
Highly Efficient Pattern Mining Based on Transaction Decomposition

Youcef Djenouri1, Jerry Chun-Wei Lin2, Kjetil Nørvåg1, and Heri Ramampiaro1
1 Dept. of Computer Science, NTNU, Trondheim, Norway

2 Dept. of Computing, Mathematics, and Physics, HVL, Bergen, Norway
{youcef.djenouri,noervaag,heri}@ntnu.no, jerrylin@ieee.org

Abstract—This paper introduces a highly efficient pattern min-
ing technique called Clustering-Based Pattern Mining (CBPM).
This technique discovers relevant patterns by studying the
correlation between transactions in transaction databases using
clustering techniques. The set of transactions are first clus-
tered using the k-means algorithm, where highly correlated
transactions are grouped together. Next, the relevant patterns
are derived by applying a pattern mining algorithm to each
cluster. We present two different pattern mining algorithms,
one approximate and one exact. We demonstrate the efficiency
and effectiveness of CBPM through a thorough experimental
evaluation.

Index Terms—Clustering, Pattern Mining, Decomposition,
Scalability.

1. Introduction

Frequent Pattern Mining is a data mining technique
that finds frequently co-occurring items in a database, and
accordingly provides relevant patterns. In practice, differ-
ent database representation may be observed, ranging from
Boolean databases to sequence databases. Various pattern
mining techniques have been reported in the literature [1].
Frequent Itemset Mining (FIM) is the one of the most well-
known of these techniques, which has been applied in sev-
eral practical problem-solving applications. As an example,
considering an information retrieval problem, the collection
of documents is transformed into a transaction database,
where each document is considered as a transaction and
each term as an item. In this context, mining techniques,
such as FIM, would allow to study different correlations
between the terms of documents. For instance, if the pattern
(Data, Engineering) is relevant, a high dependence exists
between the terms Data and Engineering. Hence, if the
user is looking for documents related to Data, it would
be useful to also return documents related to Engineering.
Unfortunately, pattern mining techniques for large databases,
such as FIM, suffer from long processing time (runtime). To
reduce the runtime of pattern mining, several optimization
techniques have been proposed [2, 3]. However, these opti-
mization techniques are incapable of dealing with databases
containing a huge number of items, where only few of the
relevant patterns are displayed to the end user. We con-
template that these techniques are inefficient because they

consider the whole database in the mining process. In this
paper, we propose a technique based on splitting the problem
into several small sub-problems, as independent as possible,
and then study and explore the correlation between them.
Here, we introduce a new framework called clustering-based
pattern mining (CBPM). In summary, the main contributions
of this work are as follows: i) We use the k-means algorithm
to decompose the transaction database into highly correlated
clusters, where the aim is to minimize the number of shared
items between clusters. ii) We propose two novel algorithms
that use the clusters for pattern mining: an exact one that
takes into account any shared items between clusters, and
an approximate one that does not need to take into account
the shared items. We then investigate the impacts of apply-
ing both the exact and the approximate algorithms on the
mining effectiveness, as well as efficiency. iii) Finally, we
integrate our approach with the well-known FIM PrePost+
algorithm [4]. The results on large datasets show that our
approach outperforms the PrePost+ algorithm in terms of
runtime. The results also demonstrate that the ratio of the
satisfied patterns is more than 90% for the approximation-
based algorithm.

The remainder of the paper is organized as follows.
Section 2 gives an overview of related work on the most
important pattern mining algorithms. A detailed explanation
of our CBPM framework is given in Section 3. Section 4
presents the performance evaluation. Finally, Section 5 con-
cludes the paper and outline our future work.

2. Related Work

Pattern mining problem has been largely studied over
the past three decades. Various pattern mining techniques
have been reported, including frequent, high utility and
sequential patterns [5, 6, 7]. Frequent pattern mining is the
first pattern mining problem which extracts all patterns that
exceed the minimum support threshold. The main limitation
of the conventional frequent pattern mining algorithms is
that only binary cases could be mined. Several algorithms
have been proposed for solving the frequent pattern mining
problem [4, 8, 9, 10]. Agrawal et al. [8] proposed the
Apriori algorithm, where candidate patterns are generated
incrementally and recursively. To generate k-sized patterns
as candidates, the algorithm calculates and combines the
frequent (k-1)-sized patterns. This process is repeated until

no candidate patterns are obtained in an iteration. Han
et al. [9] proposed the FP-Growth algorithm, which uses
a compressed FP-tree structure for mining a complete set
of frequent patterns without candidate generation. The al-
gorithm consists of two phases: (i) construct an FP-tree
that encodes the dataset by reading the database and map-
ping each transaction onto a path in the FP-tree, while
simultaneously counting the support of each item and, (ii)
extract frequent patterns directly from the FP-tree using a
bottom-up approach to find all possible frequent patterns
ending with a particular item. Deng and Lv [4] proposed
PrePost+ algorithm, by employing a scalable data structure
to represent itemsets; and adopting single path property of
this structure to directly discovery frequent itemsets without
generating candidate itemsets. All these algorithms suffer
in terms of the runtime performance, as the search space
is not well pruned, especially for low minimum support
values. In order to improve the runtime performance of the
pattern mining approaches, several techniques have been
proposed, such as parallelization and metaheuristics. The
parallelism operates based on exploiting local parallelism
or distributed computing [2, 11], while the metaheuristics
operates based on evolutionary and/or swarm intelligence
approaches [3]. However, these optimization techniques are
incapable of dealing with large transaction databases, where
only a few number of interesting patterns may be discovered.
To deal with this challenging issue, we present in this paper
a new framework for pattern mining algorithms. This new
framework explores decomposition techniques for determin-
ing relevant patterns. Similar ideas have been investigated
in the database community, in particular in the areas of
record linkage and entity resolution [12, 13, 14, 15]. The
aim is to apply blocking-based techniques such as canopy
clustering [13], suffix-blocking [12, 14], and Q-gram based
indexing [15], to derive the dierent records that represent
the same real-world object in a given database, and check
if such a real-world object may be determined by a single
record. These methods need domain specific knowledge and
require complete redesign for pattern mining applications. In
this paper, we attempt to follow these concepts by proposing
a new framework for improving the runtime performance of
the pattern mining algorithms.

3. Clustering-Based Pattern Mining (CBPM)

This section presents the principle of the CBPM frame-
work, and describes its components in detail.

3.1. Overview

Here, we provide a general framework for the pattern
mining for finding different dependencies between transac-
tions, which will be used for efficient improvement of the
mining process. This framework is illustrated in Figure 1,
and is composed of two main steps: clustering and mining.
Clustering: In this step, a transaction database is divided
into a set of homogeneous clusters using clustering tech-
niques, where a cluster may be viewed as a subset of trans-

Figure 1. The CBPM framework.

actions of the whole set of transactions. We take advantage
of the clustering technique to extract the relevant knowledge,
which will be used by the pattern mining algorithms. The
patterns shared by two clusters constitute a shared set. The
aim is to minimize the size of the shared sets, while having
in the same cluster transactions that are highly correlated,
i.e., transactions that share the maximum number of items.
Mining: The mining process is applied on the clusters found
in the previous step. In this context, two main approaches
have been investigated, i.e., the approximation-based and
exact. In the approximate approach, the clusters are mined to
derive partial solutions, which are then merged into a global
solution. In the exact approach, the mining process is applied
on both the clusters and the shared sets, by aggregating these
patterns on all clusters.

3.2. Clustering

The set of transactions T = {t1, t2...tm} is partitioned
into k disjoint clusters C = {C1, C2...Ck}, where each clus-
ter Ci is a subset of the transactions in T . The set of items
in Ci is denoted I(Ci) =

⋃
tj∈Ci

I(tj), where I(tj) denotes

the set of items in transaction tj . The aim of clustering the
transactions is to minimize the shared items (items occurring
in more than one cluster) between the clusters. One way to
solve this issue is to use a partitioning clustering algorithm.
In this work, we adapt the k-means algorithm for clustering
of the transaction database. In the following, this adaptation
is presented in more detail.

Similarity computation. The similarity measure between
two transactions ti and tj is computed as

D(ti, tj) = max(|I(ti)|, |I(tj)|)− (|I(ti) ∩ I(tj)|) (1)

Centroid updating. Let us consider the set of transactions
in cluster Ci = {t(i)1 , t

(i)
2 , ..., t

(i)
|Ci|}, the aim is to find the

gravity center of this set, which is also a transaction. Inspired
by the centroid formula developed in [16], we compute
the centroid µi. The frequency of each item is calculated
for all the transactions of the cluster Ci. The length of
the transaction center, is denoted by li, and corresponds to
the average number of items of all transactions in Ci as

li =
∑|Ci|

j=1 |I(t(i)j)|
|Ci| . Afterwards, the items of transactions in

Ci are sorted according to their frequency, and only the li

most frequent items are assigned to µi, as µi = {j|j ∈ Fli}
where Fli denotes the set of the li frequent items of the
cluster Ci.

Shared items determination. After constructing the clus-
ters of transactions, we have to determine the set of items
shared between the clusters. We define the set of shared
items, denoted by S, as S =

⋃k
i=1,j>i I(Ci) ∩ I(Cj).

3.3. Mining Process

This step benefits from the knowledge extracted in
the previous step. Instead of mining the whole transaction
database, each cluster of transactions are handled separately.
In this context, the two following approaches are proposed.

Approximate algorithm. In this approach, the clusters are
handled separately without considering the shared items.
The local relevant patterns are first extracted by applying the
mining process on each cluster. The merging function is then
used to derive the global relevant patterns. This function is
constituted of the concatenation of all local relevant patterns.
Such an approach returns partial relevant patterns from the
whole transaction database. This is due to the fact that the
shared items were not taken into account in the mining
process.

Exact algorithm. This approach considers the shared items
as well as the clusters in the mining process. This allows to
discover all relevant patterns from the whole transactions.
The mining process is first applied on each cluster of trans-
actions, to extract the local relevant patterns. The possible
candidate patterns are then generated from the shared items.
For each generated pattern, the aggregation function (see
Def. 3.1 below) is then used to evaluate this pattern in the
whole transaction database.
Definition 3.1. We define an aggregation function of the

pattern p in the clusters of the transactions C by

A(p) =
k∑

i=1

Support(Ci, I(Ci), p)

Note that Support(Ci, I(Ci), p) =
|p|Ci,I(Ci)

|Ci| , where
|p|Ci,I(Ci) is the number of transactions in Ci containing the
pattern p. The relevant patterns of the shared items are then
concatenated with the local relevant patterns of the clusters
to derive the global relevant patterns of the whole transaction
database.

4. Performance Evaluation

We carried out a series of experiments to evaluate the
CBPM framework. The CBPM java source code is inte-
grated in the frequent itemset mining algorithm [4]. All
experiments have been performed on a computer with 64
bit core i7 processor running Windows 10 and having 16
GB of RAM. We ran the experiments using well-known

TABLE 1. DATASETS DESCRIPTION.

Name Trans.Size Item Size Aver. Size

Accident 340,183 468 33.8

Chess 3,196 75 37.0

Connect 67,557 129 43.0

Mushroom 8,124 119 23.0

Pumsb 49,046 2,113 74.0

30 32 34 36 38 40 42 44 46 48 50

(100-minsup)%

0

1

2

3

4

5

6

7

8

9

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

75 80 85 90 95

(100-minsup)%

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

(pumsb) (mushroom)

40 42 44 46 48 50 52 54 56 58 60

(100-minsup)%

2

3

4

5

6

7

8

9

10

11

12

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

65 70 75 80 85

(100-minsup)%

0

5

10

15

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

(connect) (chess)

90 91 92 93 94 95 96 97 98

(100-minsup)%

0

10

20

30

40

50

60

70

80

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8

(100-minsup)%

1

1.5

2

2.5

3

3.5

4

4.5

5

ru
n
ti
m

e
(s

e
c
)

PrePost+

PrePost+(Exact)

PrePost+(Approximate)

(accident) (korasak)
Figure 2. Runtime of the PrePost+ with and without the CBPM framework.

frequent itemset mining datasets1. The number of clusters
are fixed to 20. Table 1 presents the characteristics of the
datasets used in our experiments.

4.1. Runtime Performance

Figure 2 present the runtime performance of Pre-
Post+ [4] with and without the CBPM framework for
both the approximate and exact algorithms using different
datasets and with different mining threshold. The results
reveal that by reducing the mining threshold, PrePost+ ben-
efits from the CBPM framework. These results are achieved
thanks to the following factors: i) the decomposition method
applied to the CBPM framework by minimizing the number
of the shared items, and ii) solving the sub-problems with
smaller number of transactions and smaller number of items,

1. http://fimi.uantwerpen.be/data/

0 100 200 300 400 500 600 700 800 900 1000

Shared Items

90

91

92

93

94

95

96

97

98

99

100

(%
)

o
f

S
a

ti
s
fi
e

d
 P

a
tt

e
rn

s

Figure 3. Ratio of the satisfied patterns using the approximate algorithm
with the CBPM framework using IBM Synthetic Data Generator, and with
different number of shared items

instead of dealing with the whole transaction database with
all distinct items. An important side effect of this is also
that memory consumption is significantly reduced.

4.2. Ratio of the Satisfied Patterns

This experiment evaluates the approximation-based al-
gorithm proposed in this work. Note that in the pattern
mining literature, there are many approximate algorithms
exploiting the metaheuristics, including [3]. However, these
approaches are not within the scope of this paper, since
the main goal of this work is to show the effect of de-
composition on the pattern mining algorithms. Figure 3
presents the ratio of the satisfied patterns using IBM Syn-
thetic Data Generator for Itemsets2. Different transaction
databases are generated. We varied the number of items from
100 to 100.000, and the number of transactions is fixed to
1.000.000. By varying the number of shared items from 1
to 1.000, the ratio of the satisfied patterns is reduced from
100% to 90%. These results reveal that the quality of the
approximation-based algorithm depends on the clustering
results, represented by the number of shared items. More
efficient clustering algorithms could reduce the number of
shared items, and consequently improve the accuracy of the
approximate approach.

5. Conclusion

We have introduced a new intelligent pattern mining
framework, called clustering-based pattern mining (CBPM).
CBPM discovers relevant patterns by studying the corre-
lation between the transaction database. The set of trans-
actions are first partitioned using the k-means algorithm,
where the high correlated transactions are grouped together.
For each cluster of transactions, the pattern mining algorithm
is launched in order to discover the relevant patterns. This
is done by using one of two algorithms, one which is
approximate and the other is exact. The experimental eval-
uation of the CBPM framework shows that the performance

2. https://github.com/zakimjz/IBMGenerator

of compared to the basic PrePost+ algorithm is improved,
and in particular when the search space is large. Motivated
by the promising results shown in this paper, we plan to
further improve the the performance of CBPM by exploiting
potentials for parallelization in the approach, and developing
better strategies to exploit the shared items.

Acknowledgment

This work was carried out at the Norwegian University
of Science and Technology (NTNU), funded by a postdoc-
toral fellowship from the European Research Consortium for
Informatics and Mathematics (ERCIM).

References
[1] B. Goethals, “Survey on frequent pattern mining,” Univ. of Helsinki,

vol. 19, pp. 840–852, 2003.
[2] Y. Xun, J. Zhang, X. Qin, and X. Zhao, “FiDoop-DP: data partitioning

in frequent itemset mining on Hadoop clusters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 1, pp. 101–114,
2017.

[3] Y. Djenouri and M. Comuzzi, “Combining apriori heuristic and bio-
inspired algorithms for solving the frequent itemsets mining problem,”
Information Sciences, vol. 420, pp. 1–15, 2017.

[4] Z.-H. Deng and S.-L. Lv, “PrePost+: an efficient n-lists-based al-
gorithm for mining frequent itemsets via children–parent equivalence
pruning,” Expert Systems with Applications, vol. 42, no. 13, pp. 5424–
5432, 2015.

[5] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer,
2014.

[6] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B.
Le, “A survey of itemset mining,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 7, no. 4, p. e1207, 2017.

[7] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Norvaag, and T.-
L. Dam, “Efficient high utility itemset mining using buffered utility-
lists,” Applied Intelligence, vol. 48, no. 7, pp. 1859–1877, 2017.

[8] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 207–216.

[9] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM SIGMOD Record, vol. 29, no. 2, 2000, pp. 1–12.

[10] Y. Djenouri, D. Djenouri, J. C.-W. Lin, and A. Belhadi, “Frequent
itemset mining in big data with effective single scan algorithms,”
Ieee Access, vol. 6, pp. 68 013–68 026, 2018.

[11] K.-W. Chon, S.-H. Hwang, and M.-S. Kim, “Gminer: A fast gpu-
based frequent itemset mining method for large-scale data,” Informa-
tion Sciences, vol. 439, pp. 19–38, 2018.

[12] A. Allam, S. Skiadopoulos, and P. Kalnis, “Improved suffix blocking
for record linkage and entity resolution,” Data & Knowledge Engi-
neering, vol. 117, pp. 98–113, 2018.

[13] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of
high-dimensional data sets with application to reference matching,” in
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2000, pp. 169–178.

[14] T. De Vries, H. Ke, S. Chawla, and P. Christen, “Robust record link-
age blocking using suffix arrays and bloom filters,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 5, no. 2, p. 9, 2011.

[15] M. Hadjieleftheriou, N. Koudas, and D. Srivastava, “Incremental
maintenance of length normalized indexes for approximate string
matching,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. ACM, 2009, pp. 429–440.

[16] Y. Djenouri, D. Djamel, and Z. Djenoouri, “Data-mining-based de-
composition for solving MAXSAT problem: Towards a new ap-
proach,” IEEE Intelligent Systems, 2017.

