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Problem Description
Gas coning is a challenge in some oil fields located on the Norwegian Continental Shelf. This
phenomenon occurs in reservoirs with a thick gas cap on top of a thin oil rim. Once the gas oil
contact (GOC) reaches the well perforation, free gas may dominate the total production rate to the
extent that further operation of the well becomes uneconomical and the well must be shut-in.
Therefore, there is an incentive to produce such wells in their subcritical phase as long as possible,
i.e. before free gas reaches the well perforation. The reason is that gas handling capacity often is a
constraint.
Oil rim production frequently applies horizontal well technology. In this case gas breakthrough
usually occurs at the well heel.
 
The figure above presents a generic framework for gas coning control. The control law can be
constructed using various formal design methods; Backstepping, Lyapunov design, Formal power
series parameterization, etc. Further, the observer may be constructed using the Backstepping
method or some nonlinear Kalman filter.

The project includes the following tasks:
1. Perform a literature survey on gas coning in the oil industry.
2. Propose alternative control laws based on formal design methods like Backstepping,
Lyapunov design and Formal power series parameterization; both for linear and nonlinear
systems. Assess and compare performance and user friendliness.
3. Design observer(s), applying Backstepping and possibly a nonlinear Kalman-filter, for the
gas coning problem for alternative sensor and actuator configurations. Study its properties; both
formally and through numerical simulations.
4. Study properties and assess performance of a combined observer-control concept.
5. Perform an overall assessment and make a recommendation which emphasizes
theoretical properties, implementation issues and user friendliness.

The numerical assessment should be performed with simple simulators like GORM as well as
more realistic models.

The candidate should use its contacts in industry in order to quality control the thesis and its
disposition. The thesis report may include a paper to a selected conference with the main results
of this work.

Assignment given: 12. March 2010
Supervisor: Bjarne Anton Foss, ITK
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Abstract

This thesis was set to tackle the gas coning problem in oil-rim reservoirs with hori-
zontal wells. The focus was short term production planning in the sub-critical phase
only. Different controllers were developed and assessed based on the objective of net-
present-value (NPV) of oil produced in the sub-critical phase.

The reservoir model is a 1-D partial differential equation describing the dynamics
of the gas-oil contact (GOC), for a homogeneous reservoir. Gas coning is considered to
be the deformation of the GOC towards the well.

Several controllers were developed and assessed alongside control laws from pre-
vious research: (i) the Backstepping method was used to develop a state-feedback con-
troller, along with an observer. Coupled they make the Backstepping output-feedback
controller. (ii) an output-feedback controller based on the structure proposed by pre-
vious research. (iii) linear-quadratic optimal control.

An extended Kalman filter was also considered as a state observer, alongside the
Backstepping observer.

The backstepping controller did not deliver an increase of sub-critical payout which
warrants the complicated structure of an observer-controller pair. It was even outper-
formed by simpler, output-feedback control laws. The optimal linear-quadratic con-
troller achieved the best NPV of sub-critical production by far. This makes it the most
attractive control strategy presented, even when considering that a real-world imple-
mentation will need to be paired with a state observer.
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Nomenclature

ODE Ordinary Differential Equation

PDE Partial Differential Equation

GOR/WOR Gas-Oil Ratio / Water-Oil Ratio

GORM Gas-Oil Ratio Model

GOC/OWC Gas-Oil Contact / Oil-Water Contact

NPV Net Present Value

QP Quadratic Programming

EKF Extended Kalman Filter

Neumann Boundary Condition Boundary conditions of the form hx(0) = a

Dirichlet Boundary Condition Boundary conditions of the form h(0) = a

Robin Boundary Condition Mixed boundary condition

q(t) Oil flux into the well (out of the reservoir)

qd(t) Oil flux in the reservoir at the point x = d

k,ε Tuning parameters in controllers

I Interest Rate [%]

K Permeability Tensor, Darcy

h(t, x) Height of oil column in reservoir

ht,hx,hxx ∂h
∂t ,∂h∂x ,∂

xh
∂x2

p Pressure, Pascal
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µ0 Viscosity

ϕ Porosity
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Chapter 1

Introduction

As oil reserves get increasingly harder to exploit, the industry has shifted to more and
more advanced technologies in order to produce hard to get oil and gas. These efforts
are collectively referred to as smart or intelligent wells, Integrated Operations, as well
as a plethora of other names. This thesis addresses the gas-coning problem, which is
only one area where advanced technology can help exploit otherwise difficult to get
oil resources.

A Control Engineering approach is taken throughout this thesis. A mathematical
model is used to increase the understanding of the problem. Based on that model,
observers and controllers are designed to address the problem. A general framework
is given in Figure 1.1.

Figure 1.1: Generic framework for gas-coning control.
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1.1. GAS CONING CHAPTER 1. INTRODUCTION

1.1 Gas Coning

In 1935, Muskat [1] described a phenomenon known as water coning. It was observed
that, when producing oil from a reservoir situated on top of an aquifer, the pressure-
drop due to the oil being removed caused the layer of water to cone up towards the
well, see Figure 1.2.

Figure 1.2: A water cone deforms the Oil-Water contact, and draws towards the pro-
ducing well.

A similar phenomenon known as gas coning occurs when there is a gas cap above
the oil layer in the reservoir. The gas will then gradually form a cone towards the well.
Konieczek [2] describes a critical production rate that, if exceeded, results in water/gas
breakthrough – the cone breaks and gas/water is produced in addition to oil. This
is sometimes referred to as viscous fingering instability. The production before break-
through is known as the sub-critical production phase, and after breakthrough the well
enters the super-critical phase. In the super-critical phase, gas will replace some of the
oil being produced, and the Gas-Oil ratio will steadily increase [1],[3]. It is therefore
advantageous to produce as much oil as possible in the sub-critical phase.

The critical rate depends, among other factors, on the vertical permeability of the
reservoir [1],[3] and the distance between the well and the fluid contact surfaces –
the stand-off [4],[5]. Muskat [1] describes one experiment where the stand-off was in-
creased, to better than expected results. The results were attributed to the low vertical-
permeability zone the well was pulled back to, which provided more resistance to
vertical water movement. Since the critical rate depends on the stand-off, which gets
smaller with time as the cone grows, the critical rate decreases with time. Other factors
that affect the critical rate include porosity, anisotropy, reservoir size, (horizontal) well
perforation interval and the density difference between oil and the coning fluid [6].

After gas-breakthrough, it is not possible to simply throttle back the production, as
residual gas in the well will cause the pressure to be lower and thus lower the critical
rate [7].

It may not be economical to produce below the critical rate, and limitations on wa-
ter or gas production may make it inadvisable to produce at the super-critical phase.
Horizontal wells allow fluid draining over a long distance, thus reducing the pressure-
drop and increasing the critical rate [3]. Thus horizontal wells may produce at econom-
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CHAPTER 1. INTRODUCTION 1.1. GAS CONING

ical rates from reservoirs that are otherwise difficult to produce. One such reservoir is
the Troll field [8].

Other techniques to prevent water/gas coning include injecting a block of cement
below the well, in order to block the water cone [9]. Others have suggested using poly-
mers or gels injected around the well to make a gas-blocking zone [6]. In reservoirs
surrounded by both an aquifer and a gas gap, it has been suggested [10] that the well
be placed in the position where the gas and water breakthrough would occur simulta-
neously. Otherwise, if only gas-coning is considered, the well should be placed as far
from the Gas-Oil contact as possible. Another related technique suggested in [11] is
to sink water below the OWC, thus eliminating water-coning. The total production of
water remains unchanged.

A different strategy, described in [12] suggests reverse-coning – tapping oil through
the water zone as an oil-cone. This would reduce gas-coning as gas would now have
to pass through two layers of fluid in order to reach the well. This may work well
in Troll, because gas handling capabilities are limited while water is easier to dispose
of [8],[13]. This aspect of the problem makes Shirman [11]’s approach of sinking water
below the OWC impractical for gas-coning at Troll.

Some research has also gone to controlling the Gas-Oil ratio post-breakthrough.
Notably, [8] introduces a Gas-Oil-Ratio-Model to predict the GOR and optimize pro-
duction. While [8] focuses on short and medium term production from a single well, [13]
notes that the wells in the reservoir are interconnected, and the main constraint is the
total gas handling capacity. The authors present a way to optimize production from
multiple wells at the same time, optimally distributing gas production between them.

Another approach to post-breakthrough control of gas fraction is [14]. The authors
use a dynamic coupled-well model, which they claim is more accurate than stand-
alone well models such as that in [8]. They use PID controllers to control the gas rates,
once the optimal GOR has been calculated. An interesting result of that research is that
gas-coning was used to increase end oil-production. This is because the gas flow helps
to lift the oil in wells below 2000 meters.

The focus of this thesis will be on sub-critical production planning only. The orig-
inal mention of the critical rate [2] suggested producing at below the critical rate and
as close to it as technologically feasible. Since it may not be economical to produce
below the critical rate as the reservoir is depleted, Sagatun [7] proposes maximizing
the net present value of the production in the sub-critical phase, and then passing the
well management to the other strategies described above, for the super-critical phase.
In [7] the model from [8] is used but only in the sub-critical phase. It is the first work
to utilize active control in order to maximize NPV of the sub-critical production.

The control strategy of [7] is designed using a linearization of the model from [8],
and achieves a substantial increase in NPV of sub-critical payout compared to any
constant-rate strategies that have been used traditionally.

In a term project based on [7], I developed other strategies of active control and
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1.1. GAS CONING CHAPTER 1. INTRODUCTION

was able to improve upon Sagatun’s results. These strategies, as well as others, will be
described in detail in the coming chapters.

The rest of the report is organized as follows: Chapter 2 presents the well-reservoir
model – a 1D pre-breakthrough GORM. Chapter 3 presents active control strategies,
and Chapter 4 presents two observer designs. Then, simulation results are presented
in Chapter 5 and discussed in Chapter 6. Finally, a recommendation is made towards
a control strategy that should be tried in practice.
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Chapter 2

The Well-Reservoir model

As this thesis is based on my previous work [15], the well-reservoir model will be taken
directly from that paper. The model was originally presented in [7], and is presented
here in its unmodified form. The dynamic model is based on work presented in [2]. It
is a simple one-dimensional GORM, for the sub-critical production phase.

2.1 The model

The model relies on several assumptions:

1. Only one transversal section of the reservoir will be considered–the section where
gas breakthrough will first occur.

2. The longitudinal flow (parallel to the well) in the reservoir is neglected. This is
justified for long reservoirs where the transversal width is insignificant compared
to the longitudinal distance.

3. The vertical flow component is neglected. This is justified since the reservoir
thickness h is much smaller than the reservoir width L and the slope ∂h

∂x � 1.
The flow close to the the well bore is neglected.

4. It is assumed that the reservoir section is rectangular, isotropic and homogeneous
with respect to porosity ϕ and (horizontal) permeability kh. We also assume that
the well is located in the middle of the reservoir at the Oil-water contact, thus it
is only necessary to consider half of the reservoir.

5. The reservoir has a gas cap with constant pressure in time and space.

6. The reservoir bottom is assumed to be a no flow boundary, thus water coning is
neglected.
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2.1. THE MODEL CHAPTER 2. THE WELL-RESERVOIR MODEL

7. The reservoir’s outer boundary is a no flow boundary.

8. The capillary forces are neglected and a segregated flow is assumed, thus there is
a well-defined GOC (Gas-oil contact). Consequently, the effect of connate water
saturation and residual oil is neglected.

9. The oil and gas PVT (Pressure-Volume-Temperature) properties are assumed con-
stant in the reservoir. Thus the oil is treated as incompressible. Investigation of
the PVT properties reveals that this assumption is safely assumed for most ho-
mogeneous horizontal reservoirs.

10. Horizontal reservoir pressure gradients are neglected.

11. Only Darcy flow due to gravity-based pressure gradient is considered.

Assumptions 3 and 10 make up the so called Dupuit assumptions [7].
The starting point for the model derivation is the equation of continuity, which may

be written as

−∇q + s = ∂(V ϕ)
∂t

(2.1)

where q is the volumetric flux, s denotes a source, and V is a volume which is projected
onto the (x, y) plane to a unit area (Figure 2.1).

Assumptions 6 and 7 translate to s = 0. Assumptions 10 and 11 lead to the pressure
gradient in an oil column during depletion being

∇p(x, y, z) = −∆ρg∇h (2.2)

where ρG denotes density of gas and ρO denotes oil density and ∆ρ = (ρG − ρO). g
denotes the acceleration of gravity and h the oil column height. The velocity vector u
is given by Darcy’s Law:

u = − 1
µ0
K∇p(x, y, z) (2.3)

where µ0 denotes viscosity. K is the permeability tensor and is given, assuming the
permeability is aligned with the well and that the horizontal permeabilities are equal
(kxx = kyy), by

K =

kh 0 0
0 kh 0
0 0 kv

 (2.4)

where kv and kh denote vertical and horizontal permeability, respectively. Neglecting
flow in longitudinal and vertical directions (assumptions 2 and 3), K is reduced to
K = kh. Plugging this and equation (2.2) into equation (2.3), we get

u = kh
µ0

∆ρg∂h
∂x
. (2.5)
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CHAPTER 2. THE WELL-RESERVOIR MODEL 2.1. THE MODEL

Figure 2.1: Horizontal Well Model. The figure shows the Gas-oil contact and the oil-
water contact under depletion. The well is drilled along the reservoir at the oil-water
contact. The gas “cones” down towards the well. The box illustrates the volume V ,
which is projected to a unit area on the (x, y) plane.

Note that the last term has ∂h
∂x instead of∇h as we only consider the x direction.

Integrating u over a unit length of the well from 0 to h(x, t), we get the volumetric
flow rate into the well:

q(x, y, z) =
∫ h

0
u dz

q(x, y, z) = ∆ρg kh
µ0

∂h

∂x
z|hz=0

q(x, y, z) = ∆ρg kh
µ0
h
∂h

∂x
. (2.6)

x denotes transversal distance from the well towards the edge of the reservoir. q(x, t) is
one half of the production per unit length of well, because of assumption 4 (symmetry).
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2.1. THE MODEL CHAPTER 2. THE WELL-RESERVOIR MODEL

The volume of oil in a section of one unit area is then hϕ(1−Sw), where Sw is the water
saturation. Combining equations (2.1) and (2.6), while noting that V , the unit volume
in equation (2.1) is the same as h, we get

∂

∂t
(hϕ) +∇q = 0

or
∂h

∂t
= khg∆ρ

µ0ϕ

∂

∂x

(
h
∂h

∂x

)
. (2.7)

Equation (2.7) is known as Boussineq’s equation for unsteady flow [7]. It can be made
dimensionless by introducing the following variables:

h̄ = h

h0

x̄ = x

h0
, x̄ = [0, L]

t̄ = t
khg∆ρ
µ0ϕh0

q̄ = q
µ0

khg∆ρh0
.

Equation (2.7) becomes
∂h̄

∂t̄
= 1

2∇
2h̄2. (2.8)

For the rest of this report, the bars denoting dimensionless variables will be omitted.
Written out, equation (2.8) becomes

∂h

∂t
= 1

2
∂2

∂x2 (h2)

= 1
2
∂

∂x

(
∂

∂x
h2
)

= 1
2
∂

∂x

(
2h∂h
∂x

)
= h

∂2h

∂x2 +
(
∂h

∂x

)2
.

ht = hhxx + h2
x, (2.9)

and the boundary and initial conditions:

h(0, x) = 1 (2.10)
hx(t, L) = 0 (2.11)

hx(t, 0)h(t, 0) = −1
2q(t). (2.12)
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CHAPTER 2. THE WELL-RESERVOIR MODEL 2.2. SPACIAL DISCRETIZATION

The mixed boundary condition (2.12) comes from (2.6).
In [7], the model is then linearized as follows:

ht = hchxx. (2.13)

This concludes the reproduction of the well-reservoir model from [7].

Neumann Control

In order to formulate the model with Neumann actuation, we may simply use the
transformation

q(t) = −2h(t, 0)U(t), (2.14)

and thus write boundary condition (2.12) as

hx(t, 0) = U(t). (2.15)

Alternatively, by placing more pressure sensors in the well, it is possible to measure
hx(t, 0) [16]. Then, using the transformation

q(t) = −2hx(t, 0)U(t) (2.16)

we may arrive at the Dirichlet boundary condition

h(t, 0) = U(t). (2.17)

Using the Neumann boundary condition, the linearized system can then be written
as:

ht(t, x) = hchxx(t, x) (2.18)
h(t, x) = 1 (2.19)
hx(t, 1) = 0 (2.20)
hx(t, 0) = U(t) (2.21)

2.2 Spacial discretization

Some of the techniques for analysis and design of both controllers and observers in the
following chapters rely on a discretized model, where the system is governed by a set
of ODEs rather than a PDE. This chapter is about a discretization in space, not in time.
Instead of representing the oil column height as a continuous function h(t, x), we will
now consider a discrete set of hi(t) = h(t, i∆x), where i = 0..N − 1, N is the number
of mesh points and ∆x = 1

N .
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2.2. SPACIAL DISCRETIZATION CHAPTER 2. THE WELL-RESERVOIR MODEL

The linear PDE model is given by

ht(t, x) = hchxx(t, x) (2.22)
hx(t, 0) = 0 (2.23)
hx(t, 1) = u(t). (2.24)

An order-two accurate, two-sided approximation of the second derivative is [17]

∂2hi
∂x2 ≈

hi+1 − 2hi + hi+1
∆x2 . (2.25)

For all 1 ≤ i ≤ N − 2, we may thus write

ḣi = hc
hi−1 − 2hi + hi+1

∆x2 , (2.26)

whereas for i = 0 and i = N − 1, we must enforce the boundary conditions (2.23)
and (2.24). Since the boundary conditions are of Neumann type, we must approximate
the derivative there too. A one-sided, order-two accurate approximation is [17]

∂hi
∂x
≈ −3hi + 4hi+1 − hi+2

2∆x . (2.27)

We may use this to enforce hx(t, 0) = 0 by demanding that

∂h0
∂x
≈ −3h0 + 4h1 − h2

2∆x = 0. (2.28)

Then, the boundary condition (2.23) translates to

h0 = −−4h1 + h2
3 . (2.29)

Using the same approximation, the boundary condition (2.24) becomes

hN−1 = 2∆xu(t) + 4hN−2 − hN−3
3 . (2.30)

By plugging (2.29) and (2.30) into (2.26) for i = 1 and i = N − 2 respectively, we
may write the system in matrix form, with the boundary conditions enforced, on the
state vector h = (h1, h2, · · · , hN−2)T as

ḣ = Ah + bu, (2.31)
y = hN−1 = Ch +Du, (2.32)
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with

A =



−2
3

2
3 0 0 0 · · · 0 0

1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0
...

. . .
...

... 0 1 −2 1
0 · · · 0 2

3 −2
3


hc

∆x2 , (2.33)

b =
(
0 · · · 0 2hc

3∆x

)T
, (2.34)

C =
(
0 · · · 0 −1

3
4
3

)
(2.35)

D = 2∆x
3 . (2.36)

Discretizing the nonlinear model

In this section, the nonlinear model (2.9)–(2.12) will be discretized in space. The equa-
tion is given by

ht(t, x) = 1
α

(
hhxx + h2

x

)
, (2.37)

with the boundary conditions (2.23),(2.24). Using the same finite-differences scheme
as for the linear case, we use the approximation (2.25) for the second derivative. An
approximation of the first derivative is [17]

∂hi
∂x
≈ hi+1 − hi−1

2∆x . (2.38)

Thus we may write

ḣi = 1
α

(
hi
hi−1 − 2hi + hi+1

∆x2 +
(
hi+1 − hi−1

2∆x

)2)
(2.39)

for i = 1..N − 2, and plug in (2.29) and (2.30) to enforce the boundary conditions.

17



Chapter 3

Active Control

In this chapter several control strategies will be presented. The control objective will
throughout this thesis be to maximize earnings in the sub-critical production phase.
That is, to maximize net present value of the oil production prior to gas breakthrough.
This will be represented using the functional

J [q(t)] =
∫ tf

t0
q(t) (1 + I)

t
c︸ ︷︷ ︸

npv(t)

dt (3.1)

where q(t) is the volumetric flow of oil and I is the interest rate. tf is the time of gas
breakthrough – the time when the well shifts from the sub-critical to the super-critical
phase, and c is a constant (the number of seconds in a year).

The nonlinear dynamics (2.9)–(2.12) govern the behavior of the well-reservoir sys-
tem. The actuation enters through the nonlinear boundary condition (2.12), and thus
we say the system is boundary actuated. The nonlinear Robin-type boundary condi-
tion may be transformed to Neumann or Dirichlet-type boundary conditions, as was
shown in Section 2.1. Boundary actuated plants with that kind of boundary conditions
have been analyzed in the past (for instance [18],[19],[20]) and stabilizing boundary
controllers have been synthesized.

In Section 2.2, the PDE model was discretized in space to produce a system of con-
nected ODEs. One may also call these boundary actuated, since the control input af-
fects only the boundary state. Some of the control strategies discussed below will be
designed directly for the PDE model, while others will be designed for the ODE sys-
tem.

The next section will discuss the closed-loop stability of the full, nonlinear PDE
model. Then, control laws from previous work as well as new ones will be presented.
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CHAPTER 3. ACTIVE CONTROL 3.1. STABILITY

3.1 Stability

This section will examine the stability of the the well-reservoir system described in
section 2.1. The model (2.9)–(2.12) can be written

ht(t, x) = h(t, x)hxx(t, x) + h2
x(t, x) (3.2)

h(t, 1)hx(t, 1) = −1
2q(t) (3.3)

hx(t, 0) = 0. (3.4)

It is possible to flip the reservoir – the well now at x = 1 instead of x = 0. Notice
that the dynamics are still the same. Then, choosing the Lyapunov functional

V [h(t, x)] = 1
2

∫ 1

0
h2(t, x)dx, (3.5)

and noting that V > 0 for h(t, x) 6= 0 and V ≡ 0 for h(t, x) = 0 (V is positive definite),
we may compute its time derivative:

V̇ =
∫ 1

0
h(t, x)

(
h(t, x)hxx(t, x) + h2

x(t, x)
)
dx

=
∫ 1

0
h2(t, x)hxx(t, x)dx+

∫ 1

0
h(t, x)h2

x(t, x)dx

=
[
h2(t, x)hx(t, x)

]1
0
− 2

∫ 1

0
h(t, x)h2

x(t, x)dx+
∫ 1

0
h(t, x)h2

x(t, x)dx

= −
∫ 1

0
h(t, x)h2

x(t, x)dx− 1
2h(t, 1)q(t).

(3.6)

Since h(t, x) ≥ 0, both terms are non-positive and V̇ ≤ 0, with equality if and only
if h(t, x) = 0. Together with positive definiteness of V , we have that every positive
choice of q(t) guarantees global asymptotic stability of (3.2) – (3.4). It follows that for
each of the control strategies developed in the following sections, the only criteria for
stability is q(t) > 0 ∀t. Stabilization of (3.2) – (3.4) should be interpreted as h → 0,
meaning all oil is drained from the reservoir.

3.2 Sagatun’s Controller

In [7], the controller
q(t) = −kh2(t, 1), (3.7)

where the well is located at x = 1, is shown to stabilize the linear plant (2.13). The
plant is then solved analytically, and the solution is plugged into the objective func-
tion (3.1). The objective function can thus be maximized analytically, for any set of
reservoir parameters.
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Since the previous section has shown that the nonlinear plant is stable for any q(t) >
0, Sagatun’s controller may also be applied directly to the nonlinear model. However,
a solution is not possible to compute analytically for the nonlinear PDE, and thus the
objective function will have to be optimized numerically.

3.3 Backstepping

This section is taken in its entirety from [15].
The backstepping method comes from the field of nonlinear ODEs. Consider the

system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + u,

where u is the control input. Notice the triangular dependency structure [21]. The idea
in backstepping is to treat x2 as the input to the ẋ1 equation, and design a stabilizing
control law. Then, x3 is used to design a control law for the ẋ2 equation which makes
it act as the desired control for ẋ1. Finally, u is used to make x3 behave as desired.
Thus, we have stepped back through the system of equations, exploiting the triangu-
lar structure, and come up with a stabilizing control law. The generalization of the
backstepping method to PDEs in [18], for linear PDEs, and in [22],[23] for nonlinear
PDEs, is nontrivial. The lower-triangular structure comes from a change of variables
which involves a Volterra integral operator with a lower-triangular structure. It is a
method of boundary control because the control input will be at the boundary of the
PDE domain, as in equation (2.18). This is comparable to the ODE case above, where
the control u enters through x3, which may be thought of as the boundary of the state
space. Backstepping is best illustrated through an example.

Example 1 (Backstepping for unstable ODE system). Consider the system

ẋ1 = x2
1 + x2 (3.8)

ẋ2 = x3 (3.9)
ẋ3 = u (3.10)

where u is the control input. This system suffers from a finite escape-time instability (Fig-
ure 3.1). Treating x2 as a virtual control for the ẋ1 system, we may design a stabilizing input
such as φ1(x1) = −x1 − x2

1. Doing so would reduce the ẋ1 system to

ẋ1 = −x1 (3.11)
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Figure 3.1: Simulation of system with finite escape-time. Initial conditions: x1(0) =
x2(0) = 0, x3(0) = 1. u(t) = 0.

which can be proven to be globally asymptotically stable using the Lyapunov-function

V1(x1) = 1
2x

2
1 (3.12)

Adding and subtracting φ1 on both sides of the ẋ1 equation, we may write

ẋ1 = x2
1 + φ1(x1) + (x2 − φ1(x1))

ẋ2 = x3

ẋ3 = u.

Now, using the transformation z2 = x2 − φ1(x1) and, noting that φ̇1(x1) = ∂φ1
∂x1

ẋ1 we arrive
at

ẋ1 = −x1 + z2

ż2 = x3 − φ̇ = x3 − (−2x1 − 1)(−x1 + z2)
= x3 + 2x2

1 − 2x1z2 + x1 − z2

ẋ3 = u.

The process may be repeated again, treating x3 as a virtual control for the rest of the plant.
Introducing the change of variables

z3 = x3 − x1 + z2 − 2x2
1 + 2x1z2 + z2 (3.13)
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and the control
u = −x1 − 2x2

1 + 6x1z2 − 3z3 + 2x1z3, (3.14)

the system (3.10) is transformed to the globally asymptotically stable

ż1 = −z1 + z2 (3.15)
ż2 = −z2 + z3 (3.16)
ż3 = −z3. (3.17)

Note that z1 = x1.
The nonlinear instability in x1 has thus been backstepped through two integrators, and

the system (3.8)–(3.10) has been stabilized (Figure 3.2(a)).
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Figure 3.2: The ODE plant (3.8)–(3.10) was stabilized using the backtepping method.
(a) shows the response x(t) and (b) is the control input u when using the con-
troller (3.18).

Written in x coordinates, the control law is

u = −4x1 − 3x3 − 6x2 + 2x1x3 + 4x1x2 + 4x2
1x2 + 4x3

1 + 4x4
1. (3.18)

This example has demonstrated how backstepping may be used to transform an unstable ODE
plant into a stable one, and showed the level of sophistication of the control law.

3.3.1 Backstepping for PDEs

Similarly to a system of ODEs, the goal of backstepping for a PDE plants is to stabilize
the system. Also, the transformation is achieved by a change of variables and a con-
trol law. The following example, reproduced from [18], illustrates the method for an
unstable parabolic diffusion-reaction plant.
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Example 2 (Backstepping for parabolic PDE). Consider the plant

ut(t, x) = uxx(t, x) + λu(t, x) (3.19)
ux(t, 0) = 0 (3.20)
u(t, 1) = U(t) (3.21)

where U(t) is the control input. It can be shown that the plant is unstable for λ > threshold,
see Appendix A.2. The plant will be transformed into the stable system

wt(t, x) = wxx(t, x) (3.22)

using the transformation of variables

w(t, x) = u(t, x)−
∫ x

0
k(x, y)u(t, y)dy (3.23)

and the control law

U(t) =
∫ 1

0
k(x, 1)u(t, y)dy. (3.24)

The boundary conditions of the target system are found by substituting (3.19)-(3.21) and (3.24)
into (3.23):

wx(t, 0) = ux(t, 0) = 0 (3.25)

w(t, 1) = u(t, 1)−
∫ 1

0
k(x, y)u(t, y)dy = 0. (3.26)

This is known as the Volterra integral transformation. The kernel k(x, y) is given by a PDE
which is found by taking the time and space derivatives of (3.23) and substituting them into
(3.22). In order to do that we must use the Leibniz rule of differentiation under the integral:

d

dx

∫ x

0
f(x, y)dy = f(x, x) +

∫ x

0
fx(x, y)dy. (3.27)

Differentiating (3.23) with respect to x, we get (omitting time dependence)

wx(x) = ux(x)− k(x, x)u(x)−
∫ x

0
kx(x, y)u(y)dy (3.28)

and

wxx(x) = uxx −
d

dx
(k(x, x))u(x)− k(x, x)ux(x)− kx(x, x)u(x)

−
∫ x

0
kxx(x, y)u(y)dy,

(3.29)
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where d
dxk(x, x) = kx(x, x) + ky(x, x). Differentiating with respect to time, we have

wt(x) = ut(x)−
∫ x

0
k(x, y)ut(y)dy

= uxx(x) + λu(x)−
∫ x

0
k(x, y)[uxx(y) + λu(y)]dy

= uxx(x) + λu(x)− k(x, x)ux(x) + k(x, 0)ux(0)

+
∫ x

0
ky(x, y)uy(y)dy −

∫ x

0
λk(x, y)u(y)dy

= uxx(x) + λu(x)− k(x, x)ux(x) + ky(x, x)u(x)

− ky(x, 0)u(0)−
∫ x

0
kyy(x, y)u(y)dy −

∫ x

0
λk(x, y)u(y)dy,

(3.30)

where we use integration by parts in the last two steps. In order to have (3.22), we require that
(3.29) equals (3.30). Subtracting (3.29) from (3.30), we have

wt(x)− wxx =
[
λ+ 2 d

dx
k(x, x)

]
u(x)− ky(x, 0)u(0)

+
∫ x

0
(kxx(x, y)− kyy(x, y)− λk(x, y))u(y)dy.

(3.31)

In order to satisfy (3.22), all three terms on the right hand side must equal zero. Thus, we get
the following equations for the gain kernel k(x, y):

kxx(x, y)− kyy(x, y) = λk(x, y) (3.32)
ky(x, 0) = 0 (3.33)

k(x, x) = −λ2x. (3.34)

Equation (3.34) comes from integrating the first term on the right hand side of (3.31). This
wave-equation-like hyperbolic PDE is well-posed and the closed-form solution has been com-
puted in [18]. The solution is given by

k(x, y) = −λx
I1
(√

λ(x2 − y2)
)

√
λ(x2 − y2)

. (3.35)

The function I1(x) in (3.35) is the solution to a modified Bessel function (see Appendix A.2
in [18]). This example showed how to find equations for the kernel in the Volterra integral
transformation which stabilizes an unstable diffusion-reaction PDE.

In the following section, a Backstepping controller for the horizontal well will be
designed.
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3.3.2 Backstepping for the horizontal oil well

The well-reservoir model (2.9)–(2.12) is nonlinear in both its terms. Only one result for
a general class of PDEs, given by

ut(t, x) = uxx(t, x) + λ(x)u(t, x) + F [u](t, x) + uH[u](t, x), (3.36)

has been published [22],[23]. In their papers, a method is presented for finding Back-
stepping transformations for the class of systems given by (3.36), where F [u] and H[u]
are Volterra series nonlinearities. The notation F [u](t, x) means that F [u] is a func-
tional of u(t, x). The Volterra series is defined in [22]. Other results, stabilizing nonlin-
ear PDEs were found for the viscous Burgers equation [20],[24], and the Navier-Stokes
equation [25].

However, none of these include treatment of the nonlinear diffusion term, hhxx and
the nonlinear advection term h2

x. Therefore, the Backstepping design will be based on
the linear model (2.13). Sagatun’s design in [7] achieves promising results when the
controller design is based on the linearized model. The same approach may then yield
good results for the Backstepping method. The Backstepping method is to transform
the system

ht(t, x) = hxx (3.37)
hx(t, 0) = 0 (3.38)
hx(t, 1) = u(t) (3.39)

where u(t) is the control signal, into the target system

wt(t, x) = wxx (3.40)
wx(t, 0) = 0 (3.41)
wx(t, 1) = 0, (3.42)

which is globally exponentially stable [18]. Note that

u(t) = − q(t)
2h(t, 1) . (3.43)

The transformation is performed using the Volterra integral transformation

w(t, x) = h(t, x)−
∫ x

0
k(x, y)h(t, y)dy (3.44)

and the control law

u(t) = k(1, 1)h(t, 1) +
∫ 1

0
kx(1, y)h(y, t)dy, (3.45)
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as in Example 2. However, since the control enters as a Neumann condition, unlike
the Dirichlet control from Example 2, the transforming control will now be u(t) =
h(1)k(1, 1) +

∫ 1
0 kx(1, y)h(y)dy. If, however, we follow the same procedure as in Exam-

ple 2, we arrive at k(x, y) ≡ 0; it is indeed easy to see that u(t) = 0 transforms the plant
(3.37)–(3.39) to the target system (3.40)–(3.42). Let us instead consider a perturbation
of the model (2.13), given by

ut(t, x) = uxx (3.46)
ux(t, 0) = −εu(0, t) (3.47)
ux(t, 1) = U(t), (3.48)

where U(t) is the control signal. ε in (3.47) is a small parameter, (0 < ε � 1), ensuring
the plant (3.46)–(3.48) is close to the nominal system (2.18),(2.20),(2.21).

We may also look at this perturbation as modeling only the dynamics up to a dis-
tance d from the well, rather than the whole reservoir. Then, (3.37)–(3.39) become

ht(t, x) = hxx (3.49)
hx(t, 1) = u(t) (3.50)

h(t, d)hx(t, d) = −1
2qd(t), (3.51)

where 0 < d < 1. The boundary condition (3.51) is the same as (2.12), and the physical
interpretation is the same – qd is the oil flux across the reservoir at x = d. Figure 3.3
illustrates the concept.

Without loss of generality, we write d = 0, shifting the variable space x. The system
can thus be written as

ht(t, x) = hxx (3.52)

h(t, 0)hx(t, 0) = −1
2qd(t) (3.53)

hx(t, 1) = u(t). (3.54)

Now we follow the procedure of Example 2. First, note that the equation for wxx
does not depend on the particular plant, and is the same as (3.29). Next, we differenti-
ate (3.23) with respect to time, again omitting time-dependence:

wt(x) = ht(x)−
∫ x

0
k(x, y)ht(y)dy

= hxx(x)−
∫ x

0
k(x, y)hyy(y)dy

= hxx(x)−
(
k(x, x)hx(x)− k(x, 0)hx(0)−

∫ x

0
ky(x, y)hy(y)dy

)
= hxx(x)− k(x, x)hx(x) + k(x, 0)hx(0) + ky(x, x)h(x)

− ky(x, 0)h(0)−
∫ x

0
kyy(x, y)h(y)dy.

(3.55)
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Figure 3.3: Near-well modeling. We may consider the boundary at x = d, a distance
from the well, instead of x = 0, which is the edge of the reservoir.

Finally, we subtract (3.29) from (3.55):

wt − wxx = 2 d

dx
k(x, x)h(x)− ky(x, 0)h(0) + k(x, 0)hx(0)

+
∫ x

0
(kxx(x, y)− kyy(x, y))h(y)dy.

(3.56)

Still using (3.40)–(3.42) as the target system, the right hand side of (3.56) needs to
be identically zero. This leaves us with three conditions:

2 d

dx
k(x, x) = 0 (3.57)

ky(x, 0)h(0) = k(x, 0)hx(0) (3.58)
kxx(x, y) = kyy(x, y). (3.59)

Integrating condition (3.57), and using (3.28), we get

k(x, x) = k(0, 0) (3.60)

wx(x) = hx(x)− k(x, x)h(x)−
∫ x

0
ky(x, y)hy(y)dy. (3.61)
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Setting x = 0 in (3.61) and using the boundary conditions (3.41) and (3.53), we get

wx(0) = hx(0)− k(0, 0)h(0) (3.62)

0 = −1
2qd(t)− k(0, 0)h2(0) (3.63)

k(x, x) = − qd(t)
2h2(t, 0) . (3.64)

Similarly, inserting (3.53) into condition (3.58), we get

ky(x, 0) = − qd(t)
2h2(0)k(x, 0). (3.65)

The gain kernel PDE is then given by equations (3.59),(3.64) and (3.65).
The quantities qd(t) and h(0) are not directly measurable. However, noting that

qd � h2(0), we may simplify the equations, and get the gain kernel PDE

kxx(x, y)− kyy(x, y) = 0 (3.66)
ky(x, 0) = −εk(x, 0) (3.67)
k(x, x) = −ε, (3.68)

with ε� 1. This ε may be used as a tuning parameter for the emerging controller. The
PDE (3.66) – (3.68) has the solution (see Appendix A.1)

k(x, y) = −εeε(x−y). (3.69)

Thus, the backstepping design results in the controller

u(t) = −εh(t, 1)− ε2
∫ 1

0
eε(1−y)h(t, y)dy, (3.70)

which, using (3.43) leads to the flow controller

q(t) = 2εh2(t, 1) + 2ε2h(t, 1)
∫ 1

0
eε(1−y)h(t, y)dy. (3.71)

3.4 Generalizing Sagatun

In [15], I proposed a generalization of Sagatun’s controller, based on the finding that
any positive q stabilizes the nonlinear model. It was suggested that the controller

q(t) = kha(t, 1) (3.72)

may provide an improvement in performance. Like Sagatun’s controller, it is an output-
feedback control law, unlike the Backstepping controller which requires state-feedback.
The generalized Sagatun’s controller has two parameters, which may be used to max-
imize the objective function (3.1).
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3.5 Max-Min Control

Simulations show that when using the generalized Sagatun controller, the production
profile takes the form shown in Figure 3.4.

t_0 t_f

q_mini

q_maxi

T

q

 increasing a

Figure 3.4: Production profile when using the controller q(t) = −kha(t, 1). Increased a
results in a sharper transition from maximum to minimum capacity.

Simulations also show that an increased a brings an increase in npv of sub-critical
production. It is not possible to let a→∞ when simulating due to numeric instability
issues. It is clear though, that the limit as a approaches∞ is a step from qmax to qmin.
An optimization problem would then be to find the optimal time-instance tstep at which
this transition should take place.

This idea is credited to Vidar Gunnerud at the Department of Engineering Cyber-
netics, Norwegian University of Science and Technology.

3.6 Optimal Control

In the previous sections of this chapter, classical controllers have been developed with
at least one control parameter. That parameter may be varied, and the resulting sys-
tem behavior assessed according the the control objective – the objective function (3.1).
Controllers are generally designed to be primarily stabilizing, and only secondarily
to optimize an objective function. For the well-reservoir system in this project, any
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controller is stabilizing, and we have therefore been free to explore different controller
configurations in an attempt to maximize the objective function.

A different strategy is that of optimal control. Here, we attempt to find a sequence
q(t) that directly optimizes the control objective. The problem statement is

min
q(t)

J [q(t)] subject to (3.73)

the constraints

ht(t, x) = f(h, hx, hxx) (3.74)
hx(t, 0) = 0 (3.75)

hx(t, 1)h(t, 1) = −1
2q(t) (3.76)

h(0, x) = h0 (3.77)
h(t, 1) ≥ 1 (3.78)
qmin ≤q(t) ≤ qmax, (3.79)

where J [q(t)] is given by (3.1), f in (3.74) is a linear or nonlinear function given in Chap-
ter 2, and (3.78) is meant to keep the well in the sub-critical production phase. Con-
ditions (3.74)–(3.77) are equality constraints, and (3.78),(3.79) are known as inequality
constraints.

Since this problem is nonlinear even in the case of the linear f(h, hx, hxx) = hchxx,
because of the nonlinear boundary condition (3.76), the problem may be non-convex,
and is therefore difficult to solve.

At this point we are also faced with the dilemma of discretization, both in space
and time. Depending on the chosen approach to solve (3.73)–(3.79), the system may
have to be discretized in either time, space or both.

Numerical Optimization

Powerful numerical methods have been developed for both linear and nonlinear opti-
mization problems. These algorithms are iterative in nature, and the way these itera-
tions are performed differs from algorithm to algorithm [26].

Active-Set methods assume a subset of the inequality constraints are active, and treats
them as inequality constraints. It then solves the Karush-Kuhn-Tucker (KKT) equa-
tions [26]. Then, if the solution is outside of the feasible region (violates the con-
straints), a line-search is employed to find a feasible solution, a new active set of con-
straints is found, and a new iteration begins.

In Interior-Point methods, a series of approximated, equality-constrained problems
are solved. At each step, the KKT equations are solved [26].

Both of these algorithms are available for nonlinear optimization in MATLAB’s
fmincon – nonlinear constrained optimization.
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3.6.1 Quadratic Programming

The well-reservoir PDE is a large, stiff system. Nonlinear numeric optimization is
heavy. 20 spacial variables and 100 time-points result in a state vector (20 + 1) · 100 =
2100 states. In order to enforce the stiff system dynamics, a stable solver is necessary.
The solver will need to be run nt times at each evaluation of the constraints, which
proves to be slow as well as memory-consuming.

Powerful quadratic programming algorithms exist for quadratic optimization prob-
lems of the kind

min
z

1
2z

THz + fT z subject to

Aez = be

Az ≤ b
lb ≤z ≤ ub.

Quadratic programming algorithms such as active-set methods are more efficient than
their general, nonlinear counterparts. It would therefore be advantageous if the opti-
mization problem (3.73)–(3.79) can be approached by a quadratic programming prob-
lem. Therefore, the linear model ht = hchxx will be used in this section.

In order to enforce the system dynamics using linear constraints of the form Aez =
be, the system needs to be discretized in time, as well as space. Spacial discretization
was already done in Section 2.2. Since the system is linear, its solution is well known,
and no approximations need to be made in order to discretize it in time. Note that
this was not possible to do for spacial discretization, as the solution depends on the
nonlinear boundary condition, whereas we here only deal with the simplified ḣ =
Ah +Bu. The following procedure from [27] is known as exact discretization.

Continuing in the notation of Section 2.2, we write hi(t) = h(t, i∆x) and h =
(h1, .., hN−2)T . Now let

hk = h(k∆t) for k = 0, 1, 2, ... (3.80)

The solution h(t) is given by

hk = h(k∆t) = eAk∆th(0) +
∫ k∆t

0
eA(k∆t−τ)Bu(τ) dτ. (3.81)

Then we may write

hk+1 = eA∆t
(
eAk∆th(0) +

∫ k∆t

0
eA(k∆t−τ)Bu(τ) dτ

)
+
∫ (k+1)∆t

k∆t
eA(k∆t+∆t−τ)Bu(τ) dτ.

(3.82)
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Noting that u(t) is piecewise constant and writing u(t) = uk for k∆t ≤ t < (k + 1)∆t,
(3.82) may be written as

hk+1 = eA∆thk +
( ∫ ∆t

0
eAα dα

)
Buk, (3.83)

where the substitution of variables α = k∆t+ ∆t− τ was used. We may now write the
discrete-time model as

hk+1 = Φhk + Ψuk, (3.84)

where Φ = eA∆t and Ψ =
( ∫∆t

0 eAα dα
)
B.

Now, defining the state vector z from the optimization problem statement as

z = (h0, u0,h1, u1, . . . ,hM−1, uM−1)T , (3.85)

the state space equation (3.84) may be enforced through the constraint Aez = be, where

Ae =



Ik×k 0
Φk×k Ψ1×1 −Ik×k 0

0 0 Φk×k Ψ1×1 −Ik×k 0
. . .

. . .
Φk×k Ψ1×1 −Ik×k 0


, (3.86)

with h ∈ Rk and
be = (h(0), 0, . . . , 0)T . (3.87)

The dimensions of the vectors and matrices are

z ∈ R(k+1)M ,

Ae ∈ RkM×(k+1)M ,

be ∈ RkM .

Inequality Constraints

Recall that the original system is (nonlinearly) boundary actuated in the form

h(0)hx(0) = −1
2q(t), (3.88)

and that q(t) is constrained to lie within qmin ≤ q(t) ≤ qmax. A reversible1 transfor-
mation was used to write u(t) = hx(0) = 1

2h(0)q(t). Thus, based on the u(t) signal,

1For h(0) 6= 0, and we are only interested in 1 ≤ h(0) ≤ 10, where 10 and 0 correspond to initial and
breakthrough column heights.
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given by, for example, the backstepping controller, the value q(t) was computed. One
of the main strengths of optimization used for control purposes is the ability to explic-
itly handle constraints. However, the linear constraints on q(t) translate to nonlinear
constraints on u(t).

A simplification resulting in conservative constraints may be used here, in the form

umin = − qmax
2h(0)min

≤ u(t) ≤ − qmin
2h(0)max

= umax. (3.89)

The values for h(0)min and h(0)max are chosen to the breakthrough column height and
the initial column height, respectively.

Another constraint is the sub-critical phase constraint – we wish to keep the gas-
cone small enough in size so it doesn’t break through. This may be enforced by keeping
the gas cone above a threshold. For simplicity, this will be the same threshold used
to detect breakthrough in the other simulations – the oil-column height at the well
h(t, 1) ≥ 1. The height of the oil column at the well may be found, in the linear system
dynamics described in Chapter 2, as Ch+Du. The constraint may be enforced through
the matrix inequality Aiz ≤ bi, where

Ai =


01×k 01×1 −C1×k −D1×1 0
01×k 01×1 01×k 01×1 −C1×k −D1×10

. . .
01×k 01×1 −C1×k −D1×1

 ,
(3.90)

and

bi =
(
−1 . . . −1

)T
. (3.91)

The Quadratic Objective Function

The objective function J =
∫ tf
t0 q(t)npv(t) dt needs to be stated in the quadratic form

zTHz+ fT z. Since the state vector z is time-discrete, the integral may be calculated by
its Riemann-sum,

J =
M∑
k=1

qk · npvk ·∆tk. (3.92)
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Recalling that q(t) = −2αϕh(t, L)u(t), we may rewrite (3.92) as

J =
M∑
k=1

(−2αϕ (Chk +Duk)uk) · npvk ·∆tk (3.93)

J =
M∑
k=1

(
−2αϕ

(
Chkuk +Du2

k

))
· npvk ·∆tk (3.94)

J =
M∑
k=1

1
2

(
hk
uk

)T
Hk

(
hk
uk

)
, (3.95)

where

Hk = −2αϕ


0 · · · npvk∆tkC1
...

. . .
...

0 · · · 0 npvk∆tkCN−2
npvk∆tkC1 · · · npvk∆tkCN−2 2npvk∆tkD

 . (3.96)

The objective function may thus be written

J = 1
2z

THz, (3.97)

where H = diag(H1, . . . ,HM ).

Convexity

As the objective function (3.97) is not positive-definite, the optimization problem is non-
convex2. As a result, any solution to it may at best be classified as a local minimum,
and say nothing about how good the solution is globally. In order to achieve a somewhat
global minimum, it is possible to start the optimization problem with many different
initial guesses – however, the best of a finite group of local minima is not necessarily a
global minimum.

Running the optimization with an initial guess that is the trajectory of a known
good solution, like the trajectory of the backstepping controller, or that of Sagatun’s
controller, will likely result in an optimized, similar trajectory. However, in order to
explore new control strategies which may be better suited than the ones studied earlier,
it would be necessary to explore the state space further, using random initial guesses.

Gas Breakthrough

Unlike the other control strategies, this optimal control scheme explicitly prohibits the
gas cone to get too large. While other control strategies inevitably lead to gas break-
through, that would constitute an infeasible optimization problem. In order to work

2Hk is indefinite, and as a result, so isH .
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around this, we are faced with two options; we can increase the simulation time until
no feasible solution exists, or we could fix the simulation time, and see how large a
sub-critical payout is possible to get given that end-time.

For simplicity, the latter option will be chosen – a fixed simulation time, which will
coincide with breakthrough times of other control strategies.
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Chapter 4

Observer Design

State-feedback controllers require measurement of the state at each point in the domain
(the reservoir). These measurements are, however, not available – measurements may
at most be available some distance into the reservoir, but are chiefly only available at
the well. The Backstepping controller is an example of such a controller, as well as any
receding horizon implementation of the optimal control problem posed in the previous
chapter.

In order to use such controllers in a real life scenario, when full state measurements
are unavailable, state observers are necessary to design and deploy. In this chapter two
observers will be designed. First, the Backstepping observer, a novel approach that
works well for systems where a backstepping-style transformation may be found. It
will therefore only be described for a linearized system. Secondly, an extended Kalman
filter will be developed. The EKF is the state-of-the-art of nonlinear state estimation in
the presence of model disturbances and measurement noise.

4.1 Backstepping Observer

The backstepping observer uses the same ideas as the backstepping controller. It will
be designed for the linearized model (2.13)

ht(t, x) = hchxx(t, x), (4.1)
hx(t, 0) = 0, (4.2)
hx(t, 1) = u(t). (4.3)
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The observer takes the form of “copy the original system plus output injection” [18],

ĥt(t, x) = hcĥxx(t, x) + p1(x)
[
h(t, 1)− ĥ(t, 1)

]
, (4.4)

ĥx(t, 0) = 0, (4.5)

ĥx(t, 1) = u(t)− p10
[
h(t, 1)− ĥ(t, 1)

]
. (4.6)

In order to analyze and design it, we consider the estimation error e(t, x) = h(t, x)−
ĥ(t, x). The error signal e(t, x) is governed by the PDE

et(t, x) = hcexx(t, x)− p1(x)e(t, 1), (4.7)
ex(t, 0) = 0, (4.8)
ex(t, 1) = p10e(t, 1). (4.9)

Since the goal of an observer is to mimic the state of the system, i.e. ĥ→ h, stability
and fast convergence of e(t, x) are desirable. This can be achieved by designing p1(x)
and p10 such that (4.7)–(4.9) is exponentially stable.

This will be achieved by using the transformation

e(t, x) = w(t, x)−
∫ 1

x
p(x, y)w(t, y) dy (4.10)

to transform the error system (4.7)–(4.9) into the exponentially stable (for large c)

wt(t, x) = hcwxx(t, x)− cw(t, x), (4.11)
wx(t, 0) = 0, (4.12)
wx(t, 1) = 0. (4.13)

In order to find the p(x, y) that does the transformation, we need to match (4.10)
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with (4.7)–(4.9). First, differentiating (4.10) with respect to time yields

et(t, x) = wt(t, x)−
∫ 1

x
p(x, y)wt(t, y) dy

= hcwxx(t, x)− cw(t, x)−
∫ 1

x
p(x, y)

(
hcwyy(t, y)− cw(t, y)

)
dy

= hcwxx(t, x)− cw(t, x)− hcp(x, y)wy(t, y)
∣∣∣1
y=x

+ hc

∫ 1

x
py(x, y)wy(t, y) dy

+
∫ 1

x
cp(x, y)w(t, y) dy

= hcwxx(t, x)− cw(t, x)− hcp(x, y)wx(t, x) + hc

∫ 1

x
py(x, y)wy(t, y) dy

+
∫ 1

x
cp(x, y)w(t, y) dy

= hcwxx(t, x)− cw(t, x)− hcp(x, y)wx(t, x) + hxpy(x, y)w(t, y)
∣∣∣1
y=x

− hc
∫ 1

x
pyy(x, y)w(t, y) dy +

∫ 1

x
cp(x, y)w(t, y) dy

= hcwxx(t, x)− cw(t, x)− hcp(x, y)wx(t, x) + hcpy(x, y)w(t, 1)

−
∫ 1

x
w(t, y)

(
hcpyy(x, y)− cp(x, y)

)
dy.

(4.14)

In order to differentiate (4.10) with respect to x, we need to use the Leibniz integral
rule, which takes the form

d
dx

∫ 1

x
f(x, y) dy = −f(x, x) +

∫ 1

x

∂

∂x
f(x, y) dy. (4.15)

Then we get

ex(t, x) = wx(x) + p(x, x)w(t, x)−
∫ 1

x
px(x, y)w(t, y) dy (4.16)

and

exx(t, x) = wxx(t, x) + w(x) d
dxp(x, x) + p(x, x)wx(t, x) + px(x, x)w(t, x)

−
∫ 1

x
pxx(x, y)w(t, y) dy,

(4.17)

where d
dxp(x, x) = px(x, x) + py(x, x).
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Next, substituting (4.14) and (4.17) into (4.7), and noting that e(t, 1) = w(e, 1), we
get

−p1(x)w(t, 1) = et(t, x)− hcexx(t, x)
= hcwxx(t, x)− cw(t, x) + hcp(x, x)wx(t, x) + hcpy(x, 1)− hcpy(x, x)w(t, x)

−
∫ 1

x
w(t, y)

(
hcpyy(x, y)− cp(x, y)

)
dy

− hc

[
wxx(t, x) + w(t, x) d

dxp(x, x) + wx(t, x)p(x, x) + px(x, x)w(t, x)

−
∫ 1

x
pxx(x, y)w(t, y) dy

]

= w(t, x)
(
− c− hcpy(x, y)− hcpx(x, y)− hc

d
dxp(x, x)

)
−
∫ 1

x
w(t, y)

(
hcpyy(x, y)− hcpxx(x, y)− cp(x, y)

)
dy + py(x, y)w(t, 1).

(4.18)

Matching the left and right sides and setting p1(x) = py(x, 1), we note that the other
two terms need to be exactly zero. We arrive at the hyperbolic PDE

hcpyy(x, y)− hcpxx(x, y) = cp(x, y) (4.19)

and the condition
2hc

d
dxp(x, x) = −c. (4.20)

Integrating (4.20), we get

p(x, x) =
∫ x

0
− c

2hc
dξ = − c

2hc
x. (4.21)

Next, by matching (4.16) with the boundary condition (4.8) we get

ex(t, 0) = wx(t, 0) + p(0, 0)w(t, 0)−
∫ 1

0
px(0, y)w(t, y) dy (4.22)

which, since wx(t, 0) = 0, ex(t, 0) = 0 and p(0, 0) = 0, gives us the boundary condition

px(0, y) = 0. (4.23)

Further, matching (4.16) with the boundary condition (4.9) gives us

p10e(t, 1) = p(1, 1)e(t, 1), (4.24)
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which means
p10 = p(1, 1). (4.25)

Now, all that needs to be done in order to find the observer is to find p(x, y) that
satisfies (4.19),(4.21) and (4.23). Using the change of variables x̃ = y, ỹ = x and
p̃(x̃, ỹ) = p(x, y), the observer kernel PDE is transformed to

hcp̃x̃x̃(x̃, ỹ)− hcp̃ỹỹ(x̃, ỹ) = cp̃(x̃, ỹ) (4.26)

p̃ỹ(x̃, 0) = 0 (4.27)

p̃(x̃, x̃) = c

2hc
x̃. (4.28)

The solution to (4.26)–(4.28) has been found in [18], and is given by

p̃(x̃, ỹ) = − c

2hc
x̃
I1
(√

c
2hc (x̃

2 − ỹ2)
)

√
c

2hc (x̃
2 − ỹ2)

, (4.29)

where I1(x) is a modified Bessel function [18, Appendix A.2].
Now what remains is to find the observer kernel

p1(x) = p̃x̃(1, ỹ) (4.30)

and the constant
p10 = p̃(1, 1). (4.31)

However, p10 is not directly computable from (4.31), as (4.29) is not defined at (x, y) =
(1, 1). Instead, the limit value as (x, y) → (1, 1) will be used. Since the kernel p(x, y)
is defined at that point, and (4.29) is the solution, the limit value should be the same
regardless of the approach direction. Therefore it will now be computed from only one
such direction. We begin by defining

p̃(1, ỹ) = −λỹ
I1
(
f(ỹ)

)
f(ỹ) , (4.32)

with λ = c
hc

and f(ỹ) =
√
λ(1− ỹ2). Then, the limit may be taken as

lim
ỹ→1

p̃(1, ỹ) = −λ lim
ỹ→1

ỹI1
(
f(ỹ)

)
f(ỹ)

l′H= −λ lim
ỹ→1

I1
(
f(ỹ)

)
+ ỹ

2

(
I0
(
f(ỹ)

)
− I2

(
f(ỹ)

))
f ′(ỹ)

f ′(ỹ)

= −λ2 I0
(
f(1)

)
= −λ2 ,

(4.33)
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where l’Hôpital’s rule is used as well as some properties of the Bessel functions given
in [18, Appendix A.2].

The observer kernel may be found from (4.30) by differentiating p̃(x̃, ỹ) with respect
to x̃:

p̃x̃(x̃, ỹ) = −λ
(
I1
(√

λ(x̃2 − ỹ2)
)

√
λ(x̃2 − ỹ2)

+ x2
I2
(√

λ(x̃2 − ỹ2)
)

x̃2 − ỹ2

)
. (4.34)

Now, from (4.30) we have

p1(x) = −λ
(
I1
(√

λ(1− x2)
)

√
λ(1− x2)

+
I2
(√

λ(1− x2)
)

1− x2

)
. (4.35)

Now the backstepping observer (4.4)–(4.6) is derived, with p10 and p1(x) given
by (4.33) and (4.35), with a free parameter, c, which may be used to control the con-
vergence rate.

4.2 Kalman Filter

In this section a Kalman Filter for the linear model presented in Section 2.2 will be
discussed. The material is taken from [28]. Let us re-state the process and measurement
model. In the Kalman Filter formulation, the system model is given by

ḣ = Ah +Bu+Gw (4.36)

and the measurement by
y = Ch +Du+ v, (4.37)

where w is a white noise vector representing process disturbances and model uncer-
tainties, and v is a white noise scalar representing measurement noise. The power of
w and that of v is given by E[w(t)wT (τ)] = Qδ(t − τ) and E[v(t)v(τ)] = Rδ(t − τ),
respectively.

The Kalman Filter observer will be given by

˙̂
h = Aĥ +Bu+K

(
y − Cĥ−Du

)
, (4.38)

where K, the Kalman Gain, is given by

K = PCT

R
, (4.39)

and P is given by the matrix riccati equation

Ṗ = AP + PAT − PCTCP

R
+GQG. (4.40)
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For simplicity, the stationary kalman filter will be used in this work. The stationary
kalman filter is achieved by calculating P (t→∞), which is possible to find by setting
Ṗ = 0 in (4.40).

Since Q and R represent model and measurement uncertainty, they may be used to
tune the Kalman Filter.

Extended Kalman Filter

As the process equations are really nonlinear, the Kalman filter described above will
not be able to predict the real state of the system. The extended Kalman filter approach
solves this by linearizing at every time-step and thus a linear filter will be used around
an accurate linearization point at each step.

The nonlinear ODE model derived in Section 2.2 may be written, in Kalman filter
notation, as

ḣ = f(h, u,w), (4.41)

y = Ch +Du+ v. (4.42)

At each time-step, the Jacobian of f will be calculated at the estimated state. Then, the
matrices A and b in the state space representation will be replace by

A(t) = ∂f(h, u)
∂h

∣∣∣∣∣
ĥ(t),u(t)

(4.43)

b(t) = ∂f(h, u)
∂u

∣∣∣∣∣
ĥ(t),u(t)

. (4.44)

The covariance matrix P and the Kalman gain K are computed as before, however, the
state observer will take the nonlinear form

˙̂
h = f(ĥ, u,w) +K

(
y − Cĥ−Du

)
. (4.45)

Since we have no knowledge of the process disturbances or model uncertainties, we
may continue to assume a constant G. This is the continuous-time extended Kalman
filter. More details may be found in [29].

In Section 2.2, it was shown that

fi(h, u) = hi
hi−1 − 2hi + hi+1

∆x2 +
h2
i11 − 2hi−1hi+1 + h2

i+1
4∆x2 , for i = 2..N − 3. (4.46)

Written out, it may be simplified to

fi(h, u) = 1
∆x2

(
hihi−1 − 2h2

i + hihi+1 +
h2
i−1 − 2hi−1hi+1 + h2

i+1
4

)
, (4.47)
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and thus the derivative is

∂fi(∆h,∆u)
∂h

∣∣∣∣∣
ĥ

= 1
∆x2

((
ĥi −

1
2 ĥi+1 + 1

2 ĥi−1
)
∆hi−1 +

(
ĥi−1 − 4ĥi + ĥi+1

)
∆hi

+
(
ĥi + 1

2 ĥi+1 −
1
2 ĥi−1

)
∆hi+1

)
,

(4.48)

for i = 2..N − 3.
As for the boundary conditions, they may be enforced by substituting (2.29) and (2.30)

into f1 and fN−2. The equations become

f1(h, u) = 1
9∆x2

(
4h2

2 − 2h1h2 − 2h2
1

)
(4.49)

for the left boundary, and

fN−2(h, u) = u2

9 + 1
9∆x2

(
−2h2

N−2 + 4h2
N−3 + 10hN−2u− 4hN−3u− 2hN−2hN−3

)
(4.50)

for the right boundary.
The derivatives are

∂f1(∆h,∆u)
∂h

∣∣∣∣∣
ĥ

= 1
9∆x2

(
(−4ĥ1 − 2ĥ2)∆h1 + (8ĥ2 − 2ĥ1)∆h2

)
, (4.51)

and

∂fN−2(∆h,∆u)
∂h

∣∣∣∣∣
ĥ,u∗

= 1
9∆x2

(
(−4ĥN−2 + 10u∗ − 2ĥN−3)∆hN−2

+(8ĥN−3 − 4u∗ − 2ĥN−2)∆hN−3
)
.

(4.52)

The derivative with respect to u is

∂fN−2(∆h,∆u)
∂u

∣∣∣∣∣
ĥ,u∗

=
(2

9u
∗ + 10

9∆x2 ĥN−2 −
4

9∆x2 ĥN−3
)
∆u, (4.53)

and ∂fi
∂u = 0 for all i 6= N − 2.

The extended Kalman filter will, then, at each time-step, use the system matri-
ces (4.43), (4.44), which have been computed above, in order to calculate the Kalman
gain.
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A(t) =
1

∆x2


− 4 ĥ1

9 − 2 ĥ2
9

8 ĥ2
9 − 2 ĥ1

9 0 0 0
ĥ1
2 + ĥ2 −

ĥ3
2 ĥ1 − 4 ĥ2 + ĥ3 ĥ2 −

ĥ1
2 + ĥ3

2 0 0
. . .

0 0
ĥN−4

2 + ĥN−3 −
ĥN−2

2 ĥN−4 − 4 ĥN−3 + ĥN−2 ĥN−3 −
ĥN−4

2 +
ĥN−2

2

0 0 0 ĥN−3 −
2 ĥN−2

9 − 4u
9

10u
9 −

4 ĥN−2
9 −

2 ĥN−3
9


(4.54)

b(t) =


0
...
0

2
9u
∗ + 1

9∆x2

(
10ĥN−2 − 4ĥN−3

)
 (4.55)
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Chapter 5

Results

In this chapter simulation results will be presented. Unless stated otherwise, simula-
tions are run on the full, nonlinear PDE model (2.9). First, performance of the con-
trollers will be presented. Then the observers’ performance will be shown and lastly,
for the state-feedback class controllers, their performance when used in combination
with an observer will be presented.

In the controller simulations, the simulation will stop once gas-breakthrough oc-
curs, or 10 years have passed.

5.1 Controller performance

Generalized Sagatun & Backstepping controllers

The system (3.2)–(3.4) was simulated using the Backstepping controller as well as con-
troller (3.72). When simulating with the latter, the parameter a was varied from a = 1
to a = 10. The case a = 2 corresponds to the controller studied in [7]. Each controller
has a free parameter – k for (3.72) and ε for the backstepping controller. This parameter
was varied in search of an optimal sub-critical payout, given by (3.1).

Figure 5.1 shows the sub-critical payout as a function of the controller parameter ε
for the backstepping controller, and the parameter k for controller (3.72). In the latter,
three cases are shown for parameter a: a = 1, a = 2, and a = 3. Table 5.1 summarizes
the results, showing the maximum attained sub-critical payout, using the optimal k or
ε value. The values in Table 5.1 correspond to the peaks in Figure 5.1. Figure 5.2 shows
the optimal sub-critical payout for controller (3.72) over a range of the parameter a. In
each case, the parameter k has been varied and the peak has been found.
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(a) Backstepping Controller
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(b) Controller (3.72), a = 1
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(c) Controller (3.72), a = 2
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(d) Controller (3.72), a = 3

Figure 5.1: Net present value of sub-critical production, q(t) · npv(t) as a function of the
controller parameter. The parameter is k for controller (3.72) and ε for the backstepping
controller.
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Controller Maximum payout q(t) · npv(t)
Backstepping Controller 287.0
Controller (3.72), a = 1.0 262.1
Controller (3.72), a = 2.0. Controller from [7]. 285.8
Controller (3.72), a = 3.0 291.9
Controller (3.72), a = 4.0 293.4
Controller (3.72), a = 5.0 294.1
Controller (3.72), a = 6.0 294.6
Controller (3.72), a = 7.0 294.9
Controller (3.72), a = 8.0 295.1
Controller (3.72), a = 9.0 295.2
Controller (3.72), a = 10.0 295.3

Table 5.1: Summary of Results for backstepping and generalized Sagatun controllers.
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Figure 5.2: Maximum sub-critical payout qo · npv when using the controller q(t) =
2kha(t, 1). Maximum sub-critical payout seems to grow logarithmically with a, flatting
out at approximately a = 6.
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Figure 5.4 shows the trajectory of one half of the reservoir under depletion, using
the Backstepping controller. The trajectory is similar when using the other controller.
Figure 5.4(b) shows the profile for increasing t in a 2D plot. Noting that the profile
is symmetric about x = 0, the gas cone is evident from that figure. Figure 5.3 is the
production trajectory when using the Backstepping controller. Note the saturation at
the top in Figure 5.3 due to constraints imposed on the oil flux. Again, the production
profile is similar when using the other controller.
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Figure 5.3: Dimensionless oil flux q(t), first 150 days of production, using the backstep-
ping controller.

Mini-Maxi Controller

Section 3.5 outlined a control strategy where the production rate would start off at a
maximum, to be turned down to the minimum allowable in one step at a predeter-
mined time. This predetermined time-instance would be an optimization parameter
for the controller. When simulating that strategy it became evident that running the
well at maximum capacity, gas-breakthrough would occur at a very early stage (less
than one day).

Instead of starting off at maximum capacity, then, the well was started off at a
nominal rate suggested by [7], and then switched to minimum capacity at t = Tswitch.
Figure 5.5 shows sub-critical payout plotted against Tswitch, the time at which the pro-
duction is switched from the nominal value to the minimal rate.
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(b)

Figure 5.4: Gas-Oil contact profile, for one half of the reservoir. The well is drilled
along x = 0. In (a), the first axis (x) goes from the well at x = 0 and towards the
edge of the reservoir. The second axis shows time in days, and the third axis shows
the oil column height. The profile is symmetric about the well. The red lines on the
surface are constant x values, illustrating the curve down towards x = 0 at every point
in time. The GOC drops most rapidly at x = 0, which is the well, and then the rest of
the reservoir follows. This is the gas cone. (b) shows the GOC profiles that are the red
curves in (a).
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Figure 5.5: Sub-critical payout vs. time of switching from high production rate to a
low one. Note the sharp drop at T ≈ 400. At this point, the switching never occurs,
because gas breakthrough happens before the switch was scheduled.
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5.2 Optimal Control

The open-loop optimization problem described in Section 3.6.1 was solved using MAT-
LAB’s quadprog. The initial guess was a system trajectory generated by a constant oil
flux, however the solver converged to the same solution when allowed to pick its own
starting point. The trajectory generated by the optimization solver is shown in Fig-
ure 5.6, with the optimal oil flux q and the linear system input u shown in Figures 5.7
and 5.8, respectively. This trajectory achieves a NPV of sub-critical production of
339, in 700 days – much higher than the ’classical’ control laws presented above, who
also take a longer time to reach their optimum payout – upward of 1000 days. On my
2GHz core duo laptop, this optimization takes approximately 2 minutes.
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Figure 5.6: Optimal trajectory generated by quadratic programming optimization. The
well is drilled along x = 80. The first axis (x) goes from the well at x = 80 and towards
the edge of the reservoir. The second axis shows time in days, and the third axis shows
the oil column height. The profile is symmetric about the well.

Notice how close to the constraints the input operates. This demonstrates the main
advantage of optimal control – where the optimal trajectory lies near the boundary
of the feasible region. It also makes it clear that, using a nonlinear model and less
conservative bounds on u, better results are attainable.

The same oil flux was used as an input to the full, nonlinear PDE model. The result-
ing system trajectory is shown in Figure 5.9. Notice how the well flats out at around
day 400 – this is due to gas breakthrough. While the linearized model exhibited no gas
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0 100 200 300 400 500 600 700

q.min

q.nom

q_0.max

T [days]

q[
-]

Figure 5.7: Optimal oil flux q generated by quadratic programming optimization. In
the second axis, q0.min and q0.max correspond to minimum stable production rate
and the maximum production rate due to friction.

breakthrough using this ’optimal’ oil flux, when using the more accurate, nonlinear
model, the well goes super-critical.

The model uncertainty presented by linearization was great enough to cause the
well to go super-critical when simulating on a more accurate model. Rather than op-
timizing on a nonlinear model, it is possible to account for the model uncertainties
by using more conservative bounds for the system states. As it is evident that in the
nonlinear model the oil-column will drop faster, we may apply stricter bounds for the
linear model, thus hoping that the nonlinear model, when simulated, will at least ad-
here to less strict bounds.

Followingly, a heuristic lower boundary on the oil-column height at the well, h(t, 1) ≥
3 was imposed when simulating the linear model1. The optimal trajectory generated
by the solver is shown in Figure 5.10, with the corresponding q and u in Figures 5.11
and 5.12, respectively. The response of the nonlinear model to this optimal trajectory
is shown in Figure 5.13.

This trajectory, with the more conservative lower bounds, achieves a net present
value of sub-critical production of 326, slightly less than using the non-conservative
constraints, but still considerably higher than both the backstepping and Sagatun’s
controllers.

1The original, non-conservative boundary was h(t, 1) ≥ 1.
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Figure 5.8: Optimal control variable u generated by quadratic programming optimiza-
tion.

The cumulative payout is shown in Figure 5.14. The graph suggests that it is in
the brief bursts of high-rate production that most of the value is accumulated, while
almost no value is gained during the low production rate periods, which allow the
cone to settle.

5.2.1 Summary

Control Strategy Sub-critical payout q(t) · npv(t) Improvement [%]
Sagatun’s Controller 285.8 00.00%
Backstepping Control 287.0 00.04%
Generalized Sagatun 295.3 03.32%
Quadratic Optimal Control 326.0 14.07%

Table 5.2: Summary of controller performance evaluation.
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Figure 5.9: Trajectory of nonlinear system responding to optimal q, shown in Figure 5.7.
The well is drilled along x = 80. The first axis (x) goes from the well at x = 80 and
towards the edge of the reservoir. The second axis shows time in days, and the third
axis shows the oil column height. The profile is symmetric about the well.

54



CHAPTER 5. RESULTS 5.2. OPTIMAL CONTROL

0

20

40

60

80 0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

9

10

11

T [days]x[m]

O
il-

co
lu

m
n

he
ig

ht
[m

]

Figure 5.10: Optimal trajectory generated by quadratic programming optimization
with conservative lower constraints. The well is drilled along x = 80. The first axis
(x) goes from the well at x = 80 and towards the edge of the reservoir. The second
axis shows time in days, and the third axis shows the oil column height. The profile is
symmetric about the well.
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Figure 5.11: Optimal oil flux q generated by quadratic programming optimization with
conservative lower constraints. In the second axis, q0.min and q0.max correspond to
minimum stable production rate and the maximum production rate due to friction.
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Figure 5.12: Optimal control variable u generated by quadratic programming opti-
mization with conservative lower constraints.
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Figure 5.13: Trajectory of nonlinear system responding to optimal q, shown in Fig-
ure 5.11. The well is drilled along x = 80. The first axis (x) goes from the well at x = 80
and towards the edge of the reservoir. The second axis shows time in days, and the
third axis shows the oil column height. The profile is symmetric about the well.
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Figure 5.14: Cumulative NPV of payout in the sub-critical phase, generated by solving
quadratic programming problem with conservative constraints. The corresponding oil
flux q(t) is shown in Figure 5.11
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5.3 Observer Performance

Backstepping Observer

The backstepping observer described in Section 4.1 was simulated alongside the linear
PDE. The observer kernel p1(x) takes the form shown in Figure 5.15.
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Figure 5.15: Backstepping Observer kernel function p1(x).

In the simulations, the state estimates were initiated as a random noise around the
real state, as well as a constant error from the real state, in two different scenarios.
Figure 5.16 shows the state as well as the estimate for the first case, while Figure 5.17
shows the same for the constant initial error case. Figures 5.18 and 5.19 show the
corresponding squared error e2(t, x).
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Figure 5.16: State and estimate when using Backstepping observer. Initial estimate is
real state plus noise. The red mesh is the estimated state, while the blue surface is the
real state.

Figure 5.17: State and estimate when using Backstepping observer. Initial estimate
is real state plus constant error. The red mesh is the estimated state, while the blue
surface is the real state.
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Figure 5.18: Squared estimation error when using backstepping observer. Initial error
is noise.

Figure 5.19: Squared estimation error when using backstepping observer. Initial error
is a constant.
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Extended Kalman Filter

The EKF observer was simulated together with the nonlinear ODE model. While the
well-reservoir plant was discretized at N = 26 spacial points, the EKF was only of or-
derN = 8, because the pair (A,C) becomes almost unobservable, because of numerical
errors, for higher orders.

In the simulations, the state estimates were initiated as a random noise around the
real state, as well as a constant error from the real state, in two different scenarios.
Figure 5.20 shows the state as well as the estimate for the first case, while Figure 5.21
shows the same for the constant initial error case. Figures 5.22 and 5.23 show the
corresponding squared error e2(t, x).

Figure 5.20: State and estimate when using EKF observer. Initial estimate is real state
plus noise. The red mesh is the estimated state, while the blue surface is the real state.
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Figure 5.21: State and estimate when using EKF observer. Initial estimate is real state
plus constant error. The red mesh is the estimated state, while the blue surface is the
real state.

Figure 5.22: Squared estimation error when using EKF observer. Initial error is noise.
Estimate vector ĥ(t, x) interpolated to match order of full system.
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Figure 5.23: Squared estimation error when using EKF observer. Initial error is a con-
stant.Estimate vector ĥ(t, x) interpolated to match order of full system.
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5.4 Combined Controller-Observer

As the system is boundary-sensed and the Backstepping control strategy is a state-
feedback controller, its real-world implementation would require it to be used in com-
bination with an observer. Paired with either the backstepping observer or the ex-
tended Kalman filter, the backstepping controller may be used in an output-feedback
control strategy.

The Backstepping output-feedback controller is the combination of a backstepping
controller and a backstepping observer. As the observer is stable, and the well in con-
junction with the backstepping controller is also stable, the separation principle says
the combination of the two will also be stable. However, stability of the well is not an
issue as it is stable for any positive oil flux. The performance is instead measured by
maximization of an objective function.

An issue when simulating observer-controller combinations is how the observer
should be initialized. The initial value of the state estimate will undoubtedly affect
the controller output trajectory. As a result, the performance measurement, in terms
of sub-critical payout, will vary based on the observer initialization. Such simulations
should not be taken into account when comparing controller performance.

Figure 5.24: State and estimate when using the Backstepping output-feedback con-
troller. Initial estimate is real state plus noise. The red mesh is the estimated state,
while the blue surface is the real state.

The real trajectory when simulating using the Backstepping observer-controller
pair is shown in Figure 5.24, together with the estimate from the observer. The re-
sults are similar to running the backstepping controller on the full state. Figure 5.25
shows squared estimation error.
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Figure 5.25: Squared estimation error when using Backstepping output-feedback con-
troller. Initial error is white noise.
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Chapter 6

Discussion and Conclusion

In this chapter the results from chapter 5 will be examined. The conclusion will take
the form of a recommendation for a system to deal with gas-coning that I feel would
be the best to use in actual, real-world reservoirs.

The importance of the stability result of Section 3.1 should be re-iterated at this
point; it is shown that any control strategy will keep the well-reservoir stable, given
than the oil flux q is kept positive. As a result, formal design methods such as back-
stepping may be useful for coming up with clever control strategies, but ultimately
their merit is measured by how well they perform with respect to maximizing the ob-
jective function – profit from sub-critical production.

Controller performance

By the measure of sub-critical phase profits, the backstepping design outperforms
Sagatun’s controller from [7], as is shown in Table 5.1. The performance gain is, how-
ever, marginal. It is unclear if the small increase (0.4%) justifies the added complexity
– Sagatun’s controller is an output-feedback control law, whereas the backstepping
method is a full state feedback control law. In addition, the computations themselvs
are more complex. The added complexity in controller structure and needed measure-
ments make the Backstepping controller uneconomical, when the meager performance
gain is considered. The results are consistant with results presented in [30].

The same table also shows that for the generalized Sagatun controller, a more sub-
stantial performance increase may be achieved, upwards of 3%. Note that this may
not be directly translated to well-lifetime earnings, for the super-critical production is
beyond the scope of this thesis. The generalized Sagatun controller is preferable to the
backstepping controller both in terms of performence, and in terms of complexity – it
keeps the simpler, output feedback structure, while outperforming both other control
laws in terms of sub-critical payout.

The generalized Sagatun controller achieves a much greater increase in earnings
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than the Backstepping controller, while preserving the output-feedback structure of
Sagatun. This makes it a viable candidate for production planning.

The one step controller suggested in Section 3.5 failed to live up to expectations. It
was outlined as an ideal limit to the generalized Sagatun controller, representing the
terminal value of Figure 5.2. However, as is clearly visible from Figure 5.5, the Maxi-
Mini controller in its current form is no contender, in terms of performance. Possibly,
starting rates need to be varied as well as switch times, in order to get this simple
controller to yield better results.

The nonlinear optimal control alternative, while very tempting, is infeasible. The
system is too large to be solved on a present-day consumer PC. While further research
may yield better results on this interesting path, it is my view that simpler control
strategies are more viable at this point.

While a nonlinear optimal control problem may be infeasible at this point, a sim-
plified QP formulation achieves a production schedule which far out-performs any of
the other control laws, in terms of sub-critical payout. Examining the optimal oil flux
in Figure 5.11 and the corresponding reservoir trajectory in Figure 5.10, it is apparent
the optimal control strategy may be worded as follows; produce at or close to the crit-
ical rate for short bursts, while producing at a minimal production rate between those
bursts. This way, the next burst will be allowed to produce at a higher critical rate,
since the cone was allowed to settle, and the stand-off is greater [4],[5].

The optimal controller’s tendency to produce at the critical rate supports the sug-
gestion of [2] to produce as close to the critical rate as possible.

It is also possible that shutting the well completely during the minimum produc-
tion rate periods would yield even higher payouts.

Observer performance

The Backstepping observer works satisfactorily, as is evident in Figures 5.16 and 5.18,
at least when the initial estimate error is centered about the real state. Convergence is
quick and the estimated state follows the real state closely. However, when the initial
estimation error is a constant, the backstepping controller fails to quickly converge, as
is seen in Figures 5.17 and 5.19.

The good results attained by the backstepping observer make a Backstepping output-
feedback controller a viable choice, as may be seen in Figure 5.24. Other state-feedback
methods may also be paired with this observer to create output-feedback designs.
However, the backstepping observer is designed for a linearized system and as such
reflects a simplification of system dynamics.

The extended Kalman filter works very well as a nonlinear observer. This is evident
from Figures 5.20–5.23. The backstepping observer seems to be able to deal with noise
initial errors better than the EKF, but note that the EKF also converges rather quickly
– and for the nonlinear system. The backstepping observer was only designed for a
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linearized model. The main weakness of the EKF design is the lower order. While
the linear backstepping observer is defined in a continuous range, the EKF requires
a discretization of the state vector, and may only be run on relatively low-order dis-
cretizations. When the initial estimation error is a constant, the EKF converges quicker
than the backstepping observer.

6.1 Conclusion

Based on the discussion above, I propose a short-term production planning method for
the sub-critical phase based on quadratic optimal control. The performance gain this
control scheme provides is so great, that it makes up for the added complexity. A 14%
increase in earnings in a multi-million dollar business justifies the need for complex
computations as well as the implementation of a state observer.

Such an implementation should rely on the receding horizon principle. In that
scheme, the optimal trajectory should be calculated for the entire sub-critical phase
of the well, but only the first part of the corresponding production plan should be
used. Then, using new information, which will differ from the predicted one, the same
optimization should be run again. It is highly neccesary to do this here, as the optimal
controller is based on a linear model, and the model should be re-linearized at each
iteration, much like the extended Kalman filter.

Since measurements are not available throughout the domain, the optimal con-
troller will need to be paired with a state observer. The extended Kalman filter was
proven to be effective at predicting the nonlinear dynamics of gas coning. As the in-
dustrial standard, it should also be used in this application.
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Appendix A

A.1 Solution of gain kernel PDE

This appendix solves the gain kernel PDE from Section 3.3.2.
The gain kernel PDE is given by

kxx(x, y) = kyy(x, y) (A.1)
ky(x, 0) = −εk(x, 0) (A.2)
k(x, x) = −ε. (A.3)

The general solution of the PDE has the form k(x, y) = φ(x − y) + ψ(x + y) where φ
and ψ are arbitrary functions. From (A.3), we get

k(x, x) = φ(0) + ψ(2x) = −ε. (A.4)

This implies that ψ(x) is constant, and may therefore be absorbed into φ; hence ψ ≡ 0.
Using k(x, y) = φ(x− y) and (A.2) we have

−φ′(x) = −εφ(x) (A.5)∫
dφ

φ
dx = ε

∫
dx (A.6)

lnφ(x) = εx+ C (A.7)

φ(x) = eCeεx. (A.8)

Using (A.3) yields eC = −ε, and thus we have

k(x, y) = −εeε(x−y). (A.9)
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A.2 Proof of instability for λ ≤ threshold

This appendix shows the proof from Example 2.
The PDE is given by

ut(t, x) = uxx(t, x) + λu(t, x) (A.10)
ux(t, 0) = 0 (A.11)
u(t, 1) = 0. (A.12)

One method for obtaining the solution is separation of variables and the Laplace
transform. We assume the solution u(t, x) is separable and may be written as a product
of a function of space and a function of time,

u(t, x) = T (t)X(x). (A.13)

Substituting (A.13) into the equation (A.10) and using ut = ṪX and uxx = TX ′′ yields

X(x)Ṫ (t) = X ′′(x)T (t) + λX(x)T (t). (A.14)

Gathering the terms, we may write

Ṫ (t)
T (t) = X ′′(x) + λX(x)

X(x) = σ, (A.15)

which is a constant, since the two sides of the equality are independent. This results in
an ODE for T (t) and an ODE for X(x):

Ṫ = σT (A.16)
X ′′ + (λ− σ)X = 0. (A.17)

Equation (A.16) has the initial condition T (0) = T0, and (A.17) has the boundary con-
ditions X ′(0) = 0 and X(1) = 0. These follow from the boundary conditions (A.11)–
(A.12). The solution to (A.16) is given by

T (t) = T0e
σt. (A.18)

Equation (A.17) may be solved using the Laplace transform:

L {X ′′(x) + (λ− σ)X(x)} = s2X (s) + sX(0) + (λ− σ)X = 0 (A.19)

X (s) = X(0) s

s2 + (λ− σ) (A.20)

X(x) = L −1
{
X(0) s

s2 + (λ− σ)

}
(A.21)

X(x) = X(0) cos
(√

λ− σx
)
. (A.22)
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The last step can be found in the inverse Laplace transform table on p. 550 of [31].
From the boundary condition X(1) = 0 we have

X(1) = X(0) cos
√
λ− σ = 0, (A.23)

which, in addition to the trivial solution X(0) = 0, which is not interesting, can only
hold if

√
λ− σ = π

2 + πn for n ∈ Z, or

σ = λ− π2
(
n+ 1

2

)2
. (A.24)

Next, plugging (A.18) and (A.22) into (A.13), we have

un(t, x) = T0Xn(0)e
(
λ−π2(n+ 1

2)2
)
t
cos

(
π

(
n+ 1

2

)
x

)
. (A.25)

This is a particular solution, and since (A.10) is a linear PDE, the sum of particular
solutions is also a solution. The general solution is therefore given by

u(t, x) =
∞∑
n=1

Cne

(
λ−π2(n+ 1

2)2
)
t
cos

(
π

(
n+ 1

2

)
x

)
. (A.26)

We see that the terms e

(
λ−π2(n+ 1

2)2
)
t

determine the rate of growth of the solution.

Therefore, the exponential factor
(
λ− π2

(
n+ 1

2

)2
)

all need to be negative for the

plant to be stable. It follows that the plant is stable if and only if the largest eigenvalue,
when n = 0 is negative. Hence, the plant is unstable for

λ >
π2

4 . (A.27)
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