
a thermocouple connected to a multimeter, and using the simplified equations from
Lubbers and Graaf. [39] The speed of sound found for the measurements presented
here was c ≈ 1490m/s.
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A.4 Results

In order to find the acoustic beam axis of the array, 2D beam profiles were recorded
at three suitable depths. The beam axis was found by fitting a straight line through
the centers of symmetry of the 2D profiles.

A.3.4 Data processing

All data processing was performed inMatlab. For processing HF and LF signals from
measured dual-frequency excitation pulses, a second-order Butterworth IIR digital
band-pass filter with zero phase distortion was used. The cut-off frequencies for the
HF and LF filters were set to {5MHz, 50MHz} and {100 kHz, 2MHz} respectively.

In order to estimate center frequencies, a weighted average of pulse power spec-
trums from the recorded pulses was calculated according to Eq. (A.6)

ω̃c =

∫ ω2

ω1
dω ωp̂(ω)∫ ω2

ω1
dω p̂(ω)

, (A.6)

where ω̃c is the estimated center angular frequency, and p̂(ω) the power spectrum.
The limits of the integral, ω1 and ω2, was chosen as the frequencies corresponding to
the −6 dB values of the power spectrum to each side of its maximum.

Time delays between imaging pulses were determined by calculating the phase at
zero lag from cross-correlation between the complex envelopes of these pulses.

A.4 Results

For all measurements presented, the AWG of the PE-Lab system was programmed
with a 1.5 period 8MHz center frequency sine pulse for the HF signal, and a 2.5
period 0.9MHz center frequency sine pulse for the LF signal. To demonstrate the
propagation aspects of dual-frequency band pulses in a focused ultrasound system, a
three-pulse scheme was used where the HF pulse was transmitted with no LF pulse
present, or on the positive or negative part of the LF pulse, and given the designations
0, + and −, respectively. The timing was chosen so that the peak of the HF envelope
coincided with the zero crossing of the LF pulse on transmit. By Eq. (A.5), the HF
pulse will then be located on a peak or in a trough of the LF pulse at the geometrical
focus of the array.

The LF and HF data was filtered with band-pass filters as described in Sec-
tion A.3.4, unless otherwise stated. All measured pressures of the LF and HF pulses
are presented as a function of the applied voltage to the AWG in the PE-Lab system
as described Section A.3.2.

Figure A.4 presents pulses and their corresponding frequency spectrums when the
LF- and HF-parts of the array are excited separately. No filters are applied to these
data. It is clear from Fig. A.4 that the HF- and LF-parts produce less than -50 dB of
LF and HF signal strength at their respective center frequencies for this pulse setup.

Calibration of obtained pressure at the geometrical focus as a function of voltage
applied to the array with LF- and HF-parts excited separately, is shown in Fig. A.5.
For the LF element, the relationship is approximately linear for both the LF +, and −
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coincided with the zero crossing of the LF pulse on transmit. By Eq. (A.5), the HF
pulse will then be located on a peak or in a trough of the LF pulse at the geometrical
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are presented as a function of the applied voltage to the AWG in the PE-Lab system
as described Section A.3.2.

Figure A.4 presents pulses and their corresponding frequency spectrums when the
LF- and HF-parts of the array are excited separately. No filters are applied to these
data. It is clear from Fig. A.4 that the HF- and LF-parts produce less than -50 dB of
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Figure A.4: HF and LF pulses in the geometrical focus of the array (20.6mm). Here, 2
active HF elements were used. To the left, the pulses are presented in the time domain
and to the right in the frequency domain. For the frequency spectrums, the estimated
center frequencies are given in the plots. No filters are applied to these data.

excitation. The HF elements show some non-linearity which is due to the high degree
of second-harmonic generation in water.

In Fig. A.6, dual-frequency excitation pulses for two different LF settings are pre-
sented. The upper panels represent typical dual-frequency excitation pulses for con-
trast agent imaging. The lower panels show typical pulses for reverberation suppres-
sion, [4, 20] where a much higher LF pressure is used.

A dual-frequency excitation pulse and its frequency spectrum is shown in Fig. A.7.
The frequency spectrum shows that the LF band is clearly separated from the HF
band. The second-harmonic component of the LF and HF pulses are also visible.

The effect of maintaining a given HF pressure while varying the LF pressure for
a dual-frequency excitation pulse at the focal point of the array is shown in Fig. A.8.
The HF center frequency, amplitude and time delay are plotted as functions of LF
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Figure A.5: Calibration curves of the high-frequency elements and the low-frequency
element measured in the geometrical focus of the array. For the HF-elements, the
calibration has been performed with 2 and 4 active elements. The values are given as
the maximum absolute value of the filtered pulse envelopes.

pressure on transmit. All these parameters appear to depend linearly on the LF
pressure. The HF center frequencies are {7.8, 8.3, 8.9}MHz for LF={−30, 0, +30}.
The HF amplitudes are {518, 616, 702} kPa and the time delays between the different
HF pulses are {−4.7, 0.0, +5.7} ns for the same LF transmit amplitudes. This means
that there is a center frequency shift of 1.1MHz, amplitude variation of 184 kPa and a
time delay of 10.4 ns between the HF pulse on a peak and in a trough using LF=±30%
for this particular setup.

Figure A.9 presents examples of the filtered HF pulses and their corresponding
frequency spectrums used to find the parameters in Fig. A.8. The compression and
expansion effects are clearly visible for these cases.

Axial scans of the dual-frequency excitation beams for different LF settings are
presented in Fig. A.10. For safety reasons, the hydrophone recordings started 6mm
from the array surface. The axial LF pressure experienced by the HF is found by
determining the LF pressure at the center position of the HF envelope. This is cal-
culated using Eq. (A.6) with the complex envelope instead of the power spectrum,
and −6 dB as the lower and upper integration limits. Note that this curve indirectly
demonstrates Eq. (A.5) showing that close to the array, the LF pressure experienced
by the HF pulse is approximately zero (deviations are due to near-field diffraction).
This means that the HF pulse is indeed located on the zero crossing of the LF pulse.
Approaching the focal point, the LF pressure experienced by the HF pulse increases
rapidly resembling the axial profile of the LF pulse. At the focus, the experienced
pressure is very close to the actual LF pressure showing that the HF pulse has moved
from the zero crossing to the peak/trough of the LF pulse. The deviations may be
due to the use of Eq. (A.6) for determining the location of the HF pulse.

The HF frequency varies rapidly in the near-field due to near-field edge wave ef-
fects, making the estimation of the center frequency challenging. From approximately
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culated using Eq. (A.6) with the complex envelope instead of the power spectrum,
and −6 dB as the lower and upper integration limits. Note that this curve indirectly
demonstrates Eq. (A.5) showing that close to the array, the LF pressure experienced
by the HF pulse is approximately zero (deviations are due to near-field diffraction).
This means that the HF pulse is indeed located on the zero crossing of the LF pulse.
Approaching the focal point, the LF pressure experienced by the HF pulse increases
rapidly resembling the axial profile of the LF pulse. At the focus, the experienced
pressure is very close to the actual LF pressure showing that the HF pulse has moved
from the zero crossing to the peak/trough of the LF pulse. The deviations may be
due to the use of Eq. (A.6) for determining the location of the HF pulse.

The HF frequency varies rapidly in the near-field due to near-field edge wave ef-
fects, making the estimation of the center frequency challenging. From approximately
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Figure A.6: Dual-frequency excitation pulses in the geometrical focus of the array with
2 active HF elements and different LF pressures. No filters are applied to these data.

15mm, a marked center frequency shift is observed as a function of depth. The HF
pressure amplitude also varies accordingly as a function of depth. The total time delay
between the LF+ and LF− excitation reaches approximately 31 ns at 40mm depth.

A.5 Discussion

The results in this article demonstrate that the designed and manufactured dual-
frequency band annular array is capable of transmitting dual-frequency excitation
pulses. Exciting the LF and HF elements separately produce very little excitation of
the HF and LF elements, respectively, as demonstrated in Fig. A.4. Exciting them
simultaneously produces well defined dual-frequency wide-band pulses.

Applying a 33V peak-to-peak voltage to the HF elements results in a maximum
focal pressure of {1.5, 2.8}MPa [which is also approximately the maximum axial pres-
sure, see Fig. A.10 (c)], when exciting 2 and 4 elements, respectively, as demonstrated
in Fig.A.5. Using 377V on the LF element results in approximately 1.0MPa in the
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pressure amplitude also varies accordingly as a function of depth. The total time delay
between the LF+ and LF− excitation reaches approximately 31 ns at 40mm depth.
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The results in this article demonstrate that the designed and manufactured dual-
frequency band annular array is capable of transmitting dual-frequency excitation
pulses. Exciting the LF and HF elements separately produce very little excitation of
the HF and LF elements, respectively, as demonstrated in Fig. A.4. Exciting them
simultaneously produces well defined dual-frequency wide-band pulses.

Applying a 33V peak-to-peak voltage to the HF elements results in a maximum
focal pressure of {1.5, 2.8}MPa [which is also approximately the maximum axial pres-
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15mm, a marked center frequency shift is observed as a function of depth. The HF
pressure amplitude also varies accordingly as a function of depth. The total time delay
between the LF+ and LF− excitation reaches approximately 31 ns at 40mm depth.
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The results in this article demonstrate that the designed and manufactured dual-
frequency band annular array is capable of transmitting dual-frequency excitation
pulses. Exciting the LF and HF elements separately produce very little excitation of
the HF and LF elements, respectively, as demonstrated in Fig. A.4. Exciting them
simultaneously produces well defined dual-frequency wide-band pulses.

Applying a 33V peak-to-peak voltage to the HF elements results in a maximum
focal pressure of {1.5, 2.8}MPa [which is also approximately the maximum axial pres-
sure, see Fig. A.10 (c)], when exciting 2 and 4 elements, respectively, as demonstrated
in Fig.A.5. Using 377V on the LF element results in approximately 1.0MPa in the
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Figure A.7: Dual-frequency excitation pulse in the geometrical focus of the array with
2 active HF elements, and corresponding frequency spectrum. No filters are applied
to these data.

focal point, but 1.5MPa maximum axial pressure [see Fig. A.10 (a)].
Potential cross-talk between the LF and HF elements was evaluated (at point 1 in

Fig. A.3) using the oscilloscope for the different transmit voltages used. Transmitting
using only the LF element alone, or both the LF and HF elements did not result in any
change in the measured voltages on the elements. This indicates that the amplitude
differences in the imaging pulses for different manipulation pressures are due solely to
propagation.

The large separation of the locations of maximum axial pressure for the LF- and
HF-elements is due to the large difference in the Fresnel parameter. The Fresnel
parameter describes the diffraction and focusing characteristics of an array, and the
parameter may be defined for an annular array as [36, pp. 5.69]

S =
4f#
D/λ

, (A.7)

where, f# = F/D, is the f-number, and D is the diameter of the array. Using all
four HF elements, the LF and HF apertures, and thus also their f-numbers are equal
and become f# = 2.1. Using only two HF elements, the f-number is f# = 2.9. The
Fresnel parameter for the LF and HF elements using 2 or 4 active elements are then
S = {1.36, 0.31, 0.15} respectively. Now, a low Fresnel parameter provides efficient
focusing of the array. Typical values for efficient focusing of annular arrays are in the
order of 0.1 to 0.3. [36, pp. 5.72] Therefore, the LF is not efficiently focused and the
maximum axial pressure occurs at 10mm, only half the way to the focus point of the
element.

From Fig. A.10 (a) it is clear that the imaging pulse experiences a negative ma-
nipulation pressure from approximately 6-8mm. This is due to near-field edge wave
interference, making the imaging pulse slide back and forth relative to the zero crossing
of the manipulation pulse.
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using only the LF element alone, or both the LF and HF elements did not result in any
change in the measured voltages on the elements. This indicates that the amplitude
differences in the imaging pulses for different manipulation pressures are due solely to
propagation.
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parameter describes the diffraction and focusing characteristics of an array, and the
parameter may be defined for an annular array as [36, pp. 5.69]
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where, f# = F/D, is the f-number, and D is the diameter of the array. Using all
four HF elements, the LF and HF apertures, and thus also their f-numbers are equal
and become f# = 2.1. Using only two HF elements, the f-number is f# = 2.9. The
Fresnel parameter for the LF and HF elements using 2 or 4 active elements are then
S = {1.36, 0.31, 0.15} respectively. Now, a low Fresnel parameter provides efficient
focusing of the array. Typical values for efficient focusing of annular arrays are in the
order of 0.1 to 0.3. [36, pp. 5.72] Therefore, the LF is not efficiently focused and the
maximum axial pressure occurs at 10mm, only half the way to the focus point of the
element.

From Fig. A.10 (a) it is clear that the imaging pulse experiences a negative ma-
nipulation pressure from approximately 6-8mm. This is due to near-field edge wave
interference, making the imaging pulse slide back and forth relative to the zero crossing
of the manipulation pulse.
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change in the measured voltages on the elements. This indicates that the amplitude
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parameter describes the diffraction and focusing characteristics of an array, and the
parameter may be defined for an annular array as [36, pp. 5.69]
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where, f# = F/D, is the f-number, and D is the diameter of the array. Using all
four HF elements, the LF and HF apertures, and thus also their f-numbers are equal
and become f# = 2.1. Using only two HF elements, the f-number is f# = 2.9. The
Fresnel parameter for the LF and HF elements using 2 or 4 active elements are then
S = {1.36, 0.31, 0.15} respectively. Now, a low Fresnel parameter provides efficient
focusing of the array. Typical values for efficient focusing of annular arrays are in the
order of 0.1 to 0.3. [36, pp. 5.72] Therefore, the LF is not efficiently focused and the
maximum axial pressure occurs at 10mm, only half the way to the focus point of the
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of the manipulation pulse.
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differences in the imaging pulses for different manipulation pressures are due solely to
propagation.
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parameter describes the diffraction and focusing characteristics of an array, and the
parameter may be defined for an annular array as [36, pp. 5.69]
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where, f# = F/D, is the f-number, and D is the diameter of the array. Using all
four HF elements, the LF and HF apertures, and thus also their f-numbers are equal
and become f# = 2.1. Using only two HF elements, the f-number is f# = 2.9. The
Fresnel parameter for the LF and HF elements using 2 or 4 active elements are then
S = {1.36, 0.31, 0.15} respectively. Now, a low Fresnel parameter provides efficient
focusing of the array. Typical values for efficient focusing of annular arrays are in the
order of 0.1 to 0.3. [36, pp. 5.72] Therefore, the LF is not efficiently focused and the
maximum axial pressure occurs at 10mm, only half the way to the focus point of the
element.

From Fig. A.10 (a) it is clear that the imaging pulse experiences a negative ma-
nipulation pressure from approximately 6-8mm. This is due to near-field edge wave
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Figure A.8: HF (50%, two active HF elements) center frequency, pressure, and time
delay as a function of LF pressure in the geometrical focus of the array. The pressure
values are given as the maximum absolute value of the filtered pulse envelopes.

The results also demonstrate the complexity of using SURF imaging with a fo-
cused ultrasound system, where compression and expansion effects of the imaging
pulses are observed. For the maximum manipulation pressure used here, the compres-
sion/expansion is substantial, leading to a 0.5MHz change in center frequency for an
imaging pulse transmitted on a positive gradient compared to when no manipulation
pulse is present. It is clear from Eqs. (A.4) and (A.5) that this effect is dependent
on nonlinear distortion of the manipulation pulse and the diffraction difference be-
tween the manipulation and imaging transmit beams. Both these effects influence the
manipulation pressure experienced by the imaging pulse, as demonstrated in Fig. A.10.

In the general situation, a whole range of parameters influence the amount of
compression/expansion of the imaging pulse in a focused system. These are:

1. Aperture sizes of both the manipulation and imaging pulse.
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sion/expansion is substantial, leading to a 0.5MHz change in center frequency for an
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on nonlinear distortion of the manipulation pulse and the diffraction difference be-
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The results also demonstrate the complexity of using SURF imaging with a fo-
cused ultrasound system, where compression and expansion effects of the imaging
pulses are observed. For the maximum manipulation pressure used here, the compres-
sion/expansion is substantial, leading to a 0.5MHz change in center frequency for an
imaging pulse transmitted on a positive gradient compared to when no manipulation
pulse is present. It is clear from Eqs. (A.4) and (A.5) that this effect is dependent
on nonlinear distortion of the manipulation pulse and the diffraction difference be-
tween the manipulation and imaging transmit beams. Both these effects influence the
manipulation pressure experienced by the imaging pulse, as demonstrated in Fig. A.10.

In the general situation, a whole range of parameters influence the amount of
compression/expansion of the imaging pulse in a focused system. These are:

1. Aperture sizes of both the manipulation and imaging pulse.

47

Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

0 2 5 15 30
0

250

500

750

[%]

[k
P

a]

+
−

(a) Filtered LF pressure.

−30 −15 −5−202 5 15 30

7.8

8

8.2

8.4

8.6

8.8

9

[M
H

z]

[%]

(b) HF center frequency.

−30 −15 −5−202 5 15 30
500

550

600

650

700

750

[k
P

a]

[%]

(c) Filtered HF pressure.

−30 −15 −5−202 5 15 30

−6

−4

−2

0

2

4

6

[n
s]

[%]

(d) HF time delays.

Figure A.8: HF (50%, two active HF elements) center frequency, pressure, and time
delay as a function of LF pressure in the geometrical focus of the array. The pressure
values are given as the maximum absolute value of the filtered pulse envelopes.
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Figure A.9: Filtered HF pulses and corresponding frequency spectrums as a function
of LF pressure in the geometrical focus of the array. The estimated center frequency
is also given in the spectrum plots.

2. Focal depth of both apertures.

3. Frequencies of both the manipulation and imaging pulse.

4. Manipulation pulse amplitude.

5. Absorption in the medium.

6. Temporal position of imaging pulse relative to manipulation pulse on transmit.

The change in the manipulation pulse gradient due to nonlinear distortion of this pulse
is mainly dependent on the first five points. Aperture size, focal depth, frequency, am-
plitude, and absorption all contribute to the amount of nonlinear distortion generated
by the manipulation pulse. Also, for a given array configuration, the difference in
diffraction patterns between the manipulation and imaging transmit beams is deter-
mined by the first five points. In this case, the compression/expansion effect can
still be manipulated by altering the timing between the two pulses on transmit. As
described in the introduction, having a frequency separation of greater than 1:7 and
wide-band pulses with a pulse length less than 4 periods, pulse length should have
minimum influence on the effects described above.

As described in Section A.2.3, the imaging pulse will travel a quarter period rela-
tive to the manipulation pulse from the array surface to the focal point. Placing the
imaging pulse in different temporal positions on the manipulation pulse on transmit,
will alter the compression and expansion of the imaging pulse due to variations in
pulse pressure along the axis (due to diffraction) and harmonic distortion of the ma-
nipulation pulse. This effect may also be altered by changing the focusing efficiency
of the manipulation pulse by using e.g. a larger aperture. This will reduce the Fresnel
parameter, moving the maximum axial pressure closer to the geometrical focus of the
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Figure A.10: LF pressure, and LF pressure experienced by the HF (denoted Exp LF ),
HF center frequencies, HF pressures, and HF time delays as a function of depth for
the HF=50%, LF={+30%,−30%} case. The upper left panel presents the axial LF
pressure profile given as the maximum absolute value of the filtered pulse envelopes
(only LF=+30% shown here). The experienced LF pressure by the HF pulse is given
as the LF pressure at the center position of the HF envelope. The time delays are here
given as the time delay between the LF+ and LF− excitation.

array. In this case the manipulation pulse aperture may be chosen larger than the
imaging pulse aperture.

For an efficiently focused manipulation pulse array, maintaining a constant me-
chanical index (MI) leads to a reduced transmit pressure due to the improved focusing
capabilities. In this situation, the manipulation pulse pressure will be low close to
the array with a rapid pressure increase close to the focal point. If transmitted on a
gradient, the imaging pulse will then maintain its position on the gradient at a low
manipulation pressure and rapidly slide over the gradient approaching the focal point.
This should lead to less compression/expansion effects compared to a manipulation

49

Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

6 10 20 30 40
−1500

−1000

−500

0

500

1000

1500

[mm]

[k
P

a]

LF=+30%
Exp LF=+30%

(a) Filtered LF pressure.

6 10 20 30 40
6

6.5

7

7.5

8

8.5

9

9.5

[mm]

[M
H

z]

LF=0%
LF=+30%
LF=−30%

(b) HF center frequency.

6 10 20 30 40
0

200

400

600

800

[mm]

[k
P

a]

LF=0%
LF=+30%
LF=−30%

(c) Filtered HF pressure.

6 10 20 30 40
−5

0

5

10

15

20

25

30

35

[mm]

[n
s]

(d) HF time delays.

Figure A.10: LF pressure, and LF pressure experienced by the HF (denoted Exp LF ),
HF center frequencies, HF pressures, and HF time delays as a function of depth for
the HF=50%, LF={+30%,−30%} case. The upper left panel presents the axial LF
pressure profile given as the maximum absolute value of the filtered pulse envelopes
(only LF=+30% shown here). The experienced LF pressure by the HF pulse is given
as the LF pressure at the center position of the HF envelope. The time delays are here
given as the time delay between the LF+ and LF− excitation.

array. In this case the manipulation pulse aperture may be chosen larger than the
imaging pulse aperture.

For an efficiently focused manipulation pulse array, maintaining a constant me-
chanical index (MI) leads to a reduced transmit pressure due to the improved focusing
capabilities. In this situation, the manipulation pulse pressure will be low close to
the array with a rapid pressure increase close to the focal point. If transmitted on a
gradient, the imaging pulse will then maintain its position on the gradient at a low
manipulation pressure and rapidly slide over the gradient approaching the focal point.
This should lead to less compression/expansion effects compared to a manipulation

49

Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

6 10 20 30 40
−1500

−1000

−500

0

500

1000

1500

[mm]

[k
P

a]

LF=+30%
Exp LF=+30%

(a) Filtered LF pressure.

6 10 20 30 40
6

6.5

7

7.5

8

8.5

9

9.5

[mm]

[M
H

z]

LF=0%
LF=+30%
LF=−30%

(b) HF center frequency.

6 10 20 30 40
0

200

400

600

800

[mm]

[k
P

a]

LF=0%
LF=+30%
LF=−30%

(c) Filtered HF pressure.

6 10 20 30 40
−5

0

5

10

15

20

25

30

35

[mm]

[n
s]

(d) HF time delays.

Figure A.10: LF pressure, and LF pressure experienced by the HF (denoted Exp LF ),
HF center frequencies, HF pressures, and HF time delays as a function of depth for
the HF=50%, LF={+30%,−30%} case. The upper left panel presents the axial LF
pressure profile given as the maximum absolute value of the filtered pulse envelopes
(only LF=+30% shown here). The experienced LF pressure by the HF pulse is given
as the LF pressure at the center position of the HF envelope. The time delays are here
given as the time delay between the LF+ and LF− excitation.

array. In this case the manipulation pulse aperture may be chosen larger than the
imaging pulse aperture.

For an efficiently focused manipulation pulse array, maintaining a constant me-
chanical index (MI) leads to a reduced transmit pressure due to the improved focusing
capabilities. In this situation, the manipulation pulse pressure will be low close to
the array with a rapid pressure increase close to the focal point. If transmitted on a
gradient, the imaging pulse will then maintain its position on the gradient at a low
manipulation pressure and rapidly slide over the gradient approaching the focal point.
This should lead to less compression/expansion effects compared to a manipulation

49

Paper A: Nonlinear propagation acoustics of dual-frequency wide-band excitation
pulses in a focused ultrasound system

6 10 20 30 40
−1500

−1000

−500

0

500

1000

1500

[mm]

[k
P

a]

LF=+30%
Exp LF=+30%

(a) Filtered LF pressure.

6 10 20 30 40
6

6.5

7

7.5

8

8.5

9

9.5

[mm]

[M
H

z]

LF=0%
LF=+30%
LF=−30%

(b) HF center frequency.

6 10 20 30 40
0

200

400

600

800

[mm]

[k
P

a]

LF=0%
LF=+30%
LF=−30%

(c) Filtered HF pressure.

6 10 20 30 40
−5

0

5

10

15

20

25

30

35

[mm]

[n
s]

(d) HF time delays.

Figure A.10: LF pressure, and LF pressure experienced by the HF (denoted Exp LF ),
HF center frequencies, HF pressures, and HF time delays as a function of depth for
the HF=50%, LF={+30%,−30%} case. The upper left panel presents the axial LF
pressure profile given as the maximum absolute value of the filtered pulse envelopes
(only LF=+30% shown here). The experienced LF pressure by the HF pulse is given
as the LF pressure at the center position of the HF envelope. The time delays are here
given as the time delay between the LF+ and LF− excitation.

array. In this case the manipulation pulse aperture may be chosen larger than the
imaging pulse aperture.

For an efficiently focused manipulation pulse array, maintaining a constant me-
chanical index (MI) leads to a reduced transmit pressure due to the improved focusing
capabilities. In this situation, the manipulation pulse pressure will be low close to
the array with a rapid pressure increase close to the focal point. If transmitted on a
gradient, the imaging pulse will then maintain its position on the gradient at a low
manipulation pressure and rapidly slide over the gradient approaching the focal point.
This should lead to less compression/expansion effects compared to a manipulation

49



A.6 Conclusion

pulse array with a high Fresnel number.

A.6 Conclusion

In this article, the measured acoustics of transmitted dual-frequency excitation pulses
in a focused ultrasound system are presented and explained by theoretical consider-
ations. A designed and manufactured 0.9/7.5MHz dual-frequency band annular ar-
ray capable of transmitting dual-frequency co-axial wide-band pulses using the same
acoustic surface was used for this purpose.

Hydrophone measurements demonstrate the function of the array and the acoustic
propagation effects of superimposed wide-band dual-frequency excitation pulses. The
results show that there are substantial compression, expansion and time-delay effects
of the high-frequency imaging pulse when it is propagating in different phases of the
low-frequency manipulation pulse, relative to the case when no manipulation pulse is
present. The compression and expansion of the imaging pulse leads to changes in axial
pressure amplitudes and center frequency.

It is very important to characterize and understand these effects in order to fully
utilize the potential of dual-frequency excitation techniques like SURF imaging. In a
previous paper by this group, it has been shown that by compensating for the gen-
erated time-delay between the imaging pulses in a two-pulse SURF imaging contrast
agent detection scheme, tissue suppression was increased by up to 6 dB in vivo using
only 100 kPa of manipulation pulse pressure. [3] In such a situation, the time delay be-
tween the two imaging pulses is ∼ 1-2 ns. Including compensation of the compression
and expansion effect in the same situation will probably further increase the tissue
suppression.

The bi-layer piezo-electric structure used in the annular array presented here, has
also been manufactured and tested in a prototype of a linear array. [35] This technol-
ogy allows the techniques of dual-frequency band pulse imaging to be implemented
on modern medical ultrasound imaging scanners using phased, linear and curvilinear
arrays.
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[4] S. P. Näsholm, R. Hansen, S. Måsøy, T. F. Johansen, and B. A. J. Angelsen,
“Transmit beams adapted to reverberation noise suppression using dual-frequency
SURF imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control 56, 2124–2133 (2009).
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Abstract

Second order UltRasound Field (SURF) imaging uses dual-frequency band pulse com-
plexes with overlapping high-frequency (HF) and low-frequency (LF) pulses. The
technique can be used to image nonlinear scattering from e.g. ultrasound contrast
agents and micro-calcifications embedded in soft tissue. The LF pulse manipulates
both the local scattering and the forward propagation of the HF pulse. The forward
propagation effects produce a nonlinear propagation delay and pulse form distortion of
the HF pulse compared to a conventional single band pulse. In this paper an unfocsed
LF wave is transmitted together with a focused HF wave and the forward propagation
effects are estimated. The nonlinear propagation delay is corrected for to demonstrate
the ability of the SURF technique to suppress linear scattering from tissue. The linear
scattering from tissue is suppressed with -35 to -17 dB dependent on the low-frequency
manipulation pressure. Though the nonlinear propagation delay can be well estimated
and corrected for other nonlinear propagation effects considerably limits the level of
tissue suppression achieved.
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B.1 Introduction

Suppression of scattering from tissue is essential in several ultrasound imaging tech-
niques, e.g. Doppler [1] and ultrasound contrast imaging [2–4]. The ultrasound con-
trast agents have a highly nonlinear behavior when insonfied at around the resonance
frequency of the bubble [5] and this property is used to differentiate the scattering
of the contrast agents from the linear scattering of tissue. For doppler imaging the
scatterer velocity is used to differentiate the scattering of tissue from that of blood.

Ultrasound contrast agents are gas filled micro-bubbles with resonance frequencies
in the range 2 to 4 MHz [5]. When insonified at such frequencies the bubbles are
driven into harmonic oscillation, generating a backscattered signal which contains
harmonics of the insonifying frequency. The level of harmonics in the scattered signal
from the micro-bubbles can be higher than that scattered from tissue. This has led to
the development of several nonlinear contrast agent detection techniques. The main
purpose of such techniques is to suppress the linear scattered signal from tissue while
maintaining as much as possible of the nonlinear scattered signal from the contrast
agent. Most of the techniques used in routine clinic today are based on Pulse Inversion
(PI) schemes [2], Amplitude Modulation (AM) schemes [3], or a combination of these
[4].

In an effort to raise the imaging frequency for contrast agents, dual-frequency
band techniques has been proposed by several groups [6–9]. In general, these methods
use a low-frequency (LF) manipulation pulse to manipulate the scattering of a high-
frequency (HF) imaging pulse.

When pulse inversion imaging methods where applied to normal B-mode imaging
they improved the overall imaging quality [10, 11]. The contrast and resolution in the
image was improved at the expense of penetration. The pulse reverberations where
somewhat suppressed providing clearer images with improved contrast resolution. The
reason behind this is that after the first scattering of the pulse, the pressure drops so
that there is negligible accumulation of harmonics. Since some of the reverberation
noise has its first scattering close to the probe, the noise originating from this area
can be suppressed. This imaging method is known as Tissue Harmonic Imaging (THI)
and is available on most commercial scanners.

Dual frequency methods can also be used to suppress reverberations [12]. The
LF pulse manipulates the forward propagation of the HF pulse. By transmitting two
pulses in each scanline direction where the LF pulse is inverted for the second pulse,
the accumulation of nonlinear propagation effects can be used in the same way as for
THI to suppress reverberation noise.

In addition to image nonlinear scattering from contrast bubbles and to suppress
reverberation noise, dual-frequency techniques can be used for tissue characterization
[13–15].

A method coined SURF imaging is such a dual-frequency band technique [8, 12, 16].
The frequency relation between the LF and HF is in the range 1:8-10. A simulated
SURF pulse complex is shown in Figure B.1. The LF pulse not only manipulates the
local scattering but also the propagation of the HF pulse. To be able to detect the
nonlinear scattering effectively and to suppress reverberation noise, these nonlinear
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propagation effects must be estimated and corrected for.
In this paper, the nonlinear propagation effects are investigated in vitro using

a dual-frequency linear array. Using an unfocused LF manipulation pulse together
with a focused HF pulse, the nonlinear propagation delay is estimated and corrected
for and the tissue suppression capabilities determined for increasing LF manipulation
pressures. The lower manipulation pressures are applicable for contrast imaging, while
the higher pressures are more suited for suppressing reverberations.

The achievable tissue suppression is quantified and the limiting factors for sup-
pression of linear scattering is investigated. Investigating suppression in a practical
setting.

Figure B.1: SURF pulse complex consisting of a high-frequency imaging pulse(dashed)
and a low-frequency manipulation pulse(solid)

B.2 Theory

B.2.1 Nonlinear wave equation

A brief derivation of the nonlinear wave equation for heterogenous tissue is given here
and a full derivation can be found in [17, 18].

In the nonlinear regime the relative volume compression of a small material element
ΔV is in the 2nd order approximation defined as

∂V

ΔV
= −∇ψ (r, t) ≈ κp− βnκ

2p2 , (B.1)

where ψ is the particle displacement, κ is the tissue compressibility, βn is the tissue
nonlinearity parameter and p is the pressure. Applying Newtons 2nd law on the
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element with mass Δm = ρ0ΔV , the net force on the element will give an acceleration
of

∂u (r, t)

∂t
= − 1

ρ0
∇p (r, t) , (B.2)

where u is the particle velocity and ρ0 is the mass density at equilibrium.
Introducing the momentum potential

∇ϕ (r, t) = −ρu (r, t)

p (r, t) =
∂ϕ (r, t)

∂t

(B.3)

and combining this with (C.1) and (C.2) gives the nonlinear wave equation for ho-
mogenous tissue

∇ϕ (r, t)− 1

c2 (r, t)

∂2ϕ (r, t)

∂t2
= 0 , (B.4)

where c (r, t) is the nonlinear wave propagation velocity

c (r, t) = c0

√
1− 2βn∇∂ψ (r, t)

∂t

≈ c0 (1− βnκp (r, t)) ,

(B.5)

and c0 = 1√
κρ is the linear wave velocity.

For the heterogenous tissue, the material parameters are spatially variant. This
variability can be modeled as the sum slowly varying component, a, and a rapidly
varying component, f ,

ρ(r) = ρa(r) + ρf (r)

κ(r) = κa(r) + κf (r)

βn(r) = βna(r) + βnf (r) ,

(B.6)

where the slow variations are at the scale of a wavelength. Inserting this into Equation
(C.3) gives the nonlinear wave equation for heterogenous tissue

∇2ϕ(r, t)− 1

c2(r, t)

∂2ϕ(r, t)

∂t2︸ ︷︷ ︸
Nonlinear propagation

− hp ⊗
t

1

c20(r)

∂2ϕ(r, t)

∂t2︸ ︷︷ ︸
Absorption

=
σl(r)

c20(r)

∂2ϕ(r, t)

∂t2
+∇ (γ(r)∇ϕ(r; t))︸ ︷︷ ︸

Linear scattering terms

− σn(r; p)

c20(r)

∂2ϕ(r, t)

∂t2︸ ︷︷ ︸
Nonlinear scattering terms

(B.7)
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where

γ (r) =
ρf (r)

ρ (r)
σl (r) =

κf (r)

κa (r)
(B.8)

are the linear scattering coefficients and

σn (r, p) ≈ 6βna (r)κa (r) p (r)σl (r) (B.9)

is the nonlinear scattering coefficient. The convolution term represents frequency
dependent absorption.

The left hand side of (B.7) represents the propagation of the wave, while right
hand side terms represent scattering sources. The pressure dependency of the wave
velocity c (r, t) implies that the high pressure part of the wave propagates with a higher
velocity than the low pressure part. This produces a nonlinear propagation distortion
of the wave oscillation which accumulates with propagation distance. The nonlinear
propagation distortion introduces harmonic frequency components in the propagating
pulse and is commonly known as harmonic self distortion.

B.2.2 Dual-frequency propagation

Using dual-frequency band pulses, it is convenient to analyze the propagation velocity
by separating the pressure into two components, p = pm+pi, where pm represents the
low-frequency manipulation pulse pressure and pi the high-frequency imaging pulse
pressure [16]. Inserting the pressure components into (C.4) and for clarity dropping
the dependency on r gives

c (pm, pi) ≈ c0 (1 + βnaκapm + βnaκapi) . (B.10)

The last term produces nonlinear harmonic distortion of the imaging pulse while the
second to last term will in addition to nonlinear harmonic distortion of the manipula-
tion pulse, give a local change in the wave velocity experienced by the imaging pulse.
Defining the propagation velocity of the imaging pulse as

c (pi) = c0 (1 + βnaκapi) , (B.11)

the change in wave velocity will be proportional to the manipulation pressure pm, and
the modified sound velocity for the imaging pulse may then be expressed as

ci (pm, pi) ≈ ci (pi) (1 + βnaκapm)

= c0

(
1 + βnaκapi + βnaκapm + (βnaκa)

2
pipm

)
≈ c0 (1 + βnaκapm + βnaκapi) .

(B.12)

where squared term can be neglected since it is low value relative to the other terms,
and c0 is the wave velocity for the imaging pulse with no manipulation pulse present.

For a short imaging pulse compared to the LF period, the manipulation pressure
over the HF pulse length can be divided into two components, an average, pma, and a
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varying, pmf , component. Compared to a pulse propagating without any manipulation
the average pressure will produce an accumulated nonlinear propagation delay [16],

τ (z) = −
∫ z

0

ds

c0
βn (s)κ (s) pma (s) . (B.13)

The varying part will produce nonlinear distortion of the imaging pulse. For exam-
ple; an imaging pulse centered at the zero crossing of the manipulation pulse, the pulse
will experience zero delay and only nonlinear distortion. The nonlinear distortion will
produce compression of the imaging pulse if it is placed on a negative gradient of the
manipulation pulse and expansion if it is placed on a positive gradient.

Consider a short imaging pulse compared to the manipulation pulse wavelength; if
the imaging pulse is centered at the zero crossing of the manipulation pulse the imaging
pulse will experience zero delay and only compression/expansion. After propagating
a distance Δz the shift in wavelength will be [14]

ΔλHF (Δz) = c0βnκΔpmfΔz , (B.14)

where Δpmf is the difference in manipulation pressure between two zero crossings of
the imaging pulse. This change in wavelength will produce a shift in center frequency
of

fHF (z +Δz) =
λHF (z)

λHF (z) + ΔλHF (Δz)
fHF (z) . (B.15)

If, on the other hand, the imaging pulse is placed at the peak or trough of the
manipulation pulse, the imaging pulse will experience mainly a delay as given by
(C.6) but also some nonlinear distortion [16]. The amount of nonlinear distortion will
be a function of the length of the imaging pulse relative to the manipulation pulse.
The experienced manipulation pressure at the time t from the peak or trough of the
manipulation pulse may be modeled as

pLF (t) = pLF cos (2πfc,LF t) . (B.16)

For a gaussian imaging pulse with relative bandwidth B and center frequency fc,HF ,
the X dB level of the envelope has the position tXdB

tXdB =

√
2 ln (2)

Bfcπ

√
X

10
ln (10) (B.17)

Equation (B.16) and (B.17) can be used to compute the relative difference in manip-
ulation pressure between the center and the edges of the HF pulse.

From the nonlinear wave Equation (B.7), the pressure dependent nonlinear scat-
tering coefficient is

σn (r; p)

c20 (r)

∂2ϕ (r, t)

∂t2
. (B.18)

Using SURF imaging and e.g. transmitting two pulse complexes in each direction
where the high-frequency pulse travels on the peak or trough of the manipulation
pulse, the linear and nonlinear scattering can be separated [7].
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B.2.3 Signal Model

The received echo from a pulse with no manipulation pressure can be modeled as a
complex bandlimited signal with real positive amplitude, a, center frequency, ωc and
modulating phase, ϕ

s(t) = a(t) ei[ϕ(t)+ωct] (B.19)

By applying manipulation pressure and combining the nonlinear wave equation
(C.3) and (B.19), the received HF echo from a SURF complex can be modeled as

sk(t) = (al (t+ αkτ (t)) + αkanl (t+ αkτ (t)))

ei[ϕ(t+αkτ(t))+ωc(t+αkτ(t))]
(B.20)

where αk is the polarity of the manipulation pressure for pulse k, τk is the nonlinear
propagation delay, al and anl is the amplitude of the linear and nonlinear signal
respectively. By transmitting two pulses in each direction with alternating LF pressure,
i.e α1,2 = [1,−1], and estimating and correcting for the nonlinear propagation delay,
the linear scattered signal can be suppressed and the nonlinear detected by subtracting
the two corrected signals

d̂ (t) = ŝ1 (t− τ̂ (t))− ŝ2 (t+ τ̂ (t)) (B.21)

B.2.4 Delay estimation

To estimate the nonlinear propagation delay, the algorithm by Standal et. al. [19] is
used. The algorithm uses a crosscorrelation technique to estimate the phase difference
of the two signals. It also estimates the instantaneous center frequency and uses a
parametric model for the delay. The delay is then found through some minimization
procedure, e.g. minimum least squares.

Using the signal model in Equation (B.20) and assuming symmetric delays and
unit sampling, the received signal from two SURF pulses with alternating LF polarity
can be written as

s1 [n] = s [n+ τn]

= a [k + τn] exp {i (ϕ [n+ τn] + ωc (k + τn))}
s2 [n] = s [n− τn]

= a [n− τn] exp {i (ϕ [n− τn] + ωc (k − τn))}

(B.22)

Cross multiplication gives the phase difference

ψn = arg{s1 [n] s2 [n]}
= ϕ [n+ τn]− ϕ [n− τn] + ωcτn ,

(B.23)

which for a small (sub sample) τn can be approximated as

ψn ≈ (ϕ̇ [n] + ωc) τn , (B.24)
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procedure, e.g. minimum least squares.
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Cross multiplication gives the phase difference

ψn = arg{s1 [n] s2 [n]}
= ϕ [n+ τn]− ϕ [n− τn] + ωcτn ,

(B.23)

which for a small (sub sample) τn can be approximated as

ψn ≈ (ϕ̇ [n] + ωc) τn , (B.24)
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where ϕ̇ [n] + ωc is the instantaneous frequency. The instantaneous frequency may be
estimated as

θn = (arg {s1 [n+ 1] s1 [n− 1] + s2 [n+ 1] s2 [n− 1]})
≈ ϕ̇ [n] + ωc .

(B.25)

The following relationship can then be formed

ψn ≈ θnτn (B.26)

and the delay is found by some minimization procedure

min
τ̂

‖ψ − θτ̂‖ . (B.27)

In this work, a local linear model for the delay is used

τ̂n+� := an + bn� (B.28)

and the model parameters are found in a least squares fashion by minimizing

J (an, bn) =
∑
�

wn+� |ψn+� − θn+� (an + bn�)|2 , (B.29)

where wn is a weighting function, an is the local delay and bn is the local slope of
the delay at depth n. Any parametric model can be used for the delay, but the linear
model is chosen since the delay varies slowly over the window size and it allows for
efficient computation.

B.3 Methods

B.3.1 Scanner

A modified Ultrasonix SonixRP (Ultrasonix Medical Corp, Vancouver, Canada) scan-
ner was used to record the data. The probe used is an inhouse designed dual-frequency
linear array manufactured by Vermon (Tours, France). The LF and HF elements are
organized in a stack, i.e. the LF elements are behind the HF elements, see Figure
C.1 [20]. The probe has 192 HF elements in azimuth direction, while the 156 LF
elements are arranged in three rows in elevation with 52 elements each. The outer LF
rows are connected in parallel. Only the center LF row covers the HF elements, and
each LF element covers 4 HF elements in the azimuth direction. The probe dimensions
are listed in Table C.1. In [20] a more detailed description of a similar design is given.
The center frequency of the LF and HF part is 0.9MHz and 7.5MHz respectively.

To be able to drive such a probe, the Ultrasonix scanner had to be modified. A
128 channel transmitter has been built for driving the low-frequency part of the array
and attached to the scanner. A new probe-connector board was also manufactured
due to the extra number of channels.

The Ultrasonix SonixRP scanner is a system designed for research and provides
unfiltered beamformed RF data @ 40MHz at full framerate.
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HF LF

# Elements Azimuth 192 52
# Elements Elevation 1 3
Element Size Elevation 7 mm 7mm

Pitch Azimuth 237 μm 948 μm
Elevation Focus 40 mm 40 mm

Table B.1: Probe Dimensions

Figure B.2: Dual-layer transducer stack with the LF frequency element placed behind
the HF elements

B.3.2 Transmit beam setup

For a focused beam from a circular symmetric aperture the diffraction will give a λ/4
phase shift from the array to the focus [17]. For a linear array the amount of phase
shift will be dependent on the azimuth and elevation aperture sizes and foci, and is
not as well defined as for the circular symmetric case. The phase shift will be close
to that of the circular symmetric case unless the azimuth and elevation foci are very
different. Using a focused LF beam the phase between the two pulses will vary along
the axis which would contribute to increased compression/expansion.

To limit the compression/expansion and to keep the experienced LF pressure for
the HF as constant as possible over the imaging region, an unfocused LF beam is used.
But even in the case of an unfocused LF beam there will be diffraction, but this will
be limited in the near-field. The limit of the near-field for an unfocused beam using a
circular symmetric aperture is given by [17]

D2

2λ
(B.30)

where D is the aperture size and λ is the wave length. This formula can be used as
an approximation for the linear array, considering the elevation and azimuth dimension
separately. For the setup used here the near-field of the LF aperture is 41mm in the
azimuth direction For the elevation part its more complex since the center row is
focused in 40mm. To achieve effective focusing, the focus point should be within the
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near field [17]. For the center LF row, the near field is 18mm, so the focusing is not
effective, thus the center row can be treated as being unfocused. If assuming that the
center row is not focused in elevation for the LF part, the near field limit is 140 mm for
the LF in the elevation dimension. It is therefore limited diffraction of the LF beam
within the region of interest (z < 30mm), thus the phase relation between the pulses
will not vary much in this region. The HF is focused at 22.5mm with an F-number of
2 and the transmit frequencies are 0.9MHz and 8MHz for the LF and HF, respectively.

Voltage Pressure

0 0 kPa
5 85 kPa
10 150 kPa
20 290 kPa
40 500 kPa

Table B.2: Voltage and pressure levels for low-frequency manipulation pulse

B.3.3 Measurements

For the measurements a CIRS model 049 (CIRS, Virginia, USA) elastography phantom
was used. There are no wires or other resolution scatterers in the phantom while the
inclusions are deeper than 30 mm, so the part of the phantom which is imaged is
homogenous with only ambient scattering. The probe is fixed to a Physik Instruments
(Karlsruhe, Germany) multistage robot. One hundred images spaced 1.5 mm apart
in the elevation direction are recorded. For each image, 50 frames are recorded and
averaged to increase the SNR.

This is done for five pressure levels of the LF manipulation pulse. In Table B.2 the
voltage levels together with the calibrated maximum pressure on the axis is shown.
The calibrated pressures are derated values from watertank measurements using an
attenuation of 0.3 dB/cm/MHz, which is standard for acoustic safety measurements
[21].

B.3.4 Simulations

Differences in amplitude, frequency and errors in delay correction will effect the level
of suppression. To see how these differences and errors effect the suppression, a 2.5
period 6MHz gaussian pulse is simulated. Different delays, amplitudes and frequency
shifts and combinations of these are applied, and the level of suppression computed.
The suppression is computed as

SUP = 20 log10

(
RMS (xΔ − x0)

RMS (x0)

)
(B.31)

where RMS is the root-mean-square value and x0, xΔ is the non-distorted and
distorted signal respectively. Delays of 0.5 and 1.25 ns, amplitude differences of 0.2

64

B.3 Methods

near field [17]. For the center LF row, the near field is 18mm, so the focusing is not
effective, thus the center row can be treated as being unfocused. If assuming that the
center row is not focused in elevation for the LF part, the near field limit is 140 mm for
the LF in the elevation dimension. It is therefore limited diffraction of the LF beam
within the region of interest (z < 30mm), thus the phase relation between the pulses
will not vary much in this region. The HF is focused at 22.5mm with an F-number of
2 and the transmit frequencies are 0.9MHz and 8MHz for the LF and HF, respectively.

Voltage Pressure

0 0 kPa
5 85 kPa
10 150 kPa
20 290 kPa
40 500 kPa

Table B.2: Voltage and pressure levels for low-frequency manipulation pulse

B.3.3 Measurements

For the measurements a CIRS model 049 (CIRS, Virginia, USA) elastography phantom
was used. There are no wires or other resolution scatterers in the phantom while the
inclusions are deeper than 30 mm, so the part of the phantom which is imaged is
homogenous with only ambient scattering. The probe is fixed to a Physik Instruments
(Karlsruhe, Germany) multistage robot. One hundred images spaced 1.5 mm apart
in the elevation direction are recorded. For each image, 50 frames are recorded and
averaged to increase the SNR.

This is done for five pressure levels of the LF manipulation pulse. In Table B.2 the
voltage levels together with the calibrated maximum pressure on the axis is shown.
The calibrated pressures are derated values from watertank measurements using an
attenuation of 0.3 dB/cm/MHz, which is standard for acoustic safety measurements
[21].

B.3.4 Simulations

Differences in amplitude, frequency and errors in delay correction will effect the level
of suppression. To see how these differences and errors effect the suppression, a 2.5
period 6MHz gaussian pulse is simulated. Different delays, amplitudes and frequency
shifts and combinations of these are applied, and the level of suppression computed.
The suppression is computed as

SUP = 20 log10

(
RMS (xΔ − x0)

RMS (x0)

)
(B.31)

where RMS is the root-mean-square value and x0, xΔ is the non-distorted and
distorted signal respectively. Delays of 0.5 and 1.25 ns, amplitude differences of 0.2

64

B.3 Methods

near field [17]. For the center LF row, the near field is 18mm, so the focusing is not
effective, thus the center row can be treated as being unfocused. If assuming that the
center row is not focused in elevation for the LF part, the near field limit is 140 mm for
the LF in the elevation dimension. It is therefore limited diffraction of the LF beam
within the region of interest (z < 30mm), thus the phase relation between the pulses
will not vary much in this region. The HF is focused at 22.5mm with an F-number of
2 and the transmit frequencies are 0.9MHz and 8MHz for the LF and HF, respectively.

Voltage Pressure

0 0 kPa
5 85 kPa
10 150 kPa
20 290 kPa
40 500 kPa

Table B.2: Voltage and pressure levels for low-frequency manipulation pulse

B.3.3 Measurements

For the measurements a CIRS model 049 (CIRS, Virginia, USA) elastography phantom
was used. There are no wires or other resolution scatterers in the phantom while the
inclusions are deeper than 30 mm, so the part of the phantom which is imaged is
homogenous with only ambient scattering. The probe is fixed to a Physik Instruments
(Karlsruhe, Germany) multistage robot. One hundred images spaced 1.5 mm apart
in the elevation direction are recorded. For each image, 50 frames are recorded and
averaged to increase the SNR.

This is done for five pressure levels of the LF manipulation pulse. In Table B.2 the
voltage levels together with the calibrated maximum pressure on the axis is shown.
The calibrated pressures are derated values from watertank measurements using an
attenuation of 0.3 dB/cm/MHz, which is standard for acoustic safety measurements
[21].

B.3.4 Simulations

Differences in amplitude, frequency and errors in delay correction will effect the level
of suppression. To see how these differences and errors effect the suppression, a 2.5
period 6MHz gaussian pulse is simulated. Different delays, amplitudes and frequency
shifts and combinations of these are applied, and the level of suppression computed.
The suppression is computed as

SUP = 20 log10

(
RMS (xΔ − x0)

RMS (x0)

)
(B.31)

where RMS is the root-mean-square value and x0, xΔ is the non-distorted and
distorted signal respectively. Delays of 0.5 and 1.25 ns, amplitude differences of 0.2

64

B.3 Methods

near field [17]. For the center LF row, the near field is 18mm, so the focusing is not
effective, thus the center row can be treated as being unfocused. If assuming that the
center row is not focused in elevation for the LF part, the near field limit is 140 mm for
the LF in the elevation dimension. It is therefore limited diffraction of the LF beam
within the region of interest (z < 30mm), thus the phase relation between the pulses
will not vary much in this region. The HF is focused at 22.5mm with an F-number of
2 and the transmit frequencies are 0.9MHz and 8MHz for the LF and HF, respectively.

Voltage Pressure

0 0 kPa
5 85 kPa
10 150 kPa
20 290 kPa
40 500 kPa

Table B.2: Voltage and pressure levels for low-frequency manipulation pulse

B.3.3 Measurements

For the measurements a CIRS model 049 (CIRS, Virginia, USA) elastography phantom
was used. There are no wires or other resolution scatterers in the phantom while the
inclusions are deeper than 30 mm, so the part of the phantom which is imaged is
homogenous with only ambient scattering. The probe is fixed to a Physik Instruments
(Karlsruhe, Germany) multistage robot. One hundred images spaced 1.5 mm apart
in the elevation direction are recorded. For each image, 50 frames are recorded and
averaged to increase the SNR.

This is done for five pressure levels of the LF manipulation pulse. In Table B.2 the
voltage levels together with the calibrated maximum pressure on the axis is shown.
The calibrated pressures are derated values from watertank measurements using an
attenuation of 0.3 dB/cm/MHz, which is standard for acoustic safety measurements
[21].

B.3.4 Simulations

Differences in amplitude, frequency and errors in delay correction will effect the level
of suppression. To see how these differences and errors effect the suppression, a 2.5
period 6MHz gaussian pulse is simulated. Different delays, amplitudes and frequency
shifts and combinations of these are applied, and the level of suppression computed.
The suppression is computed as

SUP = 20 log10

(
RMS (xΔ − x0)

RMS (x0)

)
(B.31)

where RMS is the root-mean-square value and x0, xΔ is the non-distorted and
distorted signal respectively. Delays of 0.5 and 1.25 ns, amplitude differences of 0.2
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and 1.0 dB and frequency shifts of 0.1 and 0.3 MHz are investigated separately. In
addition is 1.0 dB and 0.2 dB amplitude difference in combination with a delay off
1.25 ns investigated to analyze the effect of more than one signal parameter.

B.3.5 Processing

The processing was done using MATLAB (The Mathworks, Massachusetts, U.S.A).
The received RF data was first filtered with a 60 tap bandpass filter with cutoff
frequencies at 3 and 8MHz. The IQ data was produced using the hilbert transform in
Matlab.

The nonlinear propagation delay between the positively and negatively manipu-
lated pulse is estimated using the algorithm described in Section B.2.4. The window
size used was 2.0mm. For correction of the estimated nonlinear propagation delay,
cubic spline interpolation was used. The corrected signals were then subtracted to
suppress the linear scattered signal as described in Section B.2.3. With reference to
the signal model (B.20),(B.21) and using a pulse sequence of α1,2 = [−1, 1], the two
delay-corrected signals are denoted

ĉ1 (t) = ŝ1 (t− τ̂ (t))

ĉ2 (t) = ŝ2 (t+ τ̂ (t)) ,
(B.32)

and the nonlinear detection signal

d̂ (t) = ĉ1 (t)− ĉ2 (t) . (B.33)

The relative tissue suppression (RTS) is then computed as

RTS =

∑100

k=1

∣∣∣d̂(t)∣∣∣∑100

k=1 |ĉ1(t)|
. (B.34)

For the 0V case, no delay estimation and correction is done. This case serves as the
benchmark, as it provides the optimal level of suppression.

To analyze the difference between the received signals from the positive and nega-
tive manipulated pulse, the relative amplitude difference is useful. It may provide indi-
cation of beam difference and nonlinear distortion, especially compression/expansion.
The relative amplitude difference (RAD) is computed as

RAD =

∑100

k=1 |ĉ1(t)|∑100

k=1 |ĉ2(t)|
. (B.35)

B.4 Results

In Table B.4 the suppression levels for the simulated pulses is shown.
In Figure B.3 the nonlinear propagation delay is shown for the different low-

frequency voltage levels. The delay is averaged over all N = 100 frames. The standard
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ĉ1 (t) = ŝ1 (t− τ̂ (t))
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Case Suppression

Δτ = 0.5 ns -35.85 dB
Δτ = 1.25 ns -27.89 dB
Δa = 0.2 dB -32.66 dB
Δa = 1.0 dB -18.27 dB

Δfc = 0.1 MHz -26.8 dB
Δfc = 0.3 MHz -18.02 dB

Δa = 1.0 dB, Δτ = 1.25 ns -17.57 dB
Δa = 0.2 dB, Δτ = 1.25 ns -25.57 dB

Table B.3: Suppression values
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Figure B.3: Estimated nonlinear propagation delays for different low-frequency voltage
levels

deviation for the delays over the 100 frames is shown in Figure B.4. The first 7 mm
in all plots has been left out, due to near field artifacts with the prototype probe.

In Figure B.5 the relative tissue suppression is shown. The level of suppression
decreases with increasing LF manipulation pressure and depth.

When transmitting an unfocused LF wave together with a focused HF wave the
phase relation between the HF and LF will vary across the HF beam. The phase
relationship across the beam for the setup used here, is shown in Figure B.6, where
zero degrees means that the HF is centered at the peak or trough of the LF.

The relative amplitude difference between the received signal from the positive and
negative manipulated pulses are shown in Figure B.7.
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Figure B.4: Standard deviation for the estimated nonlinear propagation delays
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Figure B.5: Level of linear scattering suppression for different voltage levels

B.5 Discussion

When transmitting an unfocused LF wave together with a focused HF wave, the ma-
nipulation pressure experienced by the HF pulse varies across the HF beam, producing
a variation in the propagation velocity. The variation in phase relation between the
HF and LF over the transmit beam is show in Figure B.6. For the setup used here,
the maximum transmit focusing delay is 477 ns, which is approximately 43% of an LF
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nipulation pressure experienced by the HF pulse varies across the HF beam, producing
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Figure B.6: Phase relation between HF and LF across the beam on transmit
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Figure B.7: Amplitude difference between the positively and negatively manipulated
pulses

period.
The variable phase relation over the HF beam will produce different nonlinear de-

lays and distortion across the beam. Even though the central part of the HF beam is
placed at the peak/trough of the LF pulse and experience little compression/expansion,
the outer parts will be propagating on the gradient of the LF producing compres-
sion/expansion and more complex nonlinear distortion. Compression/expansion will
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produce amplitude differences and frequency shifts. When using focused beams, the
edge-waves will have an increasing contribution until the focus, before their contri-
bution decreases again. The amplitude difference in Figure B.7, increases rapidly at
around 13-14 mm and decreases after 20 mm. This can be explained by the edge waves
which has experienced a higher level of compression/expansion than the central parts
of the beam, and has their main region of contribution in this depth range.

The variation in wave velocity over the HF beam will produce nonlinear aberration,
and since the manipulation pulse is inverted from the first to the second pulse, the
aberration will be different for the two beams. For the positive manipulated beam,
the outer edges of the HF beam will propagate slower than the central parts since
the manipulation pressure is lower, shifting the focus of the beam outwards, while
for the negative manipulated pulse the focus will be shifted inwards. Shift in focus
will produce different beam profiles and thus an amplitude difference between the two
signals. The depth profile of the amplitude difference in Figure B.7 has the shape
of an axis beam-profile which may be an indication that the amplitude difference is
produced mainly by the contribution of edge-waves which has experienced compres-
sion/expansion rather than aberration.

Aberration will also produce a difference in diffraction which gives a frequency
difference between the two signals. From the reulsts in Table B.4, it is seen that the
maximum achievable level of suppression for a frequency shift of as little as 0.1 MHz
is ∼ 27dB, while for 0.3 MHz shift, it is ∼ 18dB. Thus the slightest difference in
diffraction and can limit the suppression considerably .

When transmitting an unfocused LF wave, and the HF pulse is placed on the
peak or through and it is short compared to the LF pulse, one would expect minimal
compression/expansion. The prototype probe has a bandwidth of approximately 45%,
so from (B.16) and (B.17) the -10 and -20 dB limit of the HF pulse has a relative

experienced LF pressure, pLF (tXdB)
pLF (t0)

, of ∼ 0.61 and ∼ 0.27 respectively. The -20 dB

length of the HF pulse covers approximately 41% of the LF period. Even for a HF
pulse traveling at the peak or through of the LF pulse, such large variation of the LF
pressure over the HF pulse might produce significant nonlinear distortion, decreasing
the level of tissue suppression.

The standard deviation of the delay estimates shown in Figure B.4 increases both
with depth and manipulation pressure. The 0V case gives the optimal level of suppres-
sion and indicates the SNR in the system. The SNR decreases with depth, and a lower
SNR will give larger errors in the delay estimates and thus make the errors increase.
Frequency difference between the two pulses introduced by aberration and nonlinear
propagation will increase with increasing manipulation pressure and introduce errors
in the delay estimates.

When transmitting an unfocused LF wave the pressure and phase can be assumed
to be close to constant within the near-field of the LF beam, which should give a lin-
ear relation with depth of the nonlinear propagation delay. As seen in Figure B.3, the
estimated delays are linear with a break at around 14 mm. As mentioned above, the
nonlinear aberration will produces different diffraction of the positively and negatively
manipulated beams. From Figure B.7 the amplitude difference and thus possibly the
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is ∼ 27dB, while for 0.3 MHz shift, it is ∼ 18dB. Thus the slightest difference in
diffraction and can limit the suppression considerably .

When transmitting an unfocused LF wave, and the HF pulse is placed on the
peak or through and it is short compared to the LF pulse, one would expect minimal
compression/expansion. The prototype probe has a bandwidth of approximately 45%,
so from (B.16) and (B.17) the -10 and -20 dB limit of the HF pulse has a relative

experienced LF pressure, pLF (tXdB)
pLF (t0)

, of ∼ 0.61 and ∼ 0.27 respectively. The -20 dB

length of the HF pulse covers approximately 41% of the LF period. Even for a HF
pulse traveling at the peak or through of the LF pulse, such large variation of the LF
pressure over the HF pulse might produce significant nonlinear distortion, decreasing
the level of tissue suppression.

The standard deviation of the delay estimates shown in Figure B.4 increases both
with depth and manipulation pressure. The 0V case gives the optimal level of suppres-
sion and indicates the SNR in the system. The SNR decreases with depth, and a lower
SNR will give larger errors in the delay estimates and thus make the errors increase.
Frequency difference between the two pulses introduced by aberration and nonlinear
propagation will increase with increasing manipulation pressure and introduce errors
in the delay estimates.

When transmitting an unfocused LF wave the pressure and phase can be assumed
to be close to constant within the near-field of the LF beam, which should give a lin-
ear relation with depth of the nonlinear propagation delay. As seen in Figure B.3, the
estimated delays are linear with a break at around 14 mm. As mentioned above, the
nonlinear aberration will produces different diffraction of the positively and negatively
manipulated beams. From Figure B.7 the amplitude difference and thus possibly the
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bution decreases again. The amplitude difference in Figure B.7, increases rapidly at
around 13-14 mm and decreases after 20 mm. This can be explained by the edge waves
which has experienced a higher level of compression/expansion than the central parts
of the beam, and has their main region of contribution in this depth range.

The variation in wave velocity over the HF beam will produce nonlinear aberration,
and since the manipulation pulse is inverted from the first to the second pulse, the
aberration will be different for the two beams. For the positive manipulated beam,
the outer edges of the HF beam will propagate slower than the central parts since
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difference in diffraction increases at around 14 mm which could effect the delay esti-
mation and introduce a bias. The manipulation pressure decreases from the center of
the HF wave to the edges as shown in Figure B.6. Thus, the accumulated nonlinear
delay decreases as one moves away from the center of the HF beam. When the edge
waves, which has accumulated less nonlinear delay starts contributing to the signal at
the center of the HF beam, the observed nonlinear delay will become less than what
is expected based on the manipulation pressure on the center of the beam.

The level of tissue suppression shown in Figure B.5, decreases with increasing pres-
sure. Higher manipulation pressure gives increasing delays and delay errors, which
suggests that the suppression decreases. The relative amplitude difference shown in
Figure B.7 also increases with increasing manipulation pressure giving poorer suppres-
sion of the tissue signal. From Table B.4, it is seen that when the amplitude difference
is 1 dB, an error in delay correction of 1.25 ns has little influence on signal suppression,
so the amplitude difference is the dominating factor, while for a delay error of 1.25 ns,
a difference in amplitude of 0.2 dB has only minor effect. The amplitude differences
and delay errors used in this analysis are representable for the range of values seen in
Figure B.7 and Figure B.4.

The SNR level decreases almost linearly from 18 mm and out while the suppres-
sion levels stays more or less constant. This can be attributed to that the relative
amplitude difference, shown in Figure B.7, decreases from around 18 mm and deeper,
thus improving the level of suppression. When approaching the far-field, the differ-
ence in diffraction will also become less, contributing to an improved level of tissue
suppression.

B.6 Conclusions

In this paper, suppression of linear scattering for a dual-frequency band technique has
been investigated. An unfocused LF beam has been used together with a focused HF
beam. The unfocused LF beam was chosen to achieve close to constant phase relation-
ship between the LF and HF pulse and thus close to constant manipulation pressure in
the imaging region. Such a setup is expected to produce little compression/expansion
of the HF pulse, but introduces other propagation effects like aberration.

The level of tissue suppression for the setup used in this study varies from 35dB to
17dB in the focus. The level decreases for increasing pressure. For contrast imaging
where LF pressures in the range 50-120 kPa are common, which corresponds to the
5-10V setting investigated here, the suppression level demonstrated is sufficient. The
SURF technique for contrast imaging is demonstrated in vivo [22] in pigs, though with
a different system.

For high pressure application, the suppression of linear scattering seen here might
not be sufficient. For such applications the aberration and pulse form compres-
sion/expansion can not be neglected and must be estimated and corrected for. The
beamforming setup investigated here might not be the one producing the optimum
level of suppression. Thus, alternative beamforming strategies for minimizing the
nonlinear propagation effects should be sought, e.g. confocal LF and HF beams where
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both can be focused at the same depth or both unfocused.
Methods for estimating and correcting for the nonlinear propagation effects other

than the nonlinear delay should also be investigated. To achieve optimal suppression
the pulse form distortion and diffraction differences should be corrected for.

It is shown that when there is an amplitude difference of 1 dB, an error in the
delay correction of 1.25 ns yields 0.7 dB less signal suppression than with no delay
error. Compared to the case with only 1.25 ns delay error and no amplitude difference,
the signal suppression is 10dB less. When there is little amplitude difference, 0.2 dB,
it is shown that that the delay has more significant effect. From this analysis it is
indicated that for the values of amplitude difference and delay error investigated here,
the amplitude difference, which stems from pulse form distortion and aberration, has
a greater impact on the level of tissue suppression than the delay error.
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Abstract

In dual frequency band imaging techniques a low frequency (LF) manipulation pulse is
used to manipulate the propagation and scattering of a high frequency (HF) imaging
pulse. Understanding how the choice of transmit beam setups affects the nonlinear
propagation is crucial for optimal performance of the imaging method. Three transmit
beamforming strategies have been investigated; 1. Focused LF + Focused HF, 2.
Unfocused Wave LF + Focused HF, 3. Unfocused Wave LF + Unfocused Wave HF. On
axis pulses are recorded using a watertank setup. The nonlinear delay and frequency
shift between pulses with opposite polarity of the LF pulse is estimated. Based on
the estimated local LF pressure and pressure gradient experienced by the HF pulse
the nonlinear delay and frequency shift is predicted. A good accordance between the
predicted and estimated values is seen as long as diffraction is limited. The difference
in nonlinear propagation effects between the transmit setups is shown. For the second
setup, nonlinear aberration introduces a shift in focusing of the HF beam.
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C.1 Introduction

C.1 Introduction

Nonlinear effects in biomedical ultrasound was not widely recognized until Carstensen
and Muir focused their attention on this subject in the 1980 [1, 2]. This spawned a
wide research effort on nonlinear biomedical ultrasound which led to the development
of tissue harmonic imaging [3–5] and techniques for imaging ultrasound contrast agents
[6–8].

In recent years, dual-frequency imaging techniques has been a field of some interest.
In such techniques, the nonlinear interaction between two co-propagating pulses with
different frequency is used for imaging [9–11], tissue characterization [12–14], and
to manipulate the scattering properties of ultrasound contrast agents in an effort to
increase the sensitivity at high imaging frequencies [?, ?, 15–18].

In [9], dual-band pulse complexes with a large frequency separation is utilized
where the low frequency (LF) is used to manipulate the propagation velocity of the
high frequency (HF) imaging pulse with the means to suppress reverberation noise.
Differential tissue harmonic imaging (DTHI) [11], uses less separation of the frequency
bands, e.g. 3 and 6 MHz, and utilizes the mixing of the frequency bands to improve
contrast and penetration compared to conventional B-mode imaging.

In vibro acoustography [12], two confocal beams with a slight frequency difference
(∼50Hz) are used to probe the tissue. In the focus, the nonlinear interaction of the
two beams excites an oscillatory movement in the tissue which generates an acoustic
signal at the difference frequency, where the phase and amplitude of the emitted signal
depends on the mechanical properties of the tissue. This can be used to image micro
calcifications in tumors [19].

For contrast imaging, dual-frequency techniques utilizes a LF pulse to manipulate
the radius of the micro-bubble and thus manipulate the scattering of the HF imaging
pulse. By transmitting two pulse complexes in each scanline direction where the
polarity of the low frequency pulse is changed from the first to the second pulse, and
subtracting the two received signal, the scattering from the bubble can be detected.
In [20] such a dual-frequency contrast imaging technique is demonstrated in vivo.

Dual-frequency methods have also been used to estimate the nonlinearity param-
eter B/A [13, 14]. In these two methods the LF pulse is used to manipulate the
propagation of the HF imaging pulse. The nonlinear propagation of the HF pulse
produced by the LF pulse can be estimated and since nonlinear propagation is linked
to the nonlinearity parameter, its value can be estimated.

In contrast imaging, the nonlinear scattered signal from the bubble is of interest
while the linearly scattered signal from tissue should to be suppressed. As with pulse
inversion and other conventional techniques, dual-frequency methods will experience
nonlinear propagation which limits the contrast to tissue ratio. In methods like the
one presented in [9], it is on the other hand the nonlinear propagation effects which
are used for imaging. The generation of nonlinear propagation effects is dependent
on the transmit beamforming, so a thorough understanding of this is important to
achieve optimal performance of the different imaging techniques.

In this paper the nonlinear propagation effects using dual-frequency band pulse
complexes with a frequency separation of 0.9:8 MHz is investigated for three different
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Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

transmit beam setups:

• Setup 1: Focused LF + Focused HF

• Setup 2: Unfocused LF + Focused HF

• Setup 3: Unfocused LF + Unfocused HF

The three setups are investigated using a prototype dual-frequency band linear
array. The nonlinear propagation produces a propagation delay and frequency shift
of the HF pulse relative to a non-manipulated pulse. These two effects are estimated
and their relation to the manipulation pressure is investigated by predicting the ac-
cumulation of these effects from the experienced LF manipulation pressure by the HF
pulse.

For each transmit beam setup, three pulse complexes are investigated; One with
no LF manipulation pulse present and two dual-frequency pulse complexes where the
LF pulse is inverted for the second pulse.

C.2 Theory

C.2.1 Nonlinear wave equation

A general derivation of the nonlinear wave equation with scattering terms can be
found in [21, 22]. In [23] a condensed version of this is provided. Here, a brief
derivation of this equation for a homogeneous medium is presented. The notation
follows Angelsen [23].

In the nonlinear regime the relative volume compression of a small material element
ΔV is in the 2nd order approximation defined as

∂V

ΔV
= −∇ψ (r, t) ≈ κp− βnκ

2p2 (C.1)

where ψ is the particle displacement, κ is the tissue compressibility, βn is the tissue
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C.2 Theory

c (r, t) = c0
√
1− 2βn∇ψ (r, t)

≈ c0 (1− βnκp (r, t))
(C.4)

where c0 = 1√
κρ is the linear wave velocity and the second order term from (C.1)

is neglected due to its low magnitude.

C.2.2 Dual-frequency propagation

The local experienced LF pressure and the local variation of the LF pressure over the
HF pulse gives a nonlinear delay and compression/expansion of the HF pulse.

When investigating propagation effects of overlapping dual-frequency band com-
plexes it is convenient to divide the pressure into two components; pi, the high-
frequency imaging pressure and, pm the low-frequency manipulation pressure. In-
serting this into (C.4) gives

c (pi, pm) = c0 (1− βnκpi + βnκpm) (C.5)

where the spatial and temporal dependency of the pressure components are omitted for
notational convenience. The last two components gives nonlinear harmonic distortion
of the HF and LF pulse respectively. The nonlinear self distortion of the LF pulse
also produces a delay and compression/expansion of the HF pulse. The manipulation
pressure varies over the HF pulse, and can be divided into two components; pma, an
average and; pmf , a varying component. The average component produces a nonlinear
propagation delay compared to a non-manipulated HF pulse

τn (z) = −
∫ z

0

ds

c0
βn (s)κ (s) pma (s) (C.6)

while the varying component produces compression/expansion of the HF pulse.
Let Δpmf be the difference in manipulation pressure between two zero crossings of
the HF pulse. Then, after propagating a distance Δz, the change in wavelength will
be

ΔλHF (Δz) = βnκΔpmfΔz (C.7)

which gives a change in center frequency of

fHF (z +Δz) =
λHF

λHF +ΔλHF (Δz)
fHF (z) (C.8)

Consider a symmetric HF pulse which is short compared to the LF period. If the
HF is centered at a zero crossing of the LF, the varying LF pressure will produce
a compression/expansion of the HF. If placed at the peak or through, the HF pulse
length will not change, but the pulse will be compressed/expanded internally.

When the HF and LF beam is not co-focused another nonlinear propagation effect
is introduced, aberration. Since the two beams are not co-focused the experienced
LF pressure by the HF pulse varies over the beam, i.e. the sound of speed varies.
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Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

Considering the case of an unfocused LF beam with no diffraction together with a
HF beam focused at F , and tracing rays from the focus to the array at an angle, α,
relative to the beam axis, the accumulated nonlinear propagation delay along this ray
is

τn (F ;α) = γ

∫ F

0

ds

cosα
cos (kL [(F − s) (1− cosα) + z0])

= γ
F

cosα

sin (kL [F (1− cosα) + z0])− sin (kLz0)

kLF (1− cosα) cos (kLz0)

(C.9)

where γ = −βnκpL

c0
, z0 = c0t0 is the phase relation between the HF and LF at the

center of the beam, and kL = ωL

c0
is the LF wave number.

For a HF centered at the peak of the LF, i.e. z0 = 0, the nonlinear steering delay
is

τns (α) = τn (α;F )− τn (0;F )

= −γF

{
1− sin (kLF (1− cosα))

kLF cos (α) (1− cosα)

}
(C.10)

The ordinary transmit focusing delay is

τs (α) =
F

c0

(
1− cosα

cosα

)
(C.11)

and the total steering delay then becomes

τts (α) = τs (α) + τns (α) (C.12)

Combining (C.10) and (C.11), the equivalent focus becomes

Feq (α) = F − τns (α)
c0 cosα

(1− cosα)
(C.13)

For a focus depth of 20 mm and an F number of 3, the maximum angle is α = 9.5◦,
and using material parameters for muscle at 37◦C [24] and a manipulation pressure
of 0.5 MPa, the effective focus for the outer ray is 21.1 mm.

The nonlinear focusing delay accumulates with depth, so the effective focal depth
changes while the wave is propagating forward. In addition will the nonlinear steering
delay vary across the beam, meaning that the focusing will not longer be spherical
and the effective focus is not trivial to determine.

Diffraction produces a phase shift of the propagating pulse. For a circular focused
aperture, the pulse at the focus depth F , is the spatial derivative of the excitation
pulse f (t) [21],

p̂ (ω, F ) = iωf̂ (ω) ρUn
eikF

2πF
A (C.14)

where k = ω
c is the wave number, Un is the normal velocity on the transducer and

A is the vibrating surface area. That is, the pulse will have a λ/4 phase shift from the
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C.3 Methods

transducer to the focus. This means that the phase relationship between the LF and
HF pulse will vary with depth. Using confocal beams, the HF will have to be centered
at the zero crossing of the LF at the array surface in order to be at the peak or trough
at the focus. For a linear array the amount of phase shift from the transducer to the
focus is not as clear as for a circular symmetric case and will be dependent on the
azimuth and elevation foci and apertures, but it will in general be less.

C.3 Methods

C.3.1 Scanner

For the measurements, a modified Ultrasonix (Ultrasonix Medical Corp., Vancouver,
Canada) SonixRP system was used. In order transmit dual-frequency band pulses, a
low frequency transmit frontend was manufactured and attached to the system. For
integration of the LF frontend and the SonixRP system, a new probe connector board
was also made. The LF transmit frontend is controlled from the PC on the scanner.

In order to transmit dual-frequency band pulse complexes, a prototype transducer
was used. The transducer is designed at the Department of Circulation and Medical
Imaging, NTNU, and manufactured by Vermon (Tours, France). The LF part of the
array is located behind the HF part, forming a dual layer stack, see Figure C.1 [25].
The LF elements covers four HF elements in the azimuth direction and have the same
dimension as the HF elements in the elevation direction. The LF part has in addition
three rows in the elevation direction, making the LF aperture three times as large as
the HF part. The HF part and the center LF row is prefocused at 40 mm in elevation
with a lens. The probe specifications are listed in Table C.1

Figure C.1: Dual-layer transducer stack with the LF frequency element placed behind
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using a large frequency separation

HF LF

# Elements Azimuth 192 52
# Elements Elevation 1 3
Element Size Elevation 7 mm 7mm

Pitch Azimuth 237 μm 948 μm
Elevation Focus 40 mm 40 mm

Table C.1: Probe Dimensions

C.3.2 Transmit beam setup

In this study three different transmit beamforming strategies was investigated:

• Setup 1: Focused LF + Focused HF

• Setup 2: Unfocused LF + Focused HF

• Setup 3: Unfocused LF + Unfocused HF

When using dual-frequency band pulse complexes, a certain phase relationship
between the HF and LF pulse is desirable. The optimal phase relation is application
dependent, e.g. for reverberation suppression [9] the experienced pressure should be
low in the near-field and increase as the pulses approaches the imaging region, while for
imaging of microbubbles the optimal phase relationship is dependent on the resonance
frequency of the bubble. The optimal phase relationship can also be the one e.g.
minimizing or maximizing the nonlinear propagation effects.

For the setups investigated here, the phase relation at transmit is adjusted so that
the HF is at the peak or trough of the LF in the HF focus. For Setup 3, the calibration
is done in the depth corresponding to the focus depth of HF in the other setups.

The intention of transmitting an unfocused LF is to achieve a more or less constant
phase relationship between the HF and LF within the imaging region. For the focused
beam, diffraction will produce a phase shift from the transducer to the focus, as
described in section C.2.2, and produce a depth varying phase relationship. The HF
is said to ”slide” along the LF pulse. There will be diffraction also for the unfocused
wave cases, but the diffraction within the near field of the beam will be limited. For
a beam from a circular symmetric aperture the near field limit is

D2

2λ
(C.15)

where D is the diameter of the aperture. By choosing the aperture of the LF so that
the imaging region of the HF falls within the near field of the LF, there will be a
more or less constant phase relationship between the two pulses. The center row of
the transducer has a fixed elevation focus which will give some diffraction of the LF,
even within the near field.

When transmitting a focused HF together with an unfocused LF beam, the phase
relation over the HF beam will vary, producing nonlinear aberration. To avoid this
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C.3 Methods

aberration, an unfocused HF can be transmitted together with an unfocused LF. This
is a special case of the confocal setting where the two beams are focused in infinity.
For imaging, transmitting an unfocused HF wave will limit the lateral resolution, but
this can be compensated for by applying spatial compounding techniques [26].

For the focused beams, the focal depth is set to 20 mm. For the HF, an aperture of
6.4 mm was used for all setups, which gives an F-number of 2.7 for the focused setups.
For the LF, an azimuth aperture of 13.2 mm was used, which gives an F-number
of 1.5 for the focused setup. For the unfocused wave cases the azimuth near field
limit is 59 mm. For the unfocused LF cases, all LF elevation rows where activated,
giving an elevation aperture of 21 mm, while for the focused LF case only the center
row was activated. The transmit frequencies are 0.9 and 8.0 MHz for the LF and
HF respectively. Even though the elevation near field limit is 133 mm, there will as
mentioned above be some diffraction of the LF since the center row is focused in the
elevation direction.

The transmit pressures were calibrated in order for the LF pressure to be the same
at 20 mm for all cases, and since the phase relation at transmit was calibrated to have
the HF at the peak of the LF at 20 mm, the experienced LF pressures at this depth
is also the same for all settings.

C.3.3 Water tank Measurements

For the water tank measurements, an 85 μm ONDA HGL-0085 hydrophone with a 20-
dB pre-amplifier was used (Onda Corporation, Sunnyvale, U.S.A.). The hydrophone
was fixed to a Physik Instruments (Karlsruhe, Germany) multi-stage robot and the
pulses were recorded using a LECROY WaveSurfer 42Xs (LeCroy, Geneva, Switzer-
land) oscilloscope. The whole setup was controlled using a in-house developed software
programmed in MATLAB (The Mathworks, Massachusetts, U.S.A.).

Axis scans and azimuth beam profile scans were recorded for each setup. For each
setup a positively, negatively and non-manipulated scan was recorded. The axis scans
were performed by measuring the acoustic pulse along the beam axis in the depth
interval [3,35] mm at 0.25 mm steps. The beam profile scans were performed by
recording the acoustic pulses in the azimuth positions [-3.5,3.5] mm at 0.25 mm steps
at a depth of 20 mm. The data was recorded using a sampling frequency of 500MHz
and 64 recordings were averaged for each position.

C.3.4 Processing

All processing was done using MATLAB (The Mathworks, Massachusetts, U.S.A).
The recorded pressure pulses were filtered using a 500 tap bandpass filter with

cutoff frequencies [3,10] MHz and [0.1 2] MHz for the HF and LF respectively.
The phase relation between the HF pulse and the LF pulse was found as the time

difference between the maximum of the HF pulse envelope and the closest LF peak.
The experienced LF manipulation pressure by the HF imaging pulse was com-

puted as the weighted average of the LF pressure over the HF pulse, using the HF
pulse envelope as the weight. The experienced LF pressure gradient was computed
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as the weighted average of the time derivative of the LF pulse over the HF pulse and
multiplied with the HF period. The time derivative of the LF pressure was computed
as the first difference of the LF pulse.

The nonlinear propagation delay was estimated by finding the max of the cross
correlation function. To achieve sub sample accuracy the final delay was found by
cosine interpolation around the peak. To compute the predicted nonlinear propagation
delay, the estimated experienced LF pressure was used together with equation (C.6),
and the material parameters for water at 23 ◦C [24]

τ̌n (zi) =
βnκ

c0

k=i∑
k=0

[p̂ma,+ (zk)− p̂ma,− (zk)]Δz . (C.16)

where p̂ma,+ and p̂ma,− is the estimated experienced LF pressures for the positively
and negatively manipulated HF pulses respectively. Note that ·̌ denotes predicted
value while ·̂ denotes estimated value.

The HF center frequency for the pulses was computed as the weighted average of
the amplitude spectrum, using

f̂+/− (zi) =
1

2π

∑K2

k=K1
ωk

∣∣X+/− (ωk; zi)
∣∣∑K2

k=K1

∣∣X+/− (ωk; zi)
∣∣ (C.17)

where K1 and K2 corresponds to the indexes of the -20 dB limits of the spectrum and
+/− denotes the polarity of the manipulation pulse. The pulses were windowed using
a hamming window of length 450 samples, centered at the maximum of the HF pulse
envelope to make the spectrums smooth. The center frequency shift was computed
as the difference in estimated center frequency between the positively and negatively
manipulated pulses.

The shift in wave length from depth to depth, Δλ̂+/− (zi), was computed according
to equation (C.7), where Δpmf is the estimated experienced LF pressure gradient
multiplied with the HF pulse period. The predicted center frequency from depth to
depth was then computed as

f̌+/− (zi +Δz) =
λ̌+/− (zi)

λ̌+/− (zi) + Δλ̂+/− (Δz)
f̌+/− (zi) (C.18)

where λ̌+/− (zi) =
c0

f̌+/−(zi)
, Δλ̂+/− (Δz) = βnκΔp̂mfΔz and the frequency shift was

computed as
Δf̌ (zi) = f̌+ (zi)− f̌− (zi) (C.19)

The axis and beam profiles for the HF imaging pulses were computed as the max-
imum of the pulse envelope at each position.

C.4 Results

In Setup 2, the focus depth is different for the two beams, so the phase relation between
the HF and LF will vary across the HF beam. In Figure C.2 the phase relation between
the HF and LF across the beam, relative to the center of the HF beam is shown.
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In Setup 2, the focus depth is different for the two beams, so the phase relation between
the HF and LF will vary across the HF beam. In Figure C.2 the phase relation between
the HF and LF across the beam, relative to the center of the HF beam is shown.
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Figure C.2: Phase relation between the HF imaging pulse and the LF imaging pulse
across the HF beam at transmit for Setup 2.

In Figure C.3 the estimated phase relation between the HF imaging pulse and LF
manipulation pulse is shown. The phase relation is shown in degrees relative to the
manipulation pulse period and in nanoseconds. Zero degrees means that the imaging
pulse is centered at the peak of the manipulation pulse. The timing between the two
pulses was calibrated so that the phase relation between the two pulses was zero at 20
mm. The resolution of the delay adjustment on the scanner is 25 ns, which is 8 degrees
relative to the manipulation pulse period, and for all beam setups the difference in
phase relation at 20 mm is seen to be less than the resolution of the system.

The LF axis profiles are shown in Figure C.4.
The estimated LF manipulation pressure experienced by the HF pulse is show in

Figure C.5. The experienced LF pressure depends on the LF pressure and the position
of the HF relative to the LF pulse. Note that at 20 mm, the experienced manipulation
pressure is approximately the same for the three setups, since the phase is calibrated
to be zero at this depth.

The nonlinear distortion of the HF imaging pulse by the LF manipulation pulse
is produced by the experienced manipulation pressure gradient. The experienced ma-
nipulation gradient is show in Figure C.6, and is shown as the pressure difference over
a period of the HF pulse.

The estimated nonlinear propagation delay is shown together with the predicted
nonlinear propagation delays in Figure C.7. The predicted curves are marked with
circles. The predicted curves for Setup 2 and 3 more or less coincides since the expe-
rienced pressure is almost equal for these two setups.

The estimated center frequencies for the positive-(Pos), negative-(Neg) and non-
(Zero) manipulated HF pulses is shown in the upper panels of Figure C.8, C.9 and C.10.
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In Figure C.3 the estimated phase relation between the HF imaging pulse and LF
manipulation pulse is shown. The phase relation is shown in degrees relative to the
manipulation pulse period and in nanoseconds. Zero degrees means that the imaging
pulse is centered at the peak of the manipulation pulse. The timing between the two
pulses was calibrated so that the phase relation between the two pulses was zero at 20
mm. The resolution of the delay adjustment on the scanner is 25 ns, which is 8 degrees
relative to the manipulation pulse period, and for all beam setups the difference in
phase relation at 20 mm is seen to be less than the resolution of the system.
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rienced pressure is almost equal for these two setups.
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(Zero) manipulated HF pulses is shown in the upper panels of Figure C.8, C.9 and C.10.
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In Figure C.3 the estimated phase relation between the HF imaging pulse and LF
manipulation pulse is shown. The phase relation is shown in degrees relative to the
manipulation pulse period and in nanoseconds. Zero degrees means that the imaging
pulse is centered at the peak of the manipulation pulse. The timing between the two
pulses was calibrated so that the phase relation between the two pulses was zero at 20
mm. The resolution of the delay adjustment on the scanner is 25 ns, which is 8 degrees
relative to the manipulation pulse period, and for all beam setups the difference in
phase relation at 20 mm is seen to be less than the resolution of the system.

The LF axis profiles are shown in Figure C.4.
The estimated LF manipulation pressure experienced by the HF pulse is show in

Figure C.5. The experienced LF pressure depends on the LF pressure and the position
of the HF relative to the LF pulse. Note that at 20 mm, the experienced manipulation
pressure is approximately the same for the three setups, since the phase is calibrated
to be zero at this depth.

The nonlinear distortion of the HF imaging pulse by the LF manipulation pulse
is produced by the experienced manipulation pressure gradient. The experienced ma-
nipulation gradient is show in Figure C.6, and is shown as the pressure difference over
a period of the HF pulse.

The estimated nonlinear propagation delay is shown together with the predicted
nonlinear propagation delays in Figure C.7. The predicted curves are marked with
circles. The predicted curves for Setup 2 and 3 more or less coincides since the expe-
rienced pressure is almost equal for these two setups.

The estimated center frequencies for the positive-(Pos), negative-(Neg) and non-
(Zero) manipulated HF pulses is shown in the upper panels of Figure C.8, C.9 and C.10.
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Figure C.3: Phase relation between the HF imaging pulse and the LF imaging pulse.
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Figure C.4: LF manipulation pressure axis profile
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Figure C.5: LF manipulation pressure experienced by the HF imaging pulse
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Figure C.6: LF manipulation pressure gradient experienced by the HF imaging pulse
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Figure C.6: LF manipulation pressure gradient experienced by the HF imaging pulse
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Figure C.6: LF manipulation pressure gradient experienced by the HF imaging pulse
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Figure C.7: Estimated and predicted nonlinear delay curves.
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Figure C.8: Estimated center frequencies for Setup 1. Lower Panel: Estimated and
predicted center frequency shifts.
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Figure C.7: Estimated and predicted nonlinear delay curves.
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Figure C.8: Estimated center frequencies for Setup 1. Lower Panel: Estimated and
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Figure C.9: Estimated center frequencies for Setup 2. Lower Panel: Estimated and
predicted center frequency shifts.
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Figure C.10: Upper panel: Estimated center frequencies for for Setup 3. Lower Panel:
Estimated and predicted center frequency shifts.
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Figure C.9: Estimated center frequencies for Setup 2. Lower Panel: Estimated and
predicted center frequency shifts.
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Figure C.10: Upper panel: Estimated center frequencies for for Setup 3. Lower Panel:
Estimated and predicted center frequency shifts.
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predicted center frequency shifts.
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Figure C.10: Upper panel: Estimated center frequencies for for Setup 3. Lower Panel:
Estimated and predicted center frequency shifts.
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Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

The difference in estimated center frequency between the positively and negatively
manipulated pulses is shown in the lower panels of the same figures together with the
predicted values based on the experienced LF pressure gradient.

One thing to notice in the figures of the nonlinear delay and center frequency shifts
is the values at 3 mm. For the nonlinear delay, the accumulated delay for Setup 2
and 3 is 8 ns at 3mm. This indicates a much greater accumulation for the first 3 mm
than for the following depths. This strong accumulation at shallow depths can be
due to strong nonlinear propagation within the probe or nonlinear behavior of the HF
piezo elements. The same can be seen for the estimated center frequencies, where the
difference is ∼0.2 MHz at 3 mm, which is a much greater accumulation than what is
seen over the following depths. So the shifts in center frequency might not be as large
as observed in the measurements.

The nonlinear propagation effects and the nonlinear aberration will produce dif-
ferent HF beams. The HF axis profiles are shown in Figure C.11, C.12 and C.13 for
Setup 1, 2 and 3 respectively. The azimuth beam profiles for z = 20 mm for the three
transmit settings are shown in Figure C.14, C.15 and C.16 respectively.

5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

[mm]

[d
B

]

High frequency axis profile

 

 

Pos
Neg
Zero

Figure C.11: Axis profile of the imaging pulse for Setup 1.

From the azimuth beam profiles, the beam width can be estimated. The beam
width is defined as the -6dB width of the beam and is listed in Table C.2.

C.5 Discussion

The phase relationship between the LF manipulation pulse and the HF imaging pulse
was calibrated to be zero at 20 mm. From Figure C.3 the phase relation is seen to be
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Figure C.11: Axis profile of the imaging pulse for Setup 1.

From the azimuth beam profiles, the beam width can be estimated. The beam
width is defined as the -6dB width of the beam and is listed in Table C.2.
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Figure C.12: Axis profile of the imaging pulse for Setup 2.

Setup Pos Zero Neg

1 0.851 mm 0.863 mm 0.881 mm
2 0.826 mm 0.863 mm 0.905 mm
3 5.309 mm 5.366 mm 5.394 mm

Table C.2: Estimated -6dB beam widths

around -10 to -25 ns at 20 mm, which is within the resolution of delay control of the
system, which is 25 ns.

It is seen that the phase relation between the HF and LF pulse for Setup 2 and
3 varies in the range [-15, 8] and [-30,0] degrees of the LF respectively. If the LF
had been an actual plane wave, the phase relation should have been constant. Limited
aperture and the fact that the center row is focused in the elevation direction produces
diffraction of the LF within the depth region, which produces a phase shift. The
transmitted LF wave is the same for Setup 2 and 3 but the phase relations are not
the same. This can be explained by that the transmitted HF is different for the two
setups, which produces a different phase relation as defined by the weighted average
over the HF envelope.

For Setup 1, a phase shift of 70-75 degrees from 3 mm to the focus is seen. From
the analysis of a circular symmetric aperture, a 90 degree phase shift is expected, but
since the elevation and azimuth focus depths are different this can not be expected for
the linear array. But even so, there is substantial change in phase relation from the
array to the focus. The HF is close to centered at the zero crossing of the LF near the
array and slides up to the peak in the focus and continues to slide further after the
focus. The sliding will continue until the pulses reaches the far field.
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Figure C.12: Axis profile of the imaging pulse for Setup 2.
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Figure C.12: Axis profile of the imaging pulse for Setup 2.
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Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation
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Figure C.13: Axis profile of the imaging pulse for Setup 3.

The transmitted LF pressure was calibrated such that the experienced LF pressure
should be the same at 20 mm for all transmit settings, and from Figure C.5 it is seen
that the pressure is close to equal at this depth.

The experienced LF pressure at each depth is a function of the LF pressure and
the phase relation between the HF and LF pulse. From the experienced LF pressure
shown in Figure C.5, one can see that for Setup 2 and 3 the experienced pressure is
close to equal since the phase relationships for the two settings are almost the same.
In the depth range [3,35] mm the experienced pressure varies from 390 to 510 kPa,
which is less than a 2.5dB variation.

For the confocal setting, the experienced LF pressure increases from 3 mm to 18
mm. In this region the LF pressure increases while the HF pulse slides towards the top
of the LF, both contributing to an increased experienced LF pressure. After focus the
LF axis pressure decreases while the HF slides over the top of the LF thus experiencing
a decreasing LF pressure.

The experienced LF pressure produces a nonlinear propagation delay, which can
be estimated from the HF pulses and also predicted with knowledge of the material
parameters. From Figure C.7 it is seen that for Setup 1 there is a good accordance
between the estimated and predicted nonlinear delay. For this setting the relation
between the nonlinear propagation delay and experienced pressure is well defined,
and the delay can be predicted from the experienced pressure as long as the material
parameters are known.

For Setup 2 the discrepancy between the estimated and predicted delay starts at
around 12.5 mm. For this Setup the discrepancy can be due to several factors. When
transmitting a focused HF together with an unfocused LF wave, the phase relation

91

Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

5 10 15 20 25 30
−10

−8

−6

−4

−2

0

[mm]

[d
B

]

High frequency axis profile

 

 

Pos
Neg
Zero

Figure C.13: Axis profile of the imaging pulse for Setup 3.

The transmitted LF pressure was calibrated such that the experienced LF pressure
should be the same at 20 mm for all transmit settings, and from Figure C.5 it is seen
that the pressure is close to equal at this depth.

The experienced LF pressure at each depth is a function of the LF pressure and
the phase relation between the HF and LF pulse. From the experienced LF pressure
shown in Figure C.5, one can see that for Setup 2 and 3 the experienced pressure is
close to equal since the phase relationships for the two settings are almost the same.
In the depth range [3,35] mm the experienced pressure varies from 390 to 510 kPa,
which is less than a 2.5dB variation.
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mm. In this region the LF pressure increases while the HF pulse slides towards the top
of the LF, both contributing to an increased experienced LF pressure. After focus the
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Figure C.13: Axis profile of the imaging pulse for Setup 3.

The transmitted LF pressure was calibrated such that the experienced LF pressure
should be the same at 20 mm for all transmit settings, and from Figure C.5 it is seen
that the pressure is close to equal at this depth.

The experienced LF pressure at each depth is a function of the LF pressure and
the phase relation between the HF and LF pulse. From the experienced LF pressure
shown in Figure C.5, one can see that for Setup 2 and 3 the experienced pressure is
close to equal since the phase relationships for the two settings are almost the same.
In the depth range [3,35] mm the experienced pressure varies from 390 to 510 kPa,
which is less than a 2.5dB variation.

For the confocal setting, the experienced LF pressure increases from 3 mm to 18
mm. In this region the LF pressure increases while the HF pulse slides towards the top
of the LF, both contributing to an increased experienced LF pressure. After focus the
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Figure C.13: Axis profile of the imaging pulse for Setup 3.

The transmitted LF pressure was calibrated such that the experienced LF pressure
should be the same at 20 mm for all transmit settings, and from Figure C.5 it is seen
that the pressure is close to equal at this depth.

The experienced LF pressure at each depth is a function of the LF pressure and
the phase relation between the HF and LF pulse. From the experienced LF pressure
shown in Figure C.5, one can see that for Setup 2 and 3 the experienced pressure is
close to equal since the phase relationships for the two settings are almost the same.
In the depth range [3,35] mm the experienced pressure varies from 390 to 510 kPa,
which is less than a 2.5dB variation.

For the confocal setting, the experienced LF pressure increases from 3 mm to 18
mm. In this region the LF pressure increases while the HF pulse slides towards the top
of the LF, both contributing to an increased experienced LF pressure. After focus the
LF axis pressure decreases while the HF slides over the top of the LF thus experiencing
a decreasing LF pressure.

The experienced LF pressure produces a nonlinear propagation delay, which can
be estimated from the HF pulses and also predicted with knowledge of the material
parameters. From Figure C.7 it is seen that for Setup 1 there is a good accordance
between the estimated and predicted nonlinear delay. For this setting the relation
between the nonlinear propagation delay and experienced pressure is well defined,
and the delay can be predicted from the experienced pressure as long as the material
parameters are known.

For Setup 2 the discrepancy between the estimated and predicted delay starts at
around 12.5 mm. For this Setup the discrepancy can be due to several factors. When
transmitting a focused HF together with an unfocused LF wave, the phase relation
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Figure C.14: Beam profile in z = 20 mm, of the imaging pulse for Setup 1.

and thus the experienced LF pressure will vary over the beam as seen in Figure C.2.
The experienced LF pressure decreases off the axis, so these pulses have accumulated
less nonlinear delay. The recorded pulse on the axis is a sum of pulses coming from
different parts of the array, which has experienced different manipulation, but the
predicted nonlinear delay is based on the experienced pressure on the axis, thus the
value of the predicted nonlinear delay will be larger than the estimated delay. Another
effect is the nonlinear abberation which shifts the focus of the positively and negatively
manipulated beams relative to each other. This refocusing of the beam will produce
different diffraction patterns, and since diffraction produces an incremental phase shift
in the propagating pulse, this difference in phase shift can be observed as a false delay.
From the upper panel of Figure C.9 the peaks in the center frequency estimates are
shifted in depth relative to each other, which in addition to the shift in depth of the
peak axis pressure seen in Figure C.12, is an indication of difference in diffraction.

For Setup 3 there is a good accordance between the estimated and predicted delays
until 17.5 mm. At this depth the estimated delays increase relative to the predicted
delay, before it crosses the predicted curve at 22.5 mm and accumulates at a slower rate
until 35 mm. From the estimated center frequencies in the upper panel of Figure C.10,
it is clear that there is a difference in diffraction between the two pulses; the peaks in
the center frequencies at 17.5 mm is shifted in depth for the positively and negatively
manipulated pulse, which indicates that the diffraction patterns for the two pulses are
different. As mentioned above, diffraction produces a phase shift in the propagating
pulse and if the diffraction patterns are different for the two pulses, this difference can
introduce a false delay.

The noise in the estimated delay is assumed to be due to vibrations of the watertank
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Figure C.14: Beam profile in z = 20 mm, of the imaging pulse for Setup 1.

and thus the experienced LF pressure will vary over the beam as seen in Figure C.2.
The experienced LF pressure decreases off the axis, so these pulses have accumulated
less nonlinear delay. The recorded pulse on the axis is a sum of pulses coming from
different parts of the array, which has experienced different manipulation, but the
predicted nonlinear delay is based on the experienced pressure on the axis, thus the
value of the predicted nonlinear delay will be larger than the estimated delay. Another
effect is the nonlinear abberation which shifts the focus of the positively and negatively
manipulated beams relative to each other. This refocusing of the beam will produce
different diffraction patterns, and since diffraction produces an incremental phase shift
in the propagating pulse, this difference in phase shift can be observed as a false delay.
From the upper panel of Figure C.9 the peaks in the center frequency estimates are
shifted in depth relative to each other, which in addition to the shift in depth of the
peak axis pressure seen in Figure C.12, is an indication of difference in diffraction.
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Figure C.14: Beam profile in z = 20 mm, of the imaging pulse for Setup 1.

and thus the experienced LF pressure will vary over the beam as seen in Figure C.2.
The experienced LF pressure decreases off the axis, so these pulses have accumulated
less nonlinear delay. The recorded pulse on the axis is a sum of pulses coming from
different parts of the array, which has experienced different manipulation, but the
predicted nonlinear delay is based on the experienced pressure on the axis, thus the
value of the predicted nonlinear delay will be larger than the estimated delay. Another
effect is the nonlinear abberation which shifts the focus of the positively and negatively
manipulated beams relative to each other. This refocusing of the beam will produce
different diffraction patterns, and since diffraction produces an incremental phase shift
in the propagating pulse, this difference in phase shift can be observed as a false delay.
From the upper panel of Figure C.9 the peaks in the center frequency estimates are
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Figure C.14: Beam profile in z = 20 mm, of the imaging pulse for Setup 1.

and thus the experienced LF pressure will vary over the beam as seen in Figure C.2.
The experienced LF pressure decreases off the axis, so these pulses have accumulated
less nonlinear delay. The recorded pulse on the axis is a sum of pulses coming from
different parts of the array, which has experienced different manipulation, but the
predicted nonlinear delay is based on the experienced pressure on the axis, thus the
value of the predicted nonlinear delay will be larger than the estimated delay. Another
effect is the nonlinear abberation which shifts the focus of the positively and negatively
manipulated beams relative to each other. This refocusing of the beam will produce
different diffraction patterns, and since diffraction produces an incremental phase shift
in the propagating pulse, this difference in phase shift can be observed as a false delay.
From the upper panel of Figure C.9 the peaks in the center frequency estimates are
shifted in depth relative to each other, which in addition to the shift in depth of the
peak axis pressure seen in Figure C.12, is an indication of difference in diffraction.

For Setup 3 there is a good accordance between the estimated and predicted delays
until 17.5 mm. At this depth the estimated delays increase relative to the predicted
delay, before it crosses the predicted curve at 22.5 mm and accumulates at a slower rate
until 35 mm. From the estimated center frequencies in the upper panel of Figure C.10,
it is clear that there is a difference in diffraction between the two pulses; the peaks in
the center frequencies at 17.5 mm is shifted in depth for the positively and negatively
manipulated pulse, which indicates that the diffraction patterns for the two pulses are
different. As mentioned above, diffraction produces a phase shift in the propagating
pulse and if the diffraction patterns are different for the two pulses, this difference can
introduce a false delay.

The noise in the estimated delay is assumed to be due to vibrations of the watertank
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Figure C.15: Beam profile in z = 20 mm, of the imaging pulse for Setup 2.

and errors in positioning of the robot. When performing consecutive axis scans the
robot is not placed at exactly the same position each time, introducing an error in the
estimated delays.

The average experienced LF pressure over the HF pulse is said to produce a nonlin-
ear propagation delay while the varying manipulation pressure produces a distortion
of the pulse. If the experienced pressure gradient is constant over the HF pulse, this
distortion will be a shift in frequency. If the variation of the LF pressure is more
complex so will the distortion be.

For Setup 1, the gradient shown in Figure C.6, increases until ∼12 mm and then
decreases until it stabilizes at around 30 mm. The experienced gradient crosses zero
close to 20 mm, which is as expected since the HF pulse is calibrated to be at the peak
of the LF at this depth. In the lower panel of Figure C.8, the estimated together with
the predicted center frequency shift is shown. It is seen that there is a good accordance
between the estimated and predicted frequency shifts until ∼12 mm. At this depth
it can be seen from the upper panel of Figure C.8, that diffraction effects becomes
significant. From the estimated center frequency from the non-manipulated pulse, it
is seen that the diffraction introduces variations of the center frequency on the axis.
This variation depends on the frequency of the pulse, the focus depth and aperture
size. When the center frequencies of the positively and negatively manipulated pulses
become different, then the diffraction patterns will differ. Different diffraction pat-
terns will produce observed frequency shifts other than that generated by nonlinear
propagation, giving a deviance between the estimated and predicted center frequency
shifts.

For Setup 2 the agreement between the estimated and predicted center frequency

93

Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

[mm]

[d
B

]

High frequency beam profile

 

 

Pos
Neg
Zero

Figure C.15: Beam profile in z = 20 mm, of the imaging pulse for Setup 2.

and errors in positioning of the robot. When performing consecutive axis scans the
robot is not placed at exactly the same position each time, introducing an error in the
estimated delays.

The average experienced LF pressure over the HF pulse is said to produce a nonlin-
ear propagation delay while the varying manipulation pressure produces a distortion
of the pulse. If the experienced pressure gradient is constant over the HF pulse, this
distortion will be a shift in frequency. If the variation of the LF pressure is more
complex so will the distortion be.

For Setup 1, the gradient shown in Figure C.6, increases until ∼12 mm and then
decreases until it stabilizes at around 30 mm. The experienced gradient crosses zero
close to 20 mm, which is as expected since the HF pulse is calibrated to be at the peak
of the LF at this depth. In the lower panel of Figure C.8, the estimated together with
the predicted center frequency shift is shown. It is seen that there is a good accordance
between the estimated and predicted frequency shifts until ∼12 mm. At this depth
it can be seen from the upper panel of Figure C.8, that diffraction effects becomes
significant. From the estimated center frequency from the non-manipulated pulse, it
is seen that the diffraction introduces variations of the center frequency on the axis.
This variation depends on the frequency of the pulse, the focus depth and aperture
size. When the center frequencies of the positively and negatively manipulated pulses
become different, then the diffraction patterns will differ. Different diffraction pat-
terns will produce observed frequency shifts other than that generated by nonlinear
propagation, giving a deviance between the estimated and predicted center frequency
shifts.

For Setup 2 the agreement between the estimated and predicted center frequency

93

Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

[mm]

[d
B

]

High frequency beam profile

 

 

Pos
Neg
Zero

Figure C.15: Beam profile in z = 20 mm, of the imaging pulse for Setup 2.
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Figure C.15: Beam profile in z = 20 mm, of the imaging pulse for Setup 2.
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Figure C.16: Beam profile in z = 20 mm, of the imaging pulse for Setup 3.

shift seen in the lower panel of Figure C.9, is poor. This is, as for the nonlinear delay,
due to the predicted center frequency shift being based on the pressure gradient seen
on the axis, while the pressure gradient actually varies across the beam, producing
a varying center frequency shift over the beam. The gradient increases off the axis
so the predicted value based on the experienced gradient pressure on the axis will
underestimate the center frequency shift. Another factor is the nonlinear abberation
which shifts the focus. When the focus for the positively and negatively manipulated
pulses is altered, so is the diffraction patterns. This can be seen quite clearly in
the upper panel of Figure C.9; the peaks and troughs of the center frequency depth
variations are not aligned for the positively and negatively manipulated pulses. From
Figure C.12 it is also clearly seen that the axis profiles are shifted in depth relative to
each other. It is also seen that the diffraction starts becoming significant at around
12 mm.

From the curves in the lower panel of Figure C.10 there is a poor agreement between
the estimated and predicted center frequency shifts. The estimated center frequency
shift has a break at 6 mm, and since the predicted values are accumulated based on
the center frequency at the first depth, this jump introduces a difference between the
estimated and predicted values. Except from the jump at 6 mm, the curves exhibit
the same trend until 12 mm. But from 12 mm and on the estimated and predicted
values deviates. This can again be explained by a difference in diffraction patterns
due to shifts in center frequencies. From the upper panel of Figure C.10 it can be seen
that the peaks in the center frequency estimates are shifted in depth relative to each
other, which indicates a difference in diffraction.

The HF axis profiles of Setup 1 are shown in Figure C.11. The shape of the
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Figure C.16: Beam profile in z = 20 mm, of the imaging pulse for Setup 3.
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Figure C.16: Beam profile in z = 20 mm, of the imaging pulse for Setup 3.
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Figure C.16: Beam profile in z = 20 mm, of the imaging pulse for Setup 3.
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due to the predicted center frequency shift being based on the pressure gradient seen
on the axis, while the pressure gradient actually varies across the beam, producing
a varying center frequency shift over the beam. The gradient increases off the axis
so the predicted value based on the experienced gradient pressure on the axis will
underestimate the center frequency shift. Another factor is the nonlinear abberation
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Figure C.12 it is also clearly seen that the axis profiles are shifted in depth relative to
each other. It is also seen that the diffraction starts becoming significant at around
12 mm.

From the curves in the lower panel of Figure C.10 there is a poor agreement between
the estimated and predicted center frequency shifts. The estimated center frequency
shift has a break at 6 mm, and since the predicted values are accumulated based on
the center frequency at the first depth, this jump introduces a difference between the
estimated and predicted values. Except from the jump at 6 mm, the curves exhibit
the same trend until 12 mm. But from 12 mm and on the estimated and predicted
values deviates. This can again be explained by a difference in diffraction patterns
due to shifts in center frequencies. From the upper panel of Figure C.10 it can be seen
that the peaks in the center frequency estimates are shifted in depth relative to each
other, which indicates a difference in diffraction.

The HF axis profiles of Setup 1 are shown in Figure C.11. The shape of the

94



Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

profiles are close to equal except for an amplitude difference. The amplitude difference
between the positively and negatively manipulated pulse has its maximum at around
16 mm, where it is ∼0.4 dB. This difference in amplitude can also be explained by
diffraction. When the center frequency increases, the beam gets narrower and the
maximum amplitude on the axis increases. The positively manipulated pulse increases
in frequency and so does the pressure on the axis. This is consistent with the estimated
-6dB beam widths given in Table C.2, where it can be seen that the beam width for
the positively manipulated pulse is 0.03 mm narrower than that of the negatively
manipulated beam.

Also note that the axis profiles has two local maximums. This is due to the fact
that the azimuth and elevation focus depth are different. The azimuth focusing gives
a maximum at around 16 mm while the elevation focus gives a peak at 25 mm. The
amplitude difference at the second peak is less than at the first. This is since the
F-number for the azimuth aperture is larger, which gives a weaker focused beam and
thus makes the diffraction effects less.

For Setup 2 the the nonlinear aberration produces a shift in focus depth as can
be as seen in Figure C.12. For the positively manipulated beam, the manipulation
pressure decreases from the center of the beam to the edges, focusing the beam further
outwards. For the negatively manipulated pulse the edges of the wave experience a
higher manipulation pressure, thus focusing the beam closer to the transducer. By
focusing closer, the F-number will decrease, producing a narrower beam of higher
amplitude. But on the contrary it is the positively manipulated beam which is narrower
and of greater amplitude. This might be due to the fact that the positively manipulated
pulse has a higher center frequency and since higher frequency produces a narrower
beam of higher amplitude, the effect of the center frequency shift on amplitude and
beam width is more dominating than the nonlinear abberation. From Table C.2 the
negatively manipulated beam is 0.079 mm wider than the positively manipulated one.
But keep in mind that the two beams are not focused at the same depth due to the
nonlinear aberration, meaning that the beam profiles are recorded before and after
their respective effective focus depths. The beam width at the effective focal depths
of the two beams will be different.

This being a prototype probe there are some dead elements and other inhomo-
geneities in the HF array. It is therefore difficult to make a proper plane wave. From
Figure C.16 it is seen that the edges of the beam has a different amplitude and that
the profile is not symmetric. The positive beam is narrower, which is consistent with
the higher frequency of the positively manipulated pulse than the negatively manipu-
lated. From the beam profile of Figure C.13 it is seen that the negatively manipulated
pulse has a higher amplitude than the positively manipulated which is because the
center frequency of the negatively manipulated is lower, the near field limit becomes
closer to the transducer and the natural diffraction occurs earlier. It is seen that the
axis profile of the positively manipulated beam is shifted outwards compared to the
negatively manipulated one which indicates differences in diffraction. The depth of
which diffraction becomes significant decreases with decreasing center frequency for
constant aperture and focus.

Diffraction poses a challenge when dealing with dual-frequency beamforming. One
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C.6 Conclusion

of the intentions of transmitting an unfocused LF wave is to keep the phase relation
constant and by placing the HF at the peak of the LF pulse minimize the pulse
distortion. With limited aperture, keeping the phase relation constant, is not feasible
due to diffraction of the LF wave. This produces a sliding of the HF along the LF
pulse which gives an experienced pressure gradient for the HF pulse.

Even if it is not possible to achieve a constant phase relationship, the unfocused
LF case is interesting since it gives less variation in the experienced LF pressure over
the imaging region. For applications where it is of interest to have an even as possible
experienced LF pressure, using an unfocused LF is suitable. Using an unfocused LF
wave together with a focused HF will give nonlinear aberration which produces more
nonlinear propagation effects.

To avoid nonlinear aberration and keep the experienced pressure as even as pos-
sible, an unfocused LF beam together with an unfocused HF can be utilized. This
will give poor focusing on transmit and thus poor lateral resolution, but this can be
compensated for using dynamic focusing on receive and spatial compounding [26].

Using a setting where both beams are focused will give a varying experienced
pressure with depth, as the HF slides along the LF. If a high experienced pressure is
desired in short depth range around the focus, this setting can be of interest. Since
the LF is focused, a low transmitted pressure can be used to achieve a high pressure
in the focus. Since the LF pressure will be low close to the transducer, the gradient
will too, even if the HF is propagating on the maximum gradient of the LF.

C.6 Conclusion

In this paper three different beamforming strategies for dual-frequency band imaging
using a large separation of center frequencies for the two bands are investigated. The
nonlinear propagation delay and the center frequency shifts were estimated from the
recorded pulses and predicted based on the estimated experienced LF pressure and
pressure gradient.

The assumption that the nonlinear propagation effects could be limited to a non-
linear delay and frequency shift might not be valid. It is shown that the delay and
frequency shift can be predicted to some extent by the experienced pressure and ex-
perienced pressure gradient. But as the frequency of the positively and negatively
manipulated pulses becomes different, the diffraction of the two beams changes, yield-
ing a deviance between the observed an predicted value. Difference in diffraction will
also produce pulse form differences other than the nonlinear propagation effects.

In the case of nonlinear aberration, predicting the nonlinear propagation effect
based on the experienced pressure and pressure gradient on the axis is difficult since
the phase relation and thus manipulation varies across the HF beam.

What beamforming strategy is the optimal one is dependent on the application
and care should be taken in designing the transmit beams. To achieve a high level of
suppression of linear scattering the pulse form distortion and diffraction in addition
to the nonlinear delay must be corrected for. Correcting for the nonlinear delay has
been shown to be sufficient in pulse echo measurements [20], but correcting for the
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Paper C: Comparison of beamforming strategies for dual-frequency band imaging
using a large frequency separation

distortion in pulse echo measurements should be investigated as these effects will limit
the suppression of linear scattering.

The nonlinearity parameter βn is connected to the nonlinear propagation delay and
frequency shift through the experienced pressure and gradient pressure respectively.
By knowledge of the experienced LF pressure and gradient, the linear wave velocity
and the density of the material, estimates of the nonlinear propagation delay and
center frequency shift can be used to derive the nonlinearity parameter. From the
results presented here, using either Setup 1 or 3 could allow such estimation, but
correction for diffraction should be performed to improve results further.
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D.1 Introduction

Scattering particles which exhibit a nonlinear response to applied pressure are said
to be nonlinear scatterers. Such scattering particles are either highly compressible
or incompressible. An example of a highly compressible particle is a gas bubble,
while a highly incompressible particle can be a micro calcification particle which is an
important feature in the diagnosis of breast cancer [1].

In current practice nonlinear scattering phenomena is utilized in order to detect
scattering from ultrasound contrast agents. The contrast agents are gas filled mi-
crobubbles and has a strong resonant behavior. The resonance frequency of the bub-
bles lies in the range 2 to 4 MHz [2] and when insonified at such frequencies the bubbles
generate a backscattered signal which contains harmonics of the insonifying frequency.
By suppression the linear scattered signal from tissue either by temporal filtering or
using doppler techniques like pulse inversion or amplitude modulation, the nonlinear
scattered signal from the bubbles can be detected [2, 3].

In the nonlinear regime, fluctuations in nonlinearity parameter as well as in the
compressibility produces scattering of the ultrasound wave. Stiff particles embedded
in soft tissue will exhibit a stronger nonlinear scattering than that of the surrounding
tissue. Using the nonlinear wave equation presented in [4], the scattered wave is the
quadratic of the incident pressure. In conventional single-band frequency imaging,
nonlinear propagation generates accumulative harmonic self distortion of the forward
propagating wave. The nonlinear scattering is generated by the same process as non-
linear propagation, but they differ in the way that the propagation is an accumulative
effect while the scattering is local. In single-frequency band imaging, the nonlinear
scattered signal has the same signature as the nonlinear propagation and can thus not
be detected.

In dual-frequency band imaging, pulses consisting of a low-frequency (LF) ma-
nipulation pulse and a high-frequency imaging pulse is utilized [5]. The two pulses
overlaps in time and the LF pulse is used to manipulate the propagation and scat-
tering of the HF pulse. The nonlinear interaction between the two frequency bands
will generate signal components at the sum and difference frequencies of the LF and
HF, and the polarity of these signal components will be dependent on the polarity of
the LF manipulation pulse. The forward propagation will generate these signal com-
ponents accumulatively with depth, nonlinear scattering will generate the locally. By
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D.2 Theory

transmitting two such dual-frequency band pulse complexes in each beam direction
where the polarity of the LF pulse is inverted for the second pulse complex, the local
nonlinear scattering can be detected. In order to detect the nonlinear scattering the
nonlinear propagation must be estimated and corrected for.

The full nonlinear wave equation is presented in Section D.2.1. The nonlinear
propagation and scattering is elaborated on in Section D.2.2 and D.2.3 respectively.
In Section D.3 the effect of the HF-bandwidth/LF-frequency relationship on the ability
to separate the nonlinear scattering from the nonlinear propagation is investigated. A
method for estimating the nonlinear propagation is presented in Section D.2.5 together
with a performance measure for this method. In order to suppress the linear scatter-
ing and detect the nonlinear scattering, a certain level of accuracy of the estimated
nonlinear propagation is needed. This accuracy is dependent on certain properties of
the transmit and receive wave fields. In Section D.4 the effect of beamforming pa-
rameters on the accuracy of the estimated nonlinear propagation is investigated using
simulations.

D.2 Theory

D.2.1 Nonlinear wave equation

The nonlinear wave equation can be modeled as [6]

∇2p (r, t)− 1

c20 (r)

∂2p (r, t)

∂t2
+

βnaκa

c20 (r)

∂2p2 (r, t)

∂t2︸ ︷︷ ︸
Nonlinear propagation

−hp ⊗
t

1

c20 (r)

∂2p (r, t)

∂t2︸ ︷︷ ︸
Absorption

=

σl (r)

c20 (r)

∂2p (r, t)

∂t2
+∇ (γ (r)∇p (r, t))︸ ︷︷ ︸

Linear scattering

− σn (r)

2c20 (r)

∂2p2 (r, t)

∂t2︸ ︷︷ ︸
Nonlinear scattering

(D.1)

where p (r, t) is the pressure pulse at spatial position r, c20 (r) = 1
ρa(r)κa(r)

is the

linear propagation velocity, κ is the bulk compressibility, ρ is the mass density, βn is
the nonlinearity parameter and hp is frequency dependent attenuation. The spatial
variation of the material parameters can be modeled as an average, a, and fluctuating,
f , component, where the average is taken over a few wavelengths.

κ (r) = κa + κf (r)

ρ (r) = ρa + ρf (r)

β (r) = βna + βnf (r) .

(D.2)
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The scattering coefficients are then given as

σl (r) =
κf (r)

κa (r)

γ (r) =
ρf (r)

ρ (r)

σn (r) =
{
2βna (2 + σl)σl + βnf (1 + σl)

2
}
κa .

(D.3)

D.2.2 Nonlinear propagation

Introducing retarded time, τ = t− z
c0
, in Equation (D.1) and neglecting the scattering

terms, the nonlinear wave equation for propagation can be written as

∂2p (r, τ)

∂z∂τ
=

c0 (r)

2
∇2

⊥p (r, τ)− hp ⊗
t

1

c0 (r)

∂2p (r, τ)

∂τ2
+

βnaκa

c0 (r)

∂2p2 (r, τ)

∂τ2
. (D.4)

Taking the Fourier transform in time of Equation (D.4) gives

∂p (r, ω)

∂z
= −i

c0 (r)

2ω
∇2

⊥p (r, ω)− i
ω

c0 (r)
H (r, ω) p (r, ω)

− iω
βnaκa

2c0 (r)
p (r, ω)⊗

ω
p (r, ω) .

(D.5)

This is an integral equation, which can be solved numerically in different ways [7, 8].
One such solution is to use an iterative procedure like

p (r⊥, zk+1, ω) =p (r⊥, zk, ω) exp
{
−i

c0 (r)

2ω

∫ zk+1

zk

ds
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p (r⊥, s, ω)

}

× exp

{
−i

ω
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}

× exp
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ds
p (r⊥, s, ω)⊗

ω
p (r⊥, s, ω)

p (r⊥, s, ω)

⎫⎬
⎭ .

(D.6)

This way of solving the nonlinear propagation shows very explicitly how the different
terms in Equation (D.5) contributes to the propagation.

The quadratic term on the right hand side of Equation (D.4), which corresponds
to the convolution term in Equation (D.5), represents the nonlinear propagation. This
term is of specific interest for dual-frequency band imaging as it expresses the in-
teraction between two frequency bands. The dual-frequency band pressure pulse is
composed of a LF pulse and a HF pulse

p (r, t) = pL (r, t) + pH (r, t) . (D.7)

Inserting the dual-band pressure pulse into the quadratic term of Equation (D.4) gives

∂2p2 (r, t)

∂t2
=

∂2

∂t2
(
p2L (r, t) + pL (r, t) pH (r, t) + p2H (r, t)

)
, (D.8)

105

Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

The scattering coefficients are then given as

σl (r) =
κf (r)

κa (r)

γ (r) =
ρf (r)

ρ (r)

σn (r) =
{
2βna (2 + σl)σl + βnf (1 + σl)

2
}
κa .

(D.3)

D.2.2 Nonlinear propagation

Introducing retarded time, τ = t− z
c0
, in Equation (D.1) and neglecting the scattering

terms, the nonlinear wave equation for propagation can be written as

∂2p (r, τ)

∂z∂τ
=

c0 (r)

2
∇2

⊥p (r, τ)− hp ⊗
t

1

c0 (r)

∂2p (r, τ)

∂τ2
+

βnaκa

c0 (r)

∂2p2 (r, τ)

∂τ2
. (D.4)

Taking the Fourier transform in time of Equation (D.4) gives

∂p (r, ω)

∂z
= −i

c0 (r)

2ω
∇2

⊥p (r, ω)− i
ω

c0 (r)
H (r, ω) p (r, ω)

− iω
βnaκa

2c0 (r)
p (r, ω)⊗

ω
p (r, ω) .

(D.5)
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D.2 Theory

were the first and third terms expresses nonlinear self distortion, i.e. harmonic distor-
tion, of the LF and HF pulse respectively, and the second term expresses the interaction
of the two frequency bands. Assuming that the low frequency pulse is a pure cosine
over the HF pulse length, i.e.

pL (r, t) = pL0 (r) cos (ωL (t+ τL (r))) (D.9)

where τL (r) is the position of the HF relative to the LF. If τL (r) = 0, the HF
is centered at the peak of the LF oscillation. Taking the Fourier transform of the
interaction term in Equation (D.8) gives

F

{
∂2pL (r, t) pH (r, t)

∂t2

}

= pL0 (r)

∫
dτe−iωτ ∂2

∂τ2
{cos (ωL (τ + τL (r))) pH (r, τ)}

=
pL0 (r)

2

[∫
dτe−iωτ ∂2

∂τ2

{
eiωL(τ+τL(r))pH (r, τ)

}
+

∫
dτe−iωL(τ+τL(r)) ∂2

∂τ2

{
e−iωL(τ+τL(r))pH (r, τ)

}]

=
ω2pL0 (r)

2

[
eiωLτL(r)pH (r;ω − ωL) + e−iωLτL(r)pH (r;ω + ωL)

]
.

(D.10)

From this it is seen that the nonlinear propagation generates signals components
at the sum and difference frequencies of the HF and LF, in addition to harmonics of
the HF and LF bands. The generation of signal components in the sum and difference
bands is an accumulative process and is dependent on the material parameters and the
manipulation pressure. The expression in Equation (D.10) can be analyzed further by
expansion of the exponential terms

F

{
∂2pL (r, t) pH (r, t)

∂t2

}
= ω2pL0 (r) cos (ωLτL (r)) pH (r;ω)

+
1

2
ω2pL0 (r) cos (ωLτL (r))

[
pH (r;ω − ωL) + pH (r;ω + ωL)− 2pH (r;ω)

]
+

1

2
iω2pL0 (r) sin (ωLτL (r))

[
pH (r;ω − ωL)− pH (r;ω + ωL)

]
.

(D.11)
Considering the exponent of the last exponential term in Equation (D.6), where the
convolution term corresponds to the quadratic term and inserting the expression of
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the interaction term from Equation (D.11) gives

−iα (ω)

∫ zk+1

zk

ds
p (s, r⊥, ω)⊗

ω
p (s, r⊥, ω)

p (s, r⊥, ω)
=

iα (ω)

∫ zk+1

zk

ds

{
pL0 (r) cos (ωLτL (r))

pH (r;ω)

p (r, ω)

}

+iα (ω)

∫ zk+1

zk

ds

{
1

2
pL0 (r) cos (ωLτL (r))

×
[
pH (r;ω − ωL) + pH (r;ω + ωL)− 2pH (r;ω)

]
p (r, ω)

}

+iα (ω)

∫ zk+1

zk

ds

{
1

2
pL0 (r) sin (ωLτL (r))

×
[
pH (r;ω − ωL)− pH (r;ω + ωL)

]
p (r, ω)

}
+ · · ·

(D.12)

where α (ω) = βnaκa

2c0(r)
ω, p (r, ω) = pL (r, ω)+pH (r, ω), the self distortion terms has been

omitted for notational convenience and the spatial position is combined in r = (s, r⊥).
The fraction in the first integral on the right hand side will be 1 over the HF band
which means that the first term will produce an accumulative linear phase component
over the HF band, i.e. introduce a nonlinear propagation delay compared to a non-
manipulated HF pulse. The delay can be observed in the time domain as the delay of
the part of the HF which is used as the reference point for τL. The second term will
produce an accumulative broadening of the HF spectrum, while the third term will
shift the HF band up or down in frequency depending on the polarity of the spatial
gradient of the LF over the HF pulse. If the spatial gradient of the LF manipulation
pressure over the HF pulse is positive, there will be a decrease in center frequency of
the HF pulse and a increase if it is on a negative gradient.

Depending on the phase relation between the HF and LF pulse, the relative contri-
bution of the different terms in Equation (D.11) will vary. For the special case when
the HF pulse is centered at the peak or trough of the LF manipulation pulse, i.e.
τL (r) = 0, the sine term is zero and there is a accumulative broadening of the HF
spectrum in addition to a nonlinear propagation delay. If on the other hand the HF
pulse is centered at the zero crossing of the LF manipulation pulse, there will be a
shift in frequency [5].

D.2.3 Nonlinear scattering

Scattering of ultrasound waves is due to spatial fluctuation of the material parameters,
where linear scattering is due to fluctuations in the density ρ as well as the compress-
ibility κ, while nonlinear scattering is due to fluctuations in the nonlinear parameter
βn in addition to the compressibility. For soft tissue internally, the local fluctuations of
the nonlinearity parameter is small, but for a stiff particle like e.g. a micro calcification
particle embedded in soft tissue the local fluctuation can be significant.
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the part of the HF which is used as the reference point for τL. The second term will
produce an accumulative broadening of the HF spectrum, while the third term will
shift the HF band up or down in frequency depending on the polarity of the spatial
gradient of the LF over the HF pulse. If the spatial gradient of the LF manipulation
pressure over the HF pulse is positive, there will be a decrease in center frequency of
the HF pulse and a increase if it is on a negative gradient.

Depending on the phase relation between the HF and LF pulse, the relative contri-
bution of the different terms in Equation (D.11) will vary. For the special case when
the HF pulse is centered at the peak or trough of the LF manipulation pulse, i.e.
τL (r) = 0, the sine term is zero and there is a accumulative broadening of the HF
spectrum in addition to a nonlinear propagation delay. If on the other hand the HF
pulse is centered at the zero crossing of the LF manipulation pulse, there will be a
shift in frequency [5].

D.2.3 Nonlinear scattering

Scattering of ultrasound waves is due to spatial fluctuation of the material parameters,
where linear scattering is due to fluctuations in the density ρ as well as the compress-
ibility κ, while nonlinear scattering is due to fluctuations in the nonlinear parameter
βn in addition to the compressibility. For soft tissue internally, the local fluctuations of
the nonlinearity parameter is small, but for a stiff particle like e.g. a micro calcification
particle embedded in soft tissue the local fluctuation can be significant.
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Material βn κ [Pa 10−12 ]

Muscle 4.7 400
Fat 5.8 508

Micro calcification 0 0.85

Table D.1: Material parameters [6, 9]

As an example, consider ultrasound scattering from a muscle/fat (mf) interface
and a micro calcification particle embedded in muscle tissue (mc). The material pa-
rameters are listed in Table D.1. For both cases the average nonlinearity and compress-
ibility can be set to that of muscle, i.e. βna = 4.7, κa = 400× 10−12. The fluctuation
in the nonlinearity parameter is then βnf = 1.1 and βnf = −5 for the muscle/fat and
muscle/calcification interface respectively, while the linear scattering coefficient,σl, is
0.1 [6] and 0.87 [9, 10] respectively. The amplitude of the nonlinear scattering relative
to the linear scattering is given as

σn

σl − γ
pL =

2βna (2 + σl)σl + βnf (1 + σl)
2

1.3σl
κapL (D.13)

where pL is the LF manipulation pressure and the approximation σl−γ ≈ 1.3σl [6] has
been employed. Using a LF manipulation pressure of 1 MPa, the ratio of nonlinear to
linear scattering for the two cases are

mf :
σn

1.3σl
= 14.2× 10−3 ∼ −36dB

mc :
σn

1.3σl
= 3.4× 10−3 ∼ −49dB ,

while the relative amplitude of the nonlinear scattering from the micro calcification
to the linear scattering from the muscle/fat interface is ∼ −30dB and the nonlinear
scattering from the micro calcification is ∼ 6dB stronger than that of the muscle/fat
interface. Thus in order to detect the nonlinear scattering from the micro calcification,
the linear scattering from tissue must be suppressed more than 30 dB.

From the nonlinear wave equation (D.1) it is seen that the nonlinear scattering
term also is quadratic in the pressure. This means that the nonlinear propagation and
scattering are equal processes, but they differ in the way that the nonlinear propagation
is a cumulative process while the nonlinear scattering is a local effect.

From the discussion of nonlinear propagation in Section D.2.2, the nonlinear gen-
erated signal components from the interaction of the two frequency bands will be
dependent on the sign of the polarity of the LF manipulation pulse. By transmitting
two dual-frequency band complexes along the same beam direction and flipping the
polarity of the LF pulse for the second complex, the generated sum and difference
bands will have a phase shift in the frequency domain of π from the first to the second
pulse complex. The two pulse complexes will be denoted the positively and negatively
manipulated pulse respectively, referring to the polarity of the LF manipulation pulse.
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Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

If the bandwidth of the HF pulse is less than the center frequency of the LF band,
i.e. the frequency bands at the sum and difference frequencies will not overlap with
the fundamental band, the cumulative propagation effect transfers energy from the
fundamental band into the sum and difference bands without distorting the funda-
mental band. In this case the nonlinear propagation and scattering generates signals
with equal signature, which makes the two effects inseparable.

If the bandwidth of the HF is increased to above the center frequency of the LF
band, the sum and difference bands will mix with the fundamental band. For the
forward propagated pulses, the phase of the fundamental and sum/difference bands
will mix in the overlap regions, and the phase difference between the positively and
negatively manipulated pulse in these overlapping bands will be different from π. But
for the nonlinear scattering, which is a local effect, the nonlinear scattered signal will
have a phase shift of π from the positive to the negative manipulated pulse for the
sum and difference bands. By finding the appropriate correction which compensates
for the nonlinear propagation, the nonlinear scattering can be separated from the
linear scattered signal.

In the limiting case where the HF pulse becomes so short compared to the LF pe-
riod that the LF pressure can be approximated as a hydrostatic pressure, the nonlinear
propagation will be limited to a nonlinear propagation delay and the nonlinear scat-
tering will have the same form has the fundamental signal with the polarity following
the LF pulse polarity.

D.2.4 Received Signal Model

The forward propagated wave field at the spatial location (r⊥, z) for the positive and
negative manipulated pulses are denoted

Ut+/− (ω; r⊥, z) , (D.14)

where the subscript t, denotes the transmitted field, while the subscript r in the
following derivations will denote the received wave field. The received signal can then
be modeled as

Y+/− (ω) =

∫
V

dr⊥dzUr,+/− (r⊥, z, ω)σ (r⊥, z)

Ur,+/− (r⊥, z, ω) = −ω2Hr (ω; r⊥, z)Ut+/− (ω; r⊥, z) ,
(D.15)

where Hr is the receive spatial frequency response and σ are the scatterers. In some
parts of the following analysis it is convenient to consider scatterers in a plane at depth
z. The received signal will then be modeled as

Y+/− (ω; z) =

∫
R

dr⊥Ur+/− (ω; r⊥, z)σ (r⊥, z)

Ur+/− (ω; r⊥, z) = −ω2Hr (ω; r⊥, z)Ut+/− (ω; r⊥, z) .
(D.16)
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D.2 Theory

D.2.5 Correction of nonlinear propagation

In order to detect nonlinear scattering, the nonlinear propagation must be corrected
for. Let the received signal from the interval [−T, T ] centered around tn = 2zn

c0
be

Z+,n (ω) = Y+,n (ω) +N+,n (ω)

Z−,n (ω) = Y−,n (ω) +N−,n (ω) ,
(D.17)

where N+/− (ω) is additive white noise.
The nonlinear propagation effects can be corrected for by applying a filter, denoted

G (ω), which makes the linear scattered signal from the negatively manipulated pulse
equal to that of the positively manipulated pulse. Taking the signal over the specified
interval from one scan line, then there exists a filter which makes the two signals equal.
Such a filter can be

Ĝ1n =
Z+,n (ω)

Z−,n (ω)
. (D.18)

Note that this filter will not only suppress the linear scattered signal but also the local
nonlinear scattered signal. The two signals will become identical, i.e. subtraction
of the two signals will give zero. By assuming that there are few strong nonlinear
scatterers in the image, which can be true for micro calcifications, one can find the
filter which minimizes the difference between the received signal from the positive and
negative manipulated pulses over a region in the image in a minimum least squares
fashion. In this sense the sparse nonlinear scattering is to be considered as a special
type of noise. The optimal filter in the minimum mean squares sense is the filter
Gn (ω) which minimizes

J =
〈
|Z+,n (ω)−Gn (ω)Z−,n (ω)|2

〉
=

〈
[Z+,n (ω)−Gn (ω)Z−,n (ω)] [Z+,n (ω)−Gn (ω)Z−,n (ω)]

∗〉 (D.19)

where 〈·〉 denotes statistical averaging over an ensemble of measurements. The filter
which minimizes this functional is given as

Ĝn (ω) =

〈
Z+,n (ω)Z

∗
−,n (ω)

〉〈
|Z−,n (ω)|2

〉 (D.20)

By assuming uncorrelated white noise the expression in Equation (D.20) can be written
as

Ĝn (ω) = K− (ω)

〈
Y+,n (ω)Y

∗
−,n (ω)

〉〈
|Y−,n (ω)|2

〉
K− (ω) =

1

1 +
〈|N−,n(ω)|2〉
〈|Y−,n(ω)|2〉

(D.21)

110

D.2 Theory

D.2.5 Correction of nonlinear propagation

In order to detect nonlinear scattering, the nonlinear propagation must be corrected
for. Let the received signal from the interval [−T, T ] centered around tn = 2zn

c0
be

Z+,n (ω) = Y+,n (ω) +N+,n (ω)

Z−,n (ω) = Y−,n (ω) +N−,n (ω) ,
(D.17)

where N+/− (ω) is additive white noise.
The nonlinear propagation effects can be corrected for by applying a filter, denoted

G (ω), which makes the linear scattered signal from the negatively manipulated pulse
equal to that of the positively manipulated pulse. Taking the signal over the specified
interval from one scan line, then there exists a filter which makes the two signals equal.
Such a filter can be

Ĝ1n =
Z+,n (ω)

Z−,n (ω)
. (D.18)

Note that this filter will not only suppress the linear scattered signal but also the local
nonlinear scattered signal. The two signals will become identical, i.e. subtraction
of the two signals will give zero. By assuming that there are few strong nonlinear
scatterers in the image, which can be true for micro calcifications, one can find the
filter which minimizes the difference between the received signal from the positive and
negative manipulated pulses over a region in the image in a minimum least squares
fashion. In this sense the sparse nonlinear scattering is to be considered as a special
type of noise. The optimal filter in the minimum mean squares sense is the filter
Gn (ω) which minimizes

J =
〈
|Z+,n (ω)−Gn (ω)Z−,n (ω)|2

〉
=

〈
[Z+,n (ω)−Gn (ω)Z−,n (ω)] [Z+,n (ω)−Gn (ω)Z−,n (ω)]

∗〉 (D.19)

where 〈·〉 denotes statistical averaging over an ensemble of measurements. The filter
which minimizes this functional is given as

Ĝn (ω) =

〈
Z+,n (ω)Z

∗
−,n (ω)

〉〈
|Z−,n (ω)|2

〉 (D.20)

By assuming uncorrelated white noise the expression in Equation (D.20) can be written
as
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〈|N−,n(ω)|2〉
〈|Y−,n(ω)|2〉
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D.2.5 Correction of nonlinear propagation

In order to detect nonlinear scattering, the nonlinear propagation must be corrected
for. Let the received signal from the interval [−T, T ] centered around tn = 2zn

c0
be

Z+,n (ω) = Y+,n (ω) +N+,n (ω)

Z−,n (ω) = Y−,n (ω) +N−,n (ω) ,
(D.17)

where N+/− (ω) is additive white noise.
The nonlinear propagation effects can be corrected for by applying a filter, denoted

G (ω), which makes the linear scattered signal from the negatively manipulated pulse
equal to that of the positively manipulated pulse. Taking the signal over the specified
interval from one scan line, then there exists a filter which makes the two signals equal.
Such a filter can be

Ĝ1n =
Z+,n (ω)

Z−,n (ω)
. (D.18)

Note that this filter will not only suppress the linear scattered signal but also the local
nonlinear scattered signal. The two signals will become identical, i.e. subtraction
of the two signals will give zero. By assuming that there are few strong nonlinear
scatterers in the image, which can be true for micro calcifications, one can find the
filter which minimizes the difference between the received signal from the positive and
negative manipulated pulses over a region in the image in a minimum least squares
fashion. In this sense the sparse nonlinear scattering is to be considered as a special
type of noise. The optimal filter in the minimum mean squares sense is the filter
Gn (ω) which minimizes

J =
〈
|Z+,n (ω)−Gn (ω)Z−,n (ω)|2

〉
=

〈
[Z+,n (ω)−Gn (ω)Z−,n (ω)] [Z+,n (ω)−Gn (ω)Z−,n (ω)]

∗〉 (D.19)

where 〈·〉 denotes statistical averaging over an ensemble of measurements. The filter
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The minimum error is found by inserting Equation (D.20) into the expression in (D.19)

Jmin =
〈
|Z+,n (ω)|2

〉
− Ĝ∗

n (ω)
〈
Z+,n (ω)Z

∗
−,n (ω)

〉
− Ĝn (ω)

〈
Z∗
+,n (ω)Z−,n (ω)

〉− ∣∣∣Ĝn (ω)
∣∣∣2 〈|Z−,n (ω)|2

〉

=
〈
|Z+,n (ω)|2

〉⎛⎝1−
∣∣∣Ĝn (ω)

∣∣∣2
〈
|Z−,n (ω)|2

〉
〈
|Z+,n (ω)|2

〉
⎞
⎠ .

(D.22)

The relative minimum error is found by dividing the minimum error by
〈
|Z+,n (ω)|2

〉
Jmin〈

|Z+,n (ω)|2
〉 = 1−

〈
Z+,n (ω)Z

∗
−,n (ω)

〉2〈
|Z+,n (ω)|2

〉〈
|Z−,n (ω)|2

〉 . (D.23)

By the assumption of white uncorrelated noise, this can further be expanded to

Jmin〈
|Z+,n (ω)|2

〉 = 1−K− (ω)K+ (ω)

〈
Y+,n (ω)Y

∗
−,n (ω)

〉2〈
|Y+,n (ω)|2

〉〈
|Y−,n (ω)|2

〉
= 1−K− (ω)K+ (ω)

∣∣ρ+/− (ω)
∣∣2

(D.24)

where ∣∣ρ+/− (ω)
∣∣ = 〈

Y+,n (ω)Y
∗
−,n (ω)

〉√〈
|Y+,n (ω)|2

〉〈
|Y−,n (ω)|2

〉 (D.25)

is the correlation coefficient between the received positive and negative manipulated
signal over the ensemble. The factors K+/− (ω) are dependent on the SNR and limits
the minimum achievable error. In order to achieve the minimum error, the modulo of
the correlation coefficient should be equal to 1.

The expression in Equation (D.22) can be interpreted as the maximum achievable
average suppression of linear scattering over the region, using the filter estimate given
in Equation (D.20). The expression in Equation (D.23) gives an indication of the
required correlation over the ensemble needed to achieve a certain level of suppression.
To achieve an average of X dB suppression, the correlation coefficient must be

∣∣ρ+/− (ω)
∣∣ = √

1− 10
X
10 . (D.26)

In order to achieve a suppression of −40dB, the correlation coefficient has to be ∼
0.99995.

Considering scatterers in a plane at depth z and using the received signal model
in Equation (D.16) the crosscorrelation and autocorrelation expressions in (D.21) be-
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− Ĝn (ω)

〈
Z∗
+,n (ω)Z−,n (ω)

〉− ∣∣∣Ĝn (ω)
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D.2 Theory

comes〈
Y+,n (ω; z)Y

∗
+,n (w; z)

〉
=

∫
R

dr⊥dr⊥1Ur,+ (r⊥, z;ω)U∗
r,− (r⊥, z;ω) 〈σ (r⊥, z)σ (r⊥1, z1)〉〈∣∣∣Y+/−,n (ω; z)

∣∣∣2〉 =

∫
R

dr⊥dr⊥1

∣∣∣Ur,+/− (r⊥, z;ω)
∣∣∣2 〈σ (r⊥, z)σ (r⊥1, z1)〉 .

(D.27)
Assuming δ-correlated scatterers, i.e.

〈σ (r⊥, z)σ (r⊥1, z1)〉 = σ2δ (r⊥ − r⊥1, z − z1) (D.28)

the correlations in Equation (D.27) becomes〈
Y+,n (ω)Y

∗
−,n (w)

〉
=

∫
R

dzdr⊥Ur,+ (r⊥, z;ω)U∗
r,− (r⊥, z;ω)〈∣∣∣Y+/−,n (ω)

∣∣∣2〉 =

∫
R

dzdr⊥
∣∣∣Ur,+/− (r⊥, z;ω)

∣∣∣2 .

(D.29)

Schwarz inequality states that [11]∣∣∣∣
∫
R

dr⊥Ur,+ (r⊥, z;ω)U∗
r,− (r⊥, z;ω)

∣∣∣∣2 ≤∫
R

dr⊥
∣∣Ur,+ (r⊥, z;ω)

∣∣2 ∫
R

dr⊥
∣∣Ur,− (r⊥, z;ω)

∣∣2 .

(D.30)

In order to achieve optimal suppression, i.e.
∣∣ρ+/− (ω)

∣∣2 = 1, it can be seen from
Equation (D.23) that the Schwarz inequality has to be satisfied with equality, which
means that

Ur,+ (r⊥, z;ω) = α (ω)Ur,− (r⊥, z;ω) , (D.31)

i.e. the relation between the positive and negative receive wave field must be spatially
invariant.

To analyze what this result implies for the transmitted wave field, one can insert the
relation between the receive and transmit field in Equation (D.16) into the correlation
expressions in (D.27)〈

Y+,n (ω)Y
∗
+,n (w)

〉
=

∫
R

dzdr⊥ |Hr (r⊥, z;ω)|2 Ut,+ (r⊥, z;ω)U∗
t,− (r⊥, z;ω)〈∣∣∣Y+/−,n (ω)

∣∣∣2〉 =

∫
R

dzdr⊥ |Hr (r⊥, z;ω)|2
∣∣∣Ur,+/− (r⊥, z;ω)

∣∣∣2 .

(D.32)

Applying Schwartz inequality and viewing the spatial frequency response of the receive
beam, |Hr (r⊥, z;ω)|, as a weighting function in a scalar product gives∣∣∣∣

∫
R

dzdr⊥ |Hr (r⊥, z;ω)|2 Ut,+ (r⊥, z;ω)U∗
t,− (r⊥, z;ω)

∣∣∣∣2 ≤∫
R

dzdr⊥ |Hr (r⊥, z;ω)|2
∣∣Ut,+ (r⊥, z;ω)

∣∣2
×
∫
R

dzdr⊥ |Hr (r⊥, z;ω)|2
∣∣Ut,− (r⊥, z;ω)

∣∣2 ,

(D.33)
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relation between the receive and transmit field in Equation (D.16) into the correlation
expressions in (D.27)〈

Y+,n (ω)Y
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+,n (w)
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Applying Schwartz inequality and viewing the spatial frequency response of the receive
beam, |Hr (r⊥, z;ω)|, as a weighting function in a scalar product gives∣∣∣∣
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Assuming δ-correlated scatterers, i.e.
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In order to achieve optimal suppression, i.e.
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where equality is found when

Ut,+ (r⊥, z;ω) = α (ω)Ut,− (r⊥, z;ω) . (D.34)

This implies that the relation between the forward propagated positive and negative
manipulated wave fields must be spatially invariant over the receive beam. The receive
beam can thus be used to limit the area over which the relation in Equation (D.34)
must hold. The Schwartz inequality is satisfied in particular when one can approximate

Ut,+/− (r⊥, z;ω) = Ut,+/− (zn;ω) , (D.35)

i.e. the beam is homogenous over the receive scatterer volume. For scatterers in a plane
at depth z, equality in can be achieved if the transmitted wave field is homogenous
over the receive beam. The transmit beams must thus be designed with this in mind
in order to achieve optimal suppression.

D.3 Differentiating nonlinear scattering from non-
linear propagation

D.3.1 Introduction

From the discussion in Section D.2.3 it is indicated that the ability to differentiate
nonlinear scattering from the nonlinear propagation is related to the bandwidth of the
HF pulse relative to the center frequency of the LF pulse. In this section a simulation
study is presented where the ability to detect nonlinear scattering as a function of
the absolute bandwidth of the HF relative to the center frequency of the LF pulse is
investigated. Different frequency relationships between the HF and LF are investigated
and for each relationship the bandwidth of the HF pulse i varied.

D.3.2 Simulations

1D simulations has been performed using Abersim [8, 12]. Four different frequency
relationships between the HF and LF has been investigated, and for each relationship
the bandwidth of the HF pulse has been varied. The center frequency of the LF pulse
has been kept constant at 1MHz for all simulations with a -6dB bandwidth of 40%,
while the HF frequencies used are 7-10 MHz at 1MHz steps. For each combination of
HF frequency and LF frequency, -6dB bandwidths for the HF of [3.5, 5, 6.5, 8, 10, 13,
17, 20, 30, 40, 60, 80] % is simulated. The transmitted pressures was set to 0.5 MPa
for both the LF and HF pulse.

For all simulations the HF pulse is centered at the peak or trough of the LF pulse
and two simulations are performed for each combination of frequency relation and
HF bandwidth where the polarity of the LF is inverted from the first to the second
simulation.

Since there is no diffraction in 1D simulations the phase relationship between the
HF and LF pulse will remain constant with depth. The nonlinear propagation effects

113

Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

where equality is found when

Ut,+ (r⊥, z;ω) = α (ω)Ut,− (r⊥, z;ω) . (D.34)

This implies that the relation between the forward propagated positive and negative
manipulated wave fields must be spatially invariant over the receive beam. The receive
beam can thus be used to limit the area over which the relation in Equation (D.34)
must hold. The Schwartz inequality is satisfied in particular when one can approximate

Ut,+/− (r⊥, z;ω) = Ut,+/− (zn;ω) , (D.35)

i.e. the beam is homogenous over the receive scatterer volume. For scatterers in a plane
at depth z, equality in can be achieved if the transmitted wave field is homogenous
over the receive beam. The transmit beams must thus be designed with this in mind
in order to achieve optimal suppression.

D.3 Differentiating nonlinear scattering from non-
linear propagation

D.3.1 Introduction

From the discussion in Section D.2.3 it is indicated that the ability to differentiate
nonlinear scattering from the nonlinear propagation is related to the bandwidth of the
HF pulse relative to the center frequency of the LF pulse. In this section a simulation
study is presented where the ability to detect nonlinear scattering as a function of
the absolute bandwidth of the HF relative to the center frequency of the LF pulse is
investigated. Different frequency relationships between the HF and LF are investigated
and for each relationship the bandwidth of the HF pulse i varied.

D.3.2 Simulations

1D simulations has been performed using Abersim [8, 12]. Four different frequency
relationships between the HF and LF has been investigated, and for each relationship
the bandwidth of the HF pulse has been varied. The center frequency of the LF pulse
has been kept constant at 1MHz for all simulations with a -6dB bandwidth of 40%,
while the HF frequencies used are 7-10 MHz at 1MHz steps. For each combination of
HF frequency and LF frequency, -6dB bandwidths for the HF of [3.5, 5, 6.5, 8, 10, 13,
17, 20, 30, 40, 60, 80] % is simulated. The transmitted pressures was set to 0.5 MPa
for both the LF and HF pulse.

For all simulations the HF pulse is centered at the peak or trough of the LF pulse
and two simulations are performed for each combination of frequency relation and
HF bandwidth where the polarity of the LF is inverted from the first to the second
simulation.

Since there is no diffraction in 1D simulations the phase relationship between the
HF and LF pulse will remain constant with depth. The nonlinear propagation effects

113

Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

where equality is found when

Ut,+ (r⊥, z;ω) = α (ω)Ut,− (r⊥, z;ω) . (D.34)

This implies that the relation between the forward propagated positive and negative
manipulated wave fields must be spatially invariant over the receive beam. The receive
beam can thus be used to limit the area over which the relation in Equation (D.34)
must hold. The Schwartz inequality is satisfied in particular when one can approximate

Ut,+/− (r⊥, z;ω) = Ut,+/− (zn;ω) , (D.35)

i.e. the beam is homogenous over the receive scatterer volume. For scatterers in a plane
at depth z, equality in can be achieved if the transmitted wave field is homogenous
over the receive beam. The transmit beams must thus be designed with this in mind
in order to achieve optimal suppression.

D.3 Differentiating nonlinear scattering from non-
linear propagation

D.3.1 Introduction

From the discussion in Section D.2.3 it is indicated that the ability to differentiate
nonlinear scattering from the nonlinear propagation is related to the bandwidth of the
HF pulse relative to the center frequency of the LF pulse. In this section a simulation
study is presented where the ability to detect nonlinear scattering as a function of
the absolute bandwidth of the HF relative to the center frequency of the LF pulse is
investigated. Different frequency relationships between the HF and LF are investigated
and for each relationship the bandwidth of the HF pulse i varied.

D.3.2 Simulations

1D simulations has been performed using Abersim [8, 12]. Four different frequency
relationships between the HF and LF has been investigated, and for each relationship
the bandwidth of the HF pulse has been varied. The center frequency of the LF pulse
has been kept constant at 1MHz for all simulations with a -6dB bandwidth of 40%,
while the HF frequencies used are 7-10 MHz at 1MHz steps. For each combination of
HF frequency and LF frequency, -6dB bandwidths for the HF of [3.5, 5, 6.5, 8, 10, 13,
17, 20, 30, 40, 60, 80] % is simulated. The transmitted pressures was set to 0.5 MPa
for both the LF and HF pulse.

For all simulations the HF pulse is centered at the peak or trough of the LF pulse
and two simulations are performed for each combination of frequency relation and
HF bandwidth where the polarity of the LF is inverted from the first to the second
simulation.

Since there is no diffraction in 1D simulations the phase relationship between the
HF and LF pulse will remain constant with depth. The nonlinear propagation effects

113

Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

where equality is found when

Ut,+ (r⊥, z;ω) = α (ω)Ut,− (r⊥, z;ω) . (D.34)

This implies that the relation between the forward propagated positive and negative
manipulated wave fields must be spatially invariant over the receive beam. The receive
beam can thus be used to limit the area over which the relation in Equation (D.34)
must hold. The Schwartz inequality is satisfied in particular when one can approximate

Ut,+/− (r⊥, z;ω) = Ut,+/− (zn;ω) , (D.35)

i.e. the beam is homogenous over the receive scatterer volume. For scatterers in a plane
at depth z, equality in can be achieved if the transmitted wave field is homogenous
over the receive beam. The transmit beams must thus be designed with this in mind
in order to achieve optimal suppression.

D.3 Differentiating nonlinear scattering from non-
linear propagation

D.3.1 Introduction

From the discussion in Section D.2.3 it is indicated that the ability to differentiate
nonlinear scattering from the nonlinear propagation is related to the bandwidth of the
HF pulse relative to the center frequency of the LF pulse. In this section a simulation
study is presented where the ability to detect nonlinear scattering as a function of
the absolute bandwidth of the HF relative to the center frequency of the LF pulse is
investigated. Different frequency relationships between the HF and LF are investigated
and for each relationship the bandwidth of the HF pulse i varied.

D.3.2 Simulations

1D simulations has been performed using Abersim [8, 12]. Four different frequency
relationships between the HF and LF has been investigated, and for each relationship
the bandwidth of the HF pulse has been varied. The center frequency of the LF pulse
has been kept constant at 1MHz for all simulations with a -6dB bandwidth of 40%,
while the HF frequencies used are 7-10 MHz at 1MHz steps. For each combination of
HF frequency and LF frequency, -6dB bandwidths for the HF of [3.5, 5, 6.5, 8, 10, 13,
17, 20, 30, 40, 60, 80] % is simulated. The transmitted pressures was set to 0.5 MPa
for both the LF and HF pulse.

For all simulations the HF pulse is centered at the peak or trough of the LF pulse
and two simulations are performed for each combination of frequency relation and
HF bandwidth where the polarity of the LF is inverted from the first to the second
simulation.

Since there is no diffraction in 1D simulations the phase relationship between the
HF and LF pulse will remain constant with depth. The nonlinear propagation effects

113



D.3 Differentiating nonlinear scattering from nonlinear propagation

are dependent on this phase relationship, as is the nonlinear scattering. As mentioned
in Section D.2.3, the nonlinear propagation and scattering are equal processes if the
phase relationship during propagation and scattering is the same. In order to demon-
strate the fact that these two effects are separable even if these two processes are the
same, the diffraction is neglected. In the case of diffraction where the phase relation-
ship will vary with depth, the accumulative nonlinear propagation will be different
from the local nonlinear scattering effect, which complicates the analysis.

The linear and nonlinear scattered pulses are computed by taking the second deriva-
tive of the forward propagated pulse. No scaling of the scattering is performed as the
absolute strength of the scattered signal is not of interest, but the relative strength
between the different transmit pulse setups. The pulses were propagated until 20 mm
without attenuation, and the processing was done for the pulses at the final depth.

D.3.3 Processing

All processing was done using MATLAB (The Mathworks, Massachusetts, USA). The
scattered signal was computed as

Slin,+/− (ω) = −ω2Ut,+/− (ω)

Snl,+/− (ω) = −ω2
(
Ut,+/− (ω)⊗ U+/− (ω)

) (D.36)

where Ut,+ (ω) and Ut,− (ω) is the forward propagated pulse for the positive and neg-
ative manipulated pulse at depth z = 20 mm respectively. The total scattered signal
was computed by adding the linear and nonlinear scattered component

S+/− (ω) = Slin+/− (ω) + Snl,+/− (ω) . (D.37)

The filter correcting for the nonlinear propagation effects of the linear scattered signal
was computed as

Glin (ω) =
Slin,+ (w)

Slin,− (w)
. (D.38)

The detected nonlinear signal can then be computed as

Dnl (ω) = S+ (ω)−Glin (ω)S− (ω) . (D.39)

The relation between the nonlinear scattered signals is defined in the same way as the
nonlinear propagation

Gnl (ω) =
Snl,+ (w)

Snl,− (w)
. (D.40)

The scattered signals where bandpass filtered with a FIR filter centered around
the respective HF pulse frequency with a 100 % bandwidth. The detectable nonlinear
signal ratio (DNR) is computed as

DNR =

∫
dω |BP (w)Dnl (ω)|

2
∫
dω |BP (w)Snl,+ (ω)| , (D.41)
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Figure D.1: Detectable nonlinear energy vs bandwidth of the HF pulse relative to the
center frequency of the LF pulse.

where BP (w) is the bandpass filter used to remove the low frequency components.
The nonlinear to linear scattered signal ratio (NLR) was computed as

NLR =

∫
dω |BP (w)Snl,+ (ω)|∫
dω |BP (w)Slin,+ (ω)| . (D.42)

D.3.4 Results

In Figure D.1 the detectable scattered nonlinear energy relative to the total scattered
nonlinear energy (DNR) as a function of absolute bandwidth of the HF pulse relative
to the LF pulse is shown. As an example of this bandwidth relationship consider a
10MHz pulse with 6dB relative bandwidth of 30%, which is 3MHz absolute bandwidth.
The absolute bandwidth relative to the LF center frequency of 1MHz is then 3. In
this way the results for the simulations using different center frequency of the HF can
be plotted along a common axis.

In order to determine if the inability to detect nonlinear scattering is due to the
actual presence of nonlinear scattering or the ability to differentiate between nonlinear
scattering and propagation, it is of interest to investigate the strength of the nonlin-
ear vs linear scattering as a function of the bandwidth. In Figure D.2 the nonlinear
scattered energy relative to the linear scattered energy is shown (NLR). The values in
Figure D.2 are normalized to the HF bandwidth with the maximum value for each HF
frequency, as it is the relative level of NLR between the different bandwidths which is
of interest and not the absolute amplitude difference between the nonlinear and linear
scattering. The absolute level of nonlinear to linear scattering is dependent on the
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scattering and propagation, it is of interest to investigate the strength of the nonlin-
ear vs linear scattering as a function of the bandwidth. In Figure D.2 the nonlinear
scattered energy relative to the linear scattered energy is shown (NLR). The values in
Figure D.2 are normalized to the HF bandwidth with the maximum value for each HF
frequency, as it is the relative level of NLR between the different bandwidths which is
of interest and not the absolute amplitude difference between the nonlinear and linear
scattering. The absolute level of nonlinear to linear scattering is dependent on the
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Figure D.1: Detectable nonlinear energy vs bandwidth of the HF pulse relative to the
center frequency of the LF pulse.

where BP (w) is the bandpass filter used to remove the low frequency components.
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actual scatterer and the surrounding medium.
As an example case, the amplitude spectrum of the nonlinear detection signal,

the nonlinear scattered signal and the linear scattered signal from a non-manipulated
pulse, is shown in Figure D.3 and D.4, for 3.5% and 10% HF bandwidths respectively.
The center frequency of the HF pulse is 10MHz for the two cases, which gives a HF
bandwidth to LF center frequency of 0.5 and 1 respectively.

In order to detect nonlinear scattering the difference in nonlinear propagation be-
tween the positive and negative manipulated pulse must be different than the difference
in the nonlinear scattered signal, i.e. the relations computed according to Equation
(D.38) and (D.40) must be different. The phase difference between the accumulated
nonlinear propagation effects, computed according to Equation (D.38), and the non-
linear scattering effect (D.40) is shown in Figure D.5 for four different bandwidths
using a center frequency of 10MHz for the HF. The difference in amplitude between
the two relations is shown in Figure D.6.

D.3.5 Discussion

From the level of detectable nonlinear scattering shown in Figure D.1, it is seen that
as the bandwidth of the HF pulse increases, so does the level of detected nonlinear
scattered energy. When the -6dB absolute bandwidth of the HF pulse is greater than
two times the center frequency of the LF pulse, the nonlinear scattering can be well
separated from the linear scattering if the nonlinear propagation can be adequately
corrected for. Increasing the bandwidth above two times the center frequency of the
LF pulse gives little gain in detection, but will improve radial resolution.

Even though the -6dB limits of the frequency bands does not overlap, there will
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Figure D.3: Spectrums for the detections signals. The center frequency of the HF
pulse is 10MHz and the -6dB bandwidth is 3.5%, which is a relative bandwidth of 0.35
to the center frequency of the LF pulse. The propagation distance is 20mm.
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Figure D.4: Spectrums for the detections signals. The center frequency of the HF
pulse is 10MHz and the -6dB bandwidth is 10%, which is a relative bandwidth of 1.0
to the center frequency of the LF pulse. The propagation distance is 20mm.

117

Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

7 8 9 10 11 12 13
−30

−25

−20

−15

−10

−5

0

[MHz]

[d
B

]

 

 

S
+
(ω) − G

lin
(ω)S

−
(ω)

S
+nl

(ω) − S
−nl

(ω)

S
0lin

(ω)

Figure D.3: Spectrums for the detections signals. The center frequency of the HF
pulse is 10MHz and the -6dB bandwidth is 3.5%, which is a relative bandwidth of 0.35
to the center frequency of the LF pulse. The propagation distance is 20mm.

7 8 9 10 11 12 13
−30

−25

−20

−15

−10

−5

0

[MHz]

[d
B

]

 

 

S
+
(ω) − G

lin
(ω)S

−
(ω)

S
+nl

(ω) − S
−nl

(ω)

S
0lin

(ω)

Figure D.4: Spectrums for the detections signals. The center frequency of the HF
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Figure D.5: Phase difference between the nonlinear scattering and nonlinear accumu-
lated propagation at z=20 mm.
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Figure D.6: The amplitude of the relation between the nonlinear scattered signal as
defined by (D.40)
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still be some degree of overlap at frequencies of low amplitude. There is thus no clear
threshold on the bandwidth where the nonlinear scattering can be detected. But as
the -6dB bandwidth of the HF becomes less than half of the center frequency of the
LF, there is no significant detection of nonlinear scattering.

It should also be noted that the detection curves for all frequency relations are
more or less identical. This means that there the ability to detect nonlinear scattering
is not related to the frequency relationship but to the absolute bandwidth of the HF
pulse relative to the center frequency of the LF pulse.

From the relative nonlinear to linear scattering energy (NLR) shown in Figure D.2,
it is seen that the nonlinear scattering is indeed present for all bandwidths, but the
problem is that of separating it from the nonlinear propagation.

As shown in Figure D.1, the nonlinear scattering is detectable when HF bandwidth
relative to the center frequency increases above one. This means that the generated
bands at the sum and difference frequencies overlaps with the fundamental band. This
fact is seen clearly in Figure D.4 where the -6dB bandwidth of the HF relative to the
center frequency of the LF pulse is 1. The energy of the detectable nonlinear signal
lies in the intersection of the sum and difference bands, at 9 and 11 MHz, and the
fundamental band at 10MHz. For a HF bandwidth relative to the LF center frequency
of 0.35, shown in Figure D.3, there is no overlap of the bands down to -30 dB and
from Figure D.1, it is seen that the nonlinear signal cannot be detected.

The signal components generated at the sum and difference band follows the po-
larity of the LF pulse when the HF pulse is centered at the peak or trough of the LF.
When the sum and difference bands does not overlap with the fundamental band, the
nonlinear scattered signal is not separable from the linear scattering, i.e. the accumu-
lated nonlinear propagation is equal to the local nonlinear scattering. Specifically the
phase of the relations defined in Equation (D.38) and (D.40) must be different in order
for the nonlinear scattering to be detected. In Figure D.5 the phase difference between
these two relations are shown for HF bandwidths relative to the LF center frequency
of 0.35, 1.0, 1.7 and 8.0. For the bandwidth relation of 0.35 there is, as shown in Fig-
ure D.3, no overlap between the sum and difference bands and the fundamental band,
and the phase difference is approximately zero, i.e. there is no difference between the
accumulated nonlinear propagation and the local nonlinear scattering.

As the bandwidth of the HF increases, the phase difference increases which makes
the nonlinear scattering detectable. For a bandwidth relation of 8.0, one can see that
there is approximately π phase difference, which indicates a switch in polarity. This
means that the sum and difference band overlaps with the fundamental band in such
a way that the accumulated nonlinear propagation is no longer only a generation of
signal components in the sum and difference bands with polarity following the LF
pulse polarity, but a more complex interaction between the fundamental band and
and sum and difference bands, while the local nonlinear scattering generates signal
components with polarity following the LF pulse.

From Figure D.6 it is seen that there is little difference in amplitude of the relations
given in Equations (D.38) and (D.40), so the ability to detect the nonlinear scattering
lies mainly in the differences in the phase of these two relations.
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D.4 Effect of beamforming parameters on accuracy of nonlinear propagation
correction

D.3.6 Conclusion

In this section it is shown that nonlinear scattering can be differentiated from the
nonlinear propagation effects when the bandwidth of the HF pulse is larger than
the center frequency of the LF pulse. In the time domain this corresponds to the
pulse length of the HF being less than the period of the LF pulse. The nonlinear
scattering and accumulation of nonlinear propagation are equal processes and the
nonlinear interaction between the LF and HF pulse generates signal components at
the sum and difference frequencies of the LF and HF, and these signal components has
the same polarity as the LF pulse. When the absolute bandwidth of the HF increases
above the center frequency of the LF, the sum and difference bands overlaps with the
fundamental band and the accumulated nonlinear propagation becomes different than
the local nonlinear scattering which makes the to effects separable.

D.4 Effect of beamforming parameters on accuracy
of nonlinear propagation correction

D.4.1 Introduction

In Section D.3 it is shown that the nonlinear scattering can be separated from the
nonlinear propagation if the bandwidth of the HF pulse is larger than the center
frequency of the LF. But even though this bandwidth relation is satisfied, the nonlinear
propagation must be estimated and corrected for in order to detect the nonlinear
scattering.

In Section D.2.5 a method for estimating the nonlinear propagation is presented.
The method is based on finding the filter which minimizes the sum of squared differ-
ences between the received signal from the positive and negative manipulated pulses
over a region in the image. Using this method, the on average maximum achievable
level of suppression is limited by the correlation between the positive and negative
manipulated pulses over the averaging region. As noted in Section D.2.5, in order to
achieve optimal suppression, the relation between the positive and negative manip-
ulated wave field should be spatially invariant across the receive beam. One way to
achieve this is to make the transmitted HF wave field homogenous across the receive
beam.

In this section, the effect of HF f-number and aperture size fraction between the
HF and LF in the relation to the maximum achievable suppression of linear scattering
is investigated for an annular array. In addition a simulation based on the design of a
prototype dual-frequency band linear array is presented in order to investigate what
is achievable with the currently available equipment.

D.4.2 Simulations

In order to investigate the effect of beamforming parameters on the performance mea-
sure given in Equation (D.23), simulations using an annular array setup was used.
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Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

The beamforming parameters investigated are the relative size between the HF and
LF apertures and the size of the HF aperture.

The simulations involves two steps; First the forward propagated wave fields are
simulated using Abersim [12]. Then the spatial impulse responses for the receive beam
are calculated for each position and the receive wave field computed as

U+/−,r (r⊥, z;ω) = Hr (r⊥, z;ω;Fz)U+/−,t (r⊥, z;ω) , (D.43)

where Hr (r⊥, z;ω) is the spatial frequency response for the receive beam focused at
depth Fz, and U+/−,t (r⊥, z;ω) is the Fourier transform of the forward propagated
wave field. For an annular array, the spatial frequency response is given as [6]

H

(
r⊥, z; k =

ω

c0
;Fz

)
=

a2e−2kr

2r

2J1 (kar⊥/Fz)

kar⊥/Fz
(D.44)

where r =
√

z2 + r2⊥, a = D
2 is the aperture radius, and J1 is the first order Bessel

function [13].
For all the simulation setups, the center frequencies are set to 1 and 8 MHz for the

LF and HF pulses respectively, while the relative bandwidth is 70% for both pulses.
The pulses where propagated until 30 mm and the temporal sampling frequency was
set to 100 MHz, while the spatial sampling interval was 50 μm. The geometrical focus
was set to 20 mm for both the LF and HF.

In the first set of simulations, the effect of HF f-number on the level of suppression
is investigated. The HF transmit beam f-number is varied over the range 2.0 to 4.5
at steps of 0.5. The size of the LF aperture is chosen in order to make the diffraction
for the LF and HF beams as equal as possible. This implies that the Fresnel-number,
which is defined as [6]

SN =
4Fzλ

D2
,

where Fz is the focal depth, λ is the wavelength and D is the aperture size, should be
equal for the two beams. Setting the Fresnel numbers to be equal gives the following
size relationship between the LF and HF apertures

DLF =

√
fHF

fLF
DHF .

For the frequencies chosen here, the relative aperture size which yields equal Fresnel-
numbers is ∼ 2.8. By setting the Fresnel-numbers equal, the depth at which the
geometric beam definition and the diffraction cone intersects, becomes equal as well [6].
Using this size relationship, the transmit f-numbers for the LF for the first set of
simulations is [0.53, 0.71, 0.88, 1.06, 1.24, 1.41].

For the second set of simulations, the f-number of the LF is fixed to 1.1, while the
HF f-number is varied over the range 1.5 to 4.0 at steps of 0.5. The relative aperture
sizes then becomes [1.4, 1.8, 2.3, 2.7, 3.2, 3.6]. This set of simulations investigates the
effect of relative size of the LF and HF apertures on the level of signal suppression.
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D.4 Effect of beamforming parameters on accuracy of nonlinear propagation
correction

For all the simulations in the first and second set, weak apodization is applied in
using a tukey window with α = 0.1 to suppress the strongest edge waves. On receive,
dynamic focusing is used for all simulations, i.e. Fz = z, and the f-number is set to
1.5. The transmitted pressure for the LF pulse was calibrated in order for the LF
pressure to be 0.5 MPa at 20 mm for all setups, and the phase relation between the
HF and LF at transmit was calibrated in order for the HF to be centered at the peak
of the LF in 20 mm.

For the circular focused aperture, the pulse at the geometrical focus F , is the
spatial derivative of the excitation pulse f (t) [6]

p̂ (ω, F ) = iωf̂ (ω) ρUn
eikF

2πF
A , (D.45)

where k = ω
c is the wave number, Un is the normal velocity at the transducer, and

A is the vibrating surface area. That is, diffraction will produce a phase shift of λ/4
from the transducer to the focus. In order to have the HF pulse at the peak or trough
of the LF at the focus, the HF pulse must be centered at the zero crossing of the LF
at transmit. This also means that the phase relationship between the HF and LF will
vary with depth, and this variation will be a function of the chosen LF aperture size.
For a large aperture, most of the phase shift will occur close to the focus, while it will
for a small aperture start at and earlier depth.

In order to analyze the effect of beamforming parameters, annular arrays are con-
venient, but most modern scanners today use linear arrays. A dual-frequency band
linear array has been designed where the HF and LF part are placed behind each other
in a stack [14]. The array is manufactured by Vermon (Tours, France). The center
frequency of the array is 1 and 8 MHz for the HF and LF part respectively. The ele-
vation aperture is 4 mm for the HF and has a fixed focus of 20 mm using an acoustic
lens. The LF elevation aperture is 8 mm, where the central 4 mm has a fixed focus of
20 mm, while the outer 2 mm on each side is unfocused. If the acoustic lens should
have covered the whole LF aperture, the lens covering the central part would become
thick and introduced a substantial loss in the HF beam. To demonstrate the difference
between an annular and linear array, one simulation using an azimuth F-number of
3 and 1.1 for the HF and LF apertures respectively has been performed. The LF
transmit pressure and the phase relationship between the HF and LF is adjusted in
the same way as for the annular simulations. For computation of the spatial frequency
responses of the receive beam, Field II [15] was used.

D.4.3 Processing

All processing was done using MATLAB (The Mathworks, Massachusetts, USA). The
forward propagated pulses were filtered with a 100 tap bandpass filter with cutoff
frequencies [5, 15] MHz and [0.1, 2] MHz to extract the HF and LF pulses respectively.

For comparing the different transmit beams setups, the correlation coefficient de-
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vation aperture is 4 mm for the HF and has a fixed focus of 20 mm using an acoustic
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thick and introduced a substantial loss in the HF beam. To demonstrate the difference
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fined in Equation (D.25) together with the expression in Equation (D.32)

ρ+/− (z, w) =

〈
Y+ (z, ω)Y ∗

− (z, ω)
〉√〈∣∣Y+ (z, ω)

∣∣2〉〈∣∣Y ∗− (z, ω)
∣∣2〉 (D.46)

where the ensemble average is computed over the plane at depth z, i.e. the scatterers
are assumed to be in a plane at depth z as discussed in relation to Equation (D.16).

The filter for correcting for the nonlinear propagation is estimated as

Ĝ (z;ω) =

〈
Y+ (z, ω)Y ∗

− (z, ω)
〉〈∣∣Y ∗− (z, ω)

∣∣2〉 . (D.47)

The average signal suppression was then computed as

SUP =

∫∞
−∞ dω

〈
Y+ (z, ω)− Ĝ (z;ω)Y− (z, ω)

〉
∫∞
−∞ dω

[√〈∣∣Y ∗
+ (z, ω)

∣∣2〉〈∣∣Y ∗− (z, ω)
∣∣2〉] . (D.48)

For the linear array simulation, the correlation coefficient and average signal sup-
pression are computed along the azimuth and elevation axis only. The azimuth and
elevation plane can be analyzed separately by letting the integral in (D.32) run over
the corresponding coordinate.

The experienced LF manipulation pressure by the HF pulse on the beam axis,
r⊥ = 0, was computed by taking the weighted average of the LF pressure over the HF
pulse using the envelope of the HF pulse as the weight

peLF (z) =

∫∞
−∞ dt envHF (0, z, t) pLF (0, z, t)∫∞

−∞ dt envHF (0, z, t)
, (D.49)

where the HF envelope, envHF is computed by taking the absolute value of the analytic
signal which was computed using the MATLAB Hilbert transform.

D.4.4 Results

In Figure D.7 the value of the correlation coefficient at the center frequency of the HF

pulse is shown. The value is plotted as 10 log10

(
1− ∣∣ρ+/− (ω)

∣∣2) in order to show

what level of suppression the correlation value corresponds to, as described in Section
D.2.5.

While the the correlation coefficient in Figure D.7 yields the suppression at the
center frequency, Figure D.8 shows the average level of signal suppression over the
whole frequency band, computed according to Equation (D.48).

The interaction between the HF and LF pulse generates the nonlinear scattering,
and the strength of the nonlinear scattered signal is proportional to the experienced LF
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Figure D.7: Correlation coefficient at the center frequency for the first set of simula-
tions, where the size relationship between the HF and LF is chosen in order to get
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Figure D.8: Suppression of signal using the average filter for the first set of simulations,
where the size relationship between the HF and LF is chosen in order to get equal
Fresnel-numbers for the HF and LF.
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Figure D.9: Manipulation pressure experienced by the HF pulse for the first set of
simulations, where the size relationship between the HF and LF is chosen in order to
get equal Fresnel-numbers for the HF and LF.

manipulation pressure. The experienced LF pressure by the HF pulse thus indicates
the sensitivity to nonlinear scattering and is show in Figure D.9. The experienced LF
pressure also shows the manipulation of the forward propagating pulse which can be
an indication of the amount of accumulated nonlinear propagation effects.

For the first set of simulations, the apertures of the LF and HF beam is chosen
in order for the diffraction of the beams to be as equal as possible, i.e. the Fresnel-
numbers are set to be equal. Equal diffraction should produce equal axis profiles and
the axis profiles for the HF and LF are shown in Figure D.10.

In the second set of simulations the F-number of the LF beam is held constant at
1.1 while the f-number for the HF beam is varied over 1.5-4.0 which yields aperture size
relationships of [1.8, 2.3, 2.7, 3.2, 3.6]. These simulations where performed in order
to compare the level of suppression for different aperture size relationships. The level
of suppression at the center frequency given by the correlation coefficient is plotted in
Figure D.11, while the total level of suppression over the whole frequency band of the
HF is plotted in Figure D.12. The axis profiles for the different HF beams and the LF
beam are shown in the upper and lower panel respectively of Figure D.13.

For the linear array simulations, the level of suppression at the center frequency and
the whole frequency band is shown in Figure D.14 and D.15 respectively. The figures
show the values for the total field and for the elevation and azimuth axis separately.
This separation is made since the apertures are different in the two dimensions and
that dynamic focusing is only applied in the azimuth dimension.
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Figure D.10: Axis profiles for the HF (top panel), and LF (bottom panel) for the first
set of simulations, where the size relationship between the HF and LF is chosen in
order to get equal Fresnel-numbers for the HF and LF.
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Figure D.11: Correlation coefficient at the center frequency for the second set of
simulations, where the LF F-number is held constant while the HF F-number is varied.
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Figure D.12: Suppression of signal using the average filter for the second set of simu-
lations, where the LF F-number is held constant while the HF F-number is varied.
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Figure D.15: Suppression of signal using the average filter for the linear array simula-
tion. The suppression is shown separately for the azimuth and elevation direction and
for the total field.

128

D.4 Effect of beamforming parameters on accuracy of nonlinear propagation
correction

15 16 17 18 19 20 21 22 23 24 25
38

40

42

44

46

48

50

52

54

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.14: Correlation coefficient at the center frequency for the linear array sim-
ulation. The correlation coefficient is shown separately for the azimuth and elevation

direction and for the total field. Plotted as 10 log10

(
1− ∣∣ρ+/− (ω)

∣∣2).

15 16 17 18 19 20 21 22 23 24 25
31

32

33

34

35

36

37

38

39

40

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.15: Suppression of signal using the average filter for the linear array simula-
tion. The suppression is shown separately for the azimuth and elevation direction and
for the total field.

128

D.4 Effect of beamforming parameters on accuracy of nonlinear propagation
correction

15 16 17 18 19 20 21 22 23 24 25
38

40

42

44

46

48

50

52

54

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.14: Correlation coefficient at the center frequency for the linear array sim-
ulation. The correlation coefficient is shown separately for the azimuth and elevation

direction and for the total field. Plotted as 10 log10

(
1− ∣∣ρ+/− (ω)

∣∣2).

15 16 17 18 19 20 21 22 23 24 25
31

32

33

34

35

36

37

38

39

40

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.15: Suppression of signal using the average filter for the linear array simula-
tion. The suppression is shown separately for the azimuth and elevation direction and
for the total field.

128

D.4 Effect of beamforming parameters on accuracy of nonlinear propagation
correction

15 16 17 18 19 20 21 22 23 24 25
38

40

42

44

46

48

50

52

54

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.14: Correlation coefficient at the center frequency for the linear array sim-
ulation. The correlation coefficient is shown separately for the azimuth and elevation

direction and for the total field. Plotted as 10 log10

(
1− ∣∣ρ+/− (ω)

∣∣2).

15 16 17 18 19 20 21 22 23 24 25
31

32

33

34

35

36

37

38

39

40

[mm]

[d
B

]

 

 

Total field
Azimuth
Elevation

Figure D.15: Suppression of signal using the average filter for the linear array simula-
tion. The suppression is shown separately for the azimuth and elevation direction and
for the total field.

128



Paper D: Imaging of Nonlinear Scattering using Dual-frequency Band Ultrasound

D.4.5 Discussion

In the first set of simulations the F-number of the HF was varied over the range 2 to
4.5 and the size of the LF aperture was chosen in order for the Fresnel-numbers of
the two beams to be equal. The reasoning behind this is that equal Fresnel-numbers
should give equal diffraction, which will produce dual-band frequency beams where
the phase fronts of the HF and LF beam are aligned. This should produce a uniform
distortion of the HF across the beam and thus produce beams where a high level of
suppression of linear scattering can be achieved as discussed in Section D.2.5.

Equal diffraction should produce axis profiles with the same shape. From the
axis profiles shown in Figure D.10, this is not exactly achieved. The depth at which
the beam reaches maximum intensity is not aligned for the corresponding HF and LF
beams, and the HF pressure seams to decrease more rapidly for the HF. This difference
can be explained by the difference in attenuation. As attenuation increases close to
linearly with frequency, there will be a significant difference in attenuation for the HF
and LF suing a frequency relation of 1:8. This can be seen by the peaks of the HF
occurring at a more shallow depth than for the corresponding LF beam and that the
HF pressure decreases more rapidly than the LF. Attenuation will also contribute to
a downsliding in frequency, which will also affect the diffraction.

As discussed in relation to signal suppression in Section D.2.5, a narrower beam
should provide better signal suppression. This is confirmed by the correlation values
in Figure D.7. When decreasing the transmit F-number from 4.5 to 2, the level of
signal suppression decreases with ∼ 5dB at the center frequency in the focus, while
the total level of suppression increases with ∼ 7 dB (Figure D.8). Decreasing the F-
number of the HF and thus decreasing the F-number of the LF gives a shorter depth
region where the experienced LF pressure is high, which can be seen in Figure D.9.
As the nonlinear scattered signal is proportional to the manipulation pressure, a lower
F-number on the LF will give a shorter depth region where there is good sensitivity
for nonlinear scattering.

To achieve the same experienced LF pressure in the focus for the different aperture
sizes, the transmitted LF pressure must increase with increasing f-numbers. Thus for
increasing f-numbers, the experienced LF pressure in the near-field will increase and
produce more nonlinear propagation effects, which must be estimated and corrected
for. A lower f-number of the LF will produce a high experienced manipulation pressure
in a small region around the focus depth, while minimizing the propagation effects in
the near-field. In order to achieve a large depth region of high sensitivity to nonlinear
scattering, several pulses must be transmitted in each scan line direction where the
focus depth is changed for each transmission.

In the second set of simulations the F-number of the LF is set constant to 1.1,
while the F-number of the HF beam is set to vary over the range 1.5 to 4.0 at steps
of 0.5, giving aperture size relationships of [1.8, 2.3, 2.7, 3.2, 3.6]. This is done to
investigate the effect of aperture size relationship on the level of suppression and to
see if the aperture size relationship which yields equal Fresnel-numbers for the two
beams (∼ 2.8 for this setting), is optimal.

From Figure D.11 and D.12 it is seen that the level of suppression increases with
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increasing size relationship. From the first set of simulations it was shown that the
level of suppression increased with decreasing F-number of the HF beam, if the size
relationship was kept constant. From these two observations it is noted that increasing
the HF aperture, which gives a narrower HF beam, does not provide a higher level of
signal suppression unless the LF beam is increased accordingly.

In the first set of simulations the size relationship was chosen to be
√

fHF

fLF
=∼

2.8 which yields equal Fresnel-numbers and thus equal diffraction of the two beams.
But from Figure D.12 the level of suppression is seen to decrease even when the size
relationship increases above 2.8, which indicates that setting the Fresnel-numbers equal
is not necessarily the optimal size relationship. As the f-numbers increases, the depth
at which the beam is at its narrowest moves closer to the transducer, and from this
depth on the beam spreads out and becomes wider. This narrowest point of the
beam can thus be seen as a secondary source where the HF beam is transmitted from.
This secondary transmit source is unfocused and narrow, which means that the beam
spreads out as an approximate spherical wave. If the LF beam is wide compared to
the transmitted HF beam, this gives a homogenous HF beam with a close to constant
LF pressure over the HF beam, and thus a high level of suppression. The problem of
using a small transmit aperture is that the depth at which the beam has its maximum
on the axis is moved close to the transducer and the pressure decreases from this depth
on, as seen in Figure D.13, which can pose a challenge in relation to SNR.

As discussed in relation to Figure D.10, the diffraction of the two beams are not
necessarily, even if the Fresnel-number is set to be equal. The optimal aperture size
relationship might thus not be the one that yields equal Fresnel-numbers, which the
second set of simulations indicates. If a setup using a finite focus depth is chosen, as
in these simulations, it is not well defined what size relationship is the optimal.

In the last simulation a linear array setup which corresponds to an existing pro-
totype probe, has been investigated. The aperture size relationship in the azimuth
dimension is chosen to give equal Fresnel-numbers for the HF and LF beams, and the
HF F-number is set to 3.0. This aperture setup is comparable to the simulation in the
first set where the HF F-number is 3.0. Comparing the correlation coefficient for the
azimuth dimension with that of the corresponding simulation for the annular array, it
is seen that the level of suppression is about 5 dB higher for the annular array. This
can be due to the fact that the sidelobes of a linear array is 4.5 dB higher than that
of an annular array [6]. From Figure D.15, the level of suppression in the elevation
direction is seen to be ∼4.5 dB lower than for the azimuth direction. In the elevation
direction the HF transmit and receive F-number is 5.0, and there is fixed focus on
receive. From the previous discussion for the annular array, a transmit F-number for
the HF of 5.0 and using an aperture size relationship of 2, should yield good results
but the lack of good receive focusing limits the level of suppression.

Also, for the linear array there is a larger difference in the suppression at the center
frequency and the total level of suppression. While it for the annular simulations are
in the range 5-6 dB, it is around 12 dB for the annular array. This can be caused by
the off axis impulse response of the linear array introducing larger variations over the
beam than what is the case for the annular array. The one way side lobe levels for
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using a small transmit aperture is that the depth at which the beam has its maximum
on the axis is moved close to the transducer and the pressure decreases from this depth
on, as seen in Figure D.13, which can pose a challenge in relation to SNR.

As discussed in relation to Figure D.10, the diffraction of the two beams are not
necessarily, even if the Fresnel-number is set to be equal. The optimal aperture size
relationship might thus not be the one that yields equal Fresnel-numbers, which the
second set of simulations indicates. If a setup using a finite focus depth is chosen, as
in these simulations, it is not well defined what size relationship is the optimal.

In the last simulation a linear array setup which corresponds to an existing pro-
totype probe, has been investigated. The aperture size relationship in the azimuth
dimension is chosen to give equal Fresnel-numbers for the HF and LF beams, and the
HF F-number is set to 3.0. This aperture setup is comparable to the simulation in the
first set where the HF F-number is 3.0. Comparing the correlation coefficient for the
azimuth dimension with that of the corresponding simulation for the annular array, it
is seen that the level of suppression is about 5 dB higher for the annular array. This
can be due to the fact that the sidelobes of a linear array is 4.5 dB higher than that
of an annular array [6]. From Figure D.15, the level of suppression in the elevation
direction is seen to be ∼4.5 dB lower than for the azimuth direction. In the elevation
direction the HF transmit and receive F-number is 5.0, and there is fixed focus on
receive. From the previous discussion for the annular array, a transmit F-number for
the HF of 5.0 and using an aperture size relationship of 2, should yield good results
but the lack of good receive focusing limits the level of suppression.

Also, for the linear array there is a larger difference in the suppression at the center
frequency and the total level of suppression. While it for the annular simulations are
in the range 5-6 dB, it is around 12 dB for the annular array. This can be caused by
the off axis impulse response of the linear array introducing larger variations over the
beam than what is the case for the annular array. The one way side lobe levels for
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the annular array is also 4.5 dB lower than that of the annular array, so the off axis
variations are not as well suppressed for the linear array case as for the annular array.

D.4.6 Conclusion

In this section the effect of beamforming parameters on the level of suppression of
linear scattering has been investigated. The focus of the investigation has been on the
relative aperture size relationship between the HF and LF, and the HF transmit beam
F-number. As diffraction depends on the size of the aperture and frequency of the
transmitted pulse, the size of the apertures for the HF and LF does not necessarily
have to be equal in order to achieve a high level of suppression.

Keeping the focus depth constant and increasing the HF aperture while increasing
the LF aperture accordingly in order to keep the size relationship constant, shows that
the level of suppression increases with increasing aperture. This is due to a narrow
HF beam and an LF pressure which is high only in a short depth region around the
focus. But increasing the HF aperture to get a narrower beam without increasing
the LF aperture does not improve the level of suppression, which shows that the size
relationship is crucial for achieving good suppression.

The hypothesis that beams with equal Fresnel-numbers would give optimal sup-
pression was not true, the level of suppression continued to increase with increasing

relative aperture size and was not bounded by the relationship
√

fHF

fLF
. By increasing

the F-number of the HF, the depth at which the beam is the narrowest moves closer
to the transducer, and from this depth on the beam spreads out in an approximately
spherical wave. If the LF beam is wider than the HF beam, the LF pressure will
vary little over the HF beam, producing a homogenous distortion over the beam, and
thus good suppression of linear scattering using the proposed method for estimation of
nonlinear propagation. Attenuation will effect the HF and LF beam differently since
attenuation increases with frequency which will alter the diffraction patterns of the
two beams, which can also be a reason why setting the Fresnel-numbers equal did not
provide the optimal setting.

From the simulation study presented here it should be clear that diffraction poses a
challenge in designing transmit beams for dual-frequency band imaging. When using
a large separation in frequency between the LF and HF, it is difficult to design beam
where the diffraction of the two beams are equal. Different diffraction will introduce
a varying LF pressure over the HF beam which can be seen as a kind of aberration.
This aberration will give differences in accumulated nonlinear propagation over the
beam and introduce inhomogeneities over the HF beam. When altering the transmit
phase relationship between LF and HF, the HF beam will be affected by the nonlinear
propagation effects in a different way thus changing the diffraction of the positive and
negatively manipulated HF pulse.

In order to satisfy the Schwarz inequality in Equation (D.33), the relationship be-
tween the positive and negative manipulated pulse must be constant over the beam. If
this relationship varies over the beam, the optimal correction filter for each realization
of the received signal will be dependent on the actual scatterer distribution within the
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beam. The proposed method for estimating the correction filter finds the on average
optimal filter, which is not necessarily optimal for each realization of the received
signal. With the requirement of more than 30 dB suppression of linear scattering
the proposed method is highly sensitive to variations of the relationship between the
positive and negative manipulated pulse over the beam.

In Section D.2.3 it was indicated that in order to detect the nonlinear scattering
the linear scattering would have to be suppressed at least 30 dB. From the results
presented here, this is possible using an annular array, where the suppression of linear
scattering of around 45 dB is achieved. For the linear array, the level of suppression is
approximately 32 dB in the geometrical focus. This is at the limit of what is needed in
order to detect nonlinear scattering. In the practical case where there exist aberrations
and reverberations, detection of nonlinear scattering with the setup presented here may
not be possible.
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