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Problem Description
Surge is an instability occurring in compression systems. In the oil-, gas- and process industries,
this problem is handled by using a recycle loop, ensuring higher flow through the compressor and
thereby preventing surge. The main topic of this work should be analysis of this recycle control
system.

Assignment:
1) Give a brief overview of compressors and the surge control problem.
2) Investigate the use of approximations of compressor maps, and present

   a method for numerical representation of the compressor map in simulations.
3) Propose a dynamical model of a compression system with a recycle loop
4) Propose a control law, and perform a stability analysis of the recycle control system.
5) Investigate if it is possible to use the recycle loop as a means for active surge control.

Assignment given: 11. January 2010
Supervisor: Jan Tommy Gravdahl, ITK





Abstract

The compressor recycle system is the main focus of this thesis.
When the mass �ow through a compressor becomes too low, the
compressor can plunge into surge. Surge is a term that is used
for axisymmetric oscillation through a compressor and is highly
unwanted. The recycle system feeds compressed gas back to the
intake when the mass �ow becomes too low, and thereby act as
a safety system.

A mathematical model of the recycle system is extended and
simulated in SIMULINK. The mathematical model contains the
compressor characteristic, which is a function that de�nes the
axisymmetric behavior through a compressor at di�erent �ows.
The compressor characteristic is often modeled as a third order
equation, but here it is modeled as a bivariate cubic spline ap-
proximation of measurement points. It is shown how a typical
industry-setup of the recycle system works to avoid surge.

The recycle system is proven to be stable independent of re-
cycle �ow, as long as the slope of the compressor characteristic is
negative. Three control laws have been derived by the use of block
backstepping. The simplest one of them guarantees semiglobal
exponential stability.
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Chapter 1

Introduction

1.1 Motivation

Centrifugal compressors are used everywhere. They are used in the oil and
gas industry to move gas through pipes, in re�neries and plants, and in
pumping gas back to oil reservoirs to increase the pressure in a well which
increases oil production. They are used in aerospace to pressurize the fuselage
at high altitudes and even as gas turbines, although beaten by the greater
capability of mass �ow by the axial compressor. It is the only option to
supercharge and turbocharge in the automobile industry. They are also used
in air conditioners and blowers. (Lüdtke, 2004)

The recycle system ensures stable operation of the centrifugal compressor by
recycling gas back to the intake when the mass �ow becomes too low. It
currently belongs to the surge/stall avoidance scheme, where the unstable
operating areas are avoided. The e�ciency of the recycle system compared
to newer, but not so accepted, active surge/stall control schemes is poor.
Recycle systems often runs with considerable margin. That is, the recycle
valve is opened long before there is any danger of moving into the instability
area. The e�ciency of a recycle system operating in the avoidance scheme is
therefore low, since compressor system e�ciency is highest when operating
close to instability.



2 Introduction

1.2 Thesis Outline

The thesis starts with an introduction to continuous �ow compressors. In this
chapter, general theory are presented. The instability problems of compres-
sors are presented, along with a compressor model. Its focus is on centrifugal
compressors, since it is the type of compressor used in the recycle system.
The following chapter is a thorough examination of the compressor character-
istic, unique to each compressor type and setup. It de�nes the axisymmetric
characteristic through a compressor. The main focus of the chapter is approx-
imations of this characteristic. In chapter 4 the recycle system is presented.
It has an introduction to surge/stall avoidance and active surge/stall control.
In chapter 5 di�erent Lyapunov methods is conducted for the recycle system.
The thesis ends with a discussion and a �nal conclusion.

1.3 Source Code

The ZIP-�le attached contains all the MATLAB and SIMULINK �les used
in the report. It contains all the �les needed to run the approximation
procedure, and all the �les needed to run all the simulations presented in
this thesis. The main code and diagrams are also found in the appendix.



Chapter 2

Theory of Continuous Flow

Compressors

2.1 Compressors

A gas compressor increases the pressure of a gas by mechanically decreasing
its volume and pressing the molecules together. This can be explained by
the ideal gas law

p = ρRT (2.1)

where p is pressure, ρ is the density, R is the speci�c gas constant and T
is temperature, which states that an increase in pressure results from an
increase in density. Density is ρ = m

V
, where m is mass and V is volume, so

a reduction in volume would result in an increase in density and pressure.

According to Nisenfeld (1982), compressors can be divided into four general
types

1. Axial-�ow

2. Centrifugal

3. Reciprocating

4. Rotary

Reciprocating and rotary compressors work by the means of reducing the
physical volume occupied by the gas, and then discharge the gas at higher
pressure. These compressors will not be considered further. The other two,



4 Theory of Continuous Flow Compressors

axial-�ow and centrifugal, are known as continuous �ow compressors (Grav-
dahl and Egeland, 1999), or turbo compressors. They work by the principle of
accelerating the gas to high velocity, and then decelerating the gas in diverg-
ing channels, converting kinetic energy into potential energy. This conversion
can be explained by the Bernoulli equation

v2
1

2
+
p1

ρ
+ z1g =

v2
2

2
+
p2

ρ
+ z2g (2.2)

Although this equation is valid only for stationary frictionless �ow along
a streamline for an incompressible �uid, it illustrates the principle of the
conversion as follows. Let point 1 be in the high velocity area, and point 2
in the low velocity area. At point 1 the velocity and the kinetic energy is
high. At point 2 the velocity is greatly reduced by di�usion, and therefore
the pressure at point 2, the potential energy, must be increased. The energy
consuming part of a continuous �ow compressor is the energy needed to
accelerate the gas in the �rst place. This is managed by some drive unit.

2.2 The Centrifugal Compressor

Every centrifugal compressor consists of two principal parts. The impeller
and shaft, called the rotor, and the casing which the rotor is mounted in. The
casing directs the �ow into the impeller. The impeller can be viewed as a fan
which imparts high velocity to the gas. The gas is decelerated in diverging
channels with a rise in pressure. The deceleration is obtained by di�usion,
and consequently the part of the casing containing the diverging channels is
called the di�usor. The di�usor exit �ow is collected in the volute, which
most e�ectively leads the gas away.

A supercharger is shown in Figure 2.1. When centrifugal compressors are
mounted in cars to improve performance, they are called superchargers when
the drive unit is the crankshaft, and turbochargers when the drive unit is a
turbine wheel spun by exhaust.

The working principle is as follows. Some force spins the impeller, and gas
gets dragged down in the impeller eye. The gas is whirled around in the
impeller. The centripetal acceleration is obtained by a pressure head, so half
of the pressure rise is typically obtained in the impeller. The rest of the
pressure rise is obtained in the di�user, which can be vaned or vaneless. The
pressure rise in the di�user is obtained by gas di�usion. The job for the volute
is to most e�ectively lead the pressurized gas away, without considerable
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(a) Front (b) Cutaway

Figure 2.1: Centrifugal compressor (www.superchargersonline.com,
www.vortechsuperchargers.com, feb. 2010)
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losses. Some of the components of a centrifugal compressor is shown in
Figure 2.2.

Figure 2.2: Components in a centrifugal compressor (Bøhagen, 2007)

Centrifugal compressors can be very big, and the forces involved are great. A
compression system can consist of multiple stages of compressors, where the
pressurized gas from one compressor is fed to the intake of another. The axial
compressor actually consists of multiple stages. Although the pressure rise
for a centrifugal compressor beats one stage in an axial compressor, several
centrifugal compressors are often mounted together in a stage setup in the
industry. In Figure 2.3(b) it is seen that there is mounted an axial compressor
behind a two stage centrifugal compression system.

2.3 Operating Range Limitations

Towards high mass �ow, the compressor is limited by choking. Towards low
mass �ow, the stable operating region is bounded due to the occurence of
aerodynamic �ow instabilities, surge and rotating stall. According to Willems
et al. (1999), these instabilities can lead to failure of the compressor system
because of the large mechanical and thermal load in the blading, and limit
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(a) Large impellers (b) Multiple stages

Figure 2.3: Large variants of centrifugal compressors (www.siemens.com,
mar. 2010)
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its performance and e�ciency. Suppressing these phenomena improves life
span and performance of the machine. There are also other instabilities, such
as vibration in the materials, but these will not be considered further.

2.3.1 Stonewall

When sonic velocity is reached in some component, the compressor cannot
pump more gas (Nisenfeld, 1982). This is called stonewall, or choking. Sonic
velocity is reached when the Mach number is equal to unity (White, 2008):

Ma =
vgi
ag

(2.3)

Here, vgi is the velocity of the gas relative to the impeller blade, and ag is
the speed of sound in the gas. According to Nisenfeld (1982), it is common
to design the compressor such that the Mach number at design �ow will not
exceed 0.85 or 0.90.

2.3.2 Rotating Stall

Rotating stall occurs when one or more of the airfoils of the compressor stalls,
without destabilizing it. This happens because the foil is loaded beyond
its lifting capacity, e.g. when turbulent gas enters the compressor. When
an airfoil stalls, the lift drops o� markedly, drag increases markedly, and
generally a separation bubble forms on the upper surface of the foil (White,
2008). The stalled airfoils create pockets of somewhat stagnant air, called
stall cells. This causes a situation of abnormal air�ow. The compressor
continues to deliver compressed gas, but at reduced e�ectiveness.

The stall cells rotate around the circumference of the impeller at a fraction
of the rotor speed. According to Gravdahl and Egeland (1999) the speed of
the stall cells may be 20-70% of the rotor speed, a�ecting the next airfoils
around the impeller as each encounters the cell. Another type of rotating
stall is when the stall cells cover the complete circumference of the impeller,
but only a part of its radius, with the remainder of the impeller continuing
to deliver compressed gas. Rotating stalls can also propagate to include the
entire impeller.

Once again, according to Gravdahl and Egeland (1999), rotating stall reduces
the pressure rise and is likely to induce vibration in the blades as stall cells
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rotate at a fraction of the rotor speed. However, rotating stall is a more
common problem in axial compressors, and its importance in centrifugal
compressors is a matter of debate.

2.3.3 Compressor Surge

Compressor surge is a breakdown in compression which can result in a re-
versal of �ow, and possibly a violent expulsion of previously compressed gas
out through the intake. This happens because the compressor is unable to
work against the already compressed gas behind it.

P
re

ss
ur

e 
ris

e

Mass flow

Positive slope

Surge limit

Basic flow

Capacity limit / Stonewall

Maximum

Small positive 
slope

Figure 2.4: Compressor characteristic for constant compressor speed

A typical compressor characteristic (performance curve), for a compressor at
constant speed, is shown in Figure 2.4. The compressor characteristic typi-
cally shows the pressure rise developed across the compressor as a function
of mass �ow. The pressure developed by the compressor is a function of the
density of the gas being pumped, the diameter of the impeller, and the speed
of the compressor. The shape of the curve is a function of the angle of the
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blade in the impeller, the tip speed of the blade, and the gas velocity relative
to the blade. (Nisenfeld, 1982)

Imagine the compressor operating at a negative slope of the characteristic,
in the basic �ow area of the chart. A reduction in mass �ow here would yield
higher pressure rise, and this would encourage higher mass �ow. This is a
self compensating, stable system. Now imagine the compressor operating at
a positive slope of the characteristic. A reduction in mass �ow here would
yield lower pressure rise, and this again would encourage a further reduction
in mass �ow. So this is an unstable system. For surge to occur, positive
compressor characteristic slope is necessary. Actually, it is possible to operate
in the positive slope area without surge to occur as long as the slope is lesser
than some small, positive value:

∂ψ(φ)

∂φ
< k (2.4)

where ψ is the pressure rise, φ is the mass �ow, and k is the small, positive
value.

Surge occurs when the pressure generated by the compressor, or the impeller,
is less than the pressure in the system downstream. It is an axisymmetrical
oscillation of �ow through the compressor, and is characterized by a limit
cycle in the compressor characteristic (Gravdahl and Egeland, 1999).

Figure 2.5 illustrates a surge cycle. The surge point (1) is where the �ow
becomes unstable. Lets imagine that the throttle is closed a little bit fur-
ther, lower mass �ow occurs, and since we are at the surge point, there is
lower discharge pressure. The "�ow momentum" is decreased along with the
discharge pressure being lower than the system pressure downstream. In the
case of a deep cycle this causes �ow reversal (2), which ends in zero �ow
(3). At this point the discharge pressure is building up again, along the mass
�ow, to (4) and then to (1). Then, the cycle repeats.

Figure 2.5 shows a deep surge, where the �ow is reversed. This is one type
of surge, and the other is mild/classic, where the �ow is not reversed and
the cycle is inside the positive �ow area of the chart. Experiments show that
the surge frequency is of the same magnitude as the Helmholtz frequency of
the system, with deep surge frequencies well below, Gravdahl and Egeland
(1999).
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Figure 2.5: Compressor characteristic with deep surge cycle

2.3.4 Coupled Stall & Surge

According to Gu et al. (1999), often surge and rotating stall are coupled
(classic surge) although each can occur without the other. During classic
surge, the compressor may pass in and out of rotating stall during a surge
cycle, with rotating stall characteristics appearing to be quite similar to those
obtained during steady-state operation. The conclusion is that rotating stall
and surge, though coupled, are well de�ned individually. It has been pointed
out by many that rotating stall occurs at the compressor characteristic max-
imum. Rotating stall can also push the system into surge. Recall that steady
operation with regards to surge is possible in some small positive slope area
of the characteristic, but since stall which can induce surge occurs at the
maximum, the surge point is often approximated to the maximum. This has
been well accepted in the literature.



12 Theory of Continuous Flow Compressors

2.4 The Compressor Model

Axial and centrifugal compressors mostly show similar �ow instabilities, ac-
cording to Gravdahl and Egeland (1999). In this section a multispeed model
for centrifugal compressors is presented. When the speed is assumed con-
stant, the model reduces to the dimensional model of Greitzer (Greitzer,
1976), originally developed for axial compressors, but shown valid also for
centrifugal compressors by Hansen et al. (1981). The compression system is
modeled as in Figure 2.6, with a compressor, a duct of length L, a plenum of
volume Vp, a throttle, and a drive unit imparting a torque on the compressor.
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Figure 2.6: The compressor system

The expression for the pressure is found from the mass balance applied on
the plenum. The expression for the mass�ow is found from the momentum
balance applied on the duct, and the expression for the shaft dynamics is
found from the angular momentum relation. The model is

ṗp =
a2
p

Vp
(w − wt) (2.5)

ẇ =
A

L
(Ψc (w, ω) p01 − pp) (2.6)

ω̇ =
1

J
(τd − τc) (2.7)

where pp is the pressure in the plenum, w is the mass �ow and ω is the angular
speed of the impeller, ap is the speed of sound of the gas in the plenum, Vp
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is the volume of the plenum, wt is the mass �ow through the throttle, A
and L is the cross sectional area and the length of the duct, respectively, Ψc

is the important compressor characteristic, p01 is the ambient pressure, J is
the moment of inertia of the drive unit, τd is the drive torque, and τc is the
torque on the shaft from the impeller blades. The model (2.5)-(2.7) was �rst
presented in Gravdahl and Egeland (1999), although the two �rst equations
are the model of Greitzer (1976) in dimensional form, and the whole model
is similar to the model presented in Fink et al. (1992).

We're going to investigate the torque acting on the impeller blades. From
the angular momentum balance it can be written as

τc = w (r2Cθ2 − r1Cθ1) (2.8)

where r1 and r2 is the radius at the inducer and the impeller exit, respectively,
and Cθ1 and Cθ2 is the tangential velocity of the gas at the inducer and the
impeller exit, respectively. It is customary to assume that the velocity at the
impeller inlet is zero, that is no pre-whirl, such that (2.8) becomes

τc = wr2Cθ2 (2.9)

Consider the velocity triangle at the impeller exit in Figure 2.7.

The tangential velocity at the impeller exit can by trigonometric considera-
tions be written as

Cθ2 = U2 − Ca2 cot β2b

=

1− Ca2

U2

cot β2b︸ ︷︷ ︸
µ

U2 (2.10)

where µ is the �ow coe�cient. In practice the �ow coe�cient is less than the
ideal value due to slip. The slip factor can be introduced in (2.10) as

Cθ2 = σ

(
1− Ca2

U2

cot β2b

)
︸ ︷︷ ︸

µ

U2 (2.11)

where σ is the slip factor, typically slightly less than unity. For radial vanes
we have cot β2b = 0 ⇒ µ = σ. With U2 = r2ω, (2.9) can be written as

τc = wr2
2µω (2.12)
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In the case of compressor deep surge, we'll have reversal of �ow. The �nal
equation for the torque acting on the impeller blades is

τc = |w|r2
2µω (2.13)

The model uses the pressure ratio of the compressor Ψc, the compressor
characteristic. It is a property of the compressor and there are multiple ways
to express it. One of them, derived from enthalpy transfer in Egeland and
Gravdahl (2002), is

Ψc(w, ω) =

(
1 +

µr2
2ω

2 − 1
2
r2

1(ω − αw)2 − kfw2

apT01

) κ
κ−1

(2.14)

The values in (2.14) is hard to �nd, and often an approximation based on
measurement data is used for Ψc.

The model (2.5)-(2.7) is one-dimensional and capable of predicting surge. Ro-
tating stall is two-dimensional, with its circumferential pattern, and thereby
require a two-dimensional model. This is done in Moore and Greitzer (1986)
where the Moore-Greitzer model is presented. However, (2.5)-(2.7) could
be augmented with another state, where rotating stall is manifested by a
lower but stable mass �ow through the system. According to Gravdahl and
Egeland (1999), rotating stall is believed to have little e�ect on centrifugal
compressors. Since this master thesis is concerned with centrifugal compres-
sors, where the importance of rotating stall is a matter of debate, the state
for rotating stall will be omitted.

2.4.1 Valves

The �ow through the throttle wt(pp) in the model (2.5)-(2.7) is modeled as
�ow through a valve. Flow through a valve can be modeled as �ow through
a restriction or ori�ce. That is

w = CA2

√
2ρ (p1 − p2) (2.15)

where w is the mass �ow through the ori�ce, C is the �ow coe�cient, A2

is the area of the ori�ce opening, ρ is the density of the �uid, and p1 − p2

is the pressure drop across the ori�ce. The derivation of (2.15) is found in
Appendix A.1.
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In general, (2.15) is only valid for incompressible �ow. Gas is indeed not
incompressible, which is dealt with here. Gas �ow through a valve can be
modeled as isentropic nozzle �ow. That is

w =
A2p1√
RT1

√√√√ 2κ

κ− 1

(
p2

p1

) 2
κ

(
1−

(
p2

p1

)κ−1
κ

)
(2.16)

where κ is the ratio of the heat capacity cp at constant pressure to the heat
capacity cv at constant volume, R is the speci�c gas constant, T1 and p1 is the
temperature and the pressure at the inlet of the nozzle, respectively, and p2

and A2 is the pressure and the area at the outlet of the nozzle, respectively.
(2.16) is the same as equation 9.47 in White (2008), where the �nal result is
just presented without its derivation, stating that the algebra is convoluted.
Its derivation is nevertheless given here, in Appendix A.2.

A comparison between (2.15) with a �ow coe�cient of C = 0.93, and (2.16)
at 20o C yields the result shown in Figure 2.8. The gas is air.
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Figure 2.8: Comparison of incompressible- and compressible �ow through a
valve.

From the �gure it is seen that the di�erence between the two models is
small. Assuming incompressible �ow in a small area around the ori�ce is
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not necessarily any bad idea, even for a compressible �uid. As standard,
(2.15) will be used to model gas �ow through a valve due to its simplicity.
Using a �ow coe�cient of C = 0.65 is a good approximation to some loss
of energy, which happens in practice. For air we then have C

√
2ρ ≈ 1, and

(2.15) becomes
w = A2

√
p1 − p2 (2.17)

To be able to control the �ow through the valve, the ori�ce area A2 can be
adjusted from 0 to 100%. The �nal model for the �ow through the throttle
is

wt = At%
√
pp − p01 = kt

√
∆p (2.18)

To be able to account for the special case p1 < p2 in (2.17), the following
modi�cation is done

w = sgn (p1 − p2)A2

√
|p1 − p2| (2.19)

The sign function is not continuous, but can be approximated as

sgn(x) = lim
ζ→∞

tanh(ζx) (2.20)

as well as the absolute value

|x| = x · sgn(x) = x lim
ζ→∞

tanh(ζx) (2.21)

The �ow through the throttle is now given as

wt = tanh(ζ(pp − p01))At%

√
(pp − p01) tanh(ζ(pp − p01)) (2.22)

2.4.2 Stability of the Model

By assuming constant speed for the impeller, the compressor characteristic
Ψc only varies with mass �ow. Equilibrium points for the system (2.5)-(2.6)
are given as

w∗ = wt(p
∗
p) (2.23)

p∗p = Ψc(w
∗)p01 (2.24)

That is, the mass �ow is equal to the throttle �ow, and the plenum pressure
is equal to the pressure developed by the compressor.



18 Theory of Continuous Flow Compressors

According to Khalil (2002), the qualitative behavior of a nonlinear system
near an equilibrium point can be determined via linearization with respect
to that point. Assuming constant speed for the impeller, linearization of
(2.5)-(2.6) yields

ẋ = Ax (2.25)

where x = [pp w]T and the Jacobian evaluated at the equilibrium point is

A =

[
∂f1
∂pp

∂f1
∂w

∂f2
∂pp

∂f2
∂w

]∣∣∣∣∣
x=p

=

 − a2p
Vp

∂wt
∂pp

∣∣∣
p∗p

a2p
Vp

−A
L

A
L
p01

∂Ψc
∂w

∣∣
w∗


De�ning k1 =

a2p
Vp
, k2 = A

L
, a = p01, ∂1 = ∂wt

∂pp

∣∣∣
p∗p

and ∂2 = ∂Ψc
∂w

∣∣
w∗ , A becomes

A =

[
−k1∂1 k1

−k2 k2a∂2

]
The characteristic polynomial is given by det(λI − A) = 0, calculated as

λ2 + (k1∂1 − k2a∂2)λ+ k1k2(1− a∂1∂2) = 0 (2.26)

The eigenvalues are

λ =
−(k1∂1 − k2a∂2)±

√
(k1∂1 − k2a∂2)2 − 4k1k2(1− a∂1∂2)

2
(2.27)

From Theorem 4.7 Khalil (2002), we can deduce the following.

� The equilibrium point is asymptotically stable if Reλi < 0 for all eigen-
values of A.

� The equilibrium point is unstable if Reλi > 0 for one or more of the
eigenvalues of A.

It is seen from (2.27) that if either (k1∂1 − k2a∂2) or (1− a∂1∂2) is negative,
we have an unstable system. If the latter applies,

1

p01

(
∂wt
∂pp

∣∣∣∣
p∗p

)−1

<
∂Ψc

∂w

∣∣∣∣
w∗

⇒ ∂Ψt

∂wt

∣∣∣∣
p∗p

<
∂Ψc

∂w

∣∣∣∣
w∗

(2.28)
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that is, the slope of the compressor characteristic becomes bigger than the
slope of the throttle characteristic, the system is unstable. The system is in
this case termed statically unstable and tends to happen a distance to the
left of the compressor characteristic, if it happens at all. If the �rst applies,

∂Ψc

∂w

∣∣∣∣
w∗
>

k1

k2a

∂wt
∂pp

∣∣∣∣
p∗p

(2.29)

the system is also unstable. In this case the system is termed dynamically
unstable and tends to happen just to the left of the peak of the compressor
characteristic. Particulary the result that can be extracted from (2.29) is
that dynamic instability implies

∂Ψc

∂w

∣∣∣∣
w∗

∂Ψt

∂wt

∣∣∣∣
p∗p

>
k1

k2a2
(2.30)

The expression to the right tends to be small. We know that ∂Ψt
∂wt

∣∣∣
p∗p

is strictly

increasing, so for higher mass �ows and pressures, the point of instability
moves towards the compressor characteristic maximum, the peak. However,
the most important result implied by the eigenvalues is found in the lemma
below.

Lemma 2.1 Let x = x∗ = [p∗p w
∗]T be an equilibrium point for the nonlinear

compressor system

ẋ =

[
ṗp
ẇ

]
=

[
a2p
Vp

(w − wt)
A
L

(Ψc (w) p01 − pp)

]
= f(x)

where the �ow through the throttle is modeled as (2.22), and the compressor
characteristic Ψc is assumed continuously di�erentiable. Then f : D → R2

will be continuously di�erentiable for pp > p01, where D is a neighborhood of
the equilibrium point. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=x∗

Then,

The equilibrium point is asymptotically stable if the slope of the com-
pressor characteristic ∂Ψc

∂w

∣∣
w∗ is negative or zero. 3



20 Theory of Continuous Flow Compressors

Proof: When using (2.22) to model the throttle, its slope ∂1 for a given
plenum pressure is always positive ∀ pp > p01. The assumption that the
plenum pressure always is greater than the ambient pressure is true, except
for some special cases that will be ignored, including startup. Lets assume
that the slope of the characteristic at a given mass �ow ∂2 is negative or zero.
The result is that k1∂1− k2a∂2 > 0 and (k1∂1− k2a∂2)2− 4k1k2(1− a∂1∂2) <
k1∂1 − k2a∂2. That means that Re(λi) < 0 ∀ i. The rest follows from the
proof of Theorem 4.7 in Khalil (2002). 2

Although the surge line is given by (2.30), and that in theory we can steadily
operate in some positive slope region, this tends not to be the case during
simulations. During simulations the system goes into surge at approximately
the compressor characteristic maximum. The reason for this could be that
the right hand side of (2.30) is very low, and once entered the positive slope
region from the right, surge occurs quickly because the value of the slope of
the positive compressor characteristic is very limited.



Chapter 3

The Compressor Performance

Map

3.1 Introduction & Motivation

The compressor characteristic is also called the performance curve of a com-
pressor. It shows how the pressure developed by the compressor varies with
mass �ow for a given compressor speed. Generally, at high �ows the pressure
developed is low. When the �ow decreases, the pressure increases until the
instability point is reached. The compressor then goes into stall/surge. The
performance curve is di�erent for di�erent types of compressors and system
setups. The performance curve is dependent on a lot of variables. Among
other things it changes for di�erent settings for the inlet guided vanes, it
changes for di�erent gas densities, and it changes for di�erent speed settings.
When multiple curves are drawn for di�erent speeds, it is also called the
performance map of a compressor. In this report the expression "compres-
sor characteristic" is also used for the performance map, dependent on both
the mass �ow and the speed. In Figure 3.1 a typical performance map of a
multispeed compressor system is shown.

Consider the compressor shown in Figure 3.2. The pressure rise over the
compressor is de�ned as

Pc(φ) = p02 − p01 (3.1)

where φ is the mass �ow through the compressor, p01 is the suction pressure,
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and p02 is the discharge pressure. The pressure ratio is de�ned as

Ψc(φ) =
p02

p01

(3.2)

For purposes of control design, the ordinate of the performance map can
be pressure rise, pressure ratio, or simply the discharge pressure. It is em-
phasized that if the discharge pressure is used, constant suction pressure is
assumed. (Nisenfeld, 1982)

Moore and Greitzer (1986) uses a cubic as the compressor characteristic,
referring to Figure 3.3. The ordinate is nondimensional pressure rise and the
abscissa is nondimensional �ow.

ψ
c0

ψ
c

H

H

W

W

Φ

Figure 3.3: Notation used in de�nition of cubic axisymmetric compressor
characteristic

The equation for this cubic approximation is

ψc(φ) = ψc0 +H

[
1 +

3

2

(
φ

W
− 1

)
− 1

2

(
φ

W
− 1

)3
]

(3.3)

where ψc0 , H and W are parameters. Earlier work done in Ko� (1983) and
Ko� and Greitzer (1984) implied that the axisymmetric characteristic of a
compressor is a smooth S-shaped curve. It was this result that motivated
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the simple cubic approximation of the performance curve. It has found wide
acceptance in the literature, and is used in numerous papers concerning com-
pressor surge and stall. The expression for the characteristic is only valid for
a given speed, and is in pressure rise form.

Gravdahl and Egeland (1999) derives the compressor characteristic by cal-
culating the energy transfer and losses. It is valid for multiple speeds, and is
in pressure ratio form. The equation is given as

Ψc(w, ω) =

(
1 +

µr2
2ω

2 − 1
2
r2

1(ω − αw)2 − kfw2

apT01

) κ
κ−1

(3.4)

where w is dimensional mass �ow and ω is dimensional compressor speed.
It does not inherit an S-form, and will have to be modi�ed for use during
deep-surge simulations. Finding the values for the parameters in (3.4) can
be hard, or even impossible. For instance, no one knows exactly the value
of the energy transfer coe�cient µ. In practice it varies with a lot of other
parameters. However, the parameters in (3.4) can be tweaked such that the
curve nearly complies with real measurement points. This is a very di�cult
task. Motivated by this, an approximation of the measurement points is often
used as the compressor characteristic. A third order polynomial �t is often
used, such that in Egeland and Gravdahl (2002). (3.3) could also be viewed
as a third order �t. The reason for this is that a third order �t captures
much of the general performance properties of compressors, with its S-form.
However, it is also widely recognized as only being very roughly true of real
compressors. (Drummond and Davison, 2009)

In this chapter we're pursuing new methods of approximating the compressor
map, which hopefully will be more accurate than the third order approxima-
tion. The chapter is angled towards a rather practical perspective, with its
use of MATLAB and SIMULINK.

3.2 Previous Work on Approximations

Some measurements are shown in Figure 3.4. These are points of pressure
ratios for di�erent mass �ows and speeds. Take a look at how the form of the
speedlines is changing with increasing impeller speed. Certainly a challenging
identi�cation scheme. The measurements actually origins from the compres-
sor map of Vortech S-trim superchargers. (www.vortechsuperchargers.com)
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Figure 3.4: Measurements

Egeland and Gravdahl (2002) uses a method where approximations of the
measurements in the �gure based on polynomial curve �tting is done, to
make the characteristic continuous in both mass �ow and speed. Two stages
are required. First, each speedline is approximated as

Ψc(w) = c0w
3 + c1w

2 + c2w + c3 (3.5)

with the MATLAB function �poly�t�. Points for negative- and zero �ow are
needed for each speedline. Zero �ows are calculated with Equation 13.50 in
Egeland and Gravdahl (2002), and negative �ow points are chosen such that
the 3rd order polynomial obtains the right form. w is the mass �ow and ci,
i = 0, 1, 2, 3 are the coe�cients corresponding to a given rotational speed.
Next, the coe�cients are approximated as

ci(N) = ci0N
3 + ci1N

2 + ci2N + ci3 (3.6)

where N is the rotational speed. The approximation can now be written as

Ψc(w,N) = c0(N)w3 + c1(N)w2 + c2(N)w + c3(N) (3.7)

The result of the approximation is compared to the measurements in Fig-
ure 3.5.
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Figure 3.5: The poly�t identi�cation procedure compared to measurements

As we can see from the �gure, the speedlines do not correspond to the points
very well. More importantly is where the surge line of the approximated
speedlines is located. As explained before in this report, a good approxima-
tion to the surge point is the characteristic maximum. In Figure 3.5 it is seen
that the maximum of the approximated speedlines are in most cases located
a bit to the right compared to the measurement maximum. The approxi-
mation inherits a false location for the surge point. Since one of the goals
of surge control research potentially is to increase the e�ciency by allowing
the system to operate close to the surge line, it can be argued that a better
identi�cation procedure is needed.

The details of how the poly�t approximation procedure is done is found in
the ZIP-�le at "approximation/poly�t".

3.3 The Spline Procedure

In this section MATLAB's Spline Toolbox is used. This is a toolbox which in-
cludes a collection of algorithms for data �tting, interpolation, extrapolation,
and visualization. (de Boor, 2010)
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3.3.1 Introduction to splines

Splines are simply smooth piecewise polynomials. In other words, a spline is a
special function made up by polynomials, which merges smooth together. Ac-
cording to www.mathworks.com it has become the standard tool for modeling
arbitrary functions. Spline interpolation is preferred over polynomial interpo-
lation due to its exactness, even for low-degree polynomials. It can represent
functions over large intervals, since it avoids Runge's phenomenom1.

Figure 3.6: A cubic spline and the four polynomials from which it is made
(www.mathworks.com, March 2010)

In Figure 3.6 a cubic spline is shown. That the spline is cubic simply means
that the polynomials from which it is made is of 3rd order.

There are di�erent forms to represent a spline. A Spline represented by
the ppform provides a description in forms of breakpoints and coe�cients.
A spline represented by the B-form appears as a linear combination of B-
splines, by the knot sequence and B-spline coe�cients.

Further, it is possible to generate a multivariate spline. That is, a spline in
multiple dimensions, as tensor products2 of univariate splines.

1For higher degrees, the error (how much the approximation di�ers from the approxi-
mated curve/function) between- and especially past interpolation points gets worse.

2A bilinear operation: combining elements of two vector spaces into an element in the
third
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3.3.2 Bivariate Cubic Spline Approximation

Here, a bivariate cubic spline interpolation and extrapolation of the com-
pressor characteristic will be done. The procedure starts with loading the
measurements into MATLAB. Here, the measurements in Figure 3.4 will be
used. The measurements are further augmented with points for negative-
and zero �ow. The next step is the approximation procedure. The main
command used is pp = csape({x,y}, z, conds), which is (bivariate)
cubic spline interpolation with end conditions. It returns the ppform of a
cubic spline. x is a vector containing the location of points along the mass
�ow axis, y is a vector containing the location of points along the speed axis,
and z is a matrix where z(i, j) equals the pressure rise for the mass �ow
x(i) and the speed y(j).

Since z is a matrix, gridded data is needed. We have to have a pressure ratio
point at all mass �ow locations used for all speedlines. This is not the case for
the initial measurements. As we move up through speedlines, the mass �ow
locations are gradually shifted to the right. The data have to be prepared
before using the csape command. The preparation starts with cubic spline
interpolation for each speed with the command spp = spline(X, Y),
where X is a vector containing the mass �ow points, and Y is a vector con-
taining the pressure rise points. After a cubic spline is generated for each
speed, missing mass �ow points are extracted from the spline with the com-
mand fnval(spp, wp), where spp is the cubic spline for one speed and
wp is the mass �ow. Observe that the extracted points from the spline are
approximated points.

The csape command also has an optional parameter conds where end con-
ditions can be speci�ed. As default the end conditions are set to �Match end-
slopes� (conds = {'clamped', 'clamped'}). It means that if we're
trying make the spline generated with csape, pp, return a value for the
pressure rise outside the range speci�ed by the vector x, it will approximate
a value based on the slope the approximated speedline had at the last mass
�ow point. It also means that if we're trying to obtain values of a speedline
beyond the highest, an approximated value will be returned based on the
slope of the �approximation through speedlines� at the last speedline.

Values for the pressure ratio at di�erent mass �ows and speeds can be ob-
tained with the command fnval(pp, {<massflow>, <speed>}). The
details of the spline approximation procedure is found in Appendix B.1.1, and
in the ZIP-�le at "approximation".
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3.3.3 Results

The result of the spline approximation compared to the measurement points
is shown in Figure 3.7.
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Figure 3.7: The spline approximation compared to measurements

When comparing Figure 3.5 and Figure 3.7 one thing comes clear. As is seen
from the �gure comparing the spline approximation to the measurements,
the approximated speedlines goes exactly through the measurement points.
The spline approximation is able to embed the highly nonlinear properties
of the compressor characteristic. That is, the form of each speedline varies.
One of the few things that is even close to linear is the surge line, although
that is also a simpli�cation. The result also implies that the characteristic
maximum of the dotted measurements is inherited by the approximation. As
a more fancy �gure which illustrates that the approximation is continuous in
both mass �ow and speed is shown in Figure 3.8.
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Figure 3.8: The bivariate cubic spline approximation

3.4 Veri�cation by Simulation

To verify the new approximation procedure, the model presented in the in-
troduction will be simulated with the new model of the compressor charac-
teristic. The model, stated again, is

ṗp =
a2
p

Vp
(w − wt) (3.8)

ẇ =
A

L
(Ψc(w, ω)p01 − pp) (3.9)

ω̇ =
1

J
(τd − τc) (3.10)

wt = tanh (ζ(pp − p01)) kt

√
(pp − p01)tanh (ζ(pp − p01))

∣∣∣∣
ζ�0

(3.11)

where the cubic bivariate spline is embedded into the compressor charac-
teristic Ψc(w, ω). The reason why wt is modeled as it is, or not as wt =
kt
√
pp − p01 is to allow for reversed �ow through the valve. It is strictly for

simulation purposes during deep surge, since the �ow through the throttle
never should reverse in any other mode. The cubic bivariate spline in ppform
is a struct in MATLAB with the following form
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1 pp =
2

3 form: 'pp'
4 breaks: {[−10 0 10 20 30 40 50 60 70 80 90 100] [20000

25000 30000 35000 40000 45000 50000]}
5 coefs: [1x44x24 double]
6 pieces: [11 6]
7 order: [4 4]
8 dim: 1

and obviously, there is a whole lot of data that must be accessed at each time
step of a simulation. The simulation setup in SIMULINK is found in Ap-
pendix C.1, and the initialization �le is found in Appendix B.2.1. All the �les
needed to run the simulation is found in the ZIP-�le at "model_plain". The
result of a simulation using the bivariate spline as the compressor character-
istic is shown in Figure 3.9. The model is being simulated for 12 seconds, the
drive torque is set to 3 nm, and the throttle is being gradually closed from
2 seconds. The pressure and the e�ciency of the system increases with de-
creasing throttle opening and mass �ow. The speed of the impeller increases
due to lesser load on the blades. The e�ciency continues to increase until
the system becomes unstable and begins to oscillate, the system has entered
surge.

3.5 Concluding Remarks

Modeling the compressor characteristic by a bivariate cubic spline approxi-
mation seems to be very accurate with regards to measurement points. By
calculating pressure ratios for zero �ow and choosing pressure ratios for neg-
ative �ow, the familiar S-form is obtained. The approximation performs
well during simulations in SIMULINK, and it is in this manner a tool for
more accurate simulations of compressor systems. The complexity of the
compressor characteristic function drastically increases with its use, since it
holds much more information compared to third order polynomial �tting. It
is easy to make new approximations. The only thing that will have to be
done is importing new measurements. The compressor characteristic shown
in Figure 3.7 will be used in simulations throughout this report unless stated
otherwise.



32 The Compressor Performance Map

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8
Mass flow

t [sec]

kg
/s

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2
Plenum pressure

t [sec]

p p/p
01

−0.2 0 0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

2
Limit cycle

kg/s

p p/p
01

0 2 4 6 8 10 12
0

1000

2000

3000

4000
Compressor speed

t [sec]

ra
d/

s

Figure 3.9: The result of a simulation in SIMULINK



Chapter 4

The Recycle System

4.1 Surge/Stall Avoidance and Active Surge/Stall
Control

As previously mentioned, surge and rotating stall are highly unwanted phe-
nomena in a continuous �ow compressor system. The e�ects are several and
can be dangerous. Due to lower pressure rise and oscillations, surge/stalls
lead to loss of compressor performance. Because of the large mechanical and
thermal load in the blading, the entire compressor system including nearby
objects can be damaged. At present, the only remedy to get out of rotating
stall is to shut down the engine and restart it again (Gu et al., 1999). That
can lead to catastrophic outcomes for an airplane.

Always operating far away from the surge line would be safe, at high mass
�ows and low pressures, but this area is not where the e�ciency is highest.
The most e�cient area of operation is where the pressure rise is highest,
close to the surge line. A compression system is also generally prone to
aerodynamic instabilities, surge and rotating stall. As such, according to
Badmus et al. (1991), it is not surprising that there has been considerable
e�ort directed towards design of control schemes to ensure stable operation
of the compression system.

The proposed schemes can be categorized according to whether they strive
to simply avoid unstable compressor operation by maintaining compressor
operation at a safe margin from the region of unstable operation for the
uncontrolled system, or whether they instead actively stabilize, or control,
compressor operation near or within this same region (Badmus et al., 1991).
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The �rst scheme is called surge/stall avoidance and the latter is called active
surge/stall control. Surge/Stall avoidance has gained most acceptance in the
industry.

40 Compressor Surge and Stall: An Introduction

desirable to do so due to the high performance and e�ciency obtained there.
Traditionally, this problem has been handled by using control systems that
prevent the operating point of the compression system to enter the unstable
regime to the left of the surge line, that is the stability boundary. This
approach is known as surge/stall avoidance, or surge avoidance in short.
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Figure 1.17: Surge margin

By using surge avoidance, the compressor is prevented from operating in a
region near and beyond the surge line. This is achieved by e.g. recirculation
of the ow or blowing o� ow through a bleed valve. As the compressor
characteristic and thus the surge line may be poorly known, it will often be
necessary to have a fairly conservative surge margin between the surge line
and the surge avoidance line. The compressor is then not allowed to operate
between these two lines in the compressor map, see Figure 1.17. Accounting
for possible compressor uncertainties and disturbances also a�ects the size
of the surge margin. As the peak pressure rise and peak e�ciency of the
compressor are located close to the surge line, the surge avoidance scheme
limits the performance of the machine. In addition to this, the surge margin
limits the transient performance of the compressor as acceleration of the
machine tends to drive the state of the system towards the surge line. There

Figure 4.1: Surge margin (Gravdahl and Egeland, 1999)

Referring to Figure 4.1, by using the surge avoidance scheme, the compressor
is prevented from operating beyond the surge line or some area close to it.
This is achieved by e.g. recirculation of �ow back to the intake, or by a bleed
valve located downstream of the compressor. The surge avoidance line, also
called the surge control line, is often chosen with considerable margin. 10 to
25 percent is not unusual. There are several reasons for this. First of all,
the surge line is in many cases not well known. This is due to the fact that
compressor maps from manufacturers not comply well with each individual
setup. Secondly, the valves typically used in avoidance setups are slow. With
the control line close to the surge line this can lead to surge even before the
valves react. The distance between the surge line and the surge avoidance
line is called surge margin.

According to Gravdahl and Egeland (1999), there are many di�erent ways of
de�ning the surge margin. One of them is

SM1 =
PRs − PRsa

PRsa

(4.1)
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where PRsa is the pressure ratio at the surge avoidance line for a given
speed, and PRs is the pressure ratio at the surge line for the same mass �ow.
Another considers the change in outlet corrected mass �ow, that is

SM2 =
Fout,sa − Fout,s

Fout,sa
(4.2)

The advantage of using (4.2) is that we get a measure of how much the mass
�ow can be changed before surge is encountered. Another variant uses inlet
corrected mass �ow, since it is easier to measure.

SM3 = 1−
(

(p0,out/p0,in)sa
(p0,out/p0,in)s

· Fin,s
Fin,sa

)
(4.3)

Staroselsky and Ladin (1979) discusses three di�erent forms for de�ning the
surge control line. The optimal form would be to have the surge control line
parallel to the surge line, such as in �gure 4.1. Another form is to let the slope
of the avoidance line be less than the slope of the surge line. The result can
be surge at low speeds, and insu�cient actuation at high speeds. The third
form is to set the avoidance line vertical, but that could yield insu�cient
actuation at low speeds, and surge at high.

The working principle of a surge avoidance scheme is as follows. When the
working point of the compressor system is located right to the surge control
line, nothing is done. As the working point slides over the control line,
some actuation device forces it to stay to the right. Another approach is to
consider the working point �safe� or �unsafe�. When the working point of the
compressor system is considered �safe�, nothing is done. It is considered safe
when the point is located right of the surge control line, or has a velocity in
the map below a threshold. When the working point is considered �unsafe�,
some actuation device moves the working point back into the safe area. The
working point is considered unsafe when sliding over the surge control line
from the right, or has a velocity towards the control line that is considered
too high. As previously mentioned, the actuation device can be a recycle line
or a bleed valve, among others. A bleed valve is commonly used as actuation
in gas turbines, both for power generation and propulsion. The high energy
bleed �ow is not entirely wasted as it can be used for e.g. cabin heat.

Another scheme is surge detection and avoidance, according to Gravdahl
and Egeland (1999). The actuation device is started after surge has been
detected. Since the instabilities can propagate quickly, and the actuation
devices often are slow, this scheme is not very accepted.
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4.2 Recycle Lines

As actuation with the surge avoidance scheme, recycle lines are frequently
used in the industry. Botros and Henderson (1994) groups surge avoidance
for centrifugal compressors with recycle into four categories1:

� Conventional anti-surge control: These are �foolproof� antisurge
systems developed over the years, and are based on measurements of the
di�erential pressure across the compressor and compressor inlet �ow.
One is called the �ow-delta-p system, treated in detail in Nisenfeld
(1982), pages 135-142. The output of the �ow transmitter, ∆P0, is
shown to be proportional to the di�erential pressure ∆Pc. A linear
relation is used to describe the surge avoidance line

∆P0 = k1∆Pc + k2 (4.4)

where k1 and k2 are constants.

� Flow/rotational speed (Q/N) technique: Nondimensionalizes the
�ow Q with the rotational speed N and the pressure head H. The surge
avoidance line is thus reduced to a point where (Q/N)c is constant. If
the measured �ow/speed (Q/N)measured is lower than the value at the
avoidance point (Q/N)c, the recycle valve is opened.

� Microprocessor and PLC based controller: Mostly of the new
designed antisurge systems are of this class, because of the nowadays
great availability of computer-based controllers. It is based on direct
comparison of the compressor operating point, the compressor char-
acteristic and the surge avoidance line. One way to achieve this is
by calculating the mass �ow and the di�erential pressure across the
compressor. That again requires temperature measurements, pressure
measurements and the use of the compressor characteristic.

� Control without �ow measurement: Because the signal from the
�ow transmitter often is noisy, inaccurate, and in some cases nonlinear
and non-repeatable and also introduce a pressure drop, it is advanta-
geous to avoid �ow measurement in the surge avoidance scheme. This
can be accomplished by using a (H/N2)c ratio instead of (Q/N)c as in
the Q/N-technique. This is possible provided the compressor charac-
teristic is steep enough.

1This is also stated in Gravdahl and Egeland (1999)
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Cooling is important in the recycle scheme. As the gas is compressed its
temperature rises, according to the ideal gas law. The high-temperature gas
is then recycled back into the intake, through the recycle valve. Although
there may be some cooling of the high pressure gas as its pressure drops across
the control valve, the gas will still have a higher temperature than the fresh
gas being fed to the compressor, Nisenfeld (1982). The temperature at the
intake increases which in turn would yield a further increase in temperature
when the gas is compressed again. This is a reinforcing loop which clearly
needs a counteract. That is achieved with a cooler, placed either upstream
or downstream of the recycle valve. Economics may dictate where to place
it, but placing it upstream may result in condensing of the high pressure
gas. That is why there generally is a suction knock-out pot placed before the
intake, to gather the condensate.

The recycle line may in theory be used in the active surge/stall control
scheme. It can then be viewed as an extension to the plenum volume, where
the recycle valve will have to be very fast to make this work. It is a major
topic of this report, where this issue is investigated in the stability analysis
chapter.

4.3 Previous Work on Modeling the Recycle
System

The previously modeled compressor system in Figure 2.6 is augmented with
the recycle line in Figure 4.2.

Applying the mass balance (Equation 3.20 in White (2008)) on plenum 1
yields (

dm

dt

)
syst

= 0 =
d

dt

(∫∫∫
CV

ρdV

)
+

∫∫
CS

ρ(~Vr · ~n)dA (4.5)

⇒ d

dt
(ρ1V1) = wf + wr − w (4.6)

Now lets assume that the gas is ideal and isentropic. That means ignoring
the molecular size of the gas along with intermolecular forces, since the gas
is ideal. Since the process is assumed isentropic, there is no energy losses due
to viscosity or heat conduction. The following relation can be deduced from
Equation 9.15, White (2008)

dp = a2dρ (4.7)
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Figure 4.2: Compressor system with recycle

where a =
√
κRT is the speed of sound in the gas. Insertion of (4.7) into

(4.6) yields
d

dt
(p1) =

a2

V1

(wf + wr − w) (4.8)

Similarly for plenum 2 we get from applying the mass balance on volume 2

d

dt
(p2) =

a2

V2

(w − wr − wt) (4.9)

Along with calculation of the momentum balance applied on the duct, and
the angular momentum relation applied on the shaft, we get

ṗ1 =
a2

V1

(wf + wr − w) (4.10)

ṗ2 =
a2

V2

(w − wt − wr) (4.11)

ẇ =
A

L
(Ψc (w, ω) p1 − p2) (4.12)

ω̇ =
1

J
(τd − τc) (4.13)

The mass �ow through the valves, that is the throttle and the recycle line,
is modeled as

w = c
√

∆p (4.14)
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where c is a constant and ∆p is the pressure drop across the valve. Special
cases where the �ow through the valve is reversed is ignored. (4.10)-(4.13) is
the same model as derived in Egeland and Gravdahl (2002), pages 504-505.

4.4 Expansion of the Model

During simulations in SIMULINK, the model (4.10)-(4.13) behaved strange.
The feed �ow was set to constant. The feed �ow range is very limited, and
once a value too high or too low is entered, the simulation failed. Of course,
knowing the speed and operating point in the compressor map would be
necessary to conclude about a reasonable range of values. The reason the
simulation failed is that the pressure in volume 1 becomes too high due to
the constant supply of �air molecules�. This seems unreasonable in reality.
The feed �ow should be dependent on the compressor somehow.

The problem is that constant feed �ow doesn't make any sense. The feed �ow
should be dependent on the compressor, which it ain't when the feed �ow is
constant. When the compressor tries to pump more gas, the feed �ow should
increase, and vice versa. It could be argued that volume 1 should model
all the piping upstream, as volume 2 actually aims to model all the piping
downstream. But it makes more sense to let volume 1 model a little suction
volume, which actually exists in reality as a means to gather condensate.
The �ow through the entrance of the suction volume would then open up to
be modeled as �ow through an ori�ce, just as the other valves. The feed �ow
would then be modeled as

wf = cf
√
pupstream − p1 (4.15)

and the input to the system would be pressure controlled. The system is now
shown in Figure 4.3.

4.5 Open-Loop Simulation

In this section the model (4.10)-(4.13) is simulated in SIMULINK with the
valves modeled as

wt = tanh (ζ(p2 − p01)) ct
√

(p2 − p01)tanh (ζ(p2 − p01))
∣∣∣
ζ�0

(4.16)

wf = cf
√
pupstream − p1 (4.17)

wr = cr
√
p2 − p1 (4.18)
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Figure 4.3: Compressor recycle system, with an added valve at the entrance

The simulation setup is as follows. Initially, the pressure in the two volumes
are set to ambient, the compressor speed is set to zero, and the �ows are
set to zero. The feed �ow gradually decreases, eventually causing the system
to enter surge. The recycle valve is then opened manually to allow for more
mass �ow through the system. The higher mass �ow encourages a shift to the
right in the compressor map, and surge should disappear. The result of the
simulation is shown in Figure 4.4. The initialization �le is found in Appendix
B.2.1 and the SIMULINK diagram is found in Appendix C.2. All the �les
needed to run the simulation is found in the ZIP-�le at �model_recycle�.

4.6 Outline of a Recycle Valve Controller

The most common setup in the industry is to PID-control the recycle valve,
such as shown in Figure 4.5. The surge control line Ψscl is linear with an
horizontal surge margin to the surge line.

Ψscl(w) = aw + b (4.19)

where a and b are the coe�cients. When the operating point is right to the
surge control line, the controller is o�. When the operating point is left to
the surge control line, a PID-controller is used to bring the operating point
back to the right. Often just a PI-controller is used.
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Figure 4.4: The result of a simulation of the open-loop recycle system. Ini-
tially, the pressure in the two volumes are set to ambient, the compressor
speed is set to zero, and the �ows are set to zero.
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Figure 4.5: Compressor recycle system with PID-control of the recycle valve
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De�ning the distance d as the horizontal di�erence between the operating
point and the surge control line, referring to Figure 4.6,

d = w − wscl(Ψc) (4.20)

where w, Ψc is the operating point of the system. wscl(Ψc) can be calculated
as the inverse of (4.19).

wscl(Ψc) =
Ψscl(w)− b

a
(4.21)

Since we are measuring the distance in an horizontal direction, Ψscl(w) would
equal Ψc, the pressure rise. (4.21) becomes

wscl(Ψc) =
Ψc − b
a

(4.22)

When the distance is positive, the operating point is located to the right of
the control line, and nothing should be done. When the distance is negative,
its positive value is used as the error in the controller. The error to be used
in the controller would then be

e =

{
0 d > 0
−d otherwise

The PI-controller is given as

u = Kpe+Ki

∫ t

0

edτ (4.23)

and is controlling the percentage opening, or percentage of �ow, of the recycle
valve such that

wr = u · Ar
√
p2 − p1 (4.24)

4.7 Simulation of the Controller

The previously used open-loop model in SIMULINK, is embedded into a
subsystem for better overview. This is shown in Appendix C.3. The PI
controller outlined above is implemented here. The controller needs to know
about the current operating point of the system, and then compare it to the
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surge avoidance line. The surge avoidance line is here de�ned by the MAT-
LAB �le in Appendix B.3. It does so by �rst calculating all the surge points
at di�erent speedlines. That is achieved by a ��nd maximum algorithm�, all
the details is in the m-�le. Then a polynomial of 1st order is �tted to the
points such that the surge line becomes linear. The surge avoidance line is
de�ned as this linear line, shifted a percentage (of the mass �ow at the surge
line) to the right. The result is shown in Figure 4.7.
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Figure 4.7: The result of de�ning the surge avoidance line. The jagged line
is the true surge points. The leftmost linear line is the surge line, and the
rightmost is the avoidance line, or surge control line.

The surge avoidance line is linear and thereby given by two constants, a
and b which makes it possible to calculate Equation 4.22. That gives the
avoidance point for the current pressure rise. The coe�cients a and b, is
PF_avoid(1) and PF_avoid(2) in the m-�le, respectively.

The initialization �le is found in Appendix B.2.2. Initially, the pressure in
the two volumes are set to ambient, the compressor speed is set to zero, and
the �ows are set to zero. The simulation setup is the same as for the open-
loop simulation, the feed �ow decreases, and in open-loop, the system entered
surge. From Figure 4.8, we can see that an empirically tuned PI-controller
with a Kp of 2.5 and a Ki of 5.5 stabilizes the system. The operating point
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passes over the control line, the controller goes on and brings it back to the
line. Observe that the operating point never reaches the surge line (The
operating point is left to the surge line only during startup, which we'll
ignore). All the �les needed to run the simulation is located in the ZIP-�le
at "MATLAB/model_recycle_control".
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Figure 4.8: The result of a simulation of the closed-loop recycle system.
Initially, the pressure in the two volumes are set to ambient, the compressor
speed is set to zero, and the �ows are set to zero.





Chapter 5

Stability Analysis of the Recycle

System

In this chapter a stability analysis for the recycle system will be conducted.
Two di�erent models will be investigated, although the last is really an ex-
tension of the �rst. They both uses the pressure rise Pc in the equation for
the mass �ow, like in Greitzer (1976).

5.1 A New Variant of the Recycle SystemModel

Consider the di�erential equation for the time derivative of the mass �ow,
used in the model of the recycle system presented in the previous chapter.

ẇ =
A

L
(Ψc(w, ω)p1 − p2) = fẇ,1(·) (5.1)

This equation is the result of the momentum balance applied on the duct.
The duct is until now de�ned as the pipe located between the compressor and
plenum 2, where the length of it is L, and A is the cross-sectional area. Lets
now instead apply the momentum balance on the system shown in Figure 5.1.

When incompressibility is assumed in the two pipes, the result is

ẇ =
Ac
Lc

(p1 + Pc(w, ω)− p2) = fẇ,2(·) (5.2)
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Figure 5.1: Derivation of a new equation for the time derivative of the mass
�ow

Where fẇ,2(·) now is dependent on the pressure rise across the compressor,
Pc. (5.2) is identical to Equation 2b in Greitzer (1976), which also used this
expression for the time derivative of the mass �ow. The new model for the
recycle system becomes

ṗ1 = k1 (wf + wr − w) (5.3)

ṗ2 = k2 (w − wr − wt) (5.4)

ẇ = k3 (p1 + Pc(w, ω)− p2) (5.5)

ω̇ = k4 (τc − τc) (5.6)

where k1 = a2

V1
, k2 = a2

V2
, k3 = Ac

Lc
and k4 = 1

J
. The �ows described by wf , wr

and wt are modeled as

wt = ct
√
p2 − p01 (5.7)

wf = cf
√
pupstream − p1 (5.8)

wr = cr
√
p2 − p1 (5.9)

The model can be extended by letting the recycle �ow be modeled as

ẇr = kr (p2 − Pr − p1) (5.10)

Where kr = Ar
Lr
, Ar and Lr is the cross sectional area and the length of the

recycle line, respectively, and Pr is the pressure drop across the recycle valve.
It is the result of applying the momentum balance on the recycle line. (5.9)
will then be omitted.
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5.2 Analysis of the Model

In this section a stability analysis is conducted for the system [ṗ1 ṗ2 ẇ]T =
f(·) given as

ṗ1 = k1 (wf + wr − w) (5.11)

ṗ2 = k2 (w − wr − wt) (5.12)

ẇ = k3 (p1 + Pc(w)− p2) (5.13)

where k1 = a2

V1
, k2 = a2

V2
and k3 = Ac

Lc
. The �ows described by wf , wr and wt

are modeled as

wt = ct
√
p2 − p01 (5.14)

wf = cf
√
pupstream − p1 (5.15)

wr = cr
√
p2 − p1 (5.16)

5.2.1 Assumptions, De�ning a Domain

The �rst assumption is that we're operating on one speedline. The compres-
sor is running at constant speed, and the equation for the shaft dynamics
have been omitted. Secondly, the pressure in volume 2 is assumed higher
than the ambient/downstream pressure and the pressure in volume 1. If
you think about it, it makes sense. Either the compressor isn't running and
the pressure is at least equal to the ambient/volume 1 pressure, or the com-
pressor is running and is compressing air to volume 2. During deep surge,
volume 2 is emptying itself out through the compressor, but it is assumed
that it does so without the pressure in volume 2 goes below the ambient, or
the pressure in volume 1 goes above the pressure in volume 2. Thirdly, the
pressure in volume 1 is assumed below the upstream pressure. It also makes
sense since when the compressor isn't running, the pressure is at most equal
to the upstream pressure, and when the compressor is running, it is of course
creating suction. The reasoning stated above implies a domain1 D for the
recycle system (5.11)-(5.13) where f(·) : D → R3 is a continuously di�eren-
tiable map. Taking D = { [p1 p2 w]T ∈ R3 | p1 < pupstream, p2 > max(p01, p1),
Pc is defined} achieves this locally Lipschitz property of f . Implicitly, the
compressor characteristic Pc is assumed continuously di�erentiable as well.

1An open, connected set
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5.2.2 Equilibrium Points

Equilibrium points (p∗1, p
∗
2, w

∗) for the system (5.11)-(5.13) are given by

w∗f + w∗r = w∗ (5.17)

w∗t + w∗r = w∗ (5.18)

p∗1 + Pc(w
∗) = p∗2 (5.19)

That means that the mass �ow is equal to the feed �ow plus the recycle
�ow during an equilibrium. The mass �ow is also equal to the throttle �ow
plus the recycle �ow. Implicitly, the feed �ow and the throttle �ow is equal
during an equilibrium. We also have that the discharge pressure is equal to
the suction pressure plus the pressure rise. Equilibrium points will have to
be shifted to the origin in order to use the nonlinear analysis tools presented
in Khalil (2002). It is easy to see that the equilibrium is not centered at the
origin. In the model (5.11)-(5.13) the pressure in volume 1 would ideally lie
a little under the upstream pressure, and the pressure in volume 2 would be
higher than in volume 1. Recall that stable mass �ows are found to the right
of the surge line, clearly not centered around the origin.

5.2.3 Shift to the Origin

It is desirable to shift the equilibrium to the origin. De�ning the deviation
from the equilibrium point as

p̂1 = p1 − p∗1 (5.20)

p̂2 = p2 − p∗2 (5.21)

ŵ = w − w∗ (5.22)

The new equations are then

˙̂p1 = k1 (wf + wr − ŵ − w∗) (5.23)
˙̂p2 = k2 (ŵ + w∗ − wr − wt) (5.24)
˙̂w = k3 (p̂1 + p∗1 + Pc(ŵ + w∗)− p̂2 − p∗2) (5.25)

Next we want to bring forth a P̂c(ŵ) which is centered at the origin. In that
case the compressor characteristic would belong to sector (−∞, 0) for stable
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Figure 5.2: Equilibrium shifting of the compressor characteristic

negative slopes, and belong to sector (0,∞) for unstable positive slopes.2 In
�gure 5.2 the shift is shown.

Lets de�ne
P̂c(ŵ) , Pc (ŵ + w∗)− Pc(w∗) (5.26)

in which P̂c(0) = 0 proves that it is centered at the origin. Lets further de�ne

ŵt(p̂2) , wt (p̂2 + p∗2)− wt(p∗2) (5.27)

ŵf (p̂1) , wf (p̂1 + p∗1)− wf (p∗1) (5.28)

ŵr(p̂1, p̂2) , wr (p̂1 + p∗1, p̂2 + p∗2)− wr(p∗1, p∗2) (5.29)

in which we know that ŵt belongs to the sector (0,∞) and ŵf belongs to
sector (−∞, 0), referring to �gure 5.3.

The model (5.23)-(5.25) now becomes

˙̂p1 = k1 (ŵf (p̂1) + wf (p
∗
1) + ŵr(p̂1, p̂2) + wr(p

∗
1, p
∗
2)− ŵ − w∗) (5.30)

˙̂p2 = k2 (ŵ + w∗ − ŵr(p̂1, p̂2)− wr(p∗1, p∗2)− ŵt(p̂2)− wt(p∗2)) (5.31)

˙̂w = k3

(
p̂1 + p∗1 + P̂c(ŵ) + Pc(w

∗)− p̂2 − p∗2
)

(5.32)

2See Appendix A.3 for a review about sector terminology.
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Figure 5.3: Shifting of equilibriums for throttle �ow and feed �ow

The equilibrium points (5.17)-(5.19) implies that wf (p
∗
1)−w∗+wr(p∗1, p∗2) = 0,

w∗ − wr(p∗1, p∗2) − wt(p∗2) = 0 and that p∗1 + Pc(w
∗) − p∗2 = 0. (5.30)-(5.32)

becomes

˙̂p1 = k1 (ŵf (p̂1)− ŵ + ŵr(p̂1, p̂2)) (5.33)
˙̂p2 = k2 (ŵ − ŵr(p̂1, p̂2)− ŵt(p̂2)) (5.34)

˙̂w = k3

(
p̂1 + P̂c(ŵ)− p̂2

)
(5.35)

5.2.4 Lyapunov Analysis

The Lyapunov function

V (p̂1, p̂2, ŵ) =
1

2k1

p̂2
1 +

1

2k2

p̂2
2 +

1

2k3

ŵ2 (5.36)

is positive de�nite and radially unbounded. Its derivative along the trajec-
tories of the system (5.33)-(5.35) is

V̇ =
1

k1

p̂1
˙̂p1 +

1

k2

p̂2
˙̂p2 +

1

k3

ŵ ˙̂w

= p̂1 (ŵf (p̂1)− ŵ + ŵr) + p̂2 (ŵ − ŵr − ŵt(p̂2)) + ŵ
(
p̂1 + P̂c(ŵ)− p̂2

)
= p̂1ŵf (p̂1)− (p̂2 − p̂1)ŵr − p̂2ŵt(p̂2) + ŵP̂c(ŵ) (5.37)

The sector properties of ŵf (p̂1) and ŵt(p̂2) implies that p̂1ŵf (p̂1) < 0 ∀ p̂1

∈ D − {p̂1 = 0} and that p̂2ŵt(p̂2) > 0 ∀ p̂2 ∈ D − {p̂2 = 0}. Lets now
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investigate the properties of (p̂2 − p̂1) ŵr (p̂1, p̂2). It can be written as

(p̂2 − p̂1) ŵr (p̂1, p̂2) = (p̂2 − p̂1) (wr(p̂1 + p∗1, p̂2 + p∗2)− wr(p∗1, p∗2))

= (p̂2 − p̂1)
(
cr
√
p̂2 + p∗2 − p̂1 − p∗1 − cr

√
p∗2 − p∗1

)
= crX

(√
X + p∗2 − p∗1 −

√
p∗2 − p∗1

)
= crXŵr(X) (5.38)

whereX = p̂2−p̂1. We know that a function on the form f(x) =
√
x+ a−

√
a,

where x > −a and a > 0, belongs to sector (0,∞). It implies that ŵr(X)
belongs to sector (0,∞) since it is a function on that form. That means
that (5.38) will be positive de�nite, ∀ X in D − {p̂2 − p̂1 = 0}, and positive
semide�nite ∀ X in D. See Figure 5.4 for a graphical illustration. The term
−(p̂2 − p̂1)ŵr in V̇ will consequently be negative semide�nite, independent
on the valve setting cr.
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Figure 5.4: Graphical representation of the function (p̂2 − p̂1) ŵr (p̂1, p̂2) for
di�erent values of p̂1 and p̂2. A typical value of the pressure rise over the
compressor is inserted.
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The term ŵP̂c(ŵ) is negative de�nite if P̂c(ŵ) belongs to sector (−∞, 0). And
thats the case during operation on a negative slope of the characteristic, or
w > wPc,max. The result is that V̇ < 0 in D′ − {0}, where D′ = { [p1 p2

w]T ∈ R3 | p1 < pupstream, p2 > max(p01, p1), wΨc,max < w < wstonewall}, and
that the origin of the recycle system (5.33)-(5.35) is asymptotically stable.
(Theorem 4.1, Khalil (2002)) So we can conclude and say that the origin
of the recycle system (5.33)-(5.35) is asymptotically stable, independent of
recycle �ow, as long as we're operating on a negative slope of the compressor
characteristic.

Lemma 5.1 Consider the recycle system (5.33)-(5.35). It is asymptotically
stable in the domain D′, independent on the recycle valve setting cr. 3

5.3 Analysis of the Extended Model

The extended model of the recycle system is given as

ṗ1 = k1 (wf + wr − w) (5.39)

ṗ2 = k2 (w − wr − wt) (5.40)

ẇ = k3 (p1 + Pc(w)− p2) (5.41)

ẇr = kr (p2 − Pr − p1) (5.42)

where Pr is the pressure drop across the recycle valve. Pr is used as the input
to the system. Transformed to the origin, the system becomes

˙̂p1 = k1 (ŵf + ŵr − ŵ) (5.43)
˙̂p2 = k2 (ŵ − ŵr − ŵt) (5.44)

˙̂w = k3

(
p̂1 + P̂c(ŵ)− p̂2

)
(5.45)

˙̂wr = kr

(
p̂2 − P̂r − p̂1

)
(5.46)

Using the Lyapunov function

V (p̂1, p̂2, ŵ, ŵr) =
1

2k1

p̂2
1 +

1

2k2

p̂2
2 +

1

2k3

ŵ2 +
1

2kr
ŵ2
r (5.47)

which is positive de�nite and radially unbounded, its derivative along the
trajectories of the system becomes

V̇ = p̂1ŵf (p̂1)− p̂2ŵt(p̂2) + ŵP̂c(ŵ)− ŵrP̂r (5.48)
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(5.48) is negative semide�nite if

ŵP̂c(ŵ)− ŵrP̂r < 0 ∀ ŵ 6= 0 (5.49)

Lets say we can choose P̂r such that the term −ŵrP̂r can overcome the
positiveness of ŵP̂c(ŵ). By choosing P̂r = 1

2
kŵ3, the requirement (5.49)

becomes

ŵ

(
P̂c(ŵ)− 1

2
kŵrŵ

2

)
< 0 (5.50)

(5.50) holds if

P̂c(ŵ)− 1

2
kŵrŵ

2

∣∣∣∣
ŵ=0

= 0 (5.51)

∂

∂ŵ

(
P̂c(ŵ)− 1

2
kŵrŵ

2

)
< 0 (5.52)

Obviously, (5.51) holds. The last requirement can be written as

∂P̂c
∂ŵ

< kŵrŵ (5.53)

It is seen that the last requirement is that the slope of the characteristic
should be less than some value dependent on the states ŵr and ŵ. It turns
out that it is a very di�cult task to choose a k which ful�lls this requirement.
Motivated by the result above, backstepping methods for �nding a stabilizing
input is investigated in the next sections.
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5.4 Finding a Stabilizing Input I

The di�erential equations

˙̂w = k3

(
p̂1 + P̂c(ŵ)− p̂2

)
(5.54)

˙̂p1 = k1 (ŵf + ŵr − ŵ) (5.55)
˙̂p2 = k2 (ŵ − ŵr − ŵt) (5.56)

are present in both the main model of the recycle system, and in the ex-
tended model, used in this chapter. To successfully apply backstepping, an
expression for ŵr must be found which stabilizes the origin of these three
equations. The equations can be written as

˙̂w = f1(ŵ, p̂1, p̂2) (5.57)
˙̂p1 = f2(ŵ, p̂1, ŵr) (5.58)
˙̂p2 = f3(ŵ, p̂2, ŵr) (5.59)

˙̂p1 and ˙̂p2 aren't interdependent, although they really are in the main model
by the expression for ŵr, but it is in this case just viewed as an input to
the system for simplicity. (5.57)-(5.59) is not a strict-feedback system.3 The
reason for this is that (5.57) is dependent on both p̂1 and p̂2, and (5.58) and
(5.59) both are dependent on ŵ. The result is that the normal recursive
application of backstepping can't be used. The system (5.57)-(5.59) is not a
general system in the backstepping context either, since two of the equations
depend on the input ŵr. Of these reasons, backstepping methods such that
in Krstic and Kokotovic (1995) and Bøhagen and Gravdahl (2005) will be
di�cult to conduct. However, block backstepping (Khalil, 2002) could be
attempted, by partly viewing the system as multiinput.

Theorem 5.1 The control law

ŵr = −kck3

(
P̂c(ŵ)− kc(k1 + 3k2)ŵ − p̂1 + p̂2

)
(5.60)

where

kc >
2 supŵ

{
∂P̂c
∂ŵ

}
k1 + k2

,
∂ŵf
∂p̂1

< − 1

kck1

,
∂ŵt
∂p̂2

>
1

kck2

(5.61)

renders the origin of (5.54) - (5.56) semiglobally asymptotically stable. 3

3See appendix A.4 for an explanation of strict-feedback systems
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Proof:

Step 1:

Using [
p̂1

p̂2

]
= φ(ŵ) =

[
−kck1ŵ
kck2ŵ

]
as the input in the �rst equation, (5.54) becomes

˙̂w = k3

(
P̂c(ŵ)− kc(k1 + k2)ŵ

)
(5.62)

Using the Lyapunov function V (ŵ) = 1
2k3
ŵ2, its derivative is

V̇ = ŵ
(
P̂c(ŵ)− kc(k1 + k2)ŵ

)
= ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− (1− θ)kc(k1 + k2)ŵ2

≤ −(1− θ)kc(k1 + k2)ŵ2 (5.63)

For some constant 0 < θ < 1. For (5.63) to hold, the following must hold

P̂c(ŵ)− θkc(k1 + k2)ŵ
∣∣∣
ŵ=0

= 0 (5.64)

∂

∂ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
< 0 (5.65)

Obviously, (5.64) holds. (5.65) becomes

∂P̂c
∂ŵ

< θkc(k1 + k2) (5.66)

Choosing kc according to

kc >
supŵ

{
∂P̂c
∂ŵ

}
θ(k1 + k2)

(5.67)

guarantees that (5.66), and thereby (5.63) holds. Hence, the origin of ˙̂w is
exponentially stable where P̂c is de�ned. (Theorem 4.10, Khalil (2002))
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Step 2:

The change of variables

z =

[
p̂1

p̂2

]
− φ(ŵ) =

[
p̂1 + kck1ŵ
p̂2 − kck2ŵ

]

transforms the system into

˙̂w = k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz (5.68)

ż1 = k1 (ŵf + ŵr − ŵ) + kck1

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
(5.69)

ż2 = k2 (ŵ − ŵr − ŵt)− kck2

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
(5.70)

where g = [k3 −k3]. Taking

Vc =
1

2k3

ŵ2 +
1

2k1

z2
1 +

1

2k2

z2
2 (5.71)

as a composite Lyapunov function, we obtain

V̇c = ŵ
(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− (1− θ)kc(k1 + k2)ŵ2 +

1

k3

ŵgz

+z1 (ŵf + ŵr − ŵ) + kcz1

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
+z2 (ŵ − ŵr − ŵt)− kcz2

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
= ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− (1− θ)kc(k1 + k2)ŵ2

+z1 (ŵf + ŵr) + kcz1

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
+z2 (−ŵr − ŵt)− kcz2

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
= ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− (1− θ)kc(k1 + k2)ŵ2 + p̂1ŵf − p̂2ŵt

+kck1ŵŵf + z1ŵr + kcz1

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
−kck2ŵŵt − z2ŵr − kcz2

(
k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
(5.72)
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By using Young's inequality4, V̇c can be upper bounded as

V̇c ≤ ŵ
(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− (1− θ)kc(k1 + k2)ŵ2 + p̂1ŵf − p̂2ŵt

+kck1

(
1

2ε
ŵ2 +

ε

2
ŵ2
f

)
+ kcz1

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
+kck2

(
1

2ε
ŵ2 +

ε

2
ŵ2
t

)
− kcz2

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
≤ ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− kc(k1 + k2)

{
1− θ − 1

2ε

}
ŵ2

+p̂1ŵf + kck1
ε

2
ŵ2
f − p̂2ŵt + kck2

ε

2
ŵ2
t

+kcz1

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
−kcz2

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
≤ ŵ

(
P̂c(ŵ)− θkc(k1 + k2)ŵ

)
− kc(k1 + k2)

{
1− θ − 1

2ε

}
ŵ2

+
{
p̂1 + kck1

ε

2
ŵf

}
ŵf +

{
−p̂2 + kck2

ε

2
ŵt

}
ŵt

+kcz1

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
−kcz2

(
1

kc
ŵr + k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
+ gz

)
(5.73)

Recall that kc is chosen such that the �rst term in (5.73) is negative de�nite.
For the next three terms to be negative de�nite, the following requirements
must hold

1− θ − 1

2ε
> 0 (5.74)

p̂1 + kck1
ε

2
ŵf

∣∣∣
ŵf=0

= 0 (5.75)

∂

∂ŵf

(
p̂1 + kck1

ε

2
ŵf

)
< 0 (5.76)

−p̂2 + kck2
ε

2
ŵt

∣∣∣
ŵt=0

= 0 (5.77)

∂

∂ŵt

(
−p̂2 + kck2

ε

2
ŵt

)
< 0 (5.78)

4See Appendix A.5 for a formal de�nition
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The �rst requirement holds if ε > 1
2(1−θ) . The second and fourth requirements

obviously holds, because p̂1 is zero when ŵf is zero, and p̂2 is zero when ŵt
is zero, due to the expressions for ŵf and ŵt. The last two requirements can
be written as

∂p̂1

∂ŵf
< −kck1

ε

2
(5.79)

∂p̂2

∂ŵt
> kck2

ε

2
(5.80)

Choosing ε = 2 transforms the requirements into

θ <
3

4
(5.81)

∂ŵf
∂p̂1

< − 1

kck1

(5.82)

∂ŵt
∂p̂2

>
1

kck2

(5.83)

Taking

ŵr = kc

(
−k3

(
P̂c(ŵ)− 2kc(k1 + k2)ŵ

)
− gz

)
= −kck3

(
P̂c(ŵ)− kc(k1 + 3k2)ŵ − p̂1 + p̂2

)
(5.84)

and θ = 1
2
yields

V̇c ≤ ŵ

(
P̂c(ŵ)− 1

2
kc(k1 + k2)ŵ

)
− 1

4
kc(k1 + k2)ŵ2

+ {p̂1 + kck1ŵf} ŵf + {−p̂2 + kck2ŵt} ŵt (5.85)

Hence, the origin is asymptotically stable in the domain D = { [p1 p2 w]T ∈
R3 | p1 < pupstream, p2 > p01, Pc is defined} if the requirements are met.
(Theorem 4.9, Khalil (2002)) We're de�ning this as semiglobally asymptoti-
cally stable. 2
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5.5 Finding a Stabilizing Input II

The backstepping procedure in the previous chapter resulted in a control law
for the recycle system which is dependent on all the states. The law is also
dependent on the compressor characteristic Pc, which is not very well known
as discussed in previous chapters. Implementing this controller on a real
system would be a di�cult task. Motivated by this, our quest for a simpler
controller continues.

The di�erential equations which must be stabilized are

˙̂w = k3

(
p̂1 + P̂c(ŵ)− p̂2

)
(5.86)

˙̂p1 = k1 (ŵf + ŵr − ŵ) (5.87)
˙̂p2 = k2 (ŵ − ŵr − ŵt) (5.88)

Theorem 5.2 The control law

ŵr = −k(p̂1 − p̂2) (5.89)

where k is a positive tuning parameter, renders the origin of (5.86) - (5.88)
semiglobally exponentially stable. 3

Proof:

Step 1:

Using [
p̂1

p̂2

]
= φ(ŵ) =

[
−kck1ŵ
−kck2ŵ

]
as the input in the �rst equation, (5.86) becomes

˙̂w = k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
(5.90)

Using the Lyapunov function V (ŵ) = 1
2k3
ŵ2, its derivative is

V̇ = ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
= ŵ

(
P̂c(ŵ)− kc(k1 − k2)θŵ

)
− kc(k1 − k2)(1− θ)ŵ2

≤ −kc(k1 − k2)(1− θ)ŵ2 (5.91)
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For some constant 0 < θ < 1. For (5.91) to hold, the following must hold

P̂c(ŵ)− kc(k1 − k2)θŵ
∣∣∣
ŵ=0

= 0 (5.92)

∂

∂ŵ

(
P̂c(ŵ)− kc(k1 − k2)θŵ

)
< 0 (5.93)

Obviously, (5.92) holds. (5.93) becomes

∂P̂c
∂ŵ

< kc(k1 − k2)θ (5.94)

Choosing kc according to

kc(k1 − k2)θ > sup
ŵ

{
∂P̂c
∂ŵ

}
(5.95)

guarantees that (5.94), and thereby (5.91) holds. Observe that the sign of kc
is not determined at this point. It is dependent on which of k1 and k2 is the
greatest, and will have the same sign as (k1 − k2). Hence, the origin of ˙̂w is
exponentially stable as long as Pc is de�ned.

Step 2:

The change of variables

z =

[
p̂1

p̂2

]
− φ(ŵ) =

[
p̂1 + kck1ŵ
p̂2 + kck2ŵ

]
transforms the system into

˙̂w = k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz (5.96)

ż1 = k1 (ŵf + ŵr − ŵ) + kck1

(
k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz

)
(5.97)

ż2 = k2 (ŵ − ŵr − ŵt) + kck2

(
k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz

)
(5.98)

where g = [k3 −k3]. As a composite Lyapunov function, Vc is taken as

Vc =
1

2

[
ŵ z1 z2

]  1
k3

−kc −kc
−kc 1

k1
0

−kc 0 1
k2


︸ ︷︷ ︸

P

 ŵ
z1

z2
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Vc is positive de�nite if the symmetric matrix P is positive de�nite. For P
to be positive de�nite, all its leading principal minors must be positive. The
leading principal minors are

∣∣∣∣ 1

k3

∣∣∣∣ , ∣∣∣∣ 1
k3

−kc
−kc 1

k1

∣∣∣∣ ,
∣∣∣∣∣∣

1
k3

−kc −kc
−kc 1

k1
0

−kc 0 1
k2

∣∣∣∣∣∣

So we have the following requirements for Vc to be positive de�nite

1

k3

> 0 (5.99)

1

k1

1

k3

− k2
c > 0 (5.100)

1

k1

1

k2

1

k3

− k2
c

(
1

k1

+
1

k2

)
> 0 (5.101)

The requirements result in a least upper bound for kc, given as

kc <

√
1

k3(k1 + k2)
(5.102)

Vc can be written as

Vc =
1

2k3

ŵ2 +
1

2k1

z2
1 +

1

2k2

z2
2 − kcz1ŵ − kcz2ŵ (5.103)
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Its derivative along the trajectories of the system (5.96)-(5.98) is

V̇c = ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+

1

k3

ŵgz

+z1 (ŵf + ŵr − ŵ) + kcz1
˙̂w + z2 (ŵ − ŵr − ŵt) + kcz2

˙̂w

−kcż1ŵ − kcż2ŵ − kcz1
˙̂w − kcz2

˙̂w

= ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+z1 (ŵf + ŵr) + z2 (−ŵr − ŵt)− kcż1ŵ − kcż2ŵ

= ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+p̂1ŵf − p̂2ŵt + kck1ŵŵf − kck2ŵŵt +

1

k3

gzŵr − kcż1ŵ − kcż2ŵ

= ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+p̂1ŵf − p̂2ŵt + kck1ŵŵf − kck2ŵŵt +

1

k3

gzŵr

−kc
(
k1(ŵf + ŵr − ŵ) + kck1

˙̂w
)
ŵ − kc

(
k2(ŵ − ŵr − ŵt) + kck2

˙̂w
)
ŵ

= ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt +

1

k3

gzŵr

−kck1

(
ŵr − ŵ + kc ˙̂w

)
ŵ − kck2

(
ŵ − ŵr + kc ˙̂w

)
ŵ

= ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+p̂1ŵf − p̂2ŵt +

1

k3

gzŵr − k2
c (k1 + k2)k3ŵ

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
−kck1 (ŵr − ŵ + kcgz) ŵ − kck2 (ŵ − ŵr + kcgz) ŵ

=
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

+
1

k3

gzŵr − kck1 (ŵr − ŵ + kcgz) ŵ − kck2 (ŵ − ŵr + kcgz) ŵ

=
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)gzŵ +

1

k3

gzŵr − kck1 (ŵr − ŵ) ŵ − kck2 (ŵ − ŵr) ŵ

=
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)gzŵ +

1

k3

gzŵr − kc(k1 − k2)ŵrŵ + kc(k1 − k2)ŵ2

=
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)gzŵ + (z1 − z2 − kc(k1 − k2)ŵ) ŵr + kc(k1 − k2)ŵ2

(5.104)
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V̇c =
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)k3(p̂1 − p̂2 + kc(k1 − k2)ŵ)ŵ + (z1 − z2 − kc(k1 − k2)ŵ) ŵr

+kc(k1 − k2)ŵ2

=
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)k3(p̂1 − p̂2)ŵ − k2

c (k1 + k2)k3kc(k1 − k2)ŵ2

+ (z1 − z2 − kc(k1 − k2)ŵ) ŵr + kc(k1 − k2)ŵ2 (5.105)

Taking

ŵr = −k (z1 − z2 − kc(k1 − k2)ŵ) (5.106)

yields

V̇c =
{

1− k2
c (k1 + k2)k3

}
ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)k3(p̂1 − p̂2)ŵ − k2

c (k1 + k2)k3kc(k1 − k2)ŵ2

−k (z1 − z2 − kc(k1 − k2)ŵ)2 + kc(k1 − k2)ŵ2 (5.107)

We know that ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
is negative de�nite with kc proper

set. That means that we can upper bound this term, locally.

ŵ
(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
≤ −δŵ2 (5.108)

Since P̂c only is de�ned for a given range of ŵ, we can always choose δ small
enough such that (5.108) holds. V̇c can now be upper bounded as

V̇c ≤ −
{

1− k2
c (k1 + k2)k3

}
δŵ2 + p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)k3(p̂1 − p̂2)ŵ − k2

c (k1 + k2)k3kc(k1 − k2)ŵ2

−k (z1 − z2 − kc(k1 − k2)ŵ)2 + kc(k1 − k2)ŵ2

≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2 + p̂1ŵf − p̂2ŵt

−k2
c (k1 + k2)k3(p̂1 − p̂2)ŵ − k2

c (k1 + k2)k3kc(k1 − k2)ŵ2

−k (z1 − z2 − kc(k1 − k2)ŵ)2 (5.109)

Now comes the trick of letting p̂1ŵf and −p̂2ŵt take some of the �badness�
away from the term −k2

c (k1 + k2)k3(p̂1 − p̂2)ŵ. By using Young's inequality,
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V̇c can be upper bounded as

V̇c ≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2 + p̂1ŵf − p̂2ŵt

+k2
c (k1 + k2)k3

{
1

2ε
p̂2

1 +
ε

2
ŵ2 +

1

2ε
p̂2

2 +
ε

2
ŵ2

}
−k2

c (k1 + k2)k3kc(k1 − k2)ŵ2 − k (z1 − z2 − kc(k1 − k2)ŵ)2

(5.110)

Choosing ε = kc(k1 − k2) yields

V̇c ≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2 + p̂1ŵf − p̂2ŵt

+k2
c (k1 + k2)k3

{
1

2ε
p̂2

1 +
1

2ε
p̂2

2

}
− k (z1 − z2 − kc(k1 − k2)ŵ)2

≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2 + p̂1ŵf − p̂2ŵt

+
kc(k1 + k2)k3

2(k1 − k2)

{
p̂2

1 + p̂2
2

}
− k (z1 − z2 − kc(k1 − k2)ŵ)2

≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2

+p̂1

(
ŵf +

kc(k1 + k2)k3

2(k1 − k2)
p̂1

)
+ p̂2

(
−ŵt +

kc(k1 + k2)k3

2(k1 − k2)
p̂2

)
−k (z1 − z2 − kc(k1 − k2)ŵ)2

(5.111)

Lets now investigate the terms in (5.111). The two terms in the middle are
negative de�nite if

ŵf + kep̂1|p̂1=0 = 0 (5.112)

−ŵt + kep̂2|p̂2=0 = 0 (5.113)

∂

∂p̂1

(ŵf + kep̂1) < 0 (5.114)

∂

∂p̂2

(−ŵt + kep̂2) < 0 (5.115)

where ke = kc(k1+k2)k3
2(k1−k2)

. The two �rst requirements obviously holds, the latter
two can be written as

∂ŵf
∂p̂1

< −ke (5.116)

∂ŵt
∂p̂2

> ke (5.117)
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As long as the positive constant δ is chosen such that

(1− k2
c (k1 + k2)k3)δ > kc(k1 − k2) (5.118)

V̇c is negative de�nite. The requirements stated above implies that

p̂1

(
ŵf +

kc(k1 + k2)k3

2(k1 − k2)
p̂1

)
< −δ1p̂

2
1 (5.119)

p̂2

(
−ŵt +

kc(k1 + k2)k3

2(k1 − k2)
p̂2

)
< −δ2p̂

2
2 (5.120)

As long as there is an upper and a lower bound for p̂1 and p̂2, δ1 and δ2 can
always be chosen small enough such that (5.119) and (5.120) holds. V̇c can
now be upper bounded as

V̇c ≤ −
{

(1− k2
c (k1 + k2)k3)δ − kc(k1 − k2)

}
ŵ2

−δ1p̂
2
1 − δ2p̂

2
2 − k (z1 − z2 − kc(k1 − k2)ŵ)2 , −Wc

(5.121)

Hence, the feedback law

ŵr = −k (z1 − z2 − kc(k1 − k2)ŵ) = −k(p̂1 − p̂2) (5.122)

renders the the origin of the system (5.86)-(5.88) exponentially stable in
the domain D = { [p1 p2 w]T ∈ R3 | p1 < pupstream, p2,max > p2 > p01,
Pc is defined} if the requirements are met. (Theorem 4.10, Khalil (2002))
We're de�ning this as semiglobally exponentially stable. 2

5.5.1 Veri�cation by Simulation

Of course, the simple controller proven to be stable in the section above
seems nearly too good to be true. To verify that the controller is working, a
simulation is conducted. The simulation setup is as follows. The speed is set
constant to 4000 rads/sec. At 2 seconds, the feed �ow gradually decreases
and the system enters deep surge. At 6 seconds the controller is enabled,
and stabilizes the system in the unstable area. Correct values for the desired
equilibrium points are inserted into the control law. All the �les needed to
conduct the veri�cation is found in the ZIP-�le at �control_law_veri�cation�.
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Figure 5.5: Veri�cation of the stabilizing input by simulation. The speed is
constant. Initially, the pressure in both volumes are set to ambient, and all
the �ows are zero.
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One thing that is left out of the discussion is the question whether the recycle
line has the capability of stabilizing the system in the way conducted above.
First of all, we'll need some kind of actuation in the recycle line which actually
can produce ŵr = −k(p̂1 − p̂2). It can be di�cult with an ordinary recycle
valve, since it only can produce �ow in one direction. Figure 5.5 reveals
that the �ow through the recycle line �uctuates around zero to stabilize the
system.

5.6 Finding a Stabilizing Input III

Motivated by the inability of recycle valves to produce negative �ow, another
step of the backstepping procedure is attempted. The extended system is now
investigated, given as

˙̂p1 = k1 (ŵf + ŵr − ŵ) (5.123)
˙̂p2 = k2 (ŵ − ŵr − ŵt) (5.124)

˙̂w = k3

(
p̂1 + P̂c(w)− p̂2

)
(5.125)

˙̂wr = kr

(
p̂2 − P̂r − p̂1

)
(5.126)

where the inclusion of the last equation makes it possible to obtain an ex-
pression for the pressure drop over the recycle valve, P̂r.

Theorem 5.3 The control law

P̂r = −(k1 + k2)ŵ− k1ŵf + k2ŵt− (k1 + k2)kr(p̂1− p̂2) + k′(ŵr − kr(p̂1− p̂2))
(5.127)

where k′ is a positive tuning parameter, renders the origin of (5.123) - (5.126)
semiglobally exponentially stable. 3

Proof:

We're continuing the backstepping procedure of the previous chapter. As-
sume that the positive constant of the feedback law is kr, that is

ŵr = −kr (z1 − z2 − kc(k1 − k2)ŵ) = φ(z, ŵ) (5.128)

Step 3:

The change of variables

x = ŵr − φ(z, ŵ) = ŵr + kr (z1 − z2 − kc(k1 − k2)ŵ)
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transforms the system into

˙̂w = k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz (5.129)

ż = f(z, ŵ) + g2x (5.130)

ẋ = ˙̂wr + kr(ż1 − ż2 − kc(k1 − k2) ˙̂w) (5.131)

where g2 = [k1 −k2] and

f(z, ŵ) =


k1 (ŵf − kr (z1 − z2 − kc(k1 − k2)ŵ)− ŵ)

+kck1

(
k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz

)
k2 (ŵ + kr (z1 − z2 − kc(k1 − k2)ŵ)− ŵt)
+kck2

(
k3

(
P̂c(ŵ)− kc(k1 − k2)ŵ

)
+ gz

)


The total composite Lyapunov function is taken as

Vc,tot = Vc +
1

2kr
x2 (5.132)

Its derivative can be upper bounded as

V̇c,tot ≤ −Wc + xz1 − xz2 − kck1xŵ + kck2xŵ +
1

kr
xẋ

≤ −Wc + xz1 − xz2 − kck1xŵ + kck2xŵ

+x
(
p̂2 − P̂r − p̂1

)
+ x

(
ż1 − ż2 − kc(k1 − k2) ˙̂w

)
≤ −Wc + xz1 − xz2 − kck1xŵ + kck2xŵ

+x
(
z2 − kck2ŵ − P̂r − z1 + kck1ŵ

)
+ x

(
ż1 − ż2 − kc(k1 − k2) ˙̂w

)
≤ −Wc − xP̂r + x

(
ż1 − ż2 − kc(k1 − k2) ˙̂w

)
≤ −Wc + x (k1 (ŵf − kr (z1 − z2 − kc(k1 − k2)ŵ)− ŵ)

−k2 (ŵ + kr (z1 − z2 − kc(k1 − k2)ŵ)− ŵt)− P̂r
)

≤ −Wc + x (k1 (ŵf − kr (p̂1 − p̂2)− ŵ)

−k2 (ŵ + kr (p̂1 − p̂2)− ŵt)− P̂r
)

(5.133)

Taking

P̂r = k1 [ŵf − kr(p̂1 − p̂2)− ŵ]− k2 [ŵ + kr(p̂1 − p̂2)− ŵt] + k′x (5.134)



Finding a Stabilizing Input III 71

yields
V̇c,tot ≤ −Wc − k′x2 (5.135)

Hence, the origin is exponentially stable in D = { [p1 p2 w]T ∈ R3 | p1 <
pupstream, p2,max > p2 > p01, Pc is defined}. (Theorem 4.10, Khalil (2002))
We're de�ning this as semiglobally exponentially stable. 2





Chapter 6

Final Discussion

This chapter provides a �nal discussion of the results obtained in this thesis.
The cubic bivariate spline approximation is discussed �rst, followed by a
discussion of the recycle system and the new SIMULINK model. At last, the
new variant of the recycle system model and the analysis are discussed.

6.1 The Cubic Bivariate Spline as the Charac-
teristic

The cubic bivariate spline approximation demonstrated to-the-point accuracy
with regards to measurement points. Modeling the compressor characteristic
with it would result in a more correct simulation than any other approxima-
tion method. Methods which uses a third order polynomial �t or a variant of
it, fails to capture the exact location of the measurement points, which can be
critical when determining when the system reaches instability. The bivariate
spline characteristic is very complex. It transforms the compressor map into
a grid, where each cell has its own third order approximation. Because of
this, any mathematical stability analysis would be very di�cult. The bivari-
ate spline characteristic would be most valuable during simulations, when
e.g. the surge control line should be determined, or controllers should be
veri�ed. It would allow for more correct decisions about stabilizing inputs.
However, most mathematical analysis concerning compressor control uses the
Moore-Greitzer approximation of the characteristic. It would be an idea to
tune those results during simulations with the more advanced bivariate spline
characteristic. The chapter concerning the bivariate spline approximation is
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very practical with its MATLAB code, and there's a reason for it. It has
been developed �rst and foremost for simulation purposes.

6.2 The Recycle System

Initially in the model of the recycle system, the feed �ow is set to constant. It
would mean that the feed �ow is not dependent on the compressor, and would
make the pressure in the suction volume misbehave. The recycle model is
extended with a valve at the feed �ow intake to overcome this problem.�The
new model in SIMULINK of the recycle system seems to be working very well
(Appendix C.3). It uses the bivariate spline as the compressor characteristic,
and can simulate di�erent speeds of the compressor. Di�erent controllers
can easily be tested on the model. Not only can controllers for the recycle
valve be tested, but also torque-controllers, throttle valve controllers, and
feed �ow controllers can be tested. The simplicity of modifying the cubic
bivariate spline to �t another compressor type makes it possible to simulate
a lot of recycle systems.

The typical recycle valve controller outlined in Chapter 4 worked as expected.
When the mass �ow gets too low, the recycle valve opens and stimulates more
mass �ow. The controller parameters will have to be rather powerfully tuned
to deal with sudden disturbances. The surge line is often determined with
considerable margin. 10 to 20 percent is not unusual. Lesser margin means
more powerful controllers, to ensure that the operating point not slides over
into the surge area.

6.3 The Stability Analysis

Analysis of the model which uses the compressor ratio Ψc as the compres-
sor characteristic in its mass �ow equation proved to be very di�cult. The
appendix contains a whole chapter with these incomplete stability proofs.
Instead, modeling the mass �ow equation with the pressure rise Pc as the
characteristic, gave many valuable results concerning stability. This is how
Greitzer done it, in Greitzer (1976). It is well known that the recycle sys-
tem is stable with regards to surge, independent of anything, as long as
the operating point of the compressor is located on a negative slope of the
characteristic. The �rst goal of the stability analysis was to prove just this,
with Lyapunov's method. The result is summed up in a lemma which states
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that the recycle system is asymptotically stable, independent on the recycle
valve setting, as long we're operating on a negative slope of the characteristic.
Thats why there is no need to recycle right of the surge line. The importance
of the compressor characteristic once again appears.

The second goal of the stability analysis was to �nd a stabilizing input for the
recycle system. This is where the recycle system is evaluated in the active
surge/stall control scheme. The possibility of stabilizing the unstable regime
left to the surge line with the recycle line is investigated. With a clever variant
of backstepping, three control laws are found which semiglobally stabilizes
the system. The �rst and the second control law is an expression for the
recycle �ow ŵr. They'll both be di�cult to implement, since the actuation
in the recycle line almost always is a valve. A valve placed in the recycle
line will just be able to let the �ow travel from the high pressure volume to
the low. Active surge/stall stabilization with the recycle line involves �ow in
both directions. The choice of actuation in the recycle line to achieve this
remains an open question. However, the second control law is pretty simple,
given as

ŵr = −k(p̂1 − p̂2) (6.1)

The equation almost resembles the equation most frequently used to model
a valve, the equation for �ow through an ori�ce. It could be possible to use
such a special valve which we can model as the control law. The third control
law is an expression for the pressure drop over the recycle valve, P̂r. It could
have been the easiest implementable of the three, hadn't it been for the long
expression and the dependency on all the states.

Semiglobal asymptotic stability is proven for the recycle system with the use
of the �rst control law. For the two others, semiglobal exponential stability
was proven. That the result is semiglobal, and not global, simply means that
we have some restrictions on the states. The mass �ow will have to be in
the set where the compressor characteristic is de�ned, and pressure can't be
negative. There is also upper bounds on the pressure states at times.

There should also be noted that the recycle system and its various models
presented in this thesis not is suitable for feedback linearization. This is due
to the fact that the system is not feedback linearizable.





Chapter 7

Conclusion

The main focus of this thesis has been to conduct research about the com-
pressor recycle system. It is old, and has been in use for decades in the
industry, but it has actually not been proven to be stable mathematically.
The goal of this thesis has been to �nd out if there exists clever control laws
for the recycle system, through a thorough mathematical analysis.

7.1 Concluding Remarks

There has been considerable research into the active surge/stall control scheme
over the last years. Several control laws which stabilizes the unstable regime
left to the surge line have been proposed. Some of them uses the drive
torque as input, some uses a close coupled valve, and some of them uses the
throttle. Still, recycle systems are used in the industry. Recycle systems
are trusted and have been working for many decades, and companies are not
willing to risk safety and durability for something they do not trust yet. It is
well known that active surge/stall control schemes outperformes surge/stall
avoidance schemes with regards to e�ciency.

This thesis shows that its possible to use the recycle line as an active surge/stall
control actuation device. Two of the control laws derived may need another
form for actuation in the line, due to the two-way �ow. The replacement
for the valve is yet to be determined. The third law is a control law for the
pressure drop over the recycle valve. The simplest law were simulated, and
it stabilized an unstable operating point.

The main conclusions of this thesis can be summarized as:
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� Modeling the compressor characteristic with the cubic bivariate spline
approximation yields more correct simulation results. It will allow for
real measurements to be embedded into the model, two-dimensionally.
It is also a fast performer with SIMULINK, with regards to all the
information it holds.

� Modeling the recycle system with the pressure rise as the character-
istic in the mass �ow equation was critical with regards to successful
mathematical analysis of the system.

� Three control laws was derived. The simplest one of them semiglobally
exponentially stabilizes the recycle system at all operating points, both
stable and unstable. The use of such a law, compared to the classic use
of the recycle line, would yield a drastic improvement of the e�ciency
of the system.

7.2 Contributions Provided by This Thesis

To the author's knowledge a cubic bivariate spline approximation has never
been used as the compressor characteristic, at least not in such a practical
way. There's one paper concerning splines (Drummond and Davison, 2009),
but not a cubic bivariate one.

The previously modeled recycle model by Egeland and Gravdahl (2002) has
been extended with a valve at the entrance of the feed �ow, to make the
feed �ow dependent on the compressor. The recycle model is then modeled
in another way, with the mass �ow equation dependent on the compressor
pressure rise, instead of the ratio.

To the author's knowledge, nobody has ever conducted a successful stability
analysis of the recycle system. Four results are presented in this paper.
The �rst is that the recycle system is asymptotically stable independent of
recycle �ow as long as the operating point is located on a negative slope
of the characteristic. The next three results are di�erent stabilizing control
laws, which in theory will allow the recycle system to operate in the active
surge/stall control scheme.
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7.3 Suggestions for Further Work

� Investigation of the importance of the length of the recycle line, the
area, the type of duct, and the actuation device in it for use with
active surge/stall control.

� �Domain control.� De�ne a domain around the equilibrium point which
extends to the surge line. The idea is that a controller can be found
which guarantees that the operating point stays in this domain. It is a
new and more e�cient surge/stall avoidance method.
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Appendix A

Mathematical Review

A.1 Derivation of Incompressible Flow Through
an Ori�ce

A
1

A
2

Flow

Figure A.1.1: Flow through an ori�ce

By assuming incompressible �ow through the ori�ce, the continuity equation
yields

v1A1 = v2A2 = q (A.1)

That is, the volumetric �ow is constant. By further assuming stationary and
frictionless (inviscid) �ow, the Bernoulli equation (2.2) yields

v2
1

2
+
p1

ρ
=
v2

2

2
+
p2

ρ
(A.2)
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From (A.1) we have v1 = q
A1

and v2 = q
A2
. (A.2) becomes

q2

2A2
1

+
p1

ρ
=

q2

2A2
2

+
p2

ρ

⇒ q = A2

√
2

ρ

(p1 − p2)

(1− (A2/A1)2)

⇒ q = A2

√
1

1− (d2/d1)4

√
2

ρ
(p1 − p2) (A.3)

Introducing the coe�cient of discharge Cd in C = Cd
√

1
1−(d2/d1)4

, (A.3) be-
comes

q = CA2

√
2

ρ
(p1 − p2) (A.4)

Equating (A.4) with the density to get the mass �ow

w = ρq = CA2

√
2ρ (p1 − p2) (A.5)

A.2 Derivation of Compressible Nozzle Flow

Consider the nozzle in �gure A.2.1.

Flow

p
1
, T

1
, v

1
, A

1

p
2
, T

2
, v

2
, A

2

Figure A.2.1: Nozzle �ow

Lets now assume the gas to be ideal. That is, ignoring intermolecular forces
and the size of the molecules. Generally, real gases behave like an ideal gas
at high temperatures and low pressures. The �ow through the nozzle is

w = ρ2v2A2 = ρ2M2a2A2 = ρ2M2

√
κRT2A2 =

p2M2A2κ√
κRT2

(A.6)
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where M = v
a
is the mach number, a is the speed of sound and for an ideal

gas we have a =
√
κRT (eq. 9.16 in White (2008)) and ρ = p

RT
. The heat

capacity ratio κ = cp
cv
of a gas is the ratio of the heat capacity cp at constant

pressure to the heat capacity cv at constant volume. Lets further assume
that the �ow is isentropic, that is, there is no losses due to heat conduction
or viscosity. The following relation can be used (equation 9.28a in White
(2008))

p1

p2

=
T1

T2

κ
κ−1

(A.7)

Rewriting (A.6) as
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(A.8)

Using (A.7) again in (A.8) yields

w =
p1M2A2κ√
κRT1
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)(κ−1
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An expression for the mach number at the throat can be found from the
energy balance. The energy balance in its general form is taken from White
(2008) equation 3.63, which is

Q̇−Ẇs−Ẇv =
d

dt

[∫∫∫
CV

(
û+

1

2
V 2 + gz

)
ρdV

]
+

∫∫
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(
ĥ+

1

2
V 2 + gz

)
ρ(~V · ~n)dA

(A.10)
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With no heat transfer, no work done by the system and stationary conditions,
(A.10) becomes ∫∫

CS

(
ĥ+

1

2
V 2 + gz

)
ρ(~V · ~n)dA = 0

⇒ −(ĥ1 +
1

2
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2
v2

2)ρ2v2A2 = 0 (A.11)

From the continuity equation we have that the mass �ow is w = ρ1v1A1 =
ρ2v2A2. (A.11) becomes
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2
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2 (A.12)

Assuming that the speed v1 is close to zero, and using that ĥ = cpT where
cp is the speci�c heat at constant pressure, (A.12) becomes
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Equation 9.4 in White (2008) gives R
cp

= κ−1
κ
. (A.13) becomes

T1 = T2 +
1

2
M2

2κ
κ− 1

κ
T2

⇒ T1 = T2

(
1 +M2

2

κ− 1

2

)
⇒ T1

T2

= 1 +M2
2

κ− 1

2

⇒M2
2 =

(
T1

T2

− 1

)
2

κ− 1

⇒M2 =

√√√√ 2

κ− 1

((
p1

p2

)κ−1
κ

− 1

)
(A.14)
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Insertion of (A.14) into (A.9) yields
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(A.15)

which is the expression for isentropic nozzle �ow of an ideal gas.

A.3 Sector Terminology

Consider the function h. It belongs to sector [0,∞] if

uTh(t, u) ≥ 0 (A.16)

for all (t, u). For the scalar case, the graph of the u − h relation must lie
in the �rst and third quadrants. The graphical representation is valid even
when h is time varying. Zero and in�nity are the slopes of the boundaries of
the �rst-third quadrant region, hence sector [0,∞].

In case the inequality (A.16) is strict, we write the sector as (0,∞). Similarly,
we say that h belongs to the sector [−∞, 0] if

uTh(t, u) ≤ 0 (A.17)

for all(t, u). For the scalar case, the graph of the u−h relation must lie in the
second and fourth quadrants, where −∞ and 0 are the slopes of the bound-
aries of the second-fourth quadrant region. In case the inequality (A.17) is
strict, we write the sector as (−∞, 0).
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h

u u

h

Figure A.3.1: Two examples of u − h characteristics in which h belongs to
the sector [0,∞]

A.4 Strict-Feedback Systems

Consider a system on the form

ẋ = f0(x) + g0(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2

ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3

...

żk−1 = fk−1(x, z1, . . . , zk−1) + gk−1(x, z1, . . . , zk−1)zk

żk = fk(x, z1, . . . , zk) + gk(x, z1, . . . , zk)u

where x ∈ Rn, z1 to zk are scalars, and f0 to fk vanish at the origin. It
is called a strict-feedback system because the nonlinearities fi and gi in the
żi-equation (i = 1, . . . , k) depend only on x, z1, . . . , zi; that is, on the state
variables that are �fed back.�

A.5 Young's Inequality

Young's inequality states that for any real numbers a and b,

± ab ≤ a2

2ε
+
εb2

2
(A.18)

for any ε > 0.
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MATLAB Files

B.1 Spline Approximation

B.1.1 approximation_spline.m

1 %% COMPRESSOR CHARACTERISTIC APPROXIMATION
2 %%
3 %% MATLAB file which generates a bivariate spline. This

spline is stored
4 %% in the file "psic_data" in the current directory and can be

accessed by the
5 %% command "pp = load('psic_data')".
6 %% From this spline the value of the compressor characteristic

can be returned
7 %% for all speeds and massflows.
8 %%
9 %% AUTHOR: Bjørn Ove Barstad

10

11

12

13 % STEP 1 − collect points from the compressor map
14 x_corrected = {};
15 y = {};
16

17 %points for the speedline 20000 rpm
18 x_corrected(1) = {[10 20 30 40]};
19 y(1) = {[1.175 1.185 1.18 1.13]};
20

21 %points for the speedline 25000 rpm
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22 x_corrected(2) = {[10 20 30 40 50 60]};
23 y(2) = {[1.275 1.30 1.305 1.285 1.245 1.15]};
24

25 %points for the speedline 30000 rpm
26 x_corrected(3) = {[20 30 40 50 60]};
27 y(3) = {[1.435 1.45 1.445 1.42 1.365]};
28

29 %points for the speedline 35000 rpm
30 x_corrected(4) = {[20 30 40 50 60 70]};
31 y(4) = {[1.58 1.617 1.625 1.617 1.57 1.48]};
32

33 %points for the speedline 40000 rpm
34 x_corrected(5) = {[30 40 50 60 70]};
35 y(5) = {[1.81 1.83 1.825 1.8 1.733]};
36

37 %points for the speedline 45000 rpm
38 x_corrected(6) = {[40 50 60 70 80]};
39 y(6) = {[2.09 2.095 2.09 2.06 1.93]};
40

41 %points for the speedline 50000 rpm
42 x_corrected(7) = {[50 60 70 80]};
43 y(7) = {[2.385 2.4 2.335 2.17]};
44

45 %plot
46 X_CORRECTED = [];
47 Y = [];
48 for i = 1 : length(x_corrected)
49 for j = 1 : length(x_corrected{i})
50 X_CORRECTED = [X_CORRECTED x_corrected{i}(j)];
51 Y = [Y y{i}(j)];
52 end
53 end
54 scrsz = get(0,'ScreenSize');
55 figure(1)
56 set(1,'Position',[(scrsz(3)/2 − 466/2) (scrsz(4)/2 − 411/2)

466 411]);
57 plot(X_CORRECTED, Y,'+'),grid,axis([−10 90 1.0 2.4])
58 xlabel('Corrected mass flow lb/min')
59 ylabel('Pressure ratio')
60

61

62

63 % STEP 2 − augment the points with zero flow − and negative
flow points

64

65 %kappa = c_p / c_v, air
66 kappa = 1.4;
67 %sonic velocity
68 c_plenum = 343;
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69 %ambient temperature 30 deg C
70 T_01 = 303.15;
71 %inducer diameter
72 D1 = 0.079;
73 %impeller perimeter diameter
74 D2 = 0.113;
75

76 %speedvector
77 N = [20000 25000 30000 35000 40000 45000 50000]; %RPM
78

79 %zero flow pressure ratio
80 PSI_czero = [];
81 for i = 1 : length(N)
82 PSI_czero = [PSI_czero (1 + (pi^2* (N(i)/60)^2 *(D2^2 − D1

^2))/(2*c_plenum*T_01))^(kappa/(kappa − 1))];
83 end
84

85 %negative flow pressure ratio
86 PSI_cneg = [1.19 1.30 1.45 1.55 1.70 1.90 2.12];
87

88 %augment
89 for i = 1 : length(x_corrected)
90 x_corrected(i) = {[−10 0 x_corrected{i}]};
91 y(i) = {[PSI_cneg(i) PSI_czero(i) y{i}]};
92 end
93

94 %generate new points to plot
95 X_CORRECTED = [];
96 Y = [];
97 for i = 1 : length(x_corrected)
98 for j = 1 : length(x_corrected{i})
99 X_CORRECTED = [X_CORRECTED x_corrected{i}(j)];

100 Y = [Y y{i}(j)];
101 end
102 end
103

104

105

106 % STEP 3 − cubic bivariate spline interpolation and
extrapolation based on tensor product splines

107

108 %generate a cubic spline in ppform for each speedline
109 PP = [];
110 for i = 1 : length(x_corrected)
111 PP = [PP spline(x_corrected{i}, y{i})];
112 end
113

114 %prepare grid {w, omega} = {massflow, speed}
115 w = −10 : 10 : 100;
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116 omega = 20000 : 5000 : 50000;
117

118 %construct the z−matrix z(i,j) = f( w(i) , omega(j) ) ( =
PSI_c )

119 %from the one−dim splines
120 z = [];
121 for i = 1 : length(omega)
122 for j = 1 : length(w)
123 z(j,i) = fnval(PP(i), w(j));
124 end
125 end
126

127 %cubic bivariate spline in ppform generation
128 pp = csape({w, omega}, z,{'clamped', 'clamped'});
129

130 %gather lines to draw
131 w = −10 : 1 : 80;
132 clear PP
133 PP = [];
134 for i = 1 : length(N)
135 PP = [PP fnval(pp, {w, N(i)})];
136 end
137 PP(:,8) = fnval(pp, {w, 29500});
138

139 %plot points and approximated speedlines
140 scrsz = get(0,'ScreenSize');
141 figure(2)
142 set(2,'Position',[(scrsz(3)/2 − 466/2) (scrsz(4)/2 − 411/2)

466 411]);
143 plot(X_CORRECTED, Y,'+', w, PP(:,1), w, PP(:,2), w, PP(:,3), w

, PP(:,4), w, PP(:,5), w, PP(:,6), w, PP(:,7)),grid,axis
([−10 90 1.0 2.4])

144 xlabel('Corrected mass flow lb/min')
145 ylabel('Pressure ratio')
146

147

148

149 % STEP 4 − save the only data needed, pp, in a file
150 save('psic_data','−struct','pp');
151 clear all
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B.1.2 getPsic.m

1 function [ pcic ] = getPsic( w_correctedlbmin, omega_rpm )
2 % getPsic Returns the compressor characteristic for

different mass flows and
3 % speeds.
4 %
5 % Author: Bjørn Ove Barstad
6

7 persistent pp;
8 if isempty(pp)
9 'loading psic_data'

10 pp = load('psic_data');
11 end
12

13 pcic = fnval(pp, {w_correctedlbmin, omega_rpm});
14

15 if pcic < 1
16 pcic = 1;
17 end
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B.2 Init Files

B.2.1 init_vortech_plain.m

1 clear all
2

3 %speed of sound in plenum and volume
4 a_p = 343; %m/s
5 V_p = 0.1; %m^3
6

7 %duct area and length
8 d_duct = 0.07; %70 mm
9 A = pi/4 * d_duct^2; %0.0038 m^2

10 L = 2.85; %m
11

12 %ambient pressure and temperature
13 p_01 = 101325; %Pascals
14 T_01 = 20; %Celcius
15

16 %density air, 20 deg C
17 rho_AIR = 1.204; %kg/m^3
18 % %density air, 30 deg C
19 % rho_AIR = 1.164;
20

21 %energy transfer coeff
22 mu = 0.99;
23

24 %impeller inertia
25 J = 5e−4; %kg m^2
26

27 %impeller perimeter radius
28 D2 = 0.119;
29 r_2 = D2 / 2;
30

31 %orifice opening
32 A_t = A;
33

34 %conversion factors
35 T_01_rankine = (T_01 + 273.15) * 9/5;
36 p_01_hg = p_01 / 3375;
37 si_to_corrected = sqrt(T_01_rankine/545) / (p_01_hg/28.4) *

60/0.4536;
38 rads_to_rpm = 60/(2*pi);
39

40 %sgn(p1 − p2) = lim(zeta −> inf) tanh(zeta(p1 − p2))
41 zeta = 1000;
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B.2.2 init_vortech_recon.m

1 clear all
2

3 %speed of sound in plenum and volume
4 a_p = 343; %m/s
5 V_2 = 0.1; %m^3 (original plenum)
6 V_1 = 0.05;
7

8 %duct area and length
9 d_duct = 0.07; %70 mm

10 A = pi/4 * d_duct^2; %0.0038 m^2
11 L = 2.85; %m
12

13 %ambient pressure and temperature
14 p_01 = 101325; %Pascals
15 T_01 = 20; %Celcius
16

17 %density air, 20 deg C
18 rho_AIR = 1.204; %kg/m^3
19 % %density air, 30 deg C
20 % rho_AIR = 1.164;
21

22 %energy transfer coeff
23 mu = 0.99;
24

25 %impeller inertia
26 J = 5e−4; %kg m^2
27

28 %impeller perimeter radius
29 D2 = 0.119;
30 r_2 = D2 / 2;
31

32 %orifice opening
33 A_t = A;
34

35 %conversion factors
36 T_01_rankine = (T_01 + 273.15) * 9/5;
37 p_01_hg = p_01 / 3375;
38 si_to_corrected = sqrt(T_01_rankine/545) / (p_01_hg/28.4) *

60/0.4536;
39 rads_to_rpm = 60/(2*pi);
40

41 %sgn(p1 − p2) = lim(zeta −> inf) tanh(zeta(p1 − p2))
42 zeta = 1000;
43

44 %loading surge control line
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45 load('scl.mat');
46

47 %RECYCLE PI−controller settings
48 Kp_recycle = 2.5;
49 Ki_recycle = 5.5;
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B.3 De�ning the Surge Line; de�ne_scl.m

1 % DEFINES THE SURGE AVOIDANCE LINE
2 %
3 % Author: Bjørn Ove Barstad
4

5 %surge margin
6 surge_margin = .3;
7

8 %define the speedlines
9 speedvector = 20000 : 5000 : 50000;

10

11 %obtain the bivariate cubic spline
12 %which contains all the data for
13 %the compressor characteristic
14 pp = load('psic_data');
15

16 %generate the speedlines
17 y = [];
18 w = −10 : 80;
19 for i = 1 : length(speedvector)
20 y(i,:) = fnval(pp, {w, speedvector(i)});
21 end
22

23 %directional derivative of the bivariate
24 %cubic spline in the mass flow direction
25 dp = fndir(pp, [1; 0]);
26

27 %find maximum algorithm
28 MAX = zeros(2, length(speedvector));
29 for i = 1 : length(speedvector)
30 max = −inf;
31 for j = 1 : length(w)
32 deriv = fnval(dp, {w(j), speedvector(i)});
33 if abs(deriv) < 1e−4 %derivative ¬ zero
34 if max == −inf
35 max = [w(j); fnval(pp, {w(j), speedvector(i)})

];
36 else
37 try_max = [w(j); fnval(pp, {w(j), speedvector(

i)})];
38 if try_max(2) > max(2)
39 max = try_max;
40 end
41 end
42 end
43 end
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44 MAX(:,i) = max;
45 end
46

47 %makes the surge line defined by MAX linear
48 PF_surge = polyfit(MAX(1,:), MAX(2,:), 1);
49 save('sl','PF_surge');
50 y_surgeline = PF_surge(1).*w + PF_surge(2);
51

52 %along with the surge avoidance line
53 PF_avoid = polyfit(MAX(1,:).*(1 + surge_margin), MAX(2,:), 1);
54 save('scl','PF_avoid');
55 y_avoid = PF_avoid(1).*w + PF_avoid(2);
56

57 %draw
58 scrsz = get(0,'ScreenSize');
59 figure(2)
60 set(2,'Position',[(scrsz(3)/2 − 466/2) (scrsz(4)/2 − 411/2)

466 411]);
61 plot(w, y_surgeline, w, y_avoid, MAX(1,:), MAX(2,:), w, y(1,:)

, w, y(2,:), w, y(3,:), w, y(4,:), w, y(5,:), w, y(6,:), w
, y(7,:)),grid,axis([−10 90 1.0 2.4])

62 xlabel('Corrected mass flow lb/min')
63 ylabel('Pressure ratio')



Appendix C

SIMULINK Diagrams

C.1 model_plain.mdl

Figure C.1.1: Subsystem: Drive

Figure C.1.2: Subsystem: Compressor and duct



100 SIMULINK Diagrams

F
ig
u
re

C
.1
.3
:
M
ai
n
m
o
d
el



model_plain.mdl 101

Figure C.1.4: Subsystem: Plenum

Figure C.1.5: Subsystem: Valve
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C.2 model_recycle.mdl

Figure C.2.1: Subsystem: Drive

Figure C.2.2: Subsystem: Compressor and duct
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Figure C.2.4: Subsystem: Plenum1

Figure C.2.5: Subsystem: Plenum2

Figure C.2.6: Subsystem: Feed �ow valve



model_recycle.mdl 105

Figure C.2.7: Subsystem: Recycle valve

Figure C.2.8: Subsystem: Throttle valve
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C.3 model_recycle_control.mdl
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Figure C.3.4: Subsystem: Recycle controller; Subsystem: PI controller

Figure C.3.5: Subsystem: Recycle controller; Fcn

Figure C.3.6: Subsystem: Recycle controller; If Action Subsystem

Figure C.3.7: Subsystem: Recycle controller; If Action Subsystem1





Appendix D

Incomplete Stability Proofs of the

Recycle System

D.1 Foreword

This appendix contains multiple attempts in proving that the recycle sys-
tem is stable. They have one thing in common, all the attempts have been
conducted with the use of the compressor ratio Ψc as the compressor char-
acteristic. The model where the �ow through the throttle, the �ow through
the recycle line, and the �ow through the entrance to the suction volume are
modeled as w = const ·

√
∆p have been used. The same assumptions as in

Section 5.2 is also used here.

D.2 The System

The system we're trying to prove stability for is

ṗ1 =
a2

V1

(wf + wr − w) (D.1)

ṗ2 =
a2

V2

(w − wt − wr) (D.2)

ẇ =
A

L
(Ψc (w, ω) p1 − p2) (D.3)

where the last equation is modeled in pressure ratio form. The valves are
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modeled as

wt = ct
√
p2 − p01 (D.4)

wf = cf
√
pupstream − p1 (D.5)

wr = cr
√
p2 − p1 (D.6)

De�ning the constants k1 = a2

V1
, k2 = a2

V2
, k3 = A

L
, the model (D.1)-(D.3)

becomes

ṗ1 = k1 (wf − w + wr) = f1(·) (D.7)

ṗ2 = k2 (w − wr − wt) = f2(·) (D.8)

ẇ = k3 (Ψc (w) p1 − p2) = f3(·) (D.9)

The domain where the equations are continuously di�erentiable is D = {
[p1 p2 w]T ∈ R3 | p1 < pupstream, p2 > max(p01, p1), wdeepsurge,min < w <
wstonewall}. The compressor characteristic Ψc is assumed continuously di�er-
entiable as well.

D.3 Equilibrium Points

Equilibrium points (p∗1, p
∗
2, w

∗) for the system (D.7)-(D.9) are given by

w∗f + w∗r = w∗ (D.10)

w∗t + w∗r = w∗ (D.11)

Ψc(w
∗) =

p∗2
p∗1

(D.12)

D.4 Shift to the Origin

De�ning the deviation from the equilibrium point as

p̂1 = p1 − p∗1 (D.13)

p̂2 = p2 − p∗2 (D.14)

ŵ = w − w∗ (D.15)
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The new equations are then

˙̂p1 = k1 (wf − (ŵ + w∗) + wr) (D.16)
˙̂p2 = k2 (ŵ + w∗ − wr − wt) (D.17)
˙̂w = k3 (Ψc (ŵ + w∗) (p̂1 + p∗1)− (p̂2 + p∗2)) (D.18)

We can center Ψ̂c(ŵ) at the origin in the same way as the characteristic in
the pressure rise form. That is because they both have the S-form. The
compressor characteristic would belong to sector (−∞, 0) for stable negative
slopes, and belong to sector (0,∞) for unstable positive slopes. In Figure
D.4.1 the shift is shown.

Ψ
c
(w*)

w*

Ψ
c
(w)

Ψ
c
(w)

w

w

Figure D.4.1: Equilibrium shifting of the compressor characteristic

Lets de�ne
Ψ̂c(ŵ) , Ψc (ŵ + w∗)−Ψc(w

∗) (D.19)

in which Ψ̂c(0) = 0 proves that it is centered at the origin. Lets further de�ne

ŵt(p̂2) , wt (p̂2 + p∗2)− wt(p∗2) (D.20)

ŵf (p̂1) , wf (p̂1 + p∗1)− wf (p∗1) (D.21)

ŵr(p̂1, p̂2) , wr (p̂1 + p∗1, p̂2 + p∗2)− wr(p∗1, p∗2) (D.22)
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in which we know that ŵt belongs to the sector (0,∞) and ŵf belongs to
sector (−∞, 0). The model (D.16)-(D.18) now becomes

˙̂p1 = k1 (ŵf (p̂1) + wf (p
∗
1)− ŵ − w∗ + ŵr(p̂1, p̂2) + wr(p

∗
1, p
∗
2)) (D.23)

˙̂p2 = k2 (ŵ + w∗ − ŵr(p̂1, p̂2)− wr(p∗1, p∗2)− ŵt(p̂2)− wt(p∗2)) (D.24)

˙̂w = k3

([
Ψ̂c(ŵ) + Ψc(w

∗)
]

(p̂1 + p∗1)− (p̂2 + p∗2)
)

(D.25)

The equilibrium points (D.10)-(D.12) implies that wf (p
∗
1)−w∗+wr(p

∗
1, p
∗
2) =

0, w∗ − wr(p∗1, p∗2) − wt(p∗2) = 0 and that Ψc(w
∗)p∗1 − p∗2 = 0. (D.23)-(D.25)

becomes

˙̂p1 = k1 (ŵf (p̂1)− ŵ + ŵr(p̂1, p̂2)) (D.26)
˙̂p2 = k2 (ŵ − ŵr(p̂1, p̂2)− ŵt(p̂2)) (D.27)

˙̂w = k3

(
Ψ̂c(ŵ)(p̂1 + p∗1) + Ψc(w

∗)p̂1 − p̂2

)
(D.28)

D.5 Lyapunov Analysis for Zero Recycle Flow

The Lyapunov function

V (p̂1, p̂2, ŵ) =
1

2
Ψ∗c
k2k3

k1

p̂2
1 +

1

2
k3p̂

2
2 +

1

2
k2ŵ

2 (D.29)

where Ψ∗c = Ψc(w
∗), is positive de�nite and radially unbounded. Its deriva-

tive along the trajectories of the system (D.26)-(D.28) is

V̇ =
k2k3

k1

Ψ∗c p̂1
˙̂p1 + k3p̂2

˙̂p2 + k2ŵ ˙̂w

= k2k3Ψ∗c p̂1 [ŵf (p̂1)− ŵ + ŵr(p̂1, p̂2)]

+k2k3p̂2 [ŵ − ŵr(p̂1, p̂2)− ŵt(p̂2)]

+k2k3ŵ
[
Ψ̂c(ŵ)(p̂1 + p∗1) + Ψ∗c p̂1 − p̂2

]
= k2k3 [Ψ∗c p̂1ŵf (p̂1) + (Ψ∗c p̂1 − p̂2) ŵr (p̂1, p̂2)

−p̂2ŵt (p̂2) + ŵΨ̂c (ŵ) (p̂1 + p∗1)
]

(D.30)

Zero change in recycle means ŵr = 0, and that

V̇ = k2k3

[
Ψ∗c p̂1ŵf (p̂1)− p̂2ŵt (p̂2) + ŵΨ̂c(ŵ) (p̂1 + p∗1)

]
(D.31)
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We know that k2, k3,Ψ
∗
c > 0 and that p̂1 + p∗1 > 0 ∀ p̂1 ∈ D. The sector

properties of ŵf (p̂1) and ŵt(p̂2) implies that p̂1ŵf (p̂1) < 0 ∀ p̂1 ∈ D −
{p̂1 = 0} and that p̂2ŵt(p̂2) > 0 ∀ p̂2 ∈ D − {p̂2 = 0}. The term ŵΨ̂c(ŵ)
is negative de�nite if Ψ̂c(ŵ) belongs to sector (−∞, 0). And thats the case
during operation on a negative slope of the characteristic, or w > wΨc,max.
The result is that V̇ < 0 in D′ − {0}, where D′ = { [p1 p2 w]T ∈ R3 |
p1 < pupstream, p2 > max(p01, p1), wΨc,max < w < wstonewall}, and that the
origin of the recycle system (D.26)-(D.28) is asymptotically stable. (Theorem
4.1, Khalil (2002)) The simple result is summed up in the lemma below.

Lemma D.1 Given the recycle system

ṗ1 = k1 (wf − w + wr) (D.32)

ṗ2 = k2 (w − wr − wt) (D.33)

ẇ = k3 (Ψc (w) p1 − p2) (D.34)

independent of recycle �ow wr, with zero change in it, the system is asymp-
totically stable as long as the operating point of the compressor characteristic
is located in the negative slope area.

�
The result we're after is that the recycle system is asymptotically stable,
independent of change in recycle �ow, as long as we're operating on a negative
slope. We were not able to prove this here.

D.6 General Lyapunov Analysis

In the previous section we could only prove asymptotic stability when operat-
ing on a negative slope for zero change in recycle �ow. During simulations, it
seems like the recycle system is asymptotically stable, also during change in
recycle �ow, as long as we're operating on a negative slope of the character-
istic. But the system is very complex, and everything is dependent on each
other. Decreasing the recycle �ow would move the operating point towards
the surge line. It means that operating in the safe area on the character-
istic would implicitly mean that the recycle �ow and the throttle �ow are
�safely� tuned. Therefore, in this section, a more general stability conclu-
sion is attempted. Lets make another equilibrium shift of the compressor
characteristic

Ψ̂′c(ŵ, p̂1) , Ψc (ŵ + w∗)− Ψ∗cp
∗
1 + p̂1

p̂1 + p∗1
(D.35)
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and it is seen that this function has some interesting properties. It is two-
dimensionally centered at the origin, Ψ̂′c(0, 0) = Ψ∗c −Ψ∗c = 0, and it reduces
to (D.19) when p̂1 = 0.

The model (D.16)-(D.18) now becomes

˙̂p1 = k1 (ŵf (p̂1) + wf (p
∗
1)− ŵ − w∗ + ŵr(p̂1, p̂2) + wr(p

∗
1, p
∗
2)) (D.36)

˙̂p2 = k2 (ŵ + w∗ − ŵr(p̂1, p̂2)− wr(p∗1, p∗2)− ŵt(p̂2)− wt(p∗2)) (D.37)

˙̂w = k3

([
Ψ̂′c(ŵ, p̂1) +

Ψ∗cp
∗
1 + p̂1

p̂1 + p∗1

]
(p̂1 + p∗1)− (p̂2 + p∗2)

)
(D.38)

And the equilibrium points implies along with some calculation that

˙̂p1 = k1 (ŵf (p̂1)− ŵ + ŵr(p̂1, p̂2)) (D.39)
˙̂p2 = k2 (ŵ − ŵr(p̂1, p̂2)− ŵt(p̂2)) (D.40)

˙̂w = k3

(
Ψ̂′c(ŵ, p̂1)(p̂1 + p∗1) + p̂1 − p̂2

)
(D.41)

Using the Lyapunov function

V (p̂1, p̂2, ŵ) =
1

2

k2k3

k1

p̂2
1 +

1

2
k3p̂

2
2 +

1

2
k2ŵ

2 (D.42)

which is positive de�nite and radially unbounded, the derivative along the
trajectories of the system is now

V̇ =
k2k3

k1

p̂1
˙̂p1 + k3p̂2

˙̂p2 + k2ŵ ˙̂w

= k2k3p̂1 [ŵf (p̂1)− ŵ + ŵr(p̂1, p̂2)]

+k2k3p̂2 [ŵ − ŵr(p̂1, p̂2)− ŵt(p̂2)]

+k2k3ŵ
[
Ψ̂′c(ŵ, p̂1)(p̂1 + p∗1) + p̂1 − p̂2

]
= k2k3 [p̂1ŵf (p̂1)− (p̂2 − p̂1) ŵr (p̂1, p̂2)

−p̂2ŵt (p̂2) + ŵΨ̂′c(ŵ, p̂1) (p̂1 + p∗1)
]

(D.43)

We know from before that p̂1ŵf (p̂1) is negative de�nite and that −p̂2ŵt(p̂2) is
negative de�nite. Lets now investigate the properties of (p̂2 − p̂1) ŵr (p̂1, p̂2).
It can be written as

(p̂2 − p̂1) ŵr (p̂1, p̂2) = (p̂2 − p̂1) (wr(p̂1 + p∗1, p̂2 + p∗2)− wr(p∗1, p∗2))

= (p̂2 − p̂1)
(
cr
√
p̂2 + p∗2 − p̂1 − p∗1 − cr

√
p∗2 − p∗1

)
= crX

(√
X + p∗2 − p∗1 −

√
p∗2 − p∗1

)
= crXŵr(X) (D.44)
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whereX = p̂2−p̂1. We know that a function on the form f(x) =
√
x+ a−

√
a,

where x > −a and a > 0, belongs to sector (0,∞). It implies that ŵr(X)
belongs to sector (0,∞) since it is a function on that form. That means that
(D.44) will be positive, ∀ X in D − {p̂2 − p̂1 = 0}, and positive semide�nite
∀ X in D.

The last term inside the brackets of (D.43), which contains the two-dimensional
shifted compressor characteristic, can be written as

ŵΨ̂′c(ŵ, p̂1) (p̂1 + p∗1) = ŵ

(
Ψc(ŵ + w∗)− Ψ∗cp

∗
1 + p̂1

p̂1 + p∗1

)
(p̂1 + p∗1)

= ŵ (Ψc(ŵ + w∗)(p̂1 + p∗1)−Ψ∗cp
∗
1 − p̂1)

= ŵ (Ψc(w)p̂1 + Ψc(ŵ + w∗)p∗1 −Ψ∗cp
∗
1 − p̂1)

= ŵ ((Ψc(ŵ + w∗)−Ψ∗c) p
∗
1 + (Ψc(w)− 1) p̂1)

= ŵ
(

Ψ̂c(ŵ)p∗1 + kcp̂1

)
(D.45)

We know that the compressor characteristic Ψc(w) is always greater than 1
with our assumptions. That is, Ψc(w) > 1⇒ Ψc(w)−1 > 0⇒ kc > 0. When
the pressure in volume 1 is not changing, p̂1 = 0, (D.45) is negative de�nite
if Ψ̂c(ŵ) belongs to sector (−∞, 0). That is negative slope, as before.

There is another story when p1 is allowed to change. The question arises,
what kind of conditions will have to be imposed in order for (D.45) to be
negative de�nite? First of all, lets continue to assume that we're operating
on a negative slope and that Ψ̂c(ŵ) belongs to sector (−∞, 0). When ŵ is
negative Ψ̂c(ŵ)p∗1 will be positive. And as long as Ψ̂c(ŵ)p∗1 > −kcp̂1, (D.45)
will be negative. Similarly, when ŵ is positive Ψ̂c(ŵ)p∗1 will be negative. And
as long as Ψ̂c(ŵ)p∗1 < −kcp̂1, (D.45) will be negative. In other words, when ŵ
is negative, kcp̂1 will have to be lower bounded, and when ŵ is positive, kcp̂1

will have to be upper bounded. It can be summed up as |kcp̂1| < |Ψ̂c(ŵ)|p∗1
∀ p̂1, ŵ ∈ D − {p̂1 = 0, ŵ = 0}. The result is a bound on p̂1,

|p̂1| <
1

kc
|Ψ̂c(ŵ)|p∗1 (D.46)

Of course, a bound on p̂1 is not appropriate. However, there is a possibility
that (D.46) is a general property of the system (D.26)-(D.28).
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D.7 Coordinate Transformation

Consider the coordinate transformation

x1 =
1

k1

p̂1 +
1

k2

p̂2 (D.47)

x2 =
1

k3

ŵ (D.48)

x3 =
1

k2

p̂2 (D.49)

of the system (D.26)-(D.28). It makes the input we're going to use, wr,
only appear in one of the equations. This is achieved while conserving the
dynamics of the system by saving ˙̂p2. The new equations become

ẋ1 = ŵf (k1(x1 − x3))− ŵt(k2x3) (D.50)

ẋ2 = Ψ̂c(k3x2)(k1(x1 − x3) + p∗1) + Ψ∗ck1(x1 − x3)− k2x3 (D.51)

ẋ3 = k3x2 − ŵr(k1(x1 − x3), k2x3)− ŵt(k2x3) (D.52)

By using a Lyapunov function on the form

V (z) =
1

2
k1(x1 − x3)2 +

1

2
k3x

2
2 (D.53)

this procedure also failed to show stability of any kind.
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