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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Additive Manufacturing (AM) as a manufacturing process is increasingly implemented in manufacturing and is thus subjected to the high 
demands of industry. With the industrialization of AM technologies follows demands regarding not only dimensions and tolerances, but also 
mechanical properties, processing time and cost. The multi-objective optimization problems arising from AM is just another venue where 
Evolutionary Algorithms (EAs) are applied. This paper attempts to provide an overview of the current role of EAs in AM in order to make a 
discussion on the future prospects of EAs in the industry. 
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1. Introduction 

Over the last thirty years, Additive Manufacturing (AM) 
has developed from a rapid prototyping technology to a broad 
concept encompassing a variety of manufacturing 
technologies ranging from desktop 3D-printers for private 
use, to large industrial machines for high-end metal 
processing [1, 2]. AM is currently being implemented in 
industry both as a stand-alone process, as well as in tandem 
with traditional manufacturing technologies in hybrid 
manufacturing systems [3]. AM is, however still an immature 
process and the many challenges has sparked significant 
efforts in the research community for the optimization of the 
build process to improve part quality, repeatability and 
reliability [4, 5]. Mitigating these challenges further enables 
integration of AM in modern production systems and is vital 
for the continued growth of AM in manufacturing industry  
[6, 7]. 

This paper aims to review the current role of evolutionary 
algorithms (EAs) in AM systems to get an understanding of 
the future prospects of EAs in the AM discourse, and possible 
future developments of EAs in AM industry. 

1.1. Additive Manufacturing 

Since the first Stereolithography Apparatus (SLA) was 
patented in 1986 [8], various methods for fabricating three 
dimensional objects in a layered fashion has been developed, 
resulting in a total of seven AM process categories as defined 
by ISO/ASTM 52900:2015 [9]: 

 
 Binder Jetting 
 Directed Energy Deposition 
 Material Extrusion 
 Material Jetting 
 Powder Bed Fusion 
 Sheet Lamination 
 Vat Photopolymerization 
 

The above categorization covers all current AM 
technologies regardless of build material, and they all involve 
sequential addition of material with the accompanying 
benefits and drawbacks [2]. The layered manner of part 
fabrication results in anisotropic material properties, which is 
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Salonitis et al. used a GA to reduce part weight by 
optimizing the strut diameter in a lattice structure with 
constraints formulated as maximum displacement [22]. GA 
can also be found in TO of concrete structures enabled by 
additive deposition of concrete [21]. Other efforts utilize PSO 
for design of cellular structures in AM [23, 24], and the 
performance of PSO is found to exceed that of the Levenberg- 
Marquardt method which is widely used [24]. 

EAs can also be used to create the design from scratch with 
a process known as generative design. Dhokia, Essink, Flynn 
and Goguelin demonstrates how a termite nest building 
algorithm inspired by Ant Colony Optimization is used to 
generate a design given some loading conditions, a build 
envelope and some general objectives [25, 26]. Yao et al. 
applied the Non-dominated Sorting Genetic algorithm 
(NSGA-II) of Deb et al. [27] to aid the designer in selecting 
proper materials, components, AM technology and 
dimensional parameters [28]. GAs have also proven useful for 
assessing design feasibility [29]. 

AM enables new functionally graded materials, allowing 
two or more materials to be seamlessly combined in a single 
part [20]. As the multimodal nature of the solution space 
makes it difficult for numerical methods to obtain optimal 
results, EAs are often utilized to determine material 
distributions. Kou et al. demonstrates the ability of PSO to 
design functionally graded materials [30], and a case study on 
functionally graded materials in a dental implant found that 
GA and SA achieve better results than the more traditional 
response surface method [31]. Hiller and Lipson reports 
interesting work on automatic design of soft robots building 
on functionally graded materials for ductility and applies a 
GA [32]. 

2.2. Optimization of part build orientation 

The problem of orientation in AM can be traced back to 
1994 [33], but it took another ten years before Thrimurthulu, 
Pandey and Reddy proposed a solution using a GA and the 
weighted sum method [34]. Later the same year they used the 
NSGA-II to find the Pareto front [35]. Both of these 
applications was applied to Fused Deposition Modelling 
(FDM) considering surface roughness and build time [34, 35]. 

In addition to FDM [36-39], later applications of EAs also 
includes other AM technologies such as SLA [40-43], 
Selective Laser Sintering (SLS) [44, 45], Selective Laser 
Melting (SLM) [46, 47], and combinations of SLA, SLS and 
FDM [48, 49]. Furthermore, other objectives are considered 
for the optimization problem such as material use [44, 46], 
volumetric error [37, 39, 50-52], support structures [36, 43, 
46, 47, 52] and mechanical properties [36, 47]. The objective 
of minimizing post processing time and cost by GA was 
proposed by Kim and Lee who considered part height, surface 
roughness and support structures in SLA [42]. Zhang et al. 
used a GA to simultaneously optimize the orientation of 16 
parts for minimizing build cost in multi-part production with a 
total of five objectives [41]. A recent optimization scheme 
also using GA was proposed by Brika et al. where eight 
objectives was considered in SLM including yield strength, 
tensile strength and elongation, in addition to typical 

objectives such as build time, surface roughness and support 
structures [47]. 

It is clear that GA is the most widely used EA in the field 
of part build orientation, but examples of other population 
based algorithms do exist. Padhye, Deb and Kalia compared 
the performance of NSGA-II with a multi-objective PSO and 
found that the latter was outperformed, both in terms of 
execution time and quality of results [38, 45]. A more recent 
application of PSO is proposed by Barclift et al. who applied 
the algorithm to minimize cost in SLM [46]. 

Other implementations include the unconventional DNA-
based EA proposed by Tyagi et al. for minimizing stair 
stepping and build time [39]. 

2.3. Placement of parts in the build space 

The placement of parts in the AM build space, also known 
as layout planning, nesting or part packing, is important to 
reduce build time and improve efficiency. EAs was applied to 
the packing problem at an early stage with GA being applied 
to SLA already in 1994 for the sequential packing of boxes in 
two and three dimensions [53]. A GA directed at SLS was 
introduced in 1997 working on bounding boxes [54] and later 
improved to utilize multiple CPUs [55]. GAs was later used in 
two dimensions for packing parts according to their 
projections onto the build plane [12, 56, 57].  

Some years after the first GA, Dickinson and Knopf 
applied SA to the packing problem [58, 59] and inspired 
further applications of SA in the field [60]. More recently, a 
re-seeding mechanism in SA was proposed by Cao et al. [61]. 
The re-seeding is a measure to prevent pre-mature 
convergence to a sub-optimal solution manifested as a local 
optimum in the solution space. 

Zhang et al. [12] argues that orientation should be 
considered in the packing process to ensure part quality. GAs 
are used to solve this problem both for two [12, 57] and three 
dimensions [11, 62-64]. 

2.4. Build parameter optimization 

Rong-Ji et al. used a combination of GA and Artificial 
Neural Network (ANN) to optimize the process parameters of 
SLS considering part shrinkage [65]. The relations between 
seven processing parameters and part shrinkage was described 
by ANN, and later used as input for the GA which optimized 
the parameter settings. GA has also been applied in Direct 
Metal Laser Sintering to optimize hatch direction to improve 
material properties [66]. The melt pool of Laser Direct Metal 
Deposition is shown to be predictable by ANN [67], and PSO 
was proposed by Mozaffari et al. in combination with a Self-
organizing Pareto based EA for optimizing process 
parameters [68]. A modified version of the NSGA-II has also 
been proposed to optimize final part properties [69]. 

The tool path in Laminated Object Manufacturing is 
similar to that in conventional machining operations and can 
also be optimized by GA [70]. 

The surface quality of FDM has been optimized by 
applying ANN in combination with bacterial foraging 
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one of the major hurdles to reliability and quality assurance 
[5]. Other defects and inaccuracies observed in AM includes 
material failures, stair stepping, surface roughness and 
dimensional inaccuracies, all of which can be mitigated with 
proper machine settings and part build orientation [1, 2, 10]. 

No matter how significant, part properties is only one of 
several challenges in AM. The long build time of AM 
compared to its alternative conventional technologies 
continues to be a compelling argument against the adoption of 
AM in mass production. On the other hand, has AM large 
potential for manufacturing of very complex components.  
The advanced geometries enabled by AM further complicates 
the already complex problem of part placement in the build 
chamber [11]. Optimization of geometry, process planning, 
and layout optimization remains crucial to increase the 
efficiency and reduce lead time of AM [12]. Such problems 
are not trivial, and the possibility of mass customization 
indicates that optimization problems must be solved on a 
regular basis.  

The generic process of additive manufacturing can be 
decomposed into eight discrete steps from part design to part 
application as illustrated in Fig. 1 [1]. Depending on the 
vendor of the AM machine and software, part orientation and 
placement may be conducted either prior to machine setup, or 
in the same processing step. The final step of application may 
not imply end use but could also be additional treatment such 
as priming or painting, or it could be part of an assembly e.g. 
in a hybrid manufacturing system. 

The need for optimization in AM is perhaps most apparent 
in the earlier stages of design and process planning, but later 
stages of the AM process chain are also important and indeed 
valid for optimization efforts. The development of real-time 
closed loop feedback control systems for in-build process 
optimization is an important research area for improved part 
quality [13].  

1.2. Evolutionary Algorithms 

In this paper, an EA is defined in accordance with the 
definition of Dan Simon as “[…] an algorithm that evolves a 
problem solution over many iterations” [14, p. 3]. This 
generally includes population-based and bio-inspired 
metaheuristics and, perhaps more controversial, swarm 
intelligence. This definition further places EAs under the 
umbrella of artificial intelligence as a subset of soft 
computing and related to machine learning [14]. 

Finding the exact solution to an optimization problem is a 
complicated task that has been relying on computers for half a 
century [15]. As the complexity of optimization problems 
increases, the means to solve them inevitably do the same. 
One measure to overcome the complexity of optimization 

problems is to take inspiration from how optimization 
problems are solved in nature. EAs were originally developed 
by biologists in the late 50s and early 60s to simulate 
biological evolution [16]. However, the algorithms turned out 
to be well suited for optimization problems, and so the 
Genetic Algorithm (GA) was applied to optimization 
problems. This created the foundation for other algorithms 
such as Genetic Programming (GP) and Evolutionary 
Programming, and also more recent concepts such as 
Simulated Annealing (SA) and swarm intelligence including 
Particle Swarm Optimization (PSO) and Ant Colony 
Optimization [14]. 

The basis of any EA is a general architecture inducing 
certain properties and basic abilities providing wide 
applicability in problem solving. Yet, the algorithms are 
adaptable, and it is advised to include problem specific 
information to improve performance [14]. 

One of the great contributions of EAs is their ability to 
maintain a population of candidate solutions, effectively 
exploring different areas of the solution space simultaneously. 
When considering multiple contradicting objectives, the 
complexity of optimization becomes increasingly difficult as a 
trade-off must be made. This trade-off can either be 
conducted in one of two ways. The weighted sum method 
effectively converts a multi-objective problem into a single-
objective problem by normalizing the objectives before they 
are multiplied with a scaling factor. However, the result will 
be biased by the weights assigned to the objectives and thus 
the validity of results are questionable. 

Another approach strongly advocated in more recent 
research, is to allow the optimization algorithm to converge to 
multiple solutions constituting the Pareto front. The Pareto 
front is the set of non-dominated solutions, i.e. solutions 
where an improvement in one objective has a negative effect 
on at least one other objective. An educated selection can then 
be made among the presented set of non-dominated solutions 
resulting in a more fitting solution [17]. 

2. Current situation 

EAs have been applied to a number of problems in AM 
ranging from the design stage through process planning to 
machine setup [6]. The following section provides a brief 
overview of current applications of EAs in AM systems. 

2.1. Design for Additive Manufacturing 

AM relieves designers of traditional manufacturing 
constraints, and new AM-specific constraints are imposed [2]. 
This calls for a paradigm shift from traditional design for 
manufacture and assembly, to design for AM (DfAM) [1, 18]. 

GAs have been extensively used in engineering design at 
an early stage outside the AM domain, and a thorough review 
of early use cases is provided by Renner and Ekárt [19]. The 
geometric freedom available in AM makes it possible to 
design cellular structures and topologically optimized (TO) 
parts unattainable by conventional methods [20]. The 
complex structures of such designs make EAs a good tool for 
computer-aided design [21]. 

Fig. 1. Typical additive manufacturing processing steps. Adapted from [1]. 
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valid for optimization efforts. The development of real-time 
closed loop feedback control systems for in-build process 
optimization is an important research area for improved part 
quality [13].  

1.2. Evolutionary Algorithms 

In this paper, an EA is defined in accordance with the 
definition of Dan Simon as “[…] an algorithm that evolves a 
problem solution over many iterations” [14, p. 3]. This 
generally includes population-based and bio-inspired 
metaheuristics and, perhaps more controversial, swarm 
intelligence. This definition further places EAs under the 
umbrella of artificial intelligence as a subset of soft 
computing and related to machine learning [14]. 

Finding the exact solution to an optimization problem is a 
complicated task that has been relying on computers for half a 
century [15]. As the complexity of optimization problems 
increases, the means to solve them inevitably do the same. 
One measure to overcome the complexity of optimization 

problems is to take inspiration from how optimization 
problems are solved in nature. EAs were originally developed 
by biologists in the late 50s and early 60s to simulate 
biological evolution [16]. However, the algorithms turned out 
to be well suited for optimization problems, and so the 
Genetic Algorithm (GA) was applied to optimization 
problems. This created the foundation for other algorithms 
such as Genetic Programming (GP) and Evolutionary 
Programming, and also more recent concepts such as 
Simulated Annealing (SA) and swarm intelligence including 
Particle Swarm Optimization (PSO) and Ant Colony 
Optimization [14]. 

The basis of any EA is a general architecture inducing 
certain properties and basic abilities providing wide 
applicability in problem solving. Yet, the algorithms are 
adaptable, and it is advised to include problem specific 
information to improve performance [14]. 

One of the great contributions of EAs is their ability to 
maintain a population of candidate solutions, effectively 
exploring different areas of the solution space simultaneously. 
When considering multiple contradicting objectives, the 
complexity of optimization becomes increasingly difficult as a 
trade-off must be made. This trade-off can either be 
conducted in one of two ways. The weighted sum method 
effectively converts a multi-objective problem into a single-
objective problem by normalizing the objectives before they 
are multiplied with a scaling factor. However, the result will 
be biased by the weights assigned to the objectives and thus 
the validity of results are questionable. 

Another approach strongly advocated in more recent 
research, is to allow the optimization algorithm to converge to 
multiple solutions constituting the Pareto front. The Pareto 
front is the set of non-dominated solutions, i.e. solutions 
where an improvement in one objective has a negative effect 
on at least one other objective. An educated selection can then 
be made among the presented set of non-dominated solutions 
resulting in a more fitting solution [17]. 

2. Current situation 

EAs have been applied to a number of problems in AM 
ranging from the design stage through process planning to 
machine setup [6]. The following section provides a brief 
overview of current applications of EAs in AM systems. 

2.1. Design for Additive Manufacturing 

AM relieves designers of traditional manufacturing 
constraints, and new AM-specific constraints are imposed [2]. 
This calls for a paradigm shift from traditional design for 
manufacture and assembly, to design for AM (DfAM) [1, 18]. 

GAs have been extensively used in engineering design at 
an early stage outside the AM domain, and a thorough review 
of early use cases is provided by Renner and Ekárt [19]. The 
geometric freedom available in AM makes it possible to 
design cellular structures and topologically optimized (TO) 
parts unattainable by conventional methods [20]. The 
complex structures of such designs make EAs a good tool for 
computer-aided design [21]. 

Fig. 1. Typical additive manufacturing processing steps. Adapted from [1]. 
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variations of EAs are found in use cases. It is expected that 
future applications derive advantage from increasing 
computational power which enables new algorithms to be 
more sophisticated and precise. 

EAs are already present in design applications but is likely 
to become even more important as hybrid manufacturing 
becomes more common in industry. The complexity induced 
by combining additive and subtractive technologies inspires 
for increased exploration of EAs in the AM domain. 

Finally, closed loop process control and optimization by 
machine learning could be of major importance in the effort 
towards industrialization of AM. Part quality and repeatability 
is vital to inspire wide spread implementation of AM in the 
manufacturing industry. EAs are crucial tools in the 
optimization processes necessary to achieve this goal, and 
collaboration between academia and industry will be the final 
step in bridging the gap from research to implementation. 
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optimization algorithm [71], and an improved ANN based on 
PSO and the Imperialist Competitive Algorithm [72]. 

Rao and Rai used their Teaching-Learning Based 
Optimization EA for optimizing the compressive strength in 
FDM and achieved better performance compared with GA 
and a PSO algorithm [73]. A non-dominated sorting version 
of PSO was also applied to a multi-objective problem and 
performed similarly to NSGA-II. 

Vijayaraghavan et al. proposed using GP in FDM to enable 
offline prediction of final part properties and achieved results 
comparable to ANN and support vector regression [74]. A 
similar effort is found in [75] where GP is proposed for 
modelling characteristics of SLS, and in [76] where GP is 
used to model the bead size in Wire and Arc AM. 

2.5. Other applications in additive manufacturing systems 

Ewald et al. used a mixed integer GA to find the most cost 
effective solution for hybrid manufacturing using wrought 
material as a basis for Laser Metal Deposition [77]. The single 
objective GA varied the size, orientation and position of the 
work piece to obtain the most economical work distribution 
between conventional milling and additive manufacturing. 

Xu et al. applied a GA to the problem of adaptive part 
slicing for improved surface roughness in SLA. Their 
algorithm considered horizontal sections of the STL model 
sequentially and determined the slice thickness for each 
section independently of neighboring sections. The benefit of 
an EA became apparent with increasing geometric complexity 
as the number of local optima increased drastically [78]. 

3. Trends and future prospects 

New and better applications of EAs are still published 
regularly even 25 years after its initial introduction to the field 
of AM. Based on the literature presented in the previous 
section, it is apparent that few variations of EAs are 
documented in the literature as most efforts focus on GAs. 
Furthermore, a rather limited range of technologies and 
materials have been subjected to EAs in the literature except 
for FDM which is generally quite well covered. Future 
developments should contribute to closing this gap by testing 
of new algorithms on different technologies and materials. 

3.1. Variations of evolutionary algorithms 

The long history of GAs may explain why this is such a 
popular method even though closely related metaheuristics 
such as Evolutionary Programming and Evolution Strategies 
are not to be found anywhere in AM discourse, and GP is only 
found to be used by a single group of researchers [74-76]. The 
meta-perspective of these methods facilitates flexibility and 
might enable a single solution for multiple technologies. This 
contradicts the recommendation of tailoring EAs to specific 
problems to improve performance [14]. 

Other variations of EAs may be introduced in the field of 
AM as they mature over the years to come. New EAs are 
proposed with different inspirations, most of which are bio-
inspired and draw parallels to natural optimization processes 

e.g. Ant Colony Optimization and Bacterial Foraging 
Optimization. An argument could be made that separating the 
algorithm from its original biological inspiration may be the 
path to more effective solutions as they relieve the developer 
from constraints imposed by the biological origins of the 
algorithm. 

History show that increasing computational power enables 
more complex algorithms with more constraints, objectives 
and parameters. Part packing is a good example where the 
problem has been simplified due to computational limitations. 
With more power, comes more possibilities as it not only 
facilitates details in optimization, but also enables the 
consideration of more parameters and constraints. Future 
applications of EAs in AM are likely to benefit from 
advancements in computational power and generally produce 
results of higher quality [6]. 

3.2. Processes and materials 

The literature on EAs in AM is dominated by the plastic 
processing technologies SLA, FDM and SLS. The large 
players in industry are however often primarily interested in 
high value metal applications where mechanical and 
geometrical tolerances are paramount [7]. The reasons why 
there are so few use cases in metal AM is surely many, but 
one major factor is the need for establishing process 
knowledge and discovery of causal relationships between 
process parameters and final part properties. With better 
understanding of the process, better predictions can be made 
on part properties which enables EAs to be applied to 
optimize process parameters. 

The application of machine learning could play a major 
role in the optimization of individual AM machines settings. 
The customization of process parameters for a single machine 
or even a specific part is made possible through e.g. Artificial 
Neural Networks. Further advances could be achieved if 
knowledge gained from one process could be transferred to 
another. The extraction of process knowledge from one 
machine to another without human involvement is an 
interesting area of future research which requires 
computational intelligence. 

3.3. Other prospects 

Integration of AM in industrial environments is likely to 
bring about more hybrid manufacturing solutions where AM 
is used together with conventional manufacturing 
technologies. EAs have already been used to aid in process 
planning for hybrid systems [77]. However, designing for 
hybrid manufacturing could bring about previously unknown 
issues where EAs are good problem solvers due to the 
complex and multimodal nature of real-world problems. 

4. Concluding remarks 

EAs are popular tools for optimization of complex multi-
objective problems in the AM domain related to design, 
process planning and machine setup. Many applications of 
GA and PSO are present in the literature, but rather few 
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variations of EAs are found in use cases. It is expected that 
future applications derive advantage from increasing 
computational power which enables new algorithms to be 
more sophisticated and precise. 

EAs are already present in design applications but is likely 
to become even more important as hybrid manufacturing 
becomes more common in industry. The complexity induced 
by combining additive and subtractive technologies inspires 
for increased exploration of EAs in the AM domain. 

Finally, closed loop process control and optimization by 
machine learning could be of major importance in the effort 
towards industrialization of AM. Part quality and repeatability 
is vital to inspire wide spread implementation of AM in the 
manufacturing industry. EAs are crucial tools in the 
optimization processes necessary to achieve this goal, and 
collaboration between academia and industry will be the final 
step in bridging the gap from research to implementation. 
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optimization algorithm [71], and an improved ANN based on 
PSO and the Imperialist Competitive Algorithm [72]. 

Rao and Rai used their Teaching-Learning Based 
Optimization EA for optimizing the compressive strength in 
FDM and achieved better performance compared with GA 
and a PSO algorithm [73]. A non-dominated sorting version 
of PSO was also applied to a multi-objective problem and 
performed similarly to NSGA-II. 

Vijayaraghavan et al. proposed using GP in FDM to enable 
offline prediction of final part properties and achieved results 
comparable to ANN and support vector regression [74]. A 
similar effort is found in [75] where GP is proposed for 
modelling characteristics of SLS, and in [76] where GP is 
used to model the bead size in Wire and Arc AM. 

2.5. Other applications in additive manufacturing systems 

Ewald et al. used a mixed integer GA to find the most cost 
effective solution for hybrid manufacturing using wrought 
material as a basis for Laser Metal Deposition [77]. The single 
objective GA varied the size, orientation and position of the 
work piece to obtain the most economical work distribution 
between conventional milling and additive manufacturing. 

Xu et al. applied a GA to the problem of adaptive part 
slicing for improved surface roughness in SLA. Their 
algorithm considered horizontal sections of the STL model 
sequentially and determined the slice thickness for each 
section independently of neighboring sections. The benefit of 
an EA became apparent with increasing geometric complexity 
as the number of local optima increased drastically [78]. 

3. Trends and future prospects 

New and better applications of EAs are still published 
regularly even 25 years after its initial introduction to the field 
of AM. Based on the literature presented in the previous 
section, it is apparent that few variations of EAs are 
documented in the literature as most efforts focus on GAs. 
Furthermore, a rather limited range of technologies and 
materials have been subjected to EAs in the literature except 
for FDM which is generally quite well covered. Future 
developments should contribute to closing this gap by testing 
of new algorithms on different technologies and materials. 

3.1. Variations of evolutionary algorithms 

The long history of GAs may explain why this is such a 
popular method even though closely related metaheuristics 
such as Evolutionary Programming and Evolution Strategies 
are not to be found anywhere in AM discourse, and GP is only 
found to be used by a single group of researchers [74-76]. The 
meta-perspective of these methods facilitates flexibility and 
might enable a single solution for multiple technologies. This 
contradicts the recommendation of tailoring EAs to specific 
problems to improve performance [14]. 

Other variations of EAs may be introduced in the field of 
AM as they mature over the years to come. New EAs are 
proposed with different inspirations, most of which are bio-
inspired and draw parallels to natural optimization processes 

e.g. Ant Colony Optimization and Bacterial Foraging 
Optimization. An argument could be made that separating the 
algorithm from its original biological inspiration may be the 
path to more effective solutions as they relieve the developer 
from constraints imposed by the biological origins of the 
algorithm. 

History show that increasing computational power enables 
more complex algorithms with more constraints, objectives 
and parameters. Part packing is a good example where the 
problem has been simplified due to computational limitations. 
With more power, comes more possibilities as it not only 
facilitates details in optimization, but also enables the 
consideration of more parameters and constraints. Future 
applications of EAs in AM are likely to benefit from 
advancements in computational power and generally produce 
results of higher quality [6]. 

3.2. Processes and materials 

The literature on EAs in AM is dominated by the plastic 
processing technologies SLA, FDM and SLS. The large 
players in industry are however often primarily interested in 
high value metal applications where mechanical and 
geometrical tolerances are paramount [7]. The reasons why 
there are so few use cases in metal AM is surely many, but 
one major factor is the need for establishing process 
knowledge and discovery of causal relationships between 
process parameters and final part properties. With better 
understanding of the process, better predictions can be made 
on part properties which enables EAs to be applied to 
optimize process parameters. 

The application of machine learning could play a major 
role in the optimization of individual AM machines settings. 
The customization of process parameters for a single machine 
or even a specific part is made possible through e.g. Artificial 
Neural Networks. Further advances could be achieved if 
knowledge gained from one process could be transferred to 
another. The extraction of process knowledge from one 
machine to another without human involvement is an 
interesting area of future research which requires 
computational intelligence. 

3.3. Other prospects 

Integration of AM in industrial environments is likely to 
bring about more hybrid manufacturing solutions where AM 
is used together with conventional manufacturing 
technologies. EAs have already been used to aid in process 
planning for hybrid systems [77]. However, designing for 
hybrid manufacturing could bring about previously unknown 
issues where EAs are good problem solvers due to the 
complex and multimodal nature of real-world problems. 

4. Concluding remarks 

EAs are popular tools for optimization of complex multi-
objective problems in the AM domain related to design, 
process planning and machine setup. Many applications of 
GA and PSO are present in the literature, but rather few 
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